
 1

A Proposed DEVS Standard:

Model and Simulator Interfaces, Simulator

Protocol

DRAFT 1.0

Xiaolin Hu

Dept of Computer Science

Georgia State University

Bernard P. Zeigler

ACIMS

January 2008

Contents

A Proposed DEVS Standard: .. 1

Model and Simulator Interfaces, Simulator Protocol ... 1

 2

1 Introduction... 3

1.1 Brief DEVS Review.. 4

1.2 Conceptual Architecture of the Standard.. 5

1.3 Layered structure – brief introduction of each layer... 6

1.4 DEVS Interfaces ... 7

1.5 DEVS Supporting Interfaces... 8

1.6 Message-related Interfaces.. 9

1.7 Ensemble Interfaces .. 11

2 DEVS Modeling Interfaces... 12

3 Simulation Protocol .. 19

3.1 DEVS and non-DEVS Simulation with the CoreSimulatorInterface 20

3.2 DEVS-to-DEVS Simulation with the CoreSimulatorInterface......................... 23

3.3 Simulate an Atomic model in virtual-time ... 27

3.4 Simulation of a coupled model in virtual-time ... 28

4 Future Development.. 31

5 References... 31

 3

1 Introduction

This document describes the Discrete Event System Specification (DEVS) standard

adopted by the DEVS Standard Working Group. The DEVS formalism has been applied

in numerous research and industry contexts and many DEVS versions have been

developed. They are implemented on various computer platforms with different program

languages. They also vary in modeling level, distribution level and simulation mode such

as real-time simulation and virtual-time-mode simulation. To standardize all these

implementations and facilitate future development, this document sets out standardized

descriptions for DEVS models, simulators, and their interaction. However, the current

version is limited in scope to specification of virtual-time simulation of non-hierarchical

coupled models.

The standard is derived from the architectural description for the GenDEVS [2]

package of interfaces and classes in Java that underlie the DEVSJAVA modeling and

simulation environment which provides the capability to build discrete event models and

to simulate these models. The GenDEVS description employs the object oriented features

of classes and interfaces provided by Java that implement the Parallel DEVS formalism.

The standard presented in this document employs the same features but interprets them in

a manner that is not limited to Java implementation. This works because particular

features of the Java language are either not employed, or if employed, then they are given

definitions that are independent of Java implementation. For example, we use the concept

of interface from Java but define it in a language neutral manner. In the process of

generalization, we have allowed the standard to deviate in some ways from the original

source. These concern changing of names and organization of the interfaces that preserve

the original behavior but may make it easier to understand. The end result is an abstract

generic standard to which the GenDEVS implementation could conform with a change in

names of some of its methods.

Besides allowing DEVS models implemented in different languages to be simulated

together (e.g., in a distributed environment), a major goal is to allow non-DEVS models

to participate in such simulations. This is reflected in a reinterpretation of the interface

 4

specifications derived from the GenDevs implementation that may prove confusing to

those familiar with the original. In the latter, the term coreSimulatorInterface suggested

that any DEVS simulator (a “device” that can execute a DEVS models, such as

coordinator or atomicSimulator) should implement this coreSimulatorInterface. In the

new standard, this name “core” refers to “essential” in that as long as a processor

implements this interface, it can participate in a simulation driven by a DEVS coordinator.

This means that a simulator of a standalone atomic model (called an atomicSimulator)

need not satisfy the coreSimulatorInterface while a simulator of a model that is in a

coupled model must do so. Similarly a coordinator of a coupled model need not satisfy

the coreSimulatorInterface although compliance is required of a coordinator of a coupled

model that is a part of a larger hierarchical composition. Some illustrative examples will

demonstrate how simulation of DEVS with non-DEVS federations can be achieved using

the standards developed here.

1.1 Brief DEVS Review

To understand how the standard works, we need to know there are two classes of

DEVS models (Atomic model and Coupled model) and several types of DEVS

simulation modes, e.g., virtual-time mode and real-time mode. An Atomic model is a

basic component which has relatively simple functionality. It has input ports, output ports,

states and internal or external transition functions. A coupled model is composed by

multiple atomic models or coupled models that have been previously defined. By

coupling one model’s output port to another model’s input port, a message can flow from

one model to another model.

Corresponding to different simulation modes, the standard has virtual-time mode and

real-time mode simulators. In virtual-time mode simulation, the simulator interprets time

as logical time so the simulation can skip from one event time to the next without waiting

for the actual time interval to expire. However, in real-time simulation, time is

interpreted as wall clock time, so the real-time simulator will wait for the interval to its

next scheduled event to expire before handling the event.

 5

From the above introduction, we can see that the standard will have multiple

simulation scenarios. For example, considering the combinations of model type and

simulation mode we have: simulating an atomic model in virtual-time mode, simulating

an atomic model in real-time mode, simulating a coupled model in virtual-time mode and

simulating a coupled model in real-time mode.

In addition to the model type/simulation mode combinations, the standard allows for

the use of different forms of distribution of model components, e.g., single processor vs.

multi-processor, and different implementation platforms, such as Windows vs Unix,

different programming languages, such as Java vs C++, and different networking and

middleware frameworks such as .Net vs Apache.

1.2 Conceptual Architecture of the Standard

Figure 1 illustrates our architectural approach to accommodate the various combinations

and permutations of possible application, both currently known, and those that will

emerge in the future. The basic idea is two define two sets of interfaces, the DEVS

model Interface and the DEVS Simulator Interface, as well as a DEVS Simulation

Protocol that operates between the two. The interfaces protocols are based on those in

GenDEVS except that they are removed from Java dependence as mentioned earlier.

 6

DEVS
Simulator
Interface

Single
processor

Distributed
Simulator

Real‐Time
Simulator

C++

Non
DEVS

DEVS
Model
Interface

Java

Other
Representation

DEVS
Simulation
Protocol

Virtual‐Time
Simulator

DEVSML

Figure1: Conceptual Architecture of Standard

1.3 Layered structure – brief introduction of each layer

The DEVS standard uses a layered structure, as in Figure 34.

DEVS Modeling
Interfaces

DEVS Supporting Interface

Entity, and Collection,
Message nterfaces

Atomic and Coupled
Model Interfaces

Atomic and Coupled
Simulators Interfaces

DEVS Simulator
Interfaces

 7

Figure3: layered structure

The lower layer provides the data structure layer to support DEVS modeling and

simulation. It defines an interface for the basic entity class as well as a set of supporting

data structures and such as bags, sets, relations, and functions. It also includes iterators,

called ensemble methods, that facilitate the specifications at the next layer. The second

layer provides the DEVS modeling and simulation specification proper. It includes two

parts, the DEVS modeling interfaces and DEVS simulator interfaces, respectively. This

layer provides basic DEVS atomic and coupled specifications that match up to

corresponding simulators through the DEVS protocol.

1.4 DEVS Interfaces

There are three sets of DEVS interfaces: DEVS Supporting Interfaces, DEVS

Modeling Interfaces, and DEVS Simulator Interfaces.

DEVS Supporting interfaces provide a supporting environment for implementing

DEVS implementations. It specifies some basic data structures such as Entity, Content,

Message, Port, etc. These interfaces are essential for DEVS modeling and simulation

environment.

DEVS Modeling Interfaces define the modeling environments to build DEVS models.

It defines the basic functions a DEVS model needs to implement.

DEVS Simulator Interfaces provide the simulation environment in DEVS to run

simulations. It defines the functions different simulators need to implement.

By carefully defining these DEVS interfaces we have a clear structure for the DEVS

environment. This makes it possible to implement a subset of the whole system and

define a just-as-needed DEVS environment based on different application scenarios. For

example, if we are interested in the real time application such as real-time data

management, we only need to implement the part corresponding to real time simulation

interface. Similarly, if an application needs only atomic models such as some embedded

programs which have sole functionality, only the part corresponding to Atomic interface

is needed to be implemented.

In the following figures, each circle represents an interface that defines a subgroup of

related functions. An interface can extend several parent interfaces. This is shown by a

 8

dotted line connecting the child and parent. An arrow will show the direction from parent

to child unless it is clear from the context. By extending several interfaces, a child

interface will inherit the attributes and functions from its parents. It can also add its own

functions and attributes so it will have its own personality.

1.5 DEVS Supporting Interfaces

DEVS supporting interfaces start with the EntityInterface for defining the entity, or base

object class, from which all classes will be derived. For example, this could be the Object

class in Java or the entity class in DEVSJAVA. We note this allows different

implementations to employ different classes to implement the EntityInterface while still

allowing such implementations to interoperate through the exposed functions defined by

it.

The Collection interface defines the basic functions of a collection of objects each of

which implements the EntityInterface. Consistent with the base object nature of

EntityInterface, Collection is derived from the latter. The behaviors of Collections and

ensembleCollections are uniquely specified using Object Behavior Specification in

Reference [x].

 9

interface EntityInterface{
String getName();
boolean equalName(String name);
}

interface Collection extends EntityInterface{
int size();
void add(EntityInterface entity);
void remove(EntityInterface entity);
boolean contains(EntityInterface entity);
}

EntityInterface Collection

0:n

Figure 4: DEVS Supporting Interfaces

interface EntityInterface{

String getName();

boolean equalName(String name);

}

interface Collection extends EntityInterface{

int size();

void add(EntityInterface entity);

void remove(EntityInterface entity);

boolean contains(EntityInterface entity);

}

1.6 Message-related Interfaces

DEVS standard message concepts are briefly reviewed in Figure 5. DEVS models have

output ports through which messages are transmitted to input ports of receiving models

following routing that is specified by couplings.

 10

DEVS
Model

Output port

Input port

DEVS
Model

message

coupling

Figure 5: DEVS Message concepts

The corresponding message interfaces are illustrated in Figure 6. ContentInterface

defines a content (port-value pair) by providing a method, getPort, to get its port

(implementation of PortInterface) and getValue, to get its value (an EntityInterface

implementation). The MessageInterface is a collection of contents. It has a predicate,

onPort, for whether a content has a given port. It also has a query, getValOnPort, that

returns the value that is paired with a given port in a given content.

ContentInterface

MessageInterface

Collection

0:n

interface MessageInterface extends Collection{
boolean onPort(

PortInterface port,
ContentInterface content);

EntityInterface getValOnPort(
PortInterface port
,ContentInterface content);

}

PortInterface EntityInterface

interface ContentInterface {
PortInterface getPort();
EntityInterface getValue();
boolean onPort(PortInterface port);
}

interface PortInterface
extends EntityInterface{

}

Figure 6: Message-related interfaces

 11

interface ContentInterface {

PortInterface getPort();

EntityInterface getValue();

boolean onPort(PortInterface port);

}

interface MessageInterface extends Collection{

boolean onPort(

 PortInterface port,

 ContentInterface content);

EntityInterface getValOnPort(

 PortInterface port

 ,ContentInterface content);

}

interface PortInterface

 extends EntityInterface{

}

1.7 Ensemble Interfaces

We use the concept of ensemble method to introduce the capability of iteration over

Collection members. As in Figure 7, an ensembleCollection extends the standard

Collection with inclusion of the ensembleBasic interface that defines the ensemble

methods, tellAll, askAll, which, and whichOne.

 12

ensembleBasic
Collection

interface ensembleBasic {
void tellAll(Method m, EntityInterface[] args);
ensembleCollection askAll(Method m);
ensembleCollection which(Method m);
EntityInterface whichOne(Method m);
}

interface ensembleCollection extends ensembleBasic, Collection{
public ensembleCollection copy(ensembleCollection ce);
}

ensembleCollection

Figure 7: Ensemble Interfaces

interface ensembleBasic {

void tellAll(Method m, EntityInterface[] args);

ensembleCollection askAll(Method m);

ensembleCollection which(Method m);

EntityInterface whichOne(Method m);

}

interface ensembleCollection extends ensembleBasic, Collection{

public ensembleCollection copy(ensembleCollection ce);

}

2 DEVS Modeling Interfaces

Figure 8 shows the structure of DEVS modeling Interface.

 13

IODevs

atomicDevs
(optional)

interface basicDevs {
void deltext(double e,MessageInterface x);
void deltcon(double e,MessageInterface x);
void deltint();
MessageInterface Out();
double ta();
void initialize();
}

IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupledinterface coupledDevs {
void add(IODevs d);
void addCoupling(IODevs src, Port p1, IODevs dest,
Port p2);
IODevs getComponentWithName(String nm);
ensembleCollection getComponents();
ensembleCollection getCouplings(IODevs src, Port
p1);
}

DevsInterface

interface IODevs {
void addInport(String portName);
void addOutport(String portName);
ensembleCollection getInports();
ensembleCollection getOutports();
ContentInterface makeContent(PortInterface
port,EntityInterface value);
boolean messageOnPort(MessageInterface x,
PortInterface port, ContentInterface c);
}

Figure 8 DEVS Model Interfaces

interface DevsInterface extends AtomicInterface,Coupled{

}

interface AtomicInterface extends atomicDevs,IOBasicDevs{}

interface Coupled extends coupledDevs,IOBasicDevs{

}

interface IODevs {

void addInport(String portName);

void addOutport(String portName);

ensembleCollection getInports();

ensembleCollection getOutports();

ContentInterface makeContent(PortInterface port,EntityInterface value);

boolean messageOnPort(MessageInterface x, PortInterface port, ContentInterface c);

}

interface basicDevs {

void initialize();

 14

void deltext(double e,MessageInterface x);

void deltcon(double e,MessageInterface x);

void deltint();

MessageInterface Out();

double ta();

}

interface coupledDevs {

void add(IODevs d);

void addCoupling(IODevs src, PortInterface p1, IODevs dest, PortInterface p2);

String getComponentWithName(String nm);

ensembleCollection<String> getComponents();

ensembleCollection<String,Port> getCouplings(IODevs src, PortInterface p);

}

Among these interfaces, IODevs interface defines the functions needed for message

exchange, including addInport(), addOutport(), makeContent() and messageOnPort(). It

also has methods getInports() and getOutports() that return the input and output ports,

respectively. These methods are optional since they are useful for model manipulation

but not necessary for model execution. Any model, whether DEVS or non-DEVS, can

implement these functions so it can interoperate with other implementers of this interface,

in the sense of receiving input and sending output.

The basicDevs Interface defines the basic functions a DEVS model needs to

implement such as deltext(), deltint(), out(), ta() and so on. The basicDevs interface is

the interface that is exposed to the atomic simulators. An additional interface,

atomicDevs, provides a convenient set of primitives for defining the basic functions in an

atomic model. However, since the basic functions can be defined without using such

primitives, we set the atomicDevs interface as optional, although recommended. Of

course, any interface that extends this interface need not implement its features in its

absence.

interface atomicDevs {

 void Continue(double e);

 void passivate();

 15

 void passivateIn(String phase);

 void holdIn(String phase, double time);

 void holdIn(String phase, double time, Activity a);

 boolean phaseIs(String phase);

}

The IOBasicDevs interface extends the String interface and basicDevs interface. It

provides a common basis for implementing atomic models and coupled models.

Combining IOBasicDevs with atomicDevs, we get AtomicInterface which defines the

functions an atomic model need to implement. Of course, if atomicDevs is omitted, then

AtomicInterface reduces to IOBasicDevs.

CoupledDevs interface defines the functions that are used in DEVS coupled models.

It has methods add() and addCoupling() that enable adding components and couplings to

the model. It also has optional methods getComponentWithName() and getComponents()

methods for retrieving a component by name and for accessing all components; and

getCouplings() to access the component/port pairs associated with a component and a

port.

Combining IOBasicDevs with CoupledDevs, we get Coupled which defines the

functions a coupled model needs to implement.

2.1 Extending the “Core” interfaces
The above interfaces define the “core” of DEVS modeling. Later extensions of the

DEVS standard can be added based on these core interfaces. For example, to support

dynamic structure modeling, a dynamicStructure interface can be defined to be

implemented by an atomic model.
interface dynamicStructureInterface {

 void addCoupling(String srcName, String p1, String destName, String p2);

 void removeCoupling(String srcName, String p1, String destName, String p2);

 void addModel(String ModelName);

 void removeModel(String ModelName);

 void addInport(String ModelName, String port);

 void addOutport(String ModelName, String port);

 void removeInport(String ModelName, String port);

 16

 void removeOutport(String ModelName, String port);

}

Note that since changes to model structure are specified within a model, we use strings

rather than objects in the signatures. These strings must be used to find the objects

associated with these names.

Simulator Interfaces
Figure 4 shows the structure of DEVS simulator Interface and structure1.

Figure 4: DEVS Simulator Interfaces

In contrast to the other interfaces,the atomicSimulatorInterface and

CoordinatorInterface are not for simulators of components in a coupled model, i.e., they

are for the processors that drive a simulation. The atomicSimulatorInterface is for

1 Note that the above Figure 4 is different from the GenDevs implementation in DEVSJAVA. For example,

in GenDevs, coupledSimulator interface extends coresimulator interface and also couplingProtocolInterface,

ActivityProtocolInterface and Hieparent interface. We have removed the ActivityProtocolInteface for

simplicity purpose. Also, we combined couplingProtocolInterface and Hieparent into the CoupledSimulator

interface. We also make the CoupledCoordinator interface extend Coordinator interface and

CouopledSimulator interface. This is not the case in the GenDevs implementation.

coreSimulatorInterface

atomicSimulatorInterface

CoupledSimulatorInterface

CoordinatorInterface

CoupledCoordinatorInterface

 17

simulating a single stand-alone DEVS atomic model. The CoordinatorInterface is for

simulating a coupled model.
For some reason (probably because I am used to the GenDevs implementation), I feel the name of

coreSimulatorInterface is kind of confusing. This name suggests that any DEVS simulator (here I mean a

“device” that can execute a DEVS model, such as coordinator or atomicSimulator) should implement this

coreSimulatorInterface. This is different from what is shown in Figure 4. In Figure 4, it is actually a

componentSimulator interface (not the coordinator itself) that can work with a coordinator. In other words,

as long as a simulator implements this interface, it can participate in a simulation driven by a coordinator

(assuming such a coordinator exists). This brings out my second discussion. From Figure 1, it seems two of

the major goals of the standardization is to allow 1) a non-DEVS model to work with a DEVS model; 2)

models implemented in different languages can be simulated together (e.g., in a distributed environment). If

this is true, it will be very helpful to demonstrate how that can be achieved using the standards developed

here. Some illustrative examples may be developed (at the conceptual level). This might be part of the next

step (it will also help to test/refine the interfaces developed here).

The basic interface for DEVS and non-DEVS simulators is CoreSimulatorInterface.

 interface coreSimulatorInterface{

void setSimulators(Collection<CoreSimulatorInterface>);

 void initialize();

 Double nextTN(); //Double is a class that wraps a double value

 void computeInputOutput(Double t);

 void applyDeltFunc(Double t);

void putContentOnSimulator(CoreSimulatorInterface sim, ContentInterface c);

 void sendMessages();

}

// is setSimulators() implementation specific? i.e., it suggests a simulator know all other simulators.

Can we have a different implementation? OR should this be part of the standardization?

//BPZ: I think it should be in the standard although we don’t tie down the form in which the simulators

are expressed. This is because to do sendMessages federates have to know the other simulators.

The AtomicSimulatorInterface provides the methods needed for stand-alone

simulation of atomic DEVS models. Methods needed for simulation of atomic models as

components in coupled models are provided by the CoupledSimulatorInterface, which

extends the AtomicSimulatorInterface and the CoreSimulatorInterface. The

 18

CoordinatorInterface provides the methods needed by a coordinator to simulate a coupled

model. To handle simulation of hierarchical coupled models, we note that a processor can

coordinate the processors below it as well as participate with peers in a coupled model

above it. To allow such downward and upward facing interfaces, the

CoupledCoordinatorInterface extends both the CoordinatorInterface and the

CoupledSimulatorInterface. This enables a processor satisfying the

CoupledCoordinatorInterface to participate both as a coordinator for its own coupled

model as well as providing a CoupledSimulatorInterface to the coordinator above it.

The following interfaces are for simulation of DEVS models that satisfy the DEVS

modeling interfaces as described above.

 interface AtomicSimulatorInterface {

 void initialize();

 Double nextTN();

 void computeInputOutput(Double t);

MessageInterface getOutput();

 void applyDevsDeltfunc(Double t, MessageInterface x);

void simulate(int numIter);

void simInject(double e,MessageInterface m);

}

Note that applyDevsDeltfunc() employs DEVS model interfaces to compute the

atomic model transition function as illustrated in the next section.

 interface CoupledSimulatorInterface extends AtomicSimulatorInterface,CoreSimulatorInterface{

CoupledSimulatorInterface getSimulatorOf(String ModelName);

 void addPair(Pair cs,Pair cd); //add coupling pair

 void removePair(Pair cs, Pair cd); //remove coupling pair

 void setParent(CoordinatorInterface p);

 CoordinatorInterface getParent();

}

 19

interface CoordinatorInterface {

 void setSimulators();

 void addSimulator(IOBasicDevs comp);

 void addCoordinator(Coupled comp);

 coupledDevs getCoupled();

 void addExtPair(Pair cs,Pair cd) ;

 void informCoupling();

 Relation convertInput(MessageInterface x);

void simulate(int numIter);

}

interface CoupledCoordinatorInterface extends CoupledSimulator, CoordinatorInterface{

void putMyMessages(ContentInterface c);

 void sendDownMessages();

}

3 Simulation Protocol
DEVS treats a model and its simulator as two distinct elements. The simulation

protocol describes how a DEVS model should be simulated whether in standalone

fashion or in a coupled model. Such a protocol is implemented by a processor which can

be a simulator or a coordinator.

 20

Coordinator

Atoimc1

Non-DEVS
Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS
Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("ApplyDeltFunc”)

putContentOnSimulator
DEVS
Simulator

DEVS
Simulator

DEVS
Model

2

?

Figure 5 Federation of DEVS with Non-DEVS Simulators

3.1 DEVS and non-DEVS Simulation with the CoreSimulatorInterface

Recall that DEVS and non-DEVS models can participate in a simulation as

illustrated in Figure 1. CoreSimulatorInterface provides the interface to both DEVS and

non-DEVS simulators to interoperate according to the DEVS simulation protocol. To

help understand how the methods in CoreSimulatorInterface are used and to understand

the DEVS simulator protocol to be discussed later, we give an informal description of the

manner in which a coordinator would conduct a simulation with a collection of

simulators. The coordinator would synchronize the activities of the simulators to guide

them through a cycle of method applications as follows:

public void simulate(ensembleCollection<CoreSimulatorInterface> simulators)

 {

1. simulators.tellAll("setSimulators",simulators);

2. simulators.tellAll(“initialize”);

3. tN = Min(simulators.AskAll("nextTN"));

4. while((tN < DevsInterface.INFINITY))) {

5. simulators.tellAll("computeInputOutput",Double,tN);

 21

6. simulators.tellAll("sendMessages");

7. simulators.tellAll("applyDeltFunc",Double,tN);

8. tN = Min(simulators.AskAll("nextTN"));

}}

Each line is given the following explanation:

1. the coordinator tells each of the simulators in the collection the others’ addresses.

2. the coordinator asks each simulator to perform the initialization function.

3. the coordinator requests that each simulator sends its time of next event and takes the

minimum of the returned values to obtain the global time of next event

4. the coordinator enters the following cycle until activity ceases:

5. each of the simulators applies its computeInputOutput() method to produce an

output that consists of a collection of contents (port/value) pairs – for DEVS

simulators this is a composite message computed according to the DEVS formalism

based on its model’s current state

6. each of the simulators partitions its output into messages intended for recipient

simulators and sends these messages to these recipient simulators – for DEVS

simulators these recipients are determined from the output ports in the message and

the coupling information that will have previously been received from the

coordinator

7. each of the simulators executes its ApplyDeltFunc method which computes the

combined effect of the received messages and internal scheduling on its state, a side

effect of which is produce of time of next event, tN – for DEVS simulators this state

change is computed according to the DEVS formalism and the tN is updated using its

model’s time advance

8. the coordinator obtains the next global time of next event and the cycle repeats

Implicit in the above pseudo-code are the following constraints involving methods in the

CoreSimulatorInterface:

• The sendMessages() method “must” employ the putContentOnSimulator()

method as follows: for any simulator to which it wishes to send a content, it must

call the recipient’s putContentOnSimulator() method with the recipient and the

content as arguments.

 22

• Further, in applying its computeInputOutput() method, a simulator “must” be able

to interpret the contents (satisfying the ContentInterface) it has received from the

other simulators.

Notice that we cannot enforce the “must” requirements just given, and cannot prove that

the simulation executes a desired behavior, unless we are given further information about

format. One way to do this is where the simulators are truly DEVS simulators in that they

satisfy the interfaces and constraints given below. Failing this additional rigor, the

interoperation involving DEVS and non-DEVS is purely at the technical level similar to

that of a federation of simulators in HLA. This contrasts with the situation in which the

federation is in fact derived from a DEVS coupled model for which correct simulation of

the coupled model is guaranteed according to the DEVS formalism.

Figure 6 displays a sequence diagram to illustrate how a DEVS simulator can work with

a non-DEVS simulator where both implement the coreSimulatorInterface described

above. The entire simulation is coordinated by a coordinator following the simulation

protocol described in section 3.1. The DEVS simulator has been assigned a DEVS

atomic model and therefore implements the coupledSimulatorInterface. The non-DEVS

simulator is assumed to iterate a model with a fixed time step, although the model need

not be easily separable from the simulator. The discrete time model underlying the non-

DEVS simulator is assumed to generate output and be capable of interpreting input at

every iteration. Moveover, the model is assumed to implement the IODevs interface so

 23

that it can output and interpret DEVS messages as content (port-value) containers.

Figure 7 DEVS simulation protocol for a federation of DEVS with Non-DEVS Simulators

3.2 DEVS-to-DEVS Simulation with the CoreSimulatorInterface

To simulate a coupled model composed of atomic models in virtual-time, we use a

coordinator to control the whole simulation cycle. For each atomic model, there is

CoupledSimulator to take care of it. The figure below shows the relationship between

coordinator, coupledSimulator, the coupled model and its atomic model components.

coordinator coupledSimulator DEVS atomic model non -DEVS simulator non - DEVS model

setSimulators (simulators)
setSimulators (simulators)

initialize ()
initialize ()

tN = tL+ta(smodel)

initialize ()
tN = tL+time stepnextTN ()

nextTN ()
computerInputOutput (t=smallest tN)

computerInputOutput (t)
get models’ output . sendMessages()

putContentOnSimulator (output)

sendMessage ()

putContentOnSimulator (output)

applyDeltFunc (t)

applyDeltFunc (t)
deltint () or deltext() or deltcon ()

if (t f = tN) output = myModel .out()

.
execute one iteration

of the model;

set tL = tN;nextTN () to start the next iteration

the non-DEVS simulator
implements the
coreSimulatorInterface

the non - DEVS model
is a discrete time model .
But it implements the
IODevs interface

 24

Figure 8: Simulating "one-level" coupled model in virtual-time mode

As we can see from figure 8, for each atomic model, there is a CoupledSimulator

corresponding to it. The coordinator is the main thread. It will tell all the

CoupledSimulators to initialize, send nextTN, computeInputOutput, sendMessages and

applyDevsDeltfunc.

Note that if model Atomic1 wants to send a message to Atomic2, CoupledSimulator1

will find the message destination (CoupledSimulator2) based on its ModToSim data and

coupling information (described below). Then it will call CoupledSimulator2’s

putMessages() and directly put the message to CoupledSimulator2. So the message

doesn't go through the coordinator.

Coordinator

CoupledSimulator1

Atoimc1

CoupledSimulator3

Atoimc3

CoupledSimulator2

Atoimc2

simulators.tellAll("initialize“)
simulators.AskAll(“nextTN ”)

simulators.tellAll("computeInputOutput “)
simulators.tellAll("sendMessages ")
simulators.tellAll("DeltFunc “)

putMessage
putMessage

putMessage

Coordinator

CoupledSimulator1

Atomic1

CoupledSimulator3

Atomic3

CoupledSimulator2

Atomic2

simulators.tellAll("initialize“)
simulators.AskAll(“nextTN ”)

simulators.tellAll("computeInputOutput “)
simulators.tellAll("sendMessages ")
simulators.tellAll("DeltFunc “)

putMessage
putMessage

putMessage

 25

Figure 9 displays a sequence diagram showing how the simulation works.

Figure 9: Sequence diagram of simulating "one-level" coupled model in virtual-time mode

As you can see from the sequence diagram, the coordinator actually controls the

whole simulation process. The pseudo-code of the coordinator is similar to that discussed

earlier:
public void simulate(int num_iter)

{

 int i=1;

 simulator.tellAll(“initialize”);

 tN = Min(simulators.AskAll("nextTN"));

 while((tN < DevsInterface.INFINITY) && (i<=num_iter)) {

 simulators.tellAll("computeInputOutput");

simulators.tellAll("sendMessages");

 simulators.tellAll("ApplyDevsDeltFunc");

c o o r d i n a t o r c o u p l e d
S i m u l a t o r 1

A t o m i c M o d e l 1 c o u p l e d
S i m u l a t o r 2

A t o m i c M o d e l 2

s ta r t c o n s t ru c t i o n

s e t m y C o u p l e d

a d d s i m u l a t o r a d d m y M o d e l

a d d s i m u l a t o r
a d d m y M o d e l

s e t M o d T o S i m s e t M o d T o S i m

i n fo r m C o u p l i n g i n fo r m C o u p l i n g

fi n is h c o n s t r u c t i o n
in i t i a l iz e

i n i t i a l i z e & g e t T N

i n i t i a l i z e i n i t i a l i z e & g e tT N

s t a r t s i m u l a t i o n
n e x t T N

n e x t T N

c o m p u t e r In p u t O u t p u t (s m a l l e s t t N)
i f (t = t N) m y M o d e l . o u t ()

c o m p u t e r In p u t O u t p u t (s m a l l e s t t N) i f (t = t N) m y M o d e l . o u t ()
s e n d M e s s a g e

s e n d M e s s a g e
p u t M e s s a g e
p u t M e s s a g e

w r a p D e l t F u n c (t N)
w r a p D e l t F u n c (t N)

w r a p D e l t F u n c (t N)
w r a p D e l t F u n c (t N)

t L = t N t N = n e x t T N ()

 26

 tN = Min(simulators.AskAll("nextTN"));

 i++;

 }

}

From figure 9 we can also see that in coordinator’s construction phase, for each

atomic model, it will add a CoupledSimulator. Then it will call the setModToSim() and

informCoupling() to download the modelToSim data and coupling information to all the

CoupledSimulators. Here the modelToSim data stores the mapping information between

each model and its corresponding simulator. The coupling information records the

mapping information between one model’s output port and another model’s input port so

we know where the message will flow to. By having these two data tables (the

coordinator downloads it to the simulators), a simulator can send its model’s output

message directly to another simulator. Specifically, in CoupledSimulator’s

sendMessages(), if there are output messages generated by its model, the

CoupledSimulator will first find the message’s destination model based on the coupling

information. Then it will find the corresponding simulator of that model based on the

modelTosim data. Finally it will call that simulator’s putContentOnSimulator () to put the

contents of a message on the input of that simulator. Below we show the sendMessages()

and putContentOnSimulator () functions.

public void sendMessages() {

 MessageInterface o = getOutput();

 if(o!= null && !o.isEmpty()) {

 Relation r = convertMsg((message)getOutput());//assume computeInputOutput done first

 Iterator rit = r.iterator();

 while (rit.hasNext()){

 Pair p = (Pair)rit.next();

 content co = (content)p.getValue();

 Object ds = p.getKey();

 CoreSimulatorInterface sim = modelToSim.get(ds);

 Sim.putContentOnSimulator(co);

 }

 }

 27

public void putContentOnSimulator (ContentInterface c){

input.add(c);

}

3.3 Simulation of an Atomic model in virtual-time

In GenDEVS, the simplest simulation scenario is to simulate an Atomic model in

virtual-time. The following flow chart shows the simulation protocol for simulating an

atomic model in this manner. This protocol should be implemented by an atomic model

simulator that implements the AtomicSimulator interface described above.

Figure 10: AtomicSimulator

public void applyDevsDeltfunc (double t,MessageInterface x){
 if(x == null){
 System.out.println("ERROR RECEIVED NULL INPUT " + myModel.toString());
 return;
 }
 if (x.isEmpty() && !equalTN(t)) {
 return;
 }
 else if((!x.isEmpty()) && equalTN(t)) {
 double e = t - tL;
 myModel.deltcon(e,x);

tL = tN;

iter++;

ApplyDevsDeltFunc(tN)

initialize

(tN < INFINITY)
&& (iter <= numIter) Terminate

yes

no

tN= nextTN

computeInputOutput(tN)

tL = tN;

iter++;

initialize

(tN < INFINITY)
&& (iter <= numIter) Terminate

yes

no

 28

 }
 else if(equalTN(t)) {
 myModel.deltint();
 }
 else if(!x.isEmpty()) {
 double e = t - tL;
 myModel.deltext(e,x);
 }
 tL = t;
 tN = tL + myModel.ta();
}

3.4 Simulation of a coupled model in virtual-time

In GenDevs, an atomic model is a basic component. By coupling several atomic

models together, we can have a coupled model. So, a coupled model has several

components. These components might be Atomic model or be Coupled model

(hierarchical construction). In a coupled model, all the components are coupled together

by linking one component’s output port to another component’s input port.

First let’s consider a relatively simple kind of Coupled model. In this kind of Coupled

model, all components are atomic models. Because no component is coupled model, the

coupled model is actually a “one-level” coupled model.

To simulate this kind of coupled model in virtual-time model, we need a coordinator

to control the whole simulation cycle. For each Atomic model, there is a

CoupledSimualtor to take care of it. The figure below shows the relationship between

coordinator, coupledSimulator, the coupled model and its Atomic model components.

Figure 11: Simulating "one-level" coupled model in virtual-time mode

Coordinator

CoupledSimulator1

Atoimc1

CoupledSimulator3

Atoimc3

CoupledSimulator2

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("DeltFunc“)

putMessage
putMessage

putMessage

Coordinator

CoupledSimulator1

Atoimc1

CoupledSimulator3

Atoimc3

CoupledSimulator2

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("DeltFunc“)

putMessage
putMessage

putMessage

 29

As we can see from figure 8, for each atomic model, there is a CoupledSimulator

corresponding to it. The coordinator is the main thread. It will tell all the

CoupledSimulators to initialize, send nextTN, computeInputOutput, sendMessages and

wrapDeltfunc.

Note that if model Atomic1 wants to send a message to Atomic2, CoupledSimulator1

will find the message destination (CoupledSimulator2) based on its ModToSim data and

coupling information (described below). Then it will call CoupledSimulator2’s

putMessages() and directly put the message to CoupledSimulator2. So the message

doesn't go through the coordinator.

Below is the sequence diagram showing how the simulation works.

Figure 9: Sequence diagram of simulating "one-level" coupled model in virtual-time mode

As you can see from the sequence diagram, the coordinator actually controls the

whole simulation process. The psuedo-code of the coordinator looks like this:
public void simulate(int num_iter)

{

 int i=1;

 tN = simulators.AskAll("nextTN");

 while((tN < DevsInterface.INFINITY) && (i<=num_iter)) {

c oordinator c oupled
S im ulator1

A tom ic M odel1 c oupled
S im ulator2

A tom ic M odel2

s ta rt c onst ruc t ion

s et m y Coupled

add s im ulator add m y M odel

add s im ulator
add m y M odel

s etM odToS im s etM odToS im

inform Coupling inform Coupling

fi n is h c ons tru c ti on
ini ti al iz e

init ia liz e & getTN

init ia liz e init ia liz e & getTN

s tart s im ulat ion
n ex t TN

nex t TN

c om puterInputO utput (s m alles t tN)
if (t= tN) m y M odel.out()

c om puterInputO utput (s m alles t tN) if (t= tN) m y M odel.out()
s endM es s age

s endMe s s age
putM es s age
putM es s age

wrapDeltFunc (tN)
wrapDeltFunc (tN)

wrapDeltFunc (tN)
wrapDeltFunc (tN)

tL = tN tN = nex tTN()

 30

 simulators.tellAll("computeInputOutput");

simulators.tellAll("sendMessages");

 simulators.tellAll("DeltFunc");

 tN = simulators.AskAll("nextTN");

 i++;

 }

}

From figure 10 we can also see that in coordinator’s construction phase, for each

atomic model, it will add a CoupledSimulator. Then it will call the setModToSim() and

informCoupling() to download the modelToSim data and coupling information to all the

CoupledSimulators. Here the modelToSim data stores the mapping information between

each model and its corresponding simulator. The coupling information records the

mapping information between one model’s output port and another model’s input port so

we know where the message will flow to. By having these two data table (the coordinator

download it to the simulators), a simulator can send its model’s output message directly

to another simulator. Specifically, in CoupledSimulator’s sendMessages(), if there are

output messages generated by its model, the CoupledSimulator will first find the

message’s destination model based on the coupling information. Then it will find the

corresponding simulator of that model based on the modelTosim data. Finally it will call

that simulator’s putMessage() to put the message to that simulator. Below we show the

sendMessages() and putMessages() functions.

public void sendMessages() {

 MessageInterface o = getOutput();

 if(o!= null && !o.isEmpty()) {

 Relation r = convertMsg((message)getOutput());//assume computeInputOutput done first

 Iterator rit = r.iterator();

 while (rit.hasNext()){

 Pair p = (Pair)rit.next();

 content co = (content)p.getValue();

 Object ds = p.getKey();

 if(modelToSim.get(ds) instanceof CoupledSimulatorInterface){

 CoupledSimulatorInterface sim = (CoupledSimulatorInterface)modelToSim.get(ds);

 sim. putContentOnSimulator (co);

 31

 }

}

public void putContentOnSimulator (ContentInterface c){

input.add(c);

}

4 Future Development
Reference [1] provides a description of DEVSJAVA architecture that includes

capabilities for real-time and distributed simulation of hierarchical models, a more

extensive scope than is covered in this reformulation as a DEVS standard for

implementation. We feel it is important to get the basic level discussed here formulated

and agreed to by the DEVS community before proceeding on to incorporate the more

extensive capabilities that can be built on top of it.

5 References

[1]The Architecture of GenDevs Distributed Simulation in DEVSJAVA, Xiaolin Hu

Dept of Computer Science, Georgia State University, Updated by Bernard P. Zeigler

ACIMS, January 2008 Available at www.acims.arizona.edu

[2]Bernard P. Zeigler, Objects and Systems: Principled Design with Implementation C++/Java,

Springer-Verlag, NY, 1997.

