
Exploiting the Concept of Activity for Dynamic Reconfiguration

of Distributed Simulation1

Ming Zhang
1
, Bernard P. Zeigler

2
, Azzedine Boukerche

1

1 This work is partially supported by Canada Research Chair Program, NSERC

Ontario Distinguished Researcher Award and Ontario Early Researcher Award.

1
Paradise Research Lab

School of Information Technology and

Engineering (SITE)

University of Ottawa

Ottawa, Ontario Canada, K1N 6N5

{mizhang, boukerch}@site.ottawa.ca

2
Arizona Center of Integrative Modeling &

Simulation

The Department of Electrical and Computer

Engineering

University of Arizona, Tucson, AZ 85721

zeigler@ece.arizona.edu

Abstract

In this paper, we specialize the concept of

“activity”, defined in earlier work, to measure the

heterogeneity of model behavior using the temporal-

spatial distribution of its local transitions in a 2D

cellular space. We then show how to employ this

“activity” metric to balance the computation load

using the dynamic reconfiguration of the distributed

simulation. We also show how the degree of

improvement depends on the heterogeneity of the

activity's distribution. That is, high concentrations of

activity in space that change relatively slowly during

simulation can be exploited to reduce execution time

significantly within an appropriate infrastructure for

dynamic reconfiguration in a DEVS based distributed

simulation framework. In contrast to other dynamic

load balancing approaches, the activity-based

approach discussed here exploits model properties

directly rather than relying on resource-based

measurements as the basis for its reconfigurations.

1. Introduction

With the increased demand for computing

resources from modern simulation applications, parallel

and distributed simulations are attracting more and

more attention from researchers in this area. In more

and more cases, these types of simulations are

becoming a necessity for solving large-scale simulation

applications rather than just a potentially performance

improving approach. However, effective model

partitioning is the key to determining the overall

simulation execution performance when parallel and

distributed simulation techniques are used.

In this paper, we focus our study on model

“activity” based dynamic repartition in a distributed

simulation environment. We exploit our idea through a

highly dynamic discrete event model represented in

DEVS, and then experiment with this model in a

flexible distributed simulation framework. In particular,

we are interested in how the distribution of “activity” in

a simulation model determines the computing workload

distribution, and therefore affects the simulation

execution performance in a distributed computing

environment. Moreover, we focus our implementation

on a DEVS based distributed simulation framework

that uses “activity” as a measure of the computing

workload [1][2]. We will show how to exploit this

“activity” metric to improve the distributed simulation

performance by applying it to a run-time repartitioning

approach.

Discrete event simulations are characterized by

asynchronous and irregular, random, or data dependent

behavior [3], which requires a highly dynamic and

strict modeling and simulation framework. In contrast

to other modeling and simulation methodologies,

DEVS [4] provides a theoretical foundation for the

modeling and simulation of discrete event system

(DES), continuous systems, and hybrid systems. DEVS

based modeling and simulation frameworks are

generally flexible, rigorous, and conform to modern

software engineering standards. At the present time,

DEVS based frameworks have also been verified as

being able to solve large-scale and highly dynamic

simulation models effectively. In particular, distributed

DEVS frameworks such as ADEVS [5], DEVS/Grid

[6], DEVS/P2P [7], and DEVS/RMI[8], have opened

us a wide area of research on parallel and distributed

simulation using DEVS.

With regards to distributed simulation

performance, model partition algorithms are worth

investigating, particularly dynamic partition or

repartition techniques. In general, the run-time

behaviors of a simulation model play an important role

in determining the optimal model partition schema.

However, it is difficult to predict the runtime behaviors

of a highly dynamic simulation model and, therefore, a

well predefined model partition plan is not easy to

obtain in practice when running the model in a

distributed fashion. Also, a parallel or distributed

simulation framework that supports dynamic

reconfiguration is needed to properly support the

dynamic repartitioning of simulation models on clusters

of machines.

In this paper, we present a dynamic

reconfiguration mechanism that uses a run-time

gathered “activity” metric to repartition a simulation

model in order to improve the overall performance of a

distributed simulation. We exemplified the concept of

“activity” through the re-implementation of a time-

stepped valley fever model [9]. This implementation

uses a DEVS-based asynchronous approach to

represent the behavior of cells, called “patches”, in a

2D cellular space. In the following sections, general

model partitioning techniques are reviewed briefly,

followed by a section that describes how the dynamic

reconfiguration capability is implemented in a

distributed simulation framework to be used for later

experimentations. The re-implemented DEVS based

valley fever model is then tested and discussed to

demonstrate the effectiveness of using an “activity”

based model repartition on improving the performance

of a distributed simulation. In the last sections, a

conclusion and suggestions for future work are

presented.

2. Model Partitioning in A Distributed

Simulation

In this section, we review some of the major model

partitioning concepts used in distributed simulations

[17-20]. We will provide some basic background

information with regard to general model partitioning

techniques and, in particular, we focus on what

“activity” is and how it is used in model partitioning in

a distributed simulation environment.

2.1. General Model Partition Techniques

In general, partitioning techniques can be

classified into the following: random partitioning,

partitioning improvement, simulated annealing, and

heuristic partitioning [10][11]. Random partitioning

randomly aggregates models to a set of partition blocks

and then maps the partition blocks to the processors.

The Partitioning improvement algorithm modifies the

partitioning results during the process of partitioning

[12][13]. Simulated annealing [14-16] uses statistical

methods to develop the process of model partitioning,

and, finally, heuristic partitioning is an algorithm that

uses domain-specific knowledge or a particular

optimization technique to achieve a better partitioning

results.

Hierarchical model partitioning is a technique that

applies a general model partitioning technique, such as

graph partitioning, to the hierarchical model structure

of a distributed simulation. It is a process of

constructing partition blocks by decomposing a

hierarchical model structure based on certain decision-

making criteria. Hierarchical model partitioning is

especially important for DEVS based distributed

simulation environments because the model structure in

most DEVS implementation uses such a hierarchical,

modular model structure to represent a system for

simulations. General hierarchical model partitioning

techniques include the flattening, deepening, and

heuristic. Flattening transforms a hierarchical structure

into a non-hierarchical structure. Deepening, sometime

called hierarchical clustering, is a technique that in

reverse transforms non-hierarchical structures into

hierarchical structures. The heuristic technique uses

heuristic functions to analyze the nodes in a

hierarchical model tree to determine the partitioning

policies. In fact, hierarchical model partitioning is the

basis of the “cost” or “activity” based model partition

that we will discuss in the following section.

2.2. “Activity” Based Model Partition

In this sub-section, we define and discuss some of

the fundamental concepts related to the “activity”. In

general, “activity” is a term to define how “active” a

component/role is in a system in terms of some

predefined rules. For instance, “activity” concept is

introduced in [23] using DEVS quantization theory,

which defines the “activity” as: “ A cell is said to be

most active if the value of the cell crosses the quantum

more times than any of the other cells.”. In this paper,

we use the term “activity” to represent the intrinsic

property of a participated model in a DEVS model

system. In particular, we define “high activity” models

as those who potentially consume more computing

resources than others do, at a given simulation time

period.

The “activity” based model partitioning or

repartitioning is an approach that considers the run-

time behaviors of simulation components by using run-

time collected “activity” metric. This “activity” metric

is the key to predict the workload distribution between

simulation models, and can then be used for improving

the model partitioning. Therefore, well defined and

utilized “activity” metric is crucial to obtain optimal

activity based model partitioning.

It worth reviewing the “cost” based model

partitioning proposed in [20] because the “activity”

concept used in this paper is closely related to the

“cost” measurement as in [20]. In fact, the “cost” based

model partitioning is a hierarchical model partitioning

technique that uses a new Generic Model Partitioning

(GMP) algorithm for partitioning hierarchical DEVS

based models. The GMP uses a cost analysis

methodology to construct partition blocks, and makes

an effort to guarantee a incremental Quality of

Partitioning (QoP) improvements until the best

partitioning is reached. The GMP algorithm is highly

generic and can be applied to any family of models as

long as the appropriate cost information of the models

can be obtained and processed. Cost analysis plays an

important role in the GMP because it provides a

fundamental view of the models in terms of “cost”, as

well as determines the partitioning policies that will be

applied to the model structures. In particular, the cost

analysis includes: cost harvesting, cost generation, cost

aggregation, cost evaluation and cost analysis [20]. A

cost tree is built according to the model's hierarchical

structure. Cost based model partition algorithms, such

as GMP, provide an adaptive and flexible technique for

decomposing hierarchical model structures such as

those represented by DEVS. Compared to full

decomposition used in the flattening technique, this

kind of algorithm minimizes the model decomposition,

which makes it less sensitive to the depth or width of a

given hierarchical model. However, GMP is currently

only applicable to static model partition in a distributed

simulation environment.

In this paper, we extend the concept of cost based

model partitions in two ways: 1) we interpret the “cost”

metric in terms of the activity concept, and 2) we

consider partitioning in which the activity changes in a

predictable manner during the simulation run.

3. Dynamic Reconfiguration of Distributed

Simulation Using DEVS/RMI

In this paper, we are particularly interested in

investigating how the model's intrinsic properties or

“activity” determine the run-time computing workload

distribution of a simulation model. Such key

information is crucial for obtaining an optimal model

partition and/or repartition plan for a distributed

simulation. As we know, a flexible and dynamically

reconfigurable distributed simulation framework is

required to support generic static model partitioning as

well as more advanced functionalities such as model

dynamic repartitioning. In this section, we will

introduce a DEVS based framework called

DEVS/RMI [8], which has the capabilities needed for

the study of the model repartition mechanism proposed

and implemented in this paper.

For a short summary of its key attributes,

DEVS/RMI is a distributed DEVS that is able to

support the seamless distribution of simulation entities

across network nodes. It supports model continuity in a

distributed environment, which means that a model

system can be developed and tested in a single

machine, and then be mapped to the distributed

computing nodes without any changes aside from

adding attributes for the simulation controller to know

where to situate the models. Furthermore, DEVS/RMI

can provide a simulation application with a fully

dynamic and re-configurable run-time infrastructure in

order to handle load balancing and fault tolerance in a

distributed simulation environment.

In DEVS/RMI, model partitions are described in

the model definition and configuration layer, which is

separate from the simulation layer. Such model

partitions are implemented in the model construction

phase and then manipulated by the corresponding

simulators. In this way, any atomic model or coupled

sub-model can be assigned to any computing node

during the initialization phase of a simulation. This

means that random partition is directly supported in

DEVS/RMI. However, in order to reduce the

communication overhead, regrouping the models into

sub-domains is commonly used before assigning the

partitioned sub-models to computing nodes.

Now, we will introduce the dynamic model

repartition in DEVS/RMI, which distinguishes itself

Figure 1. Dynamic Model Repartition

from most other distributed simulation frameworks in

term of having this capability. The idea of the dynamic

reconfiguration of the DEVS model was initially

proposed by Hu [21], which supports the evolution of

the model structure during the simulation's run-time.

DEVS/RMI extends this idea and implements the

model repartition capability in a distributed simulation

environment. Such dynamic reconfiguration capability

is easily implemented in DEVS/RMI, and takes the

advantages of Java Remote Object technology. As

shown in the illustrated example in Figure 1, the figure

in the top half shows the initial model partition in two

sub-domains, while the bottom part of the figure shows

that “cell 13” and “cell 23” in “sub-domain 2”

migrated to “sub-domain 1” during run-time. Such a

process is accomplished by decoupling “cell 13” and

“cell 23” from their neighbor cells and sub-domain

boundary (i.e. the digraph to which they belong), and

then migrating them by a RMI call at the simulation

controller such as RMICoordinator. After such model

migrations, new couplings need to be added to maintain

the overall coupling relationship between cells in the

cell-space.

As we have seen in the above discussion,

DEVS/RMI provides an ideal solution for

implementing “activity” based model partition and

repartition with the native support of dynamic model

reconfiguration. In the following section, we will test

our ideas with a focus on the simulation performance

evaluation in a computer cluster environment.

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

These arrow lines represent the coupling that will be

removed.

Migration

Migration

Bold lines represent newly added coupling

4. An Example

In this section, a 2D DEVS valley fever model is

exemplified to show how to exploit the concept of

“activity” to obtain improved model partition plans for

dynamic reconfiguration. The advantage of such a

model “activity” based partition plan can be verified by

a comparison experiment using a distributed

simulation. Our experiment aims to provide a clear

picture of how the model “activity” metric can help

with obtaining an improved partition plan during a

simulation's run-time. In this example, a Linux Beowulf

cluster is used to run the valley fever model in

distributed computing nodes.

4.1 Valley Fever Model

The agent-based valley fever model is a 2D

dynamic cell space model used to represent how the

fungal spores grow in a patch of field over a long

period of time with given environmental conditions

including wind, rain, and moisture, etc. This model is

initially a time-stepped model, and is then re-

implemented in DEVS to run on an ADEVS [22] C++

platform. Furthermore, the ADEVS valley fever model

is translated into Java for distributed execution using

DEVS/RMI. As shown in Figure 2, the Java based

valley fever model consists of several components: the

wind model, rainfall model, coupling control model,

and patch model. All these components are DEVS

atomic models except for the patch model, which is a

DEVS coupled model consisting of an atomic model

called “sporingProcess” and another atomic model

called “environment”. To run this model in a

distributed DEVS such as DEVS/RMI, particular

attention is given to the “patches” models, which sit in

a 2D cell space. The “wind” and “rainfall” models are

both statistic models that generate wind data and rain

data periodically. Their outputs are then sent to the

“coupling control” model to determine the dynamic

coupling of the “rain” model with the “patches” as

well as the dynamic coupling between “patches”. This

valley fever model is a highly dynamic one that

changes its structure after every step of the simulation.

4.2 Static Blind Model Partition of Valley

Fever Model

In order to create a comparison baseline for

dynamic model repartition, static blind model partition

is used to map the “patch” models to computing nodes.

In this setting, the “wind”, “rain” and

“coupling_control” models are all arranged at the

Figure 2. Valley Fever Model in DEVSJAVA

Simview

 “head” node, and the “patch” cells are evenly divided

between other computing nodes in a “blind” fashion,

i.e., without regard to their measured activities. For

example, for a 4 * 4 cell space to run on four

computing nodes, each column of cells is assigned to

one computing node, resulting in an even distribution

of four cells to each computing node.

4.3 Dynamic Reconfiguration Using “Activity”

The static blind model partition described in

section 4.2 does not consider the imbalance of the

workload on each individual cell. Some cells may have

less “activity” than others, and are therefore subject to

less computing workload. Partitioning the cells blindly

results in an imbalance of the workload of computing

nodes, which cannot benefit the overall performance of

the simulation. However, when given a highly dynamic

simulation model such as that for valley fever, it is

generally difficult to predict the model run-time

behavior.

Fortunately, in the valley fever model, the

production of spores is the main driver of activity in the

patches. “Sporing” is largely determined by the

strength and direction of the wind, which is an external

input to the model. New “sporing” patches are typically

highly concentrated in the direction of the wind. The

fact that wind regimes change relatively infrequently

allows us to obtain stable activity distributions using a

simulation on a single machine for each such regime.

The activity at each cell in a given period is measured

as the total number of internal transitions that the cell

undergoes during that period. Experimentally, we

verify that this number is closely related to the

computational intensity required to simulate a cell

during such a period.

 Given the activity's dependence on wind regimes,

we can measure model “activity” by executing the

model (on a single machine or in a distributed fashion)

for the desired wind regimes and gathering the model

“activity” metric through such a run. This information

can then be applied to obtain a model partition plan for

a distributed run of the same model configuration.

Since the wind regime is controlled externally to the

model, we can monitor the wind generator and apply

the partition plan that is optimal for a regime whenever

the wind changes. We measure the model activity by

counting the internal transitions of the

‘sporingProcess’ to see how a dynamic model

repartition using such information can benefit the

distributed simulation's performance. In this example, a

simplified method is used to determine a subset of cells

called high-activity cells.

Firstly, the average internal transition count of all

the cells in the cell space is obtained by running the

model in the head node for a given wind regime. At the

end of this run, each cell compares its own count with

the average, if it is larger than the average, the cell’s id

is added to a linked list data structure for high-activity

cells. Figure 3 illustrates how high-activity cells are

selected from the cell space.

After the high-activity sets are obtained for each

wind regime, the following process occurs within a

single simulation run. The “RMICoordinator” in the

head node creates a new valley fever model and

partitions it according to the initial wind regime. Every

time a new wind regime is detected, the

“RMICoordinator” creates a new valley fever model,

and partitions its cells so that the high activity cells for

that regime are granted more computing power than are

the remaining cells. Finally, the cells are dynamically

loaded to the computing nodes and the distributed

simulation is then restarted from the state that the

model was in before the repartition.

In the following test, we discuss one iteration of

this process in which all the low activity cells are

assigned to one computing node, and all the high

activity cells are then evenly distributed between the

other available computing nodes. Some test results are

presented in the next section.

4.4 Test Environment and Results

In this experiment, a 40 node Linux cluster is used,

in which each node has an AMD Athlon XP 2400+

with 2GHz CPU and 512M physical memory. All the

computing nodes are inter-connected by 100M Ethernet

Figure 3. Selecting High-Activity Cells

switches, and the operating system of each node is

GNU/Linux 2.4.20 with Java Runtime 1.4.1-01

installed.

In this test, static blind partitioning is compared to

dynamic reconfiguration in terms of the simulation's

execution time, and 4 * 4 and 8 * 8 cell spaces are used

and executed with 400 and 2000 simulation steps. The

purpose of this test is to verify the advantage of using

“activity” based dynamic repartition over static “blind”

model partitioning. Such verification will also prove

that model “activity” is a more accurate indicator for

computation workload of the examined cells in a cell

space.

As shown in Table 1, for a 4 * 4 cell space, there is

no noticeable difference between using dynamic

reconfiguration and static blind partitioning. However,

for a 8 * 8 cell space, dynamic partitioning using model

“activity” improves the simulation performance in a

noticeable manner. This is because, for a 4 * 4 cell

space, there is only a difference of a few cells between

each computing node, and these cells cannot contribute

enough to make the difference in the workload

distribution. It could be expected that for a larger cell

space with long simulation execution steps, model

“activity” would play an increasingly important role in

All Cells

Counting number of

internal transitions of each

cell

Calculate Average of

internal transitions

Add this cell to

high-activity list

If this cell’s number of internal

transitions is larger than the

average

Else

Add this cell to

low-activity list

Compare each cell with average

Table 1 Distributed Simulation Execution Time for Static Blind Partition and Dynamic Reconfiguration

Using “Activity”—5 nodes.

Table 2. Distributed Simulation Execution Time for Static Blind Partition and Dynamic Reconfiguration

Using “Activity”—9 Nodes.

affecting the distributed simulation performance.

Table 2 does indeed verify our expectations for

performance improvement when more computing

nodes are used for high-activity cells. In this test, we

can see a significant performance increase when using

“activity” based model repartition compared to static

blind model partitioning.

The test results suggest that it is worth further

investigating the concept of model “activity” in more

detail and developing model partition plans that

exploit activity distributions in a more precise way.

5. Conclusion

In this paper, we present and demonstrate how a

DEVS “activity” based model repartition can

influence the performance of a distributed simulation.

As is known, dynamic model reconfiguration plays a

very important role in distributed simulation

performance, especially when running large-scale

models exhibiting highly asynchronous and irregular

behavior. Here, we have shown that dynamic model

reconfiguration using the “activity” metric can

improve distributed simulation performance

significantly. It is worth noting that workload

distribution is crucial for optimizing the performance

of large-scale distributed simulation applications,

while the model “activity” metric is the key to

obtaining critical workload distribution information.

We have shown that DEVS/RMI provides the

flexibility necessary to exploit model-intrinsic

properties to order to direct dynamic repartition. Such

environments will play increasingly important roles in

future distributed simulation applications.

6. Future Work

For future work, we propose to further

investigate the concept of “activity” to better

understand how intrinsic model dynamic behaviors

determine the run-time workload distribution. We

will do more experiments on larger cell space sizes

and larger number of processors to obtain a clearer

picture on how “activity” affects the performance of a

Using 5 computing

nodes including 1 head

node.

Static Blind Partition not

considering model

activities

Dynamic

reconfiguration

using “activity”

Performance

increase by

percentage

4 * 4 cells with 400

simulation steps

28.124s 27.566s 1.98%

4 * 4 cells with 2000

simulation steps

113.977s 114.968s -0.87%

8 * 8 cells with 400

simulation steps

256.49s 248.644s 3.06%

8 * 8 cells with 2000

simulation steps

1238.479s 1216.97s 1.73%

Using 9 computing

nodes including 1 head

node.

Static Blind Partition not

considering model

activities

Dynamic

reconfiguration

using “activity”

Performance

increase by

percentage

4 * 4 cells with 2000

simulation steps

134.74s 110.49s 18%

8 * 8 cells with 2000

simulation steps

1348.17s 1199.87s 11%

distributed simulation. We are also interested in

studying model repartition algorithms in a distributed

simulation environment with the support of a flexible

framework such as DEVS/RMI. How to effectively

monitor the model's run-time “activity” is also a topic

that needs to be studied further.

Reference:
[1]. R. Jammalamadaka. Activity characterization of spatial

models: Application to the discrete event solution of partial

differential equations. Master’s thesis, University of

Arizona, Tucson, Arizona, USA, 2003.

[2]. Bernard P. Zeigler. Continuity and change (activity)

are fundamentally related in DEVS simulation of

continuous systems. In Keynote Talk at AI, Simulation, and

Planning 2004 (AIS’04), October 2004.

[3]. J. Nutaro, "Parallel Discrete Event Simulation with

Application to Continuous Systems," in Department of

Electrical and Computer Engineering, vol. Ph.D. Tucson,

AZ: University of Arizona, 2003.

[4]. Bernard P. Zeigler, Tag Gon Kim and Herbert

Praehofer, “Theory of Modeling and Simulation”,

Academic Press, 2000.

[5]. James Nutaro, ADEVS,

http://www.ece.arizona.edu/~nutaro/

[6]. Chungman Seo, Sunwoo Park, Byounguk Kim,

Saehoon Cheon, Bernard P. Zeigler, “Implementation of

Distributed High-performance DEVS Simulation

Framework in the Grid Computing Environment”, 2004

High Peformance Computing Symposium.

[7]. Saehoon Cheon, Chungman Seo, Sunwoo Park,

Bernard P. Zeigler, “Design and Implementation of

Distributed DEVS Simulation in a Peer to Peer Network

System”, 2004 Military, Government, and Aerospace

Simulation.

[8]. Ming Zhang, B.P. Zeigler, P. Hammonds,

"DEVS/RMI-An Auto-Adaptive and Reconfigurable

Distributed Simulation Environment for Engineering

Studies", ITEA Journal of Test and Evaluation,

March/April 2006, Volume 27, Number 1, Page 49-60.

[9]. Mark E. Gettings, Fredrick S. Fisher, “Agent-Based

Modeling of Physical Factors That May Control the

Growth of Coccidioides immitis (Valley Fever Fungus) in

Soils”. USGS poster.

[10] Pothen, A. 1997. “Graph Partitioning Algorithms with

Applications to Scientific Computing”, Parallel Numerical

algorithms. Kluwer Academic Publishers, 323-368.

[11] Fjallstrom, P. ,"Algorithms for Graph Partitioning: A

Survey", Computer and Information Science vol. 3,1998.

[12] Frieze, A. and M. Jerrum, "Improved approximation

algorithms for MAX k-CUT and MAX BISECTION."

Alogorithmica 18:61-77, 1994

[13] Banan, M.R. and K. D. Hjelmstad, "Self-organization

of architecture by simulated hierarchical adaptive random

partitioning", Presented at International Joint Conference

of Neural Networks (IJCNN), 1992.

[14] Berger, J.M. and S. H. Bokhari, "A Partitioning

Strategy for Non-Uniform Problems across

Multiprocessors." IEEE Transactions on Computers

36:570-580, 1987.

[15] Simon, H.D. , "Partitioning of Unstructured Problems

for Parallel Processing." Computing Systems in

Engineering 2:135-148, 1991.

[16] Kirkpatrick,V., C.D. Gelatt, M.P. Vecchi, "Optimiza

tion by simulated annealing." Science 220:671-680, 1983.

[17] Zha, Y. and G. Karypis. 2002. "Evaluation of

Hierarchical Clustering Algorithms for Document

Dataset.", CIKM 2002.

[18] Zhang, G. and B.P. Zeigler, "Mapping Hierarchical

Discrete Event Models to Multiprocessor Systems:

Algorithm, Analysis, and Simulation." J. Parallel and

Distributed Computers 9:271-281, 1990.

[19] Kim, K.H.; T.G. Kim; K.H. Kim, “Hierarchical

Partitioning Algorithm for Optimistic Distributed

Simulation of DEVS Models.” Journal of Systems

Architecture 44:433 455, 1998.

[20]. Sunwoo Park and Bernard P. Zeigler, “Distributing

Simulation Work Based on Component Activity:A New

Approach to Partitioning Hierarchical DEVS Models”,

Proceedings of the international workshop on challenges of

large applications in distributed environments(CLADE,03),

2003.

[21]. Xiaolin Hu, Bernard P. Zeigler and Saurabh Mittal,

“Dynamic Reconfiguration in DEVS Component-based

Modeling and Simulation”, Simulation: Transactions of the

Society of Modeling and Simulation International,

November 2003

[22] R. Jammalamadaka., J.J.Nutaro, M.E. Gettings, B.P.

Zeigler "DEVS Re-Implementation of an Agent-Based

Valley Fever Model", 2005 Spring Simulation

Multiconference, SpringSim'05, San Diego, April.

[23]. R. Jammalamadaka, Activity Characterization of

Spatial Models: Application to the Discrete Event Solution

of Partial Differential Equations, M.S. Thesis, Fall 2003,

Electrical and Computer Engineering Dept., University of

Arizona.

