
Exploiting the Concept of Activity for Dynamic Reconfiguration 

of Distributed Simulation1 
 

 

Ming Zhang
1
, Bernard P. Zeigler

2
, Azzedine Boukerche

1 

                                                           
1 This work is partially supported by Canada Research Chair Program, NSERC 

Ontario Distinguished Researcher Award and Ontario Early Researcher Award. 

 

1
Paradise Research Lab 

School of Information Technology and 

Engineering (SITE) 

University of Ottawa 

Ottawa, Ontario Canada, K1N 6N5 

{mizhang, boukerch}@site.ottawa.ca 

 

2
Arizona Center of Integrative Modeling & 

Simulation 

The Department of Electrical and Computer 

Engineering 

University of Arizona, Tucson, AZ 85721 

zeigler@ece.arizona.edu 

 

 

Abstract 
 

In this paper, we specialize the concept of 

“activity”, defined in earlier work, to measure the 

heterogeneity of model behavior using the temporal-

spatial distribution of its local transitions in a 2D 

cellular space. We then show how to employ this 

“activity” metric to balance the computation load 

using the dynamic reconfiguration of the distributed 

simulation. We also show how the degree of 

improvement depends on the heterogeneity of the 

activity's distribution. That is, high concentrations of 

activity in space that change relatively slowly during 

simulation can be exploited to reduce execution time 

significantly within an appropriate infrastructure for 

dynamic reconfiguration in a DEVS based distributed 

simulation framework. In contrast to other dynamic 

load balancing approaches, the activity-based 

approach discussed here exploits model properties 

directly rather than relying on resource-based 

measurements as the basis for its reconfigurations. 

 

1. Introduction 
 

With the increased demand for computing 

resources from modern simulation applications, parallel 

and distributed simulations are attracting more and 

more attention from researchers in this area. In more 

and more cases, these types of simulations are 

becoming a necessity for solving large-scale simulation 

applications rather than just a potentially performance 

improving approach. However, effective model 

partitioning is the key to determining the overall 

simulation execution performance when parallel and 

distributed simulation techniques are used.  

In this paper, we focus our study on model 

“activity” based dynamic repartition in a distributed 

simulation environment. We exploit our idea through a 

highly dynamic discrete event model represented in 

DEVS, and then experiment with this model in a 

flexible distributed simulation framework. In particular, 

we are interested in how the distribution of “activity” in 

a simulation model determines the computing workload 

distribution, and therefore affects the simulation 

execution performance in a distributed computing 

environment. Moreover, we focus our implementation 

on a DEVS based distributed simulation framework 

that uses “activity” as a measure of the computing 

workload [1][2]. We will show how to exploit this 

“activity” metric to improve the distributed simulation 

performance by applying it to a run-time repartitioning 

approach.   

Discrete event simulations are characterized by 

asynchronous and irregular, random, or data dependent 

behavior [3], which requires a highly dynamic and 

strict modeling and simulation framework. In contrast 

to other modeling and simulation methodologies, 

DEVS [4] provides a theoretical foundation for the 

modeling and simulation of discrete event system 

(DES), continuous systems, and hybrid systems. DEVS 

based modeling and simulation frameworks are 

generally flexible, rigorous, and conform to modern 



software engineering standards. At the present time, 

DEVS based frameworks have also been verified as 

being able to solve large-scale and highly dynamic 

simulation models effectively. In particular, distributed 

DEVS frameworks such as ADEVS [5], DEVS/Grid 

[6], DEVS/P2P [7], and DEVS/RMI[ 8], have opened 

us a wide area of research on parallel and distributed 

simulation using DEVS. 

With regards to distributed simulation 

performance, model partition algorithms are worth 

investigating, particularly dynamic partition or 

repartition techniques. In general, the run-time 

behaviors of a simulation model play an important role 

in determining the optimal model partition schema. 

However, it is difficult to predict the runtime behaviors 

of a highly dynamic simulation model and, therefore, a 

well predefined model partition plan is not easy to 

obtain in practice when running the model in a 

distributed fashion. Also, a parallel or distributed 

simulation framework that supports dynamic 

reconfiguration is needed to properly support the 

dynamic repartitioning of simulation models on clusters 

of machines. 

In this paper, we present a dynamic 

reconfiguration mechanism that uses a run-time 

gathered “activity” metric to repartition a simulation 

model in order to improve the overall performance of a 

distributed simulation. We exemplified the concept of 

“activity” through the  re-implementation of a time-

stepped valley fever model [9]. This implementation 

uses a DEVS-based asynchronous approach to 

represent the behavior of cells, called “patches”, in a 

2D cellular space. In the following sections, general 

model partitioning techniques are reviewed briefly, 

followed by a section that describes how the dynamic 

reconfiguration capability is implemented in a 

distributed simulation framework to be used for later 

experimentations. The re-implemented DEVS based 

valley fever model is then tested and discussed to 

demonstrate the effectiveness of using an “activity” 

based model repartition on improving the performance 

of a distributed simulation. In the last sections, a 

conclusion and suggestions for future work are 

presented. 

 

2. Model Partitioning in A Distributed 

Simulation 
 

In this section, we review some of the major model 

partitioning concepts used in distributed simulations 

[17-20].  We will provide some basic background 

information with regard to general model partitioning 

techniques and, in particular, we focus on what 

“activity” is and how it is used in model partitioning in 

a distributed simulation environment. 

 

2.1. General Model Partition Techniques 
 

In general, partitioning techniques can be 

classified into the following: random partitioning, 

partitioning improvement, simulated annealing, and 

heuristic partitioning [10][11]. Random partitioning 

randomly aggregates models to a set of partition blocks 

and then maps the partition blocks to the processors. 

The Partitioning improvement algorithm modifies the 

partitioning results during the process of partitioning 

[12][13]. Simulated annealing [14-16] uses statistical 

methods to develop the process of model partitioning, 

and, finally, heuristic partitioning is an algorithm that 

uses domain-specific knowledge or a particular 

optimization technique to achieve a better partitioning 

results.  

Hierarchical model partitioning is a technique that 

applies a general model partitioning technique, such as 

graph partitioning, to the hierarchical model structure 

of a distributed simulation. It is a process of 

constructing partition blocks by decomposing a 

hierarchical model structure based on certain decision-

making criteria. Hierarchical model partitioning is 

especially important for DEVS based distributed 

simulation environments because the model structure in 

most DEVS implementation uses such a hierarchical, 

modular model structure to represent a system for 

simulations. General hierarchical model partitioning 

techniques include the flattening, deepening, and 

heuristic. Flattening transforms a hierarchical structure 

into a non-hierarchical structure. Deepening, sometime 

called hierarchical clustering, is a technique that in 

reverse transforms non-hierarchical structures into 

hierarchical structures. The heuristic technique uses 

heuristic functions to analyze the nodes in a 

hierarchical model tree to determine the partitioning 

policies. In fact,  hierarchical model partitioning is the 

basis of the “cost” or “activity” based model partition 

that we will discuss in the following section. 

 

2.2. “Activity” Based Model Partition 

 
In this sub-section, we define and discuss some of 

the fundamental concepts related to the “activity”. In 

general, “activity” is a term to define how “active” a 

component/role is in a system in terms of some 

predefined rules. For instance, “activity” concept is 

introduced in [23] using DEVS quantization theory, 

which defines the “activity” as: “ A cell is said to be 



most active if the value of the cell crosses the quantum 

more times than any of the other cells.”. In this paper, 

we use the term “activity” to represent the intrinsic 

property of a participated model in a DEVS model 

system. In particular, we define “high activity” models 

as those who potentially consume more computing 

resources than others do, at a given simulation time 

period.  

The “activity” based model partitioning or 

repartitioning is an approach that considers the run-

time behaviors of simulation components by using run-

time collected “activity” metric. This “activity” metric 

is the key to predict the workload distribution between 

simulation models, and can then be used for improving 

the model partitioning. Therefore, well defined and 

utilized “activity” metric is crucial to obtain optimal 

activity based model partitioning. 

It worth reviewing the “cost” based model 

partitioning proposed in [20] because the “activity” 

concept used in this paper is closely related to the 

“cost” measurement as in [20]. In fact, the “cost” based 

model partitioning is a hierarchical model partitioning 

technique that uses a new Generic Model Partitioning 

(GMP) algorithm for partitioning hierarchical DEVS 

based models. The GMP uses a cost analysis 

methodology to construct partition blocks, and makes 

an effort to guarantee a incremental Quality of 

Partitioning (QoP) improvements until the best 

partitioning is reached. The GMP algorithm is highly 

generic and can be applied to any family of models as 

long as the appropriate cost information of the models 

can be obtained and processed. Cost analysis plays an 

important role in the GMP because it provides a 

fundamental view of the models in terms of “cost”, as 

well as determines the partitioning policies that will be 

applied to the model structures. In particular, the cost 

analysis includes: cost harvesting, cost generation, cost 

aggregation, cost evaluation and cost analysis [20]. A 

cost tree is built according to the model's hierarchical 

structure.  Cost based model partition algorithms, such 

as GMP, provide an adaptive and flexible technique for 

decomposing hierarchical model structures such as 

those represented by DEVS. Compared to full 

decomposition used in the flattening technique, this 

kind of algorithm minimizes the model decomposition, 

which makes it less sensitive to the depth or width of a 

given hierarchical model. However, GMP is currently 

only applicable to static model partition in a distributed 

simulation environment.  

In this paper, we extend the concept of cost based 

model partitions in two ways: 1) we interpret the “cost” 

metric in terms of the activity concept, and 2) we 

consider partitioning in which the activity changes in a 

predictable manner during the simulation run. 

 

 

3. Dynamic Reconfiguration of Distributed 

Simulation Using DEVS/RMI 
 

In this paper, we are particularly interested in 

investigating how the model's intrinsic properties or  

“activity” determine the run-time computing workload 

distribution of a simulation model. Such key 

information is crucial for obtaining an optimal model 

partition and/or repartition plan for a distributed 

simulation. As we know, a flexible and dynamically 

reconfigurable distributed simulation framework is 

required to support generic static model partitioning as 

well as more advanced functionalities such as model 

dynamic repartitioning. In this section, we will 

introduce a DEVS based framework called  

DEVS/RMI [8], which has the capabilities needed for 

the study of the model repartition mechanism proposed 

and implemented in this paper.  

For a short summary of its key attributes, 

DEVS/RMI is a distributed DEVS that is able to 

support the seamless distribution of simulation entities 

across network nodes. It supports model continuity in a 

distributed environment, which means that a model 

system can be developed and tested in a single 

machine, and then be mapped to the distributed 

computing nodes without any changes aside from  

adding attributes for the simulation controller to know 

where to situate the models. Furthermore, DEVS/RMI 

can provide a simulation application with a fully 

dynamic and re-configurable run-time infrastructure in 

order to handle load balancing and fault tolerance in a 

distributed simulation environment.  

In DEVS/RMI, model partitions are described in 

the model definition and configuration layer, which is 

separate from the simulation layer. Such model 

partitions are implemented in the model construction 

phase and then manipulated by the corresponding 

simulators. In this way, any atomic model or coupled 

sub-model can be assigned to any computing node 

during the initialization phase of a simulation. This 

means that random partition is directly supported in 

DEVS/RMI. However, in order to reduce the 

communication overhead, regrouping the models into 

sub-domains is commonly used before assigning the 

partitioned sub-models to computing nodes.  

Now, we will introduce the dynamic model 

repartition in DEVS/RMI, which distinguishes itself  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1. Dynamic Model Repartition

 

from most other distributed simulation frameworks in 

term of having this capability.  The idea of the dynamic  

reconfiguration of the DEVS model was initially 

proposed by Hu [21], which supports the evolution of 

the model structure during the simulation's run-time. 

DEVS/RMI extends this idea and implements the 

model repartition capability in a distributed simulation 

environment. Such dynamic reconfiguration capability 

is easily implemented in DEVS/RMI, and takes the 

advantages of Java Remote Object technology. As 

shown in the  illustrated example in Figure 1, the figure 

in the top half shows the initial model partition in two 

sub-domains, while the bottom part of the figure shows 

that “cell 13” and “cell 23” in “sub-domain 2” 

migrated to “sub-domain 1” during run-time. Such a 

process is accomplished by decoupling “cell 13” and 

“cell 23” from their neighbor cells and sub-domain 

boundary (i.e. the digraph to which they belong), and 

then migrating them by a RMI call at the simulation 

controller such as RMICoordinator. After such model 

migrations, new couplings need to be added to maintain 

the overall coupling relationship between cells in the 

cell-space.  

As we have seen in the above discussion, 

DEVS/RMI provides an ideal solution for 

implementing “activity” based model partition and 

repartition with the native support of dynamic model 

reconfiguration. In the following section, we will test 

our ideas with a focus on the simulation performance 

evaluation in a computer cluster environment.    
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Sub-Domain 1 Sub-Domain 2 

Coupling 

Cell 11 Cell 12 Cell 13 Cell 14 
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Sub-Domain 1 Sub-Domain 2 

Coupling 

These arrow lines represent the coupling that will be 

removed. 

Migration 

Migration 

Bold lines represent newly added coupling 



4. An Example 
 

In this section, a 2D DEVS valley fever model is 

exemplified to show how to exploit the concept of 

“activity” to obtain improved model partition plans for 

dynamic reconfiguration. The advantage of such a 

model “activity” based partition plan can be verified by 

a comparison experiment using a distributed 

simulation. Our experiment aims to provide a clear 

picture of how the model “activity” metric can help 

with obtaining an improved partition plan during a 

simulation's run-time. In this example, a Linux Beowulf 

cluster is used to run the valley fever model in 

distributed computing nodes. 

 

4.1 Valley Fever Model 

 
The agent-based valley fever model is a 2D 

dynamic cell space model used to represent how the 

fungal spores grow in a patch of field over a long 

period of time with given environmental conditions 

including wind, rain, and moisture, etc. This model is 

initially a time-stepped model, and is then re-

implemented in DEVS to run on an ADEVS [22] C++ 

platform. Furthermore, the ADEVS valley fever model 

is translated into Java for distributed execution using 

DEVS/RMI. As shown in Figure 2, the Java based 

valley fever model consists of several components: the 

wind model, rainfall model, coupling control model, 

and patch model. All these components are DEVS 

atomic models except for the patch model, which is a 

DEVS coupled model consisting of an atomic model 

called “sporingProcess” and another atomic model 

called “environment”. To run this model in a 

distributed DEVS such as DEVS/RMI, particular 

attention is given to the “patches” models, which sit in 

a 2D cell space. The “wind” and “rainfall” models are 

both statistic models that generate wind data and rain 

data periodically. Their outputs are then sent to the 

“coupling control” model to determine the dynamic 

coupling of the “rain” model with the “patches” as 

well as the dynamic coupling between “patches”. This 

valley fever model is a highly dynamic one that 

changes its structure after every step of the simulation. 

 

4.2 Static Blind Model Partition of Valley 

Fever Model 
 

In order to create a comparison baseline for 

dynamic model repartition, static blind model partition 

is used to map the “patch” models to computing nodes. 

In this setting, the “wind”, “rain” and 

“coupling_control” models are all arranged at the 

 
Figure 2. Valley Fever Model in DEVSJAVA 

Simview 

 

 “head” node, and the “patch” cells are evenly divided 

between other computing nodes in a “blind” fashion, 

i.e., without regard to their measured activities. For 

example, for a 4 * 4 cell space to run on four 

computing nodes, each column of cells is assigned to 

one computing node, resulting in an even distribution 

of four cells to each computing node. 

 

4.3 Dynamic Reconfiguration Using “Activity” 
 

The static blind model partition described in 

section 4.2 does not consider the imbalance of the 

workload on each individual cell. Some cells may have 

less “activity” than others, and are therefore subject to 

less computing workload. Partitioning the cells blindly 

results in an imbalance of the workload of computing 

nodes, which cannot benefit the overall performance of 

the simulation. However, when given a highly dynamic 

simulation model such as that for valley fever, it is 

generally difficult to predict the model run-time 

behavior. 

Fortunately, in the valley fever model, the 

production of spores is the main driver of activity in the 

patches. “Sporing” is largely determined by the 

strength and direction of the wind, which is an external 

input to the model. New “sporing” patches are typically 

highly concentrated in the direction of the wind. The 

fact that wind regimes change relatively infrequently 

allows us to obtain stable activity distributions using a 

simulation on a single machine for each such regime. 

The activity at each cell in a given period is measured 

as the total number of internal transitions that the cell 

undergoes during that period. Experimentally, we 

verify that this number is closely related to the 



computational intensity required to simulate a cell 

during such a period. 

 Given the activity's dependence on wind regimes, 

we can measure model “activity” by executing the 

model (on a single machine or in a distributed fashion) 

for the desired wind regimes and gathering the model 

“activity” metric through such a run. This information 

can then be applied to obtain a model partition plan for 

a distributed run of the same model configuration. 

Since the wind regime is controlled externally to the 

model, we can monitor the wind generator and apply 

the partition plan that is optimal for a regime whenever 

the wind changes. We measure the model activity by 

counting the internal transitions of the 

‘sporingProcess’ to see how a dynamic model 

repartition using such information can benefit the 

distributed simulation's performance. In this example, a 

simplified method is used to determine a subset of cells 

called high-activity cells.  

Firstly, the average internal transition count of all 

the cells in the cell space is obtained by running the 

model in the head node for a given wind regime. At the 

end of this run, each cell compares its own count with 

the average, if it is larger than the average, the cell’s id 

is added to a linked list data structure for high-activity 

cells. Figure 3 illustrates how high-activity cells are 

selected from the cell space.  

After the high-activity sets are obtained for each 

wind regime, the following process occurs within a 

single simulation run. The “RMICoordinator” in the 

head node creates a new valley fever model and 

partitions it according to the initial wind regime. Every 

time a new wind regime is detected, the 

“RMICoordinator” creates a new valley fever model, 

and partitions its cells so that the high activity cells for 

that regime are granted more computing power than are 

the remaining cells. Finally, the cells are dynamically 

loaded to the computing nodes and the distributed 

simulation is then restarted from the state that the 

model was in before the repartition.  

In the following test, we discuss one iteration of 

this process in which all the low activity cells are 

assigned to one computing node, and all the high 

activity cells are then evenly distributed between the 

other available computing nodes. Some test results are 

presented in the next section. 

 

4.4 Test Environment and Results 
 

In this experiment, a 40 node Linux cluster is used, 

in which each node has an AMD Athlon XP 2400+ 

with 2GHz CPU and 512M physical memory. All the 

computing nodes are inter-connected by 100M Ethernet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Selecting High-Activity Cells 

 

switches, and the operating system of each node is 

GNU/Linux 2.4.20 with Java Runtime 1.4.1-01 

installed. 

In this test, static blind partitioning is compared to 

dynamic reconfiguration in terms of the simulation's 

execution time, and 4 * 4 and 8 * 8 cell spaces are used 

and executed with 400 and 2000 simulation steps. The 

purpose of this test is to verify the advantage of using 

“activity” based dynamic repartition over static “blind” 

model partitioning. Such verification will also prove 

that model “activity” is a more accurate indicator for 

computation workload of the examined cells in a cell 

space.   

As shown in Table 1, for a 4 * 4 cell space, there is 

no noticeable difference between using dynamic 

reconfiguration and static blind partitioning. However, 

for a 8 * 8 cell space, dynamic partitioning using model 

“activity” improves the simulation performance in a 

noticeable manner. This is because, for a 4 * 4 cell 

space, there is only a difference of a few cells between 

each computing node, and these cells cannot contribute 

enough to make the difference in the workload 

distribution. It could be expected that for a larger cell 

space with long simulation execution steps, model 

“activity” would play an increasingly important role in  

All Cells 

Counting number of 

internal transitions of each 

cell 

Calculate Average of 

internal transitions 

Add this cell to 

high-activity list 

If this cell’s number of internal 

transitions is larger than the  

average 

Else 

Add this cell to 

low-activity list 

Compare each cell with average 



  

Table 1 Distributed Simulation Execution Time for Static Blind Partition and Dynamic Reconfiguration 

Using “Activity”—5 nodes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Distributed Simulation Execution Time for Static Blind Partition and Dynamic Reconfiguration 

Using “Activity”—9 Nodes.

 

 

 

 

 

 

 

 

 

 

 

 

affecting the distributed simulation performance. 

Table 2 does indeed verify our expectations for 

performance improvement when more computing 

nodes are used for high-activity cells. In this test, we 

can see a significant performance increase when using 

“activity” based model repartition compared to static 

blind model partitioning. 

The test results suggest that it is worth further 

investigating the concept of model “activity” in more 

detail and developing model partition plans that 

exploit activity distributions in a more precise way. 

 

5. Conclusion 
 

In this paper, we present and demonstrate how a 

DEVS “activity” based model repartition can 

influence the performance of a distributed simulation. 

As is known, dynamic model reconfiguration plays a 

very important role in distributed simulation 

performance, especially when running large-scale 

models exhibiting highly asynchronous and irregular  

behavior. Here, we have shown that dynamic model 

reconfiguration using the “activity” metric can 

improve distributed simulation performance 

significantly. It is worth noting that workload 

distribution is crucial for optimizing the performance 

of large-scale distributed simulation applications, 

while  the model “activity” metric is the key to 

obtaining critical workload distribution information.  

We have shown that DEVS/RMI provides the 

flexibility necessary to exploit model-intrinsic 

properties to order to direct dynamic repartition. Such 

environments will play increasingly important roles in 

future distributed simulation applications. 

6. Future Work 
 

For future work, we propose to further 

investigate the concept of “activity” to better 

understand how intrinsic model dynamic behaviors 

determine the run-time workload distribution. We 

will do more experiments on larger cell space sizes 

and larger number of processors to obtain a clearer 

picture on how “activity” affects the performance of a 

Using 5 computing 

nodes including 1 head 

node. 

Static Blind Partition not 

considering model 

activities 

Dynamic 

reconfiguration 

using “activity” 

Performance 

increase by 

percentage 

4 * 4 cells with 400 

simulation steps 

28.124s 27.566s 1.98% 

4 * 4 cells with 2000 

simulation steps 

113.977s 114.968s -0.87% 

8 * 8 cells with 400 

simulation steps 

256.49s 248.644s 3.06% 

8 * 8 cells with 2000 

simulation steps 

1238.479s 1216.97s 1.73% 

Using 9 computing 

nodes including 1 head 

node. 

Static Blind Partition not 

considering model 

activities 

Dynamic 

reconfiguration 

using “activity” 

Performance 

increase by 

percentage 

4 * 4 cells with 2000 

simulation steps 

134.74s 110.49s 18% 

8 * 8 cells with 2000 

simulation steps 

1348.17s 1199.87s 11% 



distributed simulation. We are also interested in 

studying model repartition algorithms in a distributed 

simulation environment with the support of a flexible 

framework such as DEVS/RMI. How to effectively 

monitor the model's run-time “activity” is also a topic 

that needs to be studied further.  

 

Reference: 
[1]. R. Jammalamadaka. Activity characterization of spatial 

models: Application to the discrete event solution of partial 

differential equations. Master’s thesis, University of 

Arizona, Tucson, Arizona, USA, 2003. 

[2]. Bernard P. Zeigler. Continuity and change (activity) 

are fundamentally related in DEVS simulation of 

continuous systems. In Keynote Talk at AI, Simulation, and 

Planning 2004 (AIS’04), October 2004. 

[3]. J. Nutaro, "Parallel Discrete Event Simulation with 

Application to Continuous Systems," in Department of 

Electrical and Computer Engineering, vol. Ph.D. Tucson, 

AZ: University of Arizona, 2003. 

[4]. Bernard P. Zeigler, Tag Gon Kim and Herbert 

Praehofer, “Theory of Modeling and Simulation”, 

Academic Press, 2000. 

[5]. James Nutaro, ADEVS, 

http://www.ece.arizona.edu/~nutaro/ 

[6]. Chungman Seo, Sunwoo Park, Byounguk Kim, 

Saehoon Cheon, Bernard P. Zeigler, “Implementation of 

Distributed High-performance DEVS Simulation 

Framework in the Grid Computing Environment”, 2004 

High Peformance Computing Symposium. 

[7].  Saehoon Cheon, Chungman Seo, Sunwoo Park, 

Bernard P. Zeigler, “Design and Implementation of 

Distributed DEVS Simulation in a Peer to Peer Network 

System”, 2004 Military, Government, and Aerospace 

Simulation. 

[8]. Ming Zhang, B.P. Zeigler, P. Hammonds, 

"DEVS/RMI-An Auto-Adaptive and Reconfigurable 

Distributed Simulation Environment for Engineering 

Studies", ITEA Journal of Test and Evaluation, 

March/April 2006, Volume 27, Number 1, Page 49-60. 

[9]. Mark E. Gettings, Fredrick S. Fisher, “Agent-Based 

Modeling of Physical Factors That May Control the 

Growth of Coccidioides immitis (Valley Fever Fungus) in 

Soils”. USGS poster. 

[10] Pothen, A. 1997. “Graph Partitioning Algorithms with 

Applications to Scientific Computing”, Parallel Numerical 

algorithms. Kluwer Academic Publishers, 323-368. 

[11] Fjallstrom, P. ,"Algorithms for Graph Partitioning: A 

Survey", Computer and Information Science vol. 3,1998. 

[12] Frieze, A.  and M. Jerrum, "Improved approximation 

algorithms for MAX k-CUT and MAX BISECTION." 

Alogorithmica 18:61-77, 1994 

[13] Banan, M.R. and K. D. Hjelmstad, "Self-organization 

of architecture by simulated hierarchical adaptive random 

partitioning", Presented at International Joint Conference 

of Neural Networks (IJCNN), 1992. 

[14] Berger, J.M. and S. H. Bokhari, "A Partitioning 

Strategy for Non-Uniform Problems across 

Multiprocessors." IEEE Transactions on Computers 

36:570-580, 1987. 

[15] Simon, H.D. , "Partitioning of Unstructured Problems 

for Parallel Processing." Computing Systems in 

Engineering 2:135-148, 1991. 

[16] Kirkpatrick,V., C.D. Gelatt, M.P. Vecchi, "Optimiza 

tion by simulated annealing." Science 220:671-680, 1983. 

[17] Zha, Y. and G. Karypis. 2002. "Evaluation of 

Hierarchical Clustering Algorithms for Document 

Dataset.", CIKM 2002. 

[18] Zhang, G. and B.P. Zeigler,  "Mapping Hierarchical 

Discrete Event Models to Multiprocessor Systems: 

Algorithm, Analysis, and Simulation." J. Parallel and 

Distributed Computers 9:271-281, 1990. 

[19] Kim, K.H.; T.G. Kim; K.H. Kim,  “Hierarchical 

Partitioning Algorithm for Optimistic Distributed 

Simulation of DEVS Models.” Journal of Systems 

Architecture 44:433 455, 1998. 

[20]. Sunwoo Park and Bernard P. Zeigler, “Distributing 

Simulation Work Based on Component Activity:A New 

Approach to Partitioning Hierarchical DEVS Models”, 

Proceedings of the international workshop on challenges of 

large applications in distributed environments(CLADE,03), 

2003. 

[21]. Xiaolin Hu, Bernard P. Zeigler and Saurabh Mittal, 

“Dynamic Reconfiguration in DEVS Component-based 

Modeling and Simulation”, Simulation: Transactions of the 

Society of Modeling and Simulation International, 

November 2003 

[22] R. Jammalamadaka., J.J.Nutaro, M.E. Gettings, B.P. 

Zeigler "DEVS Re-Implementation of an Agent-Based 

Valley Fever Model", 2005 Spring Simulation 

Multiconference, SpringSim'05, San Diego, April. 

[23]. R. Jammalamadaka,  Activity Characterization of 

Spatial Models: Application to the Discrete Event Solution 

of Partial Differential Equations, M.S. Thesis, Fall 2003, 

Electrical and Computer Engineering Dept., University of 

Arizona. 

 

 

 


