
DOMAIN DRIVEN SIMULATION MODELING FOR SOFTWARE DESIGN

by

Andrew Evan Ferayorni

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree
Master of Science

ARIZONA STATE UNIVERSITY

December 2007

DOMAIN DRIVEN SIMULATION MODELING FOR SOFTWARE DESIGN

by

Andrew Evan Ferayorni

has been approved

November 2007

Graduate Supervisory Committee:

Hessam Sarjoughian, Chair
Paul Scowen
Joseph Urban

ACCEPTED BY THE GRADUATE COLLEGE

iii

ABSTRACT

Complex software system designs are often plagued by defects that stem from

misunderstood requirements and poor design decisions. The ability to execute and test

high level design elements can help with decision making and defect detection early in

the design process. Simulation is a tool that can be used to model high level software

design elements and execute them for analysis purposes. More specifically, domain

aware simulation environments can provide these benefits while reducing the time spent

developing simulation models. System-theoretic modeling and simulation frameworks

such as Object-Oriented Discrete-event System Specification (OO-DEVS) are commonly

used for simulating complex systems, but they do not account for domain knowledge. In

contrast, Model-Driven Design environments like Rhapsody support capturing domain-

specific software design, but offer limited support for simulation. This thesis describes

the use of domain knowledge in empowering simulation environments to support

domain-specific modeling. Software design pattern abstractions are identified from the

domain and used to extend domain-neutral simulation modeling. To demonstrate this the

Façade, Observer, and Strategy patterns from the domain of astronomical observatory

(AO) control systems are used to develop a domain-specific extension of DEVSJAVA, a

realization of OO-DEVS, called DEVSJAVA-AO. This approach is exemplified with

simulation experiments using models developed with DEVSJAVA-AO based on an

actual AO control system.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Hessam Sarjoughian, Department of

Computer Science and Engineering, Arizona State University. He has given countless

hours of his time towards guiding me in this research as well as mentoring me as a

graduate student. From our very first meeting when I was a prospective graduate student,

until now, his passion for his research and students has always been evident.

My gratitude also goes out to Dr. Paul Scowen, Department of Physics and

Astronomy, Arizona State University, for sharing his domain expertise and providing the

opportunity for me to work with the Braeside Observatory. Having full access to the

observatory and its control system allowed me to understand the intricate details of how

these systems work.

Finally, I would like to thank both Dr. Joseph Urban and Dr. Stephen Yau,

Department of Computer Science and Engineering, Arizona State University, for their

time reviewing this thesis. Their expertise in the areas of software engineering and thesis

writing has been valuable in reviewing this work.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES ... viii

CHAPTER

1. Introduction... 1

1.1. Motivation for Early Design Analysis ... 1

1.2. Challenges with Complex System Design... 2

1.3. Existing Design Tools.. 3

1.4. Simulation for Design Evaluation.. 3

1.5. Thesis Statement .. 6

1.6. Thesis Contributions .. 6

2. Background... 8

2.1. Software Lifecycle Challenges .. 8

2.2. Software System Modeling.. 9

2.3. Simulation Modeling ... 11

2.4. Executable Software Architecture ... 12

2.5. Astronomical Observatory Control Systems ... 14

3. Approach for Domain Specific Simulation with Design Patterns 19

3.1. Overview.. 19

3.2. Step 1: Gather Domain Knowledge with Use Cases 21

3.3. Step 2: Select Design Patterns to Solve Design Challenges 22

3.4. Step 3: Extend Simulation Environment with Design Patterns 23

3.5. Step 4: Create Customized Simulation Models ... 24

vi

CHAPTER Page

3.6. Expected Benefits .. 25

3.7. Limitations ... 26

4. Demonstration... 27

4.1. Step 1: Gather AO Domain Knowledge with Use Cases............................... 28

4.1.1. Identify expected functions... 28

4.1.2. Identify functional dependencies .. 31

4.2. Step 2: Select Design Patterns to Solve AO Design Challenges 33

4.2.1. Decoupling layers with the Façade design pattern 33

4.2.2. Component synchronization via the Observer design pattern 35

4.2.3. Modifying control algorithms using Strategy design pattern 37

4.3. Step 3: Extend DEVSJAVA with Selected AO Design Patterns................... 39

4.3.1. Extending DEVSJAVA to DEVSJAVA-AO.................................. 40

4.3.2. Implementation of the AO façade design pattern 42

4.3.3. Implementation of the AO observer pattern 43

4.3.4. Implementation of the AO strategy pattern 44

4.4. Step 4: Create Customized Simulation Models for AO System Design........ 46

4.5. Simulation Experiments using DEVJAVA-AO... 47

4.5.1. Analysis of system configurations .. 48

4.5.2. Analysis of system behavior ... 50

5. Related Work .. 54

5.1. Software modeling of real-time systems.. 54

5.2. Software design techniques in simulation.. 55

vii

CHAPTER Page

6. Conclusion .. 56

REFERENCES ... 57

APPENDIX A... 60

APPENDIX B ... 65

viii

LIST OF FIGURES

Figure Page

1.1 Traditional and Simulation Based approaches to design evaluation. 4

2.1 Sample POSET in Rapide.. 14

2.2 Braeside Observatory computer system architecture... 16

3.1 Simulation model design using domain specific environment 20

3.2 Simulation approaches in the software engineering lifecycle.................................. 26

4.1 Extending DEVSJAVA for the AO domain .. 27

4.2 Use case diagram for a CCD camera control program .. 30

4.3 Use case extension from CCD controller to Mount controller 32

4.4 Facade design pattern for the AO domain detector controller 35

4.5 Observer design pattern used by AO detector and mount 37

4.6 Strategy design pattern used by AO detector controller .. 39

4.7 Extending DEVSJAVA core modeling constructs for AO domain......................... 41

4.8 Simulation models for simple AO control system... 45

4.9 Simulation view for AO system configured with one detector controller 48

4.10 Simulation view for AO System configured with two detector controllers............. 50

4.11 Simulation results using two exposure request acceptance algorithms 52

A.1 Use case diagram for focuser controller .. 61

A.2 Use case diagram for mount controller .. 63

B.1 Facade design pattern for mount controller.. 66

B.2 Facade design patterns for focuser controller .. 67

1. Introduction

1.1. Motivation for Early Design Analysis

 The engineering of complex software-intensive systems begins with a rigorous

process of gathering technical and non-technical requirements. These requirements are

then used to generate a design specification that serves as a blue print for the system

being developed. As with many engineering disciplines, a blue print gives instructions on

how the product is to be built. Errors in the blue prints can translate into defects in the

final product, which in turn can be costly to fix. It is therefore important to validate

designs early in the project lifecycle in order to help identify design defects and correct

them before they are incorporated into the implementation of the product. The time and

cost savings associated with correcting a design defect at this stage versus finding it

during testing or even in production are significant.

 Validation of a software system design against its requirements can ensure that

the system provides the expected functionality and quality attributes. Traditional

approaches to design validation include design reviews and requirements traceability.

Although useful, such approaches do not explore the dynamic behavior of the design and

therefore are limited in their ability to ensure functionality and Quality of Service (QoS)

attributes will be satisfied. These approaches primarily serve as a checklist type

validation at the end of the design phase. The need to obtain design feedback and

validation earlier in the engineering lifecycle gave rise to another technique known as

prototyping. With prototyping, certain aspects of an early design can be implemented and

presented to the customer for validation while the requirements and design are still open

for revision. Design reviews, requirement tracing, and prototyping are all useful tools for

2
validating design. For these techniques and many others the level of validation that can

be performed and when it can be obtained is heavily dependent on the design

representation.

 Typical software system designs are represented by a document or series of

documents. Such documents usually provide specifications and diagrams that capture the

structure and behavior of system elements. However such static representations are

limited in that they do not allow us the ability to simulate the behaviors of the design

components. Simulation of software design components can allow us to evaluate how the

system will behave early in the engineering process. The results of these evaluations can

help to identify defects in the design that were not obvious during design verification.

1.2. Challenges with Complex System Design

 Advances in computer technology have introduced new complexities to system

design for solving computing problems. These systems are often built on architectures

that are distributed and in some cases multi-processor. The complexity of these systems

presents new challenges in designing the software to meet customer requirements.

Traditionally systems were judged on how well they met their functional requirements.

However, the large amount of time and money invested in development and support of

these systems requires attention to the quality attributes the functionality is built upon.

Attributes such as maintainability, portability, and scalability have a more lasting impact

on the cost of the system over time. These attributes typically cannot be validated until

the software is built, at which time it may be too costly to change. Thus there is a

growing need to analyze the system design early in the engineering lifecycle to see how

well it will meet these quality attributes.

3
1.3. Existing Design Tools

 Due to the large number of components and interactions that comprise complex

systems, there is a growing need for a more automated analysis of their software

specifications. Traditional software design tools provide engineers with the ability to

graphically represent the structure, interaction, and behavior of system components.

Although useful for producing design documentation, many of these tools lack the ability

to test and validate designs through execution. Commercial tools such as Rational Rose

RT (Rational 2006) and Spin (Spin 2006) have provided the ability for software and

system specifications to be executed, therefore allowing logical behavior to be tested and

validated given the allotted resources and time. The ability to analyze software

specifications at this stage of the development lifecycle does help to identify design

issues before entering the implementation phase. However these tools rely on execution

of detailed specifications and near complete implementations, therefore restricting their

use to later points in the design phase. Other approaches such as Model Driven

Engineering’s (MDE) Domain Specific Modeling Languages (DSML) help to validate

the semantics and constraints of models and their interactions in a domain, but still lack

support for rigorous simulation of the system components’ behaviors (Balasubramanian

2006).

1.4. Simulation for Design Evaluation

 Simulation can be used as a unifying artifact in developing conceptual and

architectural design of software-intensive systems. Rather than relying entirely on logical

and physical system specifications before entering detailed design followed by

implementation, simulation enables evaluation of a system architecture behavior. This

4
capability becomes indispensable since major flaws or shortcomings in a system’s

architectural specifications can be identified and thus resolved in the early stages of the

detailed design and development process lifecycle (Ferayorni and Sarjoughian 2007).

This produces benefits such as reduced time to market and lower project costs. Figure 1.1

gives a general view of the traditional approach to design evaluation (blue arrows only)

and the proposed simulation based approach (blue and red arrows).

Figure 1.1 Traditional and Simulation Based approaches to design evaluation; the
Traditional approach is depicted with the blue arrows; the simulation based approach is
depicted with red arrows.

 The benefits of simulation throughout various phases of the software development

lifecycle have been recognized. Simulation tools such as ProSim have been successfully

used to model business process flows and analyze them under varying conditions (Dalal

1997). Although process simulation tools might be used to study the impact of software

design influences such as technology and standards choices on the software engineering

process, they are not well suited for examination of the actual software architecture of the

system being built. Simulation has played an important role in the development of

AbstractDetectorController_Observ er

update(subject_in : AbstractDetectorController_Subject) : v oid

(from Mount)

AbstractDetectorController

subjectState : String

getState() : String

(from Detector)
AbstractMountController

observ erState : String
(from Mount)

<<realize>>

1

-subject

1

<<subscribe>>

Observ atory ControlSy stem <<creates>>

AbstractDetectorControllerNode
(from Detector)

1

1

1

1

AbstractDetectorController_Subject

observ ers : Array

attach(observ er : AbstractDetectorController_Observ er) : v oid
dettach(observ er : AbstractDetectorController_Observ er) : v oid
notif y () : v oid

(from Detector)

n

-observ ers

n

<<uses>>

1..n

1

1. .n

1

High-Level
Design

Experiments

Adjust Design
Review Results

Simulation

Domain Knowledge

Review Results

5
system/software architectural descriptions, the benefits of which lead to improved

system design architecture (Cox 2002). Software product lines have also drawn the

attention of simulation. Recent research has proposed the use of simulation for strategic

management and long term forecasting of product line development and evolution (Chen

2004). Another example is simulation of an Intelligence, Surveillance, and

Reconnaissance (ISR) system which requires synchronized processing of sensor data,

prioritizing of resources, and communication among sensors (Hall 2005). This is an

example of simulating architecture of a complex, large-scale ISR management system.

Although beneficial, the use of the DEVS modeling and simulation framework and

others, including HLA (IEEE 2000)(Sarjoughian and Zeigler 2000)(USDOD 2005), in

the software development lifecycle remains ad-hoc. Similarly, the use of software

modeling methodologies such as Unified Modeling Language – Real Time (UML-

RT)(OMG 2006) and Model Driven Architecture (MDA) (OMG 2005) are not well

suited for simulation (Huang 2004).

 Systems theory (Wymore 1993)(Zeigler 2000) gives us design capabilities such as

composition, component connectivity, and time dependent state transitions based on input

and output interfaces. Furthermore, Discrete-event System Specification (DEVS) a class

of systems theoretic models, provides additional design aspects such as state chart

behavior mapping and concurrent execution (ACIMS 2003)(Zeigler 2000). Object-

Oriented Discrete-event System Specification (OO-DEVS) incorporates object oriented

concepts into its simulation modeling capabilities, but by itself lacks support for domain

specific modeling. In order for OO-DEVS to support domain specific modeling it’s

modeling capabilities must be extended further. This thesis focuses on the use of design

6
patterns to extend upon the object oriented modeling capabilities of an OO-DEVS

simulation environment. The aim is to detail the importance of software design patterns

in developing simulation models in the context of a domain.

1.5. Thesis Statement

 System-theoretic modeling and simulation frameworks such as Object-Oriented

Discrete-event System Specification (OO-DEVS) are commonly used for simulating

complex systems, but they do not account for domain knowledge (Zeigler and

Sarjoughian 1997). In contrast, Model-Driven Design environments like Rhapsody

support capturing domain-specific software design, but offer limited support for

simulation. This thesis work describes the use of domain knowledge in empowering

simulation environments to support domain-specific modeling. The research outcome

shows how software design pattern abstractions extend the domain-neutral simulation

modeling. This approach is demonstrated through application of Façade, Observer, and

Strategy patterns (Gamma, et al. 1995) to an astronomical observatory (AO) command

and control system (Braeside Observatory 2005) and development of domain-specific

simulation models for the system using DEVSJAVA, a realization of OO-DEVS. This

approach is exemplified with simulation models developed based on an actual AO

system.

1.6. Thesis Contributions

 This thesis defines a methodology of using domain design patterns to extend

simulation modeling environments to systematically enable simulation modeling of high

level software system designs. These simulation models are then used to study high level

7
design of the software system and thus expose design issues. These issues are therefore

identified early in the design lifecycle, thus saving time and money.

 The remainder of this thesis is organized as follows. Chapter 2 presents and

discusses background information. This includes a comparison of software modeling and

simulation modeling techniques, an introduction to the domain of astronomical

observatory control systems, as well as information on the discrete event simulation

modeling environment used in this work. Chapter 3 starts a detailed discussion on the

approach used to develop domain specific design patterns and using them to extend the

simulation environment. More specifically, it looks at how these patterns provide re-

usable high level simulation modeling constructs that incorporate domain knowledge.

Chapter 4 demonstrates this methodology using DEVSJAVA (ACIMS 2003), the domain

of Astronomical Observatory (AO) control systems, and simulation experiments that

evaluate the design of a simple AO system. Chapter 5 reviews other related work in the

areas of software design analysis, simulation, and design patterns. Finally, Chapter 6 is a

thesis summary and discussion of future work in this area.

2. Background

 This chapter discusses background material in the area of software modeling and

simulation modeling. In addition it will introduce the domain of astronomical observatory

command and control systems, and specifically the Braeside Observatory system used at

Arizona State University. This domain will be used in Section 4 to demonstrate the thesis

contribution.

2.1. Software Lifecycle Challenges

 With the increasing demand for complex computer systems comes the pressure to

build these systems more quickly and more cost effectively. For a company producing a

commercial software application, the time to market can make or break its success. In a

corporate IT department on a tight budget, ensuring a project performs to time and

resource estimates is critical. Therefore it is well known that good project management

and software engineering processes are needed to deliver a product on schedule and on

budget.

 A host of tools and techniques have been introduced in an effort to reduce the

time and cost of the software engineering process. The requirements gathering phase is

one area that has improved significantly as a result of these advances. For example, the

use of prototyping can allow the customer to test drive the look and feel of different user

interfaces. Use cases are another popular tool that allow the customer to represent their

functional requirements with a visual medium. Both prototyping and use cases help

reduce time and cost in a project by improving the communication between the

engineering team and the customer during requirements gathering. The result of this

improved communication is a more accurate set of requirements that are well understood

9
by the customer and the engineering team. These requirements create a solid foundation

for transition into the design phase of the project.

 The design phase of the software engineering lifecycle continues to be a popular

area for research and development of new methodologies and tools. These techniques

look to improve many aspects of design such as productivity, representation, accuracy,

and quality. The ability to verify the accuracy of a design against its requirements is one

aspect that can have a significant impact on the time and cost of a project. For example,

design defects identified in the testing phase of a project lifecycle are far more difficult to

resolve than if they had been detected earlier. This difficulty in defect resolution is

because changes late in the design phase can have an impact on several components in

the system. If significant changes are required, it can potentially delay ongoing testing

and cause a slip in the project timeline. Therefore, it is critical for the software design

process to incorporate methods that will identify defects as early as possible.

2.2. Software System Modeling

 The use of object oriented modeling methods and sound architectural principles

(including design patterns) have been well utilized in the software design realm to ensure

preciseness and quality. Software modeling emphasizes structural and behavioral

specifications of executable software. Models describe conceptual and formal

specification of software prior to implementation and testing activities. For example,

Statecharts serve as a suitable basis to describe behavioral blueprint of a system.

Statecharts are important for developing detailed software design specifications (Dias and

Marlon 2007), and can also be used for simulation (Briand 2004). However, simulating

10
state space of a (hierarchical) Statechart relies on detailed specifications as they were

to be implemented.

 At the forefront of software modeling techniques is an approach known as Model

Driven Engineering (MDE). A key feature of emerging MDE technologies is Domain

Specific Modeling Languages (DSML) (Schmidt 2006). The idea behind DSMLs is their

ability to define the relationships between concepts in a domain and specify key

semantics and constraints associated with those domain concepts. The languages defined

by these meta-models account for domain knowledge therefore supporting a declarative

approach to modeling design intent. The second feature used in MDE technologies is

model transformation. These are transformation engines and generators that analyze

aspects of software models in order to support automated mappings to software

implementation artifacts. These mappings help to ensure the design captured in the

software models is applied appropriately during implementation (Balasubramanian

2006). The use of MDE technologies incorporating DSMLs and model transformation in

software design is motivated from the standpoint of domain driven software modeling

and transition to software implementation. In this regard, simulation is not a primary

capability and thus the approach is limited to implementation level analysis such as

logical design verification. For example, model to model transformations using tools such

as C-Saw provide the ability for automated scalability analysis of models (Gray 2006).

This type of analysis is focused on software model scalability impact on system

constraints, and does not provide any results based on executed model behavior. In

contrast, development of simulation models to represent the software design will enable

11
model execution. Results produced from simulation model execution will support

behavioral evaluation of architectural choices against QoS attributes such as scalability.

2.3. Simulation Modeling

 In contrast to software modeling, simulation modeling is concerned with

describing simulations of a system. These model descriptions may range from conceptual

foundations to logical operations of systems under varying settings. Therefore, these

model descriptions need to offer a variety of ways to experiment with the external and

internal workings of a system beyond what could eventually be developed for the real

system. For example, alternative models of system architecture can be simulated by

composing hierarchical, and/or specialized, model components. Simulation models can

also be detailed – e.g., complete component-to-component communication protocols can

be simulated as it were the actual software application (Gerla 1999). A central feature of

simulation is its support for treating time in logical and/or physical scales (Fujimoto

2000). Logical time and physical time are complementary concepts with the former

supporting artificially slow or fast passage of time. The importance of manipulating time

in simulation is central to simulation models as compared with software models.

 Systems theory provides us with the ability to define a system in terms of its

structure and behavior. The structure of system components is modeled hierarchically,

whereas the behavior of system components can be modeled in continuous or discrete

time. System components can be configured with input and output ports, which when

connected to the ports of other components, allowing interaction between them. Discrete-

event System Specification (DEVS) is a class of system theoretic models which supports

the modeling of hierarchical interacting components that can exhibit autonomous and

12
reactive based behaviors. System structure and behavior are captured with atomic and

coupled models. Parallel atomic models allow for multiple ports that can accept bags of

inputs and produce bags of outputs. Parallel coupled models can consist of any number of

atomic and coupled models but must 1) consist of atomic models at the lowest level of

any coupled model; 2) no coupled model can contain itself; and 3) output to input port

coupling resulting in direct feedback is not allowed for atomic and coupled models.

 The modeling capabilities of systems theory are well suited for simulation;

however they are not intended for complex software design and development

(Sarjoughian and Singh 2004). Systems theory gives us design capabilities such as

composition and component connectivity. Furthermore, DEVS provides additional design

aspects such as Statechart behavior mapping and concurrent execution. Although

necessary, these features do not support some important software design techniques

available to us in methods such as object oriented analysis and design. For example, the

Unified Modeling Language (UML)(OMG 2005) can show the relationships between

classes, interfaces, and sub systems in terms of inheritance, aggregation, composition,

dependency, and realization. Modeling these relationships allows for the detailed

characterization of components and their relationships with one another which are key to

software design and implementation.

2.4. Executable Software Architecture

 In recent years software architecture has emerged as a crucial step in the design

process of complex software systems. The need for software architecture specifications

has brought forth tools and standards for documenting and analyzing them. In recent

years simulation has been used in conjunction with architecture specification to produce

13
executable architecture description languages (EADL). Rapide (PAVG 1998) is an

event-based, concurrent, object oriented language specifically designed for prototyping

architectures of distributed systems.

 Architectures in Rapide consist of interfaces, connections, and constraints.

Interfaces are used to specify the features of components and the behaviors they exhibit.

The behaviors of a component’s features can be modeled using reactive rules.

Connections are used to define the communication between components in the system

using the interfaces provided by those components. Constraints are what allow for

restrictions on the behavior of interfaces and connections. By specifying components of

an architecture using interfaces, connections, and constraints, Rapide can then perform

checks against these requirements under various architecture component configurations.

 Execution of an architecture specification using Rapide allows for testing and

validation before making implementation decisions. The output produced by an execution

is called a partially ordered set of events (POSET). A POSET represents the events that

occurred in the execution of the system and their dependence on one another. The

dependence of events can be analyzed in two ways, by causality or by time. Causally

related events are most commonly the result of reactive rules in interface behaviors,

connection rules, and mapping rules. The event generated by a reactive rule is said to be

caused by the events that triggered the rule. Events can also be dependent based on the

timing in which they occurred. Events that occur at time T+n are said to be dependent on

events that occur at time T where T < T+n. Figure 2.1 shows an example POSET as

viewed in Rapide. In the example below, behavior between a calling system (CIS) and

resource (RSC) is modeled as synchronous. Therefore, the POSET result shows that the

14
CIS must wait for the result of a request to come back from the RSC before sending

another request.

Figure 2.1 Sample POSET in Rapide

 EADLs such as Rapide offer support for high level architecture analysis in terms

of system components. However, they are limited in their ability to support modeling of

high level software design concepts such as design patterns and object oriented concepts

such as interfaces/realization. In addition, the behavioral modeling capabilities are limited

to reactive events, and are not devised to support autonomous component behaviors.

Therefore, the modeling capabilities of EADLs are limited for simulation of software

design.

2.5. Astronomical Observatory Control Systems

 Computer systems have played a crucial role in advancing research capabilities in

astronomy. The science of astronomy is one that requires configurations of hardware and

software components to support precise data measurements, accurate handling of timing

of actions and events, and data collection. Computers are well suited for such tasks and in

addition are not susceptible to human limitations such as fatigue or error when working

late into the night. As a result, computers allow astronomers to spend less time worrying

about controlling instrumentation and logging data, and more time devising experiments

and analyzing the actual data gathered.

15
 In a modern astronomical observatory one would find several components

working closely together to carry out observations. Instruments that collect data, such as

telescopes and imaging devices, are the most common components. Others might include

motors and sensors for movement of the observatory dome, a humidity sensor, or

something as simple as a room light switch. It is not uncommon for these and other

components of an observatory to be controlled by a computer system. These systems are

responsible for coordinating and synchronizing all these components so that observations

can be conducted accurately and remotely by astronomers.

 Designing software to control an observatory requires in depth knowledge about

how these systems work. Understanding the domain of astronomical observatories

requires knowledge from those who use them on a daily basis; astronomers. These

domain experts can provide insight into the complexity of these systems and help identify

important quality attributes. Dr. Paul Scowen, Arizona State University, and Dr. Marc

Buie, Lowell Observatory, designed and developed a control system for ASU’s Braeside

Observatory (Braeside Observatory 2005). Working with these experts helps identify

complexities and challenges faced when designing AO control systems.

 The Braeside Observatory software system architecture consists of three layers:

user interface, application, and data. Figure 2.2 shows each of these layers, their

components, and the high level communication links between them.

16

Figure 2.2 Braeside Observatory computer system architecture
Source: [Dr. Paul Scowen, Arizona State University]

17
 The user interface (UI) layer enjoys the benefit of being independent from the

application and data layers. The UI layer communicates with the application layer via

TCP/IP messaging to dedicated ports on the application server. This layering allows the

implementation of the UI to be totally independent of the application layer, and allows

the UI to reside anywhere on the internet. The current implementation of the user

interface was done with the Interactive Data Language (IDL), and can be run from any

operating system with IDL and the Braeside IDL libraries installed. IDL is a

programming language that is popular with scientists and researches due to its ease of

use, widget based UIs, and image processing capabilities. In addition to the IDL based

UI, the system also provides a UNIX command line based UI that can only be used on the

application server itself.

 The application layer consists of two major components, the Telescope Control

Program (TCP) and the Camera Control Daemon (CCD). Each of these programs

operates as a daemon process listening for command requests from the UI layer and

communicating command responses and data back to the UI layer over dedicated TCP/IP

ports. The TCP and CCD also communicate with each other to help with coordination

during observation tasks.

 The TCP daemon bears the responsibility of controlling all the components in the

observatory except the camera, which is managed by the CCD daemon. The most critical

of these components is the telescope mount which requires the utmost precision in

positioning of the telescope and timing for tracking of an object with minimal error. In

addition, the TCP must coordinate movement of the observatory dome so that the dome

opening is aligned with the telescope during observations. Other components the TCP

18
must manage include the telescope focuser and room lighting. The TCP interacts with

a PC48 stepper motor control card to facilitate many of the hardware level signals that

must be generated to activate motors, switches, and sensors of these components.

 The CCD daemon is solely responsible for interfacing between the UI and the

CCD camera. The CDD daemon translates user commands coming from the UI layer into

commands for the CCD camera to execute, and streams data results back to the user when

requested. One key feature of the CCD is its ability to suggest adjustments to the

telescope pointing based on data gathered in a CCD exposure. These small corrections

are crucial in ensuring the telescope coordinates and tracking are as accurate as possible,

and improving long exposure image quality. Once the CCD had identified pointing

corrections, the CCD daemon will transfer the corrected coordinates to the TCP through

messages in the OS level message queue.

 The data layer is simply a separate UNIX server and large hard disk used for data

storage. Data is stored on a separate disk in an effort to keep the application server hard

disk from filling up with data, and potentially crashing that server. Having the data layer

on its own server hard disk also reduces the risk of losing data should the application

server hard disk crash.

3. Approach for Domain Specific Simulation with Design Patterns

 This chapter introduces a four step approach for extending a component based

simulation environment with domain knowledge to support simulation modeling of high

level OO software design. The first step explains how to obtain domain knowledge and

use it to identify design challenges specific to the domain. The second step will discuss

selection of suitable domain specific OO design patterns as solutions to these challenges.

The third step will discuss how these patterns can be used to extend a component based

simulation modeling environment, thus creating a domain specific modeling and

simulation tool. The fourth step will explain how the domain specific modeling and

simulation tool can be used to create customized simulation models that represent high

level OO software design. Finally, the expected benefits of this approach as well as

known limitations will be discussed.

3.1. Overview

 This approach introduces design patterns into simulation modeling. Instead of

solely using systems theory and object orientation for specifying simulation models,

design patterns are used to extend the simulation environment. These patterns capture

important traits of common solutions to design challenges in the domain. This kind of

simulation modeling provides principled use of design patterns as applied to a domain.

With a suitable choice of design patterns, domain specific simulation model components

(see Figure 3.1) can be created. The result of the extended simulation environment is a

collection of simulation model components where relationships among them include

patterns of interaction and dependency beyond whole-part and is-a relationships. These

components extend the domain-neutral simulation environment’s structural and

20
behavioral modeling constructs with domain specific dynamics. The result is a domain

specific simulation environment which can be used to develop specialized simulation

models and evaluate alternative architectural or high-level design configurations.

Figure 3.1 Simulation model design using domain specific environment

21
3.2. Step 1: Gather Domain Knowledge with Use Cases

 Simulation supports evaluating the behavior of a system under varying conditions.

In order to study high level software design, simulation models that represent the

components and interactions of the design must be created. However, identifying these

aspects of the design requires knowledge about the problem domain in which the system

operates. Domain experts are an excellent source for obtaining this knowledge. They are

users and software engineers that are experienced with working in the system domain.

Gathering domain knowledge from these experts helps identify domain specific design

challenges. Solutions to these challenges can then be incorporated in the high level

software design. Simulation models representing these design elements are therefore

domain aware.

 Gathering domain knowledge can be achieved through generation of use cases

(Jacobson, 1992). Use case diagrams support capturing the scenarios (use cases) under

which the system will be used from the perspective of its users (actors). Each use case

that is generated represents a goal that the user wants to achieve with the system. These

goals help to describe the requirements of the system by specifying what is expected of it.

However, these requirements should not specify the details of how the system will

achieve these goals. Once a set of use cases have been developed for a system they will

help expose the high level functions expected of it. Use cases can also expose

dependencies between expected functions. Understanding these high level functions and

their dependencies will help identify where complex system challenges exist, and enable

engineers to start looking for ways to solve them.

22
3.3. Step 2: Select Design Patterns to Solve Design Challenges

 Use cases provide valuable domain knowledge about what functions the system is

expected to provide and dependencies between system functions. This information can be

used to identify challenges that will be faced in the system design. Many of the

challenges faced when designing software have been solved by engineers before on other

projects. Solutions to these common challenges have similarities, and are often referred to

as design patterns. Design patterns (Gamma, et al. 1995) are re-usable object oriented

(OO) solutions to common software design challenges. These patterns are solutions that

engineers have re-used many times, and that are known to have worked in the past.

Because these patterns are based on experience and re-use, they are often flexible enough

to be incorporated into many different systems. Every system will have its own design

challenges, some of which may be solved by re-usable design patterns. A group of

systems from the same domain will often have similar design challenges, and therefore

call upon some of the same design patterns to help solve them.

 Selection of one or more design patterns to solve a design challenge requires

some research. There are many design patterns documented, from the original 20

published by the Gang of Four (Gamma, et al. 1995), to the many available on internet

web sites. It is the discretion of the engineer to decide if a pattern is appropriate for use.

When evaluating a design pattern it is important to think about its intent, and how it can

be used to solve problems. Reviewing an example of how a pattern solves a problem can

help clarify how the pattern is intended to be used.

 Once a set of design patterns has been selected the high level design of the

software system begins to take shape. This set of patterns represents solutions based on

23
domain knowledge and design experience. Evaluation of high level design can start at

this point and progress as more concrete classes are defined. In order to enable simulation

based evaluation of these high level design elements, simulation models representing

these elements must be created.

3.4. Step 3: Extend Simulation Environment with Design Patterns

 Incorporating domain knowledge into a simulation environment requires the

access to extend its core modeling constructs. Environments that do not support

extending the core modeling constructs are not well suited for capturing domain

knowledge in the form of design patterns. Many commercial off-the-self (COTS)

products do not support extending their proprietary core modeling constructs. It is also

important for domain knowledge in a simulation environment to be modifiable so it can

evolve with the domain. Many domain specific COTS simulation environments do not

allow their domain specifics to be modified by the user. Therefore for this approach it is

important to select a simulation environment that is extensible and domain-neutral.

 Domain neutral object oriented (OO) modeling and simulation environments

provide basic constructs for component based modeling. These core constructs can be

extended with OO design patterns to incorporate domain knowledge into the simulation

environment. The new extended modeling constructs allow the user to model at a higher

level while ensuring domain knowledge is enforced. For example, Discrete-event System

Specification provides the systems theory based component modeling constructs, and

Statechart based behavior modeling constructs needed for simulation modeling of

software design. An object oriented realization of DEVS (OO-DEVS) provides additional

modeling capabilities needed to represent OO software design concepts such as

24
specialization and inheritance. These OO capabilities also support capturing the

domain knowledge represented by OO design patterns.

 Object oriented design patterns typically consist of a set of abstract classes and

interfaces which define methods and behaviors to be implemented by a set of concrete

classes. The abstract layer defines what abstract classes are involved in the pattern and

what functionality is expected of them. However the modeler has the flexibility to create

different concrete implementations of these abstract classes. These concrete classes are

also where behavior modeling using the protocol defined by the simulation environment

should be done. To enforce use of the simulation protocol, the abstract classes that these

concrete classes implement should extend the core behavioral modeling constructs of the

simulation environment.

3.5. Step 4: Create Customized Simulation Models

Software designs for systems in the same domain will typically solve some of the

same design challenges, and thus incorporate some of the same design patterns to solve

them. The domain specific simulation environment developed with this approach aims to

capture these common patterns and enforce their use as more customized models are built

on top of them. These customized models will be required to follow the structural and

behavioral rules defined by the patterns they are built on. However each model still

maintains a degree of freedom in how it’s behaviors, both expected and un-expected, are

implemented.

The design patterns used to extend the simulation environment typically define

abstract classes and interfaces that must be realized by concrete classes. It is the creation

of these concrete classes by the modeler that provides the ability to customize the design

25
of the system. For example, an abstract class from a pattern may require some

functionality be provided by the concrete class that implements it. However the specifics

of how the concrete class behaves when providing that functionality are customizable by

the modeler. Similarly, a pattern may not define a limit on how many objects of a certain

type can exists. The modeler can therefore create as many instances of that object as

needed to represent the specific object structure of the system being modeled.

Creating customized simulation models in a domain specific simulation

environment provides the ability to capture the unique attributes of a specific system

design while enforcing domain knowledge through use of design patterns. These

customized models can now be simulated and the result evaluated to determine how well

the specified design meets functional and quality of service attributes.

3.6. Expected Benefits

 This approach allows for developing prominent features of an application domain

on top of the general-purpose capabilities of a modeling and simulation environment.

There are a number of benefits. First, modelers can take advantage of design patterns to

develop domain specific simulation models. Second, since design patterns are

incorporated into simulation model components, they can support simulating “software

architecture” without first developing simulation models which are close to actual

detailed designs. Third, basic differences between simulation and software models can be

bridged in a logical fashion since high-impact architectural specifications can be

evaluated via simulation instead of delaying them until detailed design, implementation,

and testing phases. Consequently this can help with reuse of “solution” simulation

models for developing software design models which in turn should lead to improved

26
time to market and increased quality of the end software/system product. The main

benefit of design patterns, therefore, is the ability to create simulatable software

architectures.

Figure 3.2 Simulation approaches in the software engineering lifecycle

3.7. Limitations

There are many different tools and approaches available for evaluating aspects of

software design. Each of these looks to provide some value at different points in the

software engineering lifecycle. The approach presented in this thesis of modeling object

oriented (OO) software design using simulation environments extended with domain

specific (DS) design patterns crosses several stages of the lifecycle. This DS OO

Modeling and Simulation approach begins with the analysis phase of the lifecycle, during

which use case generation occurs. It continues in the analysis phase with identifying

design challenges and then enters the design phase as patterns are selected to solve these

challenges. Simulation modeling of these high level patterns now begins, and evaluation

of the design can start. Because the simulation models contain some of the same high

level design elements as the software models they can continue to be used in parallel for

design evaluation. Figure 3.2 shows the general start and end points for use of this

approach in relation to the other simulation tools discussed earlier.

Software Engineering Lifecycle

Requirements Analysis Design Implementation Test Deploy

 Architecture Design

Rapide

DS OO Modeling and SImulation

UML-RT

4. Demonstration

This chapter will demonstrate the proposed 4 step approach using DEVSJAVA,

an OO realization of DEVS in Java, and the domain of Astronomical Observatory control

systems. AO domain knowledge will be gathered and used to identify design patterns.

These patterns will be used to extend the DEVSJAVA environment into the domain

aware DEVSJAVA-AO. Simulation models for a simple AO control system design will

be built using DEVSJAVA-AO, and simulation experiments will be executed to evaluate

the design. Figure 4.1 shows the tools and models used in this demonstration.

Figure 4.1 Extending DEVSJAVA for the AO domain

28
4.1. Step 1: Gather AO Domain Knowledge with Use Cases

 To better understand AO control systems a group of domain experts must be

consulted. Braeside Observatory in Flagstaff, Arizona is owned and operated by Arizona

State University. Dr. Paul Scowen (ASU) and Dr. Marc Buie (Lowell Observatory)

designed and developed the control software for Braeside. Working closely with these

experts domain knowledge was obtained and used to create use cases that help identify

the functionalities expected and their dependencies.

 During analysis of the AO domain two types of users are focused on; the

astronomer and the technician. The astronomer would primarily be concerned with the

use of the system during an observation. The technician on the other hand would be

interested in the configuration of the system. Three general categories are created to

capture how these users would view their needs of the system. The analysis category

would capture requirements for which data from the system is needed. The observation

category would cover control of the system during an observation or test. This category

would be common between the astronomer and the technician. Finally, the configuration

category would include needs involving setup of the system components.

 The next few sections will cover use cases for the CDD controller in more detail.

For a collection of other use cases generated as part of this research please refer to

Appendix A.

4.1.1. Identify expected functions

 In Figure 4.2 a use case diagram for the CCD camera control module is shown.

The actors in this use case diagram are the astronomer and the technician. The CCD

system module is represented by a box, and the use cases are shown as ovals within the

29
system box. Use cases for the astronomer stem from the observation category and

include tasks such as starting, stopping, and aborting an exposure. The astronomer also

has use cases such as downloading an exposure, which fall into the analysis category. The

technician, by nature of being in a support role, inherits all the same use cases as the

astronomer, but adds abilities from the configuration category such as registering a new

CCD camera. The use cases in this example will most likely map into functions the users

can invoke from the user interface layer of the system. However, these use cases also

expose a design challenge: the need for further layering of the system in order to prevent

tight coupling between user interface and CCD camera control modules.

30

Astronomer

Start Exposure

Stop Exposure

Register new CCD
camera

Download Exposure

CCD Camera Controller

Abort Exposure

Technician

Unregister CCD
camera

setExposureAcceptan
ceRules

Figure 4.2 Use case diagram for a CCD camera control program

Actor / Use Case Descriptions:

Astronomer: Actor that interacts with the system to take observations and collect data.

Technician: Actor that interacts with the system to perform maintenance.

statExposure: Start taking an image

31
stopExposure: Stop taking an image

abortExposure: Abort process currently taking an image

startDownload: Begin process to download data from AO system to user’s local system

registerCCDCamera: Register a CCD camera controller with the system.

unregisterCCDCamera: Un-register a CCD camera controller with the system.

setExposureAcceptanceRules: Set algorithm to use when deciding to accept an exposure

request.

4.1.2. Identify functional dependencies

 The previous example showed how use cases can identify the functions users will

invoke in the system. In addition to these functions, use cases can also expose what other

system functions are carried out as a result of the user invoked functions. These

functional dependencies are often referred to as an “include” relationship between use

cases. Figure 4.3 shows that when the user invokes the Start Exposure use case in the

CCD control system, this includes invoking functionality in the Telescope control system

that disables telescope slewing. This behavior of the system is required to prevent new

slew requests from being executed during an exposure. Similar behavior can also be seen

in this use case diagram such that when the exposure is stopped or aborted, the slewing is

enabled again. This use case exposes a design challenge: a state change dependency

relationship between two major components in the system. The next section will discuss

how this relationship can be included in the design by allowing a component to observe

the state changes of another component, and take appropriate actions.

32

Figure 4.3 Use case extension from CCD controller to Mount controller

Actor / Use Case Descriptions:

Astronomer: Actor that interacts with the system to take observations and collect data.

Technician: Actor that interacts with the system to perform maintenance.

startExposure: Start taking an image

stopExposure: Stop taking an image

abortExposure: Abort process currently taking an image

disableSlew: Disable the ability to slew.

enableSlew: Enabe the ability to slew.

33
4.2. Step 2: Select Design Patterns to Solve AO Design Challenges

 Observatory control systems present several design challenges that must be

analyzed. Meeting with domain experts and generating use case diagrams for the system

allows these challenges to be identified. This section will discuss some of the key

challenges of AO control systems, and how domain specific design patterns can help

solve them. Additional design patterns can be found in Appendix B.

4.2.1. Decoupling layers with the Façade design pattern

 In the Braeside Observatory command and control system there are several sub

systems each providing control over different components. Over time these sub-systems

may need to change as instruments and devices are upgraded. An example of this need

for system re-configuration can be seen with the CCD camera used to capture images

through the telescope. Earlier, a use case diagram was developed to capture common high

level commands that a user would issue to interact with the CCD camera through the

system. As CCD technology evolves and new techniques for optimizing CCD image

capture arise, new functionality will be added to camera systems. For example, many

modern systems now offer add on modules such as advanced cooling, external dew

control, and expanded filter wheels. These changing features in CCD technology often

prompt researchers to upgrade their old CCD camera to newer models, or camera

manufacturers to change their APIs to accommodate new image capture methods. If the

user interface layer or application layer interact directly with these sub-systems they will

encounter maintenance issues as those sub-systems evolve. A façade can therefore be

introduced to help de-couple the application layer from its client (user-interface). Use of a

34
façade can be incorporated at one or more levels in the design depending on how the

system needs to be layered.

 The use of the Interface classifier in design allows us to show what functionality

is expected (syntheses, interaction, and collaborations) but not how that functionality will

be achieved. The method signatures for each operation of an interface will specify what

inputs are to be given and what outputs are expected. The details of how interface

operations will be implemented are left to the model classes that realize them.

 The concept of interfaces maps to the first design pattern for the AO domain. The

façade design pattern provides a unified interface to a set of sub-systems. AO control

systems are comprised of many sub-components that work together to complete a user

request. Once interfaces that capture the services provided to the user have been

identified, all or part of those interfaces can be combined to create a façade. This higher

level interface will hide the details of how sub-system components are used to execute

the request. In addition, changes to how the sub-system components carry out the request

can be made without impacting the user of the façade. This layering through use of the

façade is an important pattern for the AO domain because instrumentation is frequently

upgraded to stay atop research needs and evolving technologies.

 Figure 4.4 shows the use of an interface (DetectorControllerInterface) in support

of the façade pattern between a client of the observatory (ObservatoryClient) and the

detector controller (DetectorController). This controller may be implemented with one

software component (as shown in this example), or with coordination of many sub-

components. The example below also shows two types of specialized detector controllers

(CCDCameraController and SpectrometerController) and how the façade can hide the

35
details of which controller is being used. Therefore applying the façade pattern allows

us to hide the details of how the interface methods are actually carried out.

Figure 4.4 Facade design pattern for the AO domain detector controller

4.2.2. Component synchronization via the Observer design pattern

 Another key design challenge in the AO domain is the communication between

individual software components in the observatory control system. Several of the

instruments and mechanics in the observatory must be managed by dedicated software

modules. These modules can be separate processes running on the same server or in some

cases on different servers. In many scenarios these software processes must share

information with one another in order to complete a task. Earlier this type of interaction

was seen in the use case diagram for starting and stopping exposures. An extension of the

Start Exposure use case with the CCD control program was to notify the mount control

program so that it could disable slewing. An example of this interaction was seen in the

Braeside Observatory control system where a communication link exists between the

TCP daemon and the CCD daemon. That implementation made use of OS level message

36
queues to share information between the daemon processes. Another approach to

solving this problem is to have one process observe another process in order to look for

state changes. This pattern of interaction between components is commonly referred to as

the “observer” design pattern.

 The observer pattern allows for components (the observers) to be notified when

the state of another component (the subject) changes. It is also referred to as Publish-

Subscribe or Subject-Observer. This pattern is important for the AO domain because

subject component state changes are often shared with many observing components that

may vary from one system configuration to another. For example, when the detector is

taking images the mount will need to block any incoming slew requests from the user.

Similarly when the detector is finished taking an image the mount will need to unblock.

This common coordination between the control software of the mount and detector can

be managed via the observer pattern. Furthermore, a new system configuration may

introduce a second detector that also needs to be observed by the mount. In this case the

pattern supports the client subscribing the new observer to the subject through well

defined interfaces.

 Figure 4.5 shows how the observer pattern can be used to allow a mount

controller (observer) to subscribe to state change notifications by the CCD controller

(subject). In this example the DetectorController class is the subject, and extends the

DetectorController_Subject abstract class which defines the subject interface methods

that must be implemented. The subject’s attach and detach methods are called by

observers to subscribe and unsubscribe respectively from state change notifications. The

notify method is used by the subject to send its current state to all subscribed observers.

37
The MountController class is the observer and implements the

DetectorController_Observer interface which defines the observer methods that must be

implemented. The observer’s update method is called by the subject passing the state,

and allows the observer to define what actions to take.

Figure 4.5 Observer design pattern used by AO detector and mount

4.2.3. Modifying control algorithms using Strategy design pattern

 AO control systems consist of many algorithms that define the behavior of the

system in different scenarios. In some cases, the algorithm used for controlling a certain

aspect of the system needs to be changed frequently depending on the observing being

done. In other cases an algorithm may need to be modified due to new requirements of

the system. In many systems these algorithms are difficult to locate because they are

buried in thousands of lines of code. Once found, these algorithms can be difficult to

38
change without impacting many other pieces of the system. Having a system design

that allows simplified modification to these algorithms can save time and money.

 The strategy design pattern allows a family of algorithms to be defined and

provides access to them through a standard interface. Clients can then change between

different algorithms in the family without having to change the way the algorithm is

called. One of the use cases presented earlier showed that the technician may need to

change algorithms in the CCD control program. The strategy pattern allows these

changes to be made easily and with minimal impact to the rest of the system. For

example, a technician may need to change the algorithm that determines whether the

CCD control program will accept an exposure request or not. One algorithm, called

“Always in View”, might require that the coordinates the system is currently pointed to

are above the horizon for the entire requested exposure length. Another algorithm, called

“Now in View”, may simply accept any request and not be concerned about the current

coordinates falling below the horizon before the exposure time is over.

 Figure 4.6 shows how the strategy pattern can be used to solve this design

problem. The abstract class ExpReqAcceptStrategy defines the algorithm interface which

is a method checkExpReqForAcceptance that accepts all the parameters that might be

needed to make the decision. There are two concrete classes,

AlwaysInViewExpReqAcceptStrategy and NowInViewExpReqAcceptStrategy. Each

implements the checkExpReqForAcceptance interface method but with different decision

logic. Also shown is how each client will have an object of type ExpReqAcceptStrategy,

and must provide an attach method that takes an ExpReqAcceptStrategy object as a

39
parameter. The attach method can be used to assign a different algorithm from the

ExpReqAcceptStrategy family to the client.

Figure 4.6 Strategy design pattern used by AO detector controller

4.3. Step 3: Extend DEVSJAVA with Selected AO Design Patterns

 Implementation of the AO system simulation models will require an environment

that supports object orientation and provides the ability for extension of the core

components with design patterns. Commercial Off The Shelf (COTS) simulation

packages generally do not allow access to core components of the environment, and

therefore are not well suited for extension with design patterns. Simulation packages such

as DEVSJAVA and SimPy (SimPy 2004) support modeling using object orientation and

also allow for extension of core environment components. This research extended the

DEVSJAVA environment with AO domain design patterns to create the DEVSJAVA-

40
AO simulation environment. This environment was then used to create simulation

models representing the software components of a simple observatory control system.

The following sections will look at the implementation details and discuss challenges

faced.

4.3.1. Extending DEVSJAVA to DEVSJAVA-AO

 At the foundation of the DEVSJAVA-AO environment is its extension of the

DEVSJAVA classes. The two primary modeling constructs in DEVSJAVA are atomic

and coupled models, which are made available with basic visualization through the

ViewableAtomic and ViewableDigraph classes. These core modeling constructs provide

the link to the simulation environment, as well as the part-of and is-a modeling

relationships needed to develop simulation models. However with these components

alone there are still many ways in which their ports can be defined. This variability in

port definition presents a problem as more and more models are created because they will

need to know the port names of those models they interact with. This limits the ability to

easily re-configure the model to model couplings. Thus the first step taken in the AO

specific modeling environment is to standardize the definition of port names for atomic

and coupled models.

 The AOControlEntity and AOControlNode extend the ViewableAtomic and

ViewableDigraph classes respectively (see Figure 4.7), adding standard port name

definitions. Every component will have two in ports and two out ports. The inCmd and

outCmd ports are used to move commands in and out of model, while the inData and

outData ports will move data in and out of the model. Models created in DEVSJAVA-

41
AO can now easily be coupled together because they share the same simple interface

port definitions.

Figure 4.7 Extending DEVSJAVA core modeling constructs for AO
domain

 Three major software components of an AO control system are those controlling

the mount, detector instruments, and telescope accessories. For this example AO system

the mount, detector and focuser controllers are modeled. Because there can be different

types of mounts, detectors, and focusers, each of these is first modeled with an abstract

class capturing any general attributes and behaviors. These abstract classes are then

specialized to capture attributes and behaviors specific to different types of controllers.

This specialization is seen in Figure 4.8 with the MountController, DetectorController,

and FocuserController forming the abstract class layer, and the ForkMountController,

CCDCameraController, and CatadioptricFocuserController forming the specialized

layer.

42
 At this point object oriented concepts such as composition, abstraction, and

specialization have been utilized to extend the DEVSJAVA environment into the

DEVSJAVA-AO environment. These same concepts are commonly used in software

modeling, and will be a part of the AO control system software design. The simulation

models therefore align with software modeling goals. Another software modeling

concept, design patterns, will also be used in the simulation modeling. The next few

sections will discuss how these patterns were implemented and the challenges faced in

doing so.

4.3.2. Implementation of the AO façade design pattern

 The simple AO control system design shown in Figure 4.8 uses a separate

controller for each of the mount, detector, and focuser. However, other AO system

configurations may be different. To support configurability without impacting the users

of the system the façade design pattern can be utilized. This pattern is utilized by having

each controller abstract class realize the corresponding interface. Thus the

MountController implements the MountControllerInterface, the DetectorController

implements the DetectorControllerInterface, and the FocuserController implements the

FocuserControllerInterface. These interfaces define the methods that must be

implemented by the abstract class itself, or a specialization of it.

 One interesting note with the use of interfaces in DEVSJAVA-AO is that the Java

programming language requires that their methods be public. However it turns out that

when these interface methods are implemented they are actually being called in a private

sense. These methods are private because atomic models in DEVSJAVA do not

communicate via direct method calls with one another, but instead through passing

43
messages to their DEVS port interfaces. The external transition function is where

incoming messages are processed, and it is there that the model determines which façade

interface method should be called. These methods are therefore private to the model, and

do not benefit from being defined as public.

4.3.3. Implementation of the AO observer pattern

 The observer pattern is utilized for state change notification between the mount

and detector. In this example system the detector controller is represented with a single

atomic model named DetectorController, this class can act as the subject by inheriting

from DetectorController_Subject and providing access to its state. The mount controller

is also represented with a single atomic model named MountController, which can be

setup as an observer of the detector controller because it realizes the

DetectorController_Observer interface.

 There are some differences in how the observer pattern is used in simulation

modeling versus how it is traditionally used in software modeling. For example, in

software modeling the subject directly calls the update method of the observer, passing

the subject’s state. The only requirement is that the subject and observer objects be in the

same scope or contain references to one another so they can call each others methods.

However simulation modeling does not permit atomic models to directly call the methods

of other models. Therefore the subject cannot directly call the update method of the

observer. Instead it must pass a message from its output port to the input port of the

observer, and the observer’s external transition function must handle the message and

know to call its own update method. Another issue is that in order to enable this port to

port message passing, the coupled model that contains the subject and observer atomic

44
models must explicitly couple their ports. There is not a straight forward way to

establish this connection from the attach method within the atomic subject model.

4.3.4. Implementation of the AO strategy pattern

 In the AO control system the strategy pattern is used by the detector to allow easy

configuration with different exposure request acceptance algorithms. The strategy

interface is defined by the ExpReqAcceptStrategy abstract class. This abstract class

defines the method signatures but does not provide any implementation for them. The

implementation details are left to the specializations since they will differ for each

algorithm. For exposure request acceptance there are two algorithm strategies:

NowInViewExpReqAcceptStrategy and AlwaysInViewExpReqAcceptStrategy. The

“NowInView” algorithm will accept a request as long as the current system coordinates

are in view at the current time. The “AlwaysInView” algorithm will accept a request as

long as the current system coordinates are in view now and will be above the horizon

when the exposure completes. In this example the DetectorController provides the

ExpReqAcceptStrategy member variable and a setExpRequestAcceptStrategy method for

allowing configuration with a given ExpReqAcceptStrategy strategy.

45

Figure 4.8 Simulation models for simple AO control system

46
 The strategy pattern is well known and used in many software system designs.

To make use of it in the AO system simulation environment is fairly straight forward.

One reason implementation challenges are not as common here is because the algorithm

is an internal method, and not a method that is called by another system object. Thus the

algorithm is typically not called upon until a related state change requires it to be

invoked.

4.4. Step 4: Create Customized Simulation Models for AO System Design

 For this demonstration a simple set of customized models was created using the

DEVSJAVA-AO environment. The observatory being modeled was similar to the

Braeside Observatory and consisted of a catadioptic telescope on a fork mount with a

CCD camera attached for imaging. The control system design was simple in that there

was one controller for each major component.

 The fork mount controller was modeled using a specialization of the

MountController abstract class called ForkMountController. This class modeled all the

behavior of a fork mount controller, including object tracking and slew capability along

the right ascension and declination axes. Because it inherits from the MountController

abstract class, two design patterns are enforced. The façade pattern is supported because

the methods of the MountControllerInterface are realized. The observer pattern is also

supported because the methods of the DetectorController_Observer are realized.

 The CCD detector controller was modeled using a specialization of the

DetectorController abstract class called CCDDetectorController. This class modeled all

the behavior of the CCD detector controller including behaviors such as taking and

downloading an exposure. Because it inherits from the DetectorController abstract class,

47
three design patterns are supported. The façade pattern is supported because the

methods of the DetectorControllerInterface are realized. The observer pattern is

supported because the methods of the DetectorController_Subject interface are realized.

The strategy pattern is supported by inclusion of the ExposureRequestStrategy object, and

realization of the setExposureRequestStrategy method.

 The catadioptic focuser controller was modeled using a specialization of the

FocuserController abstract class called CatadiopticFocuserController. This class

implements behaviors of the focuser controller such as moving focus in and out. Because

it inherits from the FocuserController abstract class it also supports one design pattern.

The façade pattern is supported because the methods of the FocuserControllerInterface

are realized.

4.5. Simulation Experiments using DEVJAVA-AO

 The DEVSJAVA-AO environment provides the base classes necessary to build

atomic and coupled models for a simple AO control system. In addition, it provides

classes for basic block diagram visualization of simulation executions. Figure 4.9 shows

the DEVSJAVA-AO simulation view for a system configuration that includes one

detector controller for a CCD camera. The AOControlSystem coupled model contains all

atomic models in the AO control system. The “AO Control System Client” is actually a

group of models that generate data over time trajectories and collect results for analysis

over time periods. These simulation results are evaluated to choose suitable command

and control designs under a range of operational settings.

48

Figure 4.9 Simulation view for AO system configured with one detector controller

 Simulation provides the ability to run experiments on a system and learn about its

behavior under certain conditions. The models described here of a simple AO control

system can be simulated in various experiments to measure many aspects of the system

such as correctness, performance, and “what if” scenarios.

4.5.1. Analysis of system configurations

 One interesting aspect of software architecture simulation is its ability to test how

addition of a new module will impact the rest of the system. The first AO control system

configuration introduced earlier contained only one CCD Camera detector, and thus one

controller. However, another AO control system configuration might have a second

detector, such as a spectrometer for measuring properties of the light. Therefore a second

controller may be needed for this new Spectrometer detector. Addition of a new

spectrometer controller to the system provides an opportunity to test how well the façade,

49
observer, and strategy design patterns support QoS attributes such as configurability

and modifiability. In addition, simulation tests can allow execution results to be captured

and analyzed to validate the systems behavior under this new configuration.

 Introduction of the SpectrometerController class to the system is easily done as a

specialization of the DetectorController_Subject abstract class. This specialization allows

it to inherit the subject methods that are part of the detector-mount observer design

pattern and the DetectorController_Interface methods that are part of the façade design

pattern. Finally, when implementing the SpectrometerController class, the

setExpReqAcceptStrategy method can be provided from the strategy design pattern to

allow different acceptance algorithms to be set. The design patterns therefore allow the

system to be easily modified. In addition, simulation runs can be performed to verify that

the new SpectrometerController functions correctly and that the other system

components are not negatively impacted. Figure 4.10 shows the DESVJAVA-AO

simulation view of this new configuration. The ability to execute the system architecture

in this manner provides information that would not be available if the design was only on

paper.

50

Figure 4.10 Simulation view for AO System configured with two detector controllers

4.5.2. Analysis of system behavior

 Another aspect of software that can be tested is the behavior of the system when

different algorithms are used to perform certain system functions. For example, when an

exposure request is received the system must determine if the request is valid. Suppose

there are two algorithms to choose from for implementing the CCD exposure request

acceptance logic. The first algorithm will check only if the current coordinates are above

the horizon. With this algorithm the detector software will simply check that the current

coordinates are above the horizon. If they are, the request is accepted and the exposure

begins. If they are not, then the request is rejected. The second algorithm will check if the

current coordinates are above the horizon now and that they will be above the horizon for

the length of the exposure. To check this rule the algorithm takes the current time plus the

51
length of the exposure to get the time the exposure will end. The algorithm then checks

if the current coordinates will be above the horizon at that time. If they are, the request is

accepted and the exposure begins. If they are not then the request is rejected.

 To conduct the experiment the Strategy design pattern is utilized, and two

specializations of the ExpReqAcceptStrategy abstract class are created:

AlwaysInViewExpReqAcceptStrategy and NowInViewExpReqAcceptStrategy. The use of

this pattern allows configuration of a detector controller with the desired strategy by

simply passing an instance of it to the controller’s setExpReqAcceptStrategy method.

Changing to the other strategy requires a one line code change to pass an instance of the

other strategy to the method.

 To see the impact this algorithm change has on the system, simulations are

conducted in which observation requests generated by the experimental frame are carried

out by the AO control system. These requests are created by selecting random

coordinates and a random exposure time. The exposure time is limited by a maximum

value that is increased by two hours with each simulation run. A successful observation

request is one in which the coordinates of the object being imaged can be tracked by the

telescope from start to finish of the exposure. This scenario is considered to return the

desired image. A failed observation request results if the exposure is cut short because the

object goes below the horizon. This scenario is considered to return an erroneous image.

52
Current View Only Algorithm :

Percentage of Erroneous Observations vs. Max Exposure Time

0.00

20.00

40.00

60.00

80.00

0 2 4 6 8 10 12 14

Max Exposure Time

Pe
rc

en
ta

ge
 o

f E
rr

on
eo

us

O
bs

er
va

tio
ns

Current View and End of Exposure Algorithm :
Percent Increase in Successfull Observations w ith Algorithm2 over Algorithm1

vs
Max Exposure Time

0
100
200
300
400
500
600
700

0 2 4 6 8 10 12
Max Exposure Time

P
er

ce
nt

ag
e

In
cr

ea
se

 in

S
uc

ce
ss

fu
l O

bs
er

va
tio

ns

w
ith

 A
lg

or
ith

m
2

ov
er

A

lg
or

ith
m

1

Figure 4.11 Simulation results using two exposure request acceptance
algorithms

 The same set of observation requests are fed as input to the models for each max

exposure time, once for algorithm 1 and a second time for algorithm 2. This will show

how many successful observation requests occur given the chosen decision algorithm and

allowed maximum exposure time. The first chart in Figure 4.11 shows the percentage of

observations that were erroneous as the max exposure time allowed was increased. Since

algorithm 1 only checks that the object is currently in view when the request is received,

the results start to see more erroneous exposures as the max allowed exposure time

increases. The second chart in Figure 4.11 shows the percentage increase in the number

53
of observations that were successfully carried out using Algorithm 2 versus Algorithm

1. This chart shows that as the allowed exposure time increases there is more benefit in

using Algorithm 2. These benefits are due to an increase in the number of long exposure

requests that are received as the max exposure time is increased. Overall the results show

that the second algorithm is a better choice because it eliminates requests that will be

erroneous because the object is going out of view before the end of the exposure.

5. Related Work

5.1. Software modeling of real-time systems

 Software modeling primarily deals with specification and implementation of

software. Object-oriented modeling techniques allow for characterization of software

components and their composition. Approaches such as UML allow specification of the

relationships between components in terms of inheritance, aggregation, and realization.

In addition, the UML sequence diagram can capture the timing of component interactions

in non-real time. However these modeling approaches do not allow for execution of the

models under logical time, and thus have limited capabilities for testing and validation.

 The design of real time software applications is unique in that the need to include

formal timing and concurrency in the software modeling is crucial. Methods such as

UML-RT have been introduced to extend the OO modeling to formally account for time.

In UML-RT the time, schedule, and performance related properties of the software

models can be captured using UML stereotypes, tagged values, and constraints. Models

are outfitted with ports that when connected to other models, allow events to be

communicated during statechart execution. During this execution the timing related

properties can be validated (Huang 2004).

 Although UML-RT model execution is useful in testing for defects in timing

constraints of software models, it cannot be used until the software modeling reaches a

detailed stage. One benefit of the approach presented in this thesis versus UML-RT is

that simulations are performed on high level software design concepts, such as design

patterns. These patterns are identified early in the design phase, and therefore benefits of

the simulation experiments are realized early.

55
5.2. Software design techniques in simulation

 The benefits of using of modern software engineering techniques to build

simulation models are now being realized by the simulation community. Researchers that

use simulation to study science are utilizing the object oriented capabilities of

environments such as DEVSJAVA to design more maintainable and re-usable models. In

addition, software design concepts such as design patterns are being adapted for

simulation model design. The result is models that are more easily configured and easy to

maintain (Innocenti 2004). The use of design patterns in these applications is driven from

the desire to make the models more maintainable and re-usable. The research presented in

this thesis will also enjoy these benefits, but differs in that the use of patterns is driven

more from the domain. This thesis lays out a principled approach for identifying design

patterns in the AO domain. Use of the design patterns to develop the simulation models is

driven from the desire to simulate those patterns, and thus simulate the high level design

of the AO control system. In addition, the design patterns identified with this approach

are used beyond simulation modeling, and are also incorporated in the detailed software

modeling design.

6. Conclusion

 The motivation behind this work was Simulation Based Acquisition (SBA 1998)

which promotes systematic use of simulation across lifecycle of systems from conception

to retirement. In this respect, the presented approach focuses on supporting simulation-

based software design. This work demonstrated the use of design patterns in support of

the command and control paradigm for the software development of astronomical

observatory control systems using DEVSJAVA-AO. Thus the inclusion of design

patterns in a modeling and simulation environment for specific domains plays a

significant role in creating software design that can be simulated prior to detailed

software design specification, with a key benefit being reduction in the overall software

development effort. A future direction for this research is applying the simulation models

for developing software controlling an astronomical observatory. Another future research

opportunity involves forward engineering from simulation models to software models. A

related area of interest is the inclusion of design patterns in real-time simulation

modeling.

57
REFERENCES

ACIMS, DEVSJAVA, http://www.acims.arizona.edu, 2003.

Balasubramanian, K., A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema. 2006.
“Developing Applications Using Model-Driven Design Environments”. IEEE
Computer (February): 33-40.

Braeside Observatory. 2005. Arizona State University. http://braeside.la.asu.edu.

Briand, L. C., Y. Labiche, and Y. Wang. 2004. “Using Simulation to Empirically
Investigate Test Coverage Criteria Based on Statechart”. ICSE: 86-95.

Chen, Y., G.C. Gannod, J.S. Collofello, and H.S. Sarjoughian. 2004. “Using Simulation
to Facilitate the Study of Software Product Line Evolution”. Seventh International
Workshop on Principles of Software Evolution (September): 103-112.

Cox, J.E. 2002. “Simulation as an Integral Component of the Software Architecture
Design Process”. Masters Thesis. Arizona State University.

Dalal, M.A., M. Erraguntla, and P. Benjamin. 1997. “An Introduction to Using ProSim
for Business Process Simulation and Analysis”. Proceedings of the 1997 Winter
Simulation Conference: 718-724.

Dias, M. S. and E. Marlon. 2000. “Software Architecture Analysis Based on Statechart
Semantics”. Tenth International Workshop on Software Specification and Design:
133-137.

Ferayorni, A., Sarjoughian, H., 2007, “Domain Driven Simulation Modeling for Software
Design”, Summer Computer Simulation Conference, pp. 297-304, San Diego, CA.

Fujimoto, R.M. 2000. Parallel and Distributed Simulation Systems. John Wiley and
Sons, Inc.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software., Addison-Wesley.

Gerla, M., R. Bagrodia, L. Zhang, K. Tang, and L. Wang. 1999. “TCP over Wireless
Multihop Protocols: Simulation and Experiments”. Proceedings of IEEE
International Conference on Communications 2: 1089-1094.

58
Gray, J., Y. Lin, and J. Zhang. 2006. “Automating Change Evolution in Model-Driven

Engineering”. IEEE Computer (February): 51-58.

Hall, S.B. 2005. “Learning in a Complex Adaptive System for ISR Resource
Management”. Winter Simulation Conference: 149-158.

Huang, D. and H.S. Sarjoughian. 2004. “Software and Simulation Modeling for Real-
time Software-intensive System”. The 8th IEEE International Symposium on
Distributed Simulation and Real Time Applications (October): 196-203.

IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -
Framework and rules. 2000. IEEE Std 1516-2000: i-22.

Innocenti, E., A. Muzy, A. Aiello, J. Santucci,, and D. Hill. 2004. “Active-DEVS: a
computational model for the simulation of forest fire propagation”. IEEE
International Conference on Systems, Man and Cybernetics (October): 1857 – 1863.

Jacobson, I. 1992. Object-Oriented Software Engineering. Addison Wesley Professional.

OMG, MDA: Model Driven Architecture. 2005. http://www.omg.org/mda/.

OMG, UML: Unified Modeling Language. 2005. http://www.uml.org/.

OMG, UML-RT: Unified Modeling Language – Real Time. 2006.
http://www.omg.org/cgi-bin/doc?formal/05-07-04/.

PAVG, Rapide. 1998. http://pavg.stanford.edu/rapide/.

Rational Rose RT. 2006. http://www-
306.ibm.com/software/awdtools/developer/technical/.

Sarjoughian, H. S. and R.K., Singh. 2004. “Building Simulation Modeling Environments
Using Systems Theory and Software Architecture Principles”. Advanced Simulation
Technology Conference (April): 99-104.

Sarjoughian, H.S. and B.P. Zeigler. 2000. “DEVS and HLA: Complementary Paradigms
for Modeling and Simulation”. Transactions of the Society of Modeling and
Simulation International 17(4): 187-197.

SBA. 1998. “Simulation Based Acquisition: A New Approach”. Defense Systems
Management College, Report of the Military Research Fellows.

59

Schmidt, D. 2006. Model-Driven Engineering. IEEE Computer (February): 25-31.

SimPy. 2004. http://simpy.sourceforge.net/.

Spin. 2006. http://spinroot.com/spin/whatispin.html.

United States Department of Defense, HLA,. 2005.
https://www.dmso.mil/public/transition/hla/.

Wymore, W.A. 1993. Model-based Systems Engineering: An Introduction to the
Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System
Design. Boca Raton: CRC.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of Modeling and Simulation.
2nd ed. Academic Press.

Zeigler, B.P., H.S. Sarjoughian, W. Au, 1997, “Object-Oriented DEVS”, 11th SPIE, pp.
100-111, Apr., Orlando, FL

APPENDIX A

UML USE CASE DIAGRAMS

61

 This appendix provides additional use case diagrams generated during research in

the domain of astronomical observatory (AO) control systems. These use cases were

gathered through information obtained while studying the Braeside Observatory control

system. The approach used to obtain and analyze these use cases is described in Chapter

3 of this thesis.

 One of the key components of the observatory control system is the software that

controls the telescope focuser. This software is responsible for carrying out requests from

the user to adjust the telescope focus. In Figure A.1 the use cases for interaction between

the client and the focuser controller are shown.

Figure A.1 Use case diagram for focuser controller

Actor / Use Case Descriptions:

Astronomer: Actor that interacts with the system to take observations and collect data.

startMoveFocusOut: Start movement of the focuser outward.

startMoveFocusIn: Start movement of the focuser inward.

stopMoveFocus: Stop movement of the focuser.

62

 The mount controller is responsible for carrying out user requests to move the

telescope mount. It also supports the ability to link with detector controllers in order to

allow data to be shared, which is useful for applications such as auto-guiding. In Figure

A.2 the use cases are shown as well as the actors that typically invoke them.

63

Astronomer

MountController

startMoveRAWest

startMoveRAEast

stopMoveRA

startMoveDECNorth

startMoveDECSouth

stopMoveDEC

setSlewRateRA

setSlewRateDEC

linkToDetectorContr
oller

unlinkToDetectorCon
troller

Technician

Figure A.2 Use case diagram for mount controller

64

Actor / Use Case Descriptions:

Astronomer: Actor that interacts with the system to take observations and collect data.

Technitian: Actor that interacts with the system to perform maintenance.

startMoveRAWest: Start movement of the right ascension axis in the West direction.

startMoveRAEast:Start movemenet of the right ascension axis in the East direction.

stopMoveRA: Stop movement of the right ascension axis.

startMoveDECNorth: Start movement of the declination axis in the North direction.

startMoveDECSouth: Start movemenet of the declination axis in the South direction.

stopMoveDEC: Stop movemenet of the declination axis.

setSlewRateRA: Set the slew rate for the right ascension axis to a given value.

setSlewRateDEC: Set the slew rate for the declination axis to a given value.

linkToDetectorController: Link the mount controller to a detector controller.

unlinkToDetectorController: Un-link the mount controller from a detector controller.

APPENDIX B

UML CLASS DIAGRAMS

66

 This appendix provides additional UML class diagrams that capture design

patterns used in the DEVSJAVA-AO framework. These patterns were identified using

the same approach discussed in Chapter 3 of this thesis.

 The mount controller component of an AO control system may contain many sub-

components that provide the functionalities shown in the mount controller use case

diagram (see Figure A.2). These use cases helped identify the need to create a façade

layer that hides the details of how the mount controller functions are carried out. Figure

B.1 shows the use of the façade design pattern in the design of a simple AO control

system. The MountControllerInterface is used to specify which functions will be

provided, what parameters they require, but not which software components actually

implement them. The MountController class realizes this interface, thus de-coupling the

client from the implementation details of the façade functions.

Figure B.1 Facade design pattern for mount controller

67

 The focuser controller is responsible for carrying out all client requests to adjust

the focus of the telescope. The use cases in Figure A.1 helped identify the need for a

façade layer between the client and the focuser controller. The façade design pattern,

shown in Figure B.2, is implemented using the FocuserControllerInterface, which must

be realized by the sub-components of the FocuserController. This façade layer helps to

de-couple the client from the implementation details of the focuser controller functions.

Figure B.2 Facade design patterns for focuser controller

