
Accepted for Publication

BIOLOGICALLY INSPIRED DISCRETE EVENT NETWORK MODELING

Ahmet Zengin*, Hessam Sarjoughian†, Huseyin Ekiz*

* Technical Education Faculty
Department of Computer Science Education

Sakarya University
Esentepe / Sakarya, TURKEY 54187

{azengin, ekiz}@sakarya.edu.tr

† Arizona Center for Modeling & Simulation
Computer Science & Engineering Dept.

Arizona State University
Tempe, Arizona, USA
sarjoughian@asu.edu

KEYWORDS

Beehive, DEVS, Networks, Routing, Scalability.

ABSTRACT

The simulation study of networks remains attractive due
to desire to achieve better important traits such as
scalability and performance. This paper describes a
biologically inspired discrete-event modelling approach
for simulating networks. It introduces a synergistic
modelling approach by incorporating key attributes of
honeybees and their societal properties into a set of
simulation models described in the Discrete Event
System Specification. We describe our approach with
particular emphasize on how to model the behaviour of
the honeybees and their cooperation as discrete event
models. The simulation models and their experimental
results are presented and discussed.

1. INTRODUCTION

The study of complex networked systems especially
those that are large-scale are attractive for a variety of
reasons such as the analysis and design of transportation
systems, supply networks, management of social and
ecological systems. Systems that are composed of
components share common characteristics such as
hierarchy, alternative configurations, patterns of
interactions due to varying types of components and
behaviour. To model such systems, one can employ a
variety of methods to characterize structure and
behaviour – e.g., we can use communicating processes or
event systems as the basis for modelling components and
their interactions. More specifically, from simulation
point of view, we may use discrete event, differential
equations, or cellular automata to describe behaviour of
networks.

Some modelling techniques, not only can be developed
based on artificial computational models such as Von
Neumann, but also on natural phenomena such as Ants
societies. One of the advantages of complementing
artificial models of computation with their natural
counterparts is that we can have a rich laboratory to
develop models that can be experimented with. For
example, developing biologically inspired models such as
Honeybee enjoy from ample scientific and experimental

studies developed based on studying details of the
honeybees and their colonies. The knowledge about how
honeybees behave and interact offers key insights as how
to model inherent complexity of networked systems.
Armed with simple yet subtle emerging behaviour of
honeybees we may be able to develop models of complex
large-scale network systems that can offer desirable
performance and scalability qualities (Lunceford and
Page 2002).

In the remainder of the paper, we will review Honeybee
(Seeley 1995) and DEVS modelling techniques (Zeigler
et al. 2000). Based on a general model of Honeybee
society, we describe our approach to network modelling
where artificial and natural computational models are
combined. We then present network model specifications
using DEVSJAVA (ACIMS 2004) and associated
algorithms followed by describing simulation results and
conclusions.

2. BACKGROUND

There exist many modelling approaches founded on
systems theory (e.g., Mesarovic and Takahara 1989),
agent theory (e.g., Wooldridge and Jennings 1995), and
object theory (e.g., Abadi and Cardelli 1996) to
characterize network systems such as computer networks
and natural societies such as honeybees and ants.

Discrete Event System Specification

Discrete event systems can be described using the
Discrete Event Systems Specification (DEVS) formalism
(Zeigler et al. 2000) where model behaviour is
characterized as events and their processing. This
modelling approach supports hierarchical modular model
construction, distributed execution, and therefore affords
a basis to characterize complex, large-scale systems using
formulation of components (atomic and coupled models)
and their interactions. Atomic models characterize
structure and behaviour of individual components via
inputs, outputs, states and functions. The internal,
external, confluent, output and time advance functions
define a component’s behaviour over time. Internal and
external transition functions describe autonomous
behaviour and response to external stimuli, respectively.
Confluent transition function is used to account for
concurrent occurrences of internal and external transition

functions. Time advance function represents passage of
time. Output function is used to generate outputs. Atomic
models can be coupled together in a well-defined manner
to form more complex models.

A coupled model specifies constructs for composing
modular models into hierarchical structures. Behaviour of
a coupled model is defined by its constituent atomic
(and/or coupled) models. With closure under coupling
feature of DEVS, coupled models can be used as atomic
models in a larger model. Coupled models can be
constructed systematically using the concepts of ports
and couplings. When a component sends messages via its
output ports, the couplings relay the messages to their
designated input ports (Wymore 1993). Upon receipt of
messages by atomic models, they immediately process
these messages which may result in new states and
generation of outputs.

Parallel DEVS is capable of processing multiple input
events and provides local control for handling of
simultaneous internal and external events. DEVS atomic
and coupled models have computational counterparts
which may be executed in parallel manner using software
engineering concepts (Sarjoughian and Singh 2004).
DEVSJAVA is an implementation of the DEVS
formalism and its associated simulation protocol (ACIMS
2004). There exist various implementations of the
discrete event system specification approach based on
single and multiprocessor environments. Parallel and
distributed environments have been developed using
technologies such as HLA (ACIMS 2004).

Agents

Agent based approaches are being widely used in
distributed network applications. This research area is
one of the most attractive and rapidly evolving software
technologies of the last decades. A software agent
concept has emerged from a specialized class of
distributed artificial intelligence and is used to describe
the concept of a software entity that automates some of
the tasks (Hayzelden and Bigham 1998). Software agents
can be defined as autonomous, proactive and reactive
computational entities that can exhibit the ability to learn,
cooperate and move. To make use of software agents in
network management applications, agents must be able to
migrate from node to node in network. Furthermore,
agents must be able to create new agents, delete
themselves, and determine their interaction with their
environment (e.g., Uhrmacher et al. 2001).

Agent-based solutions are suitable for management of
distributed systems since they are inherently distributed
and decentralized (Minar et al. 1999). Decentralization is
an efficient way to overcome scalability issues. Network
systems are dynamic and highly unpredictable systems
and therefore their control and monitoring cannot be
readily centralized.

Honeybees

Biologically inspired modelling approaches have
imported some metaphors from biological systems to
engineering systems to develop network management
frameworks. Particularly distributed, parallel, robustness
and fault tolerant nature of some social insects (ants,
bees, and termites) have been a source of inspiration for
researchers due to their desirable distributed
characteristics. Insect societies have advanced
mechanisms to maintain colony level survivability
against environment conditions. For example, because
nectar availability can change rapidly and unpredictably,
honeybees are able to cope with such problems and scale
themselves to huge number of population (Seeley 1995).
Honeybees have sophisticated regulation mechanisms to
adapt their capacities against fluctuating and ephemeral
resources.

Foraging behaviour in honeybees is a good example to
investigate social insect metaphors such as self-
organization. Honeybees collectively decide selection of
nectar and pollen resources and allocation of workers
among them through self-organization. This selection and
allocation of processes among honeybees in their hive is
performed by absence of any central authority. In a
decentralized and concurrent way, each bee obeys a set of
simple rules based on some metrics (e.g., nectar
concentration, location of the source, and travel time to
the food source). All of the metrics including parameters
such as the number of bees responsible for storing food in
the hive determine profitability of a nectar source. If
colony encounters more than one source of nectar,
highest profitable source is preferred by foragers relative
to other sources with less profitability. Foragers are
distributed among nectar sources using profitability
criterion during the course of nectar collecting process. If
nectar amount in a certain source changes, then whole
colony changes its concerns to that source. Furthermore,
the colony deploys certain portion of foragers for
searching nectar, namely scouts. Rich sources are found
by scouts and nectar availability in environments is
monitored by them (Anderson 2001). This assignment of
foragers to sources according to profitability is called
scout-recruit system in honeybees. One of the most well-
known mathematical models was developed by Seeley
and documented in his Book (Seeley 1995).

3. NETWORK MODELLING APPROACH

In order to model a distributed networked system, we
have defined a set of network component models called
nodes which communicate with one another via links (see
Figures 1 and 4). Using node and link capacity
assignments, we can develop a variety of complex
network configurations. The node and link models are
defined as the DEVS atomic components. Other network
elements such as packets and scouts are also represented
as DEVS models. With this approach, a network model
exhibits agent-like behaviour and thus supports
decentralized control.

Routing
Module

Global Routing Table
Routing Table

Network Interface (NIC)
1… m processing_time

HIVE

IP Address

bandwidth sender
queue

receiver
queue

Network

NODE

route

route
Scouts
Foragers

Buffers for incoming and outgoing
packets

Figure 1: Design of a network node

To realize simulation experiments we utilize the concept
of experimental frame where the conditions under which
a model can be experimented with and observed are
defined. For this work, a typical experimental frame
consists of generator and transducer atomic models. We
employ generator in order to create network traffic and to
schedule special events such as unavailability of links or
nodes. To realize this, a generator model sends messages
(see Section 4) to all the appropriate components in the
network.

Atomic and coupled models are represented using the
parallel DEVS formalism and developed within the
DEVSJAVA modelling and simulation environment. In
this approach, the dynamics specified within the nodes
and links can be used to determine the behaviour (e.g.,
throughput time) of the network model.

4. NETWORK MODEL DESIGN

In order for modelling a distributed networked system,
we have defined a set of basic network simulation model
components including nodes and links as detailed next.
By coupling these model components in DEVSJAVA, we
can develop a variety of network configurations and
study network characteristics. Since it is assumed that
only nodes and links of a network are able to cause
bottleneck, they are modelled as atomic models and only
their states as well as input and output variables are of
interest. Other network components such as packets and
routing tables are realised as stateless entities. Network
itself is a coupled model. Defined dynamics in node and
link atomic models determine the behaviour of network
coupled model. All atomic models in our implementation
are modelled and defined using the Parallel DEVS
formalism (Chow 1996) and realisation in Java (ACIMS
2004).

Node

Each node in the network represents a switching unit
where it is able to process packets that are described
below. Due to a node can be considered as a router. With
simple changes, a node can represent other network
elements such as hub. Nodes are connected to other

nodes called neighbours via links. To determine the
behaviour of a node, we use two parameters: packet
process speed which directly influences processing time
of a node, and queue in which incoming and outgoing
packets are stored. By toggling these capacities, different
kinds of bottlenecks in the network can be modelled.

As shown in Figure 1, one of the main parts of our nodal
structure is the Network Interface. It provides the
fundamental internetworking services such as packet
exchanging with neighbouring nodes. Routing Module
reflects node’s routing capability and simple intelligence.
At each node, packets are forwarded to their destination
nodes by routing module. A routing module includes a
local routing table for local network as well as a global
routing table which can be used to manage the routing
between the local network and other parts of the global
network. Global routing table fragments the entire
network into manageable sizes and therefore it is possible
to investigate Internet-like (large-scale) networks. These
routing tables reflect state of the network and have
resemblance with distance vectors. Also, we have
equipped our node model with the beehive to implement
and test swarm-based routing algorithms. In our swarm
application, beehive launches scouts or other kind of
entities to monitor the network and to reconfigure
network resources.

Link

All links are communication channels and therefore are
viewed as pipes which are characterized with bandwidth
(bits/sec) and transmission or propagation delay specified
in milliseconds. Each link has a corresponding buffer
with finite capacity. The packets that arrive are placed in
the buffer and are transmitted to the next node using first-
in first-out (FIFO) strategy. Links are modelled as
bidirectional, thus supporting concurrent bidirectional
interactions. Links are able to carry traffic of a certain
bandwidth up to the total capacity of the link. Each link
atomic model has input and output ports for connecting
two nodes in a duplex manner (see for example Link1
atomic model in Figure 4).

Data Packets

All packets that are exchanged among components in the
form of DEVS messages can be distinguished as data and
control packets. Data packets are basic IP packets which
carry information such as id and precedence (see Figure
2). Control packets allow the node to obtain whole
network view and to measure the traffic. For example,
they are Routing Information Protocol packets in our
distance vector application, while they may be
cooperative scouts or ants in swarm based routing.
Packets traverse intermediate nodes to go to their
destination. As depicted in Figure 2, all packets have a
priority field which is used for handling them in some
way. For example, while control packets and scouts have
high priority, data packets have low priority. The data
packets, therefore, are queued and served in FIFO setting.
Besides handling data packets in FIFO manner, control

packets have higher priority ranging to 7 by which their
queuing order is determined. Packets can be discarded
upon arriving at a node because of lack of queue space or
expired time to live which limits hop count. In addition,
when a packet traverses across a link, if there is no
available bandwidth on the link, the packet is lost or
dropped.

In our implementation, no arrival acknowledgement or
error notification packets are generated back to the source
of the packet. Instead, a simple flow control mechanism
is devised and implemented. The reason is that we focus
on routing algorithms by minimizing the number of
interacting components. Passing a packet within a link
suffers a delay that can be viewed as transmission delay.
Packets may also be subject to the FIFO delay.

id

Source Address

Destination Address

ttl length

tabu list

Data
110100011010010010101
010001010101011111010

Protocol Header

Precedence (0…7)

Figure 2: A data packet model with a protocol header

As shown in the Figure 2, we have modelled a packet
type with the following fields: source address,
destination address, source hop address, destination hop
address, packet id, precedence, total length, tabu list,
TTL (time to live) and data. All these fields excluding
data constitute protocol header and are 20 bytes in our
model. Data size can vary across applications. Packet id
characterizes the packet. In order to avoid a packet to
travel around the network for a long time, we restrict the
packet with specific hop count, namely TTL value. Total
size of packet is stored in the length field of a packet.
Packet storing sequence in queue is determined by
precedence value ranging from the lowest priority 0 to
the highest priority 7. Tabu list allows us to keep track of
visited nodes. Source and destination address fields
denote packet’s origin and final node’s IP addresses. Data
field is simply used to contain data object.

Routing Table

By equipping each node model with a routing table, data
packets can be systematically routed through the
network. The Java implementation of the routing table
consists of a collection of Route objects where each is an
instance variable of the routing module class (see Figure

1). When a node needs to send a packet to a given
destination, decisions about which outgoing link (i.e.,
DEVS atomic output port) to be used are made by means
of the information specified in its routing table.

Each node has a routing table for every possible
destination in the network, and each table has an entry for
every neighbour (see Figure 3). According to the routing
algorithm, these routing tables are constructed previously
(in static algorithms), dynamically adapted to network
load state (in dynamic algorithms) or based on node’s
(insect’s) selection probabilities of the next node to its
destination – e.g., using swarm based algorithms. The
routing tables are initialised at the simulation start up
with routes to directly linked interfaces of cost 1. Routing
table can be imagined as a matrix in which rows
correspond to destinations and columns to neighbours.
During simulation execution new entries may be added to
table or current entries may be removed or adjusted
according to network traffic. All the values of the entries
in the routing table range between 0 and 1, a probabilistic
value. We called these entries as profitability values
through which most profitable routes can be chosen.

Generator and Transducer Models

In order to experiment with the above network model, it
is necessary to model user traffic. To make realisations of
network traffic and examine specific scenarios, the
experimental frame concept and its DEVSJAVA
realisation are employed. In our implementation, a typical
experimental frame consists of an event generator and
event transducer. The generator generates packets with
fixed time intervals by randomly choosing source and
destination addresses. As mentioned earlier, generator
also can create and schedule specific events in the
network such as link down and node congestion events.
The transducer observes and analyses the network
outputs, and stores these results in trace files. Transducer
simply converts data to information which is meaningful
for us.

Coupled Simulation Models

We have developed a discrete event simulation model for
networks with varying topologies and structures. As
mentioned above, the developed framework is capable of
representing the behaviour of different routing algorithms
(e.g. shortest-path, distance vector and various swarm
algorithms). Hence, the approach serves as a framework
to test and evaluate alternative network configurations.
By using basic components and tools which have been
described above, networks can be built by coupling node
and link atomic models in DEVSJAVA simulation
viewer (see Figure 4). Furthermore, by coupling these
coupled networks, increasingly larger networks can be
systematically developed and experimented with.

Figure 3: An example of a routing table

Figure 4: Synthesis of a network model

Some applications have been created in DEVSJAVA to
simulate routing algorithms over some network traffic
patterns. In our experiments, we have used a simple
packet switched network and a set of large-scale
networks with increased complexity and connectivity.
These networks hereafter are referred to as the simple and
complex networks, respectively. They have been
designed for testing the model design as well as testing
the framework itself (e.g., scalability). The simple
network would be sufficient for initial testing of whether
routing tables are updated correctly and whether, when
links go down or come alive, routing tables are correctly
updated. Large-scale and complex networks are used for
uncovering dynamics and performance measurements of
the models in the DEVSJAVA environment.

Scaling Coupled Models

To support scalability, we employed and implemented a
clustering approach. Clustering provides manageable
network sizes by abstracting a subnet to single node in a
higher level network. By considering a coupled model as
an atomic model, DEVS coupled model concept has a
resemblance with clustering. There exists a hierarchy of
networks within the total of all nodes and routers. Each
coupled model has a number of border nodes which are

used for connecting it to other coupled networks. In our
approach, clustering is done in addressing level of nodes.

Hierarchical and modular structure of DEVS formalism
facilitates implementation of clustering approach. Border
nodes have an additional routing table consisting of the
cluster names. This approach substantially decreases the
information stored in routers.

5. CREATING HONEYBEE INSPIRED NETWORK
MODELS

To show the capability (applicability) of the modelling
approach, first we started with well-known routing
algorithms. We have implemented static link state
algorithm (Dijkstra 1959) to initialize network and
distance vector to calculate distances between nodes. In
the implementations of these algorithms, we used hop
number as a metric, but other metrics such as available
link bandwidth may also be used.

As pointed out earlier, our biologically inspired approach
was derived based on honeybees and their interactions.
For example, the movement of packets (artificial bees)
can be used to balance network loads. Focused on
biological inspired load balancing mechanism is
analogous to honeybee scout-recruit system. In honeybee
colonies, a colony deploys certain portion of its foragers

A

Destination
nodes

C

D

E

B
0.80

0.20

 B E

B 1.00 0.0

C 0.80 0.20

D 0.30 0.70

E 0.0 1.00

Probabilistic
routing table
for node A

Next nodes

for searching nectar, namely scouts. Scouts find rich
nectar sources and monitor their availability. If colony
finds additional sources of nectar, the highest profitable
source is preferred by foragers relative to other sources
with less profitability. Foragers are distributed among
nectar sources using profitability criterion during the
course of nectar collecting process.

We have developed a set of models which are capable of
exhibiting an ensemble of scouts controlling congestion
in a distributed environment. In our implementation,
analogous to honeybee scout-recruit system, each
network node is a beehive. Network corresponds to the
world of honeybees who seek rich nectar sources, finding
paths with higher capacity to profitable nectar sources,
light-weight scout entities searching for nectar, and
control packets foraging for information to aid survival of
the network (honeybee colonies). Each hive deploys a
number of scouts to find the most profitable paths for a
given destination. Each router then uses the information
received from all the nodes in the network obtained by its
scouts to calculate the shortest path to each destination in
terms of a chosen metric. Scouts control congestion by
making alterations to routing tables in order to route new
traffic away from congested nodes. Then, packets are
dispatched from a source to a destination according to
information gathered by scouts.

The developed approach offers some useful properties
such as probabilistic routing, optimal system performance
by tuning parameters, event-driven updates based on
network flow, low convergence time, low control packet
traffic and scalability via clustering which reduces
routing information stored in a node’s memory. Social
insect inspired approaches bring a probabilistic routing
method to network routing domain, therefore we use
probabilistic cost values in order to represent source
profitability. The cost metric can be based on the
bandwidth of the link or can be dynamically measured as
in the case of delay or load.

The routing table is then updated with the new
information. In the networks we have experimented with,
initially no apriori knowledge is known about the routes.
All routes were computed in parallel during initialization
phase. Each route determined for a given destination
node based on the Dijkstra shortest path about the
minimum hop. When an event occurs, such as a link
going down or a node failing, then routing scheme has to
be able to handle the situation. An event-driven update is
selected for routing information update in response to
changes that are detected. The use of event-driven
updates rapidly disseminates the data about the failed
route, which reduces the change for growing data and
route loops to occur. By doing so, the entire procedure
can be completed in a less time than periodical updates.

6. SIMULATION RESULTS & DISCUSSION

In order to compute the performance of the routing
approach, we developed a set of models and
experimented with them. Using node and link models

defined above, various network topologies can be
formed. Then, developed network models are run under
traffic load by using experimental frame model. The
simplest network modelled has 11 nodes and 18
bidirectional links (see Figure 5), while larger models has
up to 3520 components.

Each node in the network is represented a routing table
storing the neighbouring node to which traffic should be
routed. Each simulation run consisted of an adaptation to
topology (initialisation phase) and test period. During the
initialisation phase, system runs without load and initial
routing tables are formed according to the number of
hops (shortest path estimation). During the test period we
measured and recorded the network performance in terms
of average packet delay, throughput, convergence time
and packet loss ratio.

n1

n2

n6

n4

n5

n3

n7

n8

n11

n10

n9

Figure 5: A simple network

Node and Link parameters

All nodes are designed as routers and each one has own
interface(s) equal to their neighbours. Nodes have the
same buffer size (1Mbit) but have different IP addresses.
Moreover, node packet’s processing time is selected as 1
msec.

Links are bidirectional and their bandwidths range
between 1.5 to 6 mbps with propagation delays ranging
between 1 to 5 msec.

Traffic model

Traffic flows in the network are simulated by a traffic
generator model component. This model generates data
packets which are then periodically sent out to the
network using uniformly randomly selected source and
destination nodes. We observe network for one second
(see Figure 7). Generator sends 1000 packets to the
network in course of one second which packet sizes
varying from 10 bytes to 100 Kbytes.

We used two standard performance metrics: throughput
and packet delay. We avoid generation of packets with
the same source and destination. The amount of network
traffic is determined by the number of packets in the
network. Generally, many packets must wait in limited
capacity FIFO queue for processing at the nodes.

We compare our approach with a state-of-the-art
algorithm, namely RIP (Routing Information Protocol).

RIP is an instance of distance vector algorithm and still
being widely used in Internet networks (Steenstrup
1995). In Figure 6, results obtained from both RIP and
ecological approach are presented together. As mentioned
earlier, average packet delay and throughput are major
performance criteria for evaluation.

In Figure 6, it can be shown that ecological approach
shows better throughput than RIP. After a short time (~
200 msec), the throughput reaches steady values and
remains constant to the end of the simulation. This means
load balancing is achieved successfully.

Average packet delay values are almost same, 9 msec
(see Figure 7). However, bees approach’s packet delay
remains low up to 0.5 msec and later has greater values
than RIP. The reason is that probabilistic routing
forwards the packets alternative routes for load
balancing, while RIP selects shortest paths. But,
ecological approach has better load balancing and lower
packet loss ratio.

Figure 6: Throughput comparison of different algorithms

Figure 7: Average packet delay comparison

Performance of the framework on increased
scalability and connectivity

In our experiments, one of the key independent variables
was the degree of connectivity and scalability. In order to
examine the scalability aspect of our approach, we
developed various networks ranging from 29 to 3520
components (see Table 1). These models were executed
with acceptable performance in the DEVSJAVA
environment. The largest network took less than three
hours on a 2.4 GHz processor and 512MB RAM while
the simple one took a few minutes.

Table 1: Large-scale network models

Network Number of component Number of
colonies

NET 1 116 4
NET 2 319 11
NET 3 960 87
NET 4 3520 125

Figure 8: Convergence time of networks with different
scales

Figure 9: Packet loss ratio of networks with different
scales

As shown in Figure 8, larger models exhibited lower than
expected time for convergence. This is partially due to
the DEVS discrete event modelling paradigm and its
implementation in DEVSJAVA. The maximum number
of components is partially due to the platform used for
executing the simulations. Packet loss ratio gradually
increases with the increase in the number of components.

0

20
0

40
0

60
0

80
0

100
0

120
0

0

0.
2

0.
4

0.
6

0.
8

1
Time
(sec)

RIP BEES

Th
ro

ug
hp

ut
 (p

ac
ke

t/s
ec

)

116

319

28

960
3520

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000
Number of components

C
on

ve
rg

en
ce

 ti
m

e
(m

se
c)

0

0.028

0.097

0.1675

0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000 2500 3000 3500

Number of components

Pa
ck

et
 lo

ss
 ra

tio
 (%

)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

0 0.2 0.4 0.6 0.8 1

Time (sec.)
RIP BEES

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (s
ec

)

However, packet loss remains acceptable even for large-
scale networks (see Figure 9).

7. CONCLUSIONS

This paper proposed a discrete-event modelling approach
for networks. The models are devised based on
biologically-inspired routing mechanisms to tackle the
scalability aspect of large-scale networks. The approach
and its implementation are promising for handling
models composed of hundreds to thousands of
components. The routing strategy, which is based on the
behaviour of beehives, is robust and exhibits similar or
better performance compared to the contemporary
routing RIP technique. This research suggests the
proposed modelling approach can be used for the design
and development of robust and scalable network systems.

Acknowledgement

This research is partially supported by NSF grant
Scaleable Enterprise System (DMI-0122227).

REFERENCES

Abadi, M. and L. Cardelli. 1996. A Theory of Objects.
Springer.

ACIMS. Arizona Center for Integrative Modeling and
Simulation. 2004. http://www.acims.arizona.edu/
SOFTWARE/software.shtml

Anderson, C. 2001. “The adaptive value of inactive
foragers and the scout-recruit system in honey bee
(Apis mellifera) colonies”. Behavioral Ecology. 12,
No. 1, p. 111-119.

Chow, A.C.-H. 1996. “Parallel DEVS: A Parallel,
Hierarchical, Modular Modeling Formalism and its
Distributed Simulator”, Transactions of the Society
for Computer Simulation International, 13, No. 2,
p.55-67.

Dijkstra, E.W. 1959. “A Note on Two Problems in
Connexion with Graphs”. Numerische Mathematik
Vol. 1.

Hayzelden, A. and J. Bigham. 1998. “Heterogeneous
Multi-Agent Architecture for ATM Virtual Path
Network Resource Configuration”, Proceedings of
Intelligent Agents for Telecommunications
Applications, Springer Verlag. 45-59.

Lunceford, W.H. and E.H. Page. 2002. Editors.
International Conference on Grand Challenges for
Modeling and Simulation, San Antonio, Texas, USA.

Mesarovic, M.D. and Y. Takahara. 1989. Abstract
Systems Theory. Springer Verlag.

Minar N., Gray M., Roup O., Krikorian R., and Maes P.
1999. “Hive: Distributed Agents for Networking
Things”, First Int'l Symp. Agent Systems and
Applications and Third Int'l Symp. Mobile Agents.
IEEE Computer Soc. Press.

Sarjoughian, H.S. and R. Singh. 2004. “Building
Simulation Modeling Environments Using Systems
Theory and Software Architecture Principles”,
Proceedings of the Advanced Simulation Technology
Conference, 99-104, Washington DC (April).

Seely, T.D. 1995. The Wisdom of the Hive. Cambridge,
Mass: Harvard University Press.

Steenstrup, M. E. (Ed.). 1995. Routing in
Communications Network. Prentice-Hall.

Uhrmacher, A.M., P. Fishwick, and B.P. Zeigler. 2001,
Agents in Modeling and Simulation: Exploring the
Metaphor (eds.). IEEE Proceedings.

Wooldridge, M. and N.R. Jennings. 1995. Intelligent
Agents: Theory and Practice. The Knowledge
Engineering Review, 10, No. 2. 115-152.

Wymore, W.A. 1993. Model-based Systems Engineering:
An Introduction to the Mathematical Theory of
Discrete Systems and to the Tricotyledon Theory of
System Design, Boca Raton, CRC.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Second Edition Academic Press.

AUTHORS BIOGRAPHIES

AHMET ZENGIN is a PhD candidate at Sakarya
University, Turkey. His experience with modelling and
simulation includes a one-year-stay in ACIMS Lab at the
Arizona State University. His research topics include
DEVS theory, multi-formalism modelling, parallel and
distributed simulation, modelling and simulation of large-
scale networks, distributed systems management,
biologically-inspired optimisation schemes. His main
research interest lies in parallel and distributed simulation
and the High Level Architecture.

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science and Engineering at Arizona State
University, Tempe. His research includes modeling
theory, collaborative modeling, distributed co-design,
intelligent agents, and software architecture. His
industrial experience has been with Honeywell and IBM.
Visit <http://www.eas.asu.edu/~hsarjou/index.htm>
and <http://www.acims.arizona.edu> for more
information.

HUSEYIN EKIZ is received M.S., and Ph.D. degrees in
computer science engineering in 1995 and 1998,
respectively, all from the University of Sussex, England.
He is currently a Professor of computer systems
education and a Dean of the Technical Education Faculty
at Sakarya University, Turkey. His research interests are
in the fields of network systems, distance education,
digital circuit and IC design with VHDL and
microprocessor architectures.

