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ABSTRACT 

The simulation study of networks remains attractive due 
to desire to achieve better important traits such as 
scalability and performance. This paper describes a 
biologically inspired discrete-event modelling approach 
for simulating networks. It introduces a synergistic 
modelling approach by incorporating key attributes of 
honeybees and their societal properties into a set of 
simulation models described in the Discrete Event 
System Specification. We describe our approach with 
particular emphasize on how to model the behaviour of 
the honeybees and their cooperation as discrete event 
models. The simulation models and their experimental 
results are presented and discussed. 

1. INTRODUCTION 

The study of complex networked systems especially 
those that are large-scale are attractive for a variety of 
reasons such as the analysis and design of transportation 
systems, supply networks, management of social and 
ecological systems. Systems that are composed of 
components share common characteristics such as 
hierarchy, alternative configurations, patterns of 
interactions due to varying types of components and 
behaviour. To model such systems, one can employ a 
variety of methods to characterize structure and 
behaviour – e.g., we can use communicating processes or 
event systems as the basis for modelling components and 
their interactions. More specifically, from simulation 
point of view, we may use discrete event, differential 
equations, or cellular automata to describe behaviour of 
networks.  

Some modelling techniques, not only can be developed 
based on artificial computational models such as Von 
Neumann, but also on natural phenomena such as Ants 
societies. One of the advantages of complementing 
artificial models of computation with their natural 
counterparts is that we can have a rich laboratory to 
develop models that can be experimented with. For 
example, developing biologically inspired models such as 
Honeybee enjoy from ample scientific and experimental 

studies developed based on studying details of the 
honeybees and their colonies. The knowledge about how 
honeybees behave and interact offers key insights as how 
to model inherent complexity of networked systems. 
Armed with simple yet subtle emerging behaviour of 
honeybees we may be able to develop models of complex 
large-scale network systems that can offer desirable 
performance and scalability qualities (Lunceford and 
Page 2002). 

In the remainder of the paper, we will review Honeybee 
(Seeley 1995) and DEVS modelling techniques (Zeigler 
et al. 2000). Based on a general model of Honeybee 
society, we describe our approach to network modelling 
where artificial and natural computational models are 
combined. We then present network model specifications 
using DEVSJAVA (ACIMS 2004) and associated 
algorithms followed by describing simulation results and 
conclusions. 

2. BACKGROUND 

There exist many modelling approaches founded on 
systems theory (e.g., Mesarovic and Takahara 1989), 
agent theory (e.g., Wooldridge and Jennings 1995), and 
object theory (e.g., Abadi and Cardelli 1996) to 
characterize network systems such as computer networks 
and natural societies such as honeybees and ants.  

Discrete Event System Specification 

Discrete event systems can be described using the 
Discrete Event Systems Specification (DEVS) formalism 
(Zeigler et al. 2000) where model behaviour is 
characterized as events and their processing. This 
modelling approach supports hierarchical modular model 
construction, distributed execution, and therefore affords 
a basis to characterize complex, large-scale systems using 
formulation of components (atomic and coupled models) 
and their interactions. Atomic models characterize 
structure and behaviour of individual components via 
inputs, outputs, states and functions. The internal, 
external, confluent, output and time advance functions 
define a component’s behaviour over time. Internal and 
external transition functions describe autonomous 
behaviour and response to external stimuli, respectively. 
Confluent transition function is used to account for 
concurrent occurrences of internal and external transition 



 

functions. Time advance function represents passage of 
time. Output function is used to generate outputs. Atomic 
models can be coupled together in a well-defined manner 
to form more complex models.  

A coupled model specifies constructs for composing 
modular models into hierarchical structures. Behaviour of 
a coupled model is defined by its constituent atomic 
(and/or coupled) models. With closure under coupling 
feature of DEVS, coupled models can be used as atomic 
models in a larger model. Coupled models can be 
constructed systematically using the concepts of ports 
and couplings. When a component sends messages via its 
output ports, the couplings relay the messages to their 
designated input ports (Wymore 1993). Upon receipt of 
messages by atomic models, they immediately process 
these messages which may result in new states and 
generation of outputs.   

Parallel DEVS is capable of processing multiple input 
events and provides local control for handling of 
simultaneous internal and external events. DEVS atomic 
and coupled models have computational counterparts 
which may be executed in parallel manner using software 
engineering concepts (Sarjoughian and Singh 2004). 
DEVSJAVA is an implementation of the DEVS 
formalism and its associated simulation protocol (ACIMS 
2004). There exist various implementations of the 
discrete event system specification approach based on 
single and multiprocessor environments. Parallel and 
distributed environments have been developed using 
technologies such as HLA (ACIMS 2004).  

Agents 

Agent based approaches are being widely used in 
distributed network applications. This research area is 
one of the most attractive and rapidly evolving software 
technologies of the last decades. A software agent 
concept has emerged from a specialized class of 
distributed artificial intelligence and is used to describe 
the concept of a software entity that automates some of 
the tasks (Hayzelden and Bigham 1998). Software agents 
can be defined as autonomous, proactive and reactive 
computational entities that can exhibit the ability to learn, 
cooperate and move. To make use of software agents in 
network management applications, agents must be able to 
migrate from node to node in network. Furthermore, 
agents must be able to create new agents, delete 
themselves, and determine their interaction with their 
environment (e.g., Uhrmacher et al. 2001).  

Agent-based solutions are suitable for management of 
distributed systems since they are inherently distributed 
and decentralized (Minar et al. 1999). Decentralization is 
an efficient way to overcome scalability issues. Network 
systems are dynamic and highly unpredictable systems 
and therefore their control and monitoring cannot be 
readily centralized. 

Honeybees 

Biologically inspired modelling approaches have 
imported some metaphors from biological systems to 
engineering systems to develop network management 
frameworks. Particularly distributed, parallel, robustness 
and fault tolerant nature of some social insects (ants, 
bees, and termites) have been a source of inspiration for 
researchers due to their desirable distributed 
characteristics. Insect societies have advanced 
mechanisms to maintain colony level survivability 
against environment conditions. For example, because 
nectar availability can change rapidly and unpredictably, 
honeybees are able to cope with such problems and scale 
themselves to huge number of population (Seeley 1995). 
Honeybees have sophisticated regulation mechanisms to 
adapt their capacities against fluctuating and ephemeral 
resources.  

Foraging behaviour in honeybees is a good example to 
investigate social insect metaphors such as self-
organization. Honeybees collectively decide selection of 
nectar and pollen resources and allocation of workers 
among them through self-organization. This selection and 
allocation of processes among honeybees in their hive is 
performed by absence of any central authority. In a 
decentralized and concurrent way, each bee obeys a set of 
simple rules based on some metrics (e.g., nectar 
concentration, location of the source, and travel time to 
the food source). All of the metrics including parameters 
such as the number of bees responsible for storing food in 
the hive determine profitability of a nectar source. If 
colony encounters more than one source of nectar, 
highest profitable source is preferred by foragers relative 
to other sources with less profitability. Foragers are 
distributed among nectar sources using profitability 
criterion during the course of nectar collecting process. If 
nectar amount in a certain source changes, then whole 
colony changes its concerns to that source. Furthermore, 
the colony deploys certain portion of foragers for 
searching nectar, namely scouts. Rich sources are found 
by scouts and nectar availability in environments is 
monitored by them (Anderson 2001). This assignment of 
foragers to sources according to profitability is called 
scout-recruit system in honeybees. One of the most well-
known mathematical models was developed by Seeley 
and documented in his Book (Seeley 1995). 

3. NETWORK MODELLING APPROACH 

In order to model a distributed networked system, we 
have defined a set of network component models called 
nodes which communicate with one another via links (see 
Figures 1 and 4). Using node and link capacity 
assignments, we can develop a variety of complex 
network configurations. The node and link models are 
defined as the DEVS atomic components. Other network 
elements such as packets and scouts are also represented 
as DEVS models. With this approach, a network model 
exhibits agent-like behaviour and thus supports 
decentralized control. 
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Figure 1: Design of a network node 

To realize simulation experiments we utilize the concept 
of experimental frame where the conditions under which 
a model can be experimented with and observed are 
defined. For this work, a typical experimental frame 
consists of generator and transducer atomic models. We 
employ generator in order to create network traffic and to 
schedule special events such as unavailability of links or 
nodes. To realize this, a generator model sends messages 
(see Section 4) to all the appropriate components in the 
network.  

Atomic and coupled models are represented using the 
parallel DEVS formalism and developed within the 
DEVSJAVA modelling and simulation environment. In 
this approach, the dynamics specified within the nodes 
and links can be used to determine the behaviour (e.g., 
throughput time) of the network model.  

4. NETWORK MODEL DESIGN  

In order for modelling a distributed networked system, 
we have defined a set of basic network simulation model 
components including nodes and links as detailed next. 
By coupling these model components in DEVSJAVA, we 
can develop a variety of network configurations and 
study network characteristics. Since it is assumed that 
only nodes and links of a network are able to cause 
bottleneck, they are modelled as atomic models and only 
their states as well as input and output variables are of 
interest. Other network components such as packets and 
routing tables are realised as stateless entities. Network 
itself is a coupled model. Defined dynamics in node and 
link atomic models determine the behaviour of network 
coupled model. All atomic models in our implementation 
are modelled and defined using the Parallel DEVS 
formalism (Chow 1996) and realisation in Java (ACIMS 
2004). 

Node  

Each node in the network represents a switching unit 
where it is able to process packets that are described 
below. Due to a node can be considered as a router. With 
simple changes, a node can represent other network 
elements such as hub. Nodes are connected to other 

nodes called neighbours via links. To determine the 
behaviour of a node, we use two parameters: packet 
process speed which directly influences processing time 
of a node, and queue in which incoming and outgoing 
packets are stored. By toggling these capacities, different 
kinds of bottlenecks in the network can be modelled.  

As shown in Figure 1, one of the main parts of our nodal 
structure is the Network Interface. It provides the 
fundamental internetworking services such as packet 
exchanging with neighbouring nodes. Routing Module 
reflects node’s routing capability and simple intelligence. 
At each node, packets are forwarded to their destination 
nodes by routing module. A routing module includes a 
local routing table for local network as well as a global 
routing table which can be used to manage the routing 
between the local network and other parts of the global 
network. Global routing table fragments the entire 
network into manageable sizes and therefore it is possible 
to investigate Internet-like (large-scale) networks. These 
routing tables reflect state of the network and have 
resemblance with distance vectors. Also, we have 
equipped our node model with the beehive to implement 
and test swarm-based routing algorithms. In our swarm 
application, beehive launches scouts or other kind of 
entities to monitor the network and to reconfigure 
network resources.  

Link  

All links are communication channels and therefore are 
viewed as pipes which are characterized with bandwidth 
(bits/sec) and transmission or propagation delay specified 
in milliseconds. Each link has a corresponding buffer 
with finite capacity. The packets that arrive are placed in 
the buffer and are transmitted to the next node using first-
in first-out (FIFO) strategy. Links are modelled as 
bidirectional, thus supporting concurrent bidirectional 
interactions. Links are able to carry traffic of a certain 
bandwidth up to the total capacity of the link. Each link 
atomic model has input and output ports for connecting 
two nodes in a duplex manner (see for example Link1 
atomic model in Figure 4).  

Data Packets 

All packets that are exchanged among components in the 
form of DEVS messages can be distinguished as data and 
control packets. Data packets are basic IP packets which 
carry information such as id and precedence (see Figure 
2). Control packets allow the node to obtain whole 
network view and to measure the traffic. For example, 
they are Routing Information Protocol packets in our 
distance vector application, while they may be 
cooperative scouts or ants in swarm based routing. 
Packets traverse intermediate nodes to go to their 
destination. As depicted in Figure 2, all packets have a 
priority field which is used for handling them in some 
way. For example, while control packets and scouts have 
high priority, data packets have low priority. The data 
packets, therefore, are queued and served in FIFO setting. 
Besides handling data packets in FIFO manner, control 



 

packets have higher priority ranging to 7 by which their 
queuing order is determined. Packets can be discarded 
upon arriving at a node because of lack of queue space or 
expired time to live which limits hop count. In addition, 
when a packet traverses across a link, if there is no 
available bandwidth on the link, the packet is lost or 
dropped.  

In our implementation, no arrival acknowledgement or 
error notification packets are generated back to the source 
of the packet. Instead, a simple flow control mechanism 
is devised and implemented. The reason is that we focus 
on routing algorithms by minimizing the number of 
interacting components. Passing a packet within a link 
suffers a delay that can be viewed as transmission delay. 
Packets may also be subject to the FIFO delay.  

 

id 

Source Address 

Destination Address 

ttl length 

tabu list 

Data 
110100011010010010101
010001010101011111010 

Protocol Header 

Precedence (0…7) 

 

Figure 2: A data packet model with a protocol header 

As shown in the Figure 2, we have modelled a packet 
type with the following fields: source address, 
destination address, source hop address, destination hop 
address, packet id, precedence, total length, tabu list, 
TTL (time to live) and data. All these fields excluding 
data constitute protocol header and are 20 bytes in our 
model. Data size can vary across applications. Packet id 
characterizes the packet. In order to avoid a packet to 
travel around the network for a long time, we restrict the 
packet with specific hop count, namely TTL value. Total 
size of packet is stored in the length field of a packet. 
Packet storing sequence in queue is determined by 
precedence value ranging from the lowest priority 0 to 
the highest priority 7. Tabu list allows us to keep track of 
visited nodes. Source and destination address fields 
denote packet’s origin and final node’s IP addresses. Data 
field is simply used to contain data object. 

Routing Table 

By equipping each node model with a routing table, data 
packets can be systematically routed through the 
network. The Java implementation of the routing table 
consists of a collection of Route objects where each is an 
instance variable of the routing module class (see Figure 

1). When a node needs to send a packet to a given 
destination, decisions about which outgoing link (i.e., 
DEVS atomic output port) to be used are made by means 
of the information specified in its routing table.  

Each node has a routing table for every possible 
destination in the network, and each table has an entry for 
every neighbour (see Figure 3). According to the routing 
algorithm, these routing tables are constructed previously 
(in static algorithms), dynamically adapted to network 
load state (in dynamic algorithms) or based on node’s 
(insect’s) selection probabilities of the next node to its 
destination – e.g., using swarm based algorithms. The 
routing tables are initialised at the simulation start up 
with routes to directly linked interfaces of cost 1. Routing 
table can be imagined as a matrix in which rows 
correspond to destinations and columns to neighbours. 
During simulation execution new entries may be added to 
table or current entries may be removed or adjusted 
according to network traffic. All the values of the entries 
in the routing table range between 0 and 1, a probabilistic 
value. We called these entries as profitability values 
through which most profitable routes can be chosen.  

Generator and Transducer Models 

In order to experiment with the above network model, it 
is necessary to model user traffic. To make realisations of 
network traffic and examine specific scenarios, the 
experimental frame concept and its DEVSJAVA 
realisation are employed. In our implementation, a typical 
experimental frame consists of an event generator and 
event transducer. The generator generates packets with 
fixed time intervals by randomly choosing source and 
destination addresses. As mentioned earlier, generator 
also can create and schedule specific events in the 
network such as link down and node congestion events. 
The transducer observes and analyses the network 
outputs, and stores these results in trace files. Transducer 
simply converts data to information which is meaningful 
for us.  

Coupled Simulation Models 

We have developed a discrete event simulation model for 
networks with varying topologies and structures. As 
mentioned above, the developed framework is capable of 
representing the behaviour of different routing algorithms 
(e.g. shortest-path, distance vector and various swarm 
algorithms). Hence, the approach serves as a framework 
to test and evaluate alternative network configurations. 
By using basic components and tools which have been 
described above, networks can be built by coupling node 
and link atomic models in DEVSJAVA simulation 
viewer (see Figure 4). Furthermore, by coupling these 
coupled networks, increasingly larger networks can be 
systematically developed and experimented with.  

 



 

 

Figure 3: An example of a routing table 

 

Figure 4: Synthesis of a network model 

Some applications have been created in DEVSJAVA to 
simulate routing algorithms over some network traffic 
patterns. In our experiments, we have used a simple 
packet switched network and a set of large-scale 
networks with increased complexity and connectivity. 
These networks hereafter are referred to as the simple and 
complex networks, respectively. They have been 
designed for testing the model design as well as testing 
the framework itself (e.g., scalability). The simple 
network would be sufficient for initial testing of whether 
routing tables are updated correctly and whether, when 
links go down or come alive, routing tables are correctly 
updated. Large-scale and complex networks are used for 
uncovering dynamics and performance measurements of 
the models in the DEVSJAVA environment. 

Scaling Coupled Models 

To support scalability, we employed and implemented a 
clustering approach. Clustering provides manageable 
network sizes by abstracting a subnet to single node in a 
higher level network. By considering a coupled model as 
an atomic model, DEVS coupled model concept has a 
resemblance with clustering. There exists a hierarchy of 
networks within the total of all nodes and routers. Each 
coupled model has a number of border nodes which are 

used for connecting it to other coupled networks. In our 
approach, clustering is done in addressing level of nodes. 

Hierarchical and modular structure of DEVS formalism 
facilitates implementation of clustering approach. Border 
nodes have an additional routing table consisting of the 
cluster names. This approach substantially decreases the 
information stored in routers.  

5. CREATING HONEYBEE INSPIRED NETWORK 
MODELS 

To show the capability (applicability) of the modelling 
approach, first we started with well-known routing 
algorithms. We have implemented static link state 
algorithm (Dijkstra 1959) to initialize network and 
distance vector to calculate distances between nodes.  In 
the implementations of these algorithms, we used hop 
number as a metric, but other metrics such as available 
link bandwidth may also be used.  

As pointed out earlier, our biologically inspired approach 
was derived based on honeybees and their interactions. 
For example, the movement of packets (artificial bees) 
can be used to balance network loads. Focused on 
biological inspired load balancing mechanism is 
analogous to honeybee scout-recruit system. In honeybee 
colonies, a colony deploys certain portion of its foragers 
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for searching nectar, namely scouts. Scouts find rich 
nectar sources and monitor their availability. If colony 
finds additional sources of nectar, the highest profitable 
source is preferred by foragers relative to other sources 
with less profitability. Foragers are distributed among 
nectar sources using profitability criterion during the 
course of nectar collecting process.  

We have developed a set of models which are capable of 
exhibiting an ensemble of scouts controlling congestion 
in a distributed environment. In our implementation, 
analogous to honeybee scout-recruit system, each 
network node is a beehive. Network corresponds to the 
world of honeybees who seek rich nectar sources, finding 
paths with higher capacity to profitable nectar sources, 
light-weight scout entities searching for nectar, and 
control packets foraging for information to aid survival of 
the network (honeybee colonies). Each hive deploys a 
number of scouts to find the most profitable paths for a 
given destination. Each router then uses the information 
received from all the nodes in the network obtained by its 
scouts to calculate the shortest path to each destination in 
terms of a chosen metric. Scouts control congestion by 
making alterations to routing tables in order to route new 
traffic away from congested nodes. Then, packets are 
dispatched from a source to a destination according to 
information gathered by scouts.  

The developed approach offers some useful properties 
such as probabilistic routing, optimal system performance 
by tuning parameters, event-driven updates based on 
network flow, low convergence time, low control packet 
traffic and scalability via clustering which reduces 
routing information stored in a node’s memory. Social 
insect inspired approaches bring a probabilistic routing 
method to network routing domain, therefore we use 
probabilistic cost values in order to represent source 
profitability. The cost metric can be based on the 
bandwidth of the link or can be dynamically measured as 
in the case of delay or load.  

The routing table is then updated with the new 
information. In the networks we have experimented with, 
initially no apriori knowledge is known about the routes. 
All routes were computed in parallel during initialization 
phase. Each route determined for a given destination 
node based on the Dijkstra shortest path about the 
minimum hop. When an event occurs, such as a link 
going down or a node failing, then routing scheme has to 
be able to handle the situation. An event-driven update is 
selected for routing information update in response to 
changes that are detected. The use of event-driven 
updates rapidly disseminates the data about the failed 
route, which reduces the change for growing data and 
route loops to occur. By doing so, the entire procedure 
can be completed in a less time than periodical updates.  

6. SIMULATION RESULTS & DISCUSSION 

In order to compute the performance of the routing 
approach, we developed a set of models and 
experimented with them. Using node and link models 

defined above, various network topologies can be 
formed. Then, developed network models are run under 
traffic load by using experimental frame model. The 
simplest network modelled has 11 nodes and 18 
bidirectional links (see Figure 5), while larger models has 
up to 3520 components.  

Each node in the network is represented a routing table 
storing the neighbouring node to which traffic should be 
routed. Each simulation run consisted of an adaptation to 
topology (initialisation phase) and test period. During the 
initialisation phase, system runs without load and initial 
routing tables are formed according to the number of 
hops (shortest path estimation). During the test period we 
measured and recorded the network performance in terms 
of average packet delay, throughput, convergence time 
and packet loss ratio.  
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Figure 5: A simple network 

Node and Link parameters 

All nodes are designed as routers and each one has own 
interface(s) equal to their neighbours. Nodes have the 
same buffer size (1Mbit) but have different IP addresses. 
Moreover, node packet’s processing time is selected as 1 
msec.  

Links are bidirectional and their bandwidths range 
between 1.5 to 6 mbps with propagation delays ranging 
between 1 to 5 msec. 

Traffic model 

Traffic flows in the network are simulated by a traffic 
generator model component. This model generates data 
packets which are then periodically sent out to the 
network using uniformly randomly selected source and 
destination nodes. We observe network for one second 
(see Figure 7).  Generator sends 1000 packets to the 
network in course of one second which packet sizes 
varying from 10 bytes to 100 Kbytes.  

We used two standard performance metrics: throughput 
and packet delay. We avoid generation of packets with 
the same source and destination. The amount of network 
traffic is determined by the number of packets in the 
network. Generally, many packets must wait in limited 
capacity FIFO queue for processing at the nodes. 

We compare our approach with a state-of-the-art 
algorithm, namely RIP (Routing Information Protocol). 



 

RIP is an instance of distance vector algorithm and still 
being widely used in Internet networks (Steenstrup 
1995). In Figure 6, results obtained from both RIP and 
ecological approach are presented together. As mentioned 
earlier, average packet delay and throughput are major 
performance criteria for evaluation.  

In Figure 6, it can be shown that ecological approach 
shows better throughput than RIP.  After a short time (~ 
200 msec), the throughput reaches steady values and 
remains constant to the end of the simulation. This means 
load balancing is achieved successfully.  

Average packet delay values are almost same, 9 msec 
(see Figure 7). However, bees approach’s packet delay 
remains low up to 0.5 msec and later has greater values 
than RIP. The reason is that probabilistic routing 
forwards the packets alternative routes for load 
balancing, while RIP selects shortest paths. But, 
ecological approach has better load balancing and lower 
packet loss ratio.  

 

 

 

 

 

 

 

 

Figure 6: Throughput comparison of different algorithms 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Average packet delay comparison 
 

Performance of the framework on increased 
scalability and connectivity 

In our experiments, one of the key independent variables 
was the degree of connectivity and scalability. In order to 
examine the scalability aspect of our approach, we 
developed various networks ranging from 29 to 3520 
components (see Table 1). These models were executed 
with acceptable performance in the DEVSJAVA 
environment. The largest network took less than three 
hours on a 2.4 GHz processor and 512MB RAM while 
the simple one took a few minutes.  

Table 1: Large-scale network models 

Network Number of component Number of 
colonies 

NET 1 116 4 
NET 2 319 11 
NET 3 960 87 
NET 4 3520 125 

 

 

 

 

 

 

 

Figure 8: Convergence time of networks with different 
scales 

 

 

 

 

 

 

 

Figure 9: Packet loss ratio of networks with different 
scales 

As shown in Figure 8, larger models exhibited lower than 
expected time for convergence. This is partially due to 
the DEVS discrete event modelling paradigm and its 
implementation in DEVSJAVA. The maximum number 
of components is partially due to the platform used for 
executing the simulations. Packet loss ratio gradually 
increases with the increase in the number of components. 
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However, packet loss remains acceptable even for large-
scale networks (see Figure 9).  

7. CONCLUSIONS  

This paper proposed a discrete-event modelling approach 
for networks. The models are devised based on 
biologically-inspired routing mechanisms to tackle the 
scalability aspect of large-scale networks. The approach 
and its implementation are promising for handling 
models composed of hundreds to thousands of 
components. The routing strategy, which is based on the 
behaviour of beehives, is robust and exhibits similar or 
better performance compared to the contemporary 
routing RIP technique. This research suggests the 
proposed modelling approach can be used for the design 
and development of robust and scalable network systems.  
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