BEHAVIORAL MODEL SPECIFICATION TOWARDS SIMULATION VALIDA
USING RELATIONAL DATABASES
by

Shridhar Bendre

A Thesis Presented in Partial Ful llment
of the Requirements for the Degree
Master of Science

ARIZONA STATE UNIVERSITY

December 2004

TION

BEHAVIORAL MODEL SPECIFICATION TOWARDS SIMULATION VALIDA TION

USING RELATIONAL DATABASES

by

Shridhar Bendre

has been approved

November 2004

APPROVED:

. Chair

Supervisory Committee

ACCEPTED:

Department Chair

Dean, Division of Graduate Studies

ABSTRACT

Many contemporary systems that are inherently large-scaleand complex can be
speci ed using system-theoretic and object-oriented modkng concepts and principles. To
examine these systems via simulation and in particular in tems of model validation, it is
important to use model repositories. The structure and behaior of dynamical systems can
be represented as atomic models having inputs, outputs, stas, and functions. Scalable
System Entity Structure Modeler with Complexity Measures (SESM/CM) o ers a basis
for developing modular atomic and composite simulation moels as well as non-simulatable
models. It allows simulation models to be stored, retrieved and managed in relational
databases. The environment, however, does not provide capdities for characterizing and
storing behavioral aspects of models or their transformatbn for simulation execution.

This thesis describes a design and implementation for capting some behavioral
aspects of atomic models and the transformation of the modslcaptured in SESM/CM into
their compatible simulatable formats in DEVSJAVA a simulat ion environment capable of
executing discrete-event models. The combined modeling ahsimulation capability o ers a
process where users can develop models in the extended SESBM modeling environment
and validate their behavior using the DEVSJAVA simulation e nvironment. The proposed
extensions to the SESM/CM are demonstrated using a simulatd anti-virus computer net-

work model.

To

My Wife, My Grandmother and My Parents

ACKNOWLEDGMENTS
| wish to express sincere appreciation to my advisor Profess Hessam S. Sarjouhian,
for his time to time advice, enthusiastic support and encouagement that made the com-
pletion of this thesis possible. | would also like to thank Pofessors James Collofello and

Hasan Davulcu for serving on my thesis comittee.

TABLE OF CONTENTS

Page

LIST OF TABLES : : : @0 o s s sy sy X
LIST OF FIGURES : : @ : o o s s s sy s sy Xi
CHAPTER 1 INTRODUCTION S 1
1. Simulation and Validation of Component Based Models 2
1.1. Rationale for Dynamic Characterization of Atomic Model Components 3
2. Approachand Goals 4

3. Contributions e e 6
4. Thesis OVEIVIEW 8
CHAPTER 2 BACKGROUND @ @ noos s sy ss sy sy 10
1. Scalable System Entity Structure Modeler (SESM) 10
1.1. System Entity Structure (SES) Formalism 10

1.2. SESM Architecture 11
1.3. SESM User Interface e 12

2. Databases as Model Repositories 0., 14

3. Related Research and Environments 15
31. Modeling 15

3.2. Simulation e 17

4. Motivation e e, 21

CHAPTER 3 SESM SYSTEM ARCHITECTURE WITH SUPPORT FOR BEHAV-

IORAL MODELING ;@ ;oo s s sy s 23

Vi

Chapter

1. Modeling Environment
1.1. Modeling Approach

2. Approach for Behavioral Specication
2.1. Representation of an Atomic Model
2.2. Representation of Non-Simulatable Models(NSM)

2.3. Generation of Simulation Models

CHAPTER 4 BEHAVIORAL SPECIFICATION OF MODELS IN SESM

1. SESM/CM Design Overview

2. Database Schema Design for Atomic Model Dynamics
21. Requirements e
22. ERExtensions
2.3. Entities in extended SESM E - Rdiagram
2.4. Relationships in extended SESM E - R diagram
2.5. Extended SESM Relational Database Schema
2.6. Additional constraints
2.7. Extended SESM Transactions

3. SESM Server Design Extensions
31. dbmspackage
3.2. dbAccesspackage.
3.3. sesmNetpackage

4. SESM Client Design Extensions

Vii

Page

Chapter Page

CHAPTER 5 USER INTERFACEDESIGN ::::::::oroorririr0 85
1. ClientGUI Analysis i e 85
1.1. Model Tree Structure Extension 85

1.2. Model Components Extension 8

1.3. Command Menu Extension 87

2. GUI Design Extension e B
3. Model Transformation Design 99
3.1. tranformation.xmlpackage 101

3.2. tranformation.java package 105

4. Re-factoring SESM Client/Server Communication 107
4.1. Communication Design 109
CHAPTER 6 IMPLEMENTATION AND DEMONSTRATION O B 2
1. Approach And TooIs 112
1.1. Meta-Modeling e 112

1.2. Apache Ant e e e 114

1.3. Implementation Details 114

2. Anti-Virus Model Example 115
2.1. ExperimentScenario 16

2.2. Experiment Analysis e 17

3. Simulation Experiments 121
4. Simulation Results 126

viii

Chapter Page

CHAPTER 7 CONCLUSION AND FUTURE RESEARCH : ::::::: 1 130
1. Conclusion 130

2. FRuture Research 12
2.1. Computation of Additional Metrics 132

2.2. Support for storage of State Transition of Atomic Modek 133

2.3. Transformation of State Transition to Functions 133

2.4. Transformation from Simulatable Model to Database Mocel 133

2.5. User Interface Enhancements 134
REFERENCES @ : ::: ooy ooy rrrrrrrorrrnr 135

Table

10.

11.

LIST OF TABLES

Page
SESM Entities and Relationships 38
Relational Database Schema Speci cation for portVarialle Table 41
Relational Database Schema Speci cation for stateVaridle Table 42
Relational Database Schema Speci cation for NSMTemplag Table 42
Input, output and state variables of models in the experirent 123
Simulation setup Parameter 124
Simulation Experiments Set 1 125
Simulation Experiments Set2a, 125
Simulation Experiments Set2b oL 125
Simulation Experiments Set3 126
Simulation Experiments Set4 0o 126

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

LIST OF FIGURES

Page
SESM Client-Server Architecture 12
SESM Modeling Environment Graphical User Interface 13
DEVSJAVA Simulation Environment Graphical User Interface 19
Modeling and Simulation Relations 24
Modeling Framework e 5
SESM/CM Model Types 26
Metrics Consistency and Uniformity 28
Extension of Behavioral Features of SESM 29
Transformation of SESM models to XML and DEVSJAVA Models 31
SESM System Components Overview Diagram 33
Extended SESM E-R Diagram, I
Add Transaction Use Case Diagram 47
Delete Transaction Use Case Diagram 51
Modify Transaction Use Case Diagram 56
Export Transaction Use Case Diagram 60
View Transactions Use Case Diagram 62
SESM Server Interaction Diagram Lo 66
SESM Server Use Case Diagram 67
SESM Server Component Diagram 68
SESM Server Sequence Diagram : Add State Variable Operan 82
SESM Client interaction diagram 84
Non-Simulatable Model Tree and View 86

Xi

Figure

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,

45.

Model Visualization Enhancements
Relationship between Formalism, Database and GUI
Model Menu for an Atomic model,
Model Menu for a. Adding, b. Deleting, c. Modifying Input Port Variable .
Interface for a. Adding b. Deleting c. Modifying Input Port Variable
Interface for Selecting the NSMas a Variable
Interface for a. Modifying b. Deleting Port of amodel
Interface for a. Modifying b. Deleting Component of amoal
Menu for Model Export e
Menu for Source Code View
Model Viewing GUI for XML Model
Model Viewing GUI for Java Model
Behavioral Information of Model
semUl.menu.subMenu Class Diagram
semUl.panel Class Diagram
Client Sequence Diagram : Add State Variable Operation
transformation.xml.xmlFormatter Class Diagram
transformation.xml.metaDevsXml Class Diagram
transformation.java.javaFormatter Class Diagram
transformation.java.metaDevsJava Class Diagram
Communication between SESM components
Publisher-Subscriber Pattern,

a. Processor and b. AntiVirus Model

Xii

Page

Figure

46.

47.
48.
49.
50.
51.
52.
53.
54,

55.

Page

a. Atomic Models a. Processor, b. AntiVirus, c. GenrMsg,d. GenrVirus, e.

TransdSN 119
WorkStation Model 120
SimpleNetwork Model 120
Experimental Frame Model, 121
AntiVirusexp Model 122
Max. Avg. TA for Dierent Alert Messages CLL. 127
Max. Avg. TA for Dierent Normal Messages 128
Max. Avg. TA for Dierent Normal Messages 128
Percentage Uninfected Messages 129
Percentage Infected Messages oa. .. 129

Xiii

CHAPTER 1

INTRODUCTION

Architecture of a system is mainly in uenced by its requirements and in particu-
lar its quality attributes [Bass98]. The quality attribute s of a system and software are
categorized as runtime (e.g., performance and communicath patterns) and non-runtime
(e.g., maintainability, availability and reusability). G enerally, it is easier to achieve desired
quality attributes in smaller systems by means of traditional software or system engineering
processes such as design, coding and testing. But as thesest®ms grow, which in turn leads
to the growth of their structural and behavioral complexity , this traditional design approach
becomes increasingly inadequate and impractical. For thes kinds of large-scale, complex
systems, modeling and simulation becomes an important pra@e for analysis, design, and
development.

The structures of such systems can be de ned using fundameat system theoretic
and Object-Oriented concepts and principles such as comp@®n where atomic and com-
posite components are combined using ports and couplings. dtleling approaches founded
on the principles of system theory and object orientation ca help to design these systems
hierarchically.

In addition to aid the modeling of these large-scale systemst is important to employ

repositories like Relational Database Management System@RDBMS), since they provide

systematic, scalable and e cient medium for storing and acessing models [Fu02]. One of
the most important bene ts of using a database repository (in addition to creating, storing,
modifying and deleting model components) is its support forreusability. Having a scalable,
reusable model repository further supports simulation andconsequently model validation,

which is the key in the system development life-cycle.

1. Simulation and Validation of Component Based Models

Simulation is an imitation of the operation of a real-world process or system over
time. It involves the generation of arti cial history of the system and the observation of
that history to draw inferences concerning the operating claracteristics of the real system
[Bank01]. It is used to study system in a design stage, beforthe system is actually built.
A simulation model is developed to study the behavior of the gstem. Simulation modeling
can be used both as an analysis tool for predicting the e ect bthe changes to the existing
systems and as a design tool to predict the performance of newystem under varying set
of circumstances.

In order to validate a system, the modeler needs to simulate ad compare the model
and its behavior with the real or imaginary system for di erent sets of experimental con-
ditions. These experimental conditions include input scemrios, model initialization and
output scenarios. Input and output scenarios are mainly chaacterized by the input vari-
ables/output variables, their data types and their values while model initialization includes
the speci cation of state of the model, which is characterizd by the initial values of the
state variables of the model. System state is an important agect in characterizing the
behavior of the system, as behavior of the model is de ned ashie collection of the state

variables that contain all the information necessary to desribe the system at any time.

Large-scale hierarchical models can be built by reusing psistent models. This
in turn requires the storage of the models, in both structurd and behavioral form, in a
permanent repository such as database. This speci cation ad storage of the structural (i.e.,
model name, its parts and sub-components) and behavioral (. input/ output variables
and states) aspects of the model allows the modeler to achievthe simulation, analysis and

validation of the model.

1.1. Rationale for Dynamic Characterization of Atomic Mode | Compo-
nents. System theory distinguishes between the system structure rad behavior, where
structure is the inner constitution of the system while the behavior is its outer manifes-
tation. It o ers capabilities to model structural and behav ioral dynamical systems using
the concepts of atomic and composite components [Wym93, Z&d]. Atomic models are the
basic models which cannot be decomposed into other models vid the composite models
are models that can be composed of other atomic and/or compdt® models. The structure
of atomic model is represented in terms of name, input ports ad output ports while that
of coupled model is de ned in terms of name, input ports, output ports and couplings.
The external behavior of an atomic model includes the relatbnship between its input and
its output, while the internal behavior includes the state, state transition, functions and
output mechanisms. Similarly, the external behavior of a canposite model is visible via
its input and output ports and couplings. The internal behavior of a composite model is
the resultant of the behaviors of its sub-components which ee connected via couplings.
Hence, composite models primarily focus on the constitutioa of sub-components and their
communication with each other as well as with the other sub-nodels of their parent model,

while the actual behavior of the system is determined by the esultant of the behaviors of

the atomic models in the system.

As mentioned above, speci cation of the behavioral aspectsf the system is required
to achieve the model simulation and validation. These behaioral aspects of the system can
be expressed in terms of the dynamic characteristics of an atmic model such as speci cation
of inputs arrived at input ports, outputs sent to output port s and states of the system. This
essentially involves speci cation and storage of input varables, output variables and state
variables, variable types and variable values.

Once a model is built in terms of both structure and behavior, it is important to
verify whether the model behavior is correct or not. This involves the observation of the
behavior of the model (e.g., state changes) in response to drent input regimes and initial
conditions. For this, model needs to be simulated with an appopriate simulation engine.
This requires transformation of the model speci cation in to simulation compatible format.
Once the modeler has that format, the model can be simulated nder di erent scenarios

and consequently validated.

2. Approach and Goals

The primary goal of this thesis is to specify the behavioral spects of atomic model
to support creation of simulation models and their validation. This involves the design
and development of dynamic characteristics of atomic model This includes representation
of input variables, output variables and state variables in the relational databases. It
also involves the design and development of the user interée to support the capturing of
these behavioral aspects of atomic model and development @ mechanism to store them
in a database. Furthermore, it is important to support representation and storage of non-

simulatable models (NSM), which are similar to complex datastructures like list, bag or set.

These non-simulatable models can be used as components ofmgiatable atomic models.
Once the model is speci ed, it needs to be transformed into aisulation compatible format
to achieve simulation in the simulation environment.

In this research, we are using and extending the Scalable eity Structure Modeler
(SESM/CM) [Sar02, Fu02, Smo03], which is a modeling enviroment suitable for developing
modular hierarchical systems. Current version of SESM/CM povides a modeling engine
with a graphical user interface for creating, modifying, storing and reusing the structural
aspects of the atomic and coupled models. These structurakhtures involve name (identity)
of the model, input/output ports (interface), couplings an d modular hierarchical structures
(specialization and aggregation relationships). It provides a relational database for storing
and managing structure of atomic and coupled models and is stable for development of
large-scale models.

SESM/CM o ers a basis for modeling behavioral aspect of atonic models. It does
not, however, provide capabilities for characterizing belavior of atomic models and non-
simulatable models, which involves the speci cation of howit can process inputs, transition
through di erent states and generate outputs. Furthermore, since SESM/CM is a modeling
environment, it does not provide facilities for simulation. Therefore, to support simulation,
the atomic and composite models in SESM/CM must be transforned to their simulation
compatible formats.

This research, therefore, focuses on extending the SESM/CMenvironment such
that it can support some parts of behavior modeling of atomic models and inclusion of
non-simulatable models. To enable model to simulation trasformation, a modeling-to-
simulation approach is designed and developed to support siulation of models partially

described in SESM/CM in DEVSJAVA environment, where DEVJAV A is a simulation

environment capable of executing hierarchical models spéed in Discrete-Event System
Speci cation. This combined modeling and simulation capablities o er a process where
users can develop models, simulate their behavior and carrput model validation, while
relying on model storage and reuse in a systematic fashion.

The secondary goal of this research is to improve the perforance and usability of
the SESM/CM by providing an alternate design of data transfer mechanism between the
SESM/CM client and the database.

The high-level objectives of this thesis are mentioned belw. These objectives
collectively required analysis, design, implementation,testing and demonstration of the

SESM/CM modeling environment as follows:

Support capturing, storing, and retrieving dynamic characteristics of an atomic model

components,

Develop mappings for converting atomic and coupled modelsi RDBMS to those that

can be simulated in DEVSJAVA, and

Use an e cient communication model in order to ensure accepable performance and

availability for large-scale models.

3. Contributions

The primary contributions of this thesis are in line with the objectives of the thesis.

They are

development of designs for characterizing the behavioral spects of atomic models.

It involves devising schemes for representation of input veables, output variables

and state variables in a modeling environment, in simulation compatible models and
in database. This approach also supports storage of Non-Sintatable models and
their relationships with Simulatable models. To support these features, the data-
base schemas are extended in order to enable combined use ohlatable and non-

simulatable models within the SESM modeling framework,

development of detailed design for transforming simulatalle models captured in SESM
to appropriate forms (such as XML and JAVA) such that they can be executed in the
simulation environment like DEVSJAVA. This involves the de sign and development
of two new modules each for the transformation of graphical mdels to XML or Java

models,

implementation of extended features of SESM to support e cient modeling behavior of
dynamic systems. It involves addition of new capabilities b SESMs di erent modules
like server, client, database and network environment wittout changing the overall
architecture of modeling environment. This also includes ésting and validation of
the extended functionality of the prototype SESM environment and its use with the
DEVSJAVA environment using example from the domain of compuer networks and

viruses, And

extension of an architecture for SESM to support the local cpy of data for each client
using observer design pattern to achieve better performare and availability and to

support distributed and collaborative modeling using SESM

4. Thesis Overview

This thesis is organized as follows. In this chapterchapter 1) , we have discussed
the rationale and importance of the specication and storage dynamic characterization
(behavioral speci cation) of models in addition to structu ral speci cation. We have also
discussed the need for simulation and validation of these mels.

Chapter 2 gives an overview of background and research related to thehesis topic.
It involves the detailed description of SESM/CM modeling engine and its constituents
architecture and design which is the foundation of this resarch. It also describes other
approaches for modeling and simulation of component-basedystems.

Chapter 3 presents basic concepts of behavioral modeling and the extsion of the
SESM/CM architecture to support some aspects of the dynamiccharacterization of atomic
models. It describes the importance of Non-Simulatable Modls (NSM) and their utility. It
also summarizes the mechanism for the generation of simulable models by transforming
them into XML and Java models.

Chapter 4 discloses the detailed software analysis and design extead to support
behavioral modeling in SESM modeling engine. It involves etensions to server, client and
database modules. This section renders UML (Uni ed Modelirg Language) as well as ER
(Entity-Relationship) diagrams. It provides the detailed design for the new transformation
modules. Finally, it suggests an alternate design for an e dent communication between
client and server.

Chapter 5 exhibits the user interface design which involves extensius of the three
GUI areas namely, model tree structure, model components ahcommand menu. It involves

the redesign of the model menu. It also explains the design fdhe transformation of models

stored in the database into the simulation compatible modes.

Chapter 6 gives implementation details of the new and extended featuss discussed
and designed in the previous chapters. It discusses the tenblogy used for software devel-
opment like Java, JDBC and XML. It also demonstrates an exampge of Anti-Virus Model,
which includes building of new models exhibiting the new fetures introduced in this thesis.
It also explains the experiments conducted on this model andheir simulation results.

Chapter 7 discusses future research and conclusions.

CHAPTER 2

BACKGROUND

1. Scalable System Entity Structure Modeler (SESM)

This research is primarily concerned with the SESM [Smo03, #02] modeling en-
vironment. It deals with the usage and extension of this envionment to incorporate and

demonstrate the various aspects of this thesis, mentionechithe thesis objectives section.

1.1. System Entity Structure (SES) Formalism. System Entity Structure
(SES) formalism [Zei84] is a structural knowledge represdation scheme that systemati-
cally organizes a family of possible structures of the systa. The fundamental object of
the SES formalism is an entity, also known as model. It represnts a physical object in
the real world and has identi cation, attached variables and a range set. This range set is
an enumeration of values that the variable can assume. Thismity can be of two types,
atomic entity and composite entity. Atomic entities cannot be broken down into sub entities,
while Composite entities are broken down into other entities, either atomic or composite.
SES provides three types of relationships among the entite namely aspect (alternative
representation of the system or model), decomposition (ParWhole relationship) and spe-
cialization (Parent-Child relationship). These relation ships are useful to build the models

hierarchy.

11

This model hierarchy enforces certain axioms [Zei00], whitinclude

Alternating Entity Aspect/Specialization: Each node has a mode which is either entity

or specialization

Uniformity: Any two nodes with the same names have identical attached variable

types and isomorphic sub-trees.

Strict Hierarchy: No label appears more than once down any pth of the tree.

Valid Brothers: No two brothers have same label

Attached Variables: No two variable types attached to the same item have same name.

1.2. SESM Architecture. SESM is based on a new approach to modeling large-
scale systems and some basic concepts of the SES formalismplained in the previous sec-
tion. SESM follows Hybrid Client-Server [Fu02] type of architecture, which combines the
features of di erent avors of client-Server architectures. It is composed of four main con-
stituents, namely Client (User Interface), Network Enviro nment (communication medium),
Server (Modeling engine) and Database Management System @MS) as shown in Figure

1.

DBMS: It stores the model data in hierarchical manner

Server: It initializes and manipulates the model database a per the users request

Client: It allows users to display and modify the models in the database

Network Environment: It acts as a channel between client, sever and database

12

Read
Only

Client

Network
environment

Server DBMS

Read & Write

Figure 1. SESM Client-Server Architecture

Client and Server independently initialize and maintain their connectivity with the
database. Client has \Read-only" access which means it camdependently read the model
data from the database while for writing to the database, it has to communicate via the
server, which writes the data to the database. The server haboth \Read and write" access
which means it can read and write data from and to the database In this way, SESM
allows multiple readers (i.e., multiple clients and serve) of the data but only single writer
(i.e., server) and hence it provides the consistency of the wdel data in the database. In
this architecture, client and server are loosely coupled ad hence result in better design and
implementation. It produces less network tra c between client and server and gives better

scalability by shifting the large number of queries from sever to the database.

1.3. SESM User Interface. =~ SESM provides a user-friendly graphical interface,
which is provided with menus for creation, modi cation and manipulation of hierarchical
modular models. These models are categorized into atomic nael (individual model) and
coupled model (composition of other atomic or coupled modsl), which can be used for

models described in Discrete Event System Speci cation (DES). Every model in SESM

13

£ SESMICM
Menu Bar Operations Database
Tool Bar
3 TEMPLATE_MODEL_TREE |~ Wiing Room
o : S_2900_eD S_2000_40
[} switch Cisto 5000 SW_2000_el SW_2000_e1
D Switch Cisco 2900 SW_2000_Uplak S0 2000 _Tplink:
Model [} Router_BAC SW_2000_1_e0 s _2000_1_40
Tree B Swritch, Cisco 2000
[} Router_GWC 5 5
[Router_cc: el el
[Router_0LDMAIN Gk Gk
Model grﬂ anel Us\mh Cisco 2000 .
Viewer] Zone2 . :1 :1
@ [Instruction Lab1 B 5T
[computer Delete
- | Peripheral [SPECIALIZED]
o CIETs Rename
Model [Hup _ AddinPort
Menu E”ﬁ Research Labt g Add Out Port
© 3 CSE_Floora -
@ [T ACIMS Lab Show Metrics
@ 3 Wiring Room Add Component
© [CSE_Flaor2
p—
4]
Model Tree
Views

Figure 2. SESM Modeling Environment Graphical User Interface

is considered as an object with input and output ports which form a well-de ned interface
for the interactions with other models. The sub-componentsare connected to each other
with internal couplings while they are connected to the parent coupled model with external
input couplings and external output couplings. Hence with the use of port, couplings and
components, SESM allows capturing the \structural" representation of hierarchical models
as de ned by DEVS.

As shown in Figure 2, user can create atomic and coupled compent-based models
using ports and couplings [Wym93]. SESM graphical interfae provides a menu bar with

menus, \Operations" and \Database". The Operations menu o ers options to \Create

14

Template Model", \Create Instance Template Model" and \Cre ate Instance Model". The
Database menu o ers an option to \Initialize Database" which essentially erases the entire
data (i.e., all the models) in the database. The model Tree diplays the tree view of
hierarchical models stored in the database. There are thregiews of these models namely,
Template Model (TM), Instance Template Model (ITM) and Inst ance Model (IM). Model
Viewer area displays a speci ¢ model that is currently seleted in the model tree. It shows
the model with model name, ports and couplings (in case of cquied models). Model
menu gives functionalities to manipulate the model displayd in the model viewer. Toolbar
provides the features for printing, saving as well as refresing the models on the graphical

user interface.

2. Databases as Model Repositories

Large scale systems are increasingly developed by using melebased analysis and
design techniques. As these systems grow in size and compitlgxa methodical approach is
required to have a repository, which can provide the capabities like usability, scalability,
modi ability and storage of models. Relational database isan appropriate option for these
repositories as it provides functionalities like creation modi cation, storage and most im-
portantly reuse of the stored models. It o ers modular hierarchical representation of the
models in the database by providing the relationships like omposition (Part-Of relation-
ship) and specialization (IS-A relationship). It allows user to enforce the constraints on the
models stored in the relations set. It also provides scalabity and exibility by providing
the data independence where data is decoupled from the appftion development. And
nally, it uses Structured Query Language (SQL) as an interaction medium, a standard

language for the relational databases; which is important ér application portability.

15

The rationale [Fu02] behind the use of relational databases that the relational model
supports the formal speci cation of the logical relationships such as those in three views and
SES. The simplicity of the relational model also allows the IBMS vendors to optimize the
management systems for performance and scalabilityy. Compad to relational databases,
the third generation databases like OODB and ORDB are still constantly evolving. Further-
more, both OODBMS and ORDBMS lack the full support for the current standards. The
lack of standardization means less support for developing ESM, and it makes the SESM
vendor speci c. As a result, after comparing the three typesof the database technologies,
the relational database was selected to be an appropriate ntbum of repository for SESM.

Implementation of SESM uses MS-Access relational database

3. Related Research and Environments

3.1. Modeling. An alternative approach for systematically representing nodels is
via the Uni ed Modeling Language (UML) [Boo94, Boo99].

3.1.1. UML. UML is a graphical language used for visualizing, specifyig, construct-
ing and documenting the artifacts of a software intensive sgtem [Boo99]. It provides the
modeler a standard way to specify system blueprints, coverig conceptual things like busi-
ness processes and system function as well as concrete thinlike classes which may be
written in speci ¢ programming language and database scheras. It is appropriate for mod-
eling systems ranging from enterprise information systemso distributed web-applications
to real-time embedded systems.

UML and SESM are similar in how they represent a systems struwre (i.e., com-
ponent and relationships) as both of them support \is-a" and \part-of" relationships. But

they are di erent as UML is intended for the object-oriented software engineering [Fow99]

16

while the SESM is targeted for representing simulation modés and their structures. UML
supports access rights of an attribute (e.g., public or priate) while SESM supports com-
munication between the models using ports and couplings. Tbugh UML supports the
behavior of the model in terms of methods speci cation, toos such as Rational Rose do
not o er capabilities to fully specify behavior of the model - i.e., with UML, a modeler can
declare the methods to de ne the behavior and specify a stateehart to show state transi-
tions, but the details of the methods has to be done using IDEs In UML, the behavior
of the composed model is a resultant of its own behavior and tb behavior of all of its
sub-components, whereas in SESM models the behavior of th@mposed maodel is just the
resultant of the behavior of its sub-components as the compsed model doesn't have its
own behavior. Another major di erence is in UML, the models are stored in a at le,
whereas in SESM, models are stored in a relational databaseyhich o ers scalability and
better reusability.

UML model such as class diagram is typically not re ned enoudp to provide all the
relevant aspects of the speci cation. There is a need to desibe the additional constraints
of the object of the model. Object Constraint Language (OCL)is used as a formal language
for the speci cation of constraint for the UML models. UML mo deler can use OCL for ap-
plication speci ¢ constraints to specify invariants on classes and types in the class model,
type variants for stereotypes, pre-conditions, post-condions and guard conditions on op-
erations and methods. OCL is a pure expression language wheexpressions are evaluated
to check particular constraints. But it is not a programming language; hence one cannot
write program logic or ow control using OCL and hence cannot change anything in the
model. In short, OCL can be used to express constraint that canot be captured in UML

but it cannot be used for specifying or altering the state of he model.

17

A real-time extension of UML is called UML-RT, which support s structural modeling
of a system similar to SESM. UML-RT is also based on system carepts and methods. The
semantics of the ports and connections in UML-RT are di erert than the semantics of the
couplings and ports in SESM, when applied to discrete-evensystem speci cation. One of
the essential di erences between UML-RT and a combination ® SESM and DEVSJAVA is
that the latter has well-de ned simulation engine. In contr ast, simulation using UML-RT

is limited since it provides execution which requires usergo specify simulation protocols.

3.2. Simulation. Simulation involves designing the model of a system and caying
out experiments on it as it progresses through time. Simulaibn is an important activity
since it allows the modeler to experiment that might be hard a cannot be analytically
predicted. It can give a valuable insight into the system andinto the relative importance
of the di erent choices about the design of the system. It albws compression of time and
prediction of the behavior of the system. There are di erent types of simulators available.
This thesis briey describes DEVSJAVA and Extend; both of which support modeling
discrete systems.

3.2.1. DEVSJAVA. This research uses DEVSJAVA [acims04, Sar03, Sing04], whic
is a modeling and simulation environment, supporting a hiearchical, modular DEVS sim-
ulation models. It supports the basic and advanced capabities for observing behavior of
models in logical and (near) real-time. DEVS models are baskon DEVS formalism, which

can be mathematically expressed [Zei00, Zei03] as,

M =< X;S;Y; int; ext; con; ; ta>

Where

X is the set of inputs

18

X :f(p;v)jp 2 InPorts;v 2 Xg

Sis a set of states

Y is the set of outputs

Y :f(p;v)jp 2 OutPorts;v 2 Yg

int - S > Sis the internal transition function

ext . Q X b > S s the external transition function, where

Q=1(s;e)js2 S0 e ta(s)gis the total state set

e is the time elapsed since last transition

wn i Q XP > Sis the con uent transition function

S > Y P is the output function

ta:S > Ry, is the time advance function

This modeling approach supports discrete-event (and thus tcrete-time) dynam-
ics as well as continuous dynamics [Kof03]. DEVSJAVA is an implementation of DEVS
formalism in Java, which allows the modeler to specify and e&cute (i.e., simulate) the
models. As mentioned earlier, these models are of two typestomic models and coupled

models. Atomic models are the basic models from which the lgrer models are built. They

19

£ DEYS Modeling & Simulation Tracking Environment - ¥ 1.0.0
Menu Bar —» File Options Window Help
FModel Viewer

=

N = Z
w1 Tracking Log

3 wiring_Room
[gwitch Cisco 2800
[witch cisco 2000

Model Tree »>
View

Wiring Room

Switch Cisco 2900

Switch Cisco 2000

TL: 0.0
TH: Infinity
Phase: passiwve

Model State — Sigma: Infinity

View Input Ports:
{Uplink} fe0} f{ell Inone}
Output Ports:
{Uplink} {e0} {el}
Input Buttons » Inject.. || Tracking.. :
FSimulator Control & - Model Switch Cisco [Input Ports Output Ports
Simulation Run Step _ Gl [Ceo I uplinkk
Interactive — Step(n) i/ Sigma] Uplink 7 e0
1 1L [C] nane Det
Buttons e :
1
Real Time Factor: 1.0 ™ L=
. . Simulator State: Ready
Slmulat.lon = Time of Last Event: 0.0
State View Time of Hext Event: 0.0

1 1 I
States —— Inputs —— Outputs

Tracking options

Figure 3. DEVSJAVA Simulation Environment Graphical User | nterface

are de ned to have time base, inputs, states, outputs and furmtions for determining next
states and outputs given current states and inputs. The couped models are composed of
the other atomic and/or coupled models connected together § couplings in hierarchical
manner. Both of these models are supported with input and ouput ports to facilitate the
communication with the other models and the outside world.

Figure 3 shows the DEVSJAVA implementation [Sar03, Sing04]of the model -
Wiring Room, showed earlier in SESM environment in Figure 2.The graphic user interface
of DESVJava environment displays the model in a Tree view. Italso displays the current

state of the model as well as that of the system during simulabn. It is provided with

20

di erent buttons

Inject: It is used to inject the inputs in the model during the setup of an experiment

Tracking: It gives an interactive dialog shown in the gure, which can be used to select

the input, output or state variables that need to be tracked during the simulation.

Step: It runs the simulation of the model step-by-step and alows user to see the
inputs and outputs generated as well as the state changes fahe models at a step

level.

Run: It runs the whole simulation and produces the entire resllts of the simulation

at the end of the simulation

Reset: It restarts the simulation process and also resets th system clock to zero.

3.2.2. Extend. Extend [Ext00] is o ered by Imagine That, Inc. Extend combin es the
block diagram approach to model building and an authoring ewironment for creating new
blocks. It is based on process oriented world view and capaelof continuous, discrete event
and combined modeling. Most important parts of Extend model are the blocks, libraries
where the blocks are stored, the dialogs associated with eladblock and the connectors.
Elemental blocks include generator, queue, activity, resorce pool and exit. Activity entities,
called items, are created at generator blocks and move fromlbck to block with the help of
connectors. Modelers can build models by placing and connéog blocks and lling in the
parameters. Collections of these blocks are grouped togeth to form a hierarchy which is
essentially a library.

Extend stores the model data in the form of text les which can be opened, closed,

read and edited using Extend as well as any other word process. It comes with a compiled

21

C-like simulation programming language called ModL. It cortains simulation support as well
as support for custom user interface and message communigan. It is also provided with
a statistics library which supports the collection, analysis and plotting of simulation data.
This modeling environment is similar to DEVSJAVA and others such as MATLAB that do

not support some important capabilities such as multi-view and scalable persistence.

4. Motivation

All the approaches of modeling and simulation described abe have distinguishable
features which support structural and/or behavioral aspeds for modeling, simulation or
storage. DEVSJAVA o ers modeling and simulation interface but the model creation in
DEVSJAVA is limited to writing code in Java language which requires low level program-
ming expertise in Java. Extend supports easy graphical modecreation as well as structural
and behavioral model de nition, but it stores the models in at les and hence cannot pro-
vide expected scalability. UML is a widely accepted technigie for modeling but it doesn't
support multiple views as well as the simulation of the modet. SESM is a modeling envi-
ronment which stores the models in the relational database ad hence achieves hierarchical
and scalable model construction. But it needs to be extendedo support the storage of the

behavioral aspects of the models.

Therefore, there is a need of an environment that

facilitates easy creation of models from both structural ard behavioral perspective

without any dependency on programming

supports storage of models in the repository

aids simulation of the models

22

CHAPTER 3

SESM SYSTEM ARCHITECTURE WITH SUPPORT FOR

BEHAVIORAL MODELING

Modeling and simulation of systems has become de-facto stdard in the analysis
and development of large-scale systems. It is important to mploy modeling and simulation
methods that can support model speci cation and simulation execution. Model Speci -
cation in turn involves the structural and behavioral specication of the model, while the
simulation execution involves the transformation of thesespeci ed models into their simu-
latable format. In particular, separating the real (or imagined) system, speci cation models,
and simulatable models are important for model validation and simulation veri cation.

Many kinds of models maybe de ned using composition and spealization concepts.
These models, in general, are referred to as base and lumpedontels. The former refers
to a model that is most closely represents a system (i.e., theeal system and base model
are homomorphic to one another). The later refers to a modelhat is an abstraction of the
base model. A lumped model, therefore, can represent the reaystem via a base model or

directly the system itself. The base and lumped models are hmomorphic to one another.

24

uni-simulator

l

Real or i Model A . .
imagined mOIdl:-.Ilng S|m|lJI?t|0n :
relation relation o
system % parallel/distributed

simulator

ﬁ |
1
S —
Model B

Figure 4. Modeling and Simulation Relations
1. Modeling Environment

Speci cation models are developed during the modeling phas A modeling engine
supports speci cation of models using a modeling language The ability to support spec-

i cation of large-scale models plays a key role in de ning the modeling and simulation
relations.

A modeling environment, therefore, needs to support modeles to specify their mod-
els in an iterative and incremental fashion. In other words,impediments in validation and
veri cation can be better overcome using a modeling enviroment that can support not
only representation of a family of models, but also with supmrt for handling scalability
of models and therefore their relationships. The scalabity is important in managing the
relationships among models developed within the modeling lpase. Furthermore, scalability
also plays a key role in the modeling and simulation relatios as shown in Figure 4.

An existing SESM modeling environment is extended to enableghe above types of
modeling to o er new capabilities toward model behavioral eci cation, simulation and
validation. The key parts of this framework are the modeling engine, repository, and a

translator. The Modeling Engine supports speci cation of template, instance template,

25

Modeling <;:| Slmule_atlon
Engine <:| Translator Engine
: — Model Simulation Code
Rep05|t0ry Specifications
~———

Figure 5. Modeling Framework

and instance models. The Repository contains the models in aelational database. The
Translator maps instance models into simulation code.

This modeling environment allows modeling a family of modet that may be closely
related, yet are serve di erent purposes. For complex, usig alternative decompositions, two
models can represent two di erent aspects of a model. Modelsan be mutually exclusive if
they do not share model components. Similarly, using speciaation, a system may have two
or more aspects or resolutions. Handling of multi-aspect ad multi-resolution are important

in modeling of heterogeneous systems.

1.1. Modeling Approach. The proposed model framework shown in Figure 5
supports modeling of a system using three complementary typs of models called Template
Model, Instance Template Model, and Instance Model. The bai approach is component-
based modeling where a system is viewed as a collection of cponents which are composed
using input and output ports and couplings.

A template model speci es atomic and composite models as coponents with in-

26

Two-Level Multi-Level Multi-Level
Structure Structure Structure
Template Instance Instance

—> Template —>

Model

Model Model

Figure 6. SESM/CM Model Types

put and output ports and values. An atomic template model spei cation contains state

variables and a name. The components of each of these three &l types are restricted
to have the same type - a template model can have other templa& models and not models
of instance template or instance models. A composite tempke model speci cation has
couplings and a name. Composite template models are resttied to have atomic and/or

composite template models as children. Furthermore, the nme assigned to atomic and
composite models must be unique such that any composite motlean be uniquely identi-

ed within its hierarchical decomposition. A composite template model is de ned to have

a hierarchy of length two.

An instance template model is the same as a template model. Tib type of model is
de ned to have a nite hierarchy of length greater than two. F urthermore, this model does
not specify multiplicity of a model component within any composite model - a model can
have one to a nite number of copies of the same instance tempte model. An instance
model is an instantiation of an instance template model whee the multiplicity of model

instances is speci ed.

27

A Template Model can be specialized into one or more speciaiéd components. The
ability to specialize complements composition. Composittn and specialization together
support di erent types of models depending on the intent of the modeler. A conceptual
view of relationships among these models is shown in Figure. Bhese types of models need
to be constructed in three stages - template model, instancéemplate model, and instance
model developments - as described above. A modeler rst crées Template Models, Instance
Template Models, and then Instance Model in a sequential maner. In the stage of instance
model generation, a modeler decides which specialized mdd@mponent is to be used. Of
course, it is possible to iterate among these stages. As nateabove, one essential advantage
of this modeling approach is the ability to create alternative models depending on desired
alternative resolutions and aspects.

As shown in Figure 7, the consistency among these models is méained automati-
cally in SESM/CM. Due to unique composition of model componeits, changes to a model
are enforced across the entire model. For example, if a modal adds an input port to
component H which is a grandchild of component M, the grandciid of component C i.e.

other H component, must have the same structure and behavior

2. Approach for Behavioral Speci cation

As mentioned earlier, model speci cation de nes a system interms of its structure
and behavior. Structure of the system is de ned in terms of nane, ports and couplings

while the behavior of the system is de ned in terms of the behaior of atomic models.

2.1. Representation of an Atomic Model. System theory distinguishes the

models into two categories namely atomic models and couplednodels. Atomic models

28

Figure 7. Metrics Consistency and Uniformity

are the basic models which cannot be further divided into submodels while coupled models
are composed of sub-models. Atomic model de nes its own bekir while the behavior
of the Coupled model is de ned as the combined behavior of itssub-component atomic
models. Input-Output speci cation of the Coupled model is same as that of Atomic model.
Hence, to specify the behavior of the system, it is necessarto specify the behaviors of
all the atomic models inside the system. The behavior of an aimic model is de ned in
terms of dynamic characteristics of the model such as input &riables, output variables,
state variables and state transition functions as shown in gure 8.

2.1.1. Input/Output Variables. Behavior of the model is de ned as the change in the
state of the model. Discrete Event System Speci cation de res the change in the state of
the model as a consequence of some event occurred to the syster occurred within the

system. These events are mainly categorized into inputs aived at the system, outputs sent

29

~——Model Behavior Storage \

Databse

————————— -
i SESM Modeling Engine
Command /

Modeler Query

States

Inputs Outputs

Figure 8. Extension of Behavioral Features of SESM

out from the system and change in the internal state of the syem.

Every model de ned in DEVS formalism is provided with input a nd/or output ports
for the communication with the other atomic and/or coupled models which are connected
to each other by means of couplings. Inputs arrives at the syiem essentially arrives on the
input port, while the output generated from the system essetially sent to the output port
of the system. The inputs and outputs are in the form of variades which has de ned name,
data type and value(s). Name provides an identity to the variable.Every input/output
port is associated with zero or more variables while every iput/output variable must be
associated with either input or output port.

2.1.2. State Variables. State of the system at a particular point of time is de ned
in terms of all of the state variables associated to its atomi models. State variables are
associated directly to atomic model unlike port variables,which are associated to the model
through ports. Similar to port variables, state variable are also de ned in terms of name

(identity), data type (either primitive or NSM) and value(s). As coupled model doesn't have

30

a de ned state, there are no state variables associated wittit, while each atomic model is
associated with zero or more state variables. Values of allhe state variables collectively

de ne the state of the model.

2.2. Representation of Non-Simulatable Models(NSM). In addition to these
models, it is also important to represent non-simulatable nodels which may be used as part
of atomic models. These models are distinct compared with th template models since they
do not have input/output ports. Such non-atomic models are referred to as non-simulatable
since their behavior is not time-dependent. Examples of thee models are object-based user
de ned complex data structures such as a list or a queue, whit are useful to hold multiple
values.

As stated above, input-output-state variables are de ned in terms of name, data
type and value(s). The data type of these variable is an impotant aspect. This data type
can be divided into two types; either primitive data type (supported by the programming

language such as integer, character, string, etc) or non-siulatable (NSM) models.

2.3. Generation of Simulation Models. The speci cation models need to be
transformed into simulation code for execution by one or moe simulation engines. A sim-
ulatable model need to be executed using a simulation engine i.e., simulatable models
are mapping of speci cation models into a particular realization (model code) amenable to
speci ¢ simulation engines. This is a two step process as shm in gure 9.

2.3.1. Database to XML Transformation. There are various choices for the stor-
age type of the transformed models, but we choose to convertral store them as a well-
formed XML document as XML is considered as the best option tohandle structured or

semi-structured data/documents. The XML document contains the information about the

31

DEVSJAVASimulation Suprocess—,

-

SESM Modeling Suprocess

D

Java Simulation
Model Engine

Transformatior]
to Java Model

Transformation__,,
to XML Model

\ 4

XML
Model

RDBMS Client

r-—-—--lv——————-

Figure 9. Transformation of SESM models to XML and DEVSJAVA M odels

structure of the model such as model name, input port number ad names, output port
number and names, information about the sub-components andhe couplings between them
and behavior of the models in terms of inputs, outputs, statevariables and non-simulatable
models. This will facilitate the component based approach ér model validation.

2.3.2. XML to Java Models Transformation. Once created, these XML models with
structural and behavioral capabilities need to be simulatel to test their completeness and
correctness. To demonstrate these capabilities, we will eploy DEVSJAVA which support
execution of models written in the Java Programming languag. Therefore, in order to
simulate models stored in SESM, they need to be transformednio Java syntax which can
be compiled and executed in DEVSJAVA. Hence, it is necessaryo develop a modeling-to-
simulation mapping to transform atomic, coupled, and non-smulatable models into forms
that can be compiled using the Java compiler and executed usg the DEVSJAVA simulation

engine.

CHAPTER 4

BEHAVIORAL SPECIFICATION OF MODELS IN SESM

1. SESM/CM Design Overview

SESM uses a hybrid architecture which combines the advantags of various avors of
client-server architectures to reach a balanced solutionThis architecture is shown in Figure
1. As discussed earlier, similar to the client/server archiecture, the hybrid architecture has
a server that writes to the database, with potentially multi ple clients interacting with the
database. Clients are also connected to the DBMS, which alleing them to retrieve model
data concurrently. But, the clients cannot write to the data base. The client must connect
to the server in order to modify the database. This architecure supports single writer
but multiple readers of the database concurrently and thus povides a restricted avor of
network environment.

By design, the SESM system includes the SESM package, the Nebrk Environment
package, SESM client, and SESM server as shown in Figure 10.h& SESM package should
serve as an API used to access the SESM representation modedtd stored on the DBMS.
There are three main components in the SESM package; Connegity, SESM Query, and
SESM Modi er.

The Connectivity component is used to connect to the DBMS. It handles all the

33

SESM

Client
Network
SESM Environment
Wsend request()
uer —<
Query Rsend reply()
) L I
Qrece!ve notification() \\B e
Rreceive reply()
DBMS Connectivity
Server
\ SESM Soroadcast) p—
Modifier | ~|¥Broadcast
WRequest for Reply()
FReceive()

Wsend()

Figure 10. SESM System Components Overview Diagram

communication between the SESM system and the DBMS. The SESMJuery component
retrieves data from the DBMS using SQL and maps the data into dject-oriented SESM
models. The SESM Modi er component modi es the SESM represatation of models on
the DBMS. The component translates the requested modi caton into appropriate SQL
statements. The SESM Server extends the Server provided byhe Network environment
package. Messages received by the SESM Server are processatl modi cations are per-
formed accordingly. The SESM Client utilizes the SESM Querycomponent to retrieve and
display the SESM representation model visually on its graplical user interface (GUI). The
user also modi es the model through the SESM clients GUI. Thenetwork Environment
package manages the communication between the SESM Clientnd the SESM Server by
providing the components that can be extended by the SESM Cknt and SESM Server.
Having described the existing architecture of SESM, it is neessary to describe the
design focus of this research. This involves the design fohe speci cation of some of the
behavioral aspects of atomic models in SESM such as speci tian of input-output-state

variables, their data type and their values. It also includes the transformation of atomic and

34

coupled models into simulation compatible (DEVSJAVA) form at. To achieve this, existing
architecture of SESM is extended. Extensions were made to #client, server and database

designs while keeping the overall architecture of the systa same.

2. Database Schema Design for Atomic Model Dynamics

Models developed in SESM are primarily structural. They aredescribed and stored
in a relational database in terms of structural features of he model components such as
identity (i.e., model name), hierarchy (i.e., decomposition), input/output interface (i.e.,
port names) and their creation time. In order to execute (sinulate) these models to observe
their behavior in response to input stimulus, they need to beextended in terms of behavioral
aspects of the model. In particular, it is important for an atomic model speci cation to
support modeling of input and output variables, state variables, and functions. Reusability
of structural and behavioral aspect of these models can be heved by storing them in a
database. This section presents the SESM behavioral requements, its relational database

schema and extended Entity-Relationship diagram.

2.1. Requirements. Requirements for the model development based on the three
model categories mentioned in chapter 3 are described in ters of Model, Port and Coupling
[Fu02]. These requirements help in the speci cation of stricture of the models and their
relationship in the relational database. But in addition to the structural requirements, there
are behavioral requirements which are described in terms oport variable, state variable

and NSM variable as follows,

Port Variable:

35

Port variable can be associated with atomic as well as coupte model

Port variable must have variable name, variable type and vale

Port variable type may be either primitive or NSM

Port variable of a model cannot exists without being associted to port name and

port type (in or out)

Multiple port variables can be associated to each distinct sgle port

Model can have multiple port variable names of same variablaype

State Variable:

State variable can be associated only with atomic model

State variable must have variable name, variable type and vlue

State variable type may be either primitive or NSM

State variable of a model cannot exists without being assoated to an atomic model

Multiple distinct state variables can be associated to a sigle model

Model can have multiple state variable names of same varialel type.

NSM Variable:

NSM variable must have a name (identi cation)

NSM variable name must be unique

36

NSM variable can be associated with zero or more models

NSM variable must be associated with a model as an input, outpt or state variable

NSM variable can exists without being associated to a model

2.2. ER Extensions. An Entity-Relationship diagram developed for the
SESM/CM modeling environment is extended by adding new entiies and relationships
in order to incorporate the additional behavioral requirements. Figure 11 shows the newly
added entities and relationships within dotted lines. Table 1 shows the entities and rela-
tionships in the E-R diagram along with their descriptions. The newly added entities and

descriptions are represented in bold letters.

2.3. Entities in extended SESM E - R diagram.

2.3.1. portVariable (Port Variable) entity.

Attributes

{ owner (Template Model Name)
{ tName (Port Name)

{ tType (Port Type)

{ varName (Port Variable Name)
{ varType (Port Variable Type)

{ varValue (Port Variable Value)

Description

weibelg Y-3 INSIS papusix3 “TT ainbi

——

——
-,

<

0
)

4
g
4
g
4
’
¢
4

\ ” /.
‘.',‘ '9',.'
‘.,_ sy &
i 1 @
[}
; Ce D
[l —
'I' Statistics
A Y

Seae -
v, ane?
b e, Py
st renccncss cacnan ==

o

O,N S
NSMTempIatL '
/
’

>

modelT]| \N @

11

~
Sw

"4

portTI

LE

38

Table 1. SESM Entities and Relationships

Entity/Relationship

Description

containsPT

Template Model contains Template Port

containsPTI

Instance Template Model contains Instance Template Port

modelTemplate

Template Model

portTemplate

Port Template

modelTI Instance Template Model

modellnstance Instance Model

MT to MTI Template Model to Instance Template Model
MTItoMI Instance Template Model to Instance Model
MTItoSMI Instance Template Model to Specialization Instance Model
PortTI Instance Template Port

PTtoPTI Template Port to Instance Template Port
Specialized Template Model can be specialized
componentOf Decomposition of Coupled Template Model
componentOfi Decomposition of Coupled Instance Model
Coupling Coupling between two Ports

containsMET Template Model contains Metrics

Metrics Metrics generated for the Template Model
containsNSM Template Model contains Non-Simulatable Model
NSMTemplate Non-Simulatable Model Template

containsPV Port contains Port Variable

portVariable Port Variable

containsSV Template Model contains State Variable

stateVariable

State Variable

{ The portVariable

Template.

entity represents the port variables assaiated with the Port

{ The portVariable is a weak entity of portTemplate because a prtVariable should

not exist if the portTemplate associated with it does not.

{ The portVariable and portTemplate are linked by containsPV (Port contains

port Variable) relationship

{ All attributes are single-valued and not null-able

{ The attribute tType is the type of the port and its value set is string of IN and

39

OUT.

2.3.2. stateVariable (State Variable) entity.

Attributes

{ owner (Template Model Name)
{ varName (State Variable Name)
{ varType (State Variable Type)

{ varValue (State Variable Value)

Description

{ The stateVariable entity represents the state variables asociated with the mod-

elTemplate

{ The stateVariable and modelTemplate are linked by contain§SV (Port contains

port Variable) relationship

2.3.3. NSMTemplate (Non-Simulatable Model Template) entity.

Attributes

{ nsmID (Non-Simulatable Model name)

{ createTime (Time of Non-Simulatable Model porting)

Description

{ The NSMTemplate entity represents the Non-Simulatable model (i.e., complex

data structures)

40

{ All attributes are single-valued and not null-able

{ The attribute, nsmiD, is the primary key for NSMTemplate sin ce NSM Model is
uniquely identi ed by its nsmID. The value set of this attrib ute is alphanumerical
string.

{ The attribute createTime records the time when the NSM Model was ported. It

can be used to sort NSM Models

2.4. Relationships in extended SESM E - R diagram.

2.4.1. containsNSM. containsNSM de nes the relationship between Template Modé
and Non-Simulatable Model. The cardinality of this relationship is M ModelTemplate to N
NSMTemplate as Model Template can have zero or more NSM Tempites as their elements
while NSM template also can be a part of zero or more Model Temiate. In short, NSM
Template can exist without being associated with any Model Template and doesn't have
dependency relationship with Model Template.

2.4.2. containsPV. containsPV de nes the relationship between the Port Template
and Port Variable. It is the identifying relationship of the weak entity, Port Variable. The
cardinality of this relationship is 0, N portVariable to 1 Po rtTemplate. Since portVariable is
a weak entity, it has total participation in the relationshi p, while PortTemplate has partial
participation in the relationship since some ports might have zero port variables. In short,
existence of the port variable is dependent on the existencef the port.

2.4.3. containsSV. containsSV de nes the relationship between the Model Tempéte
and State Variable. It is the identifying relationship of th e weak entity, State Variable. The
cardinality of this relationship is 0, N stateVariable to 1 M odelTemplate. Since stateVariable

is a weak entity, it has total participation in the relations hip, while ModelTemplate has

41

partial participation in the relationship since some model templates might have zero state
variables. In short, existence of the state variable is depmdent on the existence of the

model.

2.5. Extended SESM Relational Database Schema. Based on the extended
ER-Diagram shown in Figure 11, the schema of the SESM relatioal database is extended
as follows. Foreign Keys are shown a$old-italic and Primary Keys are shown asbold .

All other column names are shown in plain font.

Port Variable:

Table 2. Relational Database Schema Speci cation for port\ariable Table

| portVariable |
| owner | tName | tType |varName | varType | varValue |

owner is a foreign key from ModelTemplate (name)

tName is a foreign key from PortTemplate (tName)

tType is a foreign key from PortTemplate (tType)and can be either IN or OUT
varName is an alphanumerical String with maximum length of hundred characters
varType is an alphanumerical String with maximum length of hundred characters
varValue is an alphanumerical String with maximum length of hundred characters

Primary key owner, tName, tType, varName

State Variable:
owner is a foreign key from ModelTemplate (name)

varName is an alphanumerical String with maximum length of hundred characters

42

Table 3. Relational Database Schema Speci cation for stat¥ariable Table

| stateVariable \
| owner | varName | varType | varValue |

varType is an alphanumerical String with maximum length of hundred characters
varValue is an alphanumerical String with maximum length of hundred characters

Primary key is owner, varName

NSM Template:

Table 4. Relational Database Schema Speci cation for NSMTenplate Table

| NSMTemplate \
| nsmID | createTime |

nsmiD is an alphanumerical String with maximum length of one hundred characters
createTime is an integer

The primary key is nsmID

2.5.1. Schema in Data De nition Language (DDL).
PORTVARIABLE

CREATE TABLE PORTVARIABLE (

OWNER VARCHAR (100),

TNAME VARCHAR (100),

TTYPE VARCHAR (5) CHECK (TTYPE IN (IN, OUT)),
VARNAME VARCHAR (100),

VARTYPE VARCHAR (100),

43

VARVALUE VARCHAR (100),

PRIMARY KEY (OWNER, TNAME, TTYPE, VARNAME),

FOREIGN KEY (OWNER) REFERENCES MODELTEMPLATE (TID) ON
DELETE CASCADE,

FOREIGN KEY (TNAME) REFERENCES PORTTEMPLATE (TNAME) ON
DELETE CASCADE,

FOREIGN KEY (TTYPE) REFERENCES PORTTEMPLATE (TTYPE) ON

DELETE CASCADE

)

STATEVARIABLE

CREATE TABLE STATEVARIABLE (

OWNER VARCHAR (100),

VARNAME VARCHAR (100),

VARTYPE VARCHAR (100),

VARVALUE VARCHAR (100),

PRIMARY KEY (OWNER, VARNAME),

FOREIGN KEY (OWNER) REFERENCES MODELTEMPLATE (TID) ON

DELETE CASCADE

)

NSMTEMPLATE
CREATE TABLE NSMTEMPLATE (

NSMID VARCHAR (100),

44

CREATTIME INTEGER,

PRIMARY KEY (NSMID)

)

2.6. Additional constraints. Entity Relationship diagram and data de nition
language de ne dierent types of constraints like key constaints (primary key, foreign
key), cardinality constraints (one-many or many-many), participation constraints (partial
or total), check constraints, etc. But there are other constaints which cannot be speci ed
diagrammatically in E-R diagram or syntactically in DDL due to their limitations. These
constraints need to be speci ed in the underlying programmig language (i.e., Java in case

of SESM). Some of these additional constraints are

The input-output-state variable name and NSM template hame must be assigned by

the modeler (user).

User can add port variables to only ports that already exist in the model.

Input, output or state variable data type can be either primi tive data type (for ex-

ample, integer, oat or string in Java language) or of type NSM template.

When user is choosing NSM template as an input, output or staé variable, he should

get a choice of only those NSM templates which are already peent in the database.

User can delete or maodify input-output ports or Input-outpu t-state variables which

are associated with the selected model.

2.7. Extended SESM Transactions. SESM environment provides the modeler

the ability to send command and queries. SESM transactions & primarily categorized

45

into three types, Add transactions, Delete Transactions amd Modify Transactions which are
further divided into sub-categories such as Add Input port, Add Output port, Delete input
Port, etc. Detailed use case diagrams with additional behaioral requirements for these
transactions are shown in Figure 12, 13 and 14 respectively.

Out of the transactions mentioned in these use cases, currénersion of SESM/CM
supports following transactions

Add Template Model - add/create a new Template Model

Add Port - add/create an input port or output port to an existi ng Template Model

Add Component - Add a Template Model as a component to an atomé Template
Model or a coupled Template Model

Add Specialization - add/create a new Template Model as a spdalization model
specializes an atomic model or a specialized model

Add Coupling - add/create couplings between two ports

Add Instance Model - add Instance Models from a Template Modgé

Delete Template Model - Delete an existing Template Model

Delete Port - Delete an existing input port or output port fro m a Template Model

Delete Component - Delete a component from a coupled model

Delete Coupling - Delete a coupling between two ports

Delete Instance Model - Delete an Instance Model and all its amponents

Modify Template Model Name - Modify Template Model's name

Modify Instance Model Name - Modify an Instance Model's name

Modify Port Name - Modify port's name

Modify Model Type - Modify Template Model's type

Show Metrics - Shows structural Metrics of a template Model.

46

But all of these transactions are primarily structural. And as mentioned before, we
need to specify the dynamic characteristics of the model toisulate it and further validate
it. This leads to an additional set of transactions. These tmansactions are again of type add
(SQL INSERT), delete (SQL DELETE) and modify (SQL MODIFY). S pecic examples of
each type of SQL statement with speci ¢ key words are shown blew for a portVariable

table,

SQL INSERT: INSERT INTO PORTVARIABLE VALUES (‘PROCESSOR,

"ALERTSIGNAL', "IN', "TENT3', "TENTITY', "MAGO01");

SQL DELETE : DELETE FROM PORTVARIABLE WHERE OWNER = "PROCES-
SOR' AND PORTNAME = "ALERTSIGNAL' AND PORTTYPE = "IN' AND VAR -

NAME = "ENT3' AND VARVALUE = "MAGO01';

SQL UPDATE: UPDATE PORTVARIABLE SET VARTYPE = 'DOUBLEENT
AND VARVALUE = "MAG02' WHERE OWNER = 'PROCESSOR' AND PORT-

NAME = "ALERTSIGNAL' AND VARVALUE = "MAGO01;

The speci cation of all the extended transactions is as folbws,
2.7.1. Add Transactions.

Add Input Port Variable

Input:

{ Port Name
{ Variable Name

{ Variable Data Type

modeler

-

addCoupIing\
7

I .

N,
\y
hN
\,
Y
addNSMModeh, o\
TN
-

\;\?
/,deModeITemplate
k\
\,
ormmm TR S .
Ay
add addStateVariable
47
s
7 0
i
4 .\
7

“
%q\

-

e
- N -
addInPonVarlablg Vi

.
LY
1Y
_addOutPotVariable
/
e _/'
"
Pele
o= bl PPN, ___---"'
vd
7
addinPort s
s
vd
e
e
el
addOutPort

Figure 12. Add Transaction Use Case Diagram

47

48
{ Variable Value
Restriction:

{ Variable must be assigned to port that already exists
{ Port type must be by default \IN".

{ Inputted port variable (variable name) doesn't exist for th at input port in the

template model
Output:
{ A new row gets added to portVariable table
Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable name, variable data type

and variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Add port variable on a specied port of a selected model (SQL NSERT on

portVariable Table)

Add Output Port Variable
Input:

{ Port Name

49

{ Variable Name
{ Variable Data Type

{ Variable Value
Restriction:

{ Variable must be assigned to port that already exists
{ Port type must be by default \OUT"

{ Inputted port variable (variable name) doesn't exist for th at output port in the

template model
Output:
{ A new row gets added to portVariable table
Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable name, variable data type

and variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Add port variable on a specied port of a selected model (SQL NSERT on

portVariable Table)

Add State Variable

Input:

50

{ Variable Name
{ Variable Data Type

{ Variable Value

Restriction:

{ Variable must be assigned to model template that already exits
{ Variable must be assigned only to atomic model

{ Inputted state variable (variable name) doesn't exist in the template model

Output:

{ new row gets added to stateVariable table

Short Transaction:

{ Extract the information regarding the owner model template

{ Extract the information regarding variable name, variable data type and variable

value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Add state variable to a selected model (SQL INSERT on stateVaiable Table)

2.7.2. Delete Transactions.

Delete Input Port Variable

Input:

{ Port Name

@

deleteCoupling

A
]
!
!
)
]
)
]
1
! /,rqdeleteComponent

/
/,/

modeler

deletelnPort
/
/
/
deleteVariable //’ deleteOutPort /
PPl 7 ‘s‘
»
»
P D N
4 4 ‘I
N :
deletelnportVariable |
{
I 3
deleteOutportVariable ¢

deleteStateVariable
ave=*” -
mmmm—

Figure 13. Delete Transaction Use Case Diagram

51

52

{ Variable Name
{ Variable Value

{ Variable Data Type

Restriction:

{ Port type must be by default \IN".

{ Variable and corresponding port must already exist

Output:

{ An existing row gets deleted from portVariable table

Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable hame, variable data type

and variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Delete port variable on a speci ed port of a selected model (L DELETE on

portVariable Table)

Delete Output Port Variable

Input:

{ Port Name

53

{ Variable Name
{ Variable Value

{ Variable Data Type

Restriction:

{ Port type must be by default \QUT"

{ Variable and corresponding port must already exist

Output:

{ An existing row gets deleted from portVariable table

Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable hame, variable data type

and variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Delete port variable on a speci ed port of a selected model (L DELETE on

portVariable Table)

Delete State Variable

Input:

{ Variable Name

54

Restriction:

{ Variable must already exists

Output:

{ An existing row gets deleted from stateVariable table

Short Transaction:

{ Extract the information regarding the owner model template
{ Extract the information regarding variable hame
{ Create an appropriate event with the input values and send itto server

{ Delete state variable from the selected model (SQL DELETE onstateVariable

Table)

In addition to these direct delete operations, there are otler delete operations which

in turn mandate the execution of the above delete operations They are,

Delete port

Requirement: When a port of a model is deleted, all the varialtles associated with the

port must be deleted.

Design: This is achieved by means of database design by enfimg the referential
integrity constraint between the portTemplate and portVar iable table in terms of
columns owner, tName, tType and by cascading the tables upordelete and update

actions.

55

Execution: Due to the database design, whenever port is deted from the portTem-
plate table, corresponding rows from the portVariable table having the same values

for owner model, port name and port type is deleted.

Delete Template Model

Requirement. When an atomic model is deleted, all the state &riables associated with
the model as well as all the port variables associated with <he ports of the model
must be deleted. Also, when the coupled models is deleted, labf its port variables

and all the variables associated with its sub-components mst be deleted.

Design: This is again achieved by means of database design bpforcing the referential
integrity constraint between the portTemplate and portVar iable table in terms of
columns owner, tName, tType, between ModelTemplate and st&eVariable in terms

of column owner and by cascading the tables upon delete and wate actions.

Execution: Due to the database design, whenever the model teplate is deleted, all
the corresponding ports get deleted which in turn delete allthe port variables as
mentioned above. It also deletes corresponding rows in thetateVariable table having

the value for column owner same as that of the model deleted.

2.7.3. Modify Transactions.

Modify Input Port Variable

Input:

{ Port Name

% modify

modeler

56

O

renameCoupling

O N
~~
renameModel S~

renameComponent
mod|fyInPort
\
\
\

s — modlfyPort
. \
\
\
\
\
\

.
\
\
modifyOutPort
\
B

/

modifyVariab| N
"l ..‘----7‘_--
I3
! /
{ /
H /
'n‘ modifylnPortVariable . f"

mod|fy0utP0rtVa,nahle—--"'

Via

modifyStateVariable

Teaa —m—-
it (P VPP S

Figure 14. Modify Transaction Use Case Diagram

57

{ Variable Name
{ Variable Value
{ Variable Data Type

{ New Variable Value

Restriction:

{ Port type must be by default \IN".

{ Variable name, type, value and corresponding port must alrady exist

Output:

{ An existing row gets modi ed from portVariable table

Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable name, new variable type

and new variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Modify port variable on a speci ed port of a selected model (L MODIFY on

portVariable Table)

Modify Output Port Variable

Input:

58

{ Port Name

{ Variable Name

{ Variable Value

{ Variable Data Type

{ New Variable Value

Restriction:

{ Port type must be by default \OUT"

{ Variable name, type, value and corresponding port must alrady exist

Output:

{ An existing row gets modi ed from portVariable table

Short Transaction:

{ Extract the information regarding the owner model template and port type

{ Extract the information regarding port name, variable name, new variable type

and new variable value entered by the user
{ Create an appropriate event with the input values and send itto server

{ Modify port variable on a speci ed port of a selected model (L MODIFY on

portVariable Table)

Modify State Variable

Input:

59

{ Variable Name
{ Variable Type

{ Variable Value

Restriction:

{ Variable name, type and value must already exist

Output:

{ An existing row gets modi ed from stateVariable table

Short Transaction:

{ Extract the information regarding the owner model template

{ Extract the information regarding variable name, variable type and variable value

entered by the user
{ Create an appropriate event with the input values and send itto server

{ Modify state variable of a selected model (SQL MODIFY on stateVariable Table)

In addition to the transactions required for the speci cati on of behavioral aspects of
atomic model, two more utility transactions are added to SESM. They are useful from the
point of view of transformation of the graphical and database models (in terms of structure
and behavior) specied in SESM into the XML and DEVSJAVA simu lation compatible

models. These are Export (Figure 15) and View (Figure 16) transactions respectively.

Rationale for Model Storage on Server

60

% A/exportToXMLModel

-

modeler exportToModel V\

exportToJavaModel

>

Figure 15. Export Transaction Use Case Diagram

As SESM is based on client-server architecture, there are vaous options for storing
the transformed models (such as XML and Java model). Modelercan store the models
on client side or on server side. But this research concenttas on the second approach of
storing the models on the server side. In this approach, the mdels are stored in the form
of at les (such as Java or XML le) at a speci ed location on t he server. The rationale
behind storing the models on server side is reusability. Sice, there are multiple clients can
connect to the server and create models, if the models tranefmed by one modeler is stored
on the server, they are accessible to all other modelers. Thefore, other modelers can use
these models without recreating them. This saves time and eort of model creation. On
the contrary, if the models are saved on client side, each @nt has to generate his own set
of models which results in the duplication of e orts.

2.7.4. Export Transactions.

Export to XML Model

Input:

{ No input

61

Restriction:

{ Model Template must exists in the database

Output:

{ XML model is created and stored at the particular location on server

Short Transaction:

{ Extract the information regarding model in terms of model name, Model type,
ports, couplings (if coupled), port variables, state variebles , variable types and

variable values
{ Create an appropriate event with the extracted information and send it to server
{ Form a XML document (model) with the received information

{ Store the XML model at a particular location on server

Export to DEVSJAVA Model

Input:

{ XML model

Restriction:

{ Model Template and corresponding XML model must already exst in database

and a speci ed directory respectively on server

Output:

62

D -

ASN exportToJavaModel
exportToXMLModel ~~o

\
\
\
\

A/vwewXMLModel \
/VlewMode| \ viewJavaModel

; ; : viewNSMModel
view model

modeler

viewMetrics

\ viewStructuralMetrics

-

viewBehaviorallnformation

Figure 16. View Transactions Use Case Diagram
{ Java (DEVSJAVA) model is created and stored at the particular location
Short Transaction:

{ Send an event to server to get the corresponding XML model frm the server

{ Extract the information regarding model in terms of model name, Model type,
ports, couplings (if coupled), port variables, state variables , variable types and

variable values by parsing the XML model
{ Create an appropriate event with the extracted information and send it to server
{ Form a Java model with the extracted information

{ Store the Java model at a particular location on server

2.7.5. View Transaction.

63

View XML Source Code

Input:

{ XML model

Restriction:

{ XML model must already exists

Output:

{ XML model is viewed in the XML editor

Short Transaction:

{ Send an event to server to get the corresponding XML model frm the server

{ Read the model and display the model to the user

View Java Source Code

Input:

{ Java model

Restriction:

{ Java model must already exists

Output:

64

{ Java model is viewed in the Java editor

Short Transaction:

{ Send an event to server to get the corresponding Java modeldm the server

{ Read the model and display the model to the user

View Behavioral Information

Input:

{ Template Model

Restriction:

{ Template model must exists in a database

Output:

{ Behavioral information is viewed

Short Transaction:

{ Extract the behavioral information from the model in terms of port and state

variables

{ Display this information to the user in to tabular form

65

2.7.6. Data Query. Data query is a query needed to support model manipulation
transactions. These transactions use data queries to reteive information regarding a model
that is partitioned and stored in several tables. Given the design of the manipulation
transactions, the data queries are often performed on a sirlg set of data (a single table)
and no sorting is required. These queries are therefore SQLERECT statements executed
on a single table. Due to the fact that a wide variety of data queries with di erent conditions

and return data are needed, they are not listed individually here.

3. SESM Server Design Extensions

As described earlier, SESM architecture is hybrid client-grver type architecture. In
this, client can access the data from the database directly ¥ connecting to it, but for writing
the data to the database, it needs to go through the server whih essentially writes the data
for client. Therefore, server should support the network béavior (i.e., correct ordering of
transactions to the database) such as sending the noti catbn and requesting the inputs as
shown in Figure 17. It needs to have logic to process messagiEem the client and modify
the database. It needs to perform add, delete and modify opetions to the models stored
in the database. Use-case diagram in Figure 18 for the servaxplains these operations.

Figure 19 represents the package diagram for the SESM servett shows the rela-
tionship between SESM transaction (Add, Delete and Modify) and SQL transactions (add
a row to the table and delete a row from the table, etc). Serverdesign is divided into two
packages corresponding to these two types of transactionsyamely, DBMS and dbAccess
respectively.

As we have mentioned above, we are reusing and extending thaisting server design

by adding new attributes and methods to the existing class stucture. Following are the

Network SESM : Server : SESM Modifier : DBMS
Environment
| ; | | |
: Receive : 1 1
Process : :
| |
PN— | I
| |
g] T Modify Command : :
Continue ' SQL :
~ 1
Result
Statement
Ji
g] Pack Notificatign
Broadcast

Send Request

] Continue

Request Selection

|
|
|
|
|
|
|
L

R NN s M-

Reply

Wait for Reply

P—

Selection

—————e]

Figure 17. SESM Server Interaction Diagram

66

e

7add row to a table «

connect to DBMS Database
7 A N
\)(1 \,
~. | N,
/ N, \,
4 ST \,
\l\ \,
I\ \\
(BN N,
. ! N AN
retrieveDatabaseSchema ! N AN
- N, \
modify a row of a table S~
|
|

O EQ
/Vdeletearowfromatgble -
SesmServer

7
-

>
///
Delete

//4’
-
/ -
7 -
: =

query model structure
view model‘

\
\
\
\
\
\
\\
query information in a table |‘
InitializeDatabase

-

\

\

\

\

\

\

create XML model \‘

\

\ \
get model from server

\ Oq\
\

\

\

\
\

create K O
ﬁ V\ : Q create Java model
-

create NSM model

get XML model
get NSM model

Figure 18. SESM Server Use Case Diagram

67

1

Network environment

server
(from sesmNet)

dmlAccess

dmiModify
 e—

——

)
0' sesmModifier

[®sesmServer()
< reply()
®receieve()
[®broadcast()
[Brun()
®selectSpec()
SESM
I sesmServer
——— 1
dblnit dmlAdd ®addModelTemplate()
— Baddport)
[®addPortvariable()
[®addstateVariable()

Q 'addNSMModelTemplate()

addSpecialization()

WY
[®addCoupling()

addComponent
P 0
._4 1 ModelT)

sesmDel

[®deletePort()
[®deletePortvariable()
[®deleteStateVariable()

/| ¥deleteCoupling()

[®deleteComponent()
®modifyModelTemplate()
®modifyPortName()
®modifyPortVariable()
®modifyStateVariable()
[®addModelinstance()
[®deleteModellnstance()

DBConnectivity

 —

Figure 19. SESM Server Component Diagram

68

69

extension to the existing classes in the server design.

3.1. dbms package. This package provides classes (sesmDb, sesmAdd, sesmDel,
sesmModify and sesmQuery), with the methods that are diredy mapped to the transac-
tions. Classes in this package cannot directly access the thbase. For that, they have to go
through the short transactions de ned later in the dbAccesspackage. This package focuses

on de ning the transactions of SESM.

sesmDB Class
The sesmDB object provides all the operations required to maipulate the database
according to the SESM. The primary functions of this object are checking correctness of

the input and interface with users.

Existing Attributes

{ theQuery: SESM.sesmQuery object used to perform queries trgeving SESM

model information
{ add: SESM.sesmAdd object used to perform add operations inESSM models
{ delete: SESM.sesmDel object used to perform delete operatis on SESM models

{ modify: SESM.sesmModify object used to perform modify opeations in SESM

models

New Methods

{ addNsmModelTemplate: add a new NSM model template to the redtional data-

base

70

{ delINsmModelTemplate: delete existing NSM model template fom the relational

database
{ addPortVariable: add a port variable to an speci ¢ existing port of a model
{ addStateVariable: add a state variable to a model
{ delPortVariable: delete a port variable of speci c existing port of a model
{ delStateVariable: delete a state variable of a model
{ modifyPortVariable: modify a port variable of speci ¢ existing port of a model

{ modifyStateVariable: modify a state variable of a model

Existing Methods:

{ addModelTemplate: add a new model template to the relation& database
{ addPort: add a port to an existing model

{ addComponent: add a component to an existing model

{ addSpecialization: create a specializing model from an egiing model

{ addCoupling: couple two existing ports

{ addModelinstance: create a new model instance from a modekmplate
{ delModelTemplate: delete an existing model template

{ delPort: delete a port from a model template

{ delComponent: delete a component from a model template

{ delCoupling: delete an existing coupling

{ delModellnstance: delete an existing model instance at theoot level

{ modifyModelTemplate: modify the name of an existing model emplate

71

{ modifyPortName: modify the name of a port
{ modifyModelName: modify the name of an existing model instace

{ requestUserinput: request the user to select a specializqnmodel for a specialized
model. Abstract method should be implemented by the collaboative environ-

ment

sesmAdd Class
The sesmAdd class extends the SESM.dbAccess.dmlAdd class perform add trans-

actions of SESM.

Existing Attributes

{ theQuery: SESM.access.dmlQuery object used to query for nael information

New Methods

{ modeINsmT: add a new NSM model template to the relational dagbase
{ portVariable: add a new port variable to an existing port of a model

{ stateVariable: add a new state variable to a model

Existing Methods:

{ modelT: add a new model template to the relational database
{ port: add a port to an existing model
{ compomentOf: add a component to an existing model

{ specialization: create a specializing model from an exigtig model

72

{ coupling: couple two existing ports

{ instance: create a new model instance from a model template

sesmDel Class
The sesmDel class extends the SESM.dbAccess.dmlDel classperform delete trans-

actions of SESM.

Existing Attributes

{ theQuery: SESM.access.dmlQuery object used to query for nael information

New Methods

{ modeINsmT: delete an existing NSM model from relational daabase
{ portVariable: delete an existing port variable of an existing port of a model

{ stateVariable: delete an existing state variable to a model

Existing Methods:

{ delModelTemplate: delete an existing model template

{ delPort: delete a port from a model template

{ delComponent: delete a component from a model template
{ delCoupling: delete an existing coupling

{ delModellnstance: delete an existing model instance at theoot level

sesmModify Class

73

The sesmModify class extends the SESM.dbAccess.dmIModifylass to perform mod-

ify transactions of SESM.
Existing Attributes

{ theQuery: SESM.access.dmlQuery object used to query for nael information
{ add: SESM.access.dmlAdd object used to restore the modi edalues

{ delete: SESM.access.dmiDel object used to delete the old ees

New Methods

{ portVariableName: modify an existing port variable of an existing port of a

model

{ stateVariableName: modify an existing state variable to a nmodel

Existing Methods:

{ modifyModelTemplate: modify the name of an existing model emplate
{ modifyPortName: modify the name of a port

{ modifyModelName: modify the name of an existing model instace

3.2. dbAccess package. This package provides classes (dbinit, dmlAccess, dm-
IAdd, dmiDel, dmIModify, and dmlQuery, query, and SQLUIil) , which can manipulate and
qguery the relational database. The schemas de ned here areof the relational database.
Therefore, all transactions included in the SESM.access pkage are short transactions ex-

pressed in SQL.

74

SQLULtil Class
The SQLULIl class provides static methods to generate SQL sitements from generic

variables.

Existing Methods:

{ dropTable: generate SQL DROP TABLE (DML) statement to drop a table

{ createTable: generate SQL CREATE TABLE (DDL) statement to c reate a table
{ insert: generate SQL INSERT (DML) statement to insert a new row into a table
{ delete: generate SQL DELETE (DML) statement to delete a row from a table
{ update: generate SQL UPDATE (DML) statement to update rows in a table

{ query: generate SQL SELECT (DML) statement to query the database

dmlAccess Class
The dmlAccess class provides connectivity between the apjation and the RDBMS.
Other than controlling a connection between the application and the relational database,

this class also manages all transactions to enforce atomtiyi

Existing Attributes

{ userID: the user name for the relational database
{ password: the password for the relational database
{ ip: the ip address of the relational database system

{ dblD: the identi cation of the relational database management system

75

{ dbConnect: the JDBC connection provided by the relational database manage-

ment system vendor.

Existing Methods:

{ open: open a connection to the relational database
{ close: close the current opened connection

{ exeSQL: execute a SQL statement (perform an atomic transadn) without re-

turn values
{ connectioninfo: get the current connection information
{ checkConnection: check to see if a connection is opened
{ startTransaction: start a long transaction

{ endTransaction: end a long transaction

dblnit Class
The dblnit class contains static variables mapped from the £SM database schema

and it provides the method to initialize the relational data base

New Attributes

{ NSMTEMPLATE, NSM _ID, PORTVARIABLE, PT _VARNAME,
PT _VARTYPE, PT _VARVALUE, STATEVARIABLE, ST _OWNER,

ST_VARNAME, ST VARTYPE, ST -VARVALUE

Existing Attributes

76

{ SESM Database Schema: static variables

{ dbConnect: connectivity to the relational database.

Existing Methods:

{ initDB: initialize the relational database currently conn ecting to. All the previous
data in the database is erased. The schema is then de ned in th relational

database.
{ createAllTables: de nes all the table schema

{ dropAllTables: drops all the table schema

dmlAdd Class

The dmlAdd class performs add operations (SQL INSERT) on datbase.

Existing Attributes

{ dbConnect: connectivity to the relational database

{ theQuery: to query the data from the database.

New Methods

{ modeINSMT: insert a new row into the NSMTemplate table
{ portVariableT: insert a new row into the portVariable table

{ stateVariableT: insert a new row into the stateVariable table

Existing Methods:

{ modelT: insert a new row into the modelTemplate table

77

{ modelTI: insert a new row into the modelT]I table

{ port: insert a new row into the portTemplate table

{ portTl: insert a new row into the portTI table

{ compomentOf: insert a new row into the componentOf table
{ coupling: insert a new row into the coupling table

{ modell: insert a new row into the modelinstance table

{ MTItoSMI: insert a new row into the MTItoSMI table

{ componentOfl: insert a new row into the componentOfl table

{ addRow: insert a new row to a particular table

dmiDel Class

The dmlDel class performs delete operations (SQL DELETE) onthe database

Existing Attributes

{ dbConnect: connectivity to the relational database.

New Methods

{ portVariableT: delete a row in the portVariable table

{ stateVariableT: delete a row in the stateVariable table

Existing Methods:

{ modelT: delete a row in the modelTemplate table

{ modelTI: delete a row in the modelTI table

78

{ port: delete a row in the portTemplate table

{ portTl: delete a row in the portTI table

{ compomentOf: delete a row in the componentOf table
{ coupling: delete a row in the coupling table

{ modell: delete a row in the modelinstance table

{ MTItoSMI: delete a row in the MTItoSMI table

{ componentOfl: delete a row in the componentOfl table

{ deleteRow: delete a row in a particular table

dmIModify Class

The dmIModify class performs modify operations (SQL UPDATE) on database

Existing Attributes

{ dbConnect: connectivity to the relational database.

New Methods

{ portVariable: modify a row in the portVariable table

{ stateVariable: modify a row in the stateVariable table

Existing Methods:

{ modelName: modify the model template name (Name) in the moddemplate

table

79

{ modelType: modify the model template type (modelType) in the modelTemplate

table

{ instanceName: modify the model instance name (modelNamehithe modelln-

stance table

{ modifyRow: modify a row in a particular table

dmlQuery Class

The dmlQuery class performs query operations (SQL SELECT) a database

Existing Attributes

{ dbConnect: connectivity to the relational database.

New Methods

{ modeINSMT: query the NSM template(s) from NSMTemplate table

{ portVariableT: query port variable name from portVariable table

{ portVariableTypeT: query port variable data type from port Variable table

{ portVariableValueT: query port variable value from portVa riable table

{ stateVariableT: query state variable name from stateVaricble table

{ stateVariableTypeT: query state variable data type from stateVariable table
{ stateVariableValueT: query state variable value from stateVariable table

{ getNsmModels: query the names of all the existing NSM models

Existing Methods:

80

{ modelT: query the modelTemplate table

{ modelTI: query the modelTI table

{ port: query the portTemplate table

{ portTl: query the portTI table

{ componentOf: query the componentOf table
{ coupling: query the coupling table

{ modell: query the modelinstance table

{ MTItoSMI. query the MTItoSMI table

{ componentOfl: query the componentOfl table

{ getData: query a particular table

3.3. sesmNet package.

ServerUtility Class

This new class is added to provide the utilities to the serverto deal with the events
sent by the user to create, view, modify three di erent types of the models namely, XML,

Java or NSM models.

Methods

{ createFile: generic method which creates di erent types ofles for models (XML,

Java, NSM) in appropriate folders on the server.

{ isFilePresent: generic method to check whether a particulatype of method is
present in a particular folder on server.

{ getOverWritePermission: generic method to get the permis®n for overwriting

the le in a particular folder on server

81

{ writeToFile: generic method to write the contents of the le and send return

event to client upon completion
{ getFile: method to get XML le on the server to create corresponding Java model

{ viewFile: generic method to process view event of the clienand send him a

correct le from the server to view it on client

{ addNsmToDB: method to add NSM model to database.

In addition to this, the existing code of the sesmNet.sesmSeer, sesmNet.sesmClient
and sesmEvent.sesmEvent classes is extended to incorpoeathe functionalities related to
the creation, deletion and modi cation of port variables, state variables and creation, mod-
i cation and viewing of NSM models, XML models and Java Models.

The sequence diagram details sequence of server operatiofts adding a state vari-
able to an atomic model depicting the relationship between derent SESM transactions

and SQL transactions is shown in Figure 20.

4. SESM Client Design Extensions

In SESM architecture, client is one of the four major componeats. The client can
create, delete or modify the model data by sending a request ith required parameters to
the server as shown in Figure 21. The clients requests are salized if they are intended to
modify the model. The serialization ensures that the serverreceives only a single request
at a time. When the server receives the modi cation request,it broadcasts the noti cation
to all the clients associated with it. When the client receives the noti cation from the
server, it reads the model data directly from the database, efreshes the GUI accordingly

and noti es the user about the modi cations made. If a requed for reply from the Server

weibelq aosusanbas Janles NSIS ‘0z ainbiH

lelad@|geleA a1e1s ppy :

uol

R

:Channel :sesmServer ” :sesmDB |
: Server
| addStafeVariable)
ddStateVariabl
existStatevariable
doesn't Exist
<—————————————-
1
add State
success
€ e e
{transient}
sesmEvent 1
sendgggmpEve =TT |
“Client 7|]
e Wait |
' X
|

| :sesmQuery I

getStateVariables

stateVariableList

ariable to Model

————

:dmlQuery :sesmAdd :dmlAdd :dmlAccess SQLutil Relational
Database
addRowToDatabase!
executeSQL
checkDatabakeConnection
sucgess
createSQL
L
Insert statement
.
executelnsgrtStatement
sucdess
PR PN —
success
———— T
success
e ———————
f—————

8

83

was received, the Client interacts with the user to obtain the reply and send it back to
the Server. However, if the transaction (modi cation) is not complete, server sends out a
noti cation to a speci c client who is requesting the modi ¢ ation with the reason of failure.

Thus, requesting client receives the feedback of the incomete transactions.

: Network . Client :GUI : SESM Query : DBMS
Environment - User
: Notification | : : :
Refresh : Data Query : :
1 SQL :
Data Structure
Statement
Continue T
: : Build N‘odel I
- |
: Displaly Model Graphically fo User
T
r | L
]] Command]
| | 1
| | Message
: Send Request |
| Ié Continue
H <1
|
=Request for Reply |
! 1 T
Request Yser Reply L
Send /LI
User Reply
Continue T

Figure 21. SESM Client interaction diagram

84

CHAPTER 5

USER INTERFACE DESIGN

1. Client GUI Analysis

The graphical user interface (GUI) of the SESM modeling envionment (as shown

in Figure 2) is divided in to three main divisions, namely

Model Tree Structure: This view represents the model data, tored in the database, in
a hierarchical tree like structure. It maintains three types of trees - Template Model

tree (TM), Instance Template tree (ITM) and Instance Model T ree (IM).

Model Components: This view creates graphical representén of model structure,

ports, couplings and components to make them easy to read anthanipulate.

Command Menu: This is a pop-up menu provided to the user to ineract easily with

the visual models and to manipulate them.

All these three areas of the client GUI are extended in order ¢ support the objectives

of this research as well as to provide better interaction andbetter view for the user.

1.1. Model Tree Structure Extension. This view is extended to support Non-
Simulatable Model Tree (NSM) as shown on the left-hand siden Figure 22. Also, simulat-

able model trees and non-simulatable model tree are separadl from each other by putting

86

2] SESMICM (=123

Operations Database About

2e|E

3 NEM Models
[pag
D Baglnterface
[y coardTirmer
D countCoord
[y doukleEnt
D ensembleBag)
[} ensembleBasic public entity(String nw){
[ensembleColiection || name = rm;

[ensemblelnterface })
D ensembleList i public boolean eqiString nm) {

. return getName (). ecquals (nm) 2
D ensemblelogic

}
[ensembleset

public class entity extends Object implements EntityInterface!
protected String name;

public encicyi) !
name = "anEntity”:

D ensemhble\rapper i public Object equalllame (3tring nm) |
D antity “||1if (eqinm)] return this:
D Entitylnterface | else return null;

i

[ExtemalRepresentation & |

.:::'l |’| #| | public boolean ecquals{0hject o) Afowerrides pointer equality of Object
a2l it (1o instanceof entity))return false:
1 raturn serl i fantituial cetMansiils

Save Model || Reset |

-

Figure 22. Non-Simulatable Model Tree and View

them in two di erent tabs, speci cally, Simulatable and Non -Simulatable. Non-Simulatable
tree displays all the non-Simulatable models available to he user in an alphabetical order,
but doesn't support the composition or hierarchical structure of the model.

This GUI also supports the creation of new NSM models. A new pp-up menu is
provided for NSM trees non-leaf node, which allows a user todd new NSM models on a
server. On server, NSM model name is stored in the databaseaig with the creation time,
while the model source code is stored on the server as a at leat a specied location.
When user clicks on the \add new NSM" menu, it asks user for themodel name and then
creates the model on server and refreshes the NSM tree view te ect the addition of new

model.

87

Zonel
Router_GWC_Uplink, = Router_GWC_Uplink
Router_GWC :
el L ittt 1 i
el U e !
b 7 -+ Uplink el ---1

' 1 [GWC Network !
‘ w|SW_S000_Uplink SvW_5000_Uplinkf—
{

[1 [ECG Netwark
SV _S000_Uplink SW_5000_Uplink

Figure 23. Model Visualization Enhancements

1.2. Model Components Extension. This view is also extended to support the
visualization of the code of the non-simulatable model in adition to graphical representa-
tion of simulatable models as shown on the right hand side of lgure 22. This view extracts
the source code of the model selected by the user on the treedi, entity in this case) and
views it on the right-hand side. It also provides a facility to manipulate the non-simulatable
model at the source code level by supporting the editing and aving of the source code.

The graphical representation of the atomic and coupled modis is enhanced by di er-
entiating in their shapes by showing atomic models as rectagles while the coupled models
as rounded rectangles. Forward and feedback couplings ardsa di erentiated from each
other by providing them with di erent line types. These enhancements are shown in Figure
23. In this diagram, \Router _.GWC" is an atomic model while \GWC Network", \ECG
Network" and \Zonel" are coupled models. Forward couplingsare shown by \dotted lines"

while feedback couplings are shown as \center-lines".

1.3. Command Menu Extension.
Re-structuring of model menu

Visual model command menu is restructured from the previousversion of modeling

88

E-R Diagrams

Database = Structures

= Relationships

Wiews f GUI
= Logical
= Graphical
SESM
Mathematical
Formalism M={(X,87Y,8,386,703_ it}

Figure 24. Relationship between Formalism, Database and GU

environment i.e., SESM/CM. The rationale for changing this is to keep the consistency be-
tween the System View (i.e., mathematical representation bmodel), SESM views/GUI (i.e.,
graphical or logical representation of model) and Databasd(i.e., structural and relational
representation of the model) as shown in Figure 24.

As shown in the gure, the formalism de nes the models in terms of X (set of
inputs), S (set of states) and Y (set of outputs). The databas is also designed to have
similar relations such as port variable table (inputs and ouputs) and state variable table
(states). In order to make the user speci cation of the modelconsistent with the system
formalism and database, the model menu for capturing these peci cations graphically is
designed as shown in Figure 25.

This is a high level menu which is divided into di erent types of modeling activities.

The middle portion of the menu is divided into three parts input port, output port and

89

Model]
Input port »
Output port »
States b
Export to [
View »

Figure 25. Model Menu for an Atomic model

states correspond to inputs, outputs and states describedni the formalism and database.

Capturing Behavioral Aspects

Model menu incorporates the menu items to provide facility to capture dierent
structural as well as behavioral aspects of the model. Struaral aspects (i.e., creating a
model template, adding a component, port, coupling) of the nodel are supported in the
previous version of SESM/CM. Therefore, this research prinarily concentrates on o ering a
mechanism to the user to specify the behavioral aspects of thmodel. This mainly involves
the design of the user interface for speci cation and modi ation of input, output and state
variables. It also involves redesign of structural model mau items. Figure 26 shows menu
for the speci cation of an input port variable.

When the user clicks on the menu, corresponding input dialogappears, as shown in
Figure 27, to accept inputs from the user. It takes the inputssuch as port name, variable
name, variable data type and variable value from the user. Itis designed in such a way that
for all combo-boxes except for the data type combo-box, the dta is generated at run time

depending on the model selected and the data corresponding tthat model existed in the

(b) (c)

Figure 26. Model Menu for a. Adding, b. Deleting, ¢. Modifying Input Port Variable

90

91

database. This achieves automatic input validation. Also, it makes sure that user enters
all the other required input parameters. Variable data type can be one of the primitive
data types (i.e., character, integer, oat, double, long, boolean or string) or one of the
non-simulatable models.

User can access these non-simulatable models by using theodit gure" item in the
data type combo-box which allows user to select the NSM from he list by showing it in a
dialog box as shown in Figure 28. Similar interfaces are créad for the output variable
and state variable speci cation.

Some structural user interfaces are also created for the opations \Delete Compo-
nent" and \Modify Component" to delete or modify the sub-com ponent of a model respec-

tively as shown in Figure 29 and Figure 30.

Model Transformation

SESM is a modeling engine that supports the development of miels which may
be simulated using a simulation engine. Therefore, once the structure and behavior is
speci ed, they can be simulated to observe behavior and ende model validation. To
achieve this, models need to be converted into simulation gapatible format. In this case,
it is DEVSJAVA format as this research is using DEVSJAVA as a smulation environment.

To support this, SESM is provided with an additional menu item, \Export to".
This menu item further gives options to export the model to either XML model (i.e., XML
format) or DEVSJAVA model (i.e., Java format) as shown in Figure 31. When user
clicks the menu item, SESM creates the corresponding modelsaa at le on server at
an appropriate location and sends a noti cation to the client regarding the creation and

location of the model.

92

F=3 Add Port Variable

Port Name ; inport1

Port Hame :

Variahle Hame : Variable Hame : in - |

Variahle Data Type : | double Variahle Walue : 10.7 - |
VWariable Value : 107 Variabhle Data Type : |duuh|e vJ
Add Cancel Delete Cancel
(a) (b)

k=3 Modify Port Variable

Port Name :

Yariable Hame :

Variable Walue :

Hew Yariable Type :

Hew Variahle Yalue :

Modify

(€)

Figure 27. Interface for a. Adding b. Deleting c. Modifying Input Port Variable

93

E’ﬁ Add NSM Component to genr El

E Select NSM Template Name

ensemhblelnterface
ensemblelist
ensemhblelogic
ensemhbleSet
ensemblevyrapper
entity

Entitylnterface
ExternalRepresentation
Function
Functioninterface b

OK Cancel

Figure 28. Interface for Selecting the NSM as a Variable

2l o
=3 Modify Port _
Lj ¥ E;% Delete Paort
Solect Port H . R -

- Select Port Name : |inport1 |
New Name ;

Delete Cancel
Rename
() (b)

Figure 29. Interface for a. Modifying b. Deleting Port of a model

94

3 Modify Component

& Delete Component @

Computer
|F'C |

Rename Cancel

Select Component ;
- Select Component :

Mew Name ;

Delete Cancel

(a) (b)

Figure 30. Interface for a. Modifying b. Deleting Componentof a model

Model] |
Input port »
Outpant port »
| Exportto b xmL Model
View » | DEVSJava Model

Figure 31. Menu for Model Export

95

Model »

Input port

Outpant port

Exportto P

View ¥ | XML Source Code
Java Source Code
Metrics ’

Figure 32. Menu for Source Code View

Once the model is created on server it is necessary to have a of@mnism for the
user to view the source code of the same. For this, SESM is suppted with a menu called
\View". This menu is again divided to view XML Source Code, Java Source Code and
Metrics of a model as shown in Figure 32.

When the user clicks on the menu to view XML or Java source codecorresponding
model in the form of a at le is requested from the server and showed to the user in the

GUI as shown in Figure 33 and Figure 34. respectively.

Model Metrics

Under \View" menu item there is another sub-menu item which allows user to see the
structural metrics and behavioral information about the model. The behavioral information
of the model shows ports, port variables, state variables, ariable types and variable values

(see Figure 35).

E=3 Source Code : genr.xml

nzZport CDATL #REJUIFRELC-
1=
=model>
<coupledModel name="genr >
<inport hame="inportl’ =
< Ffinport=
<atomicModel name=""Computer: 297>
“inport name="NIC">
<finport>
“inport name="T3E">
=finports
<outport name="NIC">»
= foutports=
=outport name="TI5E">
=foutports=
<fatomicModel>
<foouplediaodel>=
= fmodel>-

Figure 33. Model Viewing GUI for XML Model

E= Source Code : genr. java
import genbews.simulation.®;
import util.*;

import GenCol.®:

public class genr extends ViewableDiagraph!

J/add Defanlt Constructor
public genri){
this("genr');

S/bdd Parameterised Constructor
public genr(3tring name) !
super (name)

SAadd Input Port Names
addInport|"inportl™) ;

J/add Dutput Port Names

Figure 34. Model Viewing GUI for Java Model

f= Behavioral Metrics : genr

Attribute Marme Type
Maocdel genr ATOMIC
Inputwvariables
Atinport
in douhle 107

Cutput variables
At autportt

out char a

State variables

Figure 35. Behavioral Information of Model

97

98

2. GUI Design Extension

The sesmUIl package is designed to support displaying a set oflasses. ses-
muUI package is restructured and is now divided into sesmuUI.nenu, sesmuUl.graphics, ses-
muUl.panel and sesmUl.builder sub-packages to support visal object based command menu
and constraint-based drawing respectively. Another sub-pckage is created within ses-
muUl.menu package called sesmUl.menu.subMenu to support fictionality of di erent sub-
menus formed after the restructuring of the menus from the pevious version. These new
packages (i.e., panel, builder and sub-menu) support the deavioral aspects of an atomic
model and also non-simulatable model functionality. The GU is implemented using the
Swing and AWT packages in the Java Foundation Classes (JFC).

sesmUl package is restructured. It has now only two classesiamely sesmGUI and
rootModel. More detailed descriptions of the new package ar given below. The sesmGUI
class represents the overall GUI that user will interact with. The rootModel class provides
basic capabilities such as refresh and mode. The sesmUI. grhics package consists of a
set of classes for visualizing a single or multi-level modelThese classes collectively de ne
the set of constraints (e.g., diagonal placement of model aoponents) that are necessary
for organizing components in a systematic fashion. sesmUbuilder is new package created
due to the restructuring of the classes. This contains all tle old classes related to the tree
building functionality (such as treeBuilder, treeSelectionListener, modelNode and message)
and a new class NSMBuilder which essentially support buildig and storing of new NSM
models and viewing of existing NSM models.

sesmUl.menu package is altered as mentioned before to restiture the menus to

make these menus hierarchical and mainly consistent with te formalism. And a new

99

package, named submenu is added within a sesmUl.menu paclagClass representation of
this package is shown in Figure 36.

Classes in this package provides the functionality correspnding to capturing the
user inputs related to the speci cation of the behavioral agpects of the model, model trans-
formation and model view. This supports capturing and packing this information in to an
appropriate event and sending that event to the server for futher processing.

Another new package is created within sesmUl called panel. lass representation
of this package is shown Figure refsemUl.panel Class Diagna. This package provides the
functionality of providing the user interface for the actual speci cation of di erent values
for sub-components, input-output ports, input-output por t variables and state variables.

These panels contains di erent user interface componentsugeh as text boxes, combo
boxes, lists, buttons, etc. to enter the actual values or to nteract with the actual system.

An extensive sequence diagram for client for the same \Add Stte Variable" opera-

tion for server shown in Figure 20 is shown in Figure 38.

3. Model Transformation Design

A new package is created for the transformation of the model.This transformation
involves the conversion of the graphical model whose inforattion is stored in the database
in the form of relations, into simulation compatible models. For this, a two step approach is
developed which involves the conversion of the model rst ito XML model and then from
XML to DEVSJAVA model.

The rationale behind the two step conversion instead of diretly converting into
DEVSJava model is to provide reusability. DEVSJAVA is a simulation engine speci c to

carry out simulation of discrete event models while on the oher hand SESM is a generic

ModelExportSubMenu BaseSubMenu
¥ BasicModelExportSubMenu() [#BaseSubMenu()
[®rcreatexmiFile() [®actionPerformed()
[®actionPerformed()
[®createXMLModelOnServer()
PortSubMenu StateVariableSubMenu
'StateVariableSubMenu()
=:;ri:)snl;>be':‘f2?:12 40 lactionPerformed()
XmIModelExportSubMenu JavaModelExportSubMenu GomponerSubhend PortvariableSubMenu
®ComponentSubMenu() ®PortvariableSubMenu()
=:$m%ier|f§:nl:z:3UbMEﬂu() =ii;§aﬂss§(l)lf;pe%r(1)8ubMenu() [$actionPerformed() [®actionPerformed()
®rcreateJavafile()
MetricsSubMenu SourceCodeSubMenu
[MetricsSubMenu() 'SourceCodeSubMenu()
[®addMetricsTable() actionPerformed()
[®actionPerformed() ®getModelString()
[®addToProgramEditor()

BehavioralMetricsSubMenu StructuralMetricsSubMenu

. XmlSourceCodeSubMenu JavaSourceCodeSubMenu
¥BehavioralMetricsSubMenu() ®structuralMetricsSubMenu()
=:§tc|;:/|r1;’deerlf'c\)‘rammeeci(§) [W=ctonGerionnedy #¥XmiSourceCodeSubMenu() [®JavaSourceCodeSubMenu()
[®addinports()
®addOutports()
[®addstates()
[®addNsmModels()
®addRowToTable()
®rcreateModelinfo()

MenuDialog

[®BaseMenuDialog()

Binitialize()

[®sendEvent()

PortVariableMenuDialog PortMenuDialog ComponentMenuDialog StateVariableMenuDialog
®PortvariableMenuDialog() ¥ PortMenuDialog() ¥ ComponentMenuDialog() [®stateVariableMenuDialog()
®addPanelComponent() -addPanelComponent() [®addPanelComponent() [®addPanelComponent()
®rhandleEvent() ®handleEvent() ®handleEvent() B®handleEvent()

Figure 36. semUl.menu.subMenu Class Diagram

100

101

BasePanel

$BasePanel()
{#init()
$addButtonComponents()
PsetinputPanelGrid()

Fgetvalues()

®getinputStatus()

ComponentPanel

®ComponentPanel()

Finit()
%addinputComponents()
®adjustButtonComponents()
®actionPerformed()

StateVariablePanel

®StateVariablePanel()

init()
$addinputComponents()
®adjustButtonComponents()
®actionPerformed()
®itemStateChanged()

PortPanel

PortVariablePanel

®portPanel()

init()
®addinputComponents()
®adjustButtonComponents()

®actionPerformed()

®portvariablePanel()

init()

®addinputComponents()
%adjustButtonComponents()
SactionPerformed()
®itemStateChanged()

Figure 37. semUl.panel Class Diagram

modeling engine which can support three types of models (i.econtinuous, discrete time and
discrete event). Since, XML is generic, once the modeler ha¥ML model he can simulate
it using any type of simulator provided he has a mechanism to onvert this XML model to
the model compatible to his simulation environment. But, this research is concentrating on
XML and DEVSJAVA combination as it uses DEVSJAVA as a simulat ion environment.

In SESM, transformation package is created which is furthersub-packaged in to
\xml" package and \java" package which correspond to convesion of model to XML and

Java models respectively.

3.1. tranformation.xml package. This package is divide into two packages

namely, transformation.xml.xmlFormatter and transforma tion.xml.metaDevsXml. Class
diagram for xmlFormatter package and metaDevsXml package ee shown in Figure 39

and 40.

welbeiq asusanbas al) 'ge ainbi4

mdO 9|geLeA arels ppy

uol

- modeler

|
|
| Open Model Menu

- e e e

Continue

=

<<Created>>

<<Created>> >

Add Panel To Dialog |

pack

—]

get Input Status

L

Input Status

get Input Values

Input Values

<<Created>

check User Inputs

=

set In;{l't\/alues

U

Send Sesm Event

X

Ye————-

end Sesm Eventy

{transient} {transient} {transient}
:ModellTMenu :InportMenu :AddMenu :StateVariableS :StateVariable :StateVariableP| :sesmEvent :sesmClient | :channel |
ubMenu MenuDialog anel
Click "States"
Click "Add"
Click "State Variable"

Notify Server and Wait

0T

XMLDocument

VERSION_HEADER : Logical View::java::lang::String = "<?xml version=\"1.0\"?>"
EXTERNAL_DTD : Logical View::java::lang::String = "devsXML.dtd"

MODEL_TAG : Logical View::java::lang::String = "model"

ATOMIC_MODEL_TAG : Logical View::java::lang::String = "atomicModel"
[QICOUPLED_MODEL_TAG : Logical View::java::lang::String = “coupledModel"

INPORT_TAG : Logical View::java::lang::String = “inport"
OUTPORTiTAG : Logical View::java::lang::String = "outport"

INPORTVARfTAG : Logical View::java::lang::String = "inportVariable"
OUTPORTVAR_TAG : Logical View::java::lang::String = "outportVariable"
INPORTVARVALUE_TAG : Logical View::java::lang::String = "inportVariableValue"
OUTPORTVARVALUE_TAG : Logical View::java::lang::String = "outportVariableValue"
INPORTVARTYPE_TAG : Logical View::java::lang::String = “inportVariableType"
[QIOUTPORTVARTYPE_TAG : Logical View::java::lang::String = "outportVariable Type"

[JISTATE_TAG : Logical View::java::lang::String = "states"

STATEVARiTAG : Logical View::java::lang::String = "stateVariable"
STATEVARTYPEfTAG : Logical View::java::lang::String = "stateVariableType"
STATEVARVALUE_TAG : Logical View::java::lang::String = "stateVariableValue"

NSMMOD_TAG : Logical View::java::lang::String = "nsmModel"
NSMCLS_TAG : Logical View::java::lang::String = "nsmClass"
NSMOBJ_TAG : Logical View::java::lang::String = "nsmObject”
COUPLING_TAG : Logical View::java::lang::String = "coupling”
[GINAME_ATTR : Logical View:;java::lang::String = “name"”
[PMINAME_ATTR : Logical View::java::lang::String = "m1name"
[EBM2NAME_ATTR : Logical View::java::lang::String = "m2name”
[@M1PORT_ATTR : Logical View::java::lang::String = "m1port"
[@M2PORT_ATTR : Logical View::java::lang::String = "m2port"

®dtd()
®emptyDocument()

Converter XMLFileCreator
[®getMetaAtomicModel() E#XMLFileCreator()
[®getMetaCoupledModel() [®formatAsFile()
[@setCouplings() ._formatAsString()
{B*getMetaChildModels() indent()
[fextractPortNames() B¥formatCoupledModel()
{BextractPortVariables() B#formatAtomicModel()
[BrextractStateVariables() B¥formatCouplings()
[@extractNsmVariables() B¥formatPorts()

#®getModelName()

Figure 39. transformation.xml.xmlFormatter Class Diagram

EformatlnportVariables()
B#formatOutportVariables()
E¥formatinportvalues()
B¥formatOutportvalues()
B¥formatStates()
BFformatNsmModels()

103

104

MetaXmIDevsModel

®MetaxmiDevsModel()
[®setName()
®getName()
®addinport()
®addoutport()
®removelnport()
®removeOutport()
®getinports()
®getOutports()
B®setinports()
®setoutports()
[®getinportvariables()
Bgetoutportvariables()
®setinportvariables()
[®setOutportvariables()
[®getinportVariableTypes()
getOutportVariableTypes()
'setlnponVariabIeTypes()
.setoutportVariableTypes()
BgetinportvariableValues()
.getOutponVariabIeVaIues()
.setlnponVariabIeVaIues()
.setOutportVariabIeVaIues()

MetaXmlAtomicModel MetaXmlICoupledModel
®MetaXmlAtomicModel() B MetaxmiCoupledModel()
[BgetStateVariables() MetaXmiCoupling B addSubComponent()
®getStateDatatypes() ®removeSubComponent()
.gelSlaleVaIyes() ®MetaXmiCoupling() ®getSubComponents()
[®setstateVariables() [®getm1() [®setsubComponents()
[$setstateDatatypes() [®getv2() [®getsubComponentByName()
.setStateVal.ueS() ®getM1Port() [®egetCouplings()
BgetNsmVariables() BgetM2Port() [®addCoupling()
[®setNsmVariables() [®removeCoupling()

Figure 40. transformation.xml.metaDevsXml Class Diagram

Converter class extracts the information of the graphical nodel in terms of model
name, model type, sub-components, ports, couplings, port ariables and state variables.
XMLFileCreator class formats the extracted values by conveter in to a XML le. It uses
XMLDocument which stores all the constant values for the di erent tags in the XML
document.

xmlFormatter package consists of classes such as metaXmlémicModel, metaXml-
Coupling and metaXmlCoupledModel which provide get and setmethod to store the in-
formation extracted by the converter class explained befoe. These methods are speci ¢ to
atomic model, coupling and coupled model while the informaion common to all these is

stored in the super class metaXmlDevsModel.

105

JavaDocument
PACKAGE_TAG : Logical View::java::lang::String = "package "
IMPORT_TAG : Logical View::java::lang::String = "import "
nPUBLlciTAG : Logical View::java::lang::String = "public "
EPROTECTEDiTAG : Logical View::;java::lang::String = "protected "
ECLAssiTAG : Logical View::java::lang::String = "class "
EEXTENDS_TAG : Logical View::java::lang::String = " extends "
nTHIS_TAG : Logical View::java::lang::String = "this"
SUPER_TAG : Logical View::java::lang::String = "super"
VOID_TAG : Logical View::java::lang::String = "void "
nNEwiTAG : Logical View::java::lang::String = " new "
!.ADDiTAG : Logical View::java::lang::String = "add"
!.VIEWABLEATOMlciTAG : Logical View::java::lang::String = "ViewableAtomic"
EVIEWABLEDIAGRAPH_TAG : Logical View::java::lang::String = "ViewableDiagraph"
nADDCOUPLING_TAG : Logical View::java::lang::String = "addCoupling”
nADDINPORT_TAG : Logical View::java::lang::String = "addInport"
nADDOUTPORT_TAG : Logical View::java::lang::String = "addOutport"
EADDTESTINPUTiTAG : Logical View::java::lang::String = "addTestInput"
EINITIALIZEiFUNciTAG : Logical View::java::lang::String = "initialize"
EEXTTRANsiFUNciTAG : Logical View::java::lang::String = "deltext"
EINTTRANS_FUNC_TAG : Logical View::;java::lang::String = "deltint"
ECON_FUNC_TAG : Logical View::java::lang::String = "deltcon”
OUT_FUNC_TAG : Logical View::java::lang::String = "out"
[I&SHOWSTATE_FUNC_TAG : Logical View::java::lang::String = "showState"
IBOPENBR_TAG : Logical View:;java::lang::String =
[ZCLOSEBR_TAG : Logical View:j ng::String
IBFUNCBR_TAG : Logical View::java::lang::String = "()"

XMLParser

EXMLParser()
[®createDocumentObject()
[®getModelType()
JavaFileCreator +getModelName()
ModelExtractor ®getinputPortNames()

@ JavaFileCreator()

¥getOutputPortNames()

®getModelString() ®createJavaFile() ¥getAtomicSubComponents()
®addToProgramEditor() [®ecreateAtomicModel() ®getCoupledSubComponents()
[BecreateCoupledModel() [BgetCouplings()
[®egetinportVariables()
.getlnportVariableVaIues()
.getlnportVariabIeTypes()
[®getNsmComponents()
ProgramEditor [®getStates()

[®saveJavaModelOnServer()
[BresetModel()

Figure 41. transformation.java.javaFormatter Class Diagram

3.2. tranformation.java package. This package is divide into two packages
namely, transformation.java.javaFormatter and transfor mation.java.metaDevsjava. Class
diagram for javaFormatter package and metaDevsjava packag are shown in Figure 41 and
42.

XMLParser class extracts the information of the model from XML model in terms

of model name, model type, sub-components, ports, couplirgy port variables and state

variables. JavaFileCreator class formats the extracted vlues by XMLParser in to a Java le.

| MetaJavaDevsModel

[®VetaJavaDevsModel()
[®addHeader()
[¥addDefaultPackage()
[®raddimportStatements()
[®raddinports()
[BraddOutports()
[®raddTestinputs()
[®getCurrentDate()
[®incrementindent()

106

MetaJavaAtomicModel MetaJavaCoupledModel
MetaJavaNsmModel

¥ MetaJavaAtomicModel() [¥MetaJavaCoupledModel()
®getClassName() S getClassName() ¥MetajavaNsmModel()
[®getiavaModelString() [®getiavaModelstring() [®getsavaModelString()
[®addModelName() [®addModelName() [®addDefaultPackage()
[®addDefaultConstructor() [®addDefaultConstructor() [®raddModelName()
[®addConstructor() [BaddConstructor() [®raddDefaultConstructor()
[®addProcessingTime() [®addCouplings()
[®addFunctions() [®addAtomicSubComponents()
[®initFunc() [®addCoupledSubComponents()
I®extTransFunc() getOhjectName()
[®intTransFunc()
®confFunc()
[®outFunc()
[®showstateFunc()
[®addNsmDeclaration()
[®addNsmDefinition()
[®addstatesDeclaration()
[®addStatesDefinition()

Figure 42. transformation.java.metaDevsJava Class Diagam

It uses JavaDocument which stores all the constant values fothe di erent Java keywords
and DEVS formalism keywords in the Java document.

javaFormatter package consists of classes such as metaJétamicModel, metaJa-
vaNsmModel and metaJavaCoupledModel which provide method to add the information
to the corresponding Java model. These methods are speci wtatomic model, NSM model
and coupled model while the information common to all these $ stored in the super class
metaJavaDevsModel.

Transformation package consists of two more classes whichr@common to both xml
and java sub-packages. The rst one is Model extractor classvhich extracts the model from

the server and sends it to second class, ProgramEditor whictisplays the model source code

107

to the user. It uses an external class Colorer which colors th source code shown by the

program editor at run time.

4. Re-factoring SESM Client/Server Communication

The design of a software environment such as SESM needs to axmt for require-
ments such as performance and usability. Performance referto the systems responsiveness,
either the speed at which the computer operates by counting lte operations (instructions)
performed or the total e ectiveness of the computer system mcluding throughput and re-
sponse time. Since communication may take longer than the coputation, performance is
often a function of communication/interaction between the components [Bass98]. This is es-
pecially true in case of distributed and collaborative modding environments where we need
to account for communication as well as network constraintssuch as bandwidth, delays,
etc. Therefore, in order to keep the response time or the avhbility of the system con-
stant, we need to ensure that the system performance is acctgble given particular network
con gurations. Similar to performance, usability of a system such as SESM is important
for demanding tasks such as modeling. That is, the extended ESM environment not only
needs to be functionally correct, but also simplify (e.g., ide low-level details and provide
appropriate abstractions) user activities. These capabities, therefore, are important to be
accounted for in the SESM software architecture speci caton.

The performance of the SESM degrades rapidly as the size of ¢hmodel repository
increases. Since the architecture of SESM is client/serverthe response time is a ected not
only by carrying out model operations (e.g., adding a port), but also by communication
between the client and server. The current communication malel requires retrieving the

entire model for every change that is made to the model. Lack be cient communication

108

==
=]
E=_adl
| —
| —
Database
SESM Se"Lnetwork

] network
SESM Client

Figure 43. Communication between SESM components

(i.e., sending only the changes to the model and making chargs to the overall model locally)
adversely a ects the usability of SESM. Therefore, the comnunication of the SESM design
needs to be revised to allow e cient data transfer between the client, server, and the
database.

This task requires analysis of SESM design which includes exnination of existing
class, sequence, and state-chart diagrams as well as arahitural design given the commu-
nications among client, server, and the database as shown iRigure 43. The performance
characteristics of SESM (e.g., proling, CPU pro ling, thr ead coverage and code cover-
age analysis) were carried out using existing tool called Ogmizelt [Opt03]. For example,
the coverage analysis deals with di erent types of coveragesuch as line-method-class-path-
condition-decision coverage.

The examination of the implementation of the SESM modeling evironment and the
database tables and their relationships was also necessaryor example, when the SESM

modeling environment is initialized, it launches the cliert GUI (shown in Figure 1). During

109

this phase, the modeling environment fetches all the modelereated and embed them in
the client GUI in the form of user interactive tree structure (as shown on the left panel of
Figure 1). However, this design approach, includes re-feting and re-building of data, has

several Limitations as described next.

Data transfer from database to the modeling engine is requied whenever a model
tree needs to be rebuilt. The rebuilding of a model is a consegnce of any change in
the structure of the model tree which includes Adding/deleting new Template Model,

existing Model, In/Out port or coupling and Renaming the model.

The percentage of change in a model is usually very small as emared to the size of
all the models. Hence, the response time and availability othe system is a ected and

su ers from scalability point of view - adding more componerts to the database.

Modeler may perform many hundreds to thousands of operatios.

4.1. Communication Design. In this new design approach, we are proposing
the Observer (Publisher-Subscriber) design pattern [Gof@] which de nes a one-to-many
dependency between objects so that when one object changetate, all its dependents are
noti ed and updated automatically. Application of this des ign pattern to SESM is shown
in Figure 44, where SESM server acts as a publisher while allhe clients connected to it
act as subscribers.

Every SESM-client registers with the SESM-server when it eecutes the SESM mod-
eling environment for the rst time. The server provides an interface for client to register
or to un-register with the server. Server also keeps track odll the registered clients. It can

use a data structure like hash table to list all the registeral clients. During initialization,

110

Database

SESM sdrver

network network

—

SESM Client SESM Client

Local copy Local copy

Figure 44. Publisher-Subscriber Pattern

SESM Client SESM Client

Local copy Local copy

the client will fetch all the models from the server and save ti locally in the form of a data
structure like Vector or ArrayList of models. This is a local copy of the data for client.
When the client makes any change to the model, correspondingvent is generated
and sent to the server for validation. Server maintains the rst-in- rst-out queue to order
the request events received from all the registered clients If the change is valid, server
updates the database and sends a noti cation to all the active clients. This noti cation is
also an event containing the entire information about the crange. Once the client receives
this noti cation event, it will check the model hierarchy to nd the applicability of that
change and make changes in the local copy. After updating théocal copy with the latest
change, the client will refresh the entire tree model in the tient GUI as before, but this
time it takes data from the local copy rather than fetching it from the database. The client
also maintains the queue to store the noti cations receivedfrom the server. The advantages

of the proposed changes are

111

Eliminating unnecessary data transfer between the applicdon and the database and

Loose coupling between client and server and thus higher dege of reusability.

CHAPTER 6

IMPLEMENTATION AND DEMONSTRATION

Implementation of the extended features in the SESM modelig environment pro-
totype is carried out using some of the technologies used fahe previous version of the
SESM/CM such as Java programming language and MS-Access dabase. The additional

technology used in this research is eXtensive Markup Languge (XML).

1. Approach And Tools

1.1. Meta-Modeling. XML [XMLO4] is a markup language that is used to aid
exchange of the data between applications, systems, busiages and over the web. It is an
excellent tool for carrying out transactions. With XML, one can de ne the data structures
and make them platform independent. XML is di erent than HTM L as it is self-describing,
easily readable and it allows user to create his own tags andsinot dependent on the
prede ned tags.

In this research, we use XML for model transformation. The malels (Atomic and
Coupled) that are stored in the database and represented tohie user in the graphical format
need to be transformed in to the simulatable format and storel on a server so that it can

be simulated and validated. We chose XML for the following resons

113

Structure: It allows structure by providing the hierarchic al method of describing the
data by embedding one element into the other. It is also usefuin modeling the
complex relationships like composition and inheritance. 1 also allows the multiple

occurrences of the same element.

Platform Independence: XML is a standard developed by WorldWide Web Consor-
tium (W3C) and is independent of any system, vendor, hardwae or software and
hence can be retrieved long after the software and hardwarehiey were created in has

become obsolete.

Parser Availability: XML parsers are freely available for all platforms, and hence no
need to write programs to read XML documents. Also, since thestructure of the
document is embedded in the document itself, you don't have & change the parser

even if the structure of the XML document changes.

Browser Support: XML document doesn't require the browser sipport since being a

at le; it can be viewed and edited in any editor.

Di erent output formats: XML document can be restructured u sing XSLT. It can also
display the data in a variety of di erent ways by recasting th e document into HTML
or PDF. Further, one can change the way the document looks by imply applying

di erent style sheets to the XML document.

DTD: A Document Type De nition (DTD) requires the XML docume nt to conform
to predetermined structures, can prevent many human variatons, and this prevent

time spent editing the document after it is written

Reusability: It is very powerful and exible. 1t allows the r eusability of tags and

114

contents.

Acceptance: XML is widely accepted and used by major industies in the market such

as W3C, OMG, IBM, Microsoft, Sun, Apple, HP, Adobe, Netscapeg etc.

Plug-and-play simulation: Once the XML models developed inSESM, as these models
are independent of everything they can be transformed and siulated in any simula-
tion environment provided corresponding parser and transbrmation mechanism is in

place. In short, it provides the plug and play simulation of the SESM models.

1.2. Apache Ant. Apache Ant [Ant04] is a Java based build tool designed to
automate complicated repetitive tasks and thus is well suied for automating standardized
build processes. Ant accepts instructions in the form of XMLdocuments (build le) and thus
is extensible and easy to maintain. It is developed purely inJava programming language
and hence is easily portable on di erent platforms. Build | e is developed for an individual
project. The build le contains di erent properties, which are essentially name-value pairs
and the actions that the build le should perform (for exampl e, initialize, compile, etc.)
called targets. These targets are sometimes dependent on @aother.

This research has extensively used Ant for automating the etire build process for
development of SESM modeling environment. This includes aation of a directory struc-
ture, initialization, compilation, class path settings, building distributable and cleaning.

Ant build le developed is attached as an appendix.

1.3. Implementation Details. The SESM modeling environment is a single ma-

chine single user client-server system architecture implaented in Java technology [Java04].

115

One of the main reasons for using Java language is its suppofor Object-Oriented con-
cepts and Java Database Connectivity (JDBC) APIs [JDBCO04], which is heavily biased
towards relational databases and its Structured Query Langiage (SQL). These concepts
and APIs are extensively used even in the extended environnmt for the storage and re-
trieval of the input-output-state variable and Non-simula table model (NSM) speci cations
which represents the dynamic behavioral characteristics bthe atomic and coupled mod-
els. As SESM modeling environment is a stand alone applicatin and mainly developed
for Windows operating system, the obvious choice for the reltional database is MS-Access
[0 02]. Windows provides ODBC driver for MS-Access, which dlows the connection to
MS-Access database from Java using JDBC-ODBC bridge mechasm. SESM Server and
Client implementations are extended to incorporate the defgn extensions for behavioral
aspects of the atomic models and transformation mechanismfr the atomic and coupled
models as mentioned in chapters 3, 4 and 5. Database is alsoterded to incorporate new
tables for Port Variables, State Variables and NSM models ad their associated relation-
ships with Model Template and Port Template. The Client and Server are executed on

separate threads and communicate with each other via Netwde Environment.

2. Anti-Virus Model Example

Demonstration of the extended SESM features, which includehe behavioral speci -
cation of the atomic models in terms of their dynamic characgristics such as input variables,
output variables and state variables as well as the transfamation of atomic and coupled
models to their simulatable counterparts, is carried out wih the help of a simple Anti-Virus
Network model. This involves creation of the models for thisexperiment by specifying struc-

tural and behavioral characteristics using SESM user inteface, transforming these models

116

in =% —>out —>0out

Processor invius ——f AntiVirus
alertSignal =% [outVirus [=———->virusDet

Figure 45. a. Processor and b. AntiVirus Model

into DEVSJAVA format and simulation of these models in DEVSJAVA simulation environ-

ment for various input conditions which eventually leads to the validation.

2.1. Experiment Scenario. An Anti-Virus system is intended to protect a net-
work of computers from potential virus attacks. The primary objective of this system is to
keep the computers on the network secured and virus-free.

A simpli ed model of Anti-Virus system consists of a network of Workstations.The
SimpleNetworkis a coupled model consists of twdNorkStation coupled models. Messages
arriving on port in of the SimpleNetworkare sent toin port of Processorof the rst WorkSta-
tion while those arriving on port alertSignal of the SimpleNetworkare sent to thealertSignal
port of both Processorcomponents.

The Processor(shown in Figure 45 a) of aWorkstation receives input messages where
some of them are infected with virus. Any received input mesage that is not infected is sent
to its destination after it is processed by the Processor Each message has a unique ID. The
type of event arriving on input port in is string (e.g., msg01) where \01" is the messages'
unique ID. Upon receiving a message on input porin, the Processorbegins processing the
message for a some length of time (in this case it is 10 time uts). If the Processor does not
receive any external input events, it will send the processa input message to its destination
via port out.

The Processor, however, may receive an alert signal (message) on input pbalertSig-

117

nal. Input messages arriving onalertSignal port have the same type as those arriving on
port in. A message arriving on portin is considered suspected if its ID matches the ID
of another message arriving on portalertSignal. In this case, a message arrived on port
in of the Processoris sent to the outVirus port of the Processor The Anti-Virus (shown
in Figure 45 b) determines if the message is infected with thauniform probability of 50
percent. Anti-Virus model also needs processing time to take the decision (in thicase it
is 2 time units). If a suspected message (message arriving @ort inVirus of Anti-Virus)
is determined to be infected with virus, it is sent to the virusDet port of the Anti-Virus
model. Otherwise, Anti-Virus sends the uninfected message from its output porbut to
its associated Processor for processing on input portin of the Processor Each Processor
and Anti-Virus has a First-In-First-Out (FIFO) queues to store input messages and alert
messages respectively.

To carry out the simulation experiment, it is necessary to gaerate messages for ports
in and alertSignal. Two generators are de ned to feed theSimpleNetwork One generator
(GenrMsg) generates messages and sends them to ttf&mpleNetworks inport. The other
(GenrVirus) generates alert message and sends t8impleNetworks alertSignalport. The
type of messages generated by these generators is the sametlasse that can be handled

by the Processorand Anti-Virus .

2.2. Experiment Analysis. The experimental domain is studied to nd out dif-

ferent basic atomic models involved in it. These are

Processor (Figure 46 a). processes the messages generated by the gexters. It is
supported with two input ports namely, in to receive input messages andalertSignal

to receive alert messages about the suspected infection aridlo output ports namely,

118

out to send uninfected message to the next workstation in the natork and outVirusto

send the potential infected message to thé\ntiVirus model.

AntiVirus (Figure 46 b): checks whether the message is infected with #virus. Itis
provided with one input port inVirus to receive the message suspected for infection
from Processorand two output ports namely, out to send the uninfected message to
the Processorfor further processing andvirusDet to discard the message infected with

the virus.

GenrMsg (Figure 46 c): generates the messages to be sent to the Simphetwork of

work-stations. It has one output port outMsg to send the newly generated messages.

GenrVirus (Figure 46 d): generates the alert messages for the correspding infected
messages. It has one output port outVirus to send the newly geerated virus alert

messages.

TransdSN (Figure 46 e): collects the information about the simulation experiment.
It has four input ports, inMsg to collect information about the message generated,
inVirus to collect information about the alert generated, inNet to collect information
about the uninfected messages and/iirusNet to collect the information about the

infected messages.

The atomic models are composed together to form coupled motke They are,

WorkStation: Atomic models Processorand AntiVirus are coupled together to form
a coupled model calledWorkStation (shown in Figure 47). It is supported with
two input ports namely, in to receive input messages andlertSignal to receive alert

messages about the suspected infection and two output portmamely, out to send

119

Transdsk
Processar Antiviirus : inksg
alertSignal out| [invirus out [GENM;EMJ [GE”N”L‘;. intdirus
in outvirus virusDet g OUBYIrUS | linket
wirusklet
(@) (b) (c) (d) (e)

Figure 46. a. Atomic Models a. Processor, b. AntiVirus, c. GarMsg, d. GenrVirus, e.
TransdSN

uninfected message to the next workstation on the network ad virusDet to discard

the message infected with the virus.

SimpleNetwork a simple network is created by coupling the twoWorkStation models
together called SimpleNetwork (shown in Figure 48). The ports of SimpleNetwork
Model are similar to the WorkStation model as it is a combination of two WorkSta-

tions.

ExpFrame: Both generators (i.e., GenrMsg and GenrVirus) and a transducer (i.e.,
TransdSN) are coupled together to form an Experimental Frame model cHed
ExpFrame as shown in Figure 49. It has two input ports, in to receive uninfected
messages andvirus to receive potentially infected messages and two output pds,
outMsg to send the message generated b§enrMsg and outVirus to send alert mes-

sages generated by thé&enrVirus.

AntiVirusexp : SimpleNetwork and ExpFrame models are coupled together in a cou-
pled model calledAntiViruseExp model (shown in Figure 50). This is the highest level
coupled model which contains all the other models de ned bafre and hence de nes

the whole simulation model setup. This model has only two ouput ports, out to send

120

SESM,ICM i] |

Operations Database About

@] ExpFrame WarkStation
[GenrMsg alentSignal - 1 ———
[y Genrvirus LU n X | - irusDet
, ' | Processor -
[Transdsn ! “elalertSignal T -

in outyirus

D Frocessor

@ [SimpleMetwark
[y warkstation

@ [AntivirusExp

[ExpFrame

D SimpleMetwork

! Simulatable

Antivirus

Figure 47. WorkStation Model

SESM,/CM i =] [

Operations Database About

SimpleMetwoark
alertSignal-+----------------- Bl - ot
i i yirusDet

@ CJ ExpFrame -
D Genrhsg
D Genryirus
D TransdSM

@ [workstation
[antivirus
D Frocessor

I
i E WorkStation E
1 wlgledSignal outkF - -1,
= -in WISDELE ~ —j=t- == - - - m - - - - o - oo !
1
1
1
I

WorkStation
= alertSignal autf - - --
- -win virusDetp - - -

l
1
1
|
|
|
|
1
|
|

4

¢ O3 Eimpletetwark
[wiarkstation
@ O3 antivirusExp
D ExpFrame
D SimpleMetwork

B
1w [

!\ Simulatable

-

Figure 48. SimpleNetwork Model

121

Figure 49. Experimental Frame Model

out the uninfected message to the next workstation on the nework and virusDet to

discard the uninfected messages.

All of these atomic and coupled models are coupled together ith the help of external
input couplings, external output couplings and internal couplings as shown by the dotted
(represents feed forward couplings) and center (represestfeed back couplings) lines in

Figure 47, Figure 48, Figure 49 and Figure 50.

3. Simulation Experiments

The models mentioned above are developed graphically in SB&using the di erent
features supported by SESM/CM. These model constructed hex are primarily structural
as they have model name, sub-components, and couplings. Butefore conducting the

simulation experiments on this Anti-Virus model, it is necessary to specify the behavioral

122

Figure 50. AntiVirusExp Model

characteristics of these models. Some of these behaviordiaracteristics need to be tracked
during the simulation experiment to analyze and validate the models. The behavioral
characteristics i.e., variables for di erent models are Isted in Table 5.

The dynamic characteristics of the model's variables are sgci ed using the graphical
user interface developed in this thesis. Also processingrtie (sigma) for all models is speci ed
as shown in table 6. This processing time is a parameter thats used for con guring the
simulation scenarios and setups.

These models are then transformed into simulation compatiltle format by exporting
them to DEVSJAVA models. These exported models are partial IEVSJAVA models as
they contain the de nitions of input, output and state varia bles and declaration of the dif-
ferent functions, such as initialize function, internal tr ansition function, external transition

function, con uent function and output function, etc. To ma ke these models simulatable in

Table 5. Input, output and state variables of models in the experiment

\ Atomic Model Name

| Variable Type

Variable Name

GenrMsg

State

phase

sigma

jobProduced

Output

outMsg

GenrVirus

State

phase

sigma

jobProduced

Output

outVirus

TransdSN

Input

inMsg

inVirus

inNet

virusNet

State

phase

sigma

total _ta

Processor

Input

Job1l (In port)

Job2 (alertSignal port)

State

phase

sigma

jobProc

gueueSize

gueueElements

alertQueuesSize

alertQueueElements

Output

out

outVirus

jobSuspect (outVirus port)

AntiVirus

Input

Job1l (inVirus port)

State

phase

sigma

jobProc

gueuesSize

gueueElements

Output

out

virusDet

123

124

Table 6. Simulation setup Parameter

| Atomic Model Name | processing time |
Processor 10
Anti-Virus 2
GenrMsg variable
GenrVirus variable
Transducer 1000

DEVSJAVA, they need to be completed by de ning these functions using any convenient
Java language compatible IDE.

Upon having correct simulatable DEVSJAVA models, 74 di erent experimental cases
are conducted for the di erent input scenarios and di erent behaviors shown by the models
such as percentage of infected and uninfected messages andrt-around time are checked
in terms of the values of their variables listed in the table. These scenarios are categorized

as follows

Same xed standard inter-arrival time for both the generators, i.e., both of them have

inter-arrival time of either 5, 10 or 15 time units

Di erent xed standard inter-arrival time for both the gene rators, i.e., if one of them

has inter-arrival time of 5 time units then other has either 10 or 15.

Fixed standard inter-arrival time for one while extreme variable frequency for the
other, i.e., one of them has inter-arrival time of 5, 10 or 15 ime units while other has

either 2,3,13,14 (considering the extreme cases) time urst

Variable frequencies of inter-arrival time for both the gererators, i.e., both are gener-

ating messages at 2,3,13 or 14 time units.

Fixed standard inter-arrival time for one while random for t he other, i.e., one of them

125

Table 7. Simulation Experiments Set 1

Standard Fixed Inter-Arrival Time

Cases 1/]2]3[]4]|5]6]7]8]9
GenrMsg | 5|10|15| 5| 5 |10(10|15| 15
GenrVirus | 5{10|15]10|15| 5 |15| 5 | 10

Table 8. Simulation Experiments Set 2a

Extreme Fixed/Variable Inter-Arrival Time

Cases 1[2[3]4]5]6]7]8]9]10]11]12
GenrMsg |5|5| 5|5 (10|10|10|10|15| 15| 15| 15
GenrVirus |2 (3|13 |14| 2 | 3 |13|14| 2 | 3 | 13| 14

has inter-arrival time of 5, 10 or 15 time units while other has inter-arrival time of

anything between 0 and 15.

Variable frequencies (extreme conditions) of inter-arrial time for one while random
for the other, i.e., one of them has either 2,3,13 or 14 time uits while other has

inter-arrival time of anything between 0 and 15.

Random inter-arrival time for both the generators, i.e., both of them have inter-arrival

time of anything between 0 and 15.

These experiments are nothing but the Di erent combinations of inter-arrival time

for the two generators as summarized in Tables 7, 8, 9 10 and 11

Table 9. Simulation Experiments Set 2b

Extreme Fixed/Variable Inter-Arrival Time

|2|3|4|5|6|7|8|9|10|11|12
3(13|14(2 | 3 |13|14| 2| 3 |13 |14
5(5|5|10{10|10|10|15| 15| 15| 15

Cases

1
GenrMsg | 2
GenrVirus | 5

126

Table 10. Simulation Experiments Set 3

Extreme Variable Inter-Arrival Time

Cases 1|2| 3 | 4 |5|6| 7 | 8 | 9 |10|11|12|13|14|15|16
GenrMsg |22 2|2 (33| 3|3 |13|13|13|13 |14 | 14| 14| 14
GenrVirus | 2313|142 |3|13(14| 2 | 3 |13|14| 2| 3 |13]| 14

Table 11. Simulation Experiments Set 4

Random Inter-Arrival Time

Cases 12 |3]4[5[6]7]8[9]10]11]12]13]14]15
GenrMsg |5 |10/15|R|R|R|2|3[13|14|R|R|R|R|R
GenrVius [R|/R|R|5[10[/15/R|R[R|R |2 | 3[13][14|R

4. Simulation Results

The simulation results for the di erent experimental scenarios conducted on Anti-
Virus Experiment are carefully analyzed. For all experimerts, charts for percentage infected
and uninfected messages and maximum average turn-aroundrtie are plotted. These charts
are shown in gures.

As shown in gure 51, the curves for all the alert times have the same pattern. Hence
the main factors that are a ecting the change in the maximum average turn-around time is
the inter-arrival time of messages and processing time dProcessorand Anti-Virus model.
Since, the processing time for the messages in tHerocessormodel is xed at 10 time units,
the frequency of messages generated with inter-arrival tiras that are less than 10 time units
is more than the messages getting processed in tHerocessor These messages gets queued
in the messages queue in thérocessor model and waited before getting processed. This
results in the longer turn-aound time and hence longer averge turn-around time. But the

frequency of the messages generated with inter-arrival tim of 10 or higher is equal to or

127

Max Average TA
2500
2000 ——Alert Time =2
< \ —=— Alert Time = 3
" 1500 Alert Time = 5
Z \ —— Alert Time = 10
é 1000 —— Alert Time = 13
= \ ——Alert Time = 14
500 \ —— Alert Time = 15
0 T ; == 1
0 5 10 15 20
Inter-Arrival Time of Messages

Figure 51. Max. Avg. TA for Di erent Alert Messages

slightly higher than the messages getting processed in thBrocessorwhich results in shorter
turn-around times.

Figures 52 and 53 also show that the turn-around is a ected minly by the inter-
arrival time of normal messages. gure 52 shows that the turnaround time for messages
whose inter-arrival time is less than 10. It increases rapity as the inter-arrival time reduces
since this results in increase of message frequency whictcireases the waiting time in queue.
Figure 53 shows that the turn-around time for messages whosmter-arrival time is equal
to or greater than 10. It decreases as the inter-arrival timeincreases beyond 10.

Figures 54 shows the percentage of uninfected messages fdretent inter-arrival
times of messages as well as alerts while gure 55 shows thermpentage of infected messages

for di erent inter-arrival times of messages as well as alets.

Max. Avg. TA
2500
2000 >
,i: —— Arrival Time = 2
S 1500 —=— Arrival Time = 3
< -\.\.\./l\./- . . _
= 1000 Arr?val T!me =5
g — Arrival Time = 10
500
0 T T T
0 5 10 15 20
Inter-Arrival Time for alerts
Figure 52. Max. Avg. TA for Di erent Normal Messages
Max.Avg. TA
35
30 =
N
25 //
f_‘_ B —— Arrival Time = 10
S 20 —=— Arrival Time = 13
<>E- 15 Arrival Time = 14
g —— Arrival Time = 15
10
5
O T T T
0 5 10 15 20

Inter-Arrival Time for Alerts

Figure 53. Max. Avg. TA for Di erent Normal Messages

128

Uninfected Messages

Inter-Arrival Time for Messages

95
" .
g 90 —d)
2 mx ——Alert Time =2
g 85 - Alert Time =5
3 M —— Alert Time = 10
S 80 —— Alert Time = 13
E —— Alert Time = 15
5 75
X

70 T T T

0 5 10 15 20
Inter-Arrival Time for Messages
Figure 54. Percentage Uninfected Messages
Infected Messages

25
8 20
g w —— Alert Time = 2
(%] H —
3 15 A Alert Time =5
E w —— Alert Time = 10
£ 10 ~77 —— Alert Time = 13
2 . ——Alert Time = 15
X

0 T T T
0 5 10 15 20

Figure 55. Percentage Infected Messages

129

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

1. Conclusion

Increase in the size of the system leads to the increase in ttstructural and behavioral
complexity of the system. Such complex systems are analyzedesigned and developed by
using modeling and simulation approach, This approach is bsed on principles of system
theory and object-orientation. Simulation model of a systan is developed to study the
structural and behavioral complexity of the system over time. For this, modeler needs
to specify the model in terms of its structure and behavior ard to make them persistent
to achieve model reusability. Therefore, the speci cation and the storage of structural
and behavioral aspects of the model are important to achievehe simulation, analysis and
validation of the model.

This research is primarily concerned with the speci cation of the behavioral aspects
of atomic models. It has used and extended the Scalable SysteEntity Structure Mod-
eler (SESM/CM) modeling environment. The software architecture of SESM is primarily
client-server type and is composed of four main componentsé., Client, Server, Network
Environment and RDBMS. This architecture o ers simplicity and higher degree of modular

design and implementation. This architecture allows multiple clients and server to read

131

the data from RDBMS but only server has rights to write to it. C lient and server interact

with each other via network environment. This research alsoused DEVSJAVA as a simu-

lation environment to demonstrate, test and validate atomic and coupled models which are
developed in extended SESM environment and transformed ird simulation compatible for-

mat. This research described an extension of SESM/CM architcture to incorporate these
features, while retaining the overall architecture of the g/stem.

It conceptualized the necessity and approach for capturingand storing behavioral
aspects of an atomic model in the relational database manageent system. These behavioral
aspects can be dened in terms of the dynamic characteristis of model such as input
variables, output variables and state variables. For this, the existing entity-relationship
diagram is extended (as shown in section 4.3) to support portvariables (both input and
output), state variables and NSM models tables. These NSM mdels are essentially complex
data structures which act as a type of input, output or state variable. Furthermore, the
relationships between these tables and other tables such adodel Template, Port Template,
etc are also de ned. The software design, analysis and impiaeentation of the SESM/CM are
extended to accommodate the capturing of behavioral aspestand mapping of the object-
oriented models to their relational counterparts. This involves the extensions of client and
server modules in terms of capturing user inputs, transacthns in SQL and modeling of
constraints using programming logic that cannot be expressd in E-R diagram or relational
model.

Second part of the research is concentrated on the transforation of atomic and cou-
pled models in to their simulatable counterparts to achievetheir simulation and validation.
This involved the creation of new module for the transformaton of the models stored in

the database into XML and DEVSJAVA models. These transformed models are stored on

132

the server as at les at a speci ed location and retrieved back when required for viewing
or editing.

Extension of graphical user interface is an important aspetcof this research. It
includes the redesign of the existing model menu to make it aopatible with the system
formalism and addition of the menu items and corresponding ger input dialogs to facilitate
the speci cation of the behavioral aspects, transformation of the models and viewing of
these transformed models and their metrics. It also added om more tree view for NSM
models, in addition to the existing model tree views for tempate models, instance template
models and instance models. This tree view has a functiondji to add modelers own NSM
model and a capability to edit and save the existing NSM model

These new features along with the existing features are denmstrated with the help
of Anti-virus model experiment. In this various models are geated using SESM in terms of
structural and some of the behavioral features and then trasformed into simulation com-
patible models. These transformed models are simulated agast various input conditions

to test the behavioral changes of the overall system.

2. Future Research

This research partially speci es or measures the structuraand behavioral aspects
of the atomic models. In order to achieve total structural and behavioral speci cation and

measurement, SESM needs to be extend in the following areas,

2.1. Computation of Additional Metrics. SESM/CM facilitates computation

of nine basic structural metrics - (Immediate Children, Total Children, Input Ports, Output

133

Ports, Total Ports, Internal Couplings, External Input Cou plings, External Output Cou-
plings, Total Couplings). However, additional structural and behavioral metrics may be
obtained from the models. In structural metrics, higher-level metrics such as fan-in (the
number of couplings between an input port and many output potts) and fan-out (the num-
ber of couplings between an output port and many input ports) can be computed. Also
the present metrics compute the number of couplings at one kel. This may be extended,
for example, to compute the total number of couplings of a corponent till its lowest level
of decomposition. In behavioral part, metrics in terms of input variables, output variables

and state variables can be computed.

2.2. Support for storage of State Transition of Atomic Model S. This re-
search described the speci cation of some of the behavioraspects of an atomic model. But
the behavior can be completely captures only when the staterinsition of atomic models is
speci ed. Therefore, this research can be further extendedo support the speci cation of

the state transition of atomic models and their storage in the relational database system.

2.3. Transformation of State Transition to Functions. The detail procedure
of transformation of the models stored in the database into heir simulation compatible
format to achieve their simulation and hence validation, isexplained in this research. This
mechanism also can be extended to transform the state transon speci cation in the data-
base to their corresponding transition functions such as eternal transition function, internal

transition function, etc. in XML or Java model.

2.4. Transformation from Simulatable Model to Database Mod el. Trans-

formation of the models stored in the database to their simuétable counterparts is de ned in

134

this research. This work can be extended to have a reverse nganism to transform the ex-
isting simulatable model in to the database model to achieveeuse of these models instead of
recreating them in modeling engine and hence complete the Mieling-Simulation-Modeling

cycle.

2.5. User Interface Enhancements. User interface of SESM modeling environ-
ment can be further enhanced to have drag and drop as well as tweopy-paste facilities to
speed up the modeling process as it will avoid the manual addg-deleting of the models

while creating the large hierarchical models.

REFERENCES

[acims04] Arizona Center for Integrative Modeling and Simdation (ACIMS) Software De-

velopment :http://www.acims.arizona.edu/SOFTWARE/sof tware.shtml

[Ant04] Apache Ant. Java based build tool: http://ant.apac he.org/

[Bass98] Bass L., Clemens P., Kazman RSoftware Architecture in Practice, The SEI series

in Software Engineering, 1998, Addison-Wesley

[Bank01] Banks J., Carson J., Nelson B., Nicol D.;Discrete Event System Simulation 3rd

Edition ed. 2001; Prentice Hall Inc.

[Bo0o94] Booch G., Object-Oriented Analysis and Design with Applications 2nd Edition,

Cunning Benjamin, 1994.

[Boo99] Booch G., Rumbaugh J., Jacobson I.The Uni ed Modeling Language Use Guide

1st Edition, Pearson Education, 1999.

[Ext00] Extend Professional Simulation Tools, User guide ersion 5, edition 2000.

[Fow99] Fowler M., Scott K., UML Distilled: A Brief Guide to the Standard Object Modeling

Language 2nd Edition, Addison-Wesley, August 20, 1999

[Fu02] Fu T. S., Hierarchical Modeling of Large-Scale Systems using Relainal Databases

Electrical and Computer Engineering, University of Arizona, Tucson, 2002.

136

[Gof94] Gamma E., Helm R., Johnson R. and Vlissides JDesign Patterns: Elements of

Reusable Object-Oriented SoftwarelSBN 0-201-63361-2

[Java04] Java Programming Language: http://java.sun.com

[JDBCO04] Java Database Connectivity APIs http://java.sun .com/products/jdbc

[Kof03] Kofman, E. (2003); Discrete Event Based Simulation and Control of Continuous

Systems University of de Rosario, Argentina

[O 02] Microsoft Access 2002: www.microsoft.com/o ce/ac cess/default.asp

[Opt03] Borland Optimizelt: Optimization tool; http://ww w.borland.com/optimizeit

[Sar02] Sarjoughian H. S.,A Model for Design of Scalable Modeling of Modular, Hierar-
chical Systems Internal Report, Computer Science and Engr. Dept., Arizora State

University, 2002.

[Sar03] Sarjoughian, H.S., Singh, R.K,Building Simulation Modeling Environments Using
Systems Theory and Software Architecture Principles Advanced Simulation Technol-

ogy Conference, p. 99-104, April, Washington DC

[Sing04] Ranijit Singh, A Software Architecture Design for Discrete Event Simulation En-

vironments, Computer Science and Engineering, Arizona State Universy, fall 2004.

[Smo03] Mohan S.Measuring Structural Complexities of Modular Hierarchical Large Scale
Models Computer Science and Engineering Department, Arizona Ste University,

2003

[Wym93] Wymore, A.W., Model-based Systems Engineering: An Introduction to the M-

137

ematical Theory of Discrete Systems and to the TricotyledorTheory of System Design

1993, Boca Raton: CRC.

[XMLO4] eXtensible Markup Language: http://www.xml.org/

[ZeiB4] Zeigler B. P.,Multi-facetted Modeling and Discrete Event Simulation London: Aca-

demic Press, 1984

[Zei90] Zeigler B. P.,Object Oriented Simulation with Hierarchical Modular Models: Intel-

ligent Agents and Endomorphic SystemsAcademic Press: 1990

[Zei00] Zeigler, B.P., Praehofer H., Kim T.G., heory of Modeling and Simulation: Integrat-
ing Discrete Event and Continuous Complex Dynamic SystemsSecond Edition ed.

2000: Academic Press.

[Zei03] Zeigler B. P., Sarjoughian H. S.,Introduction to DEVS Modeling and Simulation

with JAVA: Developing Component-based Simulation ModelsSept 2003.

