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Abstract 

From a modelling and simulation perspective, studying dynamic systems consists of focusing on changes in 

states. According to the precision of state changes, generic algorithms can be developed to track the activity of 

sub-systems. This paper aims at describing and applying this more natural and intuitive way to describe and 

implement dynamic systems. Activity is mathematically defined. A generic application case of diffusion is 

experimented to compare the efficiency of quantized state methods using this new approach with traditional 

methods which do not focus computations on active areas. Our goal is to demonstrate that the concept of activity 

can estimate the computational effort required by a quantized state method. Specifically, when properly 

designed, a discrete event simulator for such a method achieves a reduction in the number of state transitions that 

more than compensates for the overhead it imposes. 

 

Introduction 

Recently, a new research direction has been discussed in [1] for component-based simulation and applied to 

complex natural systems [2] . This approach aims at defining a new framework for tracking activity of 

components in dynamic simulations. Discrete-time and discrete-event implementations of  this technique can be 

found in [3-6].  In this paper, our aim is to apply the activity tracking paradigm to an example in which analytic 

solutions can be obtained to enable comparison of activity-tracking solution techniques with conventional ones 

along the dimensions of both execution efficiency and accuracy. A one-dimensional partial differential equation 

system is discretized using the quantization method presented in [7]. The efficiency, stability, and accuracy of 

the method examined in this paper, and of several related methods, have been studied in [8-13]; these papers 

discuss extensions of the quantization concept to stiff systems and to higher order numerical integration 

methods. However, [8] did not explicitly consider the relationship of the quantization technique to activity 
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tracking. Our aim here is to show  how the activity of spatial systems can be tracked using discrete-events and to 

explain the results of [8] in these terms. Furthermore, a new formal concept is introduced to discuss discrete-

event implementations of continuous systems: the activity measure. This activity measure [7, 14]  supports 

predicting the number of computations (or boundary crossings) necessitated by quantization to approximate a 

continuous curve. 

In the rest of this paper, first the quantization and activity tracking paradigm concepts are introduced. Then, 

these concepts are applied to a one-dimensional diffusion process. Next, simulation results are discussed and 

presented. Finally, conclusions and perspectives are given. 

  
1 Background 

Activity of systems can be tracked from both modeling and simulation perspectives. From the simulation 

perspective, messages and computations should be tracked in the whole distributed system without introducing 

errors. From the modeling perspectives, the detection precision of state changes can be adapted to reduce 

message exchanges and computation introducing a controlled error. 

1.1 Simulation perspective 

There are three common types of discrete event simulation strategies, also called world views, that are employed  

in discrete event simulation languages and packages  [15-17]: event-scheduling, activity-scanning, and process-

oriented. A strategy makes certain forms of model description more naturally expressible than others.  In all of 

these world-views, an event is an instantaneous change in the state of a system at a particular time. Event 

scheduling models work with pre-scheduling of all events and there is no provision for activating events by tests 

on the global state. In contrast, in the activity scanning approach, events can be conditioned on a contingency test 

in addition to being scheduled to occur in time. A model is said to be active when both its scheduling time has 

occurred and its contingency test is satisfied. The process interaction world view is a combination of the event 

scheduling and activity scanning strategies. A detailed formulation is provided in [16].  

In simulations, a distinction is usually made between the continuous time of reality and simulation time. 

Simulation time can be managed two ways [15]: by a clock or by discrete-events. In a clock (or discrete-time) 

driven simulation, time is incremented by a step ∆t, from t to t+∆t. State changes occurring between [t, t+∆t] are 

computed at t+∆t. The time base is called discrete (or synchronous) and the models are called discrete-time 

models. In a discrete-event driven simulation, the simulation progresses from the occurrence time of one event to 

the occurrence time of the next event, i.e., from one state change to the next. The time base is called continuous 

(or asynchronous) and the models are called discrete-event models. 

The advantage of discrete-event driven simulations is that a simulation model evolves directly from one 

state change to another. No computations are performed during inactive periods, but this requires that the next 

state change can be forecast from the current state and it requires an efficient method for scheduling events. On 

the other hand, in a discrete-time driven simulation one has to cope with the limited precision of the time step 

and the consequent difficulties with detecting and acting on asynchronous events. 

The appropriate choice of a time management scheme depends on the nature of the system and on the 

modeling objectives. For a system in which every state change occurs at a ∆t, discrete-events will produce 
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simulation overhead, and a discrete-time driven simulation will be more efficient because we do not have to 

predict (by computation) what we already know will happen and when. However, we can easily admit that in 

natural systems discrete-time evolution does not exist. Discrete-time flows only exist in a modeler’s head and in 

industrial processes (e.g., robots) or after the discretization of real continuous time by humans [18]. For other 

systems, “while other formalisms allow representation of space and resources, only discrete-event models offer 

the traditional ability to explicitly and flexibly express time and its essential constraints on complex adaptive 

systems behavior and structure” [19]. 

The activity-tracking paradigm emerges naturally from a discrete-event approach to simulation. Discrete-

events, however, are essential to take into account external events in discrete-time components. Moreover, every 

discrete-time increment can be considered as an internal event of a simulation model. With this perspective it is 

possible to usefully apply activity-tracking techniques to discrete-time simulations. 

Figure 1 depicts the essential parts of an activity-tracking simulation. It merges the three usual world-views 

(activity-, event-, and process-oriented strategies) into a single framework that includes discrete-time driven 

models as well; the usual world-views are underlined where they appear in the activity-tracking strategy. Marks 

are added to, and removed from, components to track activity as it propagates through the model; these marks 

are used to maintain the set of active components as the simulation progresses. Every activity-tracking 

simulation has three basic steps: 

� Step I: Components exchange information and the propagation of activity is tracked. The current active 

set is scanned for components that have output events and these events are routed to their destinations; 

routing in hierarchal models can be done recursively [4]. The active set is updated to include atomic 

components that have received these output events. Atomic components are basic behavioral 

components that are coupled together to build a hierarchical structure [16].  

� Step II: New states are computed for active components from their current states and inputs. 

Components that changed state significantly are marked and added to the active set; components that do 

not undergo a significant change of state are removed from the active set. In a discrete-event driven 

simulation, the active set is an event scheduler and the active components are in the schedule or will 

receive an input from a model in the schedule.  
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STEP II 

STEP I 

Initialize  
the active set 

Increment Time 

Scan the set of active components 
Compute and route output events 

Add marks to event receivers 
Update the active set 

 

simulation 

End of 

END 

No 

Scan the set of active components 
Compute new states for active components 

Conditionally add marks to active components 
Update the active set 

 

 

Figure 1. State-centric activity tracking pattern 

 

This is a state-centric two-step pattern. Both local and global levels of modularity for state transitions can be 

achieved. Local transitions are achieved on states of single components. Global transitions are achieved on many 

component states. These specification levels are discussed in the next sub-section. 

1.2 Modeling perspective 

Significant success has been achieved in applying Discrete Event Simulation approaches to simulate continuous 

systems that are characterized by spatiotemporal heterogeneity in their activities [6, 7, 20].  A Discrete Event 

approach makes effective use of the computational resources by allocating them to regions in proportion to their 

activity.  

For simulating the diffusion process, specific algorithms have been proposed to track activity (changes in 

the value of cells) in space [21] based on discrete-time discretization schemes. However, these methods are 

based on a discrete-time numerical method using a specific activity tracking algorithm work by dynamically 

adjusting the calculation domain. When the algorithm is applied to another problem, it is impossible to predict its 

simulation efficiency and, consequently, whether or not the algorithm is applicable to the new problem. 

Quantization-based numerical methods work, not by adjusting the computational domain, but by allowing 

the advance of time to be determined locally at each grid point.   Quantization is a recent numerical method [16, 

22]. This method is used to track activity in time and space [5, 7] thus reducing the number of computations 

necessary to approximate a continuous curve. In contrast to discrete-time numerical methods, that discretize time 

in equal time steps, quantization works by discretizing (or quantizing) the state variables of a continuous system 

in equal quanta. The quantized model is then implemented in DEVS. Roughly speaking, in such a simulation, 

discrete events occur at quantum boundary crossings; the time advance (i.e., time to go from one event to the 

next) at any cell is inversely proportional to the current temporal derivative at that cell.  
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1.2.1 Quantization methodology 

Quantization is part of the DEVS framework. The latter is constituted of a set of abstract algorithms, 

mathematical structures, notations… to be used for modeling and simulating components of systems. 

Discretization methods are usually used as a technique to obtain algorithms for discretizing continuous systems. 

These algorithms are then encoded from scratch. DEVS constitutes a framework for this implementation. We 

consider here this framework through the quantization technique. The latter offers a new way of considering 

continuous systems. However, a clear distinction needs to be made with other adaptive discretization methods. 

No confusion should arise between quantization based methods and Adaptive mesh refinement techniques. 

The Adaptive mesh refinement techniques use a global time step. The time step can be adaptive in the sense that 

the time step changes from iteration to iteration, but the time step is applied uniformly across space. The spatial 

and temporal grids are discretized simultaneously and in the same way, and then the variation of the state 

variables is tracked in space and time. Discrete event techniques differ from adaptive mesh refinement because 

the time advance is not applied uniformly across space. Rather, it is entirely local, with different spatial grid cells 

having different rates of advance.  In effect, each grid point has its own adaptive time step that can be different 

from the steps used by other grid points. Many adaptive mesh refinement methods [23, 24] are based on focusing 

work in a manner related to activity, but activity is left as an informal concept. 

Recently, interest has developed in locally adapting simulation time steps for new classes of models arising 

in bioinformatics and other areas. Although such methods are similar to the approach discussed here, they differ 

in certain key respects. Logg [25] embeds the finite element method and Galerkin methods into a mathematical 

framework that supports “multi-adaptive time” integration. The method requires a priori and a posteriori 

estimates of the simulation errors. [26] proposes meta-algorithms based on discrete-event schedulers and the 

Hermite polynomial interpolation for “multi-algorithm, multi-timescale methods” for cell simulation. 

Mathematical structures of meta-algorithms are provided for management of sub-algorithms in a non-modular 

way. In contrast, the framework discussed here constitutes a computationally-based method founded on DEVS. 

The advantage of this framework resides in its: (i) application simplicity and (ii) simulation efficiency. 

 Specifically, the method does not require specific knowledge of the model to adapt the local time advance in a 

spatially explicit model, and simulation efficiency derives directly from the focus on events rather than time step 

scanning methods. 

1.2.2 Activity measure of continuous systems as an idealization of a quantized integrator 

The activity principle has been defined in [2, 27]. Activity, as it relates to quantization, is defined as the rate of 

change of the parameter in the temporal and spatial dimensions. The following is the definition of activity for a 

continuous segment. It provides a precise measure of the computational effort required by an ideal quantized 

method. In fact, it is a reasonable estimate of the computational effort required by implementations of these 

methods as well, and so provides a practical basis for anticipating where these methods might be useful. 

In Figure 2, D corresponds to the quantum (the minimum threshold for change below which no processing 

occurs) and the im corresponds to the maxima and minima of the curve, where the first and last im are the 

values of the function at the initial and final times. 
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Figure 2. Definition of Activity 

 

The activity in an interval [0, T] is defined as: 
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The activity in an interval [0, T] can be calculated by summing the differences between the adjacent 

maxima and minima, i.e. 
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The average activity in an interval [0, T] is given by: 
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The following theorem is important because it relates the number of threshold crossings made by a DEVS 

simulator, activity over a time interval T and the quantum size D. 

The number of threshold crossings in an interval of length T for threshold levels that are equally spaced by 

quantum size, D, is: 

 

 (2) 

  

 

Equations (1) and (2) hold for continuous curves with a finite number of extrema in an interval - there will 

be slight error which is bounded by the quantum size, which will disappear as the quantum goes to zero.  By 

definition, Equation (2) will be true for any quantum-based method that takes exactly one quantum step at each 

transition and tracks the curve exactly. Of course, a method may take more steps than given by Equation (2) due 

to oscillations that may arise, if the method does not supress them. Thus Equation (2) gives a lower bound, and 

indeed, a tight lower bound on the number of transitions that must be taken by a quantum-based method that 

takes one quantum step at each transition. However, if a quantum-based method takes more than one quantum 

step at each iteration  (as does QSS2 – see  [28]) then it can take fewer steps than given by Equation (2).  

However, in this case, we can conjecture that such methods will be characterized by a maximum number, M, of 

quantum steps per transition so that its number of transitions will be bounded below by the activity/M. Future 

work can test this conjecture. 
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After reviewing solution approaches to our example partial differential equation system, we will return to 

computing the activity of this system as a basis for comparing the efficiency and accuracy of the solution 

techniques considered in this paper.  

1.2.3 A brief review of basic concepts in implementing quantized integrators 

We now review the basic concepts of the activity measure for continuous dynamic system first presented in [7, 

14]. Many numerical discrete-time methods are based on discretizing continuous curves of ordinary differential 

equations (ODEs) using a time step that is applied uniformly to the system components.  In contrast to this 

approach, quantization reduces the number of computations needed to approximate a curve by allocating the 

computational resources to the active regions. When the value of the curve changes rapidly, the computations are 

increased to track changes. Otherwise, the number of computations is reduced. Curve changes are related to 

activity. Mathematically describing activity allows us to predict the number of computations required by a 

quantization-based method. 

A continuous scalar system that is spatially independent can be represented by the ODE: 

  (3) 

 

Where )(tΦ   is a continuous function of time.  

Using the Forward Euler method, Equation 3 can be discretized as shown below:  

 (4) 

Where t∆  represents a fixed time step. 

Quantization of ordinary differential equations has been introduced in [7, 16, 22, 29]. Rather than 

calculating the approximated solution at every time step t∆ , the quantization method facilitates the computation 

of the solution by tracking any significant changes in the system. This is possible because in the quantized 

solution, no processing occurs below a predefined threshold called quantum. 

In this paper, the basic concepts of the quantized method are reviewed for a single equation. The 

extension to systems of equation is straightforward; informally, each state variable is updated only 

when itself or one of its influencers changes by a quantum. This approximation is formalized as a 

discrete event system and simulated with a discrete event simulator. For a complete description of the 

technique, see, e.g., [28]. 

 A quantum can be defined as: 

 (5) 

 

where D  corresponds to the quantum size. 

The time required for such a quantum change can be calculated using finite differences in time [c.f. Equation 

(4)]: 
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 (6) 

Note that the time step ∆t in Equation 6 is variable as it depends on the absolute value of the time derivative

( )nf Φ . 

A numerical integration schema can be defined by substituting the value of t∆  of Equation (6) in Equation 

(4). The sign of )( nf Φ  gives the sign of the derivative 
dt

td )(Φ
 which is needed to track the direction of the 

solution. Thus, we obtain a quantized integrator: 

  (7) 

 

  (8) 

 

where 1nt + ∈ℝ  corresponds to the time where )( nf Φ  changes. 

 

Figure 3 depicts two numerical approximation examples: (a) using a discrete-time approach, and (b) using a 

quantization approach. The function )(tΦ  has a local minimum 1m  and a local maximum 2m . Notice that, by 

using a real time base, the number of computations necessary for the approximation of function )(tΦ  can be 

reduced. This is especially true when the function varies slightly in time. 
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Figure 3. Numerical approximations of an ODE 

2 The One-dimensional Diffusion Equation 

 

We use diffusion as an example to compare quantized and discrete-time numerical solutions. After 

characterizing the analytical solution to a one-dimensional linear diffusion problem, we formulate explicit, 

implicit and quantized solution techniques for this problem. This section closes with computation of the activity 

when the initial condition is a Gaussian pulse. 

2.1 Definition 

The one-dimensional diffusion is represented by equations below: 

                     (9a) 

                (9b) 

                (9c) 
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where, in equation (9a), tu is the first order partial differential of the state variable u  with respect to time, 

c  is the diffusion constant and xxu  is the second order partial derivative with respect to the space coordinate x , 

L  is the length of the domain, and T  is the total time of simulation. 

Equation (9b) is the homogeneous Dirichlet boundary conditions. Equation (9c) is the initial condition. 

Equation (9a) is usually solved by analytical or discrete-time methods. These classical solutions are described in 

Section 2.2. 

2.2 Solutions 

The one-dimensional diffusion equation can be solved numerically or analytically. This section presents an 

analytical solution, two discrete-time numerical solutions (using implicit and explicit schemes) and the quantized 

numerical solution. The analytical solution is used to compare the numerical solutions. 

2.2.1 Analytical Solution 

Using the separation of variables method, we obtain  

� �������	
��
�����
���

 (10) 

where λk =
kπ
L

. 

Using the pulse initial condition, with dx the variation in space: 
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+ dx
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2
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L

2
+ dx) − cos
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


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 (11) 

Equations (10) and (11) constitute the analytical solution of the one-dimensional diffusion equation. 

2.2.2 A Discrete-time Solution 

The  method of lines  [30]  is a well known general procedure for approximating PDEs to a system of ODEs (see  

http://www.scholarpedia.org/article/Method_of_lines for more information). Using the forward Euler space 

method [18], Equation (9a) can be rewritten as 

  

u
i
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where x∆  is the mesh size and 1nu
i

+  is the updated value of u  for each iteration. This is the explicit solution 

of the one-dimensional diffusion equation. 

Using the backward time centered space method, equation (9a) can be rewritten as 

ui
n+1 =

1

1+ c∆t

∆x2

[ui
n +

c∆t

∆x2
(ui −1

n+1 + ui +1
n+1)]  

(13) 

The solution is calculated at each time step using the iterative method of Jacobi [31] for which a convergence 

condition is used to pass at next time step. This is the implicit solution of the one-dimensional diffusion 

equation. 

Figure 4 depicts the explicit (a) and implicit (b) solutions. At every time step t∆ , solutions are computed 

using at each cell (or grid point) using the states of the cell and its neighbors. 

   
        (a) Explicit solution                 (b) Implicit solution 

Figure 4. Discrete-time solutions of the one-dimensional diffusion equation 

2.2.3 The Quantization Solution 

The derivation of this method begins with the discretization of the spatial derivatives [32]. This creates a system 

of coupled ODEs. The second step consists of choosing a time discretization technique (in this case, explicit 

Euler). To achieve a quantized discretization, space is still discretized using a classical scheme (in this case, 

centred differences), but then the quantized integrators described by Equations (7) and (8) are used to discretize 

the state space.  Hence, by first discretizing the spatial dimension of Equation (9a) using centered finite 

differences, this gives a system of ordinary differential equations described by: 
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 (14) 

The resulting system of ordinary differential equations is then solved using quantized integrators.  Every 

integrator (or cell) can be specified as a DEVS atomic model integrator (the semantics of DEVS atomic models 

is described in Appendix). This gives a discrete event approximation of the diffusion process for which new 

states are computed when the solution at any spatial grid point changes significantly [5, 7]. 

Figure 5 depicts the quantization solution of the one-dimensional diffusion equation. Notice that the cell’s 

next state is computed using the cell’s previous state (updated at the last neighbor’s boundary crossing), and the 
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last state of its neighbors, which have been communicated at quantum boundary crossings. A discrete-time base 

t∆  has been represented for comparison. 

 

 
Figure 5. Quantization solution of the one-dimensional diffusion equation 

2.3 Activity for a Gaussian pulse as the Initial Data 
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We use three different discretizations of space to study the benefits of using quantization to simulate the 

diffusion process. These configurations are 

• Constant mesh configuration: Different domain lengths and a constant space step ∆x (= L/N), 

• Mesh enlargement configuration: Different domain lengths and a constant number of cells, 

• Mesh refinement configuration: A constant domain length and an increasing number of cells. 

 

Figure 6 shows the results of using equation (13) to compute the total activity as a function of the number 

of cells when the density of cells is kept constant. As can be seen, there is a slight increase in activity as the 

number of cells increases. From equation (13) we can see that the activity of the Gaussian pulse is given by 

( ) ( )Lf
x

H
Lf

L

NH
A

∆
=≈  

Therefore, the activity increases very slightly with increasing L due to the dominance of the logarithmic 

term in the composition of ( )f L . This behavior of total activity is experimentally verified in the simulation 

results in the next section (see Figure 14). 

 

Figure 6.  Activity versus number of cells when ∆x is constant 

 

Figure 7 shows the total activity as function of the length of the computational domain. We see that 

increasing the length in this manner decreases the activity. From Equation (15) we can see that the activity of the 

Gaussian pulse decreases due to the dominance of the linear term in L over the other terms. This behavior of total 

activity is experimentally verified in the simulation results in Sub-section 3.3 (see Figure 14). 

 

 

Figure 7. Activity versus length for a constant number of cells 
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From Equation (15), we can see that as the number of cells, N keeps increasing while the length of the cell 

space, L is kept constant, the activity increases in direct proportion to N. Since a method based on Quantization 

keeps track of activity, the order of complexity of a quantized method will be O(N). The discrete-time methods 

considered in this paper do not make use of the heterogeneity in activity and hence the order of complexity of 

these discrete-time methods is O(N2). This behavior of total activity is experimentally verified in the simulation 

results in the next section (see Figure 19). 

 

3 Simulation Results 

In this section, we compare the results of simulations using the implicit, explicit, and discrete event methods 

described in Section 22.2. Implementations have been achieved using the C++ programming language and the 

ADEVS simulator (accessible online: http://www.ornl.gov/~1qn/adevs/index.html.) Examining these results 

confirms the activity theory, as well as the computational advantage of the quantized solution over the discrete-

time based numerical solution methods. 

We consider the simulation of heat diffusion for a domain with homogeneous Dirichlet boundary 

conditions. The simulation is run for 8s with the initial condition as a pulse. The value of the diffusion constant 

is 01.0=c . Errors of the numerical solutions are determined by comparison with the known analytical solution. 

Simulation results of the quantized solution are compared to the explicit and implicit ones. Results are analyzed 

and explained using the activity theory. The simulations were performed using a 1.5 GHz Pentium M processor. 

In the following we depict the execution times, number of transitions and average errors for (1) a constant 

rod length, a constant number of cells and different quantum sizes, (2) different number of constant size cells and 

different rod lengths, (3) a constant number of cells and different rod lengths, and (4) an increasing number of 

cells and a constant rod length.  

3.1 Determination of the Quantum Size 

The temperature at the left and right ends is kept at zero. At time st 0= , a pulse of amplitude 1 is applied at the 

center of the domain. The length of the domain is equal to 1m and the grid width mx 01.0=∆ . The domain is 

divided into 101=N  cells. Figure 8 depicts the 3D activity distribution.  

 

 

Figure 8. 3D activity distribution 
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Figure 9 depicts the analytical solution. The diffusion of the pulse is shown at times st 2.0= , st 8.0=  and 

st 6= . At time stend 8= , the heat is totally diffused. 

 

 

Figure 9. Analytical solution 

 

A first choice of quantum size consists of determining the quantum size to avoid oscillations at the 

equilibrium. If the equilibrium solution is known, then the quantum size can be selected so that equilibrium 

points are reachable in the discrete state space [7]. This ensures that, rather than oscillating about the equilibrium 

(see, e.g., [33]) the numerical solution will settle at a point where the time advance is infinite and the simulation 

does no unnecessary work. The specific requirement for this to occur is that the difference between the initial 

state and final state at each grid point be an integer multiple of the quantum. Figure 10 compares the results of 

choosing an incorrect (0.9e-7) and correct (1e-6) quantum size. 
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Figure 10. Incorrect and correct choices of quantum size scales 

 

After choosing the right quantum size scale, the final quantum size needs to be determined. Figure 11 

depicts errors obtained when increasing the quantum size. 

 

 
Figure 11. Average relative error according to quantum size 

 
In the same way, increasing the time step of the explicit method leads to error increase as depicted in 

Figure 12. 
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Figure 12. Average relative error according to time steps 

 
Table 1 depicts the simulation results for different quantum sizes. We see that the bigger the quantum size, 

the smaller the number of transitions and the execution time. Concomitantly, the smallest time advance (tamin) in 

the simulation increases with increasing quantum size. This time corresponds to the minimum time for the 

system’s state to change by a quantum. For quantum sizes that are smaller than 10-5, Equation (2) (stating inverse 

dependence of transitions on quantum size) is verified. That is, reducing the quantum size by a factor of 10 

increases the number of transitions by 10.  

 

Quantum size # of transitions Execution time(s) tamin(s) 

10-7 4.5.107 221 5.10-10 

10-6 4.5.106 22 5.10-9 

10-5 463 693 2 5.10-8 

10-4 91 541 1 5.10-7 

10-3 60 489 1 5.10-6 

Table 1. Simulation results for different quantum sizes 
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%040.0onquantizati =Ε , %036.0licitexp =Ε  and %087.0implicit =Ε . Moreover, since the diffusion is completed after 8s 

of propagation, keeping the same grid cell size x∆ , errors will remain the same for greater domain lengths. 

The purpose of our comparison is to show that the total error - the combined error of both time and space 

discretization - of the two schemes (Forward or Backward Euler or Quantization) is essentially the same. In 

practice, the total error is the only error that matters. If the error due to the spatial discretization dominates, then 

the choice of integrator in time should not be driven by concerns over accuracy: computational efficiency is a 

more important consideration in this case. Our comparison illuminates this point. 

3.2 Constant Mesh Configuration 

Here, for the same cell size ( mx 01.0=∆ ), the number of cells has been increased. Figure 13 compares execution 

times of the numerical methods using this fact. The execution times of the quantized method are lower than the 

execution times of the discrete time numerical methods. This is due to the ability of the quantized simulation to 

focus computation resources on the high activity zones. 

 

 

Figure 13. Execution times for a constant cell’s size and increasing numbers of cells 

 

 
Indeed, Figure 14 pinpoints the activity tracking capability of the quantization method. The number of 

transitions of the discrete-time methods is strongly increasing with the number of cells. As the quantization 

method just concentrates on active cells, the number of transitions almost remains constant. This corresponds to 

the total activity as discussed in Section 2.4. Note the correspondence between Figures 6 and 14 that are related 

through Equation (15). The number of transitions made by the quantization method in Figure 14 as the number 

of cells increases is directly related to that of the total activity in Figure 6. 
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Figure 14. Number of transitions for a constant cell’s size and increasing numbers of cells 

 

As the size of the cell is constant and the diffusion, which is mainly concentrated one meter around the 

pulse, is finished at the end of the simulation, the average relative error of Section 3.1 remains valid here. 

3.3 Mesh Enlargement Configuration 

Figure 15 depicts the execution times obtained when keeping the same number of cells 100=N , we increase the 

domain length. Implicit and explicit methods give execution times of s13 , whatever the domain length. 

Concerning the quantization method, execution times decrease from s40  (for mL 1= ) to s23  (for mL 10= ), 

and finally to 3s  (for mL 100= ). 

 

Figure 15. Execution times for a constant number of cells and different rod lengths 

 

Increasing the space discretization, we obtain a linear function for the total mean error which is the same 
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Figure 16. Total average error according to space discretization 

 
 

Figure 17 represents the number of transitions obtained for different methods, a constant number of cells 

and different rod lengths. Though the number of transitions of implicit and explicit methods is constant, the 

number of transitions of the quantization method decreases as the length increases. This is because the time 

advance (8) of the quantization method is calculated using the centered differences in space (14). The more the 

space step x∆  increases, the more the time advance increases.  

 

 

Figure 17. Number of transitions for a constant number of cells and different rod lengths 

 
Notice that the number of transitions of the quantization method is significantly lower than the ones for the 

implicit and explicit methods. However, execution times of the quantization method can be greater for 

m50L ≤ . This is due to an overhead induced by the algorithm used to focus on activity. The quantization 

method is more interesting if the activity zone is small with respect to the diffusion domain. This corresponds to 

the behavior of total activity as discussed in the previous section. Note the correspondence between Figures 7 

and 17. 

The average relative errors of the explicit and quantization methods for m10L =  and 100N = . Errors are 

identical. Total average relative errors are very small (still due to small time-steps and quantum size): 

%42.0onquantizati =Ε , %40.0licitexp =Ε  , and %40.0implicit =Ε .  
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3.4 Mesh Refinement Configuration 

Figure 18.b shows the execution times of the different methods for mL 1=  and an increasing number of cells. 

This is a zoom on the beginning of the x-axis of Figure 18.a. Diffusion occurs on the whole length mL 1= . The 

number of cells is increased in this zone of high activity. Until 350=N , execution times of the quantization 

method are slightly greater than the discrete-time methods. This is due to the fact that activity detection of the 

quantization method takes more time than simply calculating on the whole domain. Figure 19 confirms this 

guess. In this figure one can notice that the number of transitions of the quantization method is smaller than the 

number of transitions of the discrete-time methods. 

 

 

 

 

(a) 

 

(b) 

Figure 18. Execution times for an increasing number of cells and for mL 1=  
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Figure 19. Number of transitions for an increasing number of cells and for mL 1=   

 

Recall that Equation (15) predicted that as the number of cells N increases, while the length of the cell 

space is kept constant, the activity increases in direct proportion to N. Figure 19 confirms this prediction as well 

as the faster increase in transitions for the discrete-time methods. 

Average relative errors for m1L =  and 500N =  cells are still very small: %006,0onquantizati =Ε , 

%013,0licitexp =Ε , and %01,0implicit =Ε . This is due to a very small space discretization: m002.0x =∆ . Hence, the 

solution is very accurate and errors can be considered as numerical oscillations because of their small amplitude 

and small duration ( s4.0 ). 

 

4 Conclusion 

Tracking activity in space has been shown to be more advantageous than computing non-active components even 

allowing for the extra overhead it may incur. A comprehensive activity-based modeling and simulation 

framework has been presented and applied. Furthermore, we have introduced a first solution to achieve activity 

tracking using discrete-event modeling and simulation. Basic Euler methods have been used to illustrate this new 

activity paradigm approach. Although these discretization methods are known to be computation-intensive1, they 

allow us to more easily introduce many formal, computational concepts and compare them with conventional 

methods. The efficiency, stability, and accuracy of the method examined in this paper, and of several related 

methods, have been studied in [8-13]; these papers discuss extensions of the quantization concept to stiff systems 

and to higher order numerical integration methods. Although this paper looked only at a first order accurate 

integration scheme, the same principles are naturally extended to higher order methods [3-6, 9-12] and 

specialized methods for stiff and differential algebraic systems [10, 11, 34]. 

The relative improvement of the quantized integration schemes over the discrete time Euler methods is due, 

in part, to the inability of these methods to track activity. Such methods can be enhanced to perform such 

tracking to good effect [3, 35]. However, more fundamentally, the quantum-based schemes support a restatement 

of the simulation problem whereas discrete time schemes ask the question “given the solution at time t, what will 

                                                 
1 Notice that backward Euler or any backward differentiation formulas method can use larger time steps than the 
small time steps used in this study (thus leading to better execution times.) Conversely, using larger quanta will 
lead to oscillations because of the stiffness of the system [36]. However, the scope of this paper was to establish 
a new activity-based framework, under the same experimental conditions, and to apply it for the comparison of 
discrete-event and discrete-time discretization techniques.  
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be the solution be at time t+h”, discrete event methods ask “given the solution now, when will the solution 

change by a quantum-sized amount”. This new simulation paradigm is made operational by approximating 

continuous systems using a discrete state space and a continuous time base.  In contrast to this, discrete time 

methods employ a discrete time base and continuous state space.  

When quantized integrators are implemented as discrete event systems, the resulting simulation algorithm 

automatically and generically tracks activity in space. This is a natural result of the discrete event simulation 

algorithm, and so it does not require special procedures to track changes in a cell’s states [21, 35]. The activity 

measure allows us to predict the efficiency of the quantization simulations of continuous systems. However, to 

calculate activity in advance of actual simulation requires analytical solution of the continuous system. 

Generally, complex PDEs do not have analytical solutions so that smart methods must be developed to monitor 

and extrapolate the current activity, in order to exploit activity theory’s prediction capability. In any case, the 

theory suggests that systems with temporal and spatial variation in activity are good candidates for activity-based 

techniques. The results of some recent experimental works have been reported (see [5, 35]) with favorable 

results.  

Further experimentation is needed, and more complex systems have to be studied, to assess efficiency of 

quantization and other activity-based techniques in a broader context. Also comparison with other recent 

methods such as those of Logg’s [25] and Takahashi’s [26] will have to be done in future research to establish 

the relationship of discrete event techniques to methods that have evolved from traditional approaches. 

Nonetheless, we have demonstrated that the concept of activity can estimate the computational effort required by 

a quantized state method. Furthermore, our experiments have shown that when properly designed, a discrete 

event simulator for such a method achieves a reduction in the number of state transitions that more than 

compensates for the overhead it imposes. 
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Appendix 
A Brief Description of DEVS 

 

The Discrete Event System Specification (DEVS) is a modeling framework that describes a systems with two 

types of modeling structures.  State space models (also called atomic models) describe the smallest elements of a 

system in terms of inputs and outputs, state variables, state transition functions, a time advance function, and an 

output function.  Network (also called coupled or multi-component) models describe how atomic and other 

network models are interconnected to form larger systems.  Network models are described by their inputs and 

outputs, component model set, and interconnections between component models. 

The system theoretic roots of DEVS are apparent in the fact that every DEVS model can be reduced to a 

classical state space representation in the form <X,Y,S,T,∆,Λ,Ω> .  The elements X and Y are the system input and 

output sets, S is the system state set, T is the system time base, ∆ is the system state transition function, Λ is the 

system output function, and Ω is the set of admissible input trajectories. A trajectory is a function from the 

system time base to the system input set (an input trajectory) or system output set (an output trajectory). 

The essential operation described by the structure is the mapping of an input trajectory and initial state to a 

final state (described by the state transition function) and output trajectory (described by the output function).  

Specializations of this basic structure are constructed to accommodate specific classes of admissible trajectories.  

A given specialization is a system if a procedure exists for reducing the specialized structure to the basic system 

structure described above. 

DEVS specializes the basic system structure to accommodate event trajectories.  An event trajectory is a 

function from the real numbers to a set that takes on the special non-event value everywhere except at a finite 

number of points in any finite interval of time.  Figure 1 illustrates this with an event trajectory x(t).   

 
 

 
 
 
 
 
 
 

Figure A.1. An example of an event trajectory 
 

 
A DEVS atomic model is described by a structure <X,Y,S,δint,δext,δcon,λ,ta> . The sets X, Y, and S are the 

input, output, and state sets, respectively.  The functions δint, δext, and δcon are the internal, external, and confluent 

state transition functions, respectively.  The internal transition function describes the autonomous behavior of the 

system.  The external transition function describes the input response of the system. The confluent transition 

function describes the evolution of the system state when an internal and external event coincide. The function λ 

is the output function, and ta is the time advance function. The time advance function is used to schedule output 

and internal events. 

The abstract simulator for a DEVS atomic model is prescribed by the procedure that is used to reduce its 

structure to a classical state space representation. While the formalized procedure is described recursively, there 

exist numerous iterative and parallel implementations of this procedure that are suitable for practical 

time 

x(t) 
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computations.   

One such algorithm for simulating a single atomic model is shown below. Here, tN denotes the next event 

time, tL is the last event time, t0 is the time at which the simulation starts, tf is the simulation stop time, x(t) 

denotes the input trajectory, y(t) denotes the output trajectory, and q is the system state. The trajectory y(t) 

initially takes on the value of the null event, denotes by Φ, at all times. The input trajectory x(t) is given prior to 

simulation start and will be consumed as the computation progresses.  The initial system state is denoted by q0. 

 
t � 0 
for all i ∈ [1; n] do 

tLi � 0 
set si to the initial state of Mi 

end for 
while terminating condition not met do 

for all i ∈ [1; n] do 
tNi � tLi + tai(si) 
Empty the bag xi 

end for 
t � min {tNi}  
for all i ∈ [1; n] do 

if tNi = t then 
yi � λ i(si) 

for all j ∈ [1; n] & j ≠ i & zij(yi) ≠ Φ do 
Add zij(yi) to the bag xj 

end for 
end if 

end for 
for all i ∈ [1; n] do 

if tNi = t & xi is empty then 
si � δint;i(si) 
tLi � t 

else if tNi = t & xi is not empty then 
si � δcon;i(si; xi) 
tLi � t 

else if tNi ≠ t & xi is not empty then 
si � δext;i(si; t ¡ tLi; xi) 
tLi � t 

end if 
end for 
end while 

Algorithm A.1.  An iterative procedure for simulating a DEVS atomic model. 

 

An example will illustrate the essential concepts.  Other, more traditional, examples (e.g., of queuing 

systems expressed in DEVS) can be found on the web and throughout the literature.  Consider a system 

described by the function dq/dt = c(t), where c(t) is the piecewise constant trajectory shown in Figure A.2.  This 

can be readily encoded as an event trajectory by recording the points at which the amplitude of c(t) changes.  

This encoding is shown in Figure A.3. 
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Figure A.2. Piecewise constant trajectory c(t) 

 
 

 

 

 

 

Figure A.3. c(t) encoded as an event trajectory 

 

We can construct a DEVS model that will compute q(t) for any such piece-wise constant c(t).  The model 

will provide outputs at a fixed resolution D in the state space of the system.  Let X = Y = R and S = { (q,q',s) | q, 

q', s ∈ R }, where R is the real numbers.  Let D be the desired minimum resolution in the output of the integrator.  

The state transition functions are given by: 

 

int q ,q ' ,s q sq ' ,q ' ,D q '  

ext q ,q ' ,s ,e ,x q eq ' , x ,0  

con q ,q ' ,s ,x q sq ' , x ,D x  
 

The model output and time advance functions are given by: 

q,q ',s q sq ' 
ta q,q' ,s s  

 

The initial state of the model is (x(0),0,∞).  Using algorithm A.1 with D = 1, the state and output trajectories 

of the system over the time interval [0,4.3] can be computed as shown in the Table A.1.  Empty entries in the 

table denote a non-event. 

Similar, though more complex, procedures exist for computing the behavior of multi-component and 

hierarchical models.  In practice, these procedures are implemented as part of a simulation package that can be 

used to implement DEVS models. The simulation package provides abstract classes with virtual state transition, 

initialization, output, and time advance functions. These classes are implemented by end users and plugged into 

the simulation engine for execution. 
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t state x(t) y(t) ta 

0 0 , 0 , ∞   ∞ 

1 0 , 5 , 0 5  0 

1 0 , 5 , 0.2  0 0.2 

1.2 1 , 5 , 0.2  1 0.2 

1.4 2 , 5 , 0.2  2 0.2 

1.6 3 , 5 , 0.2  3 0.2 

1.8 4 , 5 , 0.2  4 0.2 

2 5 , 2 , 0.5 2 5 0.5 

2.5 6 , 2 , 0.5  6 0.5 

3 7 , 2 , 0.5  7 0.5 

3.5 8 , 2 , 0.5  8 0.5 

4 9 , 2 , 0.5  9 0.5 

4.1 9.2 , 6 , 0 6  0 

4.1 9.2 , 6 , 0.17  9.2 0.17 

4.27 10.2 , 6 , 0.17  10.2 0.17 

Table A.1. State and output trajectories 

  

 
  

 
 
 


