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Abstract

From a modelling and simulation perspective, stngyilynamic systems consists of focusing on changes
states. According to the precision of state changeseric algorithms can be developed to trackathvity of
sub-systems. This paper aims at describing andyiagpthis more natural and intuitive way to deserind
implement dynamic systems. Activity is mathematicalefined. A generic application case of diffusian
experimented to compare the efficiency of quantigede methods using this new approach with tiukdi
methods which do not focus computations on actieasa Our goal is to demonstrate that the condegottivity
can estimate the computational effort required byuantized state method. Specifically, when prgperl
designed, a discrete event simulator for such &odedchieves a reduction in the number of statesitians that

more than compensates for the overhead it imposes.

Introduction

Recently, a new research direction has been disduss[1] for component-based simulation and ajpiptie
complex natural systems [2] . This approach aimgleftning a new framework for tracking activity of
components in dynamic simulations. Discrete-timé discrete-event implementations of this technicae be
found in [3-6]. In this paper, our aim is to apjhe activity tracking paradigm to an example inckhanalytic
solutions can be obtained to enable comparisorctity-tracking solution techniques with convemt#& ones
along the dimensions of both execution efficienng accuracy. A one-dimensional partial differengéiqUation
system is discretized using the quantization meghredented in [7]. The efficiency, stability, anctaracy of
the method examined in this paper, and of sevetated methods, have been studied in [8-13]; tipegers
discuss extensions of the quantization concepttifd ss/stems and to higher order numerical inteigrat

methods. However, [8] did not explicitly considéretrelationship of the quantization technique ttivag



tracking. Our aim here is to show how the actigtyspatial systems can be tracked using discnetete and to
explain the results of [8] in these terms. Furthenen a new formal concept is introduced to disalissrete-
event implementations of continuous systems: thevigc measure. This activity measure [7, 14] softp
predicting the number of computations (or boundamssings) necessitated by quantization to apprab€ra
continuous curve.

In the rest of this paper, first the quantizatiowl activity tracking paradigm concepts are intragtiicThen,
these concepts are applied to a one-dimensionfisitii process. Next, simulation results are disedsand

presented. Finally, conclusions and perspectivegjiaen.

1 Background

Activity of systems can be tracked from both moaagliand simulation perspectives. From the simulation
perspective, messages and computations shouldtieett in the whole distributed system without idtroing
errors. From the modeling perspectives, the detecpirecision of state changes can be adapted tceed

message exchanges and computation introducingteotted error.

1.1 Simulation perspective

There are three common types of discrete eventlation strategies, also called world views, that amployed

in discrete event simulation languages and packdbgsl7]: event-scheduling, activity-scanning, amdgess-
oriented. A strategy makes certain forms of modcdiption more naturally expressible than othdrsall of
these world-views, aeventis an instantaneous change in the state of arsyatea particular time. Event
scheduling models work with pre-scheduling of aktets and there is no provision for activating esday tests
on the global state. In contrast, in the activiggrining approach, events can be conditioned omtingency test
in addition to being scheduled to occur in timemAdel is said to bactivewhen both its scheduling time has
occurred and its contingency test is satisfied. pitoeessinteractionworld view is a combination of the event
scheduling and activity scanning strategies. Aititdormulation is provided in [16].

In simulations, a distinction is usually made bedwehe continuous time of reality and simulatiandi
Simulation time can be managed two ways [15]: ljoak or by discrete-events. In a clock (or diseféine)
driven simulation, time is incremented by a stépfromt to t+At. State changes occurring betwéent+At] are
computed at+At. The time base is called discrete (or synchronams) the models are called discrete-time
models. In a discrete-event driven simulation,dineulation progresses from the occurrence timenefevent to
the occurrence time of the next evarg, from one state change to the next. The time lsaselled continuous
(or asynchronous) and the models are called desenatnt models.

The advantage of discrete-event driven simulatisnthat a simulation model evolves directly fromeon
state change to another. No computations are meefbrduring inactive periods, but this requires that next
state change can be forecast from the current atatet requires an efficient method for schedulwgnts. On
the other hand, in a discrete-time driven simufatime has to cope with the limited precision of tinge step
and the consequent difficulties with detecting anting on asynchronous events.

The appropriate choice of a time management sctagpends on the nature of the system and on the

modeling objectives. For a system in which evegtestchange occurs atAd, discrete-events will produce



simulation overhead, and a discrete-time drivenuttion will be more efficient because we do novéhao
predict (by computation) what we already know vdippen and when. However, we can easily admitithat
natural systems discrete-time evolution does nist.eRiscrete-time flows only exist in a modelehsad and in
industrial processe®(g.,robots) or after the discretization of real contins time by humans [18]. For other
systems, “while other formalisms allow representaf space and resources, only discrete-event Isodfer
the traditional ability to explicitly and flexiblgxpress time and its essential constraints on camadiaptive
systems behavior and structure” [19].
The activity-tracking paradigm emerges naturallynira discrete-event approach to simulation. Diseret
events, however, are essential to take into acaextetnal events in discrete-time components. Mage@very
discrete-time increment can be considered as amaitevent of a simulation model. With this pecdpe it is
possible to usefully apply activity-tracking technes to discrete-time simulations.
Figure 1 depicts the essential parts of an activigking simulation. It merges the three usualldwwiews
(activity-, event-, and process-oriented stratggipto a single framework that includes discretadtidriven
models as well; the usual world-views are undedindere they appear in the activity-tracking sgsteMarks
are added to, and removed from, components to tatikity as it propagates through the model; theseks
are used to maintain the set of active componestgha simulation progresses. Every activity-tragkin
simulation has three basic steps:
= Step I: Components exchange information and the propagafiactivity is tracked. The current active
set is scanned for components that have output&eenl these events are routed to their destirgtion
routing in hierarchal models can be done recurgi{#4]. The active set is updated to include atomic
components that have received these output evékttsmic components are basic behavioral
components that are coupled together to build atghical structure [16].

= Step IlI: New states are computed for active components ftheir current states and inputs.
Components that changed state significantly ardaadaand added to the active set; components that do
not undergo a significant change of state are remhdrom the active set. In a discrete-event driven
simulation, the active set is an event schedulértha active components are in the schedule or will
receive an input from a model in the schedule.
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Figure 1. State-centric activity tracking pattern

This is a state-centric two-step pattern. Both llacal global levels of modularity for state traimsis can be
achieved. Local transitions are achieved on sta#temgle components. Global transitions are agdean many

component states. These specification levels amugsed in the next sub-section.

1.2 Modeling per spective

Significant success has been achieved in applyisgréte Event Simulation approaches to simulatéiwoous
systems that are characterized by spatiotempotaldgeneity in their activities [6, 7, 20]. A Diste Event
approach makes effective use of the computaticgesurces by allocating them to regions in proporttheir
activity.

For simulating the diffusion process, specific aitpons have been proposed to track activity (charige
the value of cells) in space [21] based on disetigte discretization schemes. However, these metlaod
based on a discrete-time numerical method usingeaific activity tracking algorithm work by dynanaity
adjusting the calculation domain. When the algarif applied to another problem, it is impossibl@tedict its
simulation efficiency and, consequently, whethenatrthe algorithm is applicable to the new prohlem

Quantization-based numerical methods work, notdjysiing the computational domain, but by allowing
the advance of time to be determined locally ahegad point. Quantization is a recent numerioaithod [16,
22]. This method is used to track activity in timed space [5, 7] thus reducing the number of coatjous
necessary to approximate a continuous curve. |trasirto discrete-time numerical methods, thatrdisze time
in equal time steps, quantization works by disznedj (or quantizing) the state variables of a qomius system
in equal quanta. The quantized model is then imphged in DEVS. Roughly speaking, in such a simaoitgti
discrete events occur at quantum boundary crossthgstime advance (i.e., time to go from one everthe

next) at any cell is inversely proportional to therent temporal derivative at that cell.



1.2.1 Quantization methodology

Quantization is part of the DEVS framework. Thetdatis constituted of a set of abstract algorithms,
mathematical structures, notations... to be used nfmdeling and simulating components of systems.
Discretization methods are usually used as a tqolenio obtain algorithms for discretizing conting@ystems.
These algorithms are then encoded from scratch. DEdhstitutes a framework for this implementatidre
consider here this framework through the quantimatechnique. The latter offers a new way of cozrsid)
continuous systems. However, a clear distincticededo be made with other adaptive discretizatiethods.

No confusion should arise between quantizationdasethods and Adaptive mesh refinement techniques.
The Adaptive mesh refinement techniques use a btivha step. The time step can be adaptive in émse that
the time step changes from iteration to iteratlmn, the time step is applied uniformly across spabe spatial
and temporal grids are discretized simultaneously @ the same way, and then the variation of tla¢es
variables is tracked in space and time. Discretmetechniques differ from adaptive mesh refinenbEdause
the time advance is not applied uniformly acroseepRather, it is entirely local, with differeipiasial grid cells
having different rates of advance. In effect, egGtl point has its own adaptive time step that bardifferent
from the steps used by other grid points. Many &damnesh refinement methods [23, 24] are basedarsing
work in a manner related to activity, but activigyleft as an informal concept.

Recently, interest has developed in locally adgpsimulation time steps for new classes of modessna
in bioinformatics and other areas. Although suchhwoés are similar to the approach discussed haeeg, differ
in certain key respects. Logg [25] embeds thedisliement method and Galerkin methods into a mattieah
framework that supports “multi-adaptive time” intation. The method requires a priori and a posterio
estimates of the simulation errors. [26] proposetaralgorithms based on discrete-event schedutetstlee
Hermite polynomial interpolation for “multi-algohin, multi-timescale methods” for cell simulation.
Mathematical structures of meta-algorithms are ioled for management of sub-algorithms in a non-nterdu
way. In contrast, the framework discussed heretitatess a computationally-based method founded &v®.
The advantage of this framework resides in its: gplication simplicity and (ii) simulation effiaiey.
Specifically, the method does not require spedifiowledge of the model to adapt the local timeaade in a
spatially explicit model, and simulation efficiendgrives directly from the focus on events rathanttime step

scanning methods.

1.2.2 Activity measure of continuous systems as an idattin of a quantized integrator

The activity principle has been defined in [2, 2&¢tivity, as it relates to quantization, is defihas the rate of
change of the parameter in the temporal and spditiznsions. The following is the definition of ity for a
continuous segment. It provides a precise meadutikeocomputational effort required by an ideal nfized
method. In fact, it is a reasonable estimate ofdbtmputational effort required by implementatioristieese
methods as well, and so provides a practical bas@nticipating where these methods might be usefu

In Figure 2,D corresponds to the quantum (the minimum thresfarldhange below which no processing
occurs) and them corresponds to the maxima and minima of the cuwlesre the first and lasim are the

values of the function at the initial and final 8m
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Figure 2. Definition of Activity

Theactivity in an interval [0, T] is defined as:

A=)

)
ot

The activity in an interval [0, T] can be calculhtey summing the differences between the adjacent

maxima and minima,e.

A(T):Z|m+1_m| @)

The average activity in an interval [0, T] is givieyx
AvgActiviy(T) = $

The following theorem is important because it rdahe number of threshold crossings made by a DEVS
simulator, activity over a time interv@land the quantum siZ2.
The number of threshold crossings in an intervadénfithT for threshold levels that are equally spaced by

quantum sizeD, is:

_AM) )
NumberOfThreshodCross(T,D) = N (2)

Equations (1) and (2) hold for continuous curvethwi finite number of extrema in an interval - theyill
be slight error which is bounded by the quantune,sighich will disappear as the quantum goes to.z&yp
definition, Equation (2) will be true for any quant-based method that takes exactly one quantumasteach
transition and tracks the curve exactly. Of coussmethod may take more steps than given by Equéjpdue
to oscillations that may arise, if the method doessupress them. Thus Equation (2) gives a lowend, and
indeed, a tight lower bound on the number of ttéorss that must be taken by a quantum-based metiaid
takes one quantum step at each transition. Howédvarquantum-based method takes more than onetwuan
step at each iteration (as does QSS2 — see {R&%) it can take fewer steps than given by Equaf®)n
However, in this case, we can conjecture that soethods will be characterized by a maximum numbkrof
guantum steps per transition so that its numberaofsitions will be bounded below by thetivity/M. Future

work can test this conjecture.



After reviewing solution approaches to our exanmmetial differential equation system, we will retuio
computing the activity of this system as a basis domparing the efficiency and accuracy of the sotu

techniques considered in this paper.

1.2.3 A brief review of basic concepts in implementingqtized integrators

We now review the basic concepts of the activityasuee for continuous dynamic system first preseintdd,
14]. Many numerical discrete-time methods are basediscretizing continuous curves of ordinary eliéntial
equations (ODEs) using a time step that is applieifiormly to the system components. In contrasthis
approach, quantization reduces the number of caatipns needed to approximate a curve by allocattieg
computational resources to the active regions. Whewalue of the curve changes rapidly, the coatpns are
increased to track changes. Otherwise, the numbeomputations is reduced. Curve changes are tklate
activity. Mathematically describing activity allowss to predict the number of computations requingda

guantization-based method.

A continuous scalar system that is spatially indejeat can be represented by the ODE:

do(t) _
g f(P(t)) ®3)

Where @(t) is a continuous function of time.

Using the Forward Euler method, Equation 3 caniberetized as shown below:

O™ =P" +AL.f(P") 4
Where At represents a fixed time step.
Quantization of ordinary differential equations hasen introduced in [7, 16, 22, 29]. Rather than

calculating the approximated solution at every tstep /At , the quantization method facilitates the compatati
of the solution by tracking any significant changesthe system. This is possible because in thentqe

solution, no processing occurs below a predefihegshold calledjuantum

In this paper, the basic concepts of the quantigethod are reviewed for a single equation. The
extension to systems of equation is straightforyarfbrmally, each state variable is updated only
when itself or one of its influencers changes bguantum. This approximation is formalized as a
discrete event system and simulated with a diseetat simulator. For a complete description of the

technique, see, e.g., [28].
A quantum can be defined as:

D :\cb“”—cp“ )

where D corresponds to the quantum size.

The time required for such a quantum change cacalmilated using finite differences in timef[ Equation
(Ol D

t=———

(o)




(6)

Note that the time stefit in Equation 6 is variable as it depends on theohlte value of the time derivative
(@),
A numerical integration schema can be defined gstuiting the value ofAt of Equation (6) in Equation

(4). The sign of f (®") gives the sign of the derivativg? which is needed to track the direction of the
t

solution. Thus, we obtainquantized integrator:

®™ = " + D.sign(f (@") @)
_ D
t =1, +—‘f(¢n) ®)

wheret_,, 1R corresponds to the time whefe(®") changes.

Figure 3 depicts two numerical approximation exarap(a) using a discrete-time approach, and (lguesi
quantization approach. The functiéB(t) has a local minimunmm, and a local maximunm, . Notice that, by
using a real time base, the number of computatimtessary for the approximation of functié(t) can be

reduced. This is especially true when the functiares slightly in time.
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Figure 3. Numerical approximations of an ODE

2 The One-dimensional Diffusion Equation

We use diffusion as an example to compare quantiaed discrete-time numerical solutions. After
characterizing the analytical solution to a onestfisional linear diffusion problem, we formulate koip
implicit and quantized solution techniques for thisblem. This section closes with computationhaf activity

when the initial condition is a Gaussian pulse.

2.1 Definition

The one-dimensional diffusion is represented byadquos below:

U, = cu, forxJ] o andtO ] 0 (%2)
u(0,t) =u(L,t) =0 fort O[0OT] (9b)
u(x0) =y, (X) for >0 [ o (9c)



where, in equation (9a}l; is the first order partial differential of the statariableU with respect to time,
C is the diffusion constant and,, is the second order partial derivative with respethe space coordinate,
L is the length of the domain, arld is the total time of simulation.

Equation (9b) is the homogeneous Dirichlet boundargditions. Equation (9c) is the initial condition
Equation (9a) is usually solved by analytical @odéte-time methods. These classical solutionsl@seribed in
Section 2.2.

2.2 Solutions

The one-dimensional diffusion equation can be sblmemerically or analytically. This section presein
analytical solution, two discrete-time numericdusions (using implicit and explicit schemes) ahd tjuantized

numerical solution. The analytical solution is use@ompare the numerical solutions.

2.2.1 Analytical Solution

Using the separation of variables method, we obtain

u= z Dye™“Htsind,x (10)
keN

7l
where A, = —.
L
Using the pulse initial condition, wittix the variation in space:

u(x,0) =1 forxD{£,£+dx}
22

u(xp)=0 elsewhere in the domain

the coefficientsD, are identified as
2

L AL

D,

Equations (10) and (11) constitute Hrelytical solution of the one-dimensional diffusion equation.

2.2.2 A Discrete-time Solution

The method of lines [30] is a well known gengmailcedure for approximating PDES to a system oE®Bee
http://www.scholarpedia.org/article/Method_of_lirfes more information). Using the forward Euler spa

method [18], Equation (9a) can be rewritten as

In+1:uin+(CN\[un

N, N
i a2t +“i—J (12)
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where AX is the mesh size anglf”l is the updated value &f for each iteration. This is thexplicit solution

of the one-dimensional diffusion equation.

Using the backward time centered space methodtiequ@a) can be rewritten as

1 cAt

N+l _ n n+l n+l

’ _1+ﬂ[ui +AX2 (U= +uly)] (13)
AX?

The solution is calculated at each time step uiegterative method of Jacobi [31] for which a eergence
condition is used to pass at next time step. Téisheimplicit solution of the one-dimensional diffusion
equation.

Figure 4 depicts the explicit (a) and implicit @lutions. At every time steglt, solutions are computed

using at each cell (or grid point) using the statiethe cell and its neighbors.

A A
time time

at] at|

v

AX space
—» State influence —>» State influence
(a) Explicit solution (b) Implicit solution

Figure 4. Discrete-time solutions of the one-dimensionaiudibn equation

2.2.3 The Quantization Solution

The derivation of this method begins with the disization of the spatial derivatives [32]. Thisates a system
of coupled ODEs. The second step consists of chgasitime discretization technique (in this casqlieit
Euler). To achieve a quantized discretization, epacstill discretized using a classical schemetlfis case,
centred differences), but then the quantized iategs described by Equations (7) and (8) are uselistretize
the state space. Hence, by first discretizing gpatial dimension of Equation (9a) using centeriadef

differences, this gives a system of ordinary déferal equations described by:

du [ ¢)
ry :(AzZJ[”m‘Z“i ] (14)

The resulting system of ordinary differential edoas$ is then solved using quantized integratorserfe
integrator (or cell) can be specified as a DEVSritaomodel integrator (the semantics of DEVS atomadels
is described in Appendix). This gives a discretergvapproximation of the diffusion process for vhitew
states are computed when the solution at any $gaiiepoint changes significantly [5, 7].

Figure 5 depicts the quantization solution of the-dimensional diffusion equation. Notice that tied!’s

next state is computed using the cell's previoagesfupdated at the last neighbor’s boundary anggsand the

11



last state of its neighbors, which have been conitated at quantum boundary crossings. A discrete-thiase

At has been represented for comparison.

time A "*2

AN | P

1
Atl hennnnsn

O Boundary crossing

— State influence

Figure 5. Quantization solution of the one-dimensional diifinsequation

2.3 Activity for a Gaussian pulse asthe Initial Data

We consider the case of a Gaussian pulse as tied duata for the case of open boundary conditiwhsre the
heat of the system tends to zero. It is not possiblstart a simulation with time equal to zero aisthg a
Gaussian pulse as initial condition because thseplécomes a Dirac delta function concentrateoeaditigin as
t approaches zero. So in the following analysis,steet from a state in which time starts frogg,, some time
greater than zero.

As described in [14], using Equation (1) and therfunction erf (X)ZAJ‘XG_ZZdZwe obtain:
Jm
A:NHEQ)

where,
N is the number of cells,

H is the amplitude of the Gaussian pulse, and

_|_2 L |l L
f(L)_[ﬁln(MJ 2erf(mJ+erf(O.707)] (15)

f(L)

A H
We note that adl gets large, the average activHR'l— approaches the constaﬁtL—, the total activityA

: : : A . . :
increases linearly witN, the number of cells, anell\T decreases dsincreases since the error function goes to a

constant and the natural logarithm term grows rstoely thanL.

12



We use three different discretizations of spacsttmly the benefits of using quantization to simauldte
diffusion process. These configurations are
«  Constant mesh configuration: Different domain lengths and a constant space4tdp L/N),
«  Mesh enlargement configuration: Different domain lengths and a constant numbeeds,

«  Mesh refinement configuration: A constant domain length and an increasing nurobeells.

Figure 6 shows the results of using equation (@3)ampute the total activity as a function of thenter
of cells when the density of cells is kept constd# can be seen, there is a slight increase imitgcas the

number of cells increases. From equation (13) wese that the activity of the Gaussian pulsevisrgby

A=t 0= 4 1)

Therefore, the activity increases very slightlyhwibcreasing. due to the dominance of the logarithmic

term in the composition off (L) . This behavior of total activity is experimentalkgrified in the simulation

results in the next section (see Figure 14).

5,6
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/7
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150 300 600 1200 5000 10000 50000
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Figure 6. Activity versus number of cells whexx is constant

Figure 7 shows the total activity as function oé tlength of the computational domain. We see that
increasing the length in this manner decreaseadtigty. From Equation (15) we can see that theviag of the
Gaussian pulse decreases due to the dominance lifiglar term irl. over the other terms. This behavior of total

activity is experimentally verified in the simulati results in Sub-section 3.3 (see Figure 14).
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Figure 7. Activity versus length for a constant number olgel
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From Equation (15), we can see that as the nuntbezlls, N keeps increasing while the length of the cell
spacelL is kept constant, the activity increases in dipgcportion toN. Since a method based on Quantization
keeps track of activity, the order of complexityaofjuantized method will b®(N). The discrete-time methods
considered in this paper do not make use of therbgéneity in activity and hence the order of camipy of
these discrete-time methodsQ$N?). This behavior of total activity is experimentailgrified in the simulation

results in the next section (see Figure 19).

3 Simulation Results

In this section, we compare the results of simaiegiusing the implicit, explicit, and discrete everethods
described in Section22 Implementations have been achieved using the @egramming language and the
ADEVS simulator (accessible onlindattp://www.ornl.gov/~1gn/adevs/index.html.) Exanmigi these results
confirms the activity theory, as well as the congpiohal advantage of the quantized solution overdiscrete-
time based numerical solution methods.

We consider the simulation of heat diffusion fordamain with homogeneous Dirichlet boundary
conditions. The simulation is run f8s with the initial condition as a pulse. The valdat® diffusion constant
is ¢ = 001. Errors of the numerical solutions are determibgdomparison with the known analytical solution.
Simulation results of the quantized solution armpared to the explicit and implicit ones. Resutts analyzed
and explained using the activity theory. The siriafes were performed usingla5 GHz Pentium Ndrocessor.

In the following we depict the execution times, m@nof transitions and average errors for (1) astzont
rod length, a constant number of cells and diffeqgrmntum sizes, (2) different number of consta# sells and
different rod lengths, (3) a constant number ofscahd different rod lengths, and (4) an increasinmber of

cells and a constant rod length.

3.1 Determination of the Quantum Size

The temperature at the left and right ends is képero. At timet =0s, a pulse of amplitud# is applied at the
center of the domain. The length of the domaingisat to 1m and the grid widfkx = 00Im. The domain is
divided into N =101 cells. Figure 8 depicts the 3D activity distrilouti

e
R IEIILIIELS
LA LR AT ISR FSES
SR T 7L AAFRTATT AT
R A TN I TS
L2 RGR A7RT AT AT TSRS
SRR ITITS
RIS

'~

Figure 8. 3D activity distribution
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Figure 9 depicts the analytical solution. The difeun of the pulse is shown at times 0.2s, t = 0.8s and

t=6s. Attime t, , =8s, the heat is totally diffused.

0,06 I,'”‘.‘
1 \
1 \
] 1
0.04 '.' \ Time
g P
3 /\ """" 0.2s
g 002 (. 0.8s
< / \ 6s
1
0 S NN
0 50 100
Cells

Figure 9. Analytical solution

A first choice of quantum size consists of deteiminthe quantum size to avoid oscillations at the
equilibrium. If the equilibrium solution is knowrnhen the quantum size can be selected so thatikeguih
points are reachable in the discrete state spdce€Hid ensures that, rather than oscillating altbetequilibrium
(see.e.g, [33]) the numerical solution will settle at a poimhere the time advance is infinite and the sinitat
does no unnecessary work. The specific requirerfoerthis to occur is that the difference betweea ithtial

state and final state at each grid point be argertenultiple of the quantum. Figure 10 comparesréselts of

choosing an incorrec0(9e-7 and correctie-6 quantum size.

15
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Figure 10. Incorrect and correct choices of quantum sizeescal

After choosing the right quantum size scale, tmalfiquantum size needs to be determined. Figure 11

depicts errors obtained when increasing the quastze

1,6
1,2

08 /
04 /

0 T

OE+00 3E-05 6E-05 9E-05
Quantum size

Average relative error (%)

Figure 11. Average relative error according to quantum size

In the same way, increasing the time step of thgi@k method leads to error increase as depicted i
Figure 12.
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Figure 12. Average relative error according to time steps

Table 1 depicts the simulation results for diffédrgpantum sizes. We see that the bigger the quasizen
the smaller the number of transitions and the eti@ttime. Concomitantly, the smallest time advafieg;,) in
the simulation increases with increasing quanture.sthis time corresponds to the minimum time fog t
system’s state to change by a quantum. For quasizes that are smaller thaf®, Equation (2) (stating inverse
dependence of transitions on quantum size) isiedrifThat is, reducing the quantum size by a faofotO

increases the number of transitionslifly

Quantum size |# of transitions | Execution time(s) |tamin(s)
107 4.5.10' 221 5.10™
10° 45.10° 22 5.10°
10° 463 693 2 5.10°
10* 91 541 1 5.10"
10° 60 489 1 5.10°

Table 1. Simulation results for different quantum sizes

To compare the errors of the numerical solutiorasresy the analytical one, we use the following wiéfin

of average relative error:

where N = number of cells,

g, = analytical value of cell

*

G, = numerical value of ceil

In the following, we use a quantum siZ2=10"° and a time stepdt = 510°s for the implicit and
explicit methods. Due to these very small time stéipe average relative errors of the differenthods are very

_ tend_
small and almost the same. Considering the tota&rame relative error,E:ZS(t) in each case is

t=0
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E quantizaton = 0.040% , Eexpici =0.036% and Empicit =0.087% . Moreover, since the diffusion is completed aBter

of propagation, keeping the same grid cell g€, errors will remain the same for greater domaingths.

The purpose of our comparison is to show that &l error - the combined error of both time andcsp
discretization - of the two schemes (Forward orKBard Euler or Quantization) is essentially the saim
practice, the total error is the only error thatters. If the error due to the spatial discretmatiominates, then
the choice of integrator in time should not be dni\by concerns over accuracy: computational effyels a

more important consideration in this case. Our canigpn illuminates this point.

3.2 Constant M esh Configuration

Here, for the same cell sizax= 001m), the number of cells has been increased. FigBreoinpares execution
times of the numerical methods using this fact. €ecution times of the quantized method are Idhan the
execution times of the discrete time numerical meésh This is due to the ability of the quantizedidation to

focus computation resources on the high activityezo

6000 I
5 e s L
L
g 4000 >
= / Quantization
c
.9
N e
|
CD

0 ———]
0 10000 20000 30000 40000 50000
Number of cells

Figure 13. Execution times for a constant cell’s size andaasing numbers of cells

Indeed, Figure 14 pinpoints the activity trackingpability of the quantization method. The number of
transitions of the discrete-time methods is strprigtreasing with the number of cells. As the qiration
method just concentrates on active cells, the numbransitions almost remains constant. Thisesponds to
the total activity as discussed in Section 2.4.eNbe correspondence between Figures 6 and lariaelated
through Equation (15). The number of transitiongsienby the quantization method in Figure 14 as thmaber

of cells increases is directly related to thathef total activity in Figure 6.
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Figure 14. Number of transitions for a constant cell’s sizd @treasing numbers of cells

As the size of the cell is constant and the diffasiwhich is mainly concentrated one meter arounad t

pulse, is finished at the end of the simulatiom, dkrerage relative error of Section 3.1 remainil Vedre.

3.3 Mesh Enlargement Configuration

Figure 15 depicts the execution times obtained viesping the same number of cells=100, we increase the

domain length. Implicit and explicit methods giveeeution times ofl13s, whatever the domain length.

Concerning the quantization method, execution tidexsease fromt0s (for L =1m) to 23 (for L =10m),

and finally to3s (for L =100m).
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60 80
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Figure 15. Execution times for a constant number of cells diffdrent rod lengths

Increasing the space discretization, we obtaimeali function for the total mean error which is sagne

for explicit and quantization methods:

19



0,4
<
S 03
e
3] / R
g) 0,2 vad Quantization
® Vsl - - - = CAExplicit
(3] 7
g 01 v
= /7
) Vs
. 0 :

0 5 10
AX(S)

Figure 16. Total average error according to space discretizati

Figure 17 represents the number of transitionsitddafor different methods, a constant number disce
and different rod lengths. Though the number ofiditions of implicit and explicit methods is constathe
number of transitions of the quantization methodreases as the length increases. This is becaestnta
advance (8) of the quantization method is calcdlatging the centered differences in space (14).rbe the

space ste\x increases, the more the time advance increases.

40
%)
c
2 30
% Tg\ .......................... Exp“CIt
=52 20 -
- = Implicit
> E
g 10 Quantization
g N—
z 0 . e —

0 20 40 60 80 100
Length (m)

Figure 17. Number of transitions for a constant number olscahd different rod lengths

Notice that the number of transitions of the quaation method is significantly lower than the of@sthe
implicit and explicit methods. However, executiomés of the quantization method can be greater for
L <50m. This is due to an overhead induced by the algoritised to focus on activity. The quantization
method is more interesting if the activity zonesiisall with respect to the diffusion domain. Thisresponds to
the behavior of total activity as discussed in pinevious section. Note the correspondence betwagmds 7
and 17.

The average relative errors of the explicit andngjzation methods fol. =10m and N =100. Errors are

identical. Total average relative errors are vemyals (still due to small time-steps and quantume)kiz

Equantizat'on =042%, Eexplicit =040% , andEimpIicit = 040% .
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3.4 Mesh Refinement Configuration

Figure 18.b shows the execution times of the difiemethods forl. =1m and an increasing number of cells.

This is a zoom on the beginning of the x-axis @fufé 18.a. Diffusion occurs on the whole lengtt= 1Im. The
number of cells is increased in this zone of higtiviay. Until N =350, execution times of the quantization
method are slightly greater than the discrete-tinhods. This is due to the fact that activity deta of the
guantization method takes more time than simplguating on the whole domain. Figure 19 confirmis th
guess. In this figure one can notice that the nurobé&ransitions of the quantization method is darahan the

number of transitions of the discrete-time methods.
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5000 Implici_t _
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w
o
o
o

@000 20000 30000 40000 50000
Number of cells
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70 [ - Explicit
Z0o0om 60 H Implicit .
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30 /
20 / T
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Execution time (s)

0 100 200 300 400 500
Number of cells

(b)

Figure 18. Execution times for an increasing number of cafid for L =1m
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Figure 19. Number of transitions for an increasing numbeteifs and forL =1m

Recall that Equation (15) predicted that as the bmmof cellsN increases, while the length of the cell
space is kept constant, the activity increasesracdproportion td\. Figure 19 confirms this prediction as well
as the faster increase in transitions for the disetime methods.

Average relative errors forL=1m and N=500 cells are still very small:Equantzaion = 0006% ,
Eexplicit = 0,013% , @nd Eimpicit = 001% . This is due to a very small space discretizatifia= 0.002n. Hence, the
solution is very accurate and errors can be corgidas numerical oscillations because of their ksamaplitude

and small duration 0.4s).

4 Conclusion

Tracking activity in space has been shown to beeradvantageous than computing non-active compoeeats
allowing for the extra overhead it may incur. A quehensive activity-based modeling and simulation
framework has been presented and applied. Furtherme have introduced a first solution to achiagtvity
tracking using discrete-event modeling and simafatBasic Euler methods have been used to illgsthés new
activity paradigm approach. Although these diszegibn methods are known to be computation-intehstaey
allow us to more easily introduce many formal, cotational concepts and compare them with conveation
methods. The efficiency, stability, and accuracythef method examined in this paper, and of sevetated
methods, have been studied in [8-13]; these pajigcsss extensions of the quantization concepiffsgstems
and to higher order numerical integration methaslthough this paper looked only at a first ordecuawate
integration scheme, the same principles are naueaitended to higher order methods [3-6, 9-12] and

specialized methods for stiff and differential dggc systems [10, 11, 34].

The relative improvement of the quantized integraschemes over the discrete time Euler methodsés
in part, to the inability of these methods to traadtivity. Such methods can be enhanced to perfauwah
tracking to good effect [3, 35]. However, more fantentally, the quantum-based schemes supportsaesnt

of the simulation problem whereas discrete timeesws ask the question “given the solution at timehat will

! Notice that backward Euler or any backward diffigition formulas method can use larger time steas the
small time steps used in this study (thus leadingetter execution times.) Conversely, using lacgemta will
lead to oscillations because of the stiffness efdystem [36]. However, the scope of this papertowvastablish
a new activity-based framework, under the sameraxpeatal conditions, and to apply it for the compan of
discrete-event and discrete-time discretizatiohrigpies.
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be the solution be at time-h”, discrete event methods ask “given the solutiomvnwhen will the solution
change by a quantum-sized amount”. This new sinaungparadigm is made operational by approximating
continuous systems using a discrete state space aoatinuous time base. In contrast to this,rdisctime

methods employ a discrete time base and continstates space.

When quantized integrators are implemented aseats@vent systems, the resulting simulation algorit
automatically and generically tracks activity inrasp. This is a natural result of the discrete ewénulation
algorithm, and so it does not require special pilooes to track changes in a cell’s states [21, BBg activity
measure allows us to predict the efficiency of gm@ntization simulations of continuous systems. elaw, to
calculate activity in advance of actual simulatijequires analytical solution of the continuous egst
Generally, complex PDEs do not have analyticaltsmis so that smart methods must be developed totono
and extrapolate the current activity, in order xpleit activity theory’s prediction capability. lany case, the
theory suggests that systems with temporal andagpatiation in activity are good candidates fotigity-based
techniques. The results of some recent experimemiaks have been reported (see [5, 35]) with fablera

results.

Further experimentation is needed, and more comgysiems have to be studied, to assess efficiehcy o
guantization and other activity-based techniquesa ibbroader context. Also comparison with other méce
methods such as those of Logg’s [25] and Takala$®6] will have to be done in future research stablish
the relationship of discrete event techniques tahods that have evolved from traditional approaches
Nonetheless, we have demonstrated that the conteptivity can estimate the computational effequired by
a quantized state method. Furthermore, our expeatsnieave shown that when properly designed, aatiscr
event simulator for such a method achieves a remudh the number of state transitions that moranth

compensates for the overhead it imposes.

References

1. Muzy, A. and B.P. Zeiglerintroduction to the Activity Tracking Paradigm ino@ponent-Based
Simulation.The Open Cybernetics and Systemics Journal, ZD@B.48-56.

2. Jammalamadaka, RMultilevel Methodology for Simulation of Spatio-Teoral Systems with
Heterogeneous Activity: Application to Spread ofl&aFever Fungus2008, University of Arizona:
Tucson.

3. Muzy, A., et alEfficient simulation of large-scale dynamic struetwell spacesin Summer Computer
Simulation Conferenc€003. Montréal, Canada: SCS.

4, Muzy, A. and J.J. Nutar@dlgorithms for efficient implementation of the DE¥S)SDEVS abstract

simulators in 1st Open International Conference on Modeling anchufation (OICMS) 2005.
Clermont-Ferrand, France.

5. Muzy, A., et al.Dynamic structure cellular automata in a fire spdé@g application in 1st
International Conference on Informatics in Contlalitomation and Robotics (ICINCO 200£004.
Setubal, PORTUGAL.

6. Nutaro, J.A discrete event method for wave simulatidom Transactions on Modeling and Computer
Simulation, 200616(2): p. 174-195.

7. Nutaro, J., et aDiscrete event solution of gas dynamics within&/S frameworkin International
Conference on Computational Science (ICCS 2@X®)3. Melbourne, Australia.

8. Nutaro, J. and B. Zeigle©n the stability and performance of discrete evasthods for simulating
continuous systemdournal of Computational Physics, 200Z7(1): p. 797-819.

9. Kofman, E.A Second Order Approximation for DEVS Simulatio€ofitinuous SystemSimulation

(Journal of The Society for Computer Simulatioretntational), 200278(2): p. 76-89.

23



10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.
29.
30.
31.
32.
33.
34.

35.

36.

Migoni, G. and E. Kofmarinearly Implicit Discrete Event Methods for S@DEs. Part |: Theoryin
RPIC 2007 2007.

Migoni, G. and E. KofmanLinearly Implicit Discrete Event Methods for StfDEs. Part II:
Implementationin RPIC2007.

Nutaro, JA Second Order Accurate Adams-Bashforth Type DisdEgent Integration Schemia 21st
International Workshop on Principles of Advanced @istributed Simulation (PADS 'Q73007.
Kofman, E. and S. JundQuantized State Systems. A DEVS Approach for GantSystems
Simulation.Transactions of SCS, 20018(3): p. 123-132.

Muzy, A., et al.Discrete event simulation of large-scale spatialntiuous systemsin IEEE
International Conference on Systems, Man and Cwiie 2005. Waikoloa, HI.

Balci, O.The implementation of four conceptual frameworkssimulation modeling in high-level
languagesin Winter Simulation Conferenc&988.

Zeigler, B.P., H. Praehofer, and T.G. Kirhegory of modelling and simulatioB000: Academic Press.
Muzy, A., et al. Modeling and simulation of fire spreading throudte tactivity tracking paradigm.
Ecological Modelling, 200819(1): p. 212-225.

Ralston, A. and P. Rabinowii&,First Course in Numerical Analysig001: Dover Publications.
Zeigler, B.P.Discrete event abstraction: an emerging paradigm foodeling complex adaptative
systemsin Adaptation and evolution (festschrift for John Holldnd), E. Oxford press, Editor. 2005,
Santa Fe Institute.

Muzy, A. and X. Hu.Specification of Dynamic Structure Cellular Automa® Agents in IEEE
Melecon'08 2008. Ajaccio, France.

Santoni, P.A.Elaboration of an Evolving Calculation Domain fdnet Resolution of a Fire Spread
Model.Numerical Heat Transfer, Part A: Applications, 8933(3): p. pp. 279-298.

Kofman, E., J.S. Lee, and B.P. ZeigREVS representation of differential equation systeReview of
recent advancesn 13th European Simulation Symposil#01. Marseille, France.

LeVeque, R.JNumerical Methods for Conservation Lawesl. B. Verlag. 1996.

Yu, H.,A Local Space-Time Adaptive Scheme in Solving Tweiisional Parabolic Problems based
on Domain Decomposition Metho&am J. Sci Comput., 20023(1): p. 304-322.

Logg, A.,Multi-adaptive time integratiorSpecial issue: Workshop on innovative time inteansafor
PDEs. Applied Numerical Mathematics, 20@8(3-4): p. 339 - 354.

Takahashi, K., et al, multi-algorithm, multi-timescale method for cell

simulation.Bioinformatics, 200420(4): p. 538-546.

Jammalamadaka, RActivity Characterization of Spatial Models: Apgtion to the Discrete Event
Solution of Partial Differential Equationgn Electrical and Computer Engineering003, University of
Arizona.

Kofman, E., J.S. Lee, and B.P. ZeiglREVS Representation of Differential Equation SysteReview
of Recent Advancem 2001 European Simulation Symposil#@01. Marseille, France.

Bolduc, J.S. and H. Vangheluviexpressing ODE models as DEVS: Quantization apgreadn Al,
Simulation and Planning in High Autonomy Syster@§ 8002. Lisboa, Portugal.

Forsythe, G.E. and W.R. Wasadwinite-Difference Methods for Partial Differenti@lquations 1960,
New York, NY: John Wiley and Sons INC.

Sibony, M. and J.C. MardoApproximations et équations différentiellé988: Hermann.

Scheisser, W.EThe Numerical Method of LineAcademic Press ed. 1991, San Diego.

Nutaro, J.Parallel discrete event simulation with applicat®to continuous system2003, University
of Arizona: Tucson.

Kofman, E., Quantization-Based Simulation of Differential Alggb Equation Systems.
SIMULATION, 2003.79(7): p. 363-376.

Jammalamadaka, R., B.P. Zeigler, and I.C. 8ocfegeneric pattern for modifying traditional PDE
solvers to exploit heterogeneity in asynchronoushaB®r. in 21st International Workshop on
Principles of Advanced and Distributed Simulati®A\DS 2007)2007. San Diego, CA.

Migoni, G. and Kofman, E. "Linearly Implicit ifcrete Event Methods for Stiff ODEs.". Latin
American Applied Research (LAAR Journal), 2009ptess.

24



Appendix
A Brief Description of DEVS

The Discrete Event System Specification (DEVS) im@deling framework that describes a systems with t
types of modeling structures. State space modide €alled atomic models) describe the smalleshehts of a
system in terms of inputs and outputs, state viasalstate transition functions, a time advancetion, and an
output function. Network (also called coupled oulticomponent) models describe how atomic and rothe
network models are interconnected to form largestesys. Network models are described by their spuid
outputs, component model set, and interconnechehseen component models.

The system theoretic roots of DEVS are apparetheénfact that every DEVS model can be reduced to a
classical state space representation in the fXny,S,T4,4,2>. The elementX andY are the system input and
output setsSis the system state sétjs the system time basg,is the system state transition functiahis the
system output function, an@ is the set of admissible input trajectories. Aetctory is a function from the
system time base to the system input set (an ingjetctory) or system output set (an output trajegt

The essential operation described by the strudsutlee mapping of an input trajectory and initiidte to a
final state (described by the state transition fiem} and output trajectory (described by the otifiounction).
Specializations of this basic structure are corstadito accommodate specific classes of admissigkectories.

A given specialization is a system if a procedwists for reducing the specialized structure tolihsic system
structure described above.

DEVS specializes the basic system structure torantmdate event trajectories. An event trajectory is
function from the real numbers to a set that takeshe special non-event value everywhere exceptfatite

number of points in any finite interval of timeighre 1 illustrates this with an event trajectait).

X(t)

»

time

Figure A.1. An example of an event trajectory

A DEVS atomic model is described by a structeaheY,Sdin,0exsOcon’ ta>. The setsX, Y, andS are the
input, output, and state sets, respectively. Tinetfonsdiy, dex, anddcon are the internal, external, and confluent
state transition functions, respectively. Theriné transition function describes the autonomalsabior of the
system. The external transition function descrittesinput response of the system. The confluentsttion
function describes the evolution of the systemesidien an internal and external event coincide. flihetion A
is the output function, ang is the time advance function. The time advancetfan is used to schedule output
and internal events.

The abstract simulator for a DEVS atomic modelrisspribed by the procedure that is used to redsce i
structure to a classical state space representatibile the formalized procedure is described reisety, there

exist numerous iterative and parallel implementatioof this procedure that are suitable for prattica
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computations.
One such algorithm for simulating a single atomindel is shown below. Heré\ denotes the next event
time, tL is the last event timdg is the time at which the simulation startisis the simulation stop timex(t)

denotes the input trajectory(t) denotes the output trajectory, aqds the system state. The trajectoy)

initially takes on the value of the null event, dess by®, at all times. The input trajectoryt) is given prior to

simulation start and will be consumed as the coatjmrt progresses. The initial system state is tiehloyd.

t €0
for all i O [1; n] do
tLi €0
set sitothe initial state of M
end for
while term nating condition not nmet do
for all i O [1; n] do
tN € tLi + tai(si)
Enpty the bag xi
end for
t €mn {tN}
for all i O [1; n] do
if tN =t then
yi € Ai(si)
for all j OT[1, nl &j #i & zij(yi) # @ do
Add zij(yi) to the bag xj
end for
end if
end for
for all i O [1; n] do

if tN =t & xi is enpty then
Si € aint;i(Si)
tLi €t
else if tN =t & xi is not enpty then
Si € scon;i (Si; Xi)
tLi €t
else if tN #t & xi i s not enpty then
si e sext;i(si; t j tLi; Xi)
tLi et
end if
end for
end while
Algorithm A.1. An iterative procedure for simulating a DEVS atomodel.

An example will illustrate the essential concept®ther, more traditional, examples (e.g., of queguin
systems expressed in DEVS) can be found on the amebthroughout the literature. Consider a system
described by the functiotg/dt = c(t) wherec(t) is the piecewise constant trajectory shown in FEghL2. This
can be readily encoded as an event trajectory bgrding the points at which the amplitudeagf) changes.

This encoding is shown in Figure A.3.
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Figure A.2. Piecewise constant trajectasft)
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Figure A.3. c(t) encoded as an event trajectory

We can construct a DEVS model that will computg &t any such piece-wise constant c(t). The model

will provide outputs at a fixed resolution D in thte space of the system. Ket Y = RandS ={(q.q',s) | q,
g, s/R }, where R is the real numberket D be the desired minimum resolution in thepat of the integrator.

The state transition functions are given by:

6int((q1ql!3):(q+sqI’q'!Dl|q')
0ea((9.0",9,,9=(q+eq",x,0
6C0r((q 7qI’S)’X :(q+SqI’X’DI|X|)

The model output and time advance functions arergby:

A((g,9',9)=9+sq’
ta((q,q',s))=s

The initial state of the model (%(0),04). Using algorithm A.1 with D = 1, the state andpui trajectories

of the system over the time interj@l4.3] can be computed as shown in the Table A.1. Ereptsies in the

table denote a non-event.

Similar, though more complex, procedures exist domputing the behavior of multi-component and
hierarchical models. In practice, these procedaresmplemented as part of a simulation packagedan be
used to implement DEVS models. The simulation pgekarovides abstract classes with virtual statesttian,
initialization, output, and time advance functiombese classes are implemented by end users aggdeplinto

the simulation engine for execution.
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t state X(t) y(t) ta

0 0,0,» 0

1 0,5,0 5 0

1 0,5,02 0 0.2
1.2 1,5,02 1 0.2
14 2,5,02 2 0.2
1.6 3,5,02 3 0.2
1.8 4,5,02 4 0.2
2 5,2,05 2 5 0.5
25 6,2,05 6 0.5
3 7,2,05 7 0.5
35 8,2,05 8 0.5
4 9,2,05 9 0.5
4.1 9.2,6,0 6 0
4.1 9.2,6,0.17 9.2 0.17
4.27 10.2,6,0.17 10.2 0.17

Table A.1. State and output trajectories
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