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ABSTRACT 

 

Recent research advances in Discrete EVent system Specification (DEVS) as well 

as cellular space modeling emphasized the need for high performance modeling 

methodologies and environments. The growing demand for cellular space models has 

directed researchers to use different implementation formalisms. Many efforts were 

dedicated to develop cellular space models in DEVS in order to employ the advantage of 

discrete event systems. Unfortunately, the conventional implementations degrade the 

performance in large scale cellular models because of the huge volume of inter-cell 

messages generated during simulation. 

This work introduces a new multi-layer formalism for cellular DEVS models that 

assures high performance and ease of user specification. It starts with the parallel DEVS 

specification layer and derives a high performance cellular DEVS layer using the 

property of closure under coupling. This is done through converting the parallel DEVS 

into its equivalent non-modular form which involves computational and communication 

overhead tradeoffs. The new specification layer, in contrast to multi-component DEVS, is 

identical to the modular parallel DEVS in the sense of state trajectories which are updated 

according to the modular message passing methodology. The equivalency of the two 

forms is verified using simulation methods. Once the equivalency has been ensured, 

analysis of the models becomes a decisive factor in employing modularity in cellular 

DEVS models.  
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Non-modular models show significant speedup in simulation runs given that their 

event list handler is implemented based on analytical and experimental survey that 

involve actual operation counts. However, the new high performance non-modular 

specification layer is complicated to implement. Therefore, a third layer of specification 

is proposed to provide a simple user specification that is automatically converted into the 

fast complex cellular DEVS specification, which is finally put in the standard parallel 

DEVS specification. A tool was implemented to automatically accept user’s model 

specification via GUI and generate the models using the new specifications. The 

generated models are then required to be tested and verified using some automatic DEVS 

verification methods. As a result, the model development and verification processes are 

made easier and faster. 
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CHAPTER 1 : INTRODUCTION 

 

This dissertation is mainly concerned with the area of discrete event cellular model 

development and simulation enhancements. It introduces a new way of specifying and 

developing cellular DEVS models aiming simplicity, efficiency, and support of 

scalability.  

 

1.1 Motivation and General Scope 

The cellular space modeling approach divides space into discrete cells where local 

computations held in each cell are based on its own as well as its neighbor’s states. In 

conventional DEVS implementation of cellular models (e.g. [1, 2]), a cell is implemented 

as a DEVS modular atomic or coupled model. When detailed modeling of spatial 

dynamics is required, large number of cells are typically employed. This results in a large 

number of atomic models that communicate through message passing to carry out the 

global simulation. Therefore, the task of implementing large scale cellular spaces with 

highly active cells in DEVS will face the burden of huge numbers of inter-cell messages 

and hence a performance reduction. Many techniques were introduced to resolve this 

issue and to gain speedup. Examples of such work can be found in [3-5] where the 

cellular DEVS simulation engine was improved to handle messages and cell activity 

scanning in more efficient manner. On the other hand, the quantized DEVS approach [6-

8] shows that quantization helps in improving the performance of DEVS simulations by 
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reducing the number of state transitions as well as the number of messages while 

introducing acceptable errors. 

To date, research in DEVS cellular space modeling has treated each cell as an 

atomic or coupled model and then either sought to speed up the simulation engine or 

introduce quantization to the model in order to reduce messages and transitions with 

attendant error. The simulator enhancements were tackled by either flattening the 

coordinator hierarchy [5], implementing faster scheduling algorithms that deal with 

active cells only [3, 4], and/or eliminating unnecessary coordinator objects [3]. The work 

presented in this dissertation takes advantage of these enhancements and applies similar 

methods to the model development level. This new error-free approach is designed to 

reduce the number of messages by encapsulating and transforming a group of cells into 

non-modular form. Instead of treating a single cell as an atomic DEVS model, the 

encapsulation method will group a number of cells in one atomic model. The resulting 

model will be a non-hierarchal, non-modular cell representation that gives a significant 

speed up which in conjunction with the simulator enhancements done in [3-5] will give 

amazingly high performance on large scale distributed cellular space models over 

clusters. 

There are very few related works that touched the area of converting coupled 

DEVS models into atomic models like [9] and [10]. Their implementation of the 

approach is by allowing the conversion during the compilation process. On the other 

hand, this dissertation applies the conversion into the specification and development 

process. The first work involved converting classical, rather than parallel DEVS, models 
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and it did not target the cellular space in particular which made that approach a good 

speedup way for small size models. The other work also tried to convert large models 

into atomic ones to easily deal with them in Dymola. A conclusion was reached that there 

is no advantage of following the conversion approach since the overhead of handling 

large model is much greater than the messages overhead.  This dissertation disagrees with 

that conclusion which can be considered an environment specific conclusion. Our initial 

work in [11] proved the significance of the approach for large cellular DEVS models. 

 

1.2 Main Contributions 

This dissertation introduced a new formalism to allow specifying the cellular 

DEVS models in modular as well as non-modular forms. Using the closure under 

coupling property of parallel DEVS, it was possible to derive a new layer of formalism to 

specify models in non-modular form. This new modeling layer guarantees the efficiency 

of the models in contrast to the current cellular DEVS implementation approaches. This 

was achieved by considering the non-modular form of the cellular DEVS models in 

which some simulator tasks were encapsulated inside the atomic cell space in order to 

eliminate inter-cell messages. The simulator tasks were done through event list handler 

which was implemented based on an analytical survey on different implementations that 

was also supported with experimental analysis and actual operation counts in different 

test models. Another layer of specification was introduced to ease and speedup the 

development process of complex atomic cellular DEVS models. The integrated 
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multilayer formalism, introduced in this work, supports the automation of model 

development and transformation between the different layers. 

A new cellular DEVS development environment was introduced and implemented 

as an outcome of this work. This environment supports the multilayer development 

approach since it was built to run over general DEVSJAVA simulators. The automated 

processes introduced in this tool are: automated specification transformation, automated 

code generation, and automated testing and model verification. This environment makes 

it possible for the first time to develop cellular DEVS models using GUI without writing 

the full DEVSJAVA code. It was made as generic as possible to eliminate the need for 

the user to modify the code generated by the environment. In addition, some automated 

testing classes were also made available for the user in order to test and verify the 

developed models. 

 

1.3 Dissertation Outline 

The remaining of the dissertation can be outlined as follows. Chapter 2 gives a 

quick background on parallel DEVS, cellular DEVS and all necessary theory required as 

a basis of this dissertation. Then, Chapter 3 introduces the new high performance cellular 

DEVS formalism that was derived based on the parallel DEVS formalism and the closure 

under coupling property. All equations used to formulate the new specification are 

presented in addition to a set of lemmas that prove the support of the new approach to a 

wide variety of cellular models. Chapter 4 presents the new development environment as 

well as its design aspects. It first explains the user specification layer that is used to 
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design the graphical user interface. The major critical design issue in the new 

environment is the event list handler implementation which is discussed in Chapter 5 

with more details, discussions, experiments and analysis. The next chapter is devoted to 

describe the procedures and the proposed methods followed to test, validate and verify 

our modeling tool as well as its generated models. It involves the techniques used in this 

work to verify the new approach and ensure its equivalency to the conventional cellular 

DEVS approaches. Chapter 7 illustrates the capability of our environment to support 

complex cellular DEVS models through implementing and modifying different landslide 

models. It also shows the significance of our new approach through presenting the 

simulation runs of the landslide model. Finally, the last chapter concludes this 

dissertation and overview some future works. 
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CHAPTER 2 : BACKGROUND 

 

2.1 Cellular Automata 

Cellular Automata (CA), which was first introduced by John Von Neumann in the 

1950s [12], has been widely used in simulating complex systems. The domain of 

application of CA includes fluid and mass flow [13-15], natural hazards [16], many other 

sorts of pattern recognition [17, 18], image processing [19], ecosystems [20], and traffic 

modeling [21, 22]. In addition, it has been used as solutions for common computational 

needs like networking [23], solving differential equations [24], and distributed computing 

[25-28].  

CA is a discrete time dynamical system that consists of a lattice of cells in single or 

multi-dimension in which each cell applies a local transition function to calculate its next 

state [29]. Many efforts in recent years were dedicated to improve simulation 

methodologies that take advantage of CA in modeling complex behavioral dynamic 

systems (e.g., see [12, 14] ). Based on the fixed time step CA, Avolio and his coworkers 

developed an empirical approach for modeling and simulating complex dynamic systems 

[14]. Such an approach can be applied to problems that are very difficult to manage with 

differential equations systems. However, the use of discrete events, rather than fixed time 

steps, in simulation gives a significant speedup in many applications [6, 30-32]. As a 

result, DEVS (Discrete EVent System Specification) has been attracting many 

researchers as a basis of CA modeling of complex physical systems. Its parallel version, 

parallel DEVS, was introduced in [33, 34] to provide a sound framework that exploit the 
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parallelism of the hierarchical DEVS models. Based on this parallelism, it was possible to 

introduce Cellular DEVS [6] and Cell-DEVS [35, 36] which integrate the theories and 

algorithms of CA in DEVS. 

 

2.2 Parallel DEVS Formalism (P-DEVS) 

Discrete EVent System Specification (DEVS) [6] supports object orientation over 

modeling environments. Its theory provides a mathematical formalism for representing 

dynamic systems. The DEVS formalism was revised in [33] to reduce sequential 

processing and enable full parallel executions. The resulting parallel DEVS has the basic 

atomic model defined as: 

M = taYSX conext ,,,,,,, int λδδδ , 

where 

X  is a set of input values (set of ports/values in coupled structures) 

S  is a set of states (set of ports/values in coupled structures) 

Y  is a set of output values 

δint: S → S is the internal transition function 

δext: Q × Xb → S  is the external transition function 

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total  state set 

 e is the time elapsed since last transition  

 Xb denotes the collection of bags over X 

δcon: S × Xb → S  is the confluent transition function 

λ: S → Yb is the output function 
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ta: S → R 0→∞   is the time advance function.  

 

An atomic model M in parallel DEVS remains in a state s ∈ S for ta(s) amount of 

time if no external event occurs. When that time advance expires, i.e., when the elapsed 

time, e = ta(s), the system outputs the values, Yb = λ(s), just before it changes to state 

δint(s). When an external event x in Xb occurs before this expiration time, i.e., at e < ta(s), 

the system changes to state δext(s,e,x). However, in case of internal and external 

transitions collide, δcon is employed to resolve the conflict and determine the next state. In 

all cases, the model then goes to some new state s′ with some new resting time, ta(s′) and 

the same story continues [6]. 

Note that input or output values Xb and Yb are bags of elements. This means that 

one or more elements can appear on a port at the same time. This capability comes from 

the parallel implementation of DEVS which allow components to send to the ports 

simultaneously. These basic components may be coupled in DEVS to form a multi-

component model which is defined by the following structure: 

CM = }{},{},{,,, , jiii ZIMDYX , 

where 

X  is the set of input values (set of ports/values in coupled structures) 

Y  is the set of output values (set of ports/values in coupled structures) 

D is the set of components 
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for each i in D: Mi is a component which is an atomic model Mi = 

iiiconiextiiii taYSX ,,,,,,, int λδδδ  

for each i in D ∪ {self}: Ii is the influencees of i, i is not in Ii 

self is the coupled model itself CM which allow external inputs and outputs 

for each j in Ii : Zi,j is the i to j output translation function (coupling) 

jselfjself XXZ →:,  

selfiselfi YYZ →:,  

jiji XYZ →:,  

 

2.2.1 Closure under Coupling of Parallel DEVS 

Closure under coupling, in parallel DEVS, states that every coupled model (CM) 

has its own equivalent atomic model (M). This section demonstrates the closure 

derivation in order to reach the resultant atomic model of any coupled model. Generally 

speaking, the coupled DEVS model can be treated as a black box with input as well as 

output ports (X and Y) that form the first terms of equivalency in the atomic and coupled 

models. The state set (S) of the resultant model will be the total state sets of all the atomic 

coupled models. In addition, the time advance ta(s) will be the minimum of all the 

internal atomic models. 

S = d
Dd

Q×
∈

, where s∈ S , and  s = (…, (sd,ed), …)  for all d∈D 

ta(s)=minimum{σd | d∈D}, where s∈ S and σd = ta(sd)-ed 
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We define different sets of internal components according to their states during any 

iteration (at a given global state s) during the simulation: 

IMM(s)= {d | σd=ta(s)}   Set of imminent components 

INF(s)={d|i∈Id, i∈IMM(s) ∧ b
dx ≠Ø},  Set of components about to receive inputs 

where b
dx ={Zi,d(λi(si))|i ∈IMM(s) ∩ Id} 

CONF(s)=IMM(s)∩INF(s)   Set of confluent components 

INT(s)=IMM(s)-INF(s)   Set of imminents those receiving no inputs 

EXT(s)=INF(s)-IMM(s)   Set of non-imminents those receiving input 

UN(s)=D-IMM(s)-EXT(s)   Other components 

 

Based on these groups we just need to formulate the functions (λ, δint, δext, δcon) for the 

resultant model as follows: 

λ(s)={ Zd,self(λd(sd))| d∈ IMM(s) ∧ d∈ Iself}, 

δint(s) = (…, (sd’,ed’), …), 

where 













+

∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
dddcon

b
ddddext

dd

dd

))(,(
)()0),,((

)()0),),(,((

)()0),((

)','(
,

,

int,

δ

δ

δ

, 

δext(s,e,xb) = (…, (sd’,ed’), …), 

where 0<e<ta(s) and 






+

Φ≠∧∈+
=

otherwiseees
xIselfxees

es
dd

b
dd

b
ddddext

dd ),(
)0),,,((

)','( ,δ
, 

and b
dx = {Zself,d(x)| x∈ xb ∧ self∈ Id}. 
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For the last function δcon we need to redefine the group INF(s) to include the set of 

influencees by external events to the whole model. Let INF’(s) = {d|( i∈Id, i∈IMM(s) ∨ 

self∈Id) ∧ b
dx ≠Ø}, where b

dx ={{Zi,d(λi(si))| i∈IMM(s) ∧ i∈Id}∪ {Zself,d(x)| x∈ xb ∧ self∈ 

Id}}. Then, we need to redefine the other groups accordingly: 

CONF’(s)=IMM(s)∩INF’(s) 

INT’(s)=IMM(s)-INF’(s) 

EXT’(s)=INF’(s)-IMM(s) 

As a result, 

δcon(s,xb) = (…, (sd’,ed’), …), 

where 













+

∈

∈+

∈

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
dddcon

b
ddddext

dd

dd

))(,(
)(')0),,((

)(')0),),(,((

)(')0),((

)','(
,

,

int,

δ

δ

δ

. 

 

The over all transition function will be: 









Φ=∧=

Φ≠∧=

Φ≠∧<≤

=
b

bb
con

bb
ext

b

xstaes

xstaexs

xstaexes

xes

)()(

)(),(

)(0),,(

),,(

intδ

δ

δ

δ  

 

2.3 Multi-Component DEVS Formalism 

The previous sections represent the parallel DEVS formalism in its atomic as well 

as its coupled and hierarchical forms. All these mentioned specifications are in the 

modular form in which components have no means of accessing other component’s states 
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and variables except through ports and messages. The other form is the non-modular 

form which is referred to as multi-component DEVS in [6]. In multi-component DEVS, 

which is based on classical DEVS, components of coupled models can directly influence 

each other through their state transitions.  That means events occurring in one component 

may result in state changes and rescheduling of events in other components. A Multi-

component DEVS can be defined as follows [6]: 

multiDEVS = 〈 X, Y, D, {Md }, Select 〉, 

where  

X, Y are the input and output event sets 

D is the set of component references 

Select: 2D→ D with Select (E) ∈ E is a tie-breaking function employed to arbitrate 

in case of simultaneous events.  

For each d ∈D  

Md = 〈 Sd, Id, Ed, δext,d, δint,d, λd, tad 〉   

where  

Sd is the set of sequential states of d, 

Qd = {(s, ed)  s ∈ Sd, ed ∈ ℜ} is the set of total states of d,  

Id ⊆ D is the set of influencing components,  

Ed ⊆ D is the set of influenced components,  

δext,d: ×i∈IdQi × X → ×j∈EdQj is the external state transition function,  

δint,d: ×i∈IdQi → ×j∈EdQj is the internal state transition function,  

λd:×i∈IdQi → Y is the output event function, and  
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tad: ×i∈IdQi → ℜ+
0 ∪{∞} is the time advance function.  

 

Any component d ∈ D in multiDEVS can schedule its own internal event with its 

own time advance tad. On event occurrence, in this component, its internal transition 

function δint,d is executed to generate a state transition as well as an output event defined 

by λd. The transition function depends on total states qi of the influencing components Id 

and changes any total state qj of the influenced components Ed. The Select function is 

used as a tie breaking function that selects the component to be executed in the case 

where different components are imminent. Any external events received by the 

multiDEVS’s ports will be handled by the corresponding component that should receive 

that specific event through δext,d. However, δext,d can be left undefined for components 

which are not needed to receive input events and, similarly, there is no need to define λd 

for the components which are not expected to send outputs. 

 

2.4 Cellular Space Models in DEVS 

The cellular automata applications, based on the discrete time simulation, consume 

the computation power in doing computations to update all cells in every single iteration. 

In a wide range of applications, there are a lot of cells that are not required to be updated 

at every step which makes the discrete time approach inefficient. In addition, the 

selection of the time step size has a significant impact on the simulation accuracy. High 

accuracy requires a very small step size which, in turn, requires huge computational 

resources. The discrete event approach overcomes these problems by dedicating 
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computational resources to the cells that actually perform state transitions and hence 

avoiding unnecessary computation on inactive cells. Due to these advantages, many 

efforts were dedicated to employ the DEVS approach to cellular automata applications 

(e.g. [1, 5, 37, 38] ). 

The conventional cellular DEVS approaches divide the spatial space into discrete 

cells where local computations are done in each cell. A cell is implemented as an atomic 

DEVS model which performs the local computations internally based on its own state as 

well as the neighboring states that are received through the external ports. The cell space 

is implemented as a coupled DEVS model that contains a number of cells that are 

arranged in an array. The neighboring rule followed in a specific application determines 

the internal port couplings between cells and the boundary couplings that connect the 

cells at the borders with other cells in different cell spaces. Figure  2.1 illustrates the 

conventional 2-D cellular space implementation in the DEVS formalism. 

Cell
(0,2)

Cell
(2,2)

Cell
(1,0)

Cell
(0,0)

Cell
(2,0)

Cell
(1,2)

Cell
(1,1)

Coupled Model (CM): Cellular Space

Cell
(2,1)

Cell
(0,1)

j

i Couplings Atomic Model (M)

Xb Yb

 
Figure  2.1: 2-D cellular space in DEVS. 
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2.4.1 Closure under Coupling for Cellular Models in Parallel DEVS 

Cellular space models are characterized by identical cells that are spatially 

distributed over a given area and each cell applies the same transition as well as output 

functions to the data and states of the area it covers. Given a coupled model CM = 

}{},{},{,,, , jiii ZIMDYX  representing the total cellular space, each cell will be an 

atomic DEVS model presented as a structure *****
int

*** ,,,,,,, taYSX conext λδδδ . 

Following the same formulation of the closure under coupling of parallel DEVS, we will 

end up with the same formulas as above with  

δint, d = *
intδ  , δext, d = *

extδ , δcon, d = *
conδ , λ = *λ , tad(s)= )(* sta     for all d ∈ D 

The resultant atomic model of the complete cellular space will be: 

CM= taYSX conext ,,,,,,, int λδδδ  

with the following functions:  

λ(s)={ Zd,self( *λ (sd))| d∈ IMM(s) ∧ d∈ Iself} 

δint(s) = (…, (sd’,ed’), …) 

where 
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)()0),((

)','(
*

*

*
int

δ

δ

δ

 

δext(s,e,xb) = (…, (sd’,ed’), …), 

where 0<e<ta(s) and




+
Φ≠∧∈+

=
otherwiseees

xIselfxees
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δcon(s,xb) = (…, (sd’,ed’), …), 
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where 


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Similarly, the over all transition function will be: 
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2.5 Related Work 

 

2.5.1 Cell-DEVS Formalism 

Cell-DEVS formalism was introduced to employ the advantages of discrete event 

systems in cellular automata applications [36]. It is an extension to the DEVS formalism 

that makes the cell timing specification more expressive [39]. This was achieved by 

adding more entries to the original DEVS atomic model specification in order to specify 

cells with local computing function and transport as well as inertial delays. Cell-DEVS 

atomic model is specified as: 

CD = DddelayNSIYX ext ,,,,,,,,,,, int λτδδ  

The following terms are defined in similar way as in the standard DEVS atomic 

models: X, Y, S, δint, δext, and λ.  All other terms are defined as follows: D is the time 
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advance spent in a state which is referred to as ta in DEVS, delay is the type of cell’s 

delay, d is the duration of that delay, I is the cell’s modular Interface, N is the set of input 

events, and τ is the local computation function. In addition to the atomic DEVS 

operations, each cell, in Cell-DEVS, receives the set of N inputs through the model 

interface I that activate the local computation function through δext. There are two types 

of delays were introduced: the transport and the inertial delay with a specified duration d 

that plays role in determining the actual time to execute the scheduled event and to send 

the output messages.  

The cell space model in Cell-DEVS is a coupled DEVS model that contains a 

number of atomic cells that are interconnected through ports following some neighboring 

rules. The cells are arranged in a single or multi-dimensional array that is coupled at 

borders to allow connecting the cell space into other spaces within a global multi-space 

model [39]. Cell-DEVS formalism, since it represents each cell as an atomic model, is 

considered as a conventional DEVS implementation of cell space models which has the 

performance drawback that is resulted by the huge volume of inter-cell communication 

generated during simulation. In addition, expressing cellular models in Cell-DEVS 

formalism is, to some extent, complex and requires more efforts at the modeler level. On 

the other hand, this dissertation introduces the multi-layer approach to simplify the 

modeling process and make the cell space’s extensive specifications transparent to the 

end user. 
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2.5.2 Converting Coupled Model into Atomic DEVS 

Closure under coupling property proved that any DEVS coupled model can be 

represented in an atomic DEVS form. The proof followed in the previous sections did not 

completely decompose the internal atomic models. It just obtained the basic atomic 

functions for the overall coupled model as a black box where the internal models still 

keep the same DEVS atomic structures in modular form. However, this property initiated 

the idea of converting coupled models into atomic models for the purpose of simulation 

speedup.  

Lee and Kim [9] introduced a composition-based method that converts a coupled 

classical DEVS model into atomic classical DEVS model at compile time. Their goal was 

to achieve simulation speedup by computing possible event and message routes at 

compile time which are then handled by a simulation engine inside the composed atomic 

model. The formal approach, they presented, followed the same idea of the closure under 

coupling formulation with addition of a scheduling mechanism. Therefore, it still keeps 

the DEVS atomic structure of the internal models and if not, the resultant atomic model 

should keep track of all the functions of these internal models. This will introduce an 

overhead where the model will be required at each event processing to search the whole 

pool of functions to get the corresponding function for that event and as the number of 

the internal models grows very large, this overhead will be a bottle neck in achieving a 

good speedup in large scale coupled models. Furthermore, the conversion process will be 

more complicated to be done correctly. These drawbacks were the reason behind what 

Beltrame [10] concluded by following the same approach. In that thesis, the idea of 
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converting a coupled model into atomic one was implemented in order to eliminate the 

message overhead by using Modelica’s parallel variable update. Instead of gaining 

speedup, the models show slowness in simulation runs because of the large amount of 

variables and functions bookkeeping. 
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CHAPTER 3 : NEW FRAMEWORK FOR CELLULAR DEVS 

MODELING 

 

In this chapter we formulate a new cellular space DEVS specification to achieve a 

fast cell space model development process as well as a fast simulation execution. The 

basic idea is to divide the cell space into blocks, each with a fixed number of cells and 

convert these blocks entirely into DEVS atomic models. This process can be seen as 

converting modular cells into non-modular form inside the block where each cell can 

access the state variables of its neighboring cells. Based on the closure under coupling 

property of the parallel DEVS, the conversion process is known to be complex for the 

end user which, in turn, requires us to consider ease of user specification in the resulted 

framework. 

 

3.1 Converting Cell Space Model into Atomic DEVS 

As a special case of the closure under coupling property in DEVS, cellular space 

models can take advantage of this property in gaining speedup by converting coupled 

models into atomic ones. In this approach, scalability will not be an issue since all cells 

(i.e. atomic models) have identical transition functions that will be applied to all cells 

iteratively. This implies that the model will not be required to search for the functions in 

a huge pool of functions for the encapsulated atomic models. In addition, by fully 

decomposing the internal models into non-modular form, the inter-cell communication 

messages will be eliminated and result in simulation speedup. 
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3.2 Toward Full Decomposition of Cell Space Models 

The following sections describe the process of formulating the atomic model 

specification of the coupled cell space models. The aim behind this is to get simulation 

speed up in large scale complex cellular models. In contrast to the modular techniques, 

the non-modular ones show great speedups since components can access other 

component’s states directly with no inter-component messages. The following procedure 

is based on the modular closure under coupling of parallel DEVS since most of the 

recently implemented DEVS environments are in the modular parallel form. Starting 

from that form, we propose some speed up techniques that will be based on converting 

the internal atomic models into non-modular form. 

 

3.3 Closure under Coupling of Parallel DEVS Applied to Cell Spaces 

Closure under coupling of parallel DEVS states that a coupled model can be 

represented with its atomic P-DEVS equivalent which is defined as follows: 

Given P-DEVS coupled model }{},{},{,,, , jiii ZIMDYX , we define a basic 

model taYSX conext
aa ,,,,,,, int λδδδ . 

Where Mi = iiiconiextiiii taYSX ,,,,,,, int λδδδ  

 for each i∈D , X ≡ Xa, Y ≡ Ya, S = d
Dd

Q×
∈

, ta(s)=minimum{σd | d∈D}, s∈ S, σd = ta(sd)-

ed, and the transition functions are defined as follows: 

δint: d
Dd

Q×
∈

→ d
Dd

Q×
∈
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δext: d
Dd

Q×
∈

× X → d
Dd

Q×
∈

   

δcon: d
Dd

Q×
∈

 × X → d
Dd

Q×
∈

  

λ: d
Dd

Q×
∈

 → Y  

 

In the case of cellular space models, all components d∈D are P-DEVS atomic 

cells which are identical processing objects with the same transition functions as well as 

output functions *
intδ , *

extδ , *
conδ  and *λ . For this special case of the DEVS coupled model, 

the resultant overall cell space atomic functions will be as follows: 

λ(s)={ Zd,self( *λ (sd))| d∈ IMM(s) ∧ d∈ Iself} 

δint(s) = (…, (sd’,ed’), …) 

where 
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δext(s,e,xb) = (…, (sd’,ed’), …) 

where 0<e<ta(s) and
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δcon(s,xb) = (…, (sd’,ed’), …) 

where 
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3.3.1 Event List Handling 

The approaches mentioned in section 2.5.2 used the idea of closure under 

coupling to decompose general (non cell space) coupled models to gain some speed up. 

Unfortunately, those approaches do not guarantee speed up in large scale models. The 

first factor of scalable speedup in our approach is that it targets cell space models where 

all the cells are having the same transition functions. This property will ease the process 

of decomposing coupled cell spaces by moving these transition functions to the cell space 

level and implementing an iterative approach to apply these functions to the active cells. 

Since we are implementing the whole framework in the discrete event simulation domain, 

we need a discrete event list handler that manages, for the cell space, the list of active 

cells at each simulation time, namely the cells to which the cell transition functions must 

be applied. 

Introducing the event list obviates the requirement that each cell keeps track of its 

own timing since time management will be handled by scheduling events on the events 

list. The events list is employed at the level of the resultant atomic model which will 

contain the future events expected to happen for the cells. An event record will be in the 

form that describes when the event is scheduled to occur (next event time) and where it 

will happen (which cell). The elapsed time of each cell inside the DEVS coupled model is 

normally handled by the coordinator. However, since we are replacing the coupled model 

by its atomic model equivalent, it will be the atomic model’s responsibility to keep 

records of the elapsed time for each of its internal cells. Therefore, the atomic model 

should keep a variable that store the current simulation time for the cell space block that 
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it represents and a vector of cell’s history times which store when a specific cell was 

accessed or had a transition time last. The elapsed time can be obtained by subtracting the 

history time of a specific cell from the current simulation time. 

Within the DEVS framework, a cell can only receive an external message when 

the time advance has expired at another cell inside the same coupled model or an external 

message was received by the coupled model’s input ports. Accordingly, the events list 

implementation just stores the time advances of the active cells and upon time advance 

expirations, the event list handler must add the neighboring cells of the imminent cells to 

a receiver group. This group will be the list of the cells that may receive external 

messages. In addition, when the coupled model receives external messages, the handler 

should identify the cells that should be aware of these new messages and add them to the 

scan list for external transitions. The events list handler is the responsibility of the 

resultant atomic model which, as a DEVS model, must implement all functionality solely 

using its transition functions.  

Now, we have a cell space having an EVENTS list with events ev = (time, i), 

where   

ev ∈ EVENTS,  time: R0→∞, and i ∈ D.  

Therefore, 

CellSpace= EVENTSZICellDYX jiii },{},{},{,,, , taYSX conext ,,,,,,, int λδδδ  

where 

Celli = iii YSX ,,  for each i∈D,  

ta(s) = minimum {time |( time, i) ∈ EVENTS }.  
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This means that in the new representation, the cell is no longer an active processing unit. 

It just stores the state variables with no timing involved at its level. It still has ports and 

messages which means it is not yet in non-modular form. The task of conversion to non-

modular form will be done in the next subsection. 

Now, the events list will play role in defining cell groups as follows:  

IMM(s)={ j | (ta(s), j) ∈ EVENTS } 

Given that X b
j={Zi,j(λ*(si))| i∈IMM ∧ i∈ Ij} , the collected outputs of the imminents 

INF={ j | (i∈Ij | ((ta(s),i) ∈ EVENTS) ∧ Xb
j≠∅)}, receiving cells  influencees 

INT ={ j | ((ta(s), j) ∈ EVENTS ∧ Xb
j=∅)},  

EXT={ j | (i∈Ij | (ta(s),i) ∈ EVENTS ∧  (ta(s),j) ∉ EVENTS ∧ Xb
j≠∅)} 

CONF= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j≠∅)} 

In addition, given that X b
j={Zi,j(λ*(si))|( i∈IMM∧  i∈   Ij)}∪ {Zself,j(x)|x∈xb ∧ self∈   Ij }  

INF’={ j | ((i∈Ij |(ta(s),i) ∈ EVENTS) ∨ (self ∈ Ij)) ∧ Xb
j≠∅)} 

INT’= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j=∅)} 

CONF’= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j≠∅)} 

EXT’={ j |((i∈Ij | (ta(s),i)∈ EVENTS)∨ (self ∈ Ij)) ∧(ta(s),j) ∉EVENTS ∧ Xb
j≠∅)} 

 

According to these new definitions, we can reformulate the resultant transition 

functions of the atomic cell space to include the events list handling. The following 

formal details show how the cell groups are extracted from the event list and manipulated 

in the atomic transition functions. The only function that does not deal with these cell 
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groups extracted from EVENTS list, is the external function. It just deals with the cells 

that received external inputs through the cell space ports.  

At the end of every transition cycle of the atomic cell space, the model checks the 

events list to see if it contains more scheduled events and if so, it extracts the list of cells 

with minimum time advance. On the expiration of that minimum time advance, the 

output function will access the IMM list and let the cells in this group send their output 

messages. Then, the internal or confluent transition functions are responsible to obtain the 

corresponding cell groups where the external transition function will work on the 

boundary cells that received external messages. Another source of speed up can be 

achieved here by letting the events list only hold non-infinity time advances which is 

equivalent to enhancing the simulator. This means that the model will not waste time by 

dealing with passive cells which is the case in any DEVS simulator when each cell is 

implemented as an atomic model. 

λ(s) :   for  all i∈ IMM         

   Apply λ* to Celli   [ Yi=λ* (si) ] 

δint(s) :  obtain cell groups INT, EXT, CONF 

Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ INT: apply *
intδ  to Celli 

  schedule (next ta, i) 

for  all i∈ EXT: apply *
extδ  to Celli 
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  schedule (next ta, i) 

for  all i∈ CONF: apply *
conδ  to Celli 

  schedule (next ta, i)  

  if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

δcon(s,xb) :  obtain cell groups INT’, EXT’, CONF’ 

Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ INT’ :  apply *
intδ  to Celli 

   schedule (next ta, i) 

for  all i∈ EXT’ :  apply *
extδ  to Celli 

   schedule (next ta, i) 

for  all i∈ CONF’ :  apply *
conδ  to Celli 

   schedule (next ta, i) 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 
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  else  

clear IMM={} 

ta(s) = ∞ 

δext(s,e,xb) : Update EVENTS:  time=time-e for all ( time, i)∈ EVENTS 

for  all i∈ { j | self∈Ij ∧ Xb
j ≠ Ø} 

     apply *
extδ  to Celli 

schedule (next ta, i) 

  if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

 

3.3.2 Transforming Cells to Non-Modular Form 

So far, all the above specifications are in the modular form, which means that 

there are still number of internal messages passing between the internal cells in order to 

know the states of each other through the output functions and ports. A major additional 

speed up can be achieved by transforming these cells into non-modular form. In non-

modular form, a cell can access (read) the state variables of its neighbors and there is no 

need for message passing through ports. In contrast to multi-component DEVS [6], the 

implementation we are seeking here allows cells to read each other’s states, but they are 
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only allowed to make their own state transitions. In case a cell changes its state, its 

neighboring cells need to be added to the cell group EXT instead of allowing the cell 

itself to change their states directly. 

Celli < y > Cellj < x,y* >

y=λ*(si)
outY:=y

δ∗
ext(sj,inY)

         y*=inY
δ∗

int(sj)
     x=f(y*)

outY
inY

Celli < y > Cellj < x >

δ∗
int(sj)

      x=f(y)

Non-Modular

Modular

 
Figure  3.1: Switching between modular and non-modular forms. 

 

Figure  3.1 shows how models can be transformed from modular into non-modular 

form and vice versa. Transforming to non-modular form can be achieved by removing the 

ports from the atomic models and letting them directly access the neighboring models to 

read their state variables. In cellular space models, this will reduce the structure of the 

cell units into a smaller one that just stores states and variables only and it has no 

functions or processing done at its level. However, we need to keep the coupling relations 

so that each cell knows which neighboring cells to access. In this case, we can add to the 

cell structure a list of the neighboring cells (n) which can be accessed by that specific 
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cell. In cellular space models, this list is the set of influencers which is equivalent to the 

set influencees. 

Celli= iii YSX ,,    Celli = ii nS , , Where ni={ j |  j∈ Ii }= { j | i∈ Ij }  

Since we removed the ports from the cells, the cell space atomic model functions 

need to be redefined according to the new changes. The first change is that we do not 

need cells to generate outputs to ports since their neighboring cells can access their state 

variables directly. Therefore, when a cell goes through a state transition, its neighboring 

cells are added to the set of cells, EXT, that should fire their external transition functions. 

 

Assumption-1: 

The output values that are sent via messages by a cell in the modular form are actually 

values of one or more of its state variables. 

 

Applying this assumption requires that we first define the state variables of each 

cell as follows: Given that each cell has a state set Si, and each state si∈Si is a collection 

of values of the state variables that represent the current state of the cell i. Therefore, 

si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state variables in the cell. Note that the 

primary states (e.g. passive, active … etc) are also treated as one of the state variables 

which contain the name of the state as a string.  

The resultant non-modular cell space can be shown to be equivalent to the 

modular counterpart as follows: Given that assumption-1 is satisfied, each modular cell i 

will send its own values of the state variables through Yb
i to its neighbors whenever there 
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is a change in those values. Then, that neighboring cell j receives those values at Xb
j.  

Therefore, b
ji

b
ji XY ,, = for all cells i,j∈D and there exist coupling relation Zi,j. However, the 

initiating cell, i, actually sends its own selected set (vij) of state values to neighbor j and 

so,  )}1()(|{, nkvksvY ij
k
i

b
ji ≤≤∧∈=  which represent the set of state values that should 

be sent to cell j. 

Then, given that there exist the coupling Zi,j where i,j≠self, 
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where ijvkikiki ∈,...3,2,1 . 

 

That means that all input/output values are equivalent to the state variables of the 

cells. Therefore, we can redesign the cell space model to make it fully non-modular by 

making each cell access the required state variables of its neighboring cells while still 

keeping the equivalency given that assumption-1 is met. According to Figure  3.1, 

implementing modular cells makes each cell keep records of its neighboring state 

variable (y*) where, in the non-modular from, there is no need to keep a record since 

every time the cell needs a value from its neighbor (y), it access it directly. This will 

make the internal cell transition function defined for state variables of each cell as well as 
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the state variables of its neighboring cell since it has access to all of them according to 

the coupling relation. 

For boundary cells: 

Xb= b
iselfIself

X
i

,∈
× = )}1()(|{ nkvksv xi

k
xIself i

≤≤∧∈×
∈

 

Yb= b
selfiIi

Y
self

,∈
× = )}1()(|{ nkvksv iy

k
iIi self

≤≤∧∈×
∈

 

Where vxi is the set of state variables needed to be received by boundary cells through 

external input ports and viy is the set of state variables needed to be sent by boundary cells 

through external output ports. The state variables k
xsv  are used as storage for the external 

values that are received by the cell space through input ports and they are only accessed 

by the boundary cells. On the other hand, the external outputs that are required to be sent 

out of the cell space are the states variables of the boundary cells.  

One more issue in the equivalency to the non-modular form is that the 

neighboring cells do not always have the last updated values. One reason for that is using 

the quantized DEVS in which the cell does not inform the neighboring cells with its last 

modification if the difference is not above a specific quantum. The above equivalency 

analysis is correct if we set the quantum to zero. However, if it is not zero, each cell 

should keep two copies of state variables (e.g. now and new). Whenever a cell needs to 

access a value in its neighboring cell, it will access the (now) value which represents the 

last value that crossed the quantum level (i.e. was sent to the cell through ports in the 

modular form). The (new) value is the last updated value of the cell which is kept 

different from (now) till it crossed the quantum level and the change will be committed to 
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(now) to be available for other cells to access. Now, we can redefine the cell transition 

functions as follows: 

For each specific cell i : 

δ∗
int: Si-now → Si-new  where si∈Si  given si=(sv1

i, sv2
i, sv3

i, … svn
i) 

δ∗
ext: nowj

Ij
S

i

−
∈
× × Qi →  Qi 

δ∗
con: nowj

Ij
S

i

−
∈
× × Qi →  Qi 

λ∗: Si-new → Si-now 

 

The output function for each cell just updates the state variables of the current cell 

in case it exceeds the quantum level and there is no need to generate any outputs if the 

cell is not a boundary cell. This task is actually done in the internal transition function 

δ∗
int and we can select not to duplicate the task. Another reason is to keep the new 

specification consistent with the DEVS specification where the output function is used to 

send messages only and does not initiate state or variable changes in the model. 

Therefore, δ∗
int will commit the changes in variables and add the neighboring cells to the 

scan group EXT.  

λ(s) :   for  all { i |  i∈ IMM ∧ i ∈ Iself } 

   Apply λ* to Celli   [ Y= Y ∪ Zi,self( )}1()(|{ nkviyksv k
i ≤≤∧∈ ) ] 

δint(s) :  for  all i∈ IMM     

   if  si-new  - si-now > quantum 
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 for all { i|  i∈ Ij ∧ j≠self } 

     If j∈ IMM  CONF=CONF∪{ j} 

Else EXT=EXT∪{ j} 

   si-now = si-new 

  INT= IMM – CONF 

Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ INT: apply *
intδ  to Celli 

  schedule (next ta, i) 

for  all i∈ EXT: apply *
extδ  to Celli 

  schedule (next ta, i) 

for  all i∈ CONF: apply *
conδ  to Celli 

  schedule (next ta, i)  

  clear all cell groups INT=EXT=CONF={} 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 
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δcon(s,xb) :  for  all i∈ IMM     

   if  si-new  - si-now > quantum 

 for all { i|  i∈ Ij ∧ j≠self } 

     If j∈ IMM  CONF=CONF∪{ j} 

Else EXT=EXT∪{ j} 

   si-now = si-new 

  INT= IMM – CONF 

CONF’=CONF ∪ {{INT}∩ { j | self∈Ij ∧ Zself,i(Xb) ≠ Ø}} 

  INT’=INT -  {{INT}∩ { j | self∈Ij ∧ Zself,i(Xb) ≠ Ø}} 

  EXT’=EXT ∪ {{ j | self∈Ij ∧ Xb
j ≠ Ø} – CONF’} 

Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

  for  all i∈ INT’ :  apply *
intδ  to Celli 

   schedule (next ta, i) 

for  all i∈ EXT’ :  Sself-now= Sself-now ∪  Zself,i(Xb) 

apply *
extδ  to Celli 

   schedule (next ta, i) 

for  all i∈ CONF’ : Sself-now = Sself-now ∪  Zself,i(Xb) 

apply *
conδ  to Celli 

   schedule (next ta, i) 

clear cell groups  INT=EXT=CONF=CONF’=INT’=EXT’={} 
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if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

 

δext(s,e,xb) : Update EVENTS:  time=time-e  for all ( time, i)∈ EVENTS 

for  all i∈ { j | self∈Ij ∧ Zself,i(Xb≠∅)} 

     Sself-now = Sself-now ∪  Zself,i(Xb) 

     apply *
extδ  to Celli 

schedule (next ta, i) 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 
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3.3.3 Final Non-Modular Decomposed Format 

The last detailed specification above shows that the cell internal output function 

tasks were encapsulated under the cell space output function and there is no need to 

define λ* as an independent function. Similarly, δ∗
ext or δ∗

con are not defined for non-

modular cells as shown in Figure  3.1. 

 

Assumption-2:  

The  modular cells use δ∗
ext and δ∗

con to update the values of their neighboring states and 

then apply δ∗
int to make calculations and transitions according to the updated values. This 

means that δ∗
ext and δ∗

con are designed not to make calculations or processing, but force 

the cell to do an internal transition which considers the new updates. 

δ∗
ext(si,ei,xb

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0, )}1()(|{ nkvjiksvk

jIj i

≤≤∧∈×
∈

=xb
i) 

ta(“re-calculate”)=0; 

δ∗
con(si,xb

i)= δ∗
int(δ∗

ext(si,ta(si),xb
i)) 

 

In the non-modular form, each cell will update its own values using the internal 

transition function δ∗
int and then, their neighboring cells will be added to the scanning list 

which in turn schedules an external event for the neighboring cells. This is exactly what 

the cell output function λ* and the cell external transition function δ∗
ext do given that 

assumption-2 is satisfied. Therefore, the equivalency to the modular form is satisfied and 

there is no need to have the functions λ*, δ∗
ext, and δ∗

con explicitly in the resultant model 
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since their tasks are already implied in the new framework. As a result, the model can be 

simplified for ease of user specification in such a way that each cell has only an internal 

transition function that is applied every time a cell becomes active. In addition, the cell 

groups can be merged as we do not distinguish between the different groups. However, in 

addition to the IMM group, we still need the EXT group in order to update the 

neighboring values of the imminent cells. Note that from now on, we will refer to the cell 

internal transition function δ∗
int as the cell’s local transition function ∆* (∆*=δ∗

int). 

For each specific cell i : 

∆*: nowj
Ij

S
i

−
∈
× ×Si-now → Si-new   where si∈Si  given si=(sv1

i, sv2
i, sv3

i, … svn
i) 

λ(s) :   for  all { i |  i∈ IMM ∧ i ∈ Iself } 

   Y= Y ∪ Zi,self( )}1()(|{ nkviyksv k
i ≤≤∧∈ ) 

δint(s) :  Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ IMM     

   if  si-new  - si-now > quantum 

 for all { i|  i∈ Ij ∧ j≠self }    EXT=EXT∪{ j} 

   si-now = si-new 

for  all i∈ {IMM ∪ EXT} :  

apply ∆* to Celli 

  schedule (next ta, i) 

  clear cell group EXT={} 
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if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

δcon(s,xb) :  Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ IMM     

   if  si-new  - si-now > quantum 

 for all { i|  i∈ Ij ∧ j≠self }    EXT=EXT∪{ j} 

   si-now = si-new 

  EXT=EXT ∪ { j | self∈Ij ∧ Xb
j ≠ Ø} 

  for  all i∈ { i | self∈Ii ∧ Xb
i ≠ Ø} :  Sself-now= Sself-now ∪  Zself,i(Xb) 

for  all i∈ {IMM ∪ EXT} : 

      apply ∆* to Celli 

   schedule (next ta, i) 

clear cell group EXT={} 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 
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  else  

clear IMM={} 

ta(s) = ∞ 

δext(s,e,xb) : Update EVENTS:  time=time-e  for all ( time, i)∈ EVENTS 

for  all i∈ { j | self∈Ij ∧ Zself,i(Xb≠∅)} 

     Sself-now = Sself-now ∪  Zself,i(Xb) 

     apply ∆* to Celli 

schedule (next ta, i) 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

 

This last specification is now decomposed fully into the non-modular form. An 

atomic cell space now consists of identical cells having the same transition function at the 

cell space level but covering different sets of data and state variables. The cell space was 

converted into an atomic non-modular P-DEVS as shown above given that assumption-1 

and assumption-2 are satisfied. The resultant model can be further simplified and put in 

the following format: 

λ(s) :   for  all { i |  i∈ IMM ∧ i ∈ Iself } 



 55

   Y= Y ∪ Zi,self( )}1()(|{ nkviyksv k
i ≤≤∧∈ ) 

δint(s) :  Update EVENTS:  time=time-ta(s) for all ( time, i)∈ EVENTS 

     delete any ev=( 0 , i ) where ev∈ EVENTS 

for  all i∈ IMM     

   if  si-new  - si-now > quantum 

 for all { i|  i∈ Ij ∧ j≠self }    EXT=EXT∪{ j} 

   si-now = si-new 

for  all i∈ {IMM ∪ EXT} :  

apply ∆* to Celli 

  schedule (next ta, i) 

  clear cell group EXT={} 

if (EVENTS ≠ {}) 

extract IMM  from EVENTS 

ta(s) = minimum {time |( time, i) ∈ EVENTS } 

  else  

clear IMM={} 

ta(s) = ∞ 

δcon(s,xb) :  conf = true 

  δext(s,e,xb) 

  δint(s) 

conf = false 
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δext(s,e,xb) : if (!conf)  Update EVENTS:  time=time-e  for all ( time, i)∈ EVENTS 

  EXT = { j | self∈Ij ∧ Zself,i(Xb≠∅)} 

for  all i∈ EXT 

    Sself-now = Sself-now ∪  Zself,i(Xb) 

  if (!conf)   IMM = EXT 

       ta(s)=0              // fire δint(s) to make the state transitions 

 

3.4 A Proposition to Show the Generality of the Approach  

The generality of the approach that follows the closure under coupling property in 

parallel DEVS was ensured in all steps in the procedure with no constraints except the 

two assumptions introduced in subsections 3.3.2 and 3.3.3. The final format reached 

assumes that the models satisfy those assumptions. This section shows and proves the 

generality of the approach that spans all cellular DEVS models: even the ones that do not 

agree with the assumptions. This section shows that any modular cell in cellular DEVS 

model can be modified to satisfy the two assumptions as follows. 

A modular cell (i), that does not satisfy assumption-1, sends an output value y that 

is not among the cell’s state variable values si where si∈Si. That value will either be a 

fixed value for each cell, fixed parameter, or cell’s calculated value where y∉si. It was 

shown in section 3.3.2 that si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state 

variables in the cell model. To satisfy assumption-1, the modular cell (i) can be updated 

to extend the state variables representation in order to include one more state variable that 

account for the values y. As a result si=(sv1
i, sv2

i, … svn+1
i) where svn+1

i is a newly added 
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state variable to the model that stores the value of y which can be then sent through 

external ports according to assumption-1. 

A modular cell (i), that does not satisfy assumption-2, does some computations 

and state transitions in δext. Operations in this function can be separated into two phases 

in any DEVS cell model. The first one accepts the external values on ports and updates 

the state variables accordingly in zero time. The other phase will include the calculations 

and state transitions that are based on the updated values. 

δ∗
ext(si,ei,xb

i) = si-new   δ∗
ext(si,ei,xb

i) = δ∗
ext(si-temp,ei) =si-new 

First phase: 

( )}1()(|{ nkvjiksvk
jIj i

≤≤∧∈×
∈

=xb
i) + si → si-temp 

si-temp = {“re-caculate”, svi-temp
1,…, svi-temp

n }  

Second phase: 

δ∗
ext(si-temp,ei) = si-new = { svi-new

0, svi-new
1, …, svi-new

n }. 

To satisfy assumption-2, the second phase should be moved into the internal transition 

function that should now deal with a temporary state “re-calculate”. The first phase is left 

in the external function to update state variables based on the received messages. 

Therefore, the external transition function can be defined in the following format: 

δ∗
ext(si,ei,xb

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0, )}1()(|{ nkvjiksvk

jIj i

≤≤∧∈×
∈

=xb
i) 

which account for the new updates and sets the time advance to be zero in order to fire 

the internal transition function in the next step that will deal with the temporary state “re-
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calculate” on the updated values and hence satisfying assumption-2. Similar approach can 

be done in the confluent function. 

 

3.5 Fast Cellular DEVS Specification 

Based on the full decomposition process, we can now introduce a specification (i.e. 

formalism layer) to represent atomic DEVS cell space that will run faster than the 

conventional implementations that are based on representing each cell as an atomic 

model. Therefore, a cell space can be formed in the following P-DEVS atomic structure: 

Atomic CellSpace = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ . 

Where, 

D is the set of cell ID’s encapsulated in this atomic model, |D| = number of cells 

in the model 

 B is the set of the boundary cells ID’s 

Cellid = *, Sn  for all id∈D and n is the set of neighboring cells and S* the state 

variables set (in non-modular form) where s*=(sv1, sv2, sv3, …..) | svn is the value 

of the nth state variable of the cell for a given s∈S*. 

X is a set of input values defined only for boundary Cells id∈B (set of 

ports/values in coupled structures). 

Y is a set of output values. 

S is a set of general states of the atomic model 

The total state set Q ={(s,e,{ *
id

Did
Q×

∈

}) | s ∈ S, 0 ≤ e ≤ ta(s)} 
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Q*
id = {( *

ids ,eid) | s* ∈ S*, 0 ≤ eid ≤ ta(s*)id } 

δint: Q → Q is the internal transition function. 

δext: Q × Xb
B → Q  is the external transition function,  

δcon: Q × Xb
B → Q  is the confluent transition function, 

λ: Q → Yb is the output function, only for cells with id∈B 

Events: is the next events list where ta=min{time|(time,id)∈Events} 

The four functions are executed iteratively and efficiently as explained at the end 

of section 3.3.3. 

 

For multi cell spaces, we can couple more than one atomic cellular space in one coupled 

model which will be in the form of parallel coupled DEVS: 

CM = }{},{},{,,, , jiii ZICellSpaceDYX . 

In addition, the specification can be extended to d-dimensional cell space as follows: 

CellSpaced = EventsCellBDdNYSX conextidi ,,,,},{,,,},{,,, int λδδδ . 

Where, d is the dimension of the cell space and Ni is the number of cells in the ith 

dimension given 1 ≤ i ≤ d. Then, id will be a set of IDs for cell in each dimension 

{idi}. In array implementation of the cell space atomic mode, this update will 

result in d-dimensional state arrays for the state variables. However, in that case, 

the cell’s id will be the set of array indexes in each dimension. 

- 

- 
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- 

Example: 

In the case of 2-D cell space, id=(i,j) where i is the cell id in the first dimension 

and j in the other dimension. n={(i*, j*)| i* neighbor to i ∨ j* neighbor to j} is set of 2D 

neighbors 

Cellid = Cell(i,j) = *, Sn  for all id∈ D 

B is the set of boundary cells IDs = {(i,j)| i=1 ∨  i=N1 ∨  j=1 ∨  j=N2} 

N1 is number of cells in the first dimension, N2 in the other dimension where the cell 

space size will be N1×N2 = | D |. 

B⊆D and | B | = 2N1 + 2N2 -4 

 

Lemma 1 

 CellSpace is a parallel DEVS (P-DEVS) atomic Model. 

 

Proof: 

The formalism CellSpace was generated from the closure under coupling 

property. The step by step procedure ensured that the new representations keep the 

general P-DEVS structure and hence equivalency. 

Given that 

CellSpace = EventsCellBDdNYSX conextidi ,,,,},{,,,},{,,, int λδδδ  

and 
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P-DEVS = taYSX conext ,,,,,,, int λδδδ  

By analyzing the definitions of both models, it can be seen that  

CellSpace.X ≡ P-DEVS.X 

CellSpace.Y ≡ P-DEVS.Y 

By definition, S is the set of states which includes all state variables as well. Therefore, 

P-DEVS.S={Phase×{P-DEVS.S*}}, where {S*} is the total set of all internal state 

variables in the model and phase is the representing state of the model (string). 

Equivalently, CellSpace.S={Phase×{ ×
∈Did

Cellid.S*}}, where the cell’s S* is the set of state 

variables inside that cell. Since S can be equivalently set for both models, the internal 

transition function as well as the output functions are defined for the same S where δint: 

S→S and λ: S→Y (Moore type). In addition, δext and δcon are applied to the total state set 

Q and the time advance of CellSpace is defined as the minimum time in the Events list. 

Therefore, both models are equivalent with more details and parameters in CellSpace 

which can be implied in the internal behavior of any P-DEVS atomic model.  

 

Lemma 2 

A DTSS model can be represented by CellSpace. 

 

Discrete Time System Specification (DTSS) 

A Discrete Time System Specification is a structure: 
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DTSS = cQYX ,,,,, λδ , where X is the set of inputs, Y is the set of outputs, Q is the set 

of states, δ : Q × X → Q is the state transition function, λ : Q → Y is the output function 

(Moore-type), and c is a constant employed for the specification of the time base c•ℑ. 

 

Proof: 

Since CellSpace is an atomic P-DEVS model, all what we need is to prove that a 

DTSS model can be represented by P-DEVS. Then, by induction the new framework can 

represent the DTSS. 

P-DEVS = taYSX conext ,,,,,,, int λδδδ  can be put in the general I/O system 

structure ',',',',',',' Λ∆Ω QYXT  where the time base T is the real numbers R, input set 

is X’ = Xb ∪ {Ø} (i.e., input set of the dynamic system is the input set of the DEVS 

together with the nonevents set specified by Ø∉Xb), output set is YØ = Y ∪ {Ø}, state set 

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set, the set Ω of admissible input 

segments is the set of all DEVS segments over Xb and T, the state trajectories are 

piecewise constant segments over S and T, and the output trajectories are DEVS 

segments over Yb and T. For equivalency of the two structures: X≡X’, Y≡Y’, ta(s)∈T’, 

Q’=(S×T’), ∆’=δ(s,e,xb) which is the local transition function of the atomic DEVS model 

as defined in  3.3.3, and finally, the output function is defined as follows: 

Λ’=



Φ

=
otherwise

staeifs )()(λ
 … considering Moore type 
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Similarly, DTSS models can be put in the I/O system structure ',',',',',',' Λ∆Ω QYXT  

where the time base T is the set c•ℑ, the set Ω of admissible input segments is the set of 

all segments over X and T, and the equivalency in both structures includes: X, Y and Q. 

Now, P-DEVS is capable of presenting DTSS models by first setting the time 

base to be an integer discrete subset of its general real time base. This will make the 

DEVS model make transitions and/or generate outputs in discrete steps of time c. This 

means that all ta(s) as well as the time to receive inputs are either 0 or c. Therefore, the P-

DEVS local transition function can be put in the following form: 











Φ=∧∨==
Φ≠∧∨==

Φ≠∧=

==Λ

otherwisees
xcstaes
xcstaexs

xexes

xes b

bb
con

bb
ext

b

),(
}0{)()(
}0{)(),(

0),,(

),,('
intδ

δ
δ

δ  

Which will perform equivalently to the transition function δ of the DTSS over the total 

set of states that will contain (s,0) or (s,c) and generate an output using λ(s) that is 

equivalent to the Moore type DTSS λ. 

 

Lemma 3 

A cellular model represented by a coupled DTSS formalism can also be represented by 

an atomic CellSpace. 

 

Discrete Time Coupled Models 

A discrete time specified network (DTSN) is a coupled system  
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N = 〈 X, Y, D, {Md}, {Id}, {Zd}, hN 〉 

where 

X  is the set of input values (set of ports/values in coupled structures). 

Y  is the set of output values (set of ports/values in coupled structures). 

D is the set of components. 

for each d in D: Md is a DTSS or FNSS basic component. 

for each d in D ∪ {self}: Id is the influencees of d, d is not in Id (no delay-less 

feedback loop). 

self is the coupled model itself N which allow external inputs and outputs. 

for each j in Id : Zd is the d to j output translation function. 

hN  is a constant time advance employed for the specification of the time base 

hN•ℑ which should be identical to the time base of all of the internal components. 

 

Proof: 

A cellular model can be represented in the DTSN formalism by putting it in the 

following from 

CellSpceDTSN = 〈 X, Y, D, {Cellid}, {Iid}, {Zid}, hN 〉 where each cell with id ∈ D is a DTSS 

atomic model that is Cellid= cQYX ,,,,, λδ  with the time step c=hN. The DTSS 

formalism was proved to be closed under coupling in [6]. That is a DTSN model can be 

presented in an equivalent DTSS atomic model. That means, a cellular space model that 
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is represented by DTSN can be put in the atomic form CellSpaceDTSS= cQYX ,,,,, λδ  

and following Lemma 2, this resultant model can be presented in CellSpace.  

We can also prove this by following the same decomposition procedure presented 

in the previous sections but this time for converting a cellular coupled model in DTSN 

into DTSS atomic model with all details. Then as a special case for the DTSS, the 

scheduling algorithm and processing of cells is done in discrete time step of duration c. 

 

Example: 2-D Game of Life 

GOL = 〈 X, Y, D, {Cellid}, {Iid}, {Zid}, h 〉 with time step h=1, X={}, Y={}, and 

id=(i,j) where i is the id in the first dimension and j in the other. Each cell is a DTSS 

model that has hQYX jijiji ,,,,, ),(),(),( λδ , where δ, λ, and h are identical for all cells. 

Q(i,j)={0,1}, Y(i,j)={0,1}, X(i,j)={0,1} 

Using Moore output type: y = λ (q) = q  

δ(q(i,j),X(i,j)) = 
( ) ( )( )( )



 =∧=∨= ∑∑

otherwise
XqXif jijiji

0
2131 ),(),(),(  

I(i,j)={ (i-1,j-1), (i-1,j) , (i-1,j+1) , (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) , (i+1,j+1) }  

Z(i,j): Y(i,j) → X(i’,j’)  for (i’,j’) ∈ I(i,j)  

 

At each time step h, a cell will generate a transition and send its current state q to 

all of its eight neighboring cells. Therefore, each cell will receive 8 binary values at X 
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that represent the binary states of its 8 neighbors which will be summed up in the 

transition function. 

Representing GOL in CellSpace 

GOL1 = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ  with Cellid = *, Sn  

Similarly, X={}, Y={}, and for each cell: id=(i,j), S*={0,1}, and n={ (i-1,j-1), (i-1,j) , (i-

1,j+1) , (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) , (i+1,j+1) }. S={“active”} 

B={} since there is no need for any cell to send or receive at boundaries. The basic 

functions of this atomic P-DEVS model δint: active → active, δext, δcon, and λ fixed 

iterative functions those where defined in section 3.3.3 with a specific cell’s local 

transition function  
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With all time advances equal to h in GOL1. That means that all times in Events list 

are equal to h and hence ta(active)=h in all iterations. 

 

 

3.6 Solving Differential Equations Using Cell Space Models 

A differential equation is any equation that contains derivatives, either ordinary or 

partial. Numerical solutions of differential equations consider approximating the 

derivatives of these equations in order to find a particular solution for given initial values. 

This may include discretizing the equations spatially or/and temporally. In recent years, 



 67

many researchers dedicated their work to employ modeling and simulation theories in 

solving differential equations. As a result, different formalisms and methods where 

developed to precisely represent differential equations as system models and generate 

their solutions by simulating those models. 

Depending on the discretization methods, the modeler can select the proper 

formalism to present and solve his differential equations. For example, Differential 

Equation System Specification (DESS) represents equations with the minimum state 

discretization required for computer representation, where Discrete Time System 

Specification (DTSS) represents them with spatial and temporal discretization. Quantized 

DEVS was introduced to solve equations on continuous time space with discrete 

quantized states. These approximation/discretization methods, of course, introduce some 

errors compared to their analytical solutions. However, a 100% accurate solution is 

impossible to achieve in computer generated solutions since they cannot handle 

continuous state representations (i.e. finite state machine). Therefore, the modeler’s task 

is to select a representation that minimizes the error and speeds up computations (i.e. 

generates the solution in the fastest time possible). 

 

Representing differential equations in cell space models requires dividing them 

spatially into cells having identical representative structures where each cell stores the 

state variables of the area it covers and applies the transition functions to generate the 

solution for that specific area. Now, the modelers will differ in selecting to discretize 

these cell’s states as well as their temporal domain or not. Discretizing them using a fixed 
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time step will result in a network of DTSS cells, where the variable time step (i.e. time to 

next state transition) will result in a network of atomic DEVS cells with discrete 

input/output events. On the other hand, continuous input/output events requires using 

cells in the form of quantized atomic DEVS which is the closest, but faster, 

representation to the DESS, which apparently does not discretize temporal space. 

 

Lemma 4 

CellSpace is able to represent and solve spatial differential equations numerically. 

 

Proof: 

Using numerical methods, any differential equation can be approximated in a 

difference equation form. This difference equation is spatially divided into smaller units 

that can be put in a mesh form which in turn can be put in a cell space model format. 

Then, each cell can be presented in the form of DTSS with a fixed time step and discrete 

input/output events. The solution of the equation on the specified space is obtained by 

gathering the solutions of all cells under the whole coupled network of DTSS cell 

models. Lemma 2 proved that this coupled model can be presented in CellSpace. 

Therefore, it can represent differential equations and solve them. Furthermore, it is 

capable of representing the differential equations using a variable time step rather than a 

fixed time step based on the quantization principles that are inherited from being within 

the DEVS framework. 
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3.7 Solving Partial Differential Equations Using the New Framework 

Since most of the complex natural system’s dynamics can be formulated using 

partial differential equations, in this section, we are going to give examples on how to 

solve such equations using cellular space models. The two dimensional cell spaces are the 

most commonly used in representing three dimensional phenomena since the third 

dimension can be translated into a state variable that is dependent on two spatial 

dimensions as well as a temporal dimension. For example, in land elevation models, a 

land height (Z) at any given time (t) is specified by a value (state variable) that is given 

according to a specific point described by x-y coordinates in the cell space. In this 

section, we are going to give one example (in 2-D Cell space) considering the new 

formalism in obtaining solution formulation.  

 

Example (2-D Heat Equation):  

Solve the partial differential equation: 
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Cell DEVS atomic model: CellSpace = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ  

Solution: 

This equation can be represented by a DTSS equivalent DEVS model or quantized state 

DEVS model. 

DTSS like: 

Using the difference methods, this equation becomes: 
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Equation-Model = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ , where X={}, Y={}, 

B={}, S={“active”}, {Cellid}=Cells[M][N] (array of size M by N), M = number of cells in 

x-axis, N = number of cells in y-axis, M×N= |D| = (Lx/∆x)*(Ly/∆y) , Lx is actual presented 

space length in x-axis, Ly is actual presented space length in y-axis, for each cell, id is the 

2-D arry position (i,j), n: 4-neighboring (right/left/up/down) rule, and S*=u[i][j] is the 

value of u at cell (i,j), δint: active → active, ta(active)=∆t and thus {t={0, ∆t}| t∈Events}. 

At each iteration n, the cell transition function ∆* will calculate the next heat 

value u (at next ∆t) based on its current heat value un(i,j) as well as the current heat 

values at its four neighbors {(i-1,j),(i+1,j),(i,j-1),(i,j+1)} according to the following 

equation: 
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Assuming that ∆x = ∆y = d, the equation becomes 

( )n
ji

n
ji

n
ji

n
ji

n
ji

n
ji uuuu

dt
cu

dt
cu )1,()1,(),1(),1(2),(2

1
),( )()(

41 −+−+
+ +++

∆
+








∆

−=  

 

Quantized state DEVS: 

Each cell in the 2-D space will start with an initial value u(i,j)(0) and then calculate its rate 

of change: 
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Then, the time advance h to the next quantum (q) level will be calculated according to the 

following equation which will be used to schedule the next event for that cell. 
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On event processing (internal or external), a cell should first update its state value 

u(i,j) according to the previous rate of change as well is its elapsed time since its last event 

and schedule its next time advance. Then, the cycle goes on till an end point is reached 

(either stopped by the user or the simulation reached a predefined stopping time). This 

type is referred to as lazy-DEVS while, on the other hand, aggressive-DEVS updates all 

cells regardless whether they got events or not. In this work, since we are aiming at high 

performance, we just consider the lazy-DEVS, which outperforms the aggressive-DEVS. 

This was taken care of by implementing the scan list, which only considers the imminent 

cells and updates them while all other cells remain as is. 
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CHAPTER 4 :   A TOOL FOR BUILDING EFFICIENT 

CELLULAR DEVS MODELS 

 

The objective of this tool is to minimize the coding efforts required by users to 

develop cellular DEVS models. In DEVSJAVA, the user is responsible for coding all 

classes, attributes, and functions in order to build a DEVS model that can then be run 

using the simulation viewer. This actually causes the development process to be longer 

with a tendency to fall into errors. With the new specifications made in the previous 

chapter, aiming at faster simulation execution, the coding process will be much more 

complicated than it used to be. Therefore, developing a new modeling environment 

becomes a necessity in order to develop efficient cellular space models with minimum 

development time. 

 

4.1 Ease of User Specifications with GUI support 

The new specification presented in section 3.5 was designed to run faster than the 

conventional cellular space DEVS models. It can be noticed that the functions δint, δext, 

δcon and λ were well defined (end of section 3.3.3) with no room for further modifications 

by the modeler except by defining variables, ports, cell’s initial data, and the cell 

transition function, ∆*, which is then encapsulated to be part of the internal transition 

function. Therefore, a new specification was introduced for the user to input data that will 

be used to automatically generate the remaining fixed structure of the full specification. 

However, at any time, the fixed internal functions, event list handling, and designs can be 
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modified by programmers who seek further speed up if applicable, or seek different 

interpretation for their own models. 

Cell Space = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ *},{,,,, ∆idCellBDYX  

Where, for each id∈D, Cellid = *, Sn . 

That resultant specification makes the user just specify the cell’s state variables 

S*, input/output ports sets if applicable, neighboring rules, and the cell’s local transition 

function. The general state variable S for the atomic model does not require special 

treatment for different kinds of models. It was defined fixed for states that scan the cells, 

calculate their transitions, schedule next events, and retrieve those next events on their 

scheduled time. When using arrays to represent cells, the whole atomic cell space will 

have uniform size arrays of state variables. The cells by the boundaries of these arrays 

represent the set B and all cells inside those arrays represent the set D with the cell ID’s 

as the array indexes. Cell Space= EventsrBDYSSX conext ,,,,,,,,},{,, int
* λδδδ  

As a result, we guaranteed that the development time of cell space atomic models, 

as well as their run time, becomes much smaller compared to the conventional cellular 

DEVS specification. Furthermore, this simplicity can be represented in such a way that it 

supports a graphical user interface (GUI) in the implementation as shown in Figure  4.1. 

The figure has further details in the user specification, including port to state variable 

mapping for the automatic code generation. This will make the code decide which values 

to send or receive at each port and hence this will not be at the user layer of specification. 
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Following the array implementation, the user specification can be put in the following 

format: 

UserSpecification= ** ,,,},{, ∆rYSX µ   

Where {S*}is the set of the state variables arrays, r is the neighboring rule to be followed 

(eg. Neumann or Moore neighbors), and µ is set of state variables to ports mapping  

µ : X’→ {S*} → Y’  for  X’={X∪∅} and Y’={Y∪∅} 

∅ → s*→  ∅ : the values of state variable s* is not to be sent or received through ports. 

∅ → s*→ y : the  values of s* can be sent through port y but not expected to receive 

values. Usually used for statistic gathering ports, not used for neighboring ports. 

x → s*→ ∅ : the variable s* can get values from port x but does not send values (also 

not used for neighboring ports) 

x → s*→ y : the values of s* can be sent through port y and expected to receive values 

from port x 

 

For all the above explanations, what is meant by values are the ones by the 

boundaries of the arrays only [(i,j)∈B]. µ is expected to be a total function over X’, Y’ 

and {S*}. However, if a state variable is not included in µ, it should be interpreted as 

∅→s*→∅ and if a port is not included, the generated code should not send or receive 

any values over that port. 
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User Specification

GUI

Parallel DEVS

CellSpace1  Specification

UserSpace=〈 X, {S*}, Y,µ, r, ∆∗〉 

CellSpace=〈 X, S, {S*}, Y, D, B, r, δint, δext, δcon, λ, Events〉 

P-DEVS=〈 X, S, Y, δint, δext, δcon, λ, ta〉

Automated 
Specification

Code 
Generation

 
Figure  4.1: Specification layers. 

 

The layers presented in Figure  4.1 suggested that the cell space structure is a 

middle layer which is used to provide information that is sent down to the lower code 

layer which put them in the Parallel DEVS specification. This design ensured that the 

new specification is put into the DEVS format and hence any generated model using this 

design is able to be executed using any parallel DEVS simulator.  

 

4.2 Design Structure of the New Modeling Environment 

In Figure  4.1, three layers of specifications were suggested. The lower layer is the 

parallel-DEVS specification layer which represents the DEVSJAVA modeling and 

simulation environment. Since it is the targeted running environment for our produced 

models, all the models to be run should be presented in that specification. Therefore, the 

new development environment is spanning the two upper specification layers and 
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producing models which must satisfy the third layer of specification. Figure  4.2 shows 

the design structure of the new cellular DEVS modeling environment which takes model 

specifications via the Graphical User Interface (GUI) and generates the code that can be 

run in a DEVSJAVA environment with an efficient cellular DEVS specifications. 

DEVSJAVA

DEVSJAVA Simulator

DEVSJAVA Modeling

Code Generator

GUI

Cellular DEVS
Specifications

generated Model

Cellular DEVS Modeling Environment

 
Figure  4.2: Structure of the new cellular DEVS environment. 

 

The main design units in this environment are: GUI, code generator, and the 

cellular DEVS Specifications unit. Each of these units contains its own classes and has 

different objectives. Generally speaking, the GUI unit is a DEVS independent unit that 

gathers information about the model from the user and passes them to the code generator. 

The code generator unit gathers that information and produces the model’s code guided 

by the format of the new cellular DEVS specification. The generated code extends the 

standard classes given by the cellular DEVS specification. Those, in turn, extend the 
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standard modeling classes in the DEVSJAVA modeling layer. The specifications unit 

hides most of the implementation details and includes huge methods and classes that 

were hidden from the user to ease the user task in the model development process. 

 

4.3 New Cellular DEVS Specification Unit 

This unit contains the basic implementation models for the new specifications 

previously defined. These are generic models for any standard cell space model to inherit 

its basic attributes and methods. General Cell space models in DEVS were reviewed 

guided with two points of view. The first one was to make the generic models 

implemented in the new efficient specification introduced in the previous chapter. The 

other one is the view of the user who should be provided with quicker and easier 

development process following the user specification obtained in section  4.1.  

As a result, the implemented classes were designed to minimize the amount of 

code required by the model developer in specifying the model behavior as generic as 

possible with some assumptions, constraints and conventions. The main guidelines in 

building these classes are the homogeneity of the cell space as well as the separation 

between models, simulator, and experimental frames. The new cell space specifications 

as well as the conventional one are supported by this environment in order to demonstrate 

the advantages of the new one as well as to ensure equivalency. 
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4.3.1 DEVS Cell Space Implementation Models 

The user specification layer includes the model information that is required to be 

entered by the user. The model classes in the specifications unit are DEVS models 

missing those user specifications. Therefore, the model classes in this unit are the base 

classes which when provided with user specifications form a complete operational DEVS 

models. However, they cannot run by themselves without the user specifications since 

they are missing specific model attributes, cell behavior, cell’s initial data, neighboring 

rule, ports, and port couplings. 

Cellular DEVS Specifications

basicUnit basicSpace

unit space

cellSpace blockSpacecell block

Atomic DEVS Coupled DEVS

DEVSJAVA Modeling

 
Figure  4.3: Cellular DEVS specification unit. 

 

The main assumption stated in this environment that the developed cell spaces 

contain identical processing units in two dimensions with the support of modeling one 

dimension. The support of experimental frames should be external to the space coupled 

DEVS model. The building block of the cell spaces is the unit which can be a DEVS 

atomic cell or block, which may contain multiple cells. This will divide the cell spaces 

into two types: cell space or block space according to what unit type it contains. Figure 
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 4.3 shows the internal structure of the specifications unit which inherits the basic DEVS 

classes from the DEVSJAVA modeling environment. 

 

4.3.2 Some Implementation Details in Cellular DEVS Models 

This section gives an overview on the main rules used to implement the basic 

model classes and shows the main capabilities they can support.  

 

Neighboring Rules and Neighbors Addressing Convention 

The first issue to address is the neighboring rules these models may support as 

well as neighbors addressing conventions. The standard neighboring rules supported by 

these models as shown in Figure  4.4 are: 

(a)  Von Neumann neighboring rule (4-neighbors) 

(b)  Moore Neighboring rule (8-neighbors) 

(c)  Hexagonal neighboring rule (6-neighbors) 

(i-1 , j+1) (i , j+1) (i+1, j+1)

(i-1 , j) (i , j) (i+1 , j)

(i-1 , j-1) (i , j-1) (i+1 , j-1)

(i , j+1)

(i-1 , j) (i , j) (i+1 , j)

(i , j-1) (i, j-1) (i+1,j-1)

(i , j)(i-1, j ) (i+1, j)

(i, j+1)(i-1,j+1)

i

j

( a ) ( b ) ( c )  
Figure  4.4: Supported neighboring rules. 

 

The addressing convention follows an increasing number scheme, assigned to 

each of the cell’s direction which are 0-3 for Neumann, 0-5 for Hexagonal, and 0-7 for 

Moore neighboring rules as shown in Figure  4.5. In the implementation models, cells use 
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the method myNeighbor(int k) to retrieve the x-y coordinates of its kth neighboring 

according to addressing scheme mentioned above. 

4 0 7

1 (i , j) 3

6 2 5

0

1 (i , j) 3

2 2 5

(i , j)1 3

04

( a ) ( b ) ( c )  
Figure  4.5: Neighbors addressing convention. 

 

Cell Ports Labeling and Couplings 

Based on the neighboring rule selected by the user, the cell’s structure is then 

built to handle communication between the neighbors defined by that rule. In the 

conventional cellular DEVS implementation, cells communicate through ports which can 

be of a single or multi type. Single port means that the cell sends values to all of it 

neighbors through one port while in multi type it sends values to each of its neighbors in 

different ports. The user can provide the development tool with the port name and type. 

In the cell initialization process, the method addPorts() in cell model will be called to add 

the required ports to the cell structure according to the port names, types and neighboring 

rule. Table  4.1 shows the result of adding port of name “Port” for different user entries. 

Since the ports are added to the cells in a hidden-from-user automated way, 

coupling the ports is also done in a similar fashion. The mapping factor µ, in user 

specification, defines the port couplings between cells and which values to send/receive 

through these ports. Accordingly, the method doInternalCouplings(), in cell space model, 

makes all the necessary couplings between cells. This method is design to account for 
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different types of couplings namely single to single, multi to multi, single to multi, and 

multi to single port couplings.  

 

 Neumann Moore Hex 

Single Port (i , j)Port

 
(i , j)Port

 
(i , j)Port

 

Multi Port (i , j)

Port_N

Port_S

Port_W Port_E

 

(i , j)

Port_N

Port_S

Port_EPort_W

Port_NW

Port_SW Port_SE

Port_NE

 

(i , j)
Port_W Port_E

Port_NW Port_NE

Port_SW Port_SE  

Table  4.1: Single vs. multi ports in cell models. 
 

In addition, the mapping specification decides what variable each port gets its 

values from. The different types of output ports make a distinction between two cell’s 

variable sets: state variables and flow variables. Usually the state variables are connected 

to a single output port while the flow variables are connected to a multi output port. That 

is because the state values are fixed for each cell at a given time and there is no need to 

have a multi port to send a single value to all neighbors while each cell has different flow 

values for different directions and hence it requires multi output ports to send all flows to 

neighbors. 

 

Block Ports Labeling 

The difference between the cell and the block resides in the fact that a block has 

multiple numbers of non-atomic decomposed cells encapsulated. Despite the fact that 

they are all implemented as a DEVS atomic model, the block is equivalent to a DEVS 
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cell space coupled model. Therefore, this big atomic model will have a big list of 

input/output ports that exchange the values of the boundary cells. The port labeling 

scheme in block implementation came from the fact that they contain 2-D indexed cell 

arrays. In addition to the port name, the label should contain which array boundary that 

specific port is at (i.e. north, south, east, or west) as well as cell index at that boundary 

(i.e. either x or y coordinate of that cell). Since there are single and multi port types in 

cell spaces, we should introduce labeling schemes for both types as shown in Figure  4.6 

and Figure  4.7. The first scheme is a straight forward example as we explained above 

since each cell has one port only with an exception for the diagonal cells which are at two 

boundaries while they have single port. The multi scheme adds a third segment to the 

labels to indicate the cell neighboring direction since each cell has at least one multi port. 

Special treatment was done at the corners to include each one of the diagonal ports to 

each of the major directions in order to avoid redundancy in ports. 

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

Port_SW

Port_NW

Port_SE

Port_NE

Port_E_1Port_W_1

Port_S_1

Port_N_1

 
Figure  4.6: Single port labeling scheme. 
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Figure  4.7: Multi port labeling scheme. 
 

Cellular DEVS Space Implementation 

The cell space acts like a container for the cells or blocks it covers and provides the 

means of communicating to other cells in different cell space. In addition, it can provide 

the external experimental frame with state or statistical data generated by the internal 

units. It is implemented as a DEVS coupled model that contains atomic DEVS models 

(i.e. cells or blocks) and it plays a critical role in initiating the internal unit’s setup, 

initialization, and port couplings. 

Upon constructing the cell space, it builds all the required internal units using the 

method addUnits(), assigns them IDs, adds the space ports (addPorts()) which follows 

the labeling schemes used in the blocks,  makes the internal as well as the boundary port 
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couplings (doBoundaryCouplings() and doInternalCouplings()),extracts the cell space 

initial data from an external file, and distributes it to its internal units (getInitialData()). 

 

4.4 The GUI 

The main class in our environment is the GUI, where the user inputs the cellular 

model specifications, generates models, and reloads previously generated models to 

modify. It was implemented using JFrame containing two tabs: the model specifications 

tab and the cell’s local transition function tab. The model specification tab is the main 

tab, shown in Figure  4.8, which allow the user to write the model name and its package 

name (i.e. which folder to store the model in), select the space type either cell space or 

block space, select the neighboring rule to use for his model, select the input data file 

where the model should extract its initial data from, and fill the ports/variables mapping 

table. Since the mapping table may have multiple rows, two buttons were introduced for 

adding and removing rows. The table entries follow the µ segment in the user 

specification in section  4.1 with additional information regarding the variable type (e.g. 

integer or double) and ports type (i.e. single or multi). The index column gives the user 

the ability to specify the order of the variables in the input data file for the model to 

follow when reading the initial data. 

The cell transition function tab was implemented as a text editor that allows the 

user to write the cell’s local transition function ∆*. Figure  4.9 shows the default text 

available for the user. The user is required to fill in the first function (userFunction(i,j)) 

which is going to be ∆*. In case the model needs to use certain quantization schemes or 
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user defined boundary conditions, the user will need to then fill in the other two functions 

enforceBoundaryConditions() and getQuantum(i,j). 

 
Figure  4.8: The main GUI view. 

 

 
Figure  4.9: The cell transition function tab. 

 

After entering all model specifications and functions, the user needs to press the 

generate button which will prompt him to enter the cell space size and the number of 

blocks for block space type. Then, all model parameters and functions will be sent to the 
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code generator which will generate the code for that model. In addition, the GUI will 

generate a model property file that stores all user entries which can be used later on to 

reload them in case the user needs to modify the model. The last button is added to 

initiate the simulation viewer in order to run the generated models. 

 

4.5 The Code Generator 

The main task of the code generator is to write the DEVSJAVA code of the cellular 

model defined by the user inputs which are received from the GUI. The GUI initiates the 

abstract code generator class “codeGenerator” which may implement, depending on the 

user selection, the cell space code generator “cellSpaceCode” or the block space code 

generator “blockSpaceCode” as shown in Figure  4.10. The abstract class 

“codeGenerator” implements the method generateCode() which is called by the GUI to 

generate the model code. That method calls other methods that are either in the same 

class or in the other two subclasses. In addition to that method, the abstract class contains 

the common methods on which the space type has no effect. The required code format of 

the developed model is essential in defining the code generator tasks and 

implementations.  

Code Generator

codeInterface

blockSpaceCodecellSpaceCode

codeGenerator

 
Figure  4.10: Structure of the code generator unit. 
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4.5.1 The Generated Model Classes 

Generic cellular DEVS models usually contain space and cell classes. Any 

cellular model that is going to be developed should contain two classes inherited from 

those generic classes. The new approach presented in this work gives the possibility that 

a model may contain a block class instead of a cell class. Since we refer to cells and 

blocks as units, we can rephrase the above statement so that any generated model should 

contain space and unit classes. In this specific environment, the models are designed to 

read their initial data from an external file and send them to the units as instances of 

object class. This class is referred to as the model’s initial values class which is model 

specific since it contains the initial values of the model’s state variables. Therefore, any 

generated model should contain code for three classes: model’s space class, model’s unit 

class, and model’s initial values class. Figure  4.11 illustrates the generated model classes 

for cell space and block space models. 

Generated Cell Space Model

Model's Space Class

Model's Unit Class

Model's Initial Values 
Class

1

1..*

1

1
1..*

1

cellSpace

cell

Generated Block Space Model

Model's Space Class

Model's Unit Class

Model's Initial Values 
Class

1

1..*

1

1
1..*

1

blockSpace

block

Object

Cellular DEVS Specifications

 
Figure  4.11: Generated model classes and hierarchy. 
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4.5.2 Some Implementation Issues in the Code Generator 

Initially, the code generator is constructed at the GUI with the file name (i.e. 

where the full source code of the model should be stored) and folder location as specified 

by the user. The file name is actually generated from the space model name which is also 

used to name the unit and the initial data classes. Then, the GUI will set all the 

parameters for the code generator according to the user entries. Therefore, the code 

generator was designed to have variables that are identical to the ones that should be 

extracted from the user entries by the GUI. 

 

Figure  4.12 illustrates the content of the source code file that should be produced 

by the code generator. We can divide it into four segments. The first one is for the 

package name and the list of imports may be required by the included classes. The list of 

imports is predefined for the code generator to write in the generated file. The other three 

segments are for the three required classes as mention in the above subsection.  

The model’s initial values class code contains the class signature, variable 

definitions and a constructor that initiates those variables. They are the state variables 

defined by the user to be read from the input data file. The model’s space class code 

includes the class signature, space constructor, the method that gets the initial data from 

the external file, and the method that adds the units to the space. The space constructor 

should include names and values of the input/output ports, neighboring rule, and space 

size. It should call the following methods in order: getDataFromFile(), addPorts(), 

addUnits(), doInternalCouplings(), and doBoundaryCouplings().  
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 package  XXXXX;
 import  LIST_OF_IMPORTS;

 class MODEL_Name_unit extends block {

 

 
 }

 class  MODEL_NAME_initials {
   
  
  
 }

 Declare Inititialization Variables;

 Initial_Class_Constructor() { }

 class MODEL_NAME extends blockSpace{

 }

 SPACE_CONSTRUCTORS (){ }

 GET_Initial_Data_method () { }

 Add_Units_Method () { }

Declare Model Variables;

 UNIT_CONSTRUCTORS (){ }

 Initialize ( ) { }
 deltext (double e, message x) { }
 deltcon (double e, message x) { }
 deltint ( ) { }
 out ( ) { }

 double userFunction ( ) { }
 enforceBoundaryConditions ( ){ }
 double getQuantum ( ){ }

 
Figure  4.12: Illustration of code generation process. 

 

Finally, the code for the unit class should start with the class signature and the rest 

can be divided into four sub-segments. The first one lists the definition of the model 

variables and the second one includes the class constructor. The other two sub-segments 

are the ones which are responsible in stating the model behavior. The third one includes 

the DEVS atomic functions as well as the initialization procedure. These functions are 

generated according to the formal specifications in section 3.3.3. As we mentioned in the 

previous chapter, the internal transition function is the one which is responsible to do all 
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state transitions and call the user functions. Therefore, it should include calls to the user 

function which are included in the last sub segment. The code generator accepts the user 

function and prints them, as is, to the generated code. 
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CHAPTER 5 : DESIGN ISSUES OF THE EVENT LIST 

 

Discrete event simulation proceeds through executing a list of scheduled events that 

are not simulated yet. Executing an event might result in scheduling other events and the 

process goes on until the list of events is empty or the simulator reaches a predefined 

stopping point. In DEVS coupled models, the coordinator is responsible in processing 

and storing the event list. As a result of converting a coupled model into an atomic 

model, as is the case in our approach, the event list processing task will be encapsulated 

inside the new atomic model’s functions as described in section 3.3.1. This is achieved by 

introducing EVENTS list which holds scheduled events and then the model processes the 

cells in the lists extracted from the event list like IMM and EXT. Consequently, the model 

will spend large amounts of time just processing the cell list for scheduling future events, 

extracting current events into IMM and EXT, and scanning cell lists. Therefore, 

implementing those cells will have a significant impact on the simulation execution and 

hence, the targeted speedups. 

There are large amounts of related works and debates in the literature to find what 

are the best processing algorithms and data structures in implementing the event list for 

discrete event simulations [40-47]. Unfortunately, no single approach is found to work 

best for all applications. That is because each application has it own event scheduling 

distribution which will impact the amount and type of operations to execute and hence 

the execution time of the event list. In addition to the experimental work, [45] and [47] 

listed a  table of the analyzed complexity of certain algorithms that depends on the worst 
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case and average case scenarios independent of application types. The complexity of 

those algorithms varies from O(n) to O(log n) which is the best known complexity for 

operation-wise analysis. There are some amortized bounds which are based on the overall 

complexity of the event list and not on the execution time of a single operation. However, 

these bounds cannot be taken as an advantage of some algorithms over others since some 

of those may take O(n) in single operation. Therefore, in this work, two of the common 

O(log n) data structures available, namely binary heap and balanced binary tree [48],  

were selected for study and analyzed with our own simple straightforward array 

implementation. Before heading into the design issues and analysis we list the design 

requirement for the event list. 

 

5.1 Event List Design Requirements 

Generally speaking, a DEVS simulation event list should include records of the 

scheduled events where each record consists of model ID (i.e. place of the event that will 

occur), time stamp (i.e. when that event should occur), and event type (e.g. external or 

internal transition). Since the main goal in this work is to develop large scale high 

performance cell spaces, the list handler should be of an efficient implementation that 

should process large number of events very quickly to avoid adding latency to the overall 

cell space atomic model. In opposition to the conventional DEVS simulators [6], our 

approach is formulated to avoid scanning passive cells which means that those cells 

should not exist in the event list (i.e. no scheduled records with an infinite time stamp). 

For all other non-passive cells, a schedule record in the list will contain the cell’s x-y 
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coordinates as the model ID and its next time advance as the time stamp. The formulated 

framework in section 3.3 with its final implementation format at the end of section 3.3.3 

suggested that all the cell scheduled events are of internal transition type only. Therefore, 

the type of the events should be excluded from the scheduled record since by default they 

are all internal transition events and on expiration of that time advance, the general cell 

transition function is applied to the scheduled cell. As a result, an event list should 

include all time advances (ta) of all non-passive cells encapsulated in the atomic model.  

The standard operations in event list processing include: adding a new record, and 

extracting the record with the minimum time stamp which entails finding that minimum 

time and then deleting that record. Most of the works done in the literature [40-47], in 

this regard, considered these standard operations only. This is another reason why their 

findings are inconclusive since there might be additional operations required by different 

applications. The first additional operation we need in the event list for our approach is 

the arbitrary removing of cells from the event list. The second one is for advancing the 

time stamps in all records since the stamps are relative to the local current time of the 

model. In addition, the method used to extract the least time stamp record might have 

more operations than just extracting a record. It should search for the minimum time 

stamp in the list and gather all the cells with that minimum time stamp so that it retrieves 

it as one cell list IMM with the possibility of not removing their records permanently. 

There is an additional field to the record that might be added in order to emulate the cell’s 

elapsed time. This is required to test if the solution we presented in section 3.3.1 is worth 

while or we need to include the elapsed time handling in the event list. In that case, 
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another operation will be required to be implemented in the event list which will retrieve 

the cell history in the list (i.e. how long that cell has been in the list) which is the elapsed 

time. To summarize, the following operations are required to be included in the event list 

design except the last one which is optional: 

• Add new cell schedule 

Add(ta,i,j) is used to schedule an internal transition event of cell (i,j) after ta 

time advance. Since an atomic model in DEVS cannot have more than one 

time advance, redundancy of cell schedule is not allowed here. Whenever a 

cell is requested to be scheduled, the list should make sure that the cell does 

not exist in the list. Otherwise, it should delete the previous schedule and store 

the new one. This might include the remove(i,j) operation. 

 

• Remove a cell from the list (arbitrary remove) 

Remove(i,j) is required to delete cell (i,j) from the list. One reason for doing 

this was stated in the add operation and the other one is when the cell is 

executed as a neighbor of an imminent cell (i.e. external transition) and 

generates a new time advance. In this operation, deletion is requested based on 

the record’s value (i,j) rather than the key (time) as the case in most event list 

implementations. 

 

• Get minimum time in the list 
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getMin() method searches all the record’s keys in the list and returns the 

minimum key. This minimum time is actually the next time advance for the 

whole atomic model. Therefore, by the end of any internal transition, the 

model should call this method to set its next time advance. 

 

• Get the list of imminent cells 

getMinList() method will search the event list to return all the cell ID’s that 

have the minimum time in the list. This is also done at the end of the internal 

transition to get the set of imminent cells IMM ready for the next step. 

 

• Remove the imminent cells  

removeMin() method should be called after processing the events for all 

imminent cells. This should include advancing the list time to the minimum 

time of imminent cells. 

 

• Advance the time of the list 

advanceTime(t) should update the event list times with a step of time t. This 

means that the atomic model advances to the time t since the last list time 

update. This will include subtracting that time t from all the time records in 

the list and adding that t to the history records of the cells. Of course, list 

cannot be advanced to time t that is greater than the minimum time available 
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in the list, since the model needs to process records with that minimum time 

before it advances to t. 

 

• Get the elapsed time of scheduled cell 

getHistory(i,j) should return the elapsed time of cell (i,j) since its last state 

transition. It is actually a historical measure of how long the cell has been in 

the list.  

 

The above operations should be included in the design of the event list. The system 

which makes use of it should be capable of calling those methods as defined using the 

format mentioned above. All other internal algorithms, structures and implementation 

details in the event list should be independent and hidden from the system using it. This 

ensures that any event list designed following the above format can perform 

independently from the application type which allows flexibility in replacing the event 

list design for different application models. One final issue to mention is that our system 

was designed to have the imminent cells list IMM in a certain format and the method 

getMinList() is supposed to retrieve the list using that format. Therefore, when designing 

the event list, either the whole design should be consistent with that format or an interface 

should be introduced to convert to that format by the end of that operation. The first 

option is not in favor of speedup requirements since it applies constraints on the design 

and prevents the designer from selecting the fastest algorithms and structures that are 
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using different formats. The better choice is to make the design be as efficient as possible 

while providing an interface that converts into the specific format at the end. 

 

5.2 Standard Array Implementation 

The simplest way of implementing an event list is by using arrays. In array 

implementation, the records are stored as array entries. Each record will have at least a 

scheduled time and cell ID. This record might be extended to have the history (i.e. 

elapsed time) of the cell. In the other alternative, another array will be used to store all 

history values independent of the main records array. There are two ways to store the 

event records in the array based event list. The first one is to store them in non-increasing 

order while the other one does not keep order of records. The non-ordered way makes the 

add operation of O(1) complexity while the other one makes it slower with O(log n), 

since it is preserving the order, but on the other hand makes the search for the minimum 

time record O(1) compared to O(n) in the non-ordered arrays. 

 

  

ta1 ta2 ta3 tan

i1,j1 in,jni3,j3i2,j2

 
Figure  5.1: Event list in unsorted array. 
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i1,j1i1,j1 i5,j5 i0,j0 in,jn

i3,j3

i2,j2

i4,j4

ta1 ta2 ta3 tan
 

Figure  5.2: Event list in sorted array. (tax>tay for any x<y) 
 

Figure  5.1 and Figure  5.2 show the two different array implementations of the 

event list. Since the second implementation keeps the order of records, it is possible to 

combine the records having the same schedule time as one array entry. If similar 

implementation is to be done in the unsorted design, upon adding each record a search 

should be done to find if a record with similar schedule time is already there and in this 

case it is advantageous to implement the sorted array instead. This idea of combining the 

records makes getting the list of imminent cells of O(1) complexity since it just accesses 

the last array entry and retrieves the cell list. In addition, it speeds up the process of 

searching for the least time records since it avoids scanning redundant time values. The 

reverse order in the sorted array is preferred in order to make the operation of removing 

the minimum record of O(1) complexity. In case of the non-decreasing order, removing 

the least time record at the beginning of the array requires shifting all other records one 

step to the right which results in O(n) worst case scenario. 

The two additional operations added to the event list design which are not usually 

found in standard event list implementations and analysis are the arbitrary remove and 

advancing the list time. The advance time operation requires updating all records in the 

list which results in O(n) complexity. However, n is the number of array entries which, in 
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the sorted array, is less than or equal the number of recorders or cells (N) added to the 

list. This might make the operation faster compared to the non-ordered array where n=N. 

The arbitrary remove operation searches for a specific cell (i,j) in  the list and deletes its 

record. In both array implementation, as discussed so far, searching for that specific 

record is of O(n) complexity since cells are not indexed with their IDs. Improving this 

search can be done by introducing an indexing scheme to the list which stores a mapping 

table that maps cell ID’s into array location and this will result in O(1) search. Then, 

deleting that record will be of O(1) in the case of unsorted array if the record is replaced 

with the last record in the array. On the other hand, a sorted array should preserve the 

order and hence all records should be shifted one position to fill the location of the 

deleted record. As a result, arbitrary operation will have O(1) complexity in the case of 

unsorted array and O(n) in the sorted one. 

 

5.3 Binary Heap Implementation 

The binary heap is a complete tree structure that is not fully ordered [48, 49]. It is 

frequently selected and recommended in general purpose implementations as well as 

event list implementation because of its fair structure, efficiency, and stability [46]. 

Figure  5.3 illustrates the binary heap structure in which the order of records is kept 

vertically following the child-parent relation. The key (i.e. time advance) of each node 

should be greater than or equal to the key of its parent node at all times. As a result, the 

minimum key value can always be found at the root node.  
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Figure  5.3: Binary heap structure. (tax≤tay for any child y with parent x) 

 

Binary heaps have been attracting many researchers because of their simplicity 

and the ability to be implemented using arrays as shown in Figure  5.4. The first array 

location is for the root node where the minimum key resides. The arrows in the figure 

indicate the parent-child relations which can be obtained as follows: 

Parent(x) = ( ) 2/1−x  

LeftChild(x) = 12 +x  

RightChild(x) = 22 +x  

 

1 1098765432 11

 
Figure  5.4: Binary heap as an array. 

 

Since the heap is not fully sorted, the idea of combining similar time schedules in 

one node is infeasible as we discussed in the previous section. Therefore, redundancy in 
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key values is allowed in a binary heap and in case the event list is requested to extract the 

cells with the minimum key, it should go through multiple iterations to gather all of them. 

This makes the method getMinList() of O(n) complexity while getMin() of O(1) since the 

minimum key is at the root. Removing the root node from a binary heap (i.e. remove the 

node with minimum key) is done by replacing that node with the last one added to the 

structure and then use the operation pushDown() to restore the heap order. The push 

operations pushDown() and pushUp() are done through multiple swap operations that 

exchange the parent node with its child in case the heap order is violated. The swap 

operations are repeated up or down the heap until the order is restored. Therefore, 

removing the root node will be of O(log n) since it just replaces the node with the last leaf 

in O(1) and then restores the heap order in O(log n). The worst case scenario is when all 

the nodes in the heap are having the minimum key. As a result, removeMin() operation 

complexity is of O(n log n). Finally, using the cell-location indexing scheme improves 

the complexity of add and arbitrary remove operations to O(log n). 

 

5.4 Binary Tree Implementation 

The other form for binary search data structures considered in this work is the 

binary search tree which  gives O(log n) search operation [48, 49]. In ordered to 

guarantee that search bound, the binary tree should be balanced, otherwise the bound will 

jump to O(n). One of the common balanced binary trees available in the literature is the 

AVL tree, named after its inventors Adelson-Vielskii and Landis [50], which gives  best 

O(log n) operations compared to other tree algorithms in event list implementations [51]. 
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Binary tree keeps all the nodes sorted in non-decreasing order from left to right which 

guarantees that left child of any parent has a key that is less than or equal to the key of its 

right child. Since the tree is fully sorted, different cells can be combined in one node if 

they have the same scheduled time as shown in Figure  5.5.  AVL tree is a height-

balanced tree. It keeps the difference in height between any two childs of a node less than 

or equal to one. The height of a node is the maximum among its two children’s heights. 

In a balanced AVL tree, add and remove operations may cause imbalance in the tree.  

The design of an AVL tree involves some rotation operations to restore balance after each 

add or remove operation. There are single rotate as well as double rotate operations 

which can be in the right or left direction depending on the imbalance situation. It was 

proved that these operations do not increase the O(log n) complexity of the add and 

remove operations [50]. 

 

ta3ta2

ta1

ta4 tan

i1,j1

in,jn

i6,j6

i7,j7

i3,j3

i4,j4

i2,j2

i5,j5

ta5 i8,j8
 

Figure  5.5: Balanced binary search tree. (ta4 < ta2 < ta1 < ta3 <tan) 
 

The implementation of AVL tree is usually done by defining the nodes as objects 

and each node has two nodes as right and left childs. The cell-location indexing scheme 
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cannot be introduced in this structure since there is no physical address for nodes as is the 

case in the array implementations. Instead, a cell-time indexing can be introduced to 

make the complexity of the arbitrary remove O(log n). Following that scheme, when a 

cell needs to be deleted, the index will give the scheduled time of that cell and then the 

structure uses the log n search operation to browse from the root to the node containing 

that cell. If that specific cell is the only one in that node, the node should be deleted and 

rotation operations might be needed in case this deletion caused an imbalance. If multiple 

cells exist in that node, then only that specific cell entry is required to be deleted and the 

balance is still ensured. However, the worst case scenario might occur when all N cells 

exist in one node. Then deleting a single node will require a search in the internal list of 

that node which will make the complexity of the arbitrary remove operation O(N). As a 

result, the complexity of the add operation will be also O(N) since it might remove a cell 

before rescheduling it.  In AVL tree, the minimum time value is always in the leftmost 

node. In order to get that values using getMin(), the algorithm requires O(log n) 

operations from the root to reach that minimum value and similarly for getMinList(). The 

removeMin() method includes the advanceTime(t) method which costs O(n) and hence 

the removeMin will be in O(n) as well.  

 

5.5 Analytical Comparison 

Table  5.1 summarizes all complexity measures (i.e. worst case scenario) of the 

event list structures considered above. These figures are characterized by type of 

operation, type of data structure, number of entries in the event list as well as whether an 
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indexing scheme is used or not. The fully sorted structures like the sorted array and the 

binary tree have different interpretations for entries. In these two structures, a list has two 

terminologies: records and nodes. Each node may contain more than one scheduled time 

record of the same time for different cells. The number of actual scheduled records is 

referred to as N which also represents the number of cells in the list while the number of 

the nodes in the list is n. On the other hand, unsorted array and binary heap structures 

have those numbers equal. 
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Unsorted array O(n) O(n) O(n) O(n) O(n) O(n) 
Indexed unsorted array O(1) O(1) O(n) O(n) O(n) O(n) 
Sorted array O(N) O(N) O(1) O(1) O(n) O(n) 
Indexed sorted array O(N) O(N) O(1) O(1) O(n) O(n) 
Binary heap O(n) O(n) O(1) O(n) O(n log n) O(n) 
Indexed binary heap O(log n) O(log n) O(1) O(n) O(n log n) O(n) 
AVL tree O(N) O(N) O(log n) O(log n) O(n) O(n) 
Indexed AVL tree O(N) O(N) O(log n) O(log n) O(n) O(n) 

Table  5.1: Complexity comparison of all introduced structures.  
( n ≤ N in sorted structures, otherwise n = N ) 

 

The worst complexity in the table is for the binary heap in removeMin() operation. 

That was estimated for the number of iterations required by the structure when all the n 

records in the heap are having the minimum value. The first one will be removed in 

O(log n), then the others will be in O(log n-1), O(log n-2) …etc which is summed up as 

follows:  
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However, that is too far upper bound for the operation since that worst case is extremely 

rare in discrete event models and the algorithm might work usually close to the O(log n) 

lower bound. Therefore, that figure cannot be used to reject the idea of using binary 

heaps. On the other hand, the last two operations involve O(n) complexity inherited form 

the advanceTime() which is included also in the removeMin() operation. That is a tight 

bound which means that the operation requires exactly n iterations. In those operations, 

the advantage will be for the sorted structures in case n<N since the complexity in the 

unsorted ones is O(n)=O(N). 

Sorted array and binary heap structures outperformed all other structures in the 

getMin() operation and their runner up is the binary tree. Since sorted array has the list of 

the cells with minimum time in the last array location, the getMinList() operation requires 

O(1) operation to extract that list as an object which makes it superior in complexity to all 

other structures. However, these two operations are not as frequently used as the add and 

remove operations in simulating a large scale cellular models. Add and arbitrary remove 

operations are having the same complexity in each row since any add operation might 

include a remove operation. The remove operation is required to avoid redundancy of 

cells in the list. In case a cell is requested to be scheduled, the list will check if the cell 

already exists in the list and, if exists, remove it and then add its new schedule. Generally 

speaking, complexity of add operation can be improved by making sure that a cell does 

not exist before its new reschedule. This will reduce the complexity of the add operation 
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as an independent operation but on the other hand requires another remove operation 

before the add operation which results in the same overall complexity.  

As mentioned in 3.3.1, elapsed time was decided not to be implemented in the 

event list. However, we include analyzing the getHistoy(i,j) operation here to justify the 

previously made decision. This method can be designed in two ways. The first one is by 

including the history as a value in the scheduled record. The other one is by having an 

independent 2-D array inside the list that can store elapsed time for all cells possible in 

the model which is indexed based on the cell IDs. The second one is identical to the 

decided solution since a similar history array is used in the model and its complexity will 

be O(1) for accessing the array value. In the first way, indexed unsorted structures also 

give a complexity of O(1) while the non-indexed unsorted structures gives O(n) and the 

sorted ones give O(N) regardless of the indexing. Therefore, the decision, in 3.3.1, is 

justified by stating that the array method gives O(1) complexity with the advantage that 

outside the event list the array will count the elapsed time for all cells including the 

passive ones which are not considered inside the event list. 

The average time spent in the event list in each iteration can be calculated as 

follows: atatrmrmmlmlmmrraa ntntntntntntAvgTime +++++= , where ta, tr, tm, tml, trm, 

and tat are the average execution time for a single call to the operations add, remove, 

getMin, getMinList, removeMinList, and advanceTime respectively. Similarly, na, nr, nm, 

nml, nrm, and nat are the average counts of these operations per iteration. Therefore, the 

total execution time spent in handling the event list depends on the distribution of the 

operation calls in addition to the execution time of each operation that was discussed 
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above. This distribution is the major decision factor on selecting the best implementation 

which is an application dependent. The atomic model design of cellular space models that 

was formulated in chapter 3 allows the models to call each of the getMin, getMinList, and 

removeMinList operations once per iteration which end up with an average execution 

time atatrmmlmrraa nttttntntAvgTime +++++= . Since the advanceTime operation has 

the tight complexity of O(n) in all implementations, it is not a decision factor in selecting 

the minimum total execution time. Therefore, the relative average time that we can use to 

compare implementations will be )( rmmlmrraa tttntnt ++++  in which the decision 

factor of calls distribution only depends on the average numbers of calling add and 

remove operations (na and nr). 

 

Operation Game of Life 
Model 

Quantized 
Landslide Model 

add 6918 6876 
remove 21968 4551 
getMin 100 100 
getMinList 100 100 
removeMin 100 100 
advanceTime 0 0 

Table  5.2: Operation counts in two models for 100 iterations. 
 

Add and remove operations are the most frequently called operations in large 

scale cellular space models since they contain a huge number of cells that are required to 

be added or removed from the list. Table  5.2 gives a quick insight on operation counts in 

running two models that represent discrete time and discrete event approaches. The run 

was done for a 32×32 cell space that was entirely encapsulated in an atomic model which 
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does not receive external messages and this explains not calling the advanceTime 

operation explicitly. The add and remove operations were shown to be the most frequent 

compared to the others. Therefore, the structures with the fastest add and remove 

operations, will most likely be the best candidates for event list implementation in our 

system. In Table  5.1, it is clear that the structure which satisfies this is the indexed 

unsorted array structure and its runner up is the indexed binary heap.  

 

5.6 Experimental Analysis 

Table  5.1 shows that the indexed scheme gave an advantage over the non-indexed 

implementations in add and remove operations. In this section, we perform experimental 

analysis for those indexed structures. Four event lists were implemented, one for each of 

the above mentioned structures. These experiments were designed to give a quick guide 

in making a decision on which structure to select for implementation. All runs were done 

on a windows XP machine having a Pentium 4 processor with 3.0 GHz speed and 1 GB 

RAM. The execution time was measured using the Java facility of retrieving the system 

time in milliseconds. In the add operation, the time was measured for all add operations 

done for an empty list to make it reach the specified size and this is done backward for 

the remove operation. All other operation’s time was measured for one method call at 

that list specified size. 

The first part targeted the large scale list implementations. In this part, lists of 

10000, 50000 and 100000 records were run to compare the execution time for each 

operation. Tables 5.3 through 5.5 list the results of the three runs done in this part. The 
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table records with zero seconds means that the execution time was less than 0.5 

milliseconds. The three tables gave an indication that as the number of records gets 

extremely large, the unsorted array and the binary heap become advantageous. The worst 

performance was for the AVL tree which when it gets very large, it has very large objects 

to deal with. This requires huge memory allocation and if not available, more time will be 

wasted in memory misses and caching. Another reason is that balancing the tree in add 

operations seems to be very costly since they are much worse than other operations. As a 

conclusion of this part, keeping the list fully sorted is very costly in case of the add 

operation. Since large scale cell spaces are targeted in this work, the AVL and the sorted 

array might not be of interest due to their poor performance in very large scale lists. 
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Unsorted array 0.02 0 0 0 0.02 0.02 
Sorted array 0.09 0.02 0 0 0 0.06 
Binary heap 0.05 0.02 0 0 0 0.02 

AVL tree 0.61 0 0 0 0.02 0.02 
Table  5.3: Execution time in seconds for lists with 10000 records. 
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Unsorted array 0.05 0 0 0.03 0.05 0.05 
Sorted array 2.22 0.02 0 0 0.05 0.84 
Binary heap 0.2 0.05 0 0.03 0.03 0.05 

AVL tree 327.92 0.02 0 0 0.97 0.92 
Table  5.4: Execution time in seconds for lists with 50000 records. 
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Unsorted array 0.08 0.02 0 0.16 0.09 0.08 
Sorted array 11.53 0.03 0 0 0.17 3.45 
Binary heap 0.42 0.09 0 0.14 0.06 0.09 

AVL tree 2821.39 0.02 0 0 3.92 3.73 
Table  5.5: Execution time in seconds for lists with 100000 records. 

 

The second part of the experiments targeted the two structures qualified from the 

first part. In that part, we can conclude that in large scale lists, the unsorted array 

structure outperformed the binary heap in the add and remove operations while the 

opposite is true in the getMinList and the removeMin operations. The second part targeted 

the small size lists with unsorted array and binary heap structures. Two experiments were 

run: (a) records having big number of time redundancies; (b) with less or almost no 

redundancies. The aim behind this is to test both lists in two extremes. These tests might 

differentiate between the two lists on a performance basis. Tables 5.6 through 5.10 show 
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the execution times of all operations in microseconds for both structures in experiments a 

as well as b. A clear advantage of using the unsorted array in the remove operation while 

in the add and the removeMin operations the difference is negligible. On the other hand, 

the binary heap outperformed the array in the getMin and the getMinList operations. 

 

 n=10 n=100 n=1000 
Unsorted Array-a 9 44 389 

Binary Heap-a 13 45 394 
Unsorted Array-b 11 45 405 

Binary Heap-b 11 45 409 
Table  5.6: Execution time in micro seconds in add operation. 

 

 

 n=10 n=100 n=1000 
Unsorted Array-a 2 19 209 

Binary Heap-a 18 138 1998 
Unsorted Array-b 3 19 208 

Binary Heap-b 22 141 2004 
Table  5.7: Execution time in micro seconds in remove operation. 

 

 
 n=10 n=100 n=1000 

Unsorted Array-a 3 5 42 
Binary Heap-a 0 0 0 

Unsorted Array-b 2 3 33 
Binary Heap-b 0 0 0 

Table  5.8: Execution time in micro seconds in getMin operation. 
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 n=10 n=100 n=1000 
Unsorted Array-a 6 16 136 

Binary Heap-a 5 5 20 
Unsorted Array-b 3 11 114 

Binary Heap-b 2 2 2 
Table  5.9: Execution time in micro seconds in getMinList operation. 

 

 n=10 n=100 n=1000 
Unsorted Array-a 3 5 9 

Binary Heap-a 3 6 11 
Unsorted Array-b 13 42 411 

Binary Heap-b 13 41 386 
Table  5.10: Execution time in micro seconds in removeMin operation. 

 

5.7 Concluding Remarks 

As discussed in the above sections, each of the event list’s implementation 

strategies has its own strengths and weaknesses. Some of them perform well in small 

sized lists and worse in large scale ones. Others might perform well in all list sizes in 

some operations while they are not as good as in other operations. Selecting the best 

among them is application dependent. The first decision factor is if the list size is a major 

concern for that specific application. Then, a decision can be made based on the 

distribution of operations in the application, which means how frequently each of the list 

operations will be used during the execution.  

In this work, the system under design which is in need of event list implementation 

is an atomic cell space DEVS model. The scalability issue is one of the major design 

issues in cell space models. Therefore, event lists in these models must be among the 
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ones that perform very well in handling a huge number of records. This is why the sorted 

array and the binary tree implementations were skipped in the second part of the 

experimental analysis. Experiments in that part show that the unsorted array is good in 

the add and remove operations while the binary heap is good in the getMin and 

getMinList operations. The cell space atomic DEVS model, as formulated in section 3.3, 

deals with the event list mainly inside the internal transition function. The operation 

advanceTime is the only one called in the external transition function and it is only called 

once when receiving external messages. In each internal transition, each of the getMin, 

getMinList and removeMin operations is called exactly once while the add and remove 

calls depends on the number of active cells in the space. Therefore, in very large scale 

cell spaces the number of active cells will be very high which will result in huge numbers 

of add/remove calls compared to other calls and this will give advantage to the structure 

with extremely high add and remove operations. The only structure with very fast O(1) 

add and remove operations is the indexed unsorted array structure and this is the one 

selected to be implemented in our system. However, in case another structure shows 

better performance, it can replace the existing one without modifying the internal system 

given that the new list should be implemented following the design requirements listed at 

the beginning of this chapter. 
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CHAPTER 6 : TESTING AND VERIFICATION 

 

This chapter is devoted to describing the procedures and the proposed methods 

followed to test, validate and verify our modeling tool as well as its generated models. 

The major test intended in this work is to prove that the generated models, based on the 

new proposed formalism, are identical to the conventional cellular DEVS models. Before 

getting into that concluding test, the implemented modeling tool should go through some 

classical software testing techniques in order to guarantee its correctness. In addition, the 

generated models should go through some code tests and then model validation and 

verification procedures. 

 

6.1 A Quick Overview on Software Testing Techniques 

Most of the software testing literatures [52-58] present testing as an integrated 

process within the overall software development process. The V-model is frequently 

used, e.g. [53, 54], to explain the need of testing for each phase of the software 

development process. Since 100% error-coverage is impossible in testing, a large number 

of different techniques were introduced to uncover the largest possible percentage of the 

errors. Many efforts (for example see [53, 54, 56]) were done to gather and classify the 

most common techniques available for testing practitioners.   

Generally speaking, testing techniques can be static or dynamic. Static techniques 

involve the ones that can be done without running the System Under Test (SUT). This 

can include the design reviews, checking manuals, as well as testing hardware and/or 
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software requirements to run the SUT. On the other hand, dynamic techniques, which can 

be implicit or explicit, are used while running the SUT. The most common type of testing 

is the explicit dynamic techniques that run test cases to check if the SUT produced the 

expected results for each case [59]. Test cases can be designed in different levels of the 

software development namely the unit testing, integration testing, system testing, and 

acceptance testing levels. The approaches used in designing test cases can be of two 

types: black box testing or white box testing. In contrast to the white box approaches, 

black box approaches are designed with no knowledge regarding the internal design of 

the box (i.e. SUT). The gray box approach was introduced in [54], which assumes a prior 

knowledge of the implementation but the box is then closed in order to design more 

effective black box test cases. The challenge that every designer will face is to determine 

the smallest number of test cases that can be run to check the correctness of the largest 

number of system states as covering all states and paths is impossible [56].  

 

6.2 A Quick Overview on Simulation Model Validation and Verification 

The most important questions that a model designer should answer after developing 

a model are: is the model correct?, and is that developed model the right one? Usually, 

answering the first question is referred to as verification while to the other one is 

validation. Similar definitions can be found in the literature with different details and 

constraints [6, 60-62]. Once a model is built, it has to be validated in order to check if it is 

generating the intended system behavior based on the given conditions. This is done 

through comparing the input-output transformation of the model to the system’s input-
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output transformation. On the other hand, verification is the process of checking how 

accurately the model represents the conceptual model, which is a transformation 

equivalency check. Figure  6.1 overviews the model development life cycle and explains 

the validation and verification relations. Verification and validation techniques are 

overviewed and classified in [60] as informal, static, dynamic, symbolic, constraint, and 

formal techniques. 

 
Figure  6.1: Simplified modeling process. Taken from [61] 

 

6.3 Validation and Verification of DEVS Models 

According to [6], verification in DEVS framework is to check if the simulator is in 

error while validation is to check if the model is in error. Two general approaches of 

simulator verification were mentioned: the formal proof of correctness, and the extensive 
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simulator testing. The second one is the most attractive one for researchers since 

complete formal proofs are absent. There are very few recent efforts done to obtain 

partial mathematical proofs with some constraints [63, 64]. Similarly, in validating DEVS 

models, the most attractive techniques are the simulation based ones. Among them, the 

most common one is the experimental frame strategy (i.e. generator/transducer approach) 

[6, 65]. In this approach, the model is treated as a black box that is tested using an 

experimental frame. The frame includes a generator that generates inputs to the model 

and provides the transducer with the output values it should expect from the model. The 

transducer then compares the outputs generated by the model with the expected values 

and validates the model accordingly. Based on the generator/transducer approach, [66] 

presented an automated DEVS model verification process which is essential in reducing 

the time and cost of testing. However, that implemented approach does not support 

verifying models that might change states in zero time. In this work we propose an 

extension to that work in order to support all DEVS models. 

 

6.4 Testing the Cellular DEVS Specification Unit 

The main unit in the structured design we presented in Figure 4.2 is the cellular 

DEVS specification unit. It contains all the generic classes and methods required by any 

cellular DEVS model that will be generated. Testing this unit is essential since it is 

responsible for guaranteeing the anticipated high performance as well as the correctness 

of this work. This unit is divided into different classes and interfaces as shown in Figure 

4.3. The main classes that we are interested in testing are: cell, block, cellSpace, and 
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blockSpace classes. The inheritance implemented for these classes allows us to test all 

methods in parent classes. By testing all classes, constructors and methods, we guarantee 

that the unit precisely constructs and initializes the models. This involves adding and 

labeling input and output ports as well as coupling all internal and boundary ports in case 

of the cellSpace or blockSpace Classes. 

 

6.4.1 Testing cell and block Classes 

These classes were intentionally designed to have no behavior since it is usually 

specified in the generated models that extend these classes. Therefore, the designed test 

cases are employed to test the constructors for correct initialization and check the 

correctness of the methods. Two test cases were designed to check the empty as well as 

the non-empty constructors. The methods in the cell as well as the block classes can be 

classified into two different types. The first one is the methods that return values while 

the other one include the methods that do not return values but change the class state. 

Examples of the first type includes: portDir, oppositeDir, userNeighbor. Assertion like 

methods, which are referred to as black box methods in software testing, were used to 

design the test cases which check if a method returns the correct values according to the 

given inputs and conditions.  

On the other hand, the addPorts methods cannot be tested using the assertion. 

Instead, test cases were designed to check if the model state changes correctly. After 

calling the methods that add ports, test cases should check if the correct number of the 

ports were added to the cell or block. In addition, they should check if the port names fall 
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correctly with in the labeling scheme followed in chapter 4. This was done with the help 

of regular expressions in Java. Table  6.1 and Table  6.2 list all the regular expressions 

used in testing the generated port labels for cells and blocks. In addition, the tables list the 

number factors that are used by the test cases in calculating the expected number of ports 

to be added to the class. For example, if an N×M block (with both N and M greater than 

2) has 3 single ports and 2 multi-ports with the Moore neighboring rule, the expected 

total number of ports is 3×(2N+2M-4) + 2×(6N+6M-4). Table  6.2 shows more figures in 

the case of single ports in the block. This reflects more details on how the addressing was 

handled to support one dimensional blocks as well as the blocks that only have one cell. 

 Regular Expression Ports Num 
Single port [^_]+ 1 
Neumann multi-port [^_]+_(N|S|W|E)$ 4 
Hex multi-port [^_]+_(W|E|NW|SW|NE|SE)$ 6 
Moore multi-port [^_]+_(N|S|W|E|NW|SW|NE|SE)$ 8 

Table  6.1: Regular expressions and ports number factor in cell test. 
 

 Regular Expression Ports Num 
Single port – 1 cell [^_]+ 1 
Single port – vertical 1D [^_]+_(S|N|([0-9]+))$ N 
Single port – horizontal 1D [^_]+_(E|W|([0-9]+))$ M 
Single port – 2D [^_]+_(SE|SW|NW|NE|((N|S|W|E)_([0-9]+)))$ 2N+2M-4 
Neumann multi-port [^_]+_((N|S|W|E)_([0-9]+))$ 2N+2M 
Hex multi-port [^_]+_((N|S|W|E)_([0-9]+)_(W|E|NW|SW|NE|SE))$ 4N+4M-2 
Moore multi-port [^_]+_((N|S|W|E)_([0-9]+)_(N|S|W|E|NW|SW|NE|SE))$ 6N+6M-4 

Table  6.2: Regular expressions and ports number factor in block test. 
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6.4.2 Testing cellSpace and blockSpace Classes 

In testing the cellSpace and blockSpace classes, similar test cases were designed for 

the constructor test and addPorts methods. Regular expressions format and port number 

calculations follow in Table  6.2 in testing the addPorts method. The most critical 

methods that play essential roles in the coupled space behavior are the ports coupling 

methods. These were divided into two types: internal couplings and boundary couplings. 

Internal methods generate the necessary coupling between cells so that they can 

communicate with their neighboring cells. The boundary coupling methods make the 

coupling of the boundary cell to the space ports so that they can communicate with cells 

in other neighboring spaces. Getting the coupling list in a test case is made possible using 

the getCouprel method in DEVSJAVA. The test cases were designed to check if the 

number of couplings generated is correct or not. There are many formulas that were 

obtained for the test cases to calculate these numbers based on the number of input/output 

ports, port types, and neighboring rule followed. In addition, the test cases are responsible 

for checking if the port names in the couplings are correct and following the specific port 

labeling using the regular expressions of Table  6.1 and Table  6.2.  

 

6.5 Testing the Generated Models 

This is an essential test that is required to be run every time a new model is 

generated by our development tool. Seeking user convenience as well as testing time 

reduction, the test cases were designed with support of automation. There are a number of 

classes that are designed and made available for the user to call and test the generated 
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model. These tests include two types: generated code test and atomic cell DEVS 

verification. 

 

6.5.1 Generated Code Test 

This is a quick test that checks that the automatic code generator works correctly. 

It makes sure that the generated code is correct Java source code, and a complete DEVS 

cell space model. This is done through Java reflection to check that the code has the 

correct classes, constructors, methods, and variables according to the design of the code 

generator.  

The test starts by searching for the generated model classes using their given 

names.  It returns an exception if the class cannot be found. This either means that no 

such model was generated with those names, or the model code has some syntax errors 

and its class file was not generated. The first procedure, which is done by the command 

Class.forName(“UnitName”), makes sure that the generated code is correct Java code. 

The second one, presented in the first block of Figure  6.2, makes sure that the generated 

classes are cellular DEVS models that are extending the generic classes in the cellular 

DEVS specification unit. This is done by the reflection method getSuperClass() which 

returns the parent class of the class under test. The next two blocks check that the 

generated classes have the correct number of variables and constructors using the 

methods getDeclaredFields() and getDeclaredConstructors().  The last one checks the 

number of methods generated in the model and makes sure that it has all principal 

methods required for a standard cellular DEVS model. 
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 Class cellClass = Class.forName(unitName);

Constructor[] cons=cellClass.getDeclaredConstructors();

if (cons.length!=2) return false;

Method[] meth=cellClass.getDeclaredMethods();

if (meth.length<8) {return false;}
else {
   check=false;

   for (int i=0; i<meth.length; i++){
      if (meth[i].getName().equals("deltext")) check=true;

   }
   if (!check) return false;
   check=false;
   for (int i=0; i<meth.length; i++){
      if (meth[i].getName().equals("deltint")) check=true;
   }
   if (!check) return false;
   check=false;
   .
   .
}

Field[] fld=cellClass.getDeclaredFields();

if (fld.length<2) return false;

Class sup=cellClass.getSuperclass();

if (!sup.getName().equals("newCellDEVS.cell")        
&& !sup.getName().equals("newCellDEVS.block")) return false;

 
Figure  6.2: Examples of using Java reflection in testing unit class. 

 

6.5.2 Atomic Cell DEVS Verification 

The above test does not guarantee that the model is right. To do so, it should be 

run and compared to some verification data provided by the model developer. [66] 

presented an automatic verification framework for cellular DEVS models which is 

similar to the experimental frame idea presented in [6]. Testing the cell as an independent 

unit was proposed to verify the cell behavior according to the given verification data. 

This kind of test is referred to as a unit test in software literature [53-55].  It follows the 
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black box idea by having a generator that inputs data to the cell and the output of the cell 

is then monitored by a transducer which checks those values with the expected ones 

provided by the generator. Based on that, we introduced an automated way of verifying 

generated cells in our development tool as shown in Figure  6.3.  

Cell
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Time Port Value Direction
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Figure  6.3: Cell verification experimental frame. 

 

The verification class, represented by the white box in Figure  6.3, was designed as 

a generic DEVS coupled model that can be used by any developer. It supports an 

automated construction of the generator and the transducer based on the provided cell 

under test (CUT). This is done by recognizing the list of input/output ports of CUT and 

then generating the list of ports for the generator as well as the transducer. If a cell has M 

input ports and N output ports, the generator should have M+N output ports and the 

transducer will have 2N input ports. The couplings are done as shown in Figure  6.3.  

The verification data is read by the verification framework from an external file 

which should be in the format shown the figure. Each record should have a time stamp 
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that specifies when the event will occur, which port will handle the event, the testing 

value, and the direction of flow in case of multi-ports. The data is processed to produce 

the corresponding port labeling (section 4.3.2), which is always kept transparent to the 

user, and to classify the type of data to be used for each port. Then it is fed to the 

generator to start the verification process. A record that includes an input port name 

indicates that the test data should be sent to the CUT while the one with output ports is 

interpreted as the expected output value and is sent to the transducer. The generator is 

held responsible to generate the verification data to the CUT as well as the transducer. 

The transducer, which can be seen as a comparator, checks if the CUT generated the 

expected values received from the generator. 

The above proposed cell verification framework works fine in a wide variety of 

cell DEVS models especially the cellular automata and the discrete time models. 

Unfortunately, it cannot be successful in all cellular DEVS models, particularly the ones 

that allow cells to do multiple zero time state transitions. This is because the generator 

usually sends the expected events to the transducer upon reaching their specified time. 

Any output generated later in zero time will be considered as incorrect output generated 

by the cell and hence it erroneously fails the test. A new special generator is proposed to 

overcome this problem. Figure  6.4 shows the new proposed framework that uses a special 

generator. The whole idea is the same as above except that the generator is enhanced to 

be more intelligent and produce the expected output values correctly even with zero time 

state transitions. One more entry is added to the verification data to indicate the cycle in 

which the generator should produce that test value. In this case, the test is not considered 
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a black box approach anymore since the cycle number requires prior knowledge of the 

internal design of the cell. 
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Figure  6.4: Cell verification experimental frame with special generator. 

 

Verifying cells guarantees that each cell generates the required behavior if it runs 

independently. As a result, the correctness of the cells integration inside one cell space 

can be ensured if and only if all port couplings are correct. This can be guaranteed by the 

coupling test introduced in section 6.4.2. This does not apply for block verification. The 

cell rules of a block can be tested in a similar way to cell verification. In this case, a block 

should include one cell and then it is treated as a regular cell and fed to the verification 

framework to be tested. Verifying a block with multiple cells will follow the verification 

method in the next section. 
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6.6 Verifying the Approach 

The multi-layer approach presented in this work is based on generating an 

equivalent atomic model of the conventional coupled cell space approaches. Before 

running experiments and making conclusions, the new generated atomic models must be 

made identical to the original coupled DEVS implementation. In this work, the 

simulation verification method is followed in order to dynamically check the equivalency 

of the two approaches. Figure  6.5 illustrates the idea of dynamically comparing 

simulation runs of two systems. A DEVS atomic model is employed to work as a 

comparator that monitors the state trajectories generated by both systems and generates a 

fail report if they are not equivalent. The report should include the non-equivalent values 

generated as well as their time. If no fail report is generated and the verification run 

comes to an end, the two systems can be declared identical. In case of non-terminating 

simulations, the larger number of iterations employed, more is the confidence that will be 

obtained in the conclusions. 

Comparator

cellcellcell

cellcellcell

cellcellcell

Block Space Cell Space

out_data
out_data

 
Figure  6.5: Simulation approach of equivalency verification. 
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6.7 Applying All Tests 

All the tests explained in the above sections were applied to the new cellular DEVS 

development tool. The cellular DEVS specification unit tests are the only types of tests 

that are model independent. Those tests can be run without making a full model 

development phase. It was run for large number of inputs (e.g. common and extreme 

cases) to make sure that all classes and methods perform correctly. Figure  6.6 and Figure 

 6.7 show sections of the specification unit test report. The report lists all the results of test 

instances and concludes with the overall unit result at the end. The second part of the 

tests is the generated code tests and verification runs that require selecting some models 

to be developed and run. Three test models were selected for testing and verification. The 

first one is the two dimensional game of life which is know for its popularity and 

simplicity. The second one is the simple 2-D wall following robot which is popular in 

artificial intelligence texts (e.g. [67]). The last one is the basic finite difference numerical 

solution of a one dimensional heat equation [68].  

================================================
Testing the cell space specification unit started...
================================================

1.   Testing  the cell class.
        constructors :   Pass
        protDirM method :   Pass
        oppositeDir method :   Pass
        userNeighbor methods :   Pass
            addSinglePorts :   Pass
            addNeumannPorts :   Pass
            addHexPorts :   Pass
            addMoorePorts :   Pass
            addAllPorts :   Pass
        addPorts methods :   Pass
     Cell Test Result: Pass
----------------------------------

 
Figure  6.6: Beginning of specification unit test result. 
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4.   Testing  the block space class.
            empty constructor :   Pass
            non-empty constructor :   Pass
        constructors :   Pass
            addSinglePorts :   Pass
            addNeumannPorts :   Pass
            addHexPorts :   Pass
            addMoorePorts :   Pass
            addAllPorts :   Pass
        addPorts methods :   Pass
        Boundary Couplings methods :   Pass
        Internal Couplings methods :   Pass
     BLock Space Test Result: Pass
----------------------------------

Test Result of the cell DEVS specification unit:   Pass
==============================================

 
Figure  6.7: End of specification unit test. 

 

These three models span wide varieties of variable types (i.e. state vs. flow 

variables), data types, boundary values, as well as discrete time versus quantization based 

approaches. The wall following robot model is selected to show the support of our 

environment for modeling propagation and flows between cells. It is also considered as 

an extreme case model test since all cell activities are mostly at the boundaries. It uses the 

Neumann neighboring rules where the game of life uses the Moore neighboring rule. The 

heat equation solution employs the quantization approach which is representing a large 

number of applications that are based on differential as well as partial differential 

equations. This is considered also as an extreme case test since the environment was 

designed originally for two dimensional cell spaces. Passing the tests will conclude that 

the environment is capable of developing 1-D cell spaces correctly as well. 

All testing methods were applied to these three test models. First of all, the 

development environment was used to produce the models through the GUI. Then, the 

generated models were run through the Java reflection test in order to ensure the 
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correctness of the code. This was done by writing a simple code to call the code testing 

class (section 6.5.1) and send it the model name to be tested. A similar approach will be 

used in calling the cell verification test. However, instead of sending the model name, the 

user is required to construct and initiate the cell and send it to the verifyCell class 

provided with the verification data file name. By running the main method in that class, 

the verification will start and check that the cell behavior is correct according to what the 

user intended to design. One further step is done here by verifying the block rules as well. 

This can be done by initiating a block that contains one cell and verifies it with the 

normal cell verification procedures. The last test is the equivalency verification of the 

block space to the cell space. All possible blocking (i.e. cell encapsulation) setups were 

constructed and verified to be equivalent to the original cell space models.  

Figures 6.8 through 6.10 show some examples of the test reports generated when 

verifying cells, blocks, and spaces. Figure  6.8 lists two cell verification runs. The first 

one is for a game of life cell that passed the verification test since the simulation 

terminated with no errors output. The other one is for a non-passing block that contains 

one game of life cell. The output errors stated that according to the verification data, the 

cell generated wrong values at time 5.0 and did not produce an output at time 8.0. This 

kind of information guides the developer in debugging the generated model by looking 

for those rules and places that might be the cause of those specific errors. 
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a.  cell verification
     ---Now, verifying the unit atomic model..
     Terminated Normally at ITERATION 29 ,time: Infinity
     ---If no error printed above this line, the unit is verified 

b.  block verification
     ---Now, verifying the unit atomic model..
      Time: 5.0 Outport [outLife]  produced 1, expected value is: 2
      Time: 8.0 Outport [outLife]  produced  0  , but not supposed to
     Terminated Normally at ITERATION 29 ,time: Infinity
     ---If no error printed above this line, the unit is verified 

 
Figure  6.8: An example of cell verification test report. 

 

Figure  6.9 and Figure  6.10 show reports on the equivalency verification of the 

approach for the heat equation model. The report should list any non-equivalency 

between the cell space and the block space. Figure  6.9 represents a fail report that 

concluded that the two cell spaces are not identical. In addition, it lists the unmatched 

values and the time of mismatch occurrence. On the other hand, Figure  6.10 illustrates a 

verification pass report for the wall following robot. Different blocking setups were 

tested and all verification runs terminated successfully with no single error. 

blocking: 1 , 1
Model-1[99][0]=280.0 Model-2[99][0]= 270.0 at time : 354.557
FAIL:  The two models did not pass the test. [They are not identical]
Model-1[99][0]=290.0 Model-2[99][0]= 280.0 at time : 374.493
FAIL:  The two models did not pass the test. [They are not identical]
Model-1[99][0]=300.0 Model-2[99][0]= 290.0 at time : 395.379
FAIL:  The two models did not pass the test. [They are not identical]
Model-1[99][0]=310.0 Model-2[99][0]= 300.0 at time : 417.309
FAIL:  The two models did not pass the test. [They are not identical]

 
Figure  6.9: An example of non-identical spaces. 

 

blocking: 1 , 1
Terminated Normally at ITERATION 1001 ,time: 200.0
 blocking: 1 , 2
Terminated Normally at ITERATION 1001 ,time: 200.0
 blocking: 1 , 4
Terminated Normally at ITERATION 1001 ,time: 200.0

 
Figure  6.10: An example of identical spaces. 
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CHAPTER 7 : LANDSLIDE APPLICATION MODELS 

 

The work presented in this chapter illustrates the capability of developing complex 

natural models using the new environment. Different landslide models were developed to 

show the support of the environment to different modeling abstractions and requirements 

as well as the expansion possibility to make it more generic. At the end, the simulation 

runs of those models were used to justify the speed up gained when using the new 

formalism compared to the conventional cellular DEVS implementation. 

 

7.1 Overview on Landslides and the Need for Their Models 

Landslides are among the major natural hazards that occur frequently on earth. In 

addition to the loss of lives and infrastructure damages, they have a great impact on the 

land formation and evolution. Research studies in this area include: detecting, classifying, 

monitoring, analyzing, and predicting landslides. The ultimate goal of modeling 

landslides is the prediction which helps in saving lives and reducing damages. The 

complexity nature of such models as well as the large list of involved factors made it 

extremely hard to agree on one universal model. Many models were proposed in the 

literature [69-79] spanning different strategies and landslide factors. One of the major 

factors triggering landslides is the slope failure which is caused by other factors like 

rainfalls, earthquakes, and soil mechanics. 

Landslide models that are based on slope failure (e.g. [70, 75-77]) calculate the 

local slope of a land at each section and decide on its criticality. On slope failure 
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criticality, a land section triggers a local slide to get back to a non-critical state based on 

the self-organized criticality [74, 80-83] nature of the landslides. A local slope failure in a 

land section might cause failures in other sections and the integration of all failures forms 

a global landslide. The differences in landslide models were also extended into the mass 

flow equations. Different researchers derived different equations that generate the debris 

flow behavior during a landslide. The complexity and non-linearity of these partial 

differential equations require solving them using numerical methods. These approaches 

involve discretizing the land surface spatially into two or three dimensions. The most 

attractive way in the last decade is by using cellular automata in simulating natural 

physical systems (e.g. [37, 38, 70, 71, 77, 84, 84-87]). 

 

7.2 Cellular DEVS Models for Landslides 

The cellular space modeling approach divides space into discrete cells where local 

computations held in each cell are based on its own as well as its neighbor’s states. The 

neighboring rules are obtained based on the lattice setup which, in our environment, 

might follow Neumann, Moore, or hexagonal neighboring rules as shown in Figure 4.4. 

Landslide models presented in this chapter are all following hexagonal neighboring rules 

in which each cell is represented as a hexagon that is surrounded with six neighboring 

hexagons which are numbered according to Figure 4.5c. The selected landslide models 

are based on the models derived in [70] and [77]. The first one is a pure cellular automata 

model since the time plays no role in all equations while the other one is a discrete time 

cellular automata model that is solving partial differential equations. Two more models 
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were introduced based on the second approach. The third one is derived by using the 

quantization scheme that employs discrete event rather than discrete time simulation. The 

last one is a rate-based predictive quantized landslide model. 

 

7.3 Non-Timed Cellular Automata Landslide Model 

The landslide model presented in [70] is a pure cellular automata model that does 

not account for time in its flow calculations. The landscape is divided into hexagonal 

cells. Each one has its own state variables, parameters as well as transition function. The 

state variables includes: cell altitude (i.e. elevation of bedrock + depth of soil cover), 

thickness of landslide debris, depth of erodable soil cover, and debris outflow to all six 

neighbors. Figure  7.1 shows more variables that represent the cell state during 

calculations like the kinetic head hk, cell height (h = bedrock elevation + erodable soil + 

thickness of landslide debris), and the overall run-up height r. Since all cells in a specific 

landslide application have fixed area A, the land mass movements are represented using 

heights instead of volume. 

A

Z=0

m

r
h

hk

 
Figure  7.1: A representation of hexagonal land cell that accounts for energy using the 

kinetic head. 
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The cell transition function is composed of four elementary processes: calculating 

debris outflows, updating local landslide debris thickness and energy, mobilization 

triggering and effect, and energy loss calculations. By the end of each process all cells 

must be synchronized and updated with the new neighboring states. Therefore, the 

transition function should be implemented using four synchronized phases. In the first 

phase, the height is virtually incremented to r in order to account for run-up effects and 

then the slope angles in all directions are calculated. To minimize the critical directions, 

average flows are calculated and then an iterative minimization algorithm is employed to 

eliminate directions with flows less than the average. In the second phase, all cells are 

updated with the new flows which also involve energy state update. Based on the new 

local energy value, the soil erosion in a cell is calculated in the third phase. This process 

is responsible of converting some parts of the bedrock into movable soil that might move 

with the current debris flow which might cause a change in the local cell energy. The last 

phase determines the energy loss that is caused by friction which is also represented by a 

reduction in the run-up height. For more detailed equations and explanations see [70]. 

 

7.4 Discrete Time Cellular Landslide Model 

Segre and Deangeli introduced a lattice independent cellular automata model of 

landslides in [77].  Instead of specifying all different directions of a cell based on the 

lattice setup, they came up with equations that are based on directional vectors and 

derivatives. The flow equations were solved using a discrete time step that is needed to be 
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calibrated for each specific application in addition to some other parameters. Unlike the 

previous model, this one does not account for energy and run-up effects. It is mostly 

about mass conservation in which the model specifies a criticality condition that is when 

met, a mass flow is initiated from the higher cell into its critical direction(s). When a flow 

passes into a cell, a continuation factor is added to the criticality condition that might 

trigger flow into previously non-critical direction(s). More details were given to the soil 

content that represent cell state. The state variables in this model involve the bedrock 

height as well as the movable soil content which is composed of five variables: gas, 

water, silt-clay, sand-gravel and boulders. The model calculates the flow rate for each of 

the five soil contents using the solid content density, concentration, friction angle, and 

slope vectors in each of the cell’s directions. Figure  7.2 lists the calculated 2-D 

directional vectors vJ
→

 that are originated at center cell (0,0). For simplicity, in our 

implementation, the slope vector is defined in one direction as )/)(,(),( dizvi vvJp ∆=
→→

 

rather than calculating the steepest descent vector between every two directions which by 

the end account for each direction twice. The slope vector calculation is illustrated in 

Figure  7.3 where the height difference in direction v is referred to by ∆zv(i) and the 

distance between centers of two cells is d. All other flow equations and parameters were 

used as is in [77]. 
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Figure  7.2: Directional vectors of cell neighbors ( vJ

→
) in hexagonal lattice. 
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Figure  7.3: Slope vector calculation. 

 

7.5 Discrete Event Cellular Landslide Model 

The use of discrete events, rather than fixed time steps, in simulation gives a 

significant speedup in many applications [6]. To convert the above discrete time model 

into discrete event one, a quantization scheme is needed to be employed. Instead of 

advancing cells to the next fixed time, each cell is required to calculate its own next time 

advance based on a specified quantum level. The main state variable that is of a great 

interest in simulating landslides is the height. When a cell becomes in critical state, it 

starts sending mass flows into its neighbor(s). The previous model calculates the mass to 
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be sent to all directions based on the time step. This model first calculates the rates of 

change in the internal content that are add up to form the rate of change in cell height. 

Then, defines the time step that makes the change in height exceeds the quantum level 

using the following equation: 

∑∑
=∆

v k
k viq

quantumt
),(

 

, where the flow rate for each of the mass contents k to direction v is:  

),(sin),( 3 vihQviq kk θρ=  

, given that ρ is the solid material density, θ is the slope angle, h is the cell height, and Qk 

is content flow constant. After defining the time step, all mass flows are calculated and 

sent to neighboring cells on the expiration of that calculated time step. One modification 

was done in the equation by raising h to the power 3 instead of 5 as in the paper. The 

original equation causes huge flow rates and requires the time steps to be in microseconds 

to run correctly. The modification was done to relax the huge computational power 

required and to correctly simulate the flows in terms of milliseconds.  

 

7.6 Rate-Based Predictive Quantized Landslide Model 

All the previous models might produce wrong cell decisions or instability during 

simulation. If a cell is found to be critical and starts mass flows to its neighbors, the flows 

should be stopped by the time the neighbors become non critical. This stopping rule is not 

modeled so far and the models counts on the size of the time step to be very small to 

avoid passing that point. In previous runs of some landslide models, it was found that the 
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time step must be extremely small to avoid incorrectness and instability which might 

degrade the simulation performance. In addition, the cells are not aware if the 

neighboring cells are receiving other mass flows from other cells which might cause the 

cell to mistakenly send flows also to those neighbors. As a result, that receiving cell 

might grow very fast until it becomes critical and send the flows back to originating cells. 

This causes a form of unrealistic and unstable runs like the example shown in Figure  7.4.   

 

 
Figure  7.4: An example of incorrectness and instability. 

 

In order to overcome all of these problems, an additional state variable should be 

introduced to the land slide model which represents the rate of change in cell height. In 

addition, some prediction rules (see Table  7.1) must be employed to let each cell predict 

its stopping points based on their heights and rates as well as the heights and rates of the 

neighboring cells. This rate-based quantized model is designed to be more accurate in 

representing landslide flows, but it requires more computing power. In addition, it 

introduces intelligent cells that send rate of flows to the neighbors instead of mass. Upon 

receiving these rates, cells calculate their overall rate of change and send it to all other 
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neighbors. Then, each cell uses the prediction rules to calculate its nearest time advance. 

There are some neighboring cells that might have the same rate of change and they can 

not predict their next time step. In that case, they just stay on the phase of mass flow till 

they get a timed update from other cells so that they can update their heights according to 

their rate and the time they reach. Therefore, this last landslide model contains intelligent, 

predictive and self-updated cells that carry out the landslide flows more correctly than the 

previous models. 

 Ratei > Ratej Ratei < Ratej  

Zi = Zj -∆z >= quantum 
∆z < 0 

 

∆z = 0  
Zi = Zj + quantum 

 
∆z > 0 

Zj = Zi 

Zj = Zi + quantum 

∆z >= quantum 

Table  7.1: Prediction rules. 
 

7.7 Models Development Experiences 

The cellular model development environment allows the automated code 

generation. When developing a cellular DEVS model, the GUI is used to define the states 

variables, flow variables, variable types, ports, ports types, port to variable mapping, and 

cell’s local transition function. In addition, the user can optionally enter the boundary 

conditions and any other helping function(s) that might be needed for the model. 
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Building the first model was done completely through the GUI except for the 

model parameters that were added to the beginning of the model code. In future work, the 

GUI can be easily extended to support this. Similarly, the other three models can be 

completely developed through the GUI and have their parameters added to the code. 

However, these models are using 3-D vectors in the flow calculations which are not yet 

supported as state variables in the environment. They can be either broken into three 

values that are supported by the environment and write the cell transition function 

accordingly or deal with them as objects that are added to the code of the generated 

model. The first option can be completely done through the GUI while it might degrade 

the simulation performance. On the other hand, the other option enhances the 

performance but requires the environment to be extended to support vectors in order to 

keep the code transparent to the user. 

The last model required a special treatment of the flow variables that is not yet 

implemented in the environment. The environment assumes the flow variables should be 

reset after sending the flows into the neighboring cells which is the case in most of the 

flow based cellular models. The rate-based landslide model requires these flows not to be 

reset since each cell will need it in next iterations to update its state. Since, in this model, 

flow variables must be treated the same way as treating state variables, the generated 

code should be modified to account for this. Future improvement to the environment in 

this regard can be done by making the user select how the flow variables should be 

treated. 
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7.8 Experimental Results 

The main purpose of the experiments was to show the speed up claimed to be 

achieved using the new approach and check the consistency of the practical measures to 

these theoretical claims. In addition to the landslide models, there are more models, not 

presented in this section, that show the significance of the approach presented in this 

dissertation (e.g. [11]). The landslide models were run using a 3.0 GHz Pentium 4 

machine with 1GB of RAM. All runs were done for 32×32 cell space where the used data 

is an approximated portion taken from Fig.8 in [70]. The results presented here are 

execution times in seconds for 100 simulation iterations of all landslide models presented 

in the previous sections that were implemented using the new developed environment. 

Different runs with different setups were made for analyzing the different alternatives as 

well as comparing the new approach to the conventional cellular DEVS approach.  

 

7.8.1 Modular vs. Non-Modular Approach 

One of the main goals of this dissertation is to formulate and implement the idea 

of converting modular coupled cellular DEVS models into non-modular atomic ones in 

order to gain speedup in simulation. The comparison, in our landslide model context, was 

done by implementing the models using the conventional cellular DEVS approach and 

contrasting them with the new implementation that encapsulates the entire cell space in a 

non-modular atomic model. Table  7.2 shows the execution time in both approaches for 

all landslide models in seconds. The speedups, shown in the fourth column, were 

calculated by dividing the execution time of the conventional approach over the time for 
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the new approach. The non-modular approach that is introduced in this work shows 

significant speedups in landslide models.  

 Modular Non-Modular Speedup 
Model-1 18 4 4.5 
Model-2 110 15 7.3 
Model-3 6 2 3 
Model-4 10 1 10 
Table  7.2: Execution and speedup of landslide models. 

 

The speedup was gained from two major sources. The first one is the simulator-

like enhancement in which the event list handler was optimized to efficiently manage the 

active cells. The other one is eliminating the inter-cell messages completely in the cell 

space model. Therefore, the speedup obtained reflects the percentage of average number 

of active cells per iteration to the total number of cells in the model (M×N), and the total 

number of inter-cell messages generated during simulation. Both of these factors are 

application and model dependent which explains the differences in speedup between all 

models. The more inter-cell messages present, more is the speedup that can be achieved 

from the first source. On the other hand, the larger the percentage of active cells the lesser 

is the speed up gained from the other source.  

( ) 






 ×
∝ messages

sactiveCellavg
NMspeedup ,  

The first two landslide models represent discrete fixed step simulation approach 

in which all cells are active in all iterations. This means that the source of speedup in 

these two models came only from the inter-cell messages elimination. The second model 

gained more speed up than the first one because of the very small time step in differential 
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equations that results in more landslide activities and hence more inter-cell messages. 

Speedup in the other two models is a result of both factors combined. The last model is 

the one that achieved the highest speed up among all models since it is heavily based on 

message passing because of the quantization and the rate-based prediction that results in 

very small time advances. In conclusion, the above speedup equation can be generalized 

to all cellular models using the new approach which model cell space applications as one 

atomic model. 

 

7.8.2 Using the New Implementation for Conventional Cellular Models 

 Despite the significant speedup achieved in the non-modular implementation of 

the landslide models, the new approach introduced some forms of overhead and extra 

memory requirements to the atomic model. Table  7.3 illustrates the overhead introduced 

to the atomic cell space when running each block that employs the event list handler to 

simulate a single cell. This overhead resulted from the fact that, in each single iteration of 

an active block, the cell should be added to the list, extracted from the list, and then the 

computation takes place while in the conventional cellular DEVS implementation, cells 

do the computation without the list overhead. In addition, the new block implementation 

requires more storage memory since all cell states and variables are stored in arrays. This 

explains the missing result in  Table  7.3 in which the machine ran out of memory to 

simulate that model which consists of 1024 blocks each having 18 (3×3) arrays. 

However, the full decomposition of cell space will result in a block that has 18 (34×34) 

arrays. The trade off between overhead, memory requirements, and speed up is in favor 
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of the approach of this dissertation in case the cell space is fully decomposed into one 

atomic model. 

 32×32 blocks 32×32 cells 

Model-1 20 18 

Model-2 114 110 

Model-3 7 6 

Model-4 - 10 
Table  7.3: Comparing block and cell implementation of 32×32 Cell space. 

 

7.8.3  Different Blocking Setting (Living with Messages) 

In addition to the event list overhead, results show computational overhead in the 

approach in some block settings. This overhead associated with the blocking setups that 

divide the space into blocks that are required to communicate with each other via 

messages. Table  7.4 shows the execution time of different blocking setup starting with all 

cells inside one block (block size is 32×32) and ending with the setup in which each 

block contains one cell (block size is 1×1). All other setups, in between, result in 

execution time that is worse than the conventional cellular DEVS approach. That means 

that the blocking scheme endures a huge overhead when it starts communicating with 

other blocks.  

Block size 32×32 16×16 8×8 4×4 2×2 1×1 
Model-1 4 40 50 43 29 20 
Model-2 15 970 767 440 221 114 
Model-3 2 28 21 19 174 7 
Model-4 1 24 17 15 13 - 
Table  7.4: The new implementation with different blocking setups 

 



 145

This overhead inherited from the DEVS simulator implementation in which, when 

a block is about to receive an external message, the simulator informs it with the new 

message but it is required to iterate over the ports to decide which port is receiving the 

message. In the new approach, it will require iterating over all the boundary cells to get 

the message which results in (2W+2H-4) iterations in a W×H block to just receive a 

single message for one cell. On the other hand, conventional cellular DEVS 

implementation does the iteration once for the receiving cell. Therefore, the source of 

overhead is letting the block iterates over a big number of cells that might not receive 

external messages. The overhead factor can be represented by the following ratio 

(2W+2H+4)/X where X is the average cells that are receiving messages per iteration. In 

highly active cells where all boundary cells are receiving messages, the ratio will be one 

and all iterations will be worthwhile. In this case the overhead disappears compared to 

the conventional approach. The worst case can be represented by X<<(2W+2H+4) where 

the overhead factor is huge because of the extremely small number of receiving cells 

compared to the number of boundary cells which results in a huge number of unnecessary 

iterations. The solution to this problem is the simulator enhancement in which the 

messages should be encoded [88] in order to make the block know the receiving cell 

without going through all unnecessary iterations. 
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CHAPTER 8 : CONCLUSIONS AND FUTURE WORK 

 

Conventional modular approaches of modeling cellular DEVS models were found to 

poorly perform in the case of very large scale spaces with high cell activities. Some 

related works were done to speedup simulations by the means of simulator enhancements 

that deal efficiently with the big volume of communication messages. Despite all of these 

enhancements, the models still spend a large amount of computational time in dealing 

with messages rather than spending all computational efforts in the actual model tasks. 

In this dissertation, a new formalism was introduced to specify the cellular DEVS 

models in an efficient non-modular form. The new formalism was formulated using the 

closure under coupling property of DEVS in order to ensure equivalency of the models to 

their modular counterparts in parallel DEVS. Non-modular Models that were developed 

using the new cellular DEVS specification outperformed their modular equivalents. The 

speedup was gained from two sources. The first one is the efficient scanning of active 

cells which also can be achieved using simulator enhancements. The other one is the 

elimination of the inter-cell messages by fully decomposing the cellular space model into 

atomic one. However, specifying large and complex cellular models using the new 

specification was found to be complicated and difficult to verify. Therefore, different 

layer of formalism was introduced to allow simple and fast user specification of the 

efficient models. The new multi-layer formalism was made as generic as possible to 

support all cellular models that are currently supported by the parallel DEVS formalism 

like CA, PDE, and discrete time models.  
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The new formalism supports the automation of specification conversion between the 

different layers which made it possible to develop an automated environment that 

converts user specifications into cellular DEVS as well as parallel DEVS specifications. 

The new development environment supports model development through GUI where the 

user specification is input. It also supports automated conversion of user specification 

into the new cellular DEVS specification as well as automatic code generation that put 

the new form in parallel DEVS specification. This was done to allow possibility of 

running generated models in a standard parallel DEVS simulator. Future work might 

relax this constraint and introduce a special efficient cellular DEVS simulator. 

The new environment was designed to make the model development faster and make 

the coding level transparent to the user. However, once the model code is generated, the 

user is granted full access to the code in order to modify the model and/or add more 

specific requirements that are not supported. The environment was found to support wide 

varieties of modeling requirements and it can be easily adapted to include more aspects in 

the future. It was tested using some of the standard software testing strategies and was 

found to perform well according to the test cases presented in chapter 6. The testing was 

extended to the models generated by this environment in order to verify that the 

environment generated what the user intended to develop. In addition to the software 

testing, the model is tested using the simulation-based DEVS verification approaches. A 

modification to the current automated cellular DEVS verification approach was proposed 

to correctly test models that account for zero time transitions. The last test presented in 

this work verified that the new approach is equivalent to the conventional cellular DEVS 
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implementation through simulation methods in all models developed during this work. 

All automated testing classes are made available for the user to call in order to test and 

verify the developed models. 

The fully decomposed cell spaces gave the best performance among all other 

blocking setups. The process of decomposing coupled model into atomic one involves 

adding simulator tasks into the new atomic model. These tasks include scanning active 

cells and handling the list of future events. The faster the event list handler, more is the 

speedup that can be gained in the decomposed model. Chapter 5 was dedicated to find the 

best event list handler for our environment which concluded that large decomposed 

cellular DEVS models prefer lists that have O(1) add and remove operations. That 

finding was based on the analytical as well as the experimental point of view. The 

analytical approach took place in the final format of the new implemented formalism in 

which the add and remove were found to be the most frequent operations in our design 

which was also supported by actual operation counts in some models. The selected 

implementation in the new environment is a standard unsorted array implementation. 

Since event lists might perform differently in different application, the event list class can 

be replaced, when needed, with another that should follow the design requirements listed 

in chapter 5. 

The landslide models introduced in this dissertation tried to push the new 

environment to the limits. These complex models required more modifications to be 

added to the generated code. It was shown that all of the requirements can be easily 

added to the environment in future work and limit the need to modify the generated 



 149

models. Experimental results showed that cellular models that have more inter-cell 

messages achieved more speedup when modeled in the new fully decomposed non-

modular cellular DEVS specification. The other setups of blocking, where messages not 

entirely eliminated, showed significant overhead which resulted from the standard DEVS 

simulator implementation. The scope of this work does not include the distributed 

application of the new formalism in which a solution to this overhead will be a must. The 

solution will reside in the simulator enhancement in which message encoding scheme 

should be employed to include the receiving cell ID within all inter-cell messages. 

 

Future work of this research might include the following: 

• Modify the multi-component DEVS formalism in order to be equivalent to the 

parallel DEVS and compare it to the formalism introduced in this dissertation.  

• Since this work targeted the modeling enhancement, a more integrated approach 

can be done by introducing an efficient simulation engine that is dedicated for the 

newly introduced formalism. 

• The new development environment can be improved to include all the missing 

requirements, abstraction, and modifications that are needed by the complex 

models. 

• A visualization environment of the cellular DEVS models can be designed and 

implemented to support animating the simulations. 
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• Extending the use of the new formalism to the distributed simulations which will 

include reducing the overhead that might be caused by the new implementation in 

order to utilize the advantage of the speedups achieved. 
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