
MULTI-LAYER CELLULAR DEVS FORMALISM FOR FASTER
MODEL DEVELOPMENT AND SIMULATION EFFICIENCY

by

Fahad Awadh Saleem Bait Shiginah

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2006

 2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Fahad A. Bait Shiginah

entitled Multi-layer Cellular DEVS Formalism for Faster Model Development and
Simulation Efficiency

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy

___ Date: November 17, 2006

Bernard P. Zeigler, Ph.D.

___ Date: November 17, 2006

Jerzy W. Rozenblit, Ph.D.

___ Date: November 17, 2006

Salim A. Hariri, Ph.D.

___ Date: November 17, 2006

Moon-Ho Hwang, Ph.D.

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

__ Date: November 17, 2006
Dissertation Director: Bernard P. Zeigler, Ph.D.

 3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the head of the major department or the Dean of the Graduate College when in his or her
judgment the proposed use of the material is in the interests of scholarship. In all other
instances, however, permission must be obtained from the author.

SIGNED: _____________________
Fahad A. Bait Shiginah

 4

ACKNOWLEDGEMENTS

First of all, I thank my advisor Dr. Bernard P. Zeigler for providing me with all

support and guidance in my Ph.D. study. A letter of appreciation goes to this great
professor whom I will continue learning from, for the rest of my life. Besides my advisor,
I would like to thank the rest of my dissertation committee: Dr. Salim Hariri, Dr. Jerzy
Rozenblit and Dr. Moon-Ho Hwang for their helpful comments, suggestions and
encouragement during the course of completing this dissertation. Special thanks go to Dr.
Moon-Ho Hwang, for his help, discussions, and encouragement to my research ideas.

Most of all, my wife (accompanying me), parents, brothers, and sisters (in Oman)
are the ones who have been with me and I always remember their constant love and great
support. I am grateful to my wife, Muna, for her patience, support, and love especially in
taking care of me as well as our children during pursuing this research.

I thank all my colleagues in the ACIMS Lab for the such wonderful environment. Special
thanks go to Raj, Brett, and Eddie Mak.

Finally, again, thank you Muna.

 5

DEDICATION

To

my parents,

my wife Muna,

 my kids, and all family members

 6

TABLE OF CONTENTS

LIST OF FIGURES .. 10

LIST OF TABLES.. 12

ABSTRACT.. 13

CHAPTER 1 : INTRODUCTION .. 15

1.1 Motivation and General Scope.. 15

1.2 Main Contributions ... 17

1.3 Dissertation Outline .. 18

CHAPTER 2 : BACKGROUND .. 20

2.1 Cellular Automata... 20

2.2 Parallel DEVS Formalism (P-DEVS)... 21

2.2.1 Closure under Coupling of Parallel DEVS ... 23

2.3 Multi-Component DEVS Formalism.. 25

2.4 Cellular Space Models in DEVS... 27

2.4.1 Closure under Coupling for Cellular Models in Parallel DEVS............... 29

2.5 Related Work .. 30

2.5.1 Cell-DEVS Formalism.. 30

2.5.2 Converting Coupled Model into Atomic DEVS....................................... 32

CHAPTER 3 : NEW FRAMEWORK FOR CELLULAR DEVS MODELING.......... 34

3.1 Converting Cell Space Model into Atomic DEVS ... 34

 7

TABLE OF CONTENTS - Continued

3.2 Toward Full Decomposition of Cell Space Models.. 35

3.3 Closure under Coupling of Parallel DEVS Applied to Cell Spaces 35

3.3.1 Event List Handling .. 37

3.3.2 Transforming Cells to Non-Modular Form... 42

3.3.3 Final Non-Modular Decomposed Format... 51

3.4 A Proposition to Show the Generality of the Approach 56

3.5 Fast Cellular DEVS Specification .. 58

3.6 Solving Differential Equations Using Cell Space Models................................ 66

3.7 Solving Partial Differential Equations Using the New Framework.................. 69

CHAPTER 4 : A TOOL FOR BUILDING EFFICIENT CELLULAR DEVS

MODELS ... 72

4.1 Ease of User Specifications with GUI support ... 72

4.2 Design Structure of the New Modeling Environment 75

4.3 New Cellular DEVS Specification Unit ... 77

4.3.1 DEVS Cell Space Implementation Models... 78

4.3.2 Some Implementation Details in Cellular DEVS Models 79

4.4 The GUI .. 84

4.5 The Code Generator.. 86

4.5.1 The Generated Model Classes .. 87

4.5.2 Some Implementation Issues in the Code Generator................................ 88

 8

TABLE OF CONTENTS - Continued

CHAPTER 5 : DESIGN ISSUES OF THE EVENT LIST ... 91

5.1 Event List Design Requirements .. 92

5.2 Standard Array Implementation.. 97

5.3 Binary Heap Implementation.. 99

5.4 Binary Tree Implementation ... 101

5.5 Analytical Comparison ... 103

5.6 Experimental Analysis .. 108

5.7 Concluding Remarks... 112

CHAPTER 6 : TESTING AND VERIFICATION ... 114

6.1 A Quick Overview on Software Testing Techniques 114

6.2 A Quick Overview on Simulation Model Validation and Verification 115

6.3 Validation and Verification of DEVS Models.. 116

6.4 Testing the Cellular DEVS Specification Unit ... 117

6.4.1 Testing cell and block Classes .. 118

6.4.2 Testing cellSpace and blockSpace Classes ... 120

6.5 Testing the Generated Models .. 120

6.5.1 Generated Code Test... 121

6.5.2 Atomic Cell DEVS Verification ... 122

6.6 Verifying the Approach .. 126

6.7 Applying All Tests.. 127

 9

TABLE OF CONTENTS - Continued

CHAPTER 7 : LANDSLIDE APPLICATION MODELS ... 131

7.1 Overview on Landslides and the Need for Their Models 131

7.2 Cellular DEVS Models for Landslides ... 132

7.3 Non-Timed Cellular Automata Landslide Model ... 133

7.4 Discrete Time Cellular Landslide Model.. 134

7.5 Discrete Event Cellular Landslide Model... 136

7.6 Rate-Based Predictive Quantized Landslide Model 137

7.7 Models Development Experiences ... 139

7.8 Experimental Results .. 141

7.8.1 Modular vs. Non-Modular Approach ... 141

7.8.2 Using the New Implementation for Conventional Cellular Models 143

7.8.3 Different Blocking Setting (Living with Messages)............................... 144

CHAPTER 8 : CONCLUSIONS AND FUTURE WORK ... 146

REFERENCES ... 151

 10

 LIST OF FIGURES

Figure 2.1: 2-D cellular space in DEVS. .. 28

Figure 3.1: Switching between modular and non-modular forms. 43

Figure 4.1: Specification layers. ... 75

Figure 4.2: Structure of the new cellular DEVS environment.. 76

Figure 4.3: Cellular DEVS specification unit. .. 78

Figure 4.4: Supported neighboring rules. ... 79

Figure 4.5: Neighbors addressing convention. ... 80

Figure 4.6: Single port labeling scheme. .. 82

Figure 4.7: Multi port labeling scheme... 83

Figure 4.8: The main GUI view.. 85

Figure 4.9: The cell transition function tab... 85

Figure 4.10: Structure of the code generator unit. .. 86

Figure 4.11: Generated model classes and hierarchy.. 87

Figure 4.12: Illustration of code generation process... 89

Figure 5.1: Event list in unsorted array... 97

Figure 5.2: Event list in sorted array. (tax>tay for any x<y).. 98

Figure 5.3: Binary heap structure. (tax≤tay for any child y with parent x)...................... 100

Figure 5.4: Binary heap as an array. ... 100

Figure 5.5: Balanced binary search tree. (ta4 < ta2 < ta1 < ta3 <tan)................................ 102

Figure 6.1: Simplified modeling process. Taken from [61].. 116

 11

LIST OF FIGURES - Continued

Figure 6.2: Examples of using Java reflection in testing unit class. 122

Figure 6.3: Cell verification experimental frame.. 123

Figure 6.4: Cell verification experimental frame with special generator. 125

Figure 6.5: Simulation approach of equivalency verification... 126

Figure 6.6: Beginning of specification unit test result. ... 127

Figure 6.7: End of specification unit test. ... 128

Figure 6.8: An example of cell verification test report. .. 130

Figure 6.9: An example of non-identical spaces... 130

Figure 6.10: An example of identical spaces. ... 130

Figure 7.1: A representation of hexagonal land cell that accounts for energy using the

kinetic head. .. 133

Figure 7.2: Directional vectors of cell neighbors (vJ
→

) in hexagonal lattice. 136

Figure 7.3: Slope vector calculation. .. 136

Figure 7.4: An example of incorrectness and instability. ... 138

 12

LIST OF TABLES

Table 4.1: Single vs. multi ports in cell models.. 81

Table 5.1: Complexity comparison of all introduced structures..................................... 104

Table 5.2: Operation counts in two models for 100 iterations.. 107

Table 5.3: Execution time in seconds for lists with 10000 records. 109

Table 5.4: Execution time in seconds for lists with 50000 records. 110

Table 5.5: Execution time in seconds for lists with 100000 records. 110

Table 5.6: Execution time in micro seconds in add operation.. 111

Table 5.7: Execution time in micro seconds in remove operation.................................. 111

Table 5.8: Execution time in micro seconds in getMin operation. 111

Table 5.9: Execution time in micro seconds in getMinList operation. 112

Table 5.10: Execution time in micro seconds in removeMin operation. 112

Table 6.1: Regular expressions and ports number factor in cell test. 119

Table 6.2: Regular expressions and ports number factor in block test. 119

Table 7.1: Prediction rules. ... 139

Table 7.2: Execution and speedup of landslide models.. 142

Table 7.3: Comparing block and cell implementation of 32×32 Cell space................... 144

Table 7.4: The new implementation with different blocking setups 144

 13

ABSTRACT

Recent research advances in Discrete EVent system Specification (DEVS) as well

as cellular space modeling emphasized the need for high performance modeling

methodologies and environments. The growing demand for cellular space models has

directed researchers to use different implementation formalisms. Many efforts were

dedicated to develop cellular space models in DEVS in order to employ the advantage of

discrete event systems. Unfortunately, the conventional implementations degrade the

performance in large scale cellular models because of the huge volume of inter-cell

messages generated during simulation.

This work introduces a new multi-layer formalism for cellular DEVS models that

assures high performance and ease of user specification. It starts with the parallel DEVS

specification layer and derives a high performance cellular DEVS layer using the

property of closure under coupling. This is done through converting the parallel DEVS

into its equivalent non-modular form which involves computational and communication

overhead tradeoffs. The new specification layer, in contrast to multi-component DEVS, is

identical to the modular parallel DEVS in the sense of state trajectories which are updated

according to the modular message passing methodology. The equivalency of the two

forms is verified using simulation methods. Once the equivalency has been ensured,

analysis of the models becomes a decisive factor in employing modularity in cellular

DEVS models.

 14

Non-modular models show significant speedup in simulation runs given that their

event list handler is implemented based on analytical and experimental survey that

involve actual operation counts. However, the new high performance non-modular

specification layer is complicated to implement. Therefore, a third layer of specification

is proposed to provide a simple user specification that is automatically converted into the

fast complex cellular DEVS specification, which is finally put in the standard parallel

DEVS specification. A tool was implemented to automatically accept user’s model

specification via GUI and generate the models using the new specifications. The

generated models are then required to be tested and verified using some automatic DEVS

verification methods. As a result, the model development and verification processes are

made easier and faster.

 15

CHAPTER 1 : INTRODUCTION

This dissertation is mainly concerned with the area of discrete event cellular model

development and simulation enhancements. It introduces a new way of specifying and

developing cellular DEVS models aiming simplicity, efficiency, and support of

scalability.

1.1 Motivation and General Scope

The cellular space modeling approach divides space into discrete cells where local

computations held in each cell are based on its own as well as its neighbor’s states. In

conventional DEVS implementation of cellular models (e.g. [1, 2]), a cell is implemented

as a DEVS modular atomic or coupled model. When detailed modeling of spatial

dynamics is required, large number of cells are typically employed. This results in a large

number of atomic models that communicate through message passing to carry out the

global simulation. Therefore, the task of implementing large scale cellular spaces with

highly active cells in DEVS will face the burden of huge numbers of inter-cell messages

and hence a performance reduction. Many techniques were introduced to resolve this

issue and to gain speedup. Examples of such work can be found in [3-5] where the

cellular DEVS simulation engine was improved to handle messages and cell activity

scanning in more efficient manner. On the other hand, the quantized DEVS approach [6-

8] shows that quantization helps in improving the performance of DEVS simulations by

 16

reducing the number of state transitions as well as the number of messages while

introducing acceptable errors.

To date, research in DEVS cellular space modeling has treated each cell as an

atomic or coupled model and then either sought to speed up the simulation engine or

introduce quantization to the model in order to reduce messages and transitions with

attendant error. The simulator enhancements were tackled by either flattening the

coordinator hierarchy [5], implementing faster scheduling algorithms that deal with

active cells only [3, 4], and/or eliminating unnecessary coordinator objects [3]. The work

presented in this dissertation takes advantage of these enhancements and applies similar

methods to the model development level. This new error-free approach is designed to

reduce the number of messages by encapsulating and transforming a group of cells into

non-modular form. Instead of treating a single cell as an atomic DEVS model, the

encapsulation method will group a number of cells in one atomic model. The resulting

model will be a non-hierarchal, non-modular cell representation that gives a significant

speed up which in conjunction with the simulator enhancements done in [3-5] will give

amazingly high performance on large scale distributed cellular space models over

clusters.

There are very few related works that touched the area of converting coupled

DEVS models into atomic models like [9] and [10]. Their implementation of the

approach is by allowing the conversion during the compilation process. On the other

hand, this dissertation applies the conversion into the specification and development

process. The first work involved converting classical, rather than parallel DEVS, models

 17

and it did not target the cellular space in particular which made that approach a good

speedup way for small size models. The other work also tried to convert large models

into atomic ones to easily deal with them in Dymola. A conclusion was reached that there

is no advantage of following the conversion approach since the overhead of handling

large model is much greater than the messages overhead. This dissertation disagrees with

that conclusion which can be considered an environment specific conclusion. Our initial

work in [11] proved the significance of the approach for large cellular DEVS models.

1.2 Main Contributions

This dissertation introduced a new formalism to allow specifying the cellular

DEVS models in modular as well as non-modular forms. Using the closure under

coupling property of parallel DEVS, it was possible to derive a new layer of formalism to

specify models in non-modular form. This new modeling layer guarantees the efficiency

of the models in contrast to the current cellular DEVS implementation approaches. This

was achieved by considering the non-modular form of the cellular DEVS models in

which some simulator tasks were encapsulated inside the atomic cell space in order to

eliminate inter-cell messages. The simulator tasks were done through event list handler

which was implemented based on an analytical survey on different implementations that

was also supported with experimental analysis and actual operation counts in different

test models. Another layer of specification was introduced to ease and speedup the

development process of complex atomic cellular DEVS models. The integrated

 18

multilayer formalism, introduced in this work, supports the automation of model

development and transformation between the different layers.

A new cellular DEVS development environment was introduced and implemented

as an outcome of this work. This environment supports the multilayer development

approach since it was built to run over general DEVSJAVA simulators. The automated

processes introduced in this tool are: automated specification transformation, automated

code generation, and automated testing and model verification. This environment makes

it possible for the first time to develop cellular DEVS models using GUI without writing

the full DEVSJAVA code. It was made as generic as possible to eliminate the need for

the user to modify the code generated by the environment. In addition, some automated

testing classes were also made available for the user in order to test and verify the

developed models.

1.3 Dissertation Outline

The remaining of the dissertation can be outlined as follows. Chapter 2 gives a

quick background on parallel DEVS, cellular DEVS and all necessary theory required as

a basis of this dissertation. Then, Chapter 3 introduces the new high performance cellular

DEVS formalism that was derived based on the parallel DEVS formalism and the closure

under coupling property. All equations used to formulate the new specification are

presented in addition to a set of lemmas that prove the support of the new approach to a

wide variety of cellular models. Chapter 4 presents the new development environment as

well as its design aspects. It first explains the user specification layer that is used to

 19

design the graphical user interface. The major critical design issue in the new

environment is the event list handler implementation which is discussed in Chapter 5

with more details, discussions, experiments and analysis. The next chapter is devoted to

describe the procedures and the proposed methods followed to test, validate and verify

our modeling tool as well as its generated models. It involves the techniques used in this

work to verify the new approach and ensure its equivalency to the conventional cellular

DEVS approaches. Chapter 7 illustrates the capability of our environment to support

complex cellular DEVS models through implementing and modifying different landslide

models. It also shows the significance of our new approach through presenting the

simulation runs of the landslide model. Finally, the last chapter concludes this

dissertation and overview some future works.

 20

CHAPTER 2 : BACKGROUND

2.1 Cellular Automata

Cellular Automata (CA), which was first introduced by John Von Neumann in the

1950s [12], has been widely used in simulating complex systems. The domain of

application of CA includes fluid and mass flow [13-15], natural hazards [16], many other

sorts of pattern recognition [17, 18], image processing [19], ecosystems [20], and traffic

modeling [21, 22]. In addition, it has been used as solutions for common computational

needs like networking [23], solving differential equations [24], and distributed computing

[25-28].

CA is a discrete time dynamical system that consists of a lattice of cells in single or

multi-dimension in which each cell applies a local transition function to calculate its next

state [29]. Many efforts in recent years were dedicated to improve simulation

methodologies that take advantage of CA in modeling complex behavioral dynamic

systems (e.g., see [12, 14]). Based on the fixed time step CA, Avolio and his coworkers

developed an empirical approach for modeling and simulating complex dynamic systems

[14]. Such an approach can be applied to problems that are very difficult to manage with

differential equations systems. However, the use of discrete events, rather than fixed time

steps, in simulation gives a significant speedup in many applications [6, 30-32]. As a

result, DEVS (Discrete EVent System Specification) has been attracting many

researchers as a basis of CA modeling of complex physical systems. Its parallel version,

parallel DEVS, was introduced in [33, 34] to provide a sound framework that exploit the

 21

parallelism of the hierarchical DEVS models. Based on this parallelism, it was possible to

introduce Cellular DEVS [6] and Cell-DEVS [35, 36] which integrate the theories and

algorithms of CA in DEVS.

2.2 Parallel DEVS Formalism (P-DEVS)

Discrete EVent System Specification (DEVS) [6] supports object orientation over

modeling environments. Its theory provides a mathematical formalism for representing

dynamic systems. The DEVS formalism was revised in [33] to reduce sequential

processing and enable full parallel executions. The resulting parallel DEVS has the basic

atomic model defined as:

M = taYSX conext ,,,,,,, int λδδδ ,

where

X is a set of input values (set of ports/values in coupled structures)

S is a set of states (set of ports/values in coupled structures)

Y is a set of output values

δint: S → S is the internal transition function

δext: Q × Xb → S is the external transition function

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set

 e is the time elapsed since last transition

 Xb denotes the collection of bags over X

δcon: S × Xb → S is the confluent transition function

λ: S → Yb is the output function

 22

ta: S → R 0→∞ is the time advance function.

An atomic model M in parallel DEVS remains in a state s ∈ S for ta(s) amount of

time if no external event occurs. When that time advance expires, i.e., when the elapsed

time, e = ta(s), the system outputs the values, Yb = λ(s), just before it changes to state

δint(s). When an external event x in Xb occurs before this expiration time, i.e., at e < ta(s),

the system changes to state δext(s,e,x). However, in case of internal and external

transitions collide, δcon is employed to resolve the conflict and determine the next state. In

all cases, the model then goes to some new state s′ with some new resting time, ta(s′) and

the same story continues [6].

Note that input or output values Xb and Yb are bags of elements. This means that

one or more elements can appear on a port at the same time. This capability comes from

the parallel implementation of DEVS which allow components to send to the ports

simultaneously. These basic components may be coupled in DEVS to form a multi-

component model which is defined by the following structure:

CM = }{},{},{,,, , jiii ZIMDYX ,

where

X is the set of input values (set of ports/values in coupled structures)

Y is the set of output values (set of ports/values in coupled structures)

D is the set of components

 23

for each i in D: Mi is a component which is an atomic model Mi =

iiiconiextiiii taYSX ,,,,,,, int λδδδ

for each i in D ∪ {self}: Ii is the influencees of i, i is not in Ii

self is the coupled model itself CM which allow external inputs and outputs

for each j in Ii : Zi,j is the i to j output translation function (coupling)

jselfjself XXZ →:,

selfiselfi YYZ →:,

jiji XYZ →:,

2.2.1 Closure under Coupling of Parallel DEVS

Closure under coupling, in parallel DEVS, states that every coupled model (CM)

has its own equivalent atomic model (M). This section demonstrates the closure

derivation in order to reach the resultant atomic model of any coupled model. Generally

speaking, the coupled DEVS model can be treated as a black box with input as well as

output ports (X and Y) that form the first terms of equivalency in the atomic and coupled

models. The state set (S) of the resultant model will be the total state sets of all the atomic

coupled models. In addition, the time advance ta(s) will be the minimum of all the

internal atomic models.

S = d
Dd

Q×
∈

, where s∈ S , and s = (…, (sd,ed), …) for all d∈D

ta(s)=minimum{σd | d∈D}, where s∈ S and σd = ta(sd)-ed

 24

We define different sets of internal components according to their states during any

iteration (at a given global state s) during the simulation:

IMM(s)= {d | σd=ta(s)} Set of imminent components

INF(s)={d|i∈Id, i∈IMM(s) ∧ b
dx ≠Ø}, Set of components about to receive inputs

where b
dx ={Zi,d(λi(si))|i ∈IMM(s) ∩ Id}

CONF(s)=IMM(s)∩INF(s) Set of confluent components

INT(s)=IMM(s)-INF(s) Set of imminents those receiving no inputs

EXT(s)=INF(s)-IMM(s) Set of non-imminents those receiving input

UN(s)=D-IMM(s)-EXT(s) Other components

Based on these groups we just need to formulate the functions (λ, δint, δext, δcon) for the

resultant model as follows:

λ(s)={ Zd,self(λd(sd))| d∈ IMM(s) ∧ d∈ Iself},

δint(s) = (…, (sd’,ed’), …),

where













+

∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
dddcon

b
ddddext

dd

dd

))(,(
)()0),,((

)()0),),(,((

)()0),((

)','(
,

,

int,

δ

δ

δ

,

δext(s,e,xb) = (…, (sd’,ed’), …),

where 0<e<ta(s) and






+

Φ≠∧∈+
=

otherwiseees
xIselfxees

es
dd

b
dd

b
ddddext

dd),(
)0),,,((

)','(,δ
,

and b
dx = {Zself,d(x)| x∈ xb ∧ self∈ Id}.

 25

For the last function δcon we need to redefine the group INF(s) to include the set of

influencees by external events to the whole model. Let INF’(s) = {d|(i∈Id, i∈IMM(s) ∨

self∈Id) ∧ b
dx ≠Ø}, where b

dx ={{Zi,d(λi(si))| i∈IMM(s) ∧ i∈Id}∪ {Zself,d(x)| x∈ xb ∧ self∈

Id}}. Then, we need to redefine the other groups accordingly:

CONF’(s)=IMM(s)∩INF’(s)

INT’(s)=IMM(s)-INF’(s)

EXT’(s)=INF’(s)-IMM(s)

As a result,

δcon(s,xb) = (…, (sd’,ed’), …),

where













+

∈

∈+

∈

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
dddcon

b
ddddext

dd

dd

))(,(
)(')0),,((

)(')0),),(,((

)(')0),((

)','(
,

,

int,

δ

δ

δ

.

The over all transition function will be:









Φ=∧=

Φ≠∧=

Φ≠∧<≤

=
b

bb
con

bb
ext

b

xstaes

xstaexs

xstaexes

xes

)()(

)(),(

)(0),,(

),,(

intδ

δ

δ

δ

2.3 Multi-Component DEVS Formalism

The previous sections represent the parallel DEVS formalism in its atomic as well

as its coupled and hierarchical forms. All these mentioned specifications are in the

modular form in which components have no means of accessing other component’s states

 26

and variables except through ports and messages. The other form is the non-modular

form which is referred to as multi-component DEVS in [6]. In multi-component DEVS,

which is based on classical DEVS, components of coupled models can directly influence

each other through their state transitions. That means events occurring in one component

may result in state changes and rescheduling of events in other components. A Multi-

component DEVS can be defined as follows [6]:

multiDEVS = 〈 X, Y, D, {Md }, Select 〉,

where

X, Y are the input and output event sets

D is the set of component references

Select: 2D→ D with Select (E) ∈ E is a tie-breaking function employed to arbitrate

in case of simultaneous events.

For each d ∈D

Md = 〈 Sd, Id, Ed, δext,d, δint,d, λd, tad 〉

where

Sd is the set of sequential states of d,

Qd = {(s, ed)  s ∈ Sd, ed ∈ ℜ} is the set of total states of d,

Id ⊆ D is the set of influencing components,

Ed ⊆ D is the set of influenced components,

δext,d: ×i∈IdQi × X → ×j∈EdQj is the external state transition function,

δint,d: ×i∈IdQi → ×j∈EdQj is the internal state transition function,

λd:×i∈IdQi → Y is the output event function, and

 27

tad: ×i∈IdQi → ℜ+
0 ∪{∞} is the time advance function.

Any component d ∈ D in multiDEVS can schedule its own internal event with its

own time advance tad. On event occurrence, in this component, its internal transition

function δint,d is executed to generate a state transition as well as an output event defined

by λd. The transition function depends on total states qi of the influencing components Id

and changes any total state qj of the influenced components Ed. The Select function is

used as a tie breaking function that selects the component to be executed in the case

where different components are imminent. Any external events received by the

multiDEVS’s ports will be handled by the corresponding component that should receive

that specific event through δext,d. However, δext,d can be left undefined for components

which are not needed to receive input events and, similarly, there is no need to define λd

for the components which are not expected to send outputs.

2.4 Cellular Space Models in DEVS

The cellular automata applications, based on the discrete time simulation, consume

the computation power in doing computations to update all cells in every single iteration.

In a wide range of applications, there are a lot of cells that are not required to be updated

at every step which makes the discrete time approach inefficient. In addition, the

selection of the time step size has a significant impact on the simulation accuracy. High

accuracy requires a very small step size which, in turn, requires huge computational

resources. The discrete event approach overcomes these problems by dedicating

 28

computational resources to the cells that actually perform state transitions and hence

avoiding unnecessary computation on inactive cells. Due to these advantages, many

efforts were dedicated to employ the DEVS approach to cellular automata applications

(e.g. [1, 5, 37, 38]).

The conventional cellular DEVS approaches divide the spatial space into discrete

cells where local computations are done in each cell. A cell is implemented as an atomic

DEVS model which performs the local computations internally based on its own state as

well as the neighboring states that are received through the external ports. The cell space

is implemented as a coupled DEVS model that contains a number of cells that are

arranged in an array. The neighboring rule followed in a specific application determines

the internal port couplings between cells and the boundary couplings that connect the

cells at the borders with other cells in different cell spaces. Figure 2.1 illustrates the

conventional 2-D cellular space implementation in the DEVS formalism.

Cell
(0,2)

Cell
(2,2)

Cell
(1,0)

Cell
(0,0)

Cell
(2,0)

Cell
(1,2)

Cell
(1,1)

Coupled Model (CM): Cellular Space

Cell
(2,1)

Cell
(0,1)

j

i Couplings Atomic Model (M)

Xb Yb

Figure 2.1: 2-D cellular space in DEVS.

 29

2.4.1 Closure under Coupling for Cellular Models in Parallel DEVS

Cellular space models are characterized by identical cells that are spatially

distributed over a given area and each cell applies the same transition as well as output

functions to the data and states of the area it covers. Given a coupled model CM =

}{},{},{,,, , jiii ZIMDYX representing the total cellular space, each cell will be an

atomic DEVS model presented as a structure *****
int

*** ,,,,,,, taYSX conext λδδδ .

Following the same formulation of the closure under coupling of parallel DEVS, we will

end up with the same formulas as above with

δint, d = *
intδ , δext, d = *

extδ , δcon, d = *
conδ , λ = *λ , tad(s)=)(* sta for all d ∈ D

The resultant atomic model of the complete cellular space will be:

CM= taYSX conext ,,,,,,, int λδδδ

with the following functions:

λ(s)={ Zd,self(*λ (sd))| d∈ IMM(s) ∧ d∈ Iself}

δint(s) = (…, (sd’,ed’), …)

where













+
∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(
)()0),,((

)()0),),(,((

)()0),((

)','(
*

*

*
int

δ

δ

δ

δext(s,e,xb) = (…, (sd’,ed’), …),

where 0<e<ta(s) and




+
Φ≠∧∈+

=
otherwiseees

xIselfxees
es

dd

b
dd

b
dddext

dd),(
)0),,,((

)','(
*δ

δcon(s,xb) = (…, (sd’,ed’), …),

 30

where













+
∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(
)(')0),,((

)(')0),),(,((

)(')0),((

)','(
*

*

*
int

δ

δ

δ

Similarly, the over all transition function will be:













Φ=∧=

Φ≠∧=

Φ≠∧<≤

=

otherwisees
xstaes

xstaexs

xstaexes

xes
b

bb
con

bb
ext

b

),(
)()(

)(),(

)(0),,(

),,(
intδ

δ

δ

δ

2.5 Related Work

2.5.1 Cell-DEVS Formalism

Cell-DEVS formalism was introduced to employ the advantages of discrete event

systems in cellular automata applications [36]. It is an extension to the DEVS formalism

that makes the cell timing specification more expressive [39]. This was achieved by

adding more entries to the original DEVS atomic model specification in order to specify

cells with local computing function and transport as well as inertial delays. Cell-DEVS

atomic model is specified as:

CD = DddelayNSIYX ext ,,,,,,,,,,, int λτδδ

The following terms are defined in similar way as in the standard DEVS atomic

models: X, Y, S, δint, δext, and λ. All other terms are defined as follows: D is the time

 31

advance spent in a state which is referred to as ta in DEVS, delay is the type of cell’s

delay, d is the duration of that delay, I is the cell’s modular Interface, N is the set of input

events, and τ is the local computation function. In addition to the atomic DEVS

operations, each cell, in Cell-DEVS, receives the set of N inputs through the model

interface I that activate the local computation function through δext. There are two types

of delays were introduced: the transport and the inertial delay with a specified duration d

that plays role in determining the actual time to execute the scheduled event and to send

the output messages.

The cell space model in Cell-DEVS is a coupled DEVS model that contains a

number of atomic cells that are interconnected through ports following some neighboring

rules. The cells are arranged in a single or multi-dimensional array that is coupled at

borders to allow connecting the cell space into other spaces within a global multi-space

model [39]. Cell-DEVS formalism, since it represents each cell as an atomic model, is

considered as a conventional DEVS implementation of cell space models which has the

performance drawback that is resulted by the huge volume of inter-cell communication

generated during simulation. In addition, expressing cellular models in Cell-DEVS

formalism is, to some extent, complex and requires more efforts at the modeler level. On

the other hand, this dissertation introduces the multi-layer approach to simplify the

modeling process and make the cell space’s extensive specifications transparent to the

end user.

 32

2.5.2 Converting Coupled Model into Atomic DEVS

Closure under coupling property proved that any DEVS coupled model can be

represented in an atomic DEVS form. The proof followed in the previous sections did not

completely decompose the internal atomic models. It just obtained the basic atomic

functions for the overall coupled model as a black box where the internal models still

keep the same DEVS atomic structures in modular form. However, this property initiated

the idea of converting coupled models into atomic models for the purpose of simulation

speedup.

Lee and Kim [9] introduced a composition-based method that converts a coupled

classical DEVS model into atomic classical DEVS model at compile time. Their goal was

to achieve simulation speedup by computing possible event and message routes at

compile time which are then handled by a simulation engine inside the composed atomic

model. The formal approach, they presented, followed the same idea of the closure under

coupling formulation with addition of a scheduling mechanism. Therefore, it still keeps

the DEVS atomic structure of the internal models and if not, the resultant atomic model

should keep track of all the functions of these internal models. This will introduce an

overhead where the model will be required at each event processing to search the whole

pool of functions to get the corresponding function for that event and as the number of

the internal models grows very large, this overhead will be a bottle neck in achieving a

good speedup in large scale coupled models. Furthermore, the conversion process will be

more complicated to be done correctly. These drawbacks were the reason behind what

Beltrame [10] concluded by following the same approach. In that thesis, the idea of

 33

converting a coupled model into atomic one was implemented in order to eliminate the

message overhead by using Modelica’s parallel variable update. Instead of gaining

speedup, the models show slowness in simulation runs because of the large amount of

variables and functions bookkeeping.

 34

CHAPTER 3 : NEW FRAMEWORK FOR CELLULAR DEVS

MODELING

In this chapter we formulate a new cellular space DEVS specification to achieve a

fast cell space model development process as well as a fast simulation execution. The

basic idea is to divide the cell space into blocks, each with a fixed number of cells and

convert these blocks entirely into DEVS atomic models. This process can be seen as

converting modular cells into non-modular form inside the block where each cell can

access the state variables of its neighboring cells. Based on the closure under coupling

property of the parallel DEVS, the conversion process is known to be complex for the

end user which, in turn, requires us to consider ease of user specification in the resulted

framework.

3.1 Converting Cell Space Model into Atomic DEVS

As a special case of the closure under coupling property in DEVS, cellular space

models can take advantage of this property in gaining speedup by converting coupled

models into atomic ones. In this approach, scalability will not be an issue since all cells

(i.e. atomic models) have identical transition functions that will be applied to all cells

iteratively. This implies that the model will not be required to search for the functions in

a huge pool of functions for the encapsulated atomic models. In addition, by fully

decomposing the internal models into non-modular form, the inter-cell communication

messages will be eliminated and result in simulation speedup.

 35

3.2 Toward Full Decomposition of Cell Space Models

The following sections describe the process of formulating the atomic model

specification of the coupled cell space models. The aim behind this is to get simulation

speed up in large scale complex cellular models. In contrast to the modular techniques,

the non-modular ones show great speedups since components can access other

component’s states directly with no inter-component messages. The following procedure

is based on the modular closure under coupling of parallel DEVS since most of the

recently implemented DEVS environments are in the modular parallel form. Starting

from that form, we propose some speed up techniques that will be based on converting

the internal atomic models into non-modular form.

3.3 Closure under Coupling of Parallel DEVS Applied to Cell Spaces

Closure under coupling of parallel DEVS states that a coupled model can be

represented with its atomic P-DEVS equivalent which is defined as follows:

Given P-DEVS coupled model }{},{},{,,, , jiii ZIMDYX , we define a basic

model taYSX conext
aa ,,,,,,, int λδδδ .

Where Mi = iiiconiextiiii taYSX ,,,,,,, int λδδδ

 for each i∈D , X ≡ Xa, Y ≡ Ya, S = d
Dd

Q×
∈

, ta(s)=minimum{σd | d∈D}, s∈ S, σd = ta(sd)-

ed, and the transition functions are defined as follows:

δint: d
Dd

Q×
∈

→ d
Dd

Q×
∈

 36

δext: d
Dd

Q×
∈

× X → d
Dd

Q×
∈

δcon: d
Dd

Q×
∈

 × X → d
Dd

Q×
∈

λ: d
Dd

Q×
∈

 → Y

In the case of cellular space models, all components d∈D are P-DEVS atomic

cells which are identical processing objects with the same transition functions as well as

output functions *
intδ , *

extδ , *
conδ and *λ . For this special case of the DEVS coupled model,

the resultant overall cell space atomic functions will be as follows:

λ(s)={ Zd,self(*λ (sd))| d∈ IMM(s) ∧ d∈ Iself}

δint(s) = (…, (sd’,ed’), …)

where













+
∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(
)()0),,((

)()0),),(,((

)()0),((

)','(
*

*

*
int

δ

δ

δ

δext(s,e,xb) = (…, (sd’,ed’), …)

where 0<e<ta(s) and




+
Φ≠∧∈+

=
otherwiseees

xIselfxees
es

dd

b
dd

b
dddext

dd),(
)0),,,((

)','(
*δ

δcon(s,xb) = (…, (sd’,ed’), …)

where













+
∈

∈+

∈

=

otherwisestaes
sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(
)(')0),,((

)(')0),),(,((

)(')0),((

)','(
*

*

*
int

δ

δ

δ

 37

3.3.1 Event List Handling

The approaches mentioned in section 2.5.2 used the idea of closure under

coupling to decompose general (non cell space) coupled models to gain some speed up.

Unfortunately, those approaches do not guarantee speed up in large scale models. The

first factor of scalable speedup in our approach is that it targets cell space models where

all the cells are having the same transition functions. This property will ease the process

of decomposing coupled cell spaces by moving these transition functions to the cell space

level and implementing an iterative approach to apply these functions to the active cells.

Since we are implementing the whole framework in the discrete event simulation domain,

we need a discrete event list handler that manages, for the cell space, the list of active

cells at each simulation time, namely the cells to which the cell transition functions must

be applied.

Introducing the event list obviates the requirement that each cell keeps track of its

own timing since time management will be handled by scheduling events on the events

list. The events list is employed at the level of the resultant atomic model which will

contain the future events expected to happen for the cells. An event record will be in the

form that describes when the event is scheduled to occur (next event time) and where it

will happen (which cell). The elapsed time of each cell inside the DEVS coupled model is

normally handled by the coordinator. However, since we are replacing the coupled model

by its atomic model equivalent, it will be the atomic model’s responsibility to keep

records of the elapsed time for each of its internal cells. Therefore, the atomic model

should keep a variable that store the current simulation time for the cell space block that

 38

it represents and a vector of cell’s history times which store when a specific cell was

accessed or had a transition time last. The elapsed time can be obtained by subtracting the

history time of a specific cell from the current simulation time.

Within the DEVS framework, a cell can only receive an external message when

the time advance has expired at another cell inside the same coupled model or an external

message was received by the coupled model’s input ports. Accordingly, the events list

implementation just stores the time advances of the active cells and upon time advance

expirations, the event list handler must add the neighboring cells of the imminent cells to

a receiver group. This group will be the list of the cells that may receive external

messages. In addition, when the coupled model receives external messages, the handler

should identify the cells that should be aware of these new messages and add them to the

scan list for external transitions. The events list handler is the responsibility of the

resultant atomic model which, as a DEVS model, must implement all functionality solely

using its transition functions.

Now, we have a cell space having an EVENTS list with events ev = (time, i),

where

ev ∈ EVENTS, time: R0→∞, and i ∈ D.

Therefore,

CellSpace= EVENTSZICellDYX jiii },{},{},{,,, , taYSX conext ,,,,,,, int λδδδ

where

Celli = iii YSX ,, for each i∈D,

ta(s) = minimum {time |(time, i) ∈ EVENTS }.

 39

This means that in the new representation, the cell is no longer an active processing unit.

It just stores the state variables with no timing involved at its level. It still has ports and

messages which means it is not yet in non-modular form. The task of conversion to non-

modular form will be done in the next subsection.

Now, the events list will play role in defining cell groups as follows:

IMM(s)={ j | (ta(s), j) ∈ EVENTS }

Given that X b
j={Zi,j(λ*(si))| i∈IMM ∧ i∈ Ij} , the collected outputs of the imminents

INF={ j | (i∈Ij | ((ta(s),i) ∈ EVENTS) ∧ Xb
j≠∅)}, receiving cells influencees

INT ={ j | ((ta(s), j) ∈ EVENTS ∧ Xb
j=∅)},

EXT={ j | (i∈Ij | (ta(s),i) ∈ EVENTS ∧ (ta(s),j) ∉ EVENTS ∧ Xb
j≠∅)}

CONF= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j≠∅)}

In addition, given that X b
j={Zi,j(λ*(si))|(i∈IMM∧ i∈ Ij)}∪ {Zself,j(x)|x∈xb ∧ self∈ Ij }

INF’={ j | ((i∈Ij |(ta(s),i) ∈ EVENTS) ∨ (self ∈ Ij)) ∧ Xb
j≠∅)}

INT’= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j=∅)}

CONF’= { j | ((ta(s), j) ∈ EVENTS ∧ Xb
j≠∅)}

EXT’={ j |((i∈Ij | (ta(s),i)∈ EVENTS)∨ (self ∈ Ij)) ∧(ta(s),j) ∉EVENTS ∧ Xb
j≠∅)}

According to these new definitions, we can reformulate the resultant transition

functions of the atomic cell space to include the events list handling. The following

formal details show how the cell groups are extracted from the event list and manipulated

in the atomic transition functions. The only function that does not deal with these cell

 40

groups extracted from EVENTS list, is the external function. It just deals with the cells

that received external inputs through the cell space ports.

At the end of every transition cycle of the atomic cell space, the model checks the

events list to see if it contains more scheduled events and if so, it extracts the list of cells

with minimum time advance. On the expiration of that minimum time advance, the

output function will access the IMM list and let the cells in this group send their output

messages. Then, the internal or confluent transition functions are responsible to obtain the

corresponding cell groups where the external transition function will work on the

boundary cells that received external messages. Another source of speed up can be

achieved here by letting the events list only hold non-infinity time advances which is

equivalent to enhancing the simulator. This means that the model will not waste time by

dealing with passive cells which is the case in any DEVS simulator when each cell is

implemented as an atomic model.

λ(s) : for all i∈ IMM

 Apply λ* to Celli [Yi=λ* (si)]

δint(s) : obtain cell groups INT, EXT, CONF

Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ INT: apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT: apply *
extδ to Celli

 41

 schedule (next ta, i)

for all i∈ CONF: apply *
conδ to Celli

 schedule (next ta, i)

 if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

δcon(s,xb) : obtain cell groups INT’, EXT’, CONF’

Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ INT’ : apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT’ : apply *
extδ to Celli

 schedule (next ta, i)

for all i∈ CONF’ : apply *
conδ to Celli

 schedule (next ta, i)

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 42

 else

clear IMM={}

ta(s) = ∞

δext(s,e,xb) : Update EVENTS: time=time-e for all (time, i)∈ EVENTS

for all i∈ { j | self∈Ij ∧ Xb
j ≠ Ø}

 apply *
extδ to Celli

schedule (next ta, i)

 if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

3.3.2 Transforming Cells to Non-Modular Form

So far, all the above specifications are in the modular form, which means that

there are still number of internal messages passing between the internal cells in order to

know the states of each other through the output functions and ports. A major additional

speed up can be achieved by transforming these cells into non-modular form. In non-

modular form, a cell can access (read) the state variables of its neighbors and there is no

need for message passing through ports. In contrast to multi-component DEVS [6], the

implementation we are seeking here allows cells to read each other’s states, but they are

 43

only allowed to make their own state transitions. In case a cell changes its state, its

neighboring cells need to be added to the cell group EXT instead of allowing the cell

itself to change their states directly.

Celli < y > Cellj < x,y* >

y=λ*(si)
outY:=y

δ∗
ext(sj,inY)

 y*=inY
δ∗

int(sj)
 x=f(y*)

outY
inY

Celli < y > Cellj < x >

δ∗
int(sj)

 x=f(y)

Non-Modular

Modular

Figure 3.1: Switching between modular and non-modular forms.

Figure 3.1 shows how models can be transformed from modular into non-modular

form and vice versa. Transforming to non-modular form can be achieved by removing the

ports from the atomic models and letting them directly access the neighboring models to

read their state variables. In cellular space models, this will reduce the structure of the

cell units into a smaller one that just stores states and variables only and it has no

functions or processing done at its level. However, we need to keep the coupling relations

so that each cell knows which neighboring cells to access. In this case, we can add to the

cell structure a list of the neighboring cells (n) which can be accessed by that specific

 44

cell. In cellular space models, this list is the set of influencers which is equivalent to the

set influencees.

Celli= iii YSX ,, Celli = ii nS , , Where ni={ j | j∈ Ii }= { j | i∈ Ij }

Since we removed the ports from the cells, the cell space atomic model functions

need to be redefined according to the new changes. The first change is that we do not

need cells to generate outputs to ports since their neighboring cells can access their state

variables directly. Therefore, when a cell goes through a state transition, its neighboring

cells are added to the set of cells, EXT, that should fire their external transition functions.

Assumption-1:

The output values that are sent via messages by a cell in the modular form are actually

values of one or more of its state variables.

Applying this assumption requires that we first define the state variables of each

cell as follows: Given that each cell has a state set Si, and each state si∈Si is a collection

of values of the state variables that represent the current state of the cell i. Therefore,

si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state variables in the cell. Note that the

primary states (e.g. passive, active … etc) are also treated as one of the state variables

which contain the name of the state as a string.

The resultant non-modular cell space can be shown to be equivalent to the

modular counterpart as follows: Given that assumption-1 is satisfied, each modular cell i

will send its own values of the state variables through Yb
i to its neighbors whenever there

 45

is a change in those values. Then, that neighboring cell j receives those values at Xb
j.

Therefore, b
ji

b
ji XY ,, = for all cells i,j∈D and there exist coupling relation Zi,j. However, the

initiating cell, i, actually sends its own selected set (vij) of state values to neighbor j and

so,)}1()(|{, nkvksvY ij
k
i

b
ji ≤≤∧∈= which represent the set of state values that should

be sent to cell j.

Then, given that there exist the coupling Zi,j where i,j≠self,

)}1()(|{,, nkvksvYX ij
k
i

b
ji

b
ji ≤≤∧∈== ,

,...},,,...,,,{)}1()(|{ 232221131211
,

k
i

k
i

k
i

k
i

k
i

k
iij

k
iIi

b
jiIi

b
i svsvsvsvsvsvnkvksvYY

jj

=≤≤∧∈×=×=
∈∈

with ijvkjkjkj ∈,...3,2,1 , and

,...},,,...,,,{)}1()(|{ 23
2

22
2

21
2

13
1

12
1

11
1,

k
i

k
i

k
i

k
i

k
i

k
i

k
iIi

b
jiIi

b
j svsvsvsvsvsvnkvijksvXX

jj

=≤≤∧∈×=×=
∈∈

,

where ijvkikiki ∈,...3,2,1 .

That means that all input/output values are equivalent to the state variables of the

cells. Therefore, we can redesign the cell space model to make it fully non-modular by

making each cell access the required state variables of its neighboring cells while still

keeping the equivalency given that assumption-1 is met. According to Figure 3.1,

implementing modular cells makes each cell keep records of its neighboring state

variable (y*) where, in the non-modular from, there is no need to keep a record since

every time the cell needs a value from its neighbor (y), it access it directly. This will

make the internal cell transition function defined for state variables of each cell as well as

 46

the state variables of its neighboring cell since it has access to all of them according to

the coupling relation.

For boundary cells:

Xb= b
iselfIself

X
i

,∈
× =)}1()(|{ nkvksv xi

k
xIself i

≤≤∧∈×
∈

Yb= b
selfiIi

Y
self

,∈
× =)}1()(|{ nkvksv iy

k
iIi self

≤≤∧∈×
∈

Where vxi is the set of state variables needed to be received by boundary cells through

external input ports and viy is the set of state variables needed to be sent by boundary cells

through external output ports. The state variables k
xsv are used as storage for the external

values that are received by the cell space through input ports and they are only accessed

by the boundary cells. On the other hand, the external outputs that are required to be sent

out of the cell space are the states variables of the boundary cells.

One more issue in the equivalency to the non-modular form is that the

neighboring cells do not always have the last updated values. One reason for that is using

the quantized DEVS in which the cell does not inform the neighboring cells with its last

modification if the difference is not above a specific quantum. The above equivalency

analysis is correct if we set the quantum to zero. However, if it is not zero, each cell

should keep two copies of state variables (e.g. now and new). Whenever a cell needs to

access a value in its neighboring cell, it will access the (now) value which represents the

last value that crossed the quantum level (i.e. was sent to the cell through ports in the

modular form). The (new) value is the last updated value of the cell which is kept

different from (now) till it crossed the quantum level and the change will be committed to

 47

(now) to be available for other cells to access. Now, we can redefine the cell transition

functions as follows:

For each specific cell i :

δ∗
int: Si-now → Si-new where si∈Si given si=(sv1

i, sv2
i, sv3

i, … svn
i)

δ∗
ext: nowj

Ij
S

i

−
∈
× × Qi → Qi

δ∗
con: nowj

Ij
S

i

−
∈
× × Qi → Qi

λ∗: Si-new → Si-now

The output function for each cell just updates the state variables of the current cell

in case it exceeds the quantum level and there is no need to generate any outputs if the

cell is not a boundary cell. This task is actually done in the internal transition function

δ∗
int and we can select not to duplicate the task. Another reason is to keep the new

specification consistent with the DEVS specification where the output function is used to

send messages only and does not initiate state or variable changes in the model.

Therefore, δ∗
int will commit the changes in variables and add the neighboring cells to the

scan group EXT.

λ(s) : for all { i | i∈ IMM ∧ i ∈ Iself }

 Apply λ* to Celli [Y= Y ∪ Zi,self()}1()(|{ nkviyksv k
i ≤≤∧∈)]

δint(s) : for all i∈ IMM

 if si-new - si-now > quantum

 48

 for all { i| i∈ Ij ∧ j≠self }

 If j∈ IMM CONF=CONF∪{ j}

Else EXT=EXT∪{ j}

 si-now = si-new

 INT= IMM – CONF

Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ INT: apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT: apply *
extδ to Celli

 schedule (next ta, i)

for all i∈ CONF: apply *
conδ to Celli

 schedule (next ta, i)

 clear all cell groups INT=EXT=CONF={}

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

 49

δcon(s,xb) : for all i∈ IMM

 if si-new - si-now > quantum

 for all { i| i∈ Ij ∧ j≠self }

 If j∈ IMM CONF=CONF∪{ j}

Else EXT=EXT∪{ j}

 si-now = si-new

 INT= IMM – CONF

CONF’=CONF ∪ {{INT}∩ { j | self∈Ij ∧ Zself,i(Xb) ≠ Ø}}

 INT’=INT - {{INT}∩ { j | self∈Ij ∧ Zself,i(Xb) ≠ Ø}}

 EXT’=EXT ∪ {{ j | self∈Ij ∧ Xb
j ≠ Ø} – CONF’}

Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

 for all i∈ INT’ : apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT’ : Sself-now= Sself-now ∪ Zself,i(Xb)

apply *
extδ to Celli

 schedule (next ta, i)

for all i∈ CONF’ : Sself-now = Sself-now ∪ Zself,i(Xb)

apply *
conδ to Celli

 schedule (next ta, i)

clear cell groups INT=EXT=CONF=CONF’=INT’=EXT’={}

 50

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

δext(s,e,xb) : Update EVENTS: time=time-e for all (time, i)∈ EVENTS

for all i∈ { j | self∈Ij ∧ Zself,i(Xb≠∅)}

 Sself-now = Sself-now ∪ Zself,i(Xb)

 apply *
extδ to Celli

schedule (next ta, i)

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

 51

3.3.3 Final Non-Modular Decomposed Format

The last detailed specification above shows that the cell internal output function

tasks were encapsulated under the cell space output function and there is no need to

define λ* as an independent function. Similarly, δ∗
ext or δ∗

con are not defined for non-

modular cells as shown in Figure 3.1.

Assumption-2:

The modular cells use δ∗
ext and δ∗

con to update the values of their neighboring states and

then apply δ∗
int to make calculations and transitions according to the updated values. This

means that δ∗
ext and δ∗

con are designed not to make calculations or processing, but force

the cell to do an internal transition which considers the new updates.

δ∗
ext(si,ei,xb

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0,)}1()(|{ nkvjiksvk

jIj i

≤≤∧∈×
∈

=xb
i)

ta(“re-calculate”)=0;

δ∗
con(si,xb

i)= δ∗
int(δ∗

ext(si,ta(si),xb
i))

In the non-modular form, each cell will update its own values using the internal

transition function δ∗
int and then, their neighboring cells will be added to the scanning list

which in turn schedules an external event for the neighboring cells. This is exactly what

the cell output function λ* and the cell external transition function δ∗
ext do given that

assumption-2 is satisfied. Therefore, the equivalency to the modular form is satisfied and

there is no need to have the functions λ*, δ∗
ext, and δ∗

con explicitly in the resultant model

 52

since their tasks are already implied in the new framework. As a result, the model can be

simplified for ease of user specification in such a way that each cell has only an internal

transition function that is applied every time a cell becomes active. In addition, the cell

groups can be merged as we do not distinguish between the different groups. However, in

addition to the IMM group, we still need the EXT group in order to update the

neighboring values of the imminent cells. Note that from now on, we will refer to the cell

internal transition function δ∗
int as the cell’s local transition function ∆* (∆*=δ∗

int).

For each specific cell i :

∆*: nowj
Ij

S
i

−
∈
× ×Si-now → Si-new where si∈Si given si=(sv1

i, sv2
i, sv3

i, … svn
i)

λ(s) : for all { i | i∈ IMM ∧ i ∈ Iself }

 Y= Y ∪ Zi,self()}1()(|{ nkviyksv k
i ≤≤∧∈)

δint(s) : Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ IMM

 if si-new - si-now > quantum

 for all { i| i∈ Ij ∧ j≠self } EXT=EXT∪{ j}

 si-now = si-new

for all i∈ {IMM ∪ EXT} :

apply ∆* to Celli

 schedule (next ta, i)

 clear cell group EXT={}

 53

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

δcon(s,xb) : Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ IMM

 if si-new - si-now > quantum

 for all { i| i∈ Ij ∧ j≠self } EXT=EXT∪{ j}

 si-now = si-new

 EXT=EXT ∪ { j | self∈Ij ∧ Xb
j ≠ Ø}

 for all i∈ { i | self∈Ii ∧ Xb
i ≠ Ø} : Sself-now= Sself-now ∪ Zself,i(Xb)

for all i∈ {IMM ∪ EXT} :

 apply ∆* to Celli

 schedule (next ta, i)

clear cell group EXT={}

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 54

 else

clear IMM={}

ta(s) = ∞

δext(s,e,xb) : Update EVENTS: time=time-e for all (time, i)∈ EVENTS

for all i∈ { j | self∈Ij ∧ Zself,i(Xb≠∅)}

 Sself-now = Sself-now ∪ Zself,i(Xb)

 apply ∆* to Celli

schedule (next ta, i)

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

This last specification is now decomposed fully into the non-modular form. An

atomic cell space now consists of identical cells having the same transition function at the

cell space level but covering different sets of data and state variables. The cell space was

converted into an atomic non-modular P-DEVS as shown above given that assumption-1

and assumption-2 are satisfied. The resultant model can be further simplified and put in

the following format:

λ(s) : for all { i | i∈ IMM ∧ i ∈ Iself }

 55

 Y= Y ∪ Zi,self()}1()(|{ nkviyksv k
i ≤≤∧∈)

δint(s) : Update EVENTS: time=time-ta(s) for all (time, i)∈ EVENTS

 delete any ev=(0 , i) where ev∈ EVENTS

for all i∈ IMM

 if si-new - si-now > quantum

 for all { i| i∈ Ij ∧ j≠self } EXT=EXT∪{ j}

 si-now = si-new

for all i∈ {IMM ∪ EXT} :

apply ∆* to Celli

 schedule (next ta, i)

 clear cell group EXT={}

if (EVENTS ≠ {})

extract IMM from EVENTS

ta(s) = minimum {time |(time, i) ∈ EVENTS }

 else

clear IMM={}

ta(s) = ∞

δcon(s,xb) : conf = true

 δext(s,e,xb)

 δint(s)

conf = false

 56

δext(s,e,xb) : if (!conf) Update EVENTS: time=time-e for all (time, i)∈ EVENTS

 EXT = { j | self∈Ij ∧ Zself,i(Xb≠∅)}

for all i∈ EXT

 Sself-now = Sself-now ∪ Zself,i(Xb)

 if (!conf) IMM = EXT

 ta(s)=0 // fire δint(s) to make the state transitions

3.4 A Proposition to Show the Generality of the Approach

The generality of the approach that follows the closure under coupling property in

parallel DEVS was ensured in all steps in the procedure with no constraints except the

two assumptions introduced in subsections 3.3.2 and 3.3.3. The final format reached

assumes that the models satisfy those assumptions. This section shows and proves the

generality of the approach that spans all cellular DEVS models: even the ones that do not

agree with the assumptions. This section shows that any modular cell in cellular DEVS

model can be modified to satisfy the two assumptions as follows.

A modular cell (i), that does not satisfy assumption-1, sends an output value y that

is not among the cell’s state variable values si where si∈Si. That value will either be a

fixed value for each cell, fixed parameter, or cell’s calculated value where y∉si. It was

shown in section 3.3.2 that si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state

variables in the cell model. To satisfy assumption-1, the modular cell (i) can be updated

to extend the state variables representation in order to include one more state variable that

account for the values y. As a result si=(sv1
i, sv2

i, … svn+1
i) where svn+1

i is a newly added

 57

state variable to the model that stores the value of y which can be then sent through

external ports according to assumption-1.

A modular cell (i), that does not satisfy assumption-2, does some computations

and state transitions in δext. Operations in this function can be separated into two phases

in any DEVS cell model. The first one accepts the external values on ports and updates

the state variables accordingly in zero time. The other phase will include the calculations

and state transitions that are based on the updated values.

δ∗
ext(si,ei,xb

i) = si-new δ∗
ext(si,ei,xb

i) = δ∗
ext(si-temp,ei) =si-new

First phase:

()}1()(|{ nkvjiksvk
jIj i

≤≤∧∈×
∈

=xb
i) + si → si-temp

si-temp = {“re-caculate”, svi-temp
1,…, svi-temp

n }

Second phase:

δ∗
ext(si-temp,ei) = si-new = { svi-new

0, svi-new
1, …, svi-new

n }.

To satisfy assumption-2, the second phase should be moved into the internal transition

function that should now deal with a temporary state “re-calculate”. The first phase is left

in the external function to update state variables based on the received messages.

Therefore, the external transition function can be defined in the following format:

δ∗
ext(si,ei,xb

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0,)}1()(|{ nkvjiksvk

jIj i

≤≤∧∈×
∈

=xb
i)

which account for the new updates and sets the time advance to be zero in order to fire

the internal transition function in the next step that will deal with the temporary state “re-

 58

calculate” on the updated values and hence satisfying assumption-2. Similar approach can

be done in the confluent function.

3.5 Fast Cellular DEVS Specification

Based on the full decomposition process, we can now introduce a specification (i.e.

formalism layer) to represent atomic DEVS cell space that will run faster than the

conventional implementations that are based on representing each cell as an atomic

model. Therefore, a cell space can be formed in the following P-DEVS atomic structure:

Atomic CellSpace = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ .

Where,

D is the set of cell ID’s encapsulated in this atomic model, |D| = number of cells

in the model

 B is the set of the boundary cells ID’s

Cellid = *, Sn for all id∈D and n is the set of neighboring cells and S* the state

variables set (in non-modular form) where s*=(sv1, sv2, sv3, …..) | svn is the value

of the nth state variable of the cell for a given s∈S*.

X is a set of input values defined only for boundary Cells id∈B (set of

ports/values in coupled structures).

Y is a set of output values.

S is a set of general states of the atomic model

The total state set Q ={(s,e,{ *
id

Did
Q×

∈

}) | s ∈ S, 0 ≤ e ≤ ta(s)}

 59

Q*
id = {(*

ids ,eid) | s* ∈ S*, 0 ≤ eid ≤ ta(s*)id }

δint: Q → Q is the internal transition function.

δext: Q × Xb
B → Q is the external transition function,

δcon: Q × Xb
B → Q is the confluent transition function,

λ: Q → Yb is the output function, only for cells with id∈B

Events: is the next events list where ta=min{time|(time,id)∈Events}

The four functions are executed iteratively and efficiently as explained at the end

of section 3.3.3.

For multi cell spaces, we can couple more than one atomic cellular space in one coupled

model which will be in the form of parallel coupled DEVS:

CM = }{},{},{,,, , jiii ZICellSpaceDYX .

In addition, the specification can be extended to d-dimensional cell space as follows:

CellSpaced = EventsCellBDdNYSX conextidi ,,,,},{,,,},{,,, int λδδδ .

Where, d is the dimension of the cell space and Ni is the number of cells in the ith

dimension given 1 ≤ i ≤ d. Then, id will be a set of IDs for cell in each dimension

{idi}. In array implementation of the cell space atomic mode, this update will

result in d-dimensional state arrays for the state variables. However, in that case,

the cell’s id will be the set of array indexes in each dimension.

-

-

 60

-

Example:

In the case of 2-D cell space, id=(i,j) where i is the cell id in the first dimension

and j in the other dimension. n={(i*, j*)| i* neighbor to i ∨ j* neighbor to j} is set of 2D

neighbors

Cellid = Cell(i,j) = *, Sn for all id∈ D

B is the set of boundary cells IDs = {(i,j)| i=1 ∨ i=N1 ∨ j=1 ∨ j=N2}

N1 is number of cells in the first dimension, N2 in the other dimension where the cell

space size will be N1×N2 = | D |.

B⊆D and | B | = 2N1 + 2N2 -4

Lemma 1

 CellSpace is a parallel DEVS (P-DEVS) atomic Model.

Proof:

The formalism CellSpace was generated from the closure under coupling

property. The step by step procedure ensured that the new representations keep the

general P-DEVS structure and hence equivalency.

Given that

CellSpace = EventsCellBDdNYSX conextidi ,,,,},{,,,},{,,, int λδδδ

and

 61

P-DEVS = taYSX conext ,,,,,,, int λδδδ

By analyzing the definitions of both models, it can be seen that

CellSpace.X ≡ P-DEVS.X

CellSpace.Y ≡ P-DEVS.Y

By definition, S is the set of states which includes all state variables as well. Therefore,

P-DEVS.S={Phase×{P-DEVS.S*}}, where {S*} is the total set of all internal state

variables in the model and phase is the representing state of the model (string).

Equivalently, CellSpace.S={Phase×{ ×
∈Did

Cellid.S*}}, where the cell’s S* is the set of state

variables inside that cell. Since S can be equivalently set for both models, the internal

transition function as well as the output functions are defined for the same S where δint:

S→S and λ: S→Y (Moore type). In addition, δext and δcon are applied to the total state set

Q and the time advance of CellSpace is defined as the minimum time in the Events list.

Therefore, both models are equivalent with more details and parameters in CellSpace

which can be implied in the internal behavior of any P-DEVS atomic model.

Lemma 2

A DTSS model can be represented by CellSpace.

Discrete Time System Specification (DTSS)

A Discrete Time System Specification is a structure:

 62

DTSS = cQYX ,,,,, λδ , where X is the set of inputs, Y is the set of outputs, Q is the set

of states, δ : Q × X → Q is the state transition function, λ : Q → Y is the output function

(Moore-type), and c is a constant employed for the specification of the time base c•ℑ.

Proof:

Since CellSpace is an atomic P-DEVS model, all what we need is to prove that a

DTSS model can be represented by P-DEVS. Then, by induction the new framework can

represent the DTSS.

P-DEVS = taYSX conext ,,,,,,, int λδδδ can be put in the general I/O system

structure ',',',',',',' Λ∆Ω QYXT where the time base T is the real numbers R, input set

is X’ = Xb ∪ {Ø} (i.e., input set of the dynamic system is the input set of the DEVS

together with the nonevents set specified by Ø∉Xb), output set is YØ = Y ∪ {Ø}, state set

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set, the set Ω of admissible input

segments is the set of all DEVS segments over Xb and T, the state trajectories are

piecewise constant segments over S and T, and the output trajectories are DEVS

segments over Yb and T. For equivalency of the two structures: X≡X’, Y≡Y’, ta(s)∈T’,

Q’=(S×T’), ∆’=δ(s,e,xb) which is the local transition function of the atomic DEVS model

as defined in 3.3.3, and finally, the output function is defined as follows:

Λ’=



Φ

=
otherwise

staeifs)()(λ
 … considering Moore type

 63

Similarly, DTSS models can be put in the I/O system structure ',',',',',',' Λ∆Ω QYXT

where the time base T is the set c•ℑ, the set Ω of admissible input segments is the set of

all segments over X and T, and the equivalency in both structures includes: X, Y and Q.

Now, P-DEVS is capable of presenting DTSS models by first setting the time

base to be an integer discrete subset of its general real time base. This will make the

DEVS model make transitions and/or generate outputs in discrete steps of time c. This

means that all ta(s) as well as the time to receive inputs are either 0 or c. Therefore, the P-

DEVS local transition function can be put in the following form:











Φ=∧∨==
Φ≠∧∨==

Φ≠∧=

==Λ

otherwisees
xcstaes
xcstaexs

xexes

xes b

bb
con

bb
ext

b

),(
}0{)()(
}0{)(),(

0),,(

),,('
intδ

δ
δ

δ

Which will perform equivalently to the transition function δ of the DTSS over the total

set of states that will contain (s,0) or (s,c) and generate an output using λ(s) that is

equivalent to the Moore type DTSS λ.

Lemma 3

A cellular model represented by a coupled DTSS formalism can also be represented by

an atomic CellSpace.

Discrete Time Coupled Models

A discrete time specified network (DTSN) is a coupled system

 64

N = 〈 X, Y, D, {Md}, {Id}, {Zd}, hN 〉

where

X is the set of input values (set of ports/values in coupled structures).

Y is the set of output values (set of ports/values in coupled structures).

D is the set of components.

for each d in D: Md is a DTSS or FNSS basic component.

for each d in D ∪ {self}: Id is the influencees of d, d is not in Id (no delay-less

feedback loop).

self is the coupled model itself N which allow external inputs and outputs.

for each j in Id : Zd is the d to j output translation function.

hN is a constant time advance employed for the specification of the time base

hN•ℑ which should be identical to the time base of all of the internal components.

Proof:

A cellular model can be represented in the DTSN formalism by putting it in the

following from

CellSpceDTSN = 〈 X, Y, D, {Cellid}, {Iid}, {Zid}, hN 〉 where each cell with id ∈ D is a DTSS

atomic model that is Cellid= cQYX ,,,,, λδ with the time step c=hN. The DTSS

formalism was proved to be closed under coupling in [6]. That is a DTSN model can be

presented in an equivalent DTSS atomic model. That means, a cellular space model that

 65

is represented by DTSN can be put in the atomic form CellSpaceDTSS= cQYX ,,,,, λδ

and following Lemma 2, this resultant model can be presented in CellSpace.

We can also prove this by following the same decomposition procedure presented

in the previous sections but this time for converting a cellular coupled model in DTSN

into DTSS atomic model with all details. Then as a special case for the DTSS, the

scheduling algorithm and processing of cells is done in discrete time step of duration c.

Example: 2-D Game of Life

GOL = 〈 X, Y, D, {Cellid}, {Iid}, {Zid}, h 〉 with time step h=1, X={}, Y={}, and

id=(i,j) where i is the id in the first dimension and j in the other. Each cell is a DTSS

model that has hQYX jijiji ,,,,,),(),(),(λδ , where δ, λ, and h are identical for all cells.

Q(i,j)={0,1}, Y(i,j)={0,1}, X(i,j)={0,1}

Using Moore output type: y = λ (q) = q

δ(q(i,j),X(i,j)) =
() ()()()



 =∧=∨= ∑∑

otherwise
XqXif jijiji

0
2131),(),(),(

I(i,j)={ (i-1,j-1), (i-1,j) , (i-1,j+1) , (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) , (i+1,j+1) }

Z(i,j): Y(i,j) → X(i’,j’) for (i’,j’) ∈ I(i,j)

At each time step h, a cell will generate a transition and send its current state q to

all of its eight neighboring cells. Therefore, each cell will receive 8 binary values at X

 66

that represent the binary states of its 8 neighbors which will be summed up in the

transition function.

Representing GOL in CellSpace

GOL1 = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ with Cellid = *, Sn

Similarly, X={}, Y={}, and for each cell: id=(i,j), S*={0,1}, and n={ (i-1,j-1), (i-1,j) , (i-

1,j+1) , (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) , (i+1,j+1) }. S={“active”}

B={} since there is no need for any cell to send or receive at boundaries. The basic

functions of this atomic P-DEVS model δint: active → active, δext, δcon, and λ fixed

iterative functions those where defined in section 3.3.3 with a specific cell’s local

transition function

∆*(i,j) = ()































=∧=∨










= ∑∑

∈∈

otherwise

sCellsCellsCellif
nCellid

idji
nCellid

id
jiji

0

2.1.3.1
.

**
),(

.

*

),(),(

With all time advances equal to h in GOL1. That means that all times in Events list

are equal to h and hence ta(active)=h in all iterations.

3.6 Solving Differential Equations Using Cell Space Models

A differential equation is any equation that contains derivatives, either ordinary or

partial. Numerical solutions of differential equations consider approximating the

derivatives of these equations in order to find a particular solution for given initial values.

This may include discretizing the equations spatially or/and temporally. In recent years,

 67

many researchers dedicated their work to employ modeling and simulation theories in

solving differential equations. As a result, different formalisms and methods where

developed to precisely represent differential equations as system models and generate

their solutions by simulating those models.

Depending on the discretization methods, the modeler can select the proper

formalism to present and solve his differential equations. For example, Differential

Equation System Specification (DESS) represents equations with the minimum state

discretization required for computer representation, where Discrete Time System

Specification (DTSS) represents them with spatial and temporal discretization. Quantized

DEVS was introduced to solve equations on continuous time space with discrete

quantized states. These approximation/discretization methods, of course, introduce some

errors compared to their analytical solutions. However, a 100% accurate solution is

impossible to achieve in computer generated solutions since they cannot handle

continuous state representations (i.e. finite state machine). Therefore, the modeler’s task

is to select a representation that minimizes the error and speeds up computations (i.e.

generates the solution in the fastest time possible).

Representing differential equations in cell space models requires dividing them

spatially into cells having identical representative structures where each cell stores the

state variables of the area it covers and applies the transition functions to generate the

solution for that specific area. Now, the modelers will differ in selecting to discretize

these cell’s states as well as their temporal domain or not. Discretizing them using a fixed

 68

time step will result in a network of DTSS cells, where the variable time step (i.e. time to

next state transition) will result in a network of atomic DEVS cells with discrete

input/output events. On the other hand, continuous input/output events requires using

cells in the form of quantized atomic DEVS which is the closest, but faster,

representation to the DESS, which apparently does not discretize temporal space.

Lemma 4

CellSpace is able to represent and solve spatial differential equations numerically.

Proof:

Using numerical methods, any differential equation can be approximated in a

difference equation form. This difference equation is spatially divided into smaller units

that can be put in a mesh form which in turn can be put in a cell space model format.

Then, each cell can be presented in the form of DTSS with a fixed time step and discrete

input/output events. The solution of the equation on the specified space is obtained by

gathering the solutions of all cells under the whole coupled network of DTSS cell

models. Lemma 2 proved that this coupled model can be presented in CellSpace.

Therefore, it can represent differential equations and solve them. Furthermore, it is

capable of representing the differential equations using a variable time step rather than a

fixed time step based on the quantization principles that are inherited from being within

the DEVS framework.

 69

3.7 Solving Partial Differential Equations Using the New Framework

Since most of the complex natural system’s dynamics can be formulated using

partial differential equations, in this section, we are going to give examples on how to

solve such equations using cellular space models. The two dimensional cell spaces are the

most commonly used in representing three dimensional phenomena since the third

dimension can be translated into a state variable that is dependent on two spatial

dimensions as well as a temporal dimension. For example, in land elevation models, a

land height (Z) at any given time (t) is specified by a value (state variable) that is given

according to a specific point described by x-y coordinates in the cell space. In this

section, we are going to give one example (in 2-D Cell space) considering the new

formalism in obtaining solution formulation.

Example (2-D Heat Equation):

Solve the partial differential equation: 







∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
u

x
uc

t
u using the following

Cell DEVS atomic model: CellSpace = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ

Solution:

This equation can be represented by a DTSS equivalent DEVS model or quantized state

DEVS model.

DTSS like:

Using the difference methods, this equation becomes:

 70












∆

+−
+

∆

+−
=

∆

− −+−+
+

2
)1,(),()1,(

2
),1(),(),1(),(

1
),(

)(
2

)(
2

y
uuu

x
uuu

c
t
uu n

ji
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji

Equation-Model = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ , where X={}, Y={},

B={}, S={“active”}, {Cellid}=Cells[M][N] (array of size M by N), M = number of cells in

x-axis, N = number of cells in y-axis, M×N= |D| = (Lx/∆x)*(Ly/∆y) , Lx is actual presented

space length in x-axis, Ly is actual presented space length in y-axis, for each cell, id is the

2-D arry position (i,j), n: 4-neighboring (right/left/up/down) rule, and S*=u[i][j] is the

value of u at cell (i,j), δint: active → active, ta(active)=∆t and thus {t={0, ∆t}| t∈Events}.

At each iteration n, the cell transition function ∆* will calculate the next heat

value u (at next ∆t) based on its current heat value un(i,j) as well as the current heat

values at its four neighbors {(i-1,j),(i+1,j),(i,j-1),(i,j+1)} according to the following

equation:

() ()n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji uuu

yt
cuuu

xt
cuu)1,(),()1,(2),1(),(),1(2),(

1
),(2

)(
2

)(−+−+
+ +−

∆∆
++−

∆∆
+=

Assuming that ∆x = ∆y = d, the equation becomes

()n
ji

n
ji

n
ji

n
ji

n
ji

n
ji uuuu

dt
cu

dt
cu)1,()1,(),1(),1(2),(2

1
),()()(

41 −+−+
+ +++

∆
+








∆

−=

Quantized state DEVS:

Each cell in the 2-D space will start with an initial value u(i,j)(0) and then calculate its rate

of change:

 71

())1,()1,(),1(),(),1(2
),(4 −+−+ +++−= jijijijiji

ji uuuuu
d
c

dt
du

Then, the time advance h to the next quantum (q) level will be calculated according to the

following equation which will be used to schedule the next event for that cell.

()n
ji

n
ji

n
ji

n
ji

n
ji uuuuuc

dqh
)1,()1,(),(),1(),1(

2

4
)(

−+−+ ++−+
=

On event processing (internal or external), a cell should first update its state value

u(i,j) according to the previous rate of change as well is its elapsed time since its last event

and schedule its next time advance. Then, the cycle goes on till an end point is reached

(either stopped by the user or the simulation reached a predefined stopping time). This

type is referred to as lazy-DEVS while, on the other hand, aggressive-DEVS updates all

cells regardless whether they got events or not. In this work, since we are aiming at high

performance, we just consider the lazy-DEVS, which outperforms the aggressive-DEVS.

This was taken care of by implementing the scan list, which only considers the imminent

cells and updates them while all other cells remain as is.

 72

CHAPTER 4 : A TOOL FOR BUILDING EFFICIENT

CELLULAR DEVS MODELS

The objective of this tool is to minimize the coding efforts required by users to

develop cellular DEVS models. In DEVSJAVA, the user is responsible for coding all

classes, attributes, and functions in order to build a DEVS model that can then be run

using the simulation viewer. This actually causes the development process to be longer

with a tendency to fall into errors. With the new specifications made in the previous

chapter, aiming at faster simulation execution, the coding process will be much more

complicated than it used to be. Therefore, developing a new modeling environment

becomes a necessity in order to develop efficient cellular space models with minimum

development time.

4.1 Ease of User Specifications with GUI support

The new specification presented in section 3.5 was designed to run faster than the

conventional cellular space DEVS models. It can be noticed that the functions δint, δext,

δcon and λ were well defined (end of section 3.3.3) with no room for further modifications

by the modeler except by defining variables, ports, cell’s initial data, and the cell

transition function, ∆*, which is then encapsulated to be part of the internal transition

function. Therefore, a new specification was introduced for the user to input data that will

be used to automatically generate the remaining fixed structure of the full specification.

However, at any time, the fixed internal functions, event list handling, and designs can be

 73

modified by programmers who seek further speed up if applicable, or seek different

interpretation for their own models.

Cell Space = EventsCellBDYSX conextid ,,,,},{,,,,, int λδδδ *},{,,,, ∆idCellBDYX

Where, for each id∈D, Cellid = *, Sn .

That resultant specification makes the user just specify the cell’s state variables

S*, input/output ports sets if applicable, neighboring rules, and the cell’s local transition

function. The general state variable S for the atomic model does not require special

treatment for different kinds of models. It was defined fixed for states that scan the cells,

calculate their transitions, schedule next events, and retrieve those next events on their

scheduled time. When using arrays to represent cells, the whole atomic cell space will

have uniform size arrays of state variables. The cells by the boundaries of these arrays

represent the set B and all cells inside those arrays represent the set D with the cell ID’s

as the array indexes. Cell Space= EventsrBDYSSX conext ,,,,,,,,},{,, int
* λδδδ

As a result, we guaranteed that the development time of cell space atomic models,

as well as their run time, becomes much smaller compared to the conventional cellular

DEVS specification. Furthermore, this simplicity can be represented in such a way that it

supports a graphical user interface (GUI) in the implementation as shown in Figure 4.1.

The figure has further details in the user specification, including port to state variable

mapping for the automatic code generation. This will make the code decide which values

to send or receive at each port and hence this will not be at the user layer of specification.

 74

Following the array implementation, the user specification can be put in the following

format:

UserSpecification= ** ,,,},{, ∆rYSX µ

Where {S*}is the set of the state variables arrays, r is the neighboring rule to be followed

(eg. Neumann or Moore neighbors), and µ is set of state variables to ports mapping

µ : X’→ {S*} → Y’ for X’={X∪∅} and Y’={Y∪∅}

∅ → s*→ ∅ : the values of state variable s* is not to be sent or received through ports.

∅ → s*→ y : the values of s* can be sent through port y but not expected to receive

values. Usually used for statistic gathering ports, not used for neighboring ports.

x → s*→ ∅ : the variable s* can get values from port x but does not send values (also

not used for neighboring ports)

x → s*→ y : the values of s* can be sent through port y and expected to receive values

from port x

For all the above explanations, what is meant by values are the ones by the

boundaries of the arrays only [(i,j)∈B]. µ is expected to be a total function over X’, Y’

and {S*}. However, if a state variable is not included in µ, it should be interpreted as

∅→s*→∅ and if a port is not included, the generated code should not send or receive

any values over that port.

 75

User Specification

GUI

Parallel DEVS

CellSpace1 Specification

UserSpace=〈 X, {S*}, Y,µ, r, ∆∗〉

CellSpace=〈 X, S, {S*}, Y, D, B, r, δint, δext, δcon, λ, Events〉

P-DEVS=〈 X, S, Y, δint, δext, δcon, λ, ta〉

Automated
Specification

Code
Generation

Figure 4.1: Specification layers.

The layers presented in Figure 4.1 suggested that the cell space structure is a

middle layer which is used to provide information that is sent down to the lower code

layer which put them in the Parallel DEVS specification. This design ensured that the

new specification is put into the DEVS format and hence any generated model using this

design is able to be executed using any parallel DEVS simulator.

4.2 Design Structure of the New Modeling Environment

In Figure 4.1, three layers of specifications were suggested. The lower layer is the

parallel-DEVS specification layer which represents the DEVSJAVA modeling and

simulation environment. Since it is the targeted running environment for our produced

models, all the models to be run should be presented in that specification. Therefore, the

new development environment is spanning the two upper specification layers and

 76

producing models which must satisfy the third layer of specification. Figure 4.2 shows

the design structure of the new cellular DEVS modeling environment which takes model

specifications via the Graphical User Interface (GUI) and generates the code that can be

run in a DEVSJAVA environment with an efficient cellular DEVS specifications.

DEVSJAVA

DEVSJAVA Simulator

DEVSJAVA Modeling

Code Generator

GUI

Cellular DEVS
Specifications

generated Model

Cellular DEVS Modeling Environment

Figure 4.2: Structure of the new cellular DEVS environment.

The main design units in this environment are: GUI, code generator, and the

cellular DEVS Specifications unit. Each of these units contains its own classes and has

different objectives. Generally speaking, the GUI unit is a DEVS independent unit that

gathers information about the model from the user and passes them to the code generator.

The code generator unit gathers that information and produces the model’s code guided

by the format of the new cellular DEVS specification. The generated code extends the

standard classes given by the cellular DEVS specification. Those, in turn, extend the

 77

standard modeling classes in the DEVSJAVA modeling layer. The specifications unit

hides most of the implementation details and includes huge methods and classes that

were hidden from the user to ease the user task in the model development process.

4.3 New Cellular DEVS Specification Unit

This unit contains the basic implementation models for the new specifications

previously defined. These are generic models for any standard cell space model to inherit

its basic attributes and methods. General Cell space models in DEVS were reviewed

guided with two points of view. The first one was to make the generic models

implemented in the new efficient specification introduced in the previous chapter. The

other one is the view of the user who should be provided with quicker and easier

development process following the user specification obtained in section 4.1.

As a result, the implemented classes were designed to minimize the amount of

code required by the model developer in specifying the model behavior as generic as

possible with some assumptions, constraints and conventions. The main guidelines in

building these classes are the homogeneity of the cell space as well as the separation

between models, simulator, and experimental frames. The new cell space specifications

as well as the conventional one are supported by this environment in order to demonstrate

the advantages of the new one as well as to ensure equivalency.

 78

4.3.1 DEVS Cell Space Implementation Models

The user specification layer includes the model information that is required to be

entered by the user. The model classes in the specifications unit are DEVS models

missing those user specifications. Therefore, the model classes in this unit are the base

classes which when provided with user specifications form a complete operational DEVS

models. However, they cannot run by themselves without the user specifications since

they are missing specific model attributes, cell behavior, cell’s initial data, neighboring

rule, ports, and port couplings.

Cellular DEVS Specifications

basicUnit basicSpace

unit space

cellSpace blockSpacecell block

Atomic DEVS Coupled DEVS

DEVSJAVA Modeling

Figure 4.3: Cellular DEVS specification unit.

The main assumption stated in this environment that the developed cell spaces

contain identical processing units in two dimensions with the support of modeling one

dimension. The support of experimental frames should be external to the space coupled

DEVS model. The building block of the cell spaces is the unit which can be a DEVS

atomic cell or block, which may contain multiple cells. This will divide the cell spaces

into two types: cell space or block space according to what unit type it contains. Figure

 79

 4.3 shows the internal structure of the specifications unit which inherits the basic DEVS

classes from the DEVSJAVA modeling environment.

4.3.2 Some Implementation Details in Cellular DEVS Models

This section gives an overview on the main rules used to implement the basic

model classes and shows the main capabilities they can support.

Neighboring Rules and Neighbors Addressing Convention

The first issue to address is the neighboring rules these models may support as

well as neighbors addressing conventions. The standard neighboring rules supported by

these models as shown in Figure 4.4 are:

(a) Von Neumann neighboring rule (4-neighbors)

(b) Moore Neighboring rule (8-neighbors)

(c) Hexagonal neighboring rule (6-neighbors)

(i-1 , j+1) (i , j+1) (i+1, j+1)

(i-1 , j) (i , j) (i+1 , j)

(i-1 , j-1) (i , j-1) (i+1 , j-1)

(i , j+1)

(i-1 , j) (i , j) (i+1 , j)

(i , j-1) (i, j-1) (i+1,j-1)

(i , j)(i-1, j) (i+1, j)

(i, j+1)(i-1,j+1)

i

j

(a) (b) (c)
Figure 4.4: Supported neighboring rules.

The addressing convention follows an increasing number scheme, assigned to

each of the cell’s direction which are 0-3 for Neumann, 0-5 for Hexagonal, and 0-7 for

Moore neighboring rules as shown in Figure 4.5. In the implementation models, cells use

 80

the method myNeighbor(int k) to retrieve the x-y coordinates of its kth neighboring

according to addressing scheme mentioned above.

4 0 7

1 (i , j) 3

6 2 5

0

1 (i , j) 3

2 2 5

(i , j)1 3

04

(a) (b) (c)
Figure 4.5: Neighbors addressing convention.

Cell Ports Labeling and Couplings

Based on the neighboring rule selected by the user, the cell’s structure is then

built to handle communication between the neighbors defined by that rule. In the

conventional cellular DEVS implementation, cells communicate through ports which can

be of a single or multi type. Single port means that the cell sends values to all of it

neighbors through one port while in multi type it sends values to each of its neighbors in

different ports. The user can provide the development tool with the port name and type.

In the cell initialization process, the method addPorts() in cell model will be called to add

the required ports to the cell structure according to the port names, types and neighboring

rule. Table 4.1 shows the result of adding port of name “Port” for different user entries.

Since the ports are added to the cells in a hidden-from-user automated way,

coupling the ports is also done in a similar fashion. The mapping factor µ, in user

specification, defines the port couplings between cells and which values to send/receive

through these ports. Accordingly, the method doInternalCouplings(), in cell space model,

makes all the necessary couplings between cells. This method is design to account for

 81

different types of couplings namely single to single, multi to multi, single to multi, and

multi to single port couplings.

 Neumann Moore Hex

Single Port (i , j)Port

(i , j)Port

(i , j)Port

Multi Port (i , j)

Port_N

Port_S

Port_W Port_E

(i , j)

Port_N

Port_S

Port_EPort_W

Port_NW

Port_SW Port_SE

Port_NE

(i , j)
Port_W Port_E

Port_NW Port_NE

Port_SW Port_SE

Table 4.1: Single vs. multi ports in cell models.

In addition, the mapping specification decides what variable each port gets its

values from. The different types of output ports make a distinction between two cell’s

variable sets: state variables and flow variables. Usually the state variables are connected

to a single output port while the flow variables are connected to a multi output port. That

is because the state values are fixed for each cell at a given time and there is no need to

have a multi port to send a single value to all neighbors while each cell has different flow

values for different directions and hence it requires multi output ports to send all flows to

neighbors.

Block Ports Labeling

The difference between the cell and the block resides in the fact that a block has

multiple numbers of non-atomic decomposed cells encapsulated. Despite the fact that

they are all implemented as a DEVS atomic model, the block is equivalent to a DEVS

 82

cell space coupled model. Therefore, this big atomic model will have a big list of

input/output ports that exchange the values of the boundary cells. The port labeling

scheme in block implementation came from the fact that they contain 2-D indexed cell

arrays. In addition to the port name, the label should contain which array boundary that

specific port is at (i.e. north, south, east, or west) as well as cell index at that boundary

(i.e. either x or y coordinate of that cell). Since there are single and multi port types in

cell spaces, we should introduce labeling schemes for both types as shown in Figure 4.6

and Figure 4.7. The first scheme is a straight forward example as we explained above

since each cell has one port only with an exception for the diagonal cells which are at two

boundaries while they have single port. The multi scheme adds a third segment to the

labels to indicate the cell neighboring direction since each cell has at least one multi port.

Special treatment was done at the corners to include each one of the diagonal ports to

each of the major directions in order to avoid redundancy in ports.

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

Port_SW

Port_NW

Port_SE

Port_NE

Port_E_1Port_W_1

Port_S_1

Port_N_1

Figure 4.6: Single port labeling scheme.

 83

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

Port_E_0_SE

Port_E_2_SE

Port_E_1_SE
Port_E_1_E
Port_E_1_NE

Port_E_0_NE
Port_E_0_E

Port_E_2_E
Port_W_2_SW

Port_W_1_SW
Port_W_1_W
Port_W_1_NW

Port_W_0_NW
Port_W_0_W

Port_W_2_W

Port_W_2_NW Port_N_2_NE

Port_S_0_SW

Port_S_1_S
Port_S_1_SE

Port_S_1_SW

Port_S_2_SW

Port_S_0_SE
Port_S_0_S

Port_S_2_S

Po
rt_

N
_1

_N
Po

rt_
N

_1
_N

E

Po
rt_

N
_1

_N
W

Po
rt_

N
_2

_N
W

Po
rt_

N
_0

_N
E

Po
rt_

N
_0

_N

Po
rt_

N
_2

_N

Figure 4.7: Multi port labeling scheme.

Cellular DEVS Space Implementation

The cell space acts like a container for the cells or blocks it covers and provides the

means of communicating to other cells in different cell space. In addition, it can provide

the external experimental frame with state or statistical data generated by the internal

units. It is implemented as a DEVS coupled model that contains atomic DEVS models

(i.e. cells or blocks) and it plays a critical role in initiating the internal unit’s setup,

initialization, and port couplings.

Upon constructing the cell space, it builds all the required internal units using the

method addUnits(), assigns them IDs, adds the space ports (addPorts()) which follows

the labeling schemes used in the blocks, makes the internal as well as the boundary port

 84

couplings (doBoundaryCouplings() and doInternalCouplings()),extracts the cell space

initial data from an external file, and distributes it to its internal units (getInitialData()).

4.4 The GUI

The main class in our environment is the GUI, where the user inputs the cellular

model specifications, generates models, and reloads previously generated models to

modify. It was implemented using JFrame containing two tabs: the model specifications

tab and the cell’s local transition function tab. The model specification tab is the main

tab, shown in Figure 4.8, which allow the user to write the model name and its package

name (i.e. which folder to store the model in), select the space type either cell space or

block space, select the neighboring rule to use for his model, select the input data file

where the model should extract its initial data from, and fill the ports/variables mapping

table. Since the mapping table may have multiple rows, two buttons were introduced for

adding and removing rows. The table entries follow the µ segment in the user

specification in section 4.1 with additional information regarding the variable type (e.g.

integer or double) and ports type (i.e. single or multi). The index column gives the user

the ability to specify the order of the variables in the input data file for the model to

follow when reading the initial data.

The cell transition function tab was implemented as a text editor that allows the

user to write the cell’s local transition function ∆*. Figure 4.9 shows the default text

available for the user. The user is required to fill in the first function (userFunction(i,j))

which is going to be ∆*. In case the model needs to use certain quantization schemes or

 85

user defined boundary conditions, the user will need to then fill in the other two functions

enforceBoundaryConditions() and getQuantum(i,j).

Figure 4.8: The main GUI view.

Figure 4.9: The cell transition function tab.

After entering all model specifications and functions, the user needs to press the

generate button which will prompt him to enter the cell space size and the number of

blocks for block space type. Then, all model parameters and functions will be sent to the

 86

code generator which will generate the code for that model. In addition, the GUI will

generate a model property file that stores all user entries which can be used later on to

reload them in case the user needs to modify the model. The last button is added to

initiate the simulation viewer in order to run the generated models.

4.5 The Code Generator

The main task of the code generator is to write the DEVSJAVA code of the cellular

model defined by the user inputs which are received from the GUI. The GUI initiates the

abstract code generator class “codeGenerator” which may implement, depending on the

user selection, the cell space code generator “cellSpaceCode” or the block space code

generator “blockSpaceCode” as shown in Figure 4.10. The abstract class

“codeGenerator” implements the method generateCode() which is called by the GUI to

generate the model code. That method calls other methods that are either in the same

class or in the other two subclasses. In addition to that method, the abstract class contains

the common methods on which the space type has no effect. The required code format of

the developed model is essential in defining the code generator tasks and

implementations.

Code Generator

codeInterface

blockSpaceCodecellSpaceCode

codeGenerator

Figure 4.10: Structure of the code generator unit.

 87

4.5.1 The Generated Model Classes

Generic cellular DEVS models usually contain space and cell classes. Any

cellular model that is going to be developed should contain two classes inherited from

those generic classes. The new approach presented in this work gives the possibility that

a model may contain a block class instead of a cell class. Since we refer to cells and

blocks as units, we can rephrase the above statement so that any generated model should

contain space and unit classes. In this specific environment, the models are designed to

read their initial data from an external file and send them to the units as instances of

object class. This class is referred to as the model’s initial values class which is model

specific since it contains the initial values of the model’s state variables. Therefore, any

generated model should contain code for three classes: model’s space class, model’s unit

class, and model’s initial values class. Figure 4.11 illustrates the generated model classes

for cell space and block space models.

Generated Cell Space Model

Model's Space Class

Model's Unit Class

Model's Initial Values
Class

1

1..*

1

1
1..*

1

cellSpace

cell

Generated Block Space Model

Model's Space Class

Model's Unit Class

Model's Initial Values
Class

1

1..*

1

1
1..*

1

blockSpace

block

Object

Cellular DEVS Specifications

Figure 4.11: Generated model classes and hierarchy.

 88

4.5.2 Some Implementation Issues in the Code Generator

Initially, the code generator is constructed at the GUI with the file name (i.e.

where the full source code of the model should be stored) and folder location as specified

by the user. The file name is actually generated from the space model name which is also

used to name the unit and the initial data classes. Then, the GUI will set all the

parameters for the code generator according to the user entries. Therefore, the code

generator was designed to have variables that are identical to the ones that should be

extracted from the user entries by the GUI.

Figure 4.12 illustrates the content of the source code file that should be produced

by the code generator. We can divide it into four segments. The first one is for the

package name and the list of imports may be required by the included classes. The list of

imports is predefined for the code generator to write in the generated file. The other three

segments are for the three required classes as mention in the above subsection.

The model’s initial values class code contains the class signature, variable

definitions and a constructor that initiates those variables. They are the state variables

defined by the user to be read from the input data file. The model’s space class code

includes the class signature, space constructor, the method that gets the initial data from

the external file, and the method that adds the units to the space. The space constructor

should include names and values of the input/output ports, neighboring rule, and space

size. It should call the following methods in order: getDataFromFile(), addPorts(),

addUnits(), doInternalCouplings(), and doBoundaryCouplings().

 89

 package XXXXX;
 import LIST_OF_IMPORTS;

 class MODEL_Name_unit extends block {

 }

 class MODEL_NAME_initials {

 }

 Declare Inititialization Variables;

 Initial_Class_Constructor() { }

 class MODEL_NAME extends blockSpace{

 }

 SPACE_CONSTRUCTORS (){ }

 GET_Initial_Data_method () { }

 Add_Units_Method () { }

Declare Model Variables;

 UNIT_CONSTRUCTORS (){ }

 Initialize () { }
 deltext (double e, message x) { }
 deltcon (double e, message x) { }
 deltint () { }
 out () { }

 double userFunction () { }
 enforceBoundaryConditions (){ }
 double getQuantum (){ }

Figure 4.12: Illustration of code generation process.

Finally, the code for the unit class should start with the class signature and the rest

can be divided into four sub-segments. The first one lists the definition of the model

variables and the second one includes the class constructor. The other two sub-segments

are the ones which are responsible in stating the model behavior. The third one includes

the DEVS atomic functions as well as the initialization procedure. These functions are

generated according to the formal specifications in section 3.3.3. As we mentioned in the

previous chapter, the internal transition function is the one which is responsible to do all

 90

state transitions and call the user functions. Therefore, it should include calls to the user

function which are included in the last sub segment. The code generator accepts the user

function and prints them, as is, to the generated code.

 91

CHAPTER 5 : DESIGN ISSUES OF THE EVENT LIST

Discrete event simulation proceeds through executing a list of scheduled events that

are not simulated yet. Executing an event might result in scheduling other events and the

process goes on until the list of events is empty or the simulator reaches a predefined

stopping point. In DEVS coupled models, the coordinator is responsible in processing

and storing the event list. As a result of converting a coupled model into an atomic

model, as is the case in our approach, the event list processing task will be encapsulated

inside the new atomic model’s functions as described in section 3.3.1. This is achieved by

introducing EVENTS list which holds scheduled events and then the model processes the

cells in the lists extracted from the event list like IMM and EXT. Consequently, the model

will spend large amounts of time just processing the cell list for scheduling future events,

extracting current events into IMM and EXT, and scanning cell lists. Therefore,

implementing those cells will have a significant impact on the simulation execution and

hence, the targeted speedups.

There are large amounts of related works and debates in the literature to find what

are the best processing algorithms and data structures in implementing the event list for

discrete event simulations [40-47]. Unfortunately, no single approach is found to work

best for all applications. That is because each application has it own event scheduling

distribution which will impact the amount and type of operations to execute and hence

the execution time of the event list. In addition to the experimental work, [45] and [47]

listed a table of the analyzed complexity of certain algorithms that depends on the worst

 92

case and average case scenarios independent of application types. The complexity of

those algorithms varies from O(n) to O(log n) which is the best known complexity for

operation-wise analysis. There are some amortized bounds which are based on the overall

complexity of the event list and not on the execution time of a single operation. However,

these bounds cannot be taken as an advantage of some algorithms over others since some

of those may take O(n) in single operation. Therefore, in this work, two of the common

O(log n) data structures available, namely binary heap and balanced binary tree [48],

were selected for study and analyzed with our own simple straightforward array

implementation. Before heading into the design issues and analysis we list the design

requirement for the event list.

5.1 Event List Design Requirements

Generally speaking, a DEVS simulation event list should include records of the

scheduled events where each record consists of model ID (i.e. place of the event that will

occur), time stamp (i.e. when that event should occur), and event type (e.g. external or

internal transition). Since the main goal in this work is to develop large scale high

performance cell spaces, the list handler should be of an efficient implementation that

should process large number of events very quickly to avoid adding latency to the overall

cell space atomic model. In opposition to the conventional DEVS simulators [6], our

approach is formulated to avoid scanning passive cells which means that those cells

should not exist in the event list (i.e. no scheduled records with an infinite time stamp).

For all other non-passive cells, a schedule record in the list will contain the cell’s x-y

 93

coordinates as the model ID and its next time advance as the time stamp. The formulated

framework in section 3.3 with its final implementation format at the end of section 3.3.3

suggested that all the cell scheduled events are of internal transition type only. Therefore,

the type of the events should be excluded from the scheduled record since by default they

are all internal transition events and on expiration of that time advance, the general cell

transition function is applied to the scheduled cell. As a result, an event list should

include all time advances (ta) of all non-passive cells encapsulated in the atomic model.

The standard operations in event list processing include: adding a new record, and

extracting the record with the minimum time stamp which entails finding that minimum

time and then deleting that record. Most of the works done in the literature [40-47], in

this regard, considered these standard operations only. This is another reason why their

findings are inconclusive since there might be additional operations required by different

applications. The first additional operation we need in the event list for our approach is

the arbitrary removing of cells from the event list. The second one is for advancing the

time stamps in all records since the stamps are relative to the local current time of the

model. In addition, the method used to extract the least time stamp record might have

more operations than just extracting a record. It should search for the minimum time

stamp in the list and gather all the cells with that minimum time stamp so that it retrieves

it as one cell list IMM with the possibility of not removing their records permanently.

There is an additional field to the record that might be added in order to emulate the cell’s

elapsed time. This is required to test if the solution we presented in section 3.3.1 is worth

while or we need to include the elapsed time handling in the event list. In that case,

 94

another operation will be required to be implemented in the event list which will retrieve

the cell history in the list (i.e. how long that cell has been in the list) which is the elapsed

time. To summarize, the following operations are required to be included in the event list

design except the last one which is optional:

• Add new cell schedule

Add(ta,i,j) is used to schedule an internal transition event of cell (i,j) after ta

time advance. Since an atomic model in DEVS cannot have more than one

time advance, redundancy of cell schedule is not allowed here. Whenever a

cell is requested to be scheduled, the list should make sure that the cell does

not exist in the list. Otherwise, it should delete the previous schedule and store

the new one. This might include the remove(i,j) operation.

• Remove a cell from the list (arbitrary remove)

Remove(i,j) is required to delete cell (i,j) from the list. One reason for doing

this was stated in the add operation and the other one is when the cell is

executed as a neighbor of an imminent cell (i.e. external transition) and

generates a new time advance. In this operation, deletion is requested based on

the record’s value (i,j) rather than the key (time) as the case in most event list

implementations.

• Get minimum time in the list

 95

getMin() method searches all the record’s keys in the list and returns the

minimum key. This minimum time is actually the next time advance for the

whole atomic model. Therefore, by the end of any internal transition, the

model should call this method to set its next time advance.

• Get the list of imminent cells

getMinList() method will search the event list to return all the cell ID’s that

have the minimum time in the list. This is also done at the end of the internal

transition to get the set of imminent cells IMM ready for the next step.

• Remove the imminent cells

removeMin() method should be called after processing the events for all

imminent cells. This should include advancing the list time to the minimum

time of imminent cells.

• Advance the time of the list

advanceTime(t) should update the event list times with a step of time t. This

means that the atomic model advances to the time t since the last list time

update. This will include subtracting that time t from all the time records in

the list and adding that t to the history records of the cells. Of course, list

cannot be advanced to time t that is greater than the minimum time available

 96

in the list, since the model needs to process records with that minimum time

before it advances to t.

• Get the elapsed time of scheduled cell

getHistory(i,j) should return the elapsed time of cell (i,j) since its last state

transition. It is actually a historical measure of how long the cell has been in

the list.

The above operations should be included in the design of the event list. The system

which makes use of it should be capable of calling those methods as defined using the

format mentioned above. All other internal algorithms, structures and implementation

details in the event list should be independent and hidden from the system using it. This

ensures that any event list designed following the above format can perform

independently from the application type which allows flexibility in replacing the event

list design for different application models. One final issue to mention is that our system

was designed to have the imminent cells list IMM in a certain format and the method

getMinList() is supposed to retrieve the list using that format. Therefore, when designing

the event list, either the whole design should be consistent with that format or an interface

should be introduced to convert to that format by the end of that operation. The first

option is not in favor of speedup requirements since it applies constraints on the design

and prevents the designer from selecting the fastest algorithms and structures that are

 97

using different formats. The better choice is to make the design be as efficient as possible

while providing an interface that converts into the specific format at the end.

5.2 Standard Array Implementation

The simplest way of implementing an event list is by using arrays. In array

implementation, the records are stored as array entries. Each record will have at least a

scheduled time and cell ID. This record might be extended to have the history (i.e.

elapsed time) of the cell. In the other alternative, another array will be used to store all

history values independent of the main records array. There are two ways to store the

event records in the array based event list. The first one is to store them in non-increasing

order while the other one does not keep order of records. The non-ordered way makes the

add operation of O(1) complexity while the other one makes it slower with O(log n),

since it is preserving the order, but on the other hand makes the search for the minimum

time record O(1) compared to O(n) in the non-ordered arrays.

ta1 ta2 ta3 tan

i1,j1 in,jni3,j3i2,j2

Figure 5.1: Event list in unsorted array.

 98

i1,j1i1,j1 i5,j5 i0,j0 in,jn

i3,j3

i2,j2

i4,j4

ta1 ta2 ta3 tan

Figure 5.2: Event list in sorted array. (tax>tay for any x<y)

Figure 5.1 and Figure 5.2 show the two different array implementations of the

event list. Since the second implementation keeps the order of records, it is possible to

combine the records having the same schedule time as one array entry. If similar

implementation is to be done in the unsorted design, upon adding each record a search

should be done to find if a record with similar schedule time is already there and in this

case it is advantageous to implement the sorted array instead. This idea of combining the

records makes getting the list of imminent cells of O(1) complexity since it just accesses

the last array entry and retrieves the cell list. In addition, it speeds up the process of

searching for the least time records since it avoids scanning redundant time values. The

reverse order in the sorted array is preferred in order to make the operation of removing

the minimum record of O(1) complexity. In case of the non-decreasing order, removing

the least time record at the beginning of the array requires shifting all other records one

step to the right which results in O(n) worst case scenario.

The two additional operations added to the event list design which are not usually

found in standard event list implementations and analysis are the arbitrary remove and

advancing the list time. The advance time operation requires updating all records in the

list which results in O(n) complexity. However, n is the number of array entries which, in

 99

the sorted array, is less than or equal the number of recorders or cells (N) added to the

list. This might make the operation faster compared to the non-ordered array where n=N.

The arbitrary remove operation searches for a specific cell (i,j) in the list and deletes its

record. In both array implementation, as discussed so far, searching for that specific

record is of O(n) complexity since cells are not indexed with their IDs. Improving this

search can be done by introducing an indexing scheme to the list which stores a mapping

table that maps cell ID’s into array location and this will result in O(1) search. Then,

deleting that record will be of O(1) in the case of unsorted array if the record is replaced

with the last record in the array. On the other hand, a sorted array should preserve the

order and hence all records should be shifted one position to fill the location of the

deleted record. As a result, arbitrary operation will have O(1) complexity in the case of

unsorted array and O(n) in the sorted one.

5.3 Binary Heap Implementation

The binary heap is a complete tree structure that is not fully ordered [48, 49]. It is

frequently selected and recommended in general purpose implementations as well as

event list implementation because of its fair structure, efficiency, and stability [46].

Figure 5.3 illustrates the binary heap structure in which the order of records is kept

vertically following the child-parent relation. The key (i.e. time advance) of each node

should be greater than or equal to the key of its parent node at all times. As a result, the

minimum key value can always be found at the root node.

 100

ta3ta2

ta1

ta5ta4 tan

i1,j1

in,jni5,j5

i3,j3

i4,j4

i2,j2

Figure 5.3: Binary heap structure. (tax≤tay for any child y with parent x)

Binary heaps have been attracting many researchers because of their simplicity

and the ability to be implemented using arrays as shown in Figure 5.4. The first array

location is for the root node where the minimum key resides. The arrows in the figure

indicate the parent-child relations which can be obtained as follows:

Parent(x) = () 2/1−x

LeftChild(x) = 12 +x

RightChild(x) = 22 +x

1 1098765432 11

Figure 5.4: Binary heap as an array.

Since the heap is not fully sorted, the idea of combining similar time schedules in

one node is infeasible as we discussed in the previous section. Therefore, redundancy in

 101

key values is allowed in a binary heap and in case the event list is requested to extract the

cells with the minimum key, it should go through multiple iterations to gather all of them.

This makes the method getMinList() of O(n) complexity while getMin() of O(1) since the

minimum key is at the root. Removing the root node from a binary heap (i.e. remove the

node with minimum key) is done by replacing that node with the last one added to the

structure and then use the operation pushDown() to restore the heap order. The push

operations pushDown() and pushUp() are done through multiple swap operations that

exchange the parent node with its child in case the heap order is violated. The swap

operations are repeated up or down the heap until the order is restored. Therefore,

removing the root node will be of O(log n) since it just replaces the node with the last leaf

in O(1) and then restores the heap order in O(log n). The worst case scenario is when all

the nodes in the heap are having the minimum key. As a result, removeMin() operation

complexity is of O(n log n). Finally, using the cell-location indexing scheme improves

the complexity of add and arbitrary remove operations to O(log n).

5.4 Binary Tree Implementation

The other form for binary search data structures considered in this work is the

binary search tree which gives O(log n) search operation [48, 49]. In ordered to

guarantee that search bound, the binary tree should be balanced, otherwise the bound will

jump to O(n). One of the common balanced binary trees available in the literature is the

AVL tree, named after its inventors Adelson-Vielskii and Landis [50], which gives best

O(log n) operations compared to other tree algorithms in event list implementations [51].

 102

Binary tree keeps all the nodes sorted in non-decreasing order from left to right which

guarantees that left child of any parent has a key that is less than or equal to the key of its

right child. Since the tree is fully sorted, different cells can be combined in one node if

they have the same scheduled time as shown in Figure 5.5. AVL tree is a height-

balanced tree. It keeps the difference in height between any two childs of a node less than

or equal to one. The height of a node is the maximum among its two children’s heights.

In a balanced AVL tree, add and remove operations may cause imbalance in the tree.

The design of an AVL tree involves some rotation operations to restore balance after each

add or remove operation. There are single rotate as well as double rotate operations

which can be in the right or left direction depending on the imbalance situation. It was

proved that these operations do not increase the O(log n) complexity of the add and

remove operations [50].

ta3ta2

ta1

ta4 tan

i1,j1

in,jn

i6,j6

i7,j7

i3,j3

i4,j4

i2,j2

i5,j5

ta5 i8,j8

Figure 5.5: Balanced binary search tree. (ta4 < ta2 < ta1 < ta3 <tan)

The implementation of AVL tree is usually done by defining the nodes as objects

and each node has two nodes as right and left childs. The cell-location indexing scheme

 103

cannot be introduced in this structure since there is no physical address for nodes as is the

case in the array implementations. Instead, a cell-time indexing can be introduced to

make the complexity of the arbitrary remove O(log n). Following that scheme, when a

cell needs to be deleted, the index will give the scheduled time of that cell and then the

structure uses the log n search operation to browse from the root to the node containing

that cell. If that specific cell is the only one in that node, the node should be deleted and

rotation operations might be needed in case this deletion caused an imbalance. If multiple

cells exist in that node, then only that specific cell entry is required to be deleted and the

balance is still ensured. However, the worst case scenario might occur when all N cells

exist in one node. Then deleting a single node will require a search in the internal list of

that node which will make the complexity of the arbitrary remove operation O(N). As a

result, the complexity of the add operation will be also O(N) since it might remove a cell

before rescheduling it. In AVL tree, the minimum time value is always in the leftmost

node. In order to get that values using getMin(), the algorithm requires O(log n)

operations from the root to reach that minimum value and similarly for getMinList(). The

removeMin() method includes the advanceTime(t) method which costs O(n) and hence

the removeMin will be in O(n) as well.

5.5 Analytical Comparison

Table 5.1 summarizes all complexity measures (i.e. worst case scenario) of the

event list structures considered above. These figures are characterized by type of

operation, type of data structure, number of entries in the event list as well as whether an

 104

indexing scheme is used or not. The fully sorted structures like the sorted array and the

binary tree have different interpretations for entries. In these two structures, a list has two

terminologies: records and nodes. Each node may contain more than one scheduled time

record of the same time for different cells. The number of actual scheduled records is

referred to as N which also represents the number of cells in the list while the number of

the nodes in the list is n. On the other hand, unsorted array and binary heap structures

have those numbers equal.

 ad
d

re
m

ov
e

ge
tM

in

ge
tM

in
Li

st

re
m

ov
eM

in

ad
va

nc
eT

im
e

Unsorted array O(n) O(n) O(n) O(n) O(n) O(n)
Indexed unsorted array O(1) O(1) O(n) O(n) O(n) O(n)
Sorted array O(N) O(N) O(1) O(1) O(n) O(n)
Indexed sorted array O(N) O(N) O(1) O(1) O(n) O(n)
Binary heap O(n) O(n) O(1) O(n) O(n log n) O(n)
Indexed binary heap O(log n) O(log n) O(1) O(n) O(n log n) O(n)
AVL tree O(N) O(N) O(log n) O(log n) O(n) O(n)
Indexed AVL tree O(N) O(N) O(log n) O(log n) O(n) O(n)

Table 5.1: Complexity comparison of all introduced structures.
(n ≤ N in sorted structures, otherwise n = N)

The worst complexity in the table is for the binary heap in removeMin() operation.

That was estimated for the number of iterations required by the structure when all the n

records in the heap are having the minimum value. The first one will be removed in

O(log n), then the others will be in O(log n-1), O(log n-2) …etc which is summed up as

follows:

 105

 nnnk
n

k
log)!log()log(

1
≤=∑

=

.

However, that is too far upper bound for the operation since that worst case is extremely

rare in discrete event models and the algorithm might work usually close to the O(log n)

lower bound. Therefore, that figure cannot be used to reject the idea of using binary

heaps. On the other hand, the last two operations involve O(n) complexity inherited form

the advanceTime() which is included also in the removeMin() operation. That is a tight

bound which means that the operation requires exactly n iterations. In those operations,

the advantage will be for the sorted structures in case n<N since the complexity in the

unsorted ones is O(n)=O(N).

Sorted array and binary heap structures outperformed all other structures in the

getMin() operation and their runner up is the binary tree. Since sorted array has the list of

the cells with minimum time in the last array location, the getMinList() operation requires

O(1) operation to extract that list as an object which makes it superior in complexity to all

other structures. However, these two operations are not as frequently used as the add and

remove operations in simulating a large scale cellular models. Add and arbitrary remove

operations are having the same complexity in each row since any add operation might

include a remove operation. The remove operation is required to avoid redundancy of

cells in the list. In case a cell is requested to be scheduled, the list will check if the cell

already exists in the list and, if exists, remove it and then add its new schedule. Generally

speaking, complexity of add operation can be improved by making sure that a cell does

not exist before its new reschedule. This will reduce the complexity of the add operation

 106

as an independent operation but on the other hand requires another remove operation

before the add operation which results in the same overall complexity.

As mentioned in 3.3.1, elapsed time was decided not to be implemented in the

event list. However, we include analyzing the getHistoy(i,j) operation here to justify the

previously made decision. This method can be designed in two ways. The first one is by

including the history as a value in the scheduled record. The other one is by having an

independent 2-D array inside the list that can store elapsed time for all cells possible in

the model which is indexed based on the cell IDs. The second one is identical to the

decided solution since a similar history array is used in the model and its complexity will

be O(1) for accessing the array value. In the first way, indexed unsorted structures also

give a complexity of O(1) while the non-indexed unsorted structures gives O(n) and the

sorted ones give O(N) regardless of the indexing. Therefore, the decision, in 3.3.1, is

justified by stating that the array method gives O(1) complexity with the advantage that

outside the event list the array will count the elapsed time for all cells including the

passive ones which are not considered inside the event list.

The average time spent in the event list in each iteration can be calculated as

follows: atatrmrmmlmlmmrraa ntntntntntntAvgTime +++++= , where ta, tr, tm, tml, trm,

and tat are the average execution time for a single call to the operations add, remove,

getMin, getMinList, removeMinList, and advanceTime respectively. Similarly, na, nr, nm,

nml, nrm, and nat are the average counts of these operations per iteration. Therefore, the

total execution time spent in handling the event list depends on the distribution of the

operation calls in addition to the execution time of each operation that was discussed

 107

above. This distribution is the major decision factor on selecting the best implementation

which is an application dependent. The atomic model design of cellular space models that

was formulated in chapter 3 allows the models to call each of the getMin, getMinList, and

removeMinList operations once per iteration which end up with an average execution

time atatrmmlmrraa nttttntntAvgTime +++++= . Since the advanceTime operation has

the tight complexity of O(n) in all implementations, it is not a decision factor in selecting

the minimum total execution time. Therefore, the relative average time that we can use to

compare implementations will be)(rmmlmrraa tttntnt ++++ in which the decision

factor of calls distribution only depends on the average numbers of calling add and

remove operations (na and nr).

Operation Game of Life
Model

Quantized
Landslide Model

add 6918 6876
remove 21968 4551
getMin 100 100
getMinList 100 100
removeMin 100 100
advanceTime 0 0

Table 5.2: Operation counts in two models for 100 iterations.

Add and remove operations are the most frequently called operations in large

scale cellular space models since they contain a huge number of cells that are required to

be added or removed from the list. Table 5.2 gives a quick insight on operation counts in

running two models that represent discrete time and discrete event approaches. The run

was done for a 32×32 cell space that was entirely encapsulated in an atomic model which

 108

does not receive external messages and this explains not calling the advanceTime

operation explicitly. The add and remove operations were shown to be the most frequent

compared to the others. Therefore, the structures with the fastest add and remove

operations, will most likely be the best candidates for event list implementation in our

system. In Table 5.1, it is clear that the structure which satisfies this is the indexed

unsorted array structure and its runner up is the indexed binary heap.

5.6 Experimental Analysis

Table 5.1 shows that the indexed scheme gave an advantage over the non-indexed

implementations in add and remove operations. In this section, we perform experimental

analysis for those indexed structures. Four event lists were implemented, one for each of

the above mentioned structures. These experiments were designed to give a quick guide

in making a decision on which structure to select for implementation. All runs were done

on a windows XP machine having a Pentium 4 processor with 3.0 GHz speed and 1 GB

RAM. The execution time was measured using the Java facility of retrieving the system

time in milliseconds. In the add operation, the time was measured for all add operations

done for an empty list to make it reach the specified size and this is done backward for

the remove operation. All other operation’s time was measured for one method call at

that list specified size.

The first part targeted the large scale list implementations. In this part, lists of

10000, 50000 and 100000 records were run to compare the execution time for each

operation. Tables 5.3 through 5.5 list the results of the three runs done in this part. The

 109

table records with zero seconds means that the execution time was less than 0.5

milliseconds. The three tables gave an indication that as the number of records gets

extremely large, the unsorted array and the binary heap become advantageous. The worst

performance was for the AVL tree which when it gets very large, it has very large objects

to deal with. This requires huge memory allocation and if not available, more time will be

wasted in memory misses and caching. Another reason is that balancing the tree in add

operations seems to be very costly since they are much worse than other operations. As a

conclusion of this part, keeping the list fully sorted is very costly in case of the add

operation. Since large scale cell spaces are targeted in this work, the AVL and the sorted

array might not be of interest due to their poor performance in very large scale lists.

A
dd

R
em

ov
e

ge
tM

in

ge
tM

in
Li

st

re
m

ov
eM

in

ad
va

nc
eT

im
e

Unsorted array 0.02 0 0 0 0.02 0.02
Sorted array 0.09 0.02 0 0 0 0.06
Binary heap 0.05 0.02 0 0 0 0.02

AVL tree 0.61 0 0 0 0.02 0.02
Table 5.3: Execution time in seconds for lists with 10000 records.

 110

A
dd

R
em

ov
e

ge
tM

in

ge
tM

in
Li

st

re
m

ov
eM

in

ad
va

nc
eT

im
e

Unsorted array 0.05 0 0 0.03 0.05 0.05
Sorted array 2.22 0.02 0 0 0.05 0.84
Binary heap 0.2 0.05 0 0.03 0.03 0.05

AVL tree 327.92 0.02 0 0 0.97 0.92
Table 5.4: Execution time in seconds for lists with 50000 records.

A
dd

R
em

ov
e

ge
tM

in

ge
tM

in
Li

st

re
m

ov
eM

in

ad
va

nc
eT

im
e

Unsorted array 0.08 0.02 0 0.16 0.09 0.08
Sorted array 11.53 0.03 0 0 0.17 3.45
Binary heap 0.42 0.09 0 0.14 0.06 0.09

AVL tree 2821.39 0.02 0 0 3.92 3.73
Table 5.5: Execution time in seconds for lists with 100000 records.

The second part of the experiments targeted the two structures qualified from the

first part. In that part, we can conclude that in large scale lists, the unsorted array

structure outperformed the binary heap in the add and remove operations while the

opposite is true in the getMinList and the removeMin operations. The second part targeted

the small size lists with unsorted array and binary heap structures. Two experiments were

run: (a) records having big number of time redundancies; (b) with less or almost no

redundancies. The aim behind this is to test both lists in two extremes. These tests might

differentiate between the two lists on a performance basis. Tables 5.6 through 5.10 show

 111

the execution times of all operations in microseconds for both structures in experiments a

as well as b. A clear advantage of using the unsorted array in the remove operation while

in the add and the removeMin operations the difference is negligible. On the other hand,

the binary heap outperformed the array in the getMin and the getMinList operations.

 n=10 n=100 n=1000
Unsorted Array-a 9 44 389

Binary Heap-a 13 45 394
Unsorted Array-b 11 45 405

Binary Heap-b 11 45 409
Table 5.6: Execution time in micro seconds in add operation.

 n=10 n=100 n=1000
Unsorted Array-a 2 19 209

Binary Heap-a 18 138 1998
Unsorted Array-b 3 19 208

Binary Heap-b 22 141 2004
Table 5.7: Execution time in micro seconds in remove operation.

 n=10 n=100 n=1000

Unsorted Array-a 3 5 42
Binary Heap-a 0 0 0

Unsorted Array-b 2 3 33
Binary Heap-b 0 0 0

Table 5.8: Execution time in micro seconds in getMin operation.

 112

 n=10 n=100 n=1000
Unsorted Array-a 6 16 136

Binary Heap-a 5 5 20
Unsorted Array-b 3 11 114

Binary Heap-b 2 2 2
Table 5.9: Execution time in micro seconds in getMinList operation.

 n=10 n=100 n=1000
Unsorted Array-a 3 5 9

Binary Heap-a 3 6 11
Unsorted Array-b 13 42 411

Binary Heap-b 13 41 386
Table 5.10: Execution time in micro seconds in removeMin operation.

5.7 Concluding Remarks

As discussed in the above sections, each of the event list’s implementation

strategies has its own strengths and weaknesses. Some of them perform well in small

sized lists and worse in large scale ones. Others might perform well in all list sizes in

some operations while they are not as good as in other operations. Selecting the best

among them is application dependent. The first decision factor is if the list size is a major

concern for that specific application. Then, a decision can be made based on the

distribution of operations in the application, which means how frequently each of the list

operations will be used during the execution.

In this work, the system under design which is in need of event list implementation

is an atomic cell space DEVS model. The scalability issue is one of the major design

issues in cell space models. Therefore, event lists in these models must be among the

 113

ones that perform very well in handling a huge number of records. This is why the sorted

array and the binary tree implementations were skipped in the second part of the

experimental analysis. Experiments in that part show that the unsorted array is good in

the add and remove operations while the binary heap is good in the getMin and

getMinList operations. The cell space atomic DEVS model, as formulated in section 3.3,

deals with the event list mainly inside the internal transition function. The operation

advanceTime is the only one called in the external transition function and it is only called

once when receiving external messages. In each internal transition, each of the getMin,

getMinList and removeMin operations is called exactly once while the add and remove

calls depends on the number of active cells in the space. Therefore, in very large scale

cell spaces the number of active cells will be very high which will result in huge numbers

of add/remove calls compared to other calls and this will give advantage to the structure

with extremely high add and remove operations. The only structure with very fast O(1)

add and remove operations is the indexed unsorted array structure and this is the one

selected to be implemented in our system. However, in case another structure shows

better performance, it can replace the existing one without modifying the internal system

given that the new list should be implemented following the design requirements listed at

the beginning of this chapter.

 114

CHAPTER 6 : TESTING AND VERIFICATION

This chapter is devoted to describing the procedures and the proposed methods

followed to test, validate and verify our modeling tool as well as its generated models.

The major test intended in this work is to prove that the generated models, based on the

new proposed formalism, are identical to the conventional cellular DEVS models. Before

getting into that concluding test, the implemented modeling tool should go through some

classical software testing techniques in order to guarantee its correctness. In addition, the

generated models should go through some code tests and then model validation and

verification procedures.

6.1 A Quick Overview on Software Testing Techniques

Most of the software testing literatures [52-58] present testing as an integrated

process within the overall software development process. The V-model is frequently

used, e.g. [53, 54], to explain the need of testing for each phase of the software

development process. Since 100% error-coverage is impossible in testing, a large number

of different techniques were introduced to uncover the largest possible percentage of the

errors. Many efforts (for example see [53, 54, 56]) were done to gather and classify the

most common techniques available for testing practitioners.

Generally speaking, testing techniques can be static or dynamic. Static techniques

involve the ones that can be done without running the System Under Test (SUT). This

can include the design reviews, checking manuals, as well as testing hardware and/or

 115

software requirements to run the SUT. On the other hand, dynamic techniques, which can

be implicit or explicit, are used while running the SUT. The most common type of testing

is the explicit dynamic techniques that run test cases to check if the SUT produced the

expected results for each case [59]. Test cases can be designed in different levels of the

software development namely the unit testing, integration testing, system testing, and

acceptance testing levels. The approaches used in designing test cases can be of two

types: black box testing or white box testing. In contrast to the white box approaches,

black box approaches are designed with no knowledge regarding the internal design of

the box (i.e. SUT). The gray box approach was introduced in [54], which assumes a prior

knowledge of the implementation but the box is then closed in order to design more

effective black box test cases. The challenge that every designer will face is to determine

the smallest number of test cases that can be run to check the correctness of the largest

number of system states as covering all states and paths is impossible [56].

6.2 A Quick Overview on Simulation Model Validation and Verification

The most important questions that a model designer should answer after developing

a model are: is the model correct?, and is that developed model the right one? Usually,

answering the first question is referred to as verification while to the other one is

validation. Similar definitions can be found in the literature with different details and

constraints [6, 60-62]. Once a model is built, it has to be validated in order to check if it is

generating the intended system behavior based on the given conditions. This is done

through comparing the input-output transformation of the model to the system’s input-

 116

output transformation. On the other hand, verification is the process of checking how

accurately the model represents the conceptual model, which is a transformation

equivalency check. Figure 6.1 overviews the model development life cycle and explains

the validation and verification relations. Verification and validation techniques are

overviewed and classified in [60] as informal, static, dynamic, symbolic, constraint, and

formal techniques.

Figure 6.1: Simplified modeling process. Taken from [61]

6.3 Validation and Verification of DEVS Models

According to [6], verification in DEVS framework is to check if the simulator is in

error while validation is to check if the model is in error. Two general approaches of

simulator verification were mentioned: the formal proof of correctness, and the extensive

 117

simulator testing. The second one is the most attractive one for researchers since

complete formal proofs are absent. There are very few recent efforts done to obtain

partial mathematical proofs with some constraints [63, 64]. Similarly, in validating DEVS

models, the most attractive techniques are the simulation based ones. Among them, the

most common one is the experimental frame strategy (i.e. generator/transducer approach)

[6, 65]. In this approach, the model is treated as a black box that is tested using an

experimental frame. The frame includes a generator that generates inputs to the model

and provides the transducer with the output values it should expect from the model. The

transducer then compares the outputs generated by the model with the expected values

and validates the model accordingly. Based on the generator/transducer approach, [66]

presented an automated DEVS model verification process which is essential in reducing

the time and cost of testing. However, that implemented approach does not support

verifying models that might change states in zero time. In this work we propose an

extension to that work in order to support all DEVS models.

6.4 Testing the Cellular DEVS Specification Unit

The main unit in the structured design we presented in Figure 4.2 is the cellular

DEVS specification unit. It contains all the generic classes and methods required by any

cellular DEVS model that will be generated. Testing this unit is essential since it is

responsible for guaranteeing the anticipated high performance as well as the correctness

of this work. This unit is divided into different classes and interfaces as shown in Figure

4.3. The main classes that we are interested in testing are: cell, block, cellSpace, and

 118

blockSpace classes. The inheritance implemented for these classes allows us to test all

methods in parent classes. By testing all classes, constructors and methods, we guarantee

that the unit precisely constructs and initializes the models. This involves adding and

labeling input and output ports as well as coupling all internal and boundary ports in case

of the cellSpace or blockSpace Classes.

6.4.1 Testing cell and block Classes

These classes were intentionally designed to have no behavior since it is usually

specified in the generated models that extend these classes. Therefore, the designed test

cases are employed to test the constructors for correct initialization and check the

correctness of the methods. Two test cases were designed to check the empty as well as

the non-empty constructors. The methods in the cell as well as the block classes can be

classified into two different types. The first one is the methods that return values while

the other one include the methods that do not return values but change the class state.

Examples of the first type includes: portDir, oppositeDir, userNeighbor. Assertion like

methods, which are referred to as black box methods in software testing, were used to

design the test cases which check if a method returns the correct values according to the

given inputs and conditions.

On the other hand, the addPorts methods cannot be tested using the assertion.

Instead, test cases were designed to check if the model state changes correctly. After

calling the methods that add ports, test cases should check if the correct number of the

ports were added to the cell or block. In addition, they should check if the port names fall

 119

correctly with in the labeling scheme followed in chapter 4. This was done with the help

of regular expressions in Java. Table 6.1 and Table 6.2 list all the regular expressions

used in testing the generated port labels for cells and blocks. In addition, the tables list the

number factors that are used by the test cases in calculating the expected number of ports

to be added to the class. For example, if an N×M block (with both N and M greater than

2) has 3 single ports and 2 multi-ports with the Moore neighboring rule, the expected

total number of ports is 3×(2N+2M-4) + 2×(6N+6M-4). Table 6.2 shows more figures in

the case of single ports in the block. This reflects more details on how the addressing was

handled to support one dimensional blocks as well as the blocks that only have one cell.

 Regular Expression Ports Num
Single port [^_]+ 1
Neumann multi-port [^_]+_(N|S|W|E)$ 4
Hex multi-port [^_]+_(W|E|NW|SW|NE|SE)$ 6
Moore multi-port [^_]+_(N|S|W|E|NW|SW|NE|SE)$ 8

Table 6.1: Regular expressions and ports number factor in cell test.

 Regular Expression Ports Num
Single port – 1 cell [^_]+ 1
Single port – vertical 1D [^_]+_(S|N|([0-9]+))$ N
Single port – horizontal 1D [^_]+_(E|W|([0-9]+))$ M
Single port – 2D [^_]+_(SE|SW|NW|NE|((N|S|W|E)_([0-9]+)))$ 2N+2M-4
Neumann multi-port [^_]+_((N|S|W|E)_([0-9]+))$ 2N+2M
Hex multi-port [^_]+_((N|S|W|E)_([0-9]+)_(W|E|NW|SW|NE|SE))$ 4N+4M-2
Moore multi-port [^_]+_((N|S|W|E)_([0-9]+)_(N|S|W|E|NW|SW|NE|SE))$ 6N+6M-4

Table 6.2: Regular expressions and ports number factor in block test.

 120

6.4.2 Testing cellSpace and blockSpace Classes

In testing the cellSpace and blockSpace classes, similar test cases were designed for

the constructor test and addPorts methods. Regular expressions format and port number

calculations follow in Table 6.2 in testing the addPorts method. The most critical

methods that play essential roles in the coupled space behavior are the ports coupling

methods. These were divided into two types: internal couplings and boundary couplings.

Internal methods generate the necessary coupling between cells so that they can

communicate with their neighboring cells. The boundary coupling methods make the

coupling of the boundary cell to the space ports so that they can communicate with cells

in other neighboring spaces. Getting the coupling list in a test case is made possible using

the getCouprel method in DEVSJAVA. The test cases were designed to check if the

number of couplings generated is correct or not. There are many formulas that were

obtained for the test cases to calculate these numbers based on the number of input/output

ports, port types, and neighboring rule followed. In addition, the test cases are responsible

for checking if the port names in the couplings are correct and following the specific port

labeling using the regular expressions of Table 6.1 and Table 6.2.

6.5 Testing the Generated Models

This is an essential test that is required to be run every time a new model is

generated by our development tool. Seeking user convenience as well as testing time

reduction, the test cases were designed with support of automation. There are a number of

classes that are designed and made available for the user to call and test the generated

 121

model. These tests include two types: generated code test and atomic cell DEVS

verification.

6.5.1 Generated Code Test

This is a quick test that checks that the automatic code generator works correctly.

It makes sure that the generated code is correct Java source code, and a complete DEVS

cell space model. This is done through Java reflection to check that the code has the

correct classes, constructors, methods, and variables according to the design of the code

generator.

The test starts by searching for the generated model classes using their given

names. It returns an exception if the class cannot be found. This either means that no

such model was generated with those names, or the model code has some syntax errors

and its class file was not generated. The first procedure, which is done by the command

Class.forName(“UnitName”), makes sure that the generated code is correct Java code.

The second one, presented in the first block of Figure 6.2, makes sure that the generated

classes are cellular DEVS models that are extending the generic classes in the cellular

DEVS specification unit. This is done by the reflection method getSuperClass() which

returns the parent class of the class under test. The next two blocks check that the

generated classes have the correct number of variables and constructors using the

methods getDeclaredFields() and getDeclaredConstructors(). The last one checks the

number of methods generated in the model and makes sure that it has all principal

methods required for a standard cellular DEVS model.

 122

 Class cellClass = Class.forName(unitName);

Constructor[] cons=cellClass.getDeclaredConstructors();

if (cons.length!=2) return false;

Method[] meth=cellClass.getDeclaredMethods();

if (meth.length<8) {return false;}
else {
 check=false;

 for (int i=0; i<meth.length; i++){
 if (meth[i].getName().equals("deltext")) check=true;

 }
 if (!check) return false;
 check=false;
 for (int i=0; i<meth.length; i++){
 if (meth[i].getName().equals("deltint")) check=true;
 }
 if (!check) return false;
 check=false;
 .
 .
}

Field[] fld=cellClass.getDeclaredFields();

if (fld.length<2) return false;

Class sup=cellClass.getSuperclass();

if (!sup.getName().equals("newCellDEVS.cell")
&& !sup.getName().equals("newCellDEVS.block")) return false;

Figure 6.2: Examples of using Java reflection in testing unit class.

6.5.2 Atomic Cell DEVS Verification

The above test does not guarantee that the model is right. To do so, it should be

run and compared to some verification data provided by the model developer. [66]

presented an automatic verification framework for cellular DEVS models which is

similar to the experimental frame idea presented in [6]. Testing the cell as an independent

unit was proposed to verify the cell behavior according to the given verification data.

This kind of test is referred to as a unit test in software literature [53-55]. It follows the

 123

black box idea by having a generator that inputs data to the cell and the output of the cell

is then monitored by a transducer which checks those values with the expected ones

provided by the generator. Based on that, we introduced an automated way of verifying

generated cells in our development tool as shown in Figure 6.3.

Cell

Generator Transducer

0.0

1.0

Time Port Value Direction

inPort

outPort S

NE

1.5

0.1

Figure 6.3: Cell verification experimental frame.

The verification class, represented by the white box in Figure 6.3, was designed as

a generic DEVS coupled model that can be used by any developer. It supports an

automated construction of the generator and the transducer based on the provided cell

under test (CUT). This is done by recognizing the list of input/output ports of CUT and

then generating the list of ports for the generator as well as the transducer. If a cell has M

input ports and N output ports, the generator should have M+N output ports and the

transducer will have 2N input ports. The couplings are done as shown in Figure 6.3.

The verification data is read by the verification framework from an external file

which should be in the format shown the figure. Each record should have a time stamp

 124

that specifies when the event will occur, which port will handle the event, the testing

value, and the direction of flow in case of multi-ports. The data is processed to produce

the corresponding port labeling (section 4.3.2), which is always kept transparent to the

user, and to classify the type of data to be used for each port. Then it is fed to the

generator to start the verification process. A record that includes an input port name

indicates that the test data should be sent to the CUT while the one with output ports is

interpreted as the expected output value and is sent to the transducer. The generator is

held responsible to generate the verification data to the CUT as well as the transducer.

The transducer, which can be seen as a comparator, checks if the CUT generated the

expected values received from the generator.

The above proposed cell verification framework works fine in a wide variety of

cell DEVS models especially the cellular automata and the discrete time models.

Unfortunately, it cannot be successful in all cellular DEVS models, particularly the ones

that allow cells to do multiple zero time state transitions. This is because the generator

usually sends the expected events to the transducer upon reaching their specified time.

Any output generated later in zero time will be considered as incorrect output generated

by the cell and hence it erroneously fails the test. A new special generator is proposed to

overcome this problem. Figure 6.4 shows the new proposed framework that uses a special

generator. The whole idea is the same as above except that the generator is enhanced to

be more intelligent and produce the expected output values correctly even with zero time

state transitions. One more entry is added to the verification data to indicate the cycle in

which the generator should produce that test value. In this case, the test is not considered

 125

a black box approach anymore since the cycle number requires prior knowledge of the

internal design of the cell.

Cell

Special
Generator

Transducer

0.0

1.0

Time Port Value Direction

inPort

outPort S

NE

1.5

0.1

cycle

2

0

Figure 6.4: Cell verification experimental frame with special generator.

Verifying cells guarantees that each cell generates the required behavior if it runs

independently. As a result, the correctness of the cells integration inside one cell space

can be ensured if and only if all port couplings are correct. This can be guaranteed by the

coupling test introduced in section 6.4.2. This does not apply for block verification. The

cell rules of a block can be tested in a similar way to cell verification. In this case, a block

should include one cell and then it is treated as a regular cell and fed to the verification

framework to be tested. Verifying a block with multiple cells will follow the verification

method in the next section.

 126

6.6 Verifying the Approach

The multi-layer approach presented in this work is based on generating an

equivalent atomic model of the conventional coupled cell space approaches. Before

running experiments and making conclusions, the new generated atomic models must be

made identical to the original coupled DEVS implementation. In this work, the

simulation verification method is followed in order to dynamically check the equivalency

of the two approaches. Figure 6.5 illustrates the idea of dynamically comparing

simulation runs of two systems. A DEVS atomic model is employed to work as a

comparator that monitors the state trajectories generated by both systems and generates a

fail report if they are not equivalent. The report should include the non-equivalent values

generated as well as their time. If no fail report is generated and the verification run

comes to an end, the two systems can be declared identical. In case of non-terminating

simulations, the larger number of iterations employed, more is the confidence that will be

obtained in the conclusions.

Comparator

cellcellcell

cellcellcell

cellcellcell

Block Space Cell Space

out_data
out_data

Figure 6.5: Simulation approach of equivalency verification.

 127

6.7 Applying All Tests

All the tests explained in the above sections were applied to the new cellular DEVS

development tool. The cellular DEVS specification unit tests are the only types of tests

that are model independent. Those tests can be run without making a full model

development phase. It was run for large number of inputs (e.g. common and extreme

cases) to make sure that all classes and methods perform correctly. Figure 6.6 and Figure

 6.7 show sections of the specification unit test report. The report lists all the results of test

instances and concludes with the overall unit result at the end. The second part of the

tests is the generated code tests and verification runs that require selecting some models

to be developed and run. Three test models were selected for testing and verification. The

first one is the two dimensional game of life which is know for its popularity and

simplicity. The second one is the simple 2-D wall following robot which is popular in

artificial intelligence texts (e.g. [67]). The last one is the basic finite difference numerical

solution of a one dimensional heat equation [68].

==
Testing the cell space specification unit started...
==

1. Testing the cell class.
 constructors : Pass
 protDirM method : Pass
 oppositeDir method : Pass
 userNeighbor methods : Pass
 addSinglePorts : Pass
 addNeumannPorts : Pass
 addHexPorts : Pass
 addMoorePorts : Pass
 addAllPorts : Pass
 addPorts methods : Pass
 Cell Test Result: Pass

Figure 6.6: Beginning of specification unit test result.

 128

4. Testing the block space class.
 empty constructor : Pass
 non-empty constructor : Pass
 constructors : Pass
 addSinglePorts : Pass
 addNeumannPorts : Pass
 addHexPorts : Pass
 addMoorePorts : Pass
 addAllPorts : Pass
 addPorts methods : Pass
 Boundary Couplings methods : Pass
 Internal Couplings methods : Pass
 BLock Space Test Result: Pass

Test Result of the cell DEVS specification unit: Pass
==

Figure 6.7: End of specification unit test.

These three models span wide varieties of variable types (i.e. state vs. flow

variables), data types, boundary values, as well as discrete time versus quantization based

approaches. The wall following robot model is selected to show the support of our

environment for modeling propagation and flows between cells. It is also considered as

an extreme case model test since all cell activities are mostly at the boundaries. It uses the

Neumann neighboring rules where the game of life uses the Moore neighboring rule. The

heat equation solution employs the quantization approach which is representing a large

number of applications that are based on differential as well as partial differential

equations. This is considered also as an extreme case test since the environment was

designed originally for two dimensional cell spaces. Passing the tests will conclude that

the environment is capable of developing 1-D cell spaces correctly as well.

All testing methods were applied to these three test models. First of all, the

development environment was used to produce the models through the GUI. Then, the

generated models were run through the Java reflection test in order to ensure the

 129

correctness of the code. This was done by writing a simple code to call the code testing

class (section 6.5.1) and send it the model name to be tested. A similar approach will be

used in calling the cell verification test. However, instead of sending the model name, the

user is required to construct and initiate the cell and send it to the verifyCell class

provided with the verification data file name. By running the main method in that class,

the verification will start and check that the cell behavior is correct according to what the

user intended to design. One further step is done here by verifying the block rules as well.

This can be done by initiating a block that contains one cell and verifies it with the

normal cell verification procedures. The last test is the equivalency verification of the

block space to the cell space. All possible blocking (i.e. cell encapsulation) setups were

constructed and verified to be equivalent to the original cell space models.

Figures 6.8 through 6.10 show some examples of the test reports generated when

verifying cells, blocks, and spaces. Figure 6.8 lists two cell verification runs. The first

one is for a game of life cell that passed the verification test since the simulation

terminated with no errors output. The other one is for a non-passing block that contains

one game of life cell. The output errors stated that according to the verification data, the

cell generated wrong values at time 5.0 and did not produce an output at time 8.0. This

kind of information guides the developer in debugging the generated model by looking

for those rules and places that might be the cause of those specific errors.

 130

a. cell verification
 ---Now, verifying the unit atomic model..
 Terminated Normally at ITERATION 29 ,time: Infinity
 ---If no error printed above this line, the unit is verified

b. block verification
 ---Now, verifying the unit atomic model..
 Time: 5.0 Outport [outLife] produced 1, expected value is: 2
 Time: 8.0 Outport [outLife] produced 0 , but not supposed to
 Terminated Normally at ITERATION 29 ,time: Infinity
 ---If no error printed above this line, the unit is verified

Figure 6.8: An example of cell verification test report.

Figure 6.9 and Figure 6.10 show reports on the equivalency verification of the

approach for the heat equation model. The report should list any non-equivalency

between the cell space and the block space. Figure 6.9 represents a fail report that

concluded that the two cell spaces are not identical. In addition, it lists the unmatched

values and the time of mismatch occurrence. On the other hand, Figure 6.10 illustrates a

verification pass report for the wall following robot. Different blocking setups were

tested and all verification runs terminated successfully with no single error.

blocking: 1 , 1
Model-1[99][0]=280.0 Model-2[99][0]= 270.0 at time : 354.557
FAIL: The two models did not pass the test. [They are not identical]
Model-1[99][0]=290.0 Model-2[99][0]= 280.0 at time : 374.493
FAIL: The two models did not pass the test. [They are not identical]
Model-1[99][0]=300.0 Model-2[99][0]= 290.0 at time : 395.379
FAIL: The two models did not pass the test. [They are not identical]
Model-1[99][0]=310.0 Model-2[99][0]= 300.0 at time : 417.309
FAIL: The two models did not pass the test. [They are not identical]

Figure 6.9: An example of non-identical spaces.

blocking: 1 , 1
Terminated Normally at ITERATION 1001 ,time: 200.0
 blocking: 1 , 2
Terminated Normally at ITERATION 1001 ,time: 200.0
 blocking: 1 , 4
Terminated Normally at ITERATION 1001 ,time: 200.0

Figure 6.10: An example of identical spaces.

 131

CHAPTER 7 : LANDSLIDE APPLICATION MODELS

The work presented in this chapter illustrates the capability of developing complex

natural models using the new environment. Different landslide models were developed to

show the support of the environment to different modeling abstractions and requirements

as well as the expansion possibility to make it more generic. At the end, the simulation

runs of those models were used to justify the speed up gained when using the new

formalism compared to the conventional cellular DEVS implementation.

7.1 Overview on Landslides and the Need for Their Models

Landslides are among the major natural hazards that occur frequently on earth. In

addition to the loss of lives and infrastructure damages, they have a great impact on the

land formation and evolution. Research studies in this area include: detecting, classifying,

monitoring, analyzing, and predicting landslides. The ultimate goal of modeling

landslides is the prediction which helps in saving lives and reducing damages. The

complexity nature of such models as well as the large list of involved factors made it

extremely hard to agree on one universal model. Many models were proposed in the

literature [69-79] spanning different strategies and landslide factors. One of the major

factors triggering landslides is the slope failure which is caused by other factors like

rainfalls, earthquakes, and soil mechanics.

Landslide models that are based on slope failure (e.g. [70, 75-77]) calculate the

local slope of a land at each section and decide on its criticality. On slope failure

 132

criticality, a land section triggers a local slide to get back to a non-critical state based on

the self-organized criticality [74, 80-83] nature of the landslides. A local slope failure in a

land section might cause failures in other sections and the integration of all failures forms

a global landslide. The differences in landslide models were also extended into the mass

flow equations. Different researchers derived different equations that generate the debris

flow behavior during a landslide. The complexity and non-linearity of these partial

differential equations require solving them using numerical methods. These approaches

involve discretizing the land surface spatially into two or three dimensions. The most

attractive way in the last decade is by using cellular automata in simulating natural

physical systems (e.g. [37, 38, 70, 71, 77, 84, 84-87]).

7.2 Cellular DEVS Models for Landslides

The cellular space modeling approach divides space into discrete cells where local

computations held in each cell are based on its own as well as its neighbor’s states. The

neighboring rules are obtained based on the lattice setup which, in our environment,

might follow Neumann, Moore, or hexagonal neighboring rules as shown in Figure 4.4.

Landslide models presented in this chapter are all following hexagonal neighboring rules

in which each cell is represented as a hexagon that is surrounded with six neighboring

hexagons which are numbered according to Figure 4.5c. The selected landslide models

are based on the models derived in [70] and [77]. The first one is a pure cellular automata

model since the time plays no role in all equations while the other one is a discrete time

cellular automata model that is solving partial differential equations. Two more models

 133

were introduced based on the second approach. The third one is derived by using the

quantization scheme that employs discrete event rather than discrete time simulation. The

last one is a rate-based predictive quantized landslide model.

7.3 Non-Timed Cellular Automata Landslide Model

The landslide model presented in [70] is a pure cellular automata model that does

not account for time in its flow calculations. The landscape is divided into hexagonal

cells. Each one has its own state variables, parameters as well as transition function. The

state variables includes: cell altitude (i.e. elevation of bedrock + depth of soil cover),

thickness of landslide debris, depth of erodable soil cover, and debris outflow to all six

neighbors. Figure 7.1 shows more variables that represent the cell state during

calculations like the kinetic head hk, cell height (h = bedrock elevation + erodable soil +

thickness of landslide debris), and the overall run-up height r. Since all cells in a specific

landslide application have fixed area A, the land mass movements are represented using

heights instead of volume.

A

Z=0

m

r
h

hk

Figure 7.1: A representation of hexagonal land cell that accounts for energy using the

kinetic head.

 134

The cell transition function is composed of four elementary processes: calculating

debris outflows, updating local landslide debris thickness and energy, mobilization

triggering and effect, and energy loss calculations. By the end of each process all cells

must be synchronized and updated with the new neighboring states. Therefore, the

transition function should be implemented using four synchronized phases. In the first

phase, the height is virtually incremented to r in order to account for run-up effects and

then the slope angles in all directions are calculated. To minimize the critical directions,

average flows are calculated and then an iterative minimization algorithm is employed to

eliminate directions with flows less than the average. In the second phase, all cells are

updated with the new flows which also involve energy state update. Based on the new

local energy value, the soil erosion in a cell is calculated in the third phase. This process

is responsible of converting some parts of the bedrock into movable soil that might move

with the current debris flow which might cause a change in the local cell energy. The last

phase determines the energy loss that is caused by friction which is also represented by a

reduction in the run-up height. For more detailed equations and explanations see [70].

7.4 Discrete Time Cellular Landslide Model

Segre and Deangeli introduced a lattice independent cellular automata model of

landslides in [77]. Instead of specifying all different directions of a cell based on the

lattice setup, they came up with equations that are based on directional vectors and

derivatives. The flow equations were solved using a discrete time step that is needed to be

 135

calibrated for each specific application in addition to some other parameters. Unlike the

previous model, this one does not account for energy and run-up effects. It is mostly

about mass conservation in which the model specifies a criticality condition that is when

met, a mass flow is initiated from the higher cell into its critical direction(s). When a flow

passes into a cell, a continuation factor is added to the criticality condition that might

trigger flow into previously non-critical direction(s). More details were given to the soil

content that represent cell state. The state variables in this model involve the bedrock

height as well as the movable soil content which is composed of five variables: gas,

water, silt-clay, sand-gravel and boulders. The model calculates the flow rate for each of

the five soil contents using the solid content density, concentration, friction angle, and

slope vectors in each of the cell’s directions. Figure 7.2 lists the calculated 2-D

directional vectors vJ
→

 that are originated at center cell (0,0). For simplicity, in our

implementation, the slope vector is defined in one direction as)/)(,(),(dizvi vvJp ∆=
→→

rather than calculating the steepest descent vector between every two directions which by

the end account for each direction twice. The slope vector calculation is illustrated in

Figure 7.3 where the height difference in direction v is referred to by ∆zv(i) and the

distance between centers of two cells is d. All other flow equations and parameters were

used as is in [77].

 136

(0, 0) 60
ο

(d, 0)(-d, 0)

(-d/2, -0.866 d)

(d/2, 0.866 d)(-d/2, 0.866 d)

(d/2, -0.866 d)

x
y

Figure 7.2: Directional vectors of cell neighbors (vJ

→
) in hexagonal lattice.

ri Hj

Hi

∆zj(i)i

j

p(i,j)

Figure 7.3: Slope vector calculation.

7.5 Discrete Event Cellular Landslide Model

The use of discrete events, rather than fixed time steps, in simulation gives a

significant speedup in many applications [6]. To convert the above discrete time model

into discrete event one, a quantization scheme is needed to be employed. Instead of

advancing cells to the next fixed time, each cell is required to calculate its own next time

advance based on a specified quantum level. The main state variable that is of a great

interest in simulating landslides is the height. When a cell becomes in critical state, it

starts sending mass flows into its neighbor(s). The previous model calculates the mass to

 137

be sent to all directions based on the time step. This model first calculates the rates of

change in the internal content that are add up to form the rate of change in cell height.

Then, defines the time step that makes the change in height exceeds the quantum level

using the following equation:

∑∑
=∆

v k
k viq

quantumt
),(

, where the flow rate for each of the mass contents k to direction v is:

),(sin),(3 vihQviq kk θρ=

, given that ρ is the solid material density, θ is the slope angle, h is the cell height, and Qk

is content flow constant. After defining the time step, all mass flows are calculated and

sent to neighboring cells on the expiration of that calculated time step. One modification

was done in the equation by raising h to the power 3 instead of 5 as in the paper. The

original equation causes huge flow rates and requires the time steps to be in microseconds

to run correctly. The modification was done to relax the huge computational power

required and to correctly simulate the flows in terms of milliseconds.

7.6 Rate-Based Predictive Quantized Landslide Model

All the previous models might produce wrong cell decisions or instability during

simulation. If a cell is found to be critical and starts mass flows to its neighbors, the flows

should be stopped by the time the neighbors become non critical. This stopping rule is not

modeled so far and the models counts on the size of the time step to be very small to

avoid passing that point. In previous runs of some landslide models, it was found that the

 138

time step must be extremely small to avoid incorrectness and instability which might

degrade the simulation performance. In addition, the cells are not aware if the

neighboring cells are receiving other mass flows from other cells which might cause the

cell to mistakenly send flows also to those neighbors. As a result, that receiving cell

might grow very fast until it becomes critical and send the flows back to originating cells.

This causes a form of unrealistic and unstable runs like the example shown in Figure 7.4.

Figure 7.4: An example of incorrectness and instability.

In order to overcome all of these problems, an additional state variable should be

introduced to the land slide model which represents the rate of change in cell height. In

addition, some prediction rules (see Table 7.1) must be employed to let each cell predict

its stopping points based on their heights and rates as well as the heights and rates of the

neighboring cells. This rate-based quantized model is designed to be more accurate in

representing landslide flows, but it requires more computing power. In addition, it

introduces intelligent cells that send rate of flows to the neighbors instead of mass. Upon

receiving these rates, cells calculate their overall rate of change and send it to all other

 139

neighbors. Then, each cell uses the prediction rules to calculate its nearest time advance.

There are some neighboring cells that might have the same rate of change and they can

not predict their next time step. In that case, they just stay on the phase of mass flow till

they get a timed update from other cells so that they can update their heights according to

their rate and the time they reach. Therefore, this last landslide model contains intelligent,

predictive and self-updated cells that carry out the landslide flows more correctly than the

previous models.

 Ratei > Ratej Ratei < Ratej

Zi = Zj -∆z >= quantum
∆z < 0

∆z = 0
Zi = Zj + quantum

∆z > 0

Zj = Zi

Zj = Zi + quantum

∆z >= quantum

Table 7.1: Prediction rules.

7.7 Models Development Experiences

The cellular model development environment allows the automated code

generation. When developing a cellular DEVS model, the GUI is used to define the states

variables, flow variables, variable types, ports, ports types, port to variable mapping, and

cell’s local transition function. In addition, the user can optionally enter the boundary

conditions and any other helping function(s) that might be needed for the model.

 140

Building the first model was done completely through the GUI except for the

model parameters that were added to the beginning of the model code. In future work, the

GUI can be easily extended to support this. Similarly, the other three models can be

completely developed through the GUI and have their parameters added to the code.

However, these models are using 3-D vectors in the flow calculations which are not yet

supported as state variables in the environment. They can be either broken into three

values that are supported by the environment and write the cell transition function

accordingly or deal with them as objects that are added to the code of the generated

model. The first option can be completely done through the GUI while it might degrade

the simulation performance. On the other hand, the other option enhances the

performance but requires the environment to be extended to support vectors in order to

keep the code transparent to the user.

The last model required a special treatment of the flow variables that is not yet

implemented in the environment. The environment assumes the flow variables should be

reset after sending the flows into the neighboring cells which is the case in most of the

flow based cellular models. The rate-based landslide model requires these flows not to be

reset since each cell will need it in next iterations to update its state. Since, in this model,

flow variables must be treated the same way as treating state variables, the generated

code should be modified to account for this. Future improvement to the environment in

this regard can be done by making the user select how the flow variables should be

treated.

 141

7.8 Experimental Results

The main purpose of the experiments was to show the speed up claimed to be

achieved using the new approach and check the consistency of the practical measures to

these theoretical claims. In addition to the landslide models, there are more models, not

presented in this section, that show the significance of the approach presented in this

dissertation (e.g. [11]). The landslide models were run using a 3.0 GHz Pentium 4

machine with 1GB of RAM. All runs were done for 32×32 cell space where the used data

is an approximated portion taken from Fig.8 in [70]. The results presented here are

execution times in seconds for 100 simulation iterations of all landslide models presented

in the previous sections that were implemented using the new developed environment.

Different runs with different setups were made for analyzing the different alternatives as

well as comparing the new approach to the conventional cellular DEVS approach.

7.8.1 Modular vs. Non-Modular Approach

One of the main goals of this dissertation is to formulate and implement the idea

of converting modular coupled cellular DEVS models into non-modular atomic ones in

order to gain speedup in simulation. The comparison, in our landslide model context, was

done by implementing the models using the conventional cellular DEVS approach and

contrasting them with the new implementation that encapsulates the entire cell space in a

non-modular atomic model. Table 7.2 shows the execution time in both approaches for

all landslide models in seconds. The speedups, shown in the fourth column, were

calculated by dividing the execution time of the conventional approach over the time for

 142

the new approach. The non-modular approach that is introduced in this work shows

significant speedups in landslide models.

 Modular Non-Modular Speedup
Model-1 18 4 4.5
Model-2 110 15 7.3
Model-3 6 2 3
Model-4 10 1 10
Table 7.2: Execution and speedup of landslide models.

The speedup was gained from two major sources. The first one is the simulator-

like enhancement in which the event list handler was optimized to efficiently manage the

active cells. The other one is eliminating the inter-cell messages completely in the cell

space model. Therefore, the speedup obtained reflects the percentage of average number

of active cells per iteration to the total number of cells in the model (M×N), and the total

number of inter-cell messages generated during simulation. Both of these factors are

application and model dependent which explains the differences in speedup between all

models. The more inter-cell messages present, more is the speedup that can be achieved

from the first source. On the other hand, the larger the percentage of active cells the lesser

is the speed up gained from the other source.

() 






 ×
∝ messages

sactiveCellavg
NMspeedup ,

The first two landslide models represent discrete fixed step simulation approach

in which all cells are active in all iterations. This means that the source of speedup in

these two models came only from the inter-cell messages elimination. The second model

gained more speed up than the first one because of the very small time step in differential

 143

equations that results in more landslide activities and hence more inter-cell messages.

Speedup in the other two models is a result of both factors combined. The last model is

the one that achieved the highest speed up among all models since it is heavily based on

message passing because of the quantization and the rate-based prediction that results in

very small time advances. In conclusion, the above speedup equation can be generalized

to all cellular models using the new approach which model cell space applications as one

atomic model.

7.8.2 Using the New Implementation for Conventional Cellular Models

 Despite the significant speedup achieved in the non-modular implementation of

the landslide models, the new approach introduced some forms of overhead and extra

memory requirements to the atomic model. Table 7.3 illustrates the overhead introduced

to the atomic cell space when running each block that employs the event list handler to

simulate a single cell. This overhead resulted from the fact that, in each single iteration of

an active block, the cell should be added to the list, extracted from the list, and then the

computation takes place while in the conventional cellular DEVS implementation, cells

do the computation without the list overhead. In addition, the new block implementation

requires more storage memory since all cell states and variables are stored in arrays. This

explains the missing result in Table 7.3 in which the machine ran out of memory to

simulate that model which consists of 1024 blocks each having 18 (3×3) arrays.

However, the full decomposition of cell space will result in a block that has 18 (34×34)

arrays. The trade off between overhead, memory requirements, and speed up is in favor

 144

of the approach of this dissertation in case the cell space is fully decomposed into one

atomic model.

 32×32 blocks 32×32 cells

Model-1 20 18

Model-2 114 110

Model-3 7 6

Model-4 - 10
Table 7.3: Comparing block and cell implementation of 32×32 Cell space.

7.8.3 Different Blocking Setting (Living with Messages)

In addition to the event list overhead, results show computational overhead in the

approach in some block settings. This overhead associated with the blocking setups that

divide the space into blocks that are required to communicate with each other via

messages. Table 7.4 shows the execution time of different blocking setup starting with all

cells inside one block (block size is 32×32) and ending with the setup in which each

block contains one cell (block size is 1×1). All other setups, in between, result in

execution time that is worse than the conventional cellular DEVS approach. That means

that the blocking scheme endures a huge overhead when it starts communicating with

other blocks.

Block size 32×32 16×16 8×8 4×4 2×2 1×1
Model-1 4 40 50 43 29 20
Model-2 15 970 767 440 221 114
Model-3 2 28 21 19 174 7
Model-4 1 24 17 15 13 -
Table 7.4: The new implementation with different blocking setups

 145

This overhead inherited from the DEVS simulator implementation in which, when

a block is about to receive an external message, the simulator informs it with the new

message but it is required to iterate over the ports to decide which port is receiving the

message. In the new approach, it will require iterating over all the boundary cells to get

the message which results in (2W+2H-4) iterations in a W×H block to just receive a

single message for one cell. On the other hand, conventional cellular DEVS

implementation does the iteration once for the receiving cell. Therefore, the source of

overhead is letting the block iterates over a big number of cells that might not receive

external messages. The overhead factor can be represented by the following ratio

(2W+2H+4)/X where X is the average cells that are receiving messages per iteration. In

highly active cells where all boundary cells are receiving messages, the ratio will be one

and all iterations will be worthwhile. In this case the overhead disappears compared to

the conventional approach. The worst case can be represented by X<<(2W+2H+4) where

the overhead factor is huge because of the extremely small number of receiving cells

compared to the number of boundary cells which results in a huge number of unnecessary

iterations. The solution to this problem is the simulator enhancement in which the

messages should be encoded [88] in order to make the block know the receiving cell

without going through all unnecessary iterations.

 146

CHAPTER 8 : CONCLUSIONS AND FUTURE WORK

Conventional modular approaches of modeling cellular DEVS models were found to

poorly perform in the case of very large scale spaces with high cell activities. Some

related works were done to speedup simulations by the means of simulator enhancements

that deal efficiently with the big volume of communication messages. Despite all of these

enhancements, the models still spend a large amount of computational time in dealing

with messages rather than spending all computational efforts in the actual model tasks.

In this dissertation, a new formalism was introduced to specify the cellular DEVS

models in an efficient non-modular form. The new formalism was formulated using the

closure under coupling property of DEVS in order to ensure equivalency of the models to

their modular counterparts in parallel DEVS. Non-modular Models that were developed

using the new cellular DEVS specification outperformed their modular equivalents. The

speedup was gained from two sources. The first one is the efficient scanning of active

cells which also can be achieved using simulator enhancements. The other one is the

elimination of the inter-cell messages by fully decomposing the cellular space model into

atomic one. However, specifying large and complex cellular models using the new

specification was found to be complicated and difficult to verify. Therefore, different

layer of formalism was introduced to allow simple and fast user specification of the

efficient models. The new multi-layer formalism was made as generic as possible to

support all cellular models that are currently supported by the parallel DEVS formalism

like CA, PDE, and discrete time models.

 147

The new formalism supports the automation of specification conversion between the

different layers which made it possible to develop an automated environment that

converts user specifications into cellular DEVS as well as parallel DEVS specifications.

The new development environment supports model development through GUI where the

user specification is input. It also supports automated conversion of user specification

into the new cellular DEVS specification as well as automatic code generation that put

the new form in parallel DEVS specification. This was done to allow possibility of

running generated models in a standard parallel DEVS simulator. Future work might

relax this constraint and introduce a special efficient cellular DEVS simulator.

The new environment was designed to make the model development faster and make

the coding level transparent to the user. However, once the model code is generated, the

user is granted full access to the code in order to modify the model and/or add more

specific requirements that are not supported. The environment was found to support wide

varieties of modeling requirements and it can be easily adapted to include more aspects in

the future. It was tested using some of the standard software testing strategies and was

found to perform well according to the test cases presented in chapter 6. The testing was

extended to the models generated by this environment in order to verify that the

environment generated what the user intended to develop. In addition to the software

testing, the model is tested using the simulation-based DEVS verification approaches. A

modification to the current automated cellular DEVS verification approach was proposed

to correctly test models that account for zero time transitions. The last test presented in

this work verified that the new approach is equivalent to the conventional cellular DEVS

 148

implementation through simulation methods in all models developed during this work.

All automated testing classes are made available for the user to call in order to test and

verify the developed models.

The fully decomposed cell spaces gave the best performance among all other

blocking setups. The process of decomposing coupled model into atomic one involves

adding simulator tasks into the new atomic model. These tasks include scanning active

cells and handling the list of future events. The faster the event list handler, more is the

speedup that can be gained in the decomposed model. Chapter 5 was dedicated to find the

best event list handler for our environment which concluded that large decomposed

cellular DEVS models prefer lists that have O(1) add and remove operations. That

finding was based on the analytical as well as the experimental point of view. The

analytical approach took place in the final format of the new implemented formalism in

which the add and remove were found to be the most frequent operations in our design

which was also supported by actual operation counts in some models. The selected

implementation in the new environment is a standard unsorted array implementation.

Since event lists might perform differently in different application, the event list class can

be replaced, when needed, with another that should follow the design requirements listed

in chapter 5.

The landslide models introduced in this dissertation tried to push the new

environment to the limits. These complex models required more modifications to be

added to the generated code. It was shown that all of the requirements can be easily

added to the environment in future work and limit the need to modify the generated

 149

models. Experimental results showed that cellular models that have more inter-cell

messages achieved more speedup when modeled in the new fully decomposed non-

modular cellular DEVS specification. The other setups of blocking, where messages not

entirely eliminated, showed significant overhead which resulted from the standard DEVS

simulator implementation. The scope of this work does not include the distributed

application of the new formalism in which a solution to this overhead will be a must. The

solution will reside in the simulator enhancement in which message encoding scheme

should be employed to include the receiving cell ID within all inter-cell messages.

Future work of this research might include the following:

• Modify the multi-component DEVS formalism in order to be equivalent to the

parallel DEVS and compare it to the formalism introduced in this dissertation.

• Since this work targeted the modeling enhancement, a more integrated approach

can be done by introducing an efficient simulation engine that is dedicated for the

newly introduced formalism.

• The new development environment can be improved to include all the missing

requirements, abstraction, and modifications that are needed by the complex

models.

• A visualization environment of the cellular DEVS models can be designed and

implemented to support animating the simulations.

 150

• Extending the use of the new formalism to the distributed simulations which will

include reducing the overhead that might be caused by the new implementation in

order to utilize the advantage of the speedups achieved.

 151

REFERENCES

[1] G. A. Wainer, "Modeling and simulation of complex systems with cell-DEVS," in
WSC '04: Proceedings of the 36th Conference on Winter Simulation, 2004, pp. 49-60.

[2] G. A. Wainer and N. Giambiasi, "Cell-DEVS/GDEVS for Complex Continuous
Systems," Simulation, vol. 81, pp. 137-151, 2005.

[3] A. Muzy and J. J. Nutaro, "Algorithms for efficient implementations of the DEVS &
DSDEVS abstract simulators," in 1st Open International Conference on Modeling &
Simulation (OICMS), 2005.

[4] X. Hu and B. P. Zeigler, "A high performance simulation engine for large-scale
cellular DEVS models," in High Performance Computing Symposium (HPC'04),
Advanced Simulation Technologies Conference, 2004.

[5] G. Wainer and N. Giambiasi, "Application of the Cell-DEVS Paradigm for Cell
Spaces Modeling and Simulation," Simulation, vol. 76, pp. 22-39, 2001.

[6] B. P. Zeigler, T. G. Kim and H. Praehofer, Theory of Modeling and Simulation. San
Diego, CA, USA: Academic Press, Inc, 2000.

[7] E. Kofman and S. Junco, "Quantized-state systems: a DEVS Approach for continuous
system simulation," Trans. Soc. Comput. Simul. Int., vol. 18, pp. 123-132, 2001.

[8] T. Beltrame and F. E. Cellier, "Quantised state system simulation in
Dymola/Modelica using the DEVS formalism," in Proceedings 5th International
Modelica Conference, 2006, pp. 73-82.

[9] W. B. Lee and T. G. Kim, "Simulation speedup for DEVS models by composition-
based compilation," in Proceedings of Summer Computer Simulation Conference,
2003, pp. 395-400.

[10] T. Beltrame, "Design and Development of a Dymola/Modelica Library for Discrete
Event-oriented Systems Using DEVS Methodology," 2006.

[11] F. A. Shiginah and B. P. Zeigler, "Transforming DEVS to non-modular form for
faster cellular space simulation," in Proceedings of 2006 DEVS Symposium, 2006, pp.
86-91.

[12] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems.
Cambridge University Press, 1998.

 152

[13] T. Yu and S. Lee, "Evolving cellular automata to model fluid flow in porous media,"
in EH '02: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware
(EH'02), 2002, pp. 210.

[14] M. V. Avolio, G. M. Crisci, D. D’Ambrosio, S. Di-Gregorio, G. Iovine, R. Rongo and
W. Spataro, "An extended notion of cellular automata for surface flows modeling,"
WSEAS Transactions on Computers, vol. 2, pp. 1080-1085, 2003.

[15] M. V. Avolio, G. M. Crisci, D. D'Ambrosio, S. Di-Gregorio, G. Iovine, V. Lupiano,
R. Rongo and W. Spataro, "Surface flows modeling: Cellular automata simulation of
lava, debris and pyroclastic flows," in Proceedings of the iEMSs Third Biennial
Meeting: "Summit on Environmental Modeling and Software", 2006.

[16] B. D. Malamud and D. L. Turcotte, "Cellular-Automata Models Applied to Natural
Hazards," Computing in Science and Engineering, vol. 2, pp. 42-51, 2000.

[17] N. Ganguly, P. Maji, S. Dhar, B. K. Sikdar and P. P. Chaudhuri, "Evolving cellular
automata as pattern classifier," in ACRI '01: Proceedings of the 5th International
Conference on Cellular Automata for Research and Industry, 2002, pp. 56-68.

[18] P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar and P. P. Chaudhuri, "Theory and
application of cellular automata for pattern classification," Fundam. Inf., vol. 58, pp.
321-354, 2003.

[19] T. N. Mudge, R. A. Rutenbar, R. M. Lougheed and D. E. Atkins, "Cellular image
processing techniques for VLSI circuit layout validation and routing," in DAC '82:
Proceedings of the 19th Conference on Design Automation, 1982, pp. 537-543.

[20] X. Yang, "Characterization of multispecies living ecosystems with cellular automata,"
in ICAL 2003: Proceedings of the Eighth International Conference on Artificial Life,
2003, pp. 138-141.

[21] A. Dupuis and B. Chopard, "Parallel simulation of traffic in Geneva using cellular
automata," pp. 89-107, 2001.

[22] G. Wainer, "ATLAS: A language to specify traffic models using Cell-DEVS,"
Simulation Modeling Practice and Theory, vol. 14, pp. 313-337, 2006.

[23] R. O. Cunha, A. P. Silva, A. A. F. Loureiro and L. B. Ruiz, "Simulating large
wireless sensor networks using cellular automata," in ANSS '05: Proceedings of the
38th Annual Symposium on Simulation, 2005, pp. 323-330.

[24] R. Hu and X. Ruan, "Differential equation and cellular automata model," in IEEE
International Conference on Robotics, Intelligent Systems and Signal Processing,
2003, pp. 1047-1051.

 153

[25] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming
Approach. Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2001.

[26] G. Spezzano and D. Talia, "A high-level cellular programming model for massively
parallel," in 2nd Int. Workshop on High-Level Programming Models and Supportive
Environments (HIPS97), 1997.

[27] D. Talia, "Cellular Processing Tools for High-Performance Simulation," Computer,
vol. 33, pp. 44-52, 2000.

[28] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for
Modeling. Cambridge, MA, USA: MIT Press, 1987.

[29] S. Wolfram, A New Kind of Science. Champaign, Illinois, US, United States:
Wolfram Media Inc, 2002.

[30] J. Ameghino, A. Troccoli and G. Wainer, "Models of complex physical systems using
cell-DEVS," in SS '01: Proceedings of the 34th Annual Simulation Symposium
(SS01), 2001, pp. 266.

[31] A. Muzy, E. Innocenti, A. Aiello, J. -. Santucci and G. Wainer, "Cell-DEVS
quantization techniques in a fire spreading application," in WSC '02: Proceedings of
the 2002 Winter Simulation Conference (WSC'02) - Volume 1, 2002, pp. 542-549.

[32] G. Wainer and R. Madhoun, "Creating Spatially-Shaped Defense Models Using
DEVS and Cell-DEVS," JDMS: The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, vol. 2, pp. 121-143, 2005.

[33] A. C. Chow, "Parallel DEVS: a parallel, hierarchical, modular modeling formalism
and its distributed simulator," Trans. Soc. Comput. Simul. Int., vol. 13, pp. 55-67,
1996.

[34] C. Chow and B. P. Zeigler, "Parallel DEVS: A parallel, hierarchical, modular,
modeling formalism," in WSC '94: Proceedings of the 26th Conference on Winter
Simulation, 1994, pp. 716-722.

[35] G. A. Wainer and N. Giambiasi, "N-dimensional Cell-DEVS Models,"Discrete Event
Dynamic Systems, vol. 12, pp. 135-157, 2002.

[36] G. Wainer and N. Giambiasi, "Timed cell-DEVS: modeling and simulation of cell
spaces," pp. 187-214, 2001.

[37] G. Wainer, "Performance analysis of continuous cell-DEVS models," in Proceedings
of 18th European Simulation Multiconference, 2004.

 154

[38] H. Saadawi and G. Wainer, "Modeling a sand pile application using cell-DEVS," in
Proceedings of the 2003 SCS Summer Computer Simulation Conference, 2003.

[39] G. A. Wainer, "Modeling and simulation of complex systems with cell-DEVS," in
WSC '04: Proceedings of the 36th Conference on Winter Simulation, 2004, pp. 49-60.

[40] F. P. Wyman, "Improved event-scanning mechanisms for discrete event simulation,"
Commun. ACM, vol. 18, pp. 350-353, 1975.

[41] J. G. Vaucher and P. Duval, "A comparison of simulation event list algorithms,"
Commun. ACM, vol. 18, pp. 223-230, 1975.

[42] J. S. Steinman, "Discrete-event simulation and the event horizon part 2: Event list
management," in PADS '96: Proceedings of the Tenth Workshop on Parallel and
Distributed Simulation, 1996, pp. 170-178.

[43] R. Rönngren, J. Riboe and R. Ayani, "Lazy queue: An efficient implementation of the
pending-event set," in ANSS '91: Proceedings of the 24th Annual Symposium on
Simulation, 1991, pp. 194-204.

[44] W. M. McCormack and R. G. Sargent, "Analysis of future event set algorithms for
discrete event simulation," Commun. ACM, vol. 24, pp. 801-812, 1981.

[45] D. W. Jones, "An empirical comparison of priority-queue and event-set
implementations," Commun. ACM, vol. 29, pp. 300-311, 1986.

[46] K. Chung, J. Sang and V. Rego, "A performance comparison of event calendar
algorithms: an empirical approach," Softw. Pract. Exper., vol. 23, pp. 1107-1138,
1993.

[47] H. Bahr and R. DeMara, "Smart priority queue algorithms for self-optimizing event
storage," Simulation Modeling Practice and Theory, vol. 12, pp. 15-40, April. 2004.

[48] M. A. Weiss, Data Structures and Algorithm Analysis in Java. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc, 1998.

[49] R. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in
Java. John Wiley & Sons, Inc, 2000.

[50] G. M. Adelson-Velskii and E. M. Landis, "An algorithm for the organization of
information," Soviet Mathematics Doklady, vol. 3, pp. 1259-1262, 1962.

[51] J. Baer and B. Schwab, "A comparison of tree-balancing algorithms," Commun.
ACM, vol. 20, pp. 322-330, 1977.

 155

[52] Boehm and V. R. Basili, "Software Defect Reduction Top 10 List," Computer, vol.
34, pp. 135-137, 2001.

[53] Burnstein, Practical Software Testing. New York, USA: Springer-Verlag New York,
Inc, 2003.

[54] L. Copeland, A Practitioner's Guide to Software Test Design. Norwood, MA, USA:
Artech House, Inc, 2003.

[55] M. Ellims, J. Bridges and D. C. Ince, "The Economics of Unit Testing," Empirical
Softw. Engg., vol. 11, pp. 5-31, 2006.

[56] N. Juristo, A. M. Moreno and S. Vegas, "Reviewing 25 Years of Testing Technique
Experiments,"Empirical Softw. Engg., vol. 9, pp. 7-44, 2004.

[57] A. Whittaker, "What Is Software Testing? And Why Is It So Hard?" IEEE Software,
vol. 17, pp. 70-79, 2000.

[58] B. P. Zeigler, Objects and Systems: Principled Design with Implementations in C++
and Java. New York, NY, USA: Springer-Verlag New York, Inc, 1997.

[59] M. Pol, R. Teunissen and E. V. Veenendaal, Software Testing: A Guide to the TMap
Approach. Boston, MA, USA: Addison-Wesley, 2001.

[60] O. Balci, "Principles and techniques of simulation validation, verification, and
testing," in WSC '95: Proceedings of the 27th Conference on Winter Simulation,
1995, pp. 147-154.

[61] R. G. Sargent, "Validation and verification of simulation models," in WSC '04:
Proceedings of the 36th Conference on Winter Simulation, 2004, pp. 17-28.

[62] Y. Labiche and G. Wainer, "Towards the verification and validation of DEVS
models," in Proceedings of 1st Open International Conference on Modeling &
Simulation, 2005, pp. 295-305.

[63] M. H. Hwang, "Tutorial: Verification of real-time system based on schedule-
preserved DEVS," in Proceedings of 2005 DEVS Symposium, 2005.

[64] M. H. Hwang and B. P. Zeigler, "A modular verification framework using finite and
deterministic DEVS," in Proceedings of 2006 DEVS Symposium, 2006, pp. 57-65.

[65] B. P. Zeigler, "Verification and validation of DEVS models: Applying the theory of
modeling and simulation to the needs of simulation based acquisition," in
Proceedings of Summer Computer Simulation Conference, 2000.

 156

[66] G. Wainer, L. Morihama and V. Passuello, "Automatic verification of DEVS
models," in Proceedings of the 2002 Spring Simulation Interoperability Workshop,
2002.

[67] N. J. Nilsson, Artificial Intelligence: A New Synthesis. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc, 1998.

[68] N. Dawson, Q. Du and T. F. Dupont, "A finite difference domain decomposition
algorithm for numerical solution of the heat equation," Mathematics of Computation,
vol. 57, pp. 63-71, July. 1991.

[69] H. Chen and C. F. Lee, "Numerical simulation of debris flows," Canadian
Geotechnical Journal, vol. 37, pp. 146-160, 2000.

[70] D'Ambrosio, S. D. Gregorio and G. Iovine, "Simulating debris flows through a
hexagonal cellular automata model: SCIDDICA S_3-hex," Natural Hazards and
Earth System Sciences, vol. 3, pp. 545-559, 2003.

[71] Dattilo and G. Spezzano, "Simulation of a cellular landslide model with CAMELOT
on high performance computers," Parallel Comput., vol. 29, pp. 1403-1418, 2003.

[72] P. D'Odorico and S. Fagherazzi., "A probabilistic model of rainfall-triggered shallow
landslides in hollows: A long-term analysis," Water Resour. Res., vol. 39, 2003.

[73] Gascuel, M. Cani, M. Desbrun, E. Leroy and C. Mirgon, "Simulating landslides for
natural disaster prevention," in Eurographics Workshop on Computer Animation and
Simulation (EGCAS), 1998.

[74] S. Hergarten, "Landslides, sandpiles, and self-organized criticality," Natural Hazards
and Earth System Sciences, vol. 3, pp. 505-514, 2003.

[75] O. Hungr, "Flow slides and flows involving granular soils," in International
Workshop on: Occurrence and Mechanisms of Flows in Natural Slopes and
Earthfills, 2003.

[76] J. Lin and C. Ku, "Simulation of slope failure using a meshed based partition of unity
method," in 15th ASCE Engineering Mechanics Conference, 2002.

[77] E. Segre and C. Deangeli, "Cellular automaton for realistic modeling of landslides,"
Nonlinear Processes in Geophysics, vol. 2, pp. 1-15, 1995.

[78] N. Sitar and M. M. MacLaughlin, "Kinematics and discontinuous deformation
analysis of landslide movement," in 2nd Panamerican Symposium on Landslides,
1997.

 157

[79] Yvonne and C. Michael, "Numerical modeling of landscape evolution:
geomorphological perspectives," Prog. Phys. Geogr., vol. 28, pp. 317-339, 2004.

[80] K. Christensen and Z. Olami, "Scaling, phase transitions, and nonuniversality in a
self-organized critical cellular-automaton model," Physical Review A (Atomic,
Molecular, and Optical Physics), vol. 46, pp. 1829-1838, Aug. 1992.

[81] D. A. Head and G. J. Rodgers, "Crossover to self-organized criticality in an inertial
sandpile model," Phys Rev E., vol. 55, pp. 2573-2579, 1997.

[82] S. Hergarten and H. J. Neugebauer, "Self-organized criticality in a landslide model,"
Geophys. Res. Lett., vol. 25, pp. 801-804, 1998.

[83] P. Bak, How Nature Works: The Science of Self Organized Criticality. New York,
NY, USA: Springer-Verlag New York, Inc, 1996.

[84] C. R. Calidonna, C. D. Napoli, M. Giordano, M. M. Furnari and S. D. Gregorio, "A
network of cellular automata for a landslide simulation," in ICS '01: Proceedings of
the 15th International Conference on Supercomputing, 2001, pp. 419-426.

[85] J. Ohta and I. Matsuba, "Analysis of earthquakes based on a dissipative cellular-
automata model," Electronics and Communications in Japan, Part 3, vol. 82, pp. 20-
27, 1999.

[86] P. G. Akishin, M. V. Altaisky, I. Antoniou, A. D. Budnik and V. V. Ivanov,
"Simulation of earthquakes with cellular automata," Discrete Dynamics in Nature
and Society, vol. 2, pp. 267-279, 1998.

[87] A. Muzy, E. Innocenti, J. Santucci and D. R. C. Hill, "Optimization of cell spaces
simulation for the modeling of fire spreading," in ANSS '03: Proceedings of the 36th
Annual Symposium on Simulation, 2003, pp. 289.

[88] J. S. Lee, "Space-based data management for high performance distributed
simulation," 2001.

