
WSDL-BASED DEVS AGENT FOR NET-CENTRIC SYSTEMS ENGINEERING

Saurabh Mittal (a), Bernard P. Zeigler(b), Jose L. Risco Martin(c), Jesús M. de la Cruz(c)

(a)DUNIP Technologies, Inc.
Gurgaon, Haryana, India

(b)Arizona Center for Integrative Modeling and Simulation
ECE Department, University of Arizona, Tucson, AZ USA

(c) Departamento de Arquitectura de Computadores y Automática

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain

(a)saurabh.mittal@duniptechnologies.com, (b)zeigler@ece.arizona.edu, (c) jlrisco@dacya.ucm.es, jmcruz@fis.ucm.es

ABSTRACT

This research work provides a methodology to use
Discrete Event Systems Specification (DEVS) to design
and evaluate the performance of web services within a
Service Oriented Architecture (SOA). We will show how
a Web Service Description Language (WSDL)
document can be mapped to a DEVS model in an
automated manner through a DEVS abstract service
wrapper. This work will describe the underlying
architecture of abstract DEVS service wrapper and a
workflow example made executable using the
DEVS/SOA framework. This work will establish DEVS
as a production environment for net-centric systems as
well as a solid M&S analysis tool for SOA design.

Keywords: SOA, WSDL, DEVS/SOA, DEVSML

1. INTRODUCTION
Industry and government are spending extensively to
transition their business processes and governance to
Service Oriented Architecture implementations for
efficient information reuse, integration, collaboration
and cost-sharing. Service Oriented Architecture (SOA)
enables orchestrating web services to execute such
processes using Business Process Execution Language
(BPEL). Business Process Modeling Notation (BPMN)
is another method that outputs BPEL for deployment.
As an example, the Department of Defense’s (DoD
grand vision is the Global Information Grid that is
founded on SOA infrastructure. As illustrated in Figure
1, the SOA infrastructure is to be based on a small set
of capabilities known as Core Enterprise Services
(CES) whose use is mandated to enable interoperability
and increased information sharing within and across
Mission Areas, such as the Warfighter domain,
Business processes, Defense Intelligence, and so on)
[GIGV]. Net-Centric Enterprise Services (NCES)
[NCES] is DoD’s implementation of its Data Strategy
over the GIG. NCES provide SOA infrastructure
capabilities such as service and metadata registries,
service discovery, user authentication, machine-to-
machine messaging, service management, orchestration,
and service governance.

However, composing/orchestrating web services in a
process workflow (a.k.a Mission thread in the DoD
domain) is currently bounded by the BPMN/BPEL
technologies. Moreover, there are few methodologies to
support such composition/orchestration. Further, BPMN
and BPEL are not integrated in a robust manner and
different proprietary BPMN diagrams from commercial
tools fail to deliver the same BPEL translations. Today,
these two technologies is by far the only viable means
whereby executives and managers can devise process
flows without touching the technological aspects. With
so much resting on SOA, their reliability and analysis
must be rigorously considered. The BPMN/BPEL
combination neither has any grounding in system
theoretical principles nor can it be used in designing
net-centric systems based on SOA in its current state.

Figure 1: Core Enterprise Services in GIG [GIGV]

In this research work we provide a proof of concept of
how Discrete Event System Specification (DEVS)
Formalism can deliver another process work flow
mechanism to compose web services in a SOA. We will
show how the resulting agent based DEVS system can
be executed on the recently developed DEVS/SOA
[DUN07, MIT07c] distributed modeling and simulation
framework. In addition to supporting SOA application
development the framework enables verification and
validation testing of application. The developed DEVS

models from WSDL lie in the subset of DEVS
specifications known as Finite Deterministic DEVS or
FDDEVS [HWA06, MIT07h] that can be used for
verification. However, V&V is not the focus of this
paper. We will demonstrate the execution of the DEVS
agent in a complete case-study in which a workflow is
composed and executed using DEVS/SOA framework.

The paper is organized as follows. Section 2 presents
the related work in the area of BPEL, BPMN and Agent
based studies focused towards SOA. Section 3 describes
the underlying technologies that include DEVS, Web
Services framework. Section 4 deals with Abstract
DEVS Service wrapper in detail and also discusses how
statistics gathering is integrated with the wrapper
design. Section 5 presents the implementation of DEVS
WSDL agent and how it can be used in a process
workflow using the proposed Web Services Workflow
Formalism (WSWF). Section 6 presents layered
architecture of Agent-based Test Instrumentation
System on/using Global Information Grid using SOA
(GIG/SOA) that provides a larger perspective on the
application of DEVS-WSDL agent architecture. Finally,
Section 7 presents conclusions and future work.

2. RELATED WORK
In 2003 there were more than 10 recognized groups
defining standards for BPM related activities, 7 of these
bodies were working on modeling definitions so it’s no
wonder that the whole picture got very confused
[PYKE]. Fortunately there has been a lot of
consolidation, and currently only 3 key standards to
really take notice:

1. BPMN
2. XPDL
3. BPEL

The Business Process Modeling Notation (BPMN) is a
standardized graphical notation for graphically
representing business processes workflows. BPMN’s
primary goal is to provide a standard notation that is
readily understandable by all business stakeholders.
Stakeholders in this definition include business analysts,
technical developers and business managers. BPEL is
an "execution language" the goal of which is to enable
definition of web service orchestrations. Ultimately,
BPEL is all about bits and bytes being moved from
place to place and manipulated. XPDL is described not
an executable programming language like BPEL, but
specifically a process design format that literally
represents the "drawing" of the process definition.
XPDL is effectively the file format or "serialization" of
BPMN. More generally, it can also support any design
method or process model that uses the XPDL meta-
model. XPDL is a proven format for process design
interchange, and it is the most practical standard for
establishing a Process Design Ecosystem.

Summarizing, currently there is no popular means other
than BPMN/BPEL to design a web service workflow
orchestration.

3. UNDERLYING TECHNOLOGIES
This section will give an overview of the technologies
used in the development of DEVS Web service M&S
framework.

3.1. DEVS
Discrete Event System Specification (DEVS) [ZEI00] is
a formalism, which provides a means of specifying the
components of a system in a discrete event simulation.
In DEVS formalism, one must specify Basic Models
and how these models are connected together. These
basic models are called Atomic Models (Figure 2a) and
larger models which are obtained by connecting these
atomic blocks in meaningful fashion are called Coupled
Models (Figure 2b). Each of these atomic models has
inports (to receive external events), outports (to send
events), set of state variables, internal transition,
external transition, and time advance functions.
Mathematically it is represented as 8-tuple system:

M = <= <= <= <X, S, Y, ddddint, ddddext, ddddcon, lll l , ta� � � � ��������
where
X is the set of input values
S is the set of state
Y is the set of output values
ddddint: S ® S is the internal transition function
ddddext: Q x Xb ® S is the external transition function,

where Xb is a set of bags over
elements in X, Q is the total state set.

 ddddcon: S x Xb ® S is the confluent transition
function, subject to dcon(s,�) = dint(s)

lll l : S® Yb is the output function
ta: S® R0

+
,inf is the time advance function

The model’s description (implementation) uses (or
discards) the message in the event to do the
computation and delivers an output message on the
outport and makes a state transition.

A DEVS-coupled model designates how atomic models
can be coupled together and how they interact with each
other to form a complex model. The coupled model can
be employed as a component in a larger coupled model
and can construct complex models in a hierarchical
way. The specification provides component and
coupling information. The coupled DEVS model is
defined as follows.

M = <= <= <= <X, Y, D, {Mij},{I j}, {Zij}� � � � ��������
 Where
 X is a set of inputs
 Y is a set of outputs
 D is a set of DEVS component names
 For each i Î ��D,
 M i is a DEVS component model
 I i is the set of influences for I
 For each j Î Ii,
 Z ij is the i-to-j output translation function.

A Java-based implementation of DEVS formalism,
DEVSJAVA [ZEI03], can be used to implement these
atomic or coupled models.

DEVS formalism consists of models, the simulator and
the Experimental Frame as shown in Figure 3. It
categorically separates the three of them and they can
be perceived of components of a DEVS system
architecture. We will focus our attention to the two
types of models i.e. atomic and coupled models

(a)

(b)

Figure 2: Hierarchical composition of Atomic and
Coupled DEVS models.

Figure 3: DEVS Separation of Model, Simulator and

the Experimental Frame

3.2. Web Services and Interoperability using XML
The Service oriented Architecture (SOA) framework is
the orchestration of multiple web services engaged
towards a business goal. A Web Service is a component
consisting of various W3C standards, in which various
computational components are made available as
‘services’ interacting in an automated manner that
achieve machine-to-machine interoperable interaction
over the network. The interface is specified using Web
Service Description language (WSDL) that contains

information about ports, message types, port types, and
other relating information for binding two interactions.
It is essentially a client server framework, wherein
client requests a ‘service’ using a SOAP message that is
transmitted via HTTP in the XML format. A Web
service is published by any commercial vendor at a
specific URL to be consumed/requested by another
commercial application on the Internet. It is designed
specifically for machine-to-machine interaction. Both
the client and the server encapsulate their messages in
SOAP wrappers.

The fundamental concept of web services is to integrate
software application as services. Web services allow the
applications to communicate with other applications
using open standards. To offer DEVS-based simulators
as web services, they must have the following standard
technologies: communication protocol (Simple Object
Access Protocol, SOAP), service description (Web
Service Description Language, WSDL), and service
discovery (Universal Description Discovery and
Integration, UDDI).

4. AN ABSTRACT DEVS SERVICE AGENT
As a crucial part of our workflow, we have designed an
Abstract DEVS Service Agent to link DEVS models
with Web Services and to generate statistics regarding
remote method calls and response times.

DEVS
Web Service
Consumer

Internet

request

request response

response

RTT
DEVS
Logger

DEVS ABSTRACT SERVICE AGENT

Figure 4: Schematic showing the architecture of our
DEVS Agent Service model.

Figure 4 depicts an illustrative example. Our proposed
model consists of two DEVS atomic models. The
DEVS Web Service Consumer invokes the remote
operation provided by means of an external transition.
When the operation is processed, this atomic model
informs about the round-trip-time (RTT) taken by such
operation to the DEVS Logger atomic model as well as
the response provided by the Web Service. At the end
of the simulation, the DEVS Logger provides statistics
such as operations executed successfully, the RTT
consumed per operation, etc.

The DEVS Web Service Consumer needs to be
configured by means of: (a) the URL of the Web
Service, (b) name of the operations offered, and (c) the
parameters needed by such operations. This information
is specified in the WSDL document.

In order to avoid to the user to extract this information
by hand, we have implemented a wrapper which
automatically generates the DEVS Web Service
Consumer for a Web Service. Thus, given a WSDL
address, our framework is able to generate the
corresponding DEVS Service Agent.

Web services are utilized using web service clients that
are created by various open source and commercially

available tools such as Eclipse Web Service Toolkit
(WST), Netbeans IDE, Websphere etc.. All of them use
the Web Service Description Language (WSDL) as the
input to generate the web service client. In our
implementation we utilize the Axis2 framework to
generate clients. Our choice of Axis2 plugin is driven
by the implementation platform of DEVS/framework
which is Axis/Java. However, it doesn’t matter which
method is used to generate the client.

Figure 5: DEVS wrapper implementation over an Axis web service client

A DEVS model has two modes of operation: an internal
behavior representation and an external behavior
representation. In developing a DEVS wrapper, which
would be effectively a DEVS web service client, we
will implement the external behavior. The concept is
shown in the top half of Figure 5. The detail is shown in
the lower half of the same Figure 5. It shows the
mapping between the Axis layers, specifically the Axis
binding layer and the DEVS elements. It describes the
external event that is triggered whenever there is
message exchange through the Axis client. This
triggered event informs the DEVS atomic model that
wraps this Axis client. Such an arrangement does not
create any bottleneck or any pipe between the actual
Axis client and the network. The DEVS wrapper is
informed of the round-trip-time (RTT) when the actual
service has been executed its completion. Consequently,
it is a passive observer and offers no interference to the
true communication between the client and the live web
service. By inserting a specific set of code in any Axis
generated client, we can create a DEVS wrapper that is
ready to become a part of a test-agent federation
coupled system, as described in Section 6. Further,

having such automated design, it allows augmentation
of a comprehensive log mechanism that can provide
many other instrumentation data than just RTT.

Having described the basic DEVS Web service
wrapper, the next task in line is the creation of a
coupled model, a web service workflow to be more
specific to actually utilize the DEVS modeling and
simulation capabilities. The coupled model where this
DEVS WSDL model is a component of a bigger
networked model is not the focus of this article and
more details are available in the extended article at [] It
is not hard to understand that once you have an atomic
model, it can be easily used as a component in a DEVS
coupled model.

5. IMPLEMENTATION OF DEVS AGENT
This case study demonstrates the execution of a web
service encapsulated in a DEVS wrapper Agent and the
associated obtained statistics.

5.1. Web Service Work Flow Formalism
We compose a process workflow based on certain
goals, objectives or requirements. We can deduce the
information we need to compose a workflow and

develop an automated procedure towards DEVS based
design and analysis. The information set for a Web
Service workflow can be described in a four element
tuple as:

 WSWF: < W,M,F,X>

 where,

W: Set of Web service definitions (WSDLs) or
Agents each with a valid URL

M: Set of web service methods

F: defined as <C,L,D>

C is a set of W-M pairs with each pair as a
source or destination

L is a set of partner links with each link
containing a src and dest pair defined in C

D is a type of workflow mode which can
either be a sequence, while, holdSend or
concurrent type, which are corresponding
to the BPEL specifications

X. Set of messages, where

Each Message contains Data and is
defined by time of entry in system, rate,
whether it is periodic or stochastic and can
be either an Input message or an Output
message

5.2. DEVS Wrapper Agent
In this most basic demonstration, we use only one web
service. This web service executes a chat session
between two users. The schematic is shown in Figure 6.
In our example, we execute the session with a live
person and a DEVS agent. The live person here is ‘Jim
Client’ that connects to the CHAT service via an
Internet browser at [CHAT]. The chat session is
executed using the GUI as shown in Figure 7.

Figure 6: Schematic showing basic execution of DEVS
Wrapper agent

The DEVS agent is defined according to the WSWF
formalism as follows:

<W>: “CHAT”:

<W1:CHAT>:http://150.135.220.240:8080/C
hatServiceCollaboration/services/ChatServic
e?wsdl
 <A1:Jim>: “Jim:localhost:8080”
<M>: “Methods”:
 <M1> postMessage()
 <M2> getAllMessages()

 <M3> getLastMessageId()
 <M4> registerAuthor()
 <M5> getUsers()
 <M6> getAllMessagesForAuthor()
<F>: "Flow specifications"
 <C>

 <C1:Src>A1-M1
 <C2:Src>A1-M2
 <C3:Src>A1-M4
 <C4:Src>A1-M5
 <C5:Dest>W1-M1
 <C6:Dest>W1-M2
 <C7:Dest>W1-M4
 <C8:Dest>W1-M5

 <L>
 <L1>C1-C5
 <L2>C2-C6

 <L3>C3-C7
 <L4>C4-C8
 <D>
 <D1>M1-HoldSend
 <D2>M2-While-infinity
 <D3>M4-HoldSend
 <D4>M5-While-infinity
<X>: Set of Messages
 <InputMsg>
 <I1>W1-M1{string:T1:0:false:false}
 <I2>W1-M4{string:T0:0.1:true:false}
 <OutputMsg>
 <O1>M2{string:T2:1:true:false}
 <O2>M5{string:T2:1:true:false}

Figure 7: Chat Service Client connected to CHAT
Service

<W> tag contains description of the Chat Web Service
as W1 and the agent description as A1 along with their
URL. <M> contains the list of service methods that
may be used in the process flow. <F> contains the flow
description categorized into <C,L,D> as per the
WSWF. <C> provides the source and destination
specification for a W/A defined in <W> with <M> .
<L> specifies the coupling between the sources and
destinations as defined in <C>. <D> contains the
execution of methods in <M> in logic implementation.
For example, <D1>M1-HoldSend implies that the method
M1 is to executed in HoldSend manner. Similarly,
<D2>M2-While-infinity implies that M2 will be
executed indefinitely when invoked or bounded by any
condition. <X> specifies the input and output message
structures in <InputMsg,OutputMsg> tags. The
structure of <InputMsg> as specified in WSWF SES is
<SystemComponent-Method{Data: time of Start: R+:

isPeriodic: isRandom>. For example, the specification
<I1>W1-M1{string:T1:0:false:false} implies that
the message I1 is an input to W1, method M1 with data
as string. It starts at T1 with period 0. Any non-zero
value means that the message will be incoming at a
periodic rate. The next boolean variable ‘false’ implies
that it is not periodic. The last variable ‘false’ implies
that it is not random either. Similary, <I2>W1-

M4{string:T0:0.1:true:false} implies that M4 at W1
is to be invoked by string data message with a periodic
rate of 0.1. The <OutputMsg> has a similar structure
except the fact that it does not contain any information
about the system component. It only contains
information about the method in <M> as it is just an
output message. Whenever method <Mx> is invoked, it
returns with the parametric details as in
<O1>M2{string:T2:1:true:false}.

It is worth stressing here that the messages flow through
the linkages as specified in <L>. This acts as a coupling
for the DEVS models. There are two DEVS models in
the WSWF instance described above, viz. W1 and A1.
Based on the coupling information for ex. <L4>C4-C8
implies that the source is Agent <C4:Src>A1-M5 and the
destination is Web service <C8:Dest>W1-M5 . The source
sends a message invoking method M5 at the destination.
If there is a specification on how M5 should be invoked
in <InputMsg> listing, then the source has to ensure
that it conforms to that specification. In this example
there is no specification for M5. This implies that there
are no parameters to be passed, but just the invocation.
At the destination side, M5 has a specification
<O2>M5{string:T2:1:true:false} , which implies that
whenever M5 returns a value, it will according to this
<OutputMsg> specification.

Figure 8: Associated Statistics GUI for an encapsulated
Web Service in DEVS atomic model

The statistics for each of the methods in <M> is
gathered according to the autogenerated agent GUI
monitor at the agent’s end. The statistics are largely the
round trip time (RTT) for each of <M> . The GUI in
Figure 8 also shows the SOAP messages that are
exchanged between the pairs as specified in <W>.

6. MULTI-LAYERED AGENT BASED TEST
INSTRUMENTATION SYSTEM USING
GIG/SOA

A DEVS distributed federation is a DEVS coupled
model whose components reside on different network
nodes and whose coupling is implemented through
middleware connectivity characteristic of the
environment, e.g., SOAP for GIG/SOA, The federation
models are executed by DEVS simulator nodes that
provide the time and data exchange coordination as
specified in the DEVS abstract simulator protocol. The
DEVS Agent Monitoring System (TIS) is a DEVS
coupled system that observes and evaluates the
operation of the DEVS coupled system model. The
DEVS models used to observe other participants are the
DEVS test-agents. The TIS should provide a minimally
intrusive test capability to support rigorous, on-going,
repeatable and consistent testing and evaluation (T&E).
Requirements for such a test implementation system
include ability to

1. deploy agents to interface with SoS component
systems in specified assignments

2. enable agents to exchange information and
coordinate their behaviors to achieve specified
experimental frame data processing

3. respond in real-time to queries for test results
while testing is still in progress

4. provide real-time alerts when conditions are
detected that would invalidate results or
otherwise indicate that intervention is required

5. centrally collect and process test results on
demand, periodically, and/or at termination of
testing.

6. support consistent transfer and reuse of test
cases/configurations from past test events to
future test events, enabling life-cycle tracking
of SoS performance.

7. enable rapid development of new test cases
and configurations to keep up with the reduced
SoS development times expected to
characterize the reusable web service-based
development supported on the GIG/SOA.

Many of these requirements are not achievable with
current manually-based data collection and testing.
Instrumentation and automation are needed to meet
these requirements.

Net-centric Service Oriented Architecture (SOA)
provides a currently relevant technologically feasible
realization of the concept. As discussed earlier, the
DEVS/SOA infrastructure enables DEVS models, and
test agents in particular, to be deployed to the network
nodes of interest. Details on how such observers can be
auto-generated and be executed using DEVS/SOA are
provided in [MIT08, ZEI07].

6.1. Deploying Test Agents over the GIG/SOA
Figure 9 depicts a logical formulation test federation
that can observe a SUT to verify the message flow

among components as derived from information
exchange requirements. In this context, a mission
thread is a series of activities executed by operational
nodes. In playing out this thread, DEVS test models are
informed of the current activities (or see to detect their
onset) as well as the operational nodes that execute
these messages. These test models watch messages sent
and received by the components that host the
participating operational nodes. The test models check
whether such messages are the ones that should be sent
or received under the current function.

The test-agents are contained in DEVS Experimental
Frames (EF) are implemented as DEVS models, and
distributed EFs are implemented as DEVS models, or
agents as we have called them, reside on network nodes.
Such a federation, illustrated in Figure 10, consists of
DEVS simulators executing on web servers on the
nodes exchanging messages and obeying time
relationships under the rules contained within their
hosted DEVS models. This DEVS Agent Monitoring
System that contains DEVS models interacts with real
world web services through the DEVS agents that were
described earlier.

Figure 9: Multi-layered Agent-based test
instrumentation framework

Figure 10: Prototypical DEVS Test Federation

6.2. Implementation of Test Federations
A test federation observes an orchestration of web-
services to verify the message flow among participants
adheres to information exchange requirements. As
derived from requirement, a process workflow is a
series of activities executed by operational nodes and
employing the information processing functions of web-
services. As discussed in [MIT08, ZEI07], test agents

watch messages sent and received by the services that
host the participating operational nodes. Depending on
the mode of testing, the test architecture may, or may
not, have knowledge of the driving process workflow
under test. If it is available, DEVS test agents can be
aware of the current activity of the operational nodes it
is observing. This enables it to focus more efficiently on
a smaller set of messages that are likely to provide test
opportunities.

To help automate set-up of the test we use a capability
to inter-covert between DEVS and XML. DEVSML
[MIT07e] allows distributing DEVS models in the form
of XML documents to remote nodes where they can be
coupled with local service components to compose a
federation [MIT07f,g]. The layered middleware
architecture capability is shown in 11 and [MIT07c,f].

Figure 11: Layered Architecture of DEVSML towards
transparent simulators in Net-centric domain

At the top is the application layer that contains model in
DEVS/JAVA or DEVSML. The second layer is the
DEVSML layer itself that provides seamless
integration, composition and dynamic scenario
construction resulting in portable models in DEVSML
that are complete in every respect. These DEVSML
models can be ported to any remote location using the
web-service infrastructure and be executed at any
remote location.

The simulation engine is totally transparent to model
execution over the net-centric infrastructure. The
DEVSML model description files in XML contains
meta-data information about its compliance with
various simulation ‘builds’ or versions to provide true
interoperability between various simulator engine
implementations. Such run-time interoperability
provides great advantage when models from different
repositories are used to compose models using
DEVSML seamless integration capabilities. Recent
articles provide an evidence in the direction to achieve
interoperability for DEVS and non-DEVS models
[ZEI08, MIT08c]. Finally, the test federation is
illustrated in Figure 10 where different models
(federates) in DEVSML collaborate for a simulation
exercise over GIG/SOA.

This section has laid out the framework on the creation
and execution of a DEVS-based test instrumentation
system.

7. CONCLUSIONS
Service Oriented Architecture (SOA) is still under
development and many of the businesses are seriously
considering migration of their IT systems towards
SOAs. DoD’s initiative towards migration of GIG/SOA
and NCES requires reliability and robustness, not only
in the execution but in the design and analysis phase as
well. Web service orchestration is not just a research
issue but a more practical issue for which there is dire
need. Further, Service Oriented Architecture must be
taken as another instance of system engineering for
which there must be laid out engineering process.
Modeling and Simulation provides the needed edge.
Lack of methodologies to support design and analysis
of such orchestration except BPEL related efforts cost
millions in failure. This research has proposed that
Discrete Event Formalism can be used to compose and
analyze Web service workflows. The DEVS theory,
which is based on system theoretic concepts, gives solid
grounding in the modeling and simulation domain.

We have shown how a web service can be encapsulated
into a DEVS atomic model and can be put towards a
coupled DEVS system with other live web services as
well as other DEVS models. We also have
demonstrated the proposed use of Web Service Work
Flow (WSWF) formalism in composing SOA, much
like of the same functionalities of BPEL. We have also
described creation of DEVS net-centric coupled systems
based on SOA. We have also shown how the developed
DEVS coupled system can be simulated using the basic
DEVSJAVA framework as well as distributed
DEVS/SOA framework. Further, on the basis of our
earlier work on DEVS/SOA we have basis for:

• Agent-Implemented Test Instrumentation
• Net-centric Execution using Simulation Services
• Distributed Multi-level Test Federations
• Analysis that can help optimally tune the

instrumentation to provide confident scalability
predictions.

• Mission Thread testing and data gathering:
� Definition and implementation of military-

relevant mission threads to enable constructing
and/or validating models of user activity.

� Comparison with current commercial testing
tools shows that by replicating such models in
large numbers it will be possible to produce
more reliable load models than offered by
conventional use of scripts.

We have taken the challenge of constructing net-centric
systems as one of designing an infrastructure to
integrate existing Web services as components, each
with its own structure and behavior with DEVS
components and agents. The net-centric system is
analogous to a System of System (SoS) where in
hierarchical coupled models could be created. Various

workflows can be integrated together using component
based design. The net-centric system can be specified in
many available frameworks such as BPMN/BPEL,
UML, or by using an integrative systems engineering-
based framework such as DEVS.

In this research, we illustrated how M&S can be used
strategically to provide early feasibility studies and aid
the design process. We have established the capability
to develop a live workflow example with complete
DEVS interface. In this role, DEVS acts as a full net-
centric production environment. Being DEVS enabled,
it is also executable as a system under test (SUT) model
towards various verification and validation analysis that
can be performed by coupling this SUT with other
DEVS test models. Last but not the least, the developed
DEVS system can be executed by both real and virtual
users to the advantage of various performance and
evaluation studies.

As components comprising SoS are designed and
analyzed, their integration and communication is the
most critical part that must be addressed by the
employed SoS M&S framework. We discussed DoD’s
Global Information Grid (GIG) as providing an
integration infrastructure for SoS in the context of
constructing collaborations of web services using the
Service Oriented Architecture (SOA). The present
research is being considered and refined for testing
GIG/SOA at Joint Interoperability Test Command
[JITC], which is the agency to test future DoD systems.
Clearly, the theory and methodology for such net-
centric SoS development and testing are at their early
stages.

REFERENCES

[ACI06] ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.sh

tml Last accessed Nov 2006
[BPEL] Business Process Execution Language

http://www.ibm.com/developerworks/library/specifi
cation/ws-bpel/

[BPMN] Business Process Modeling Notation
http://www.bpmn.org

[CHAT] CHAT SOA web service at:
http://www.saurabh-mittal.com/demos/ChatClient

[DUN07] DUNIP: A Prototype Demonstration
http://www.acims.arizona.edu/dunip/dunip.avi

[JITC] Joint Interoperability Test Command, a Defense
Information Systems Agency http://jitc.fhu.disa.mil/

[GIGV] Department of Defense GIG Architectural
Vision, Ver. 1.0, prepared by DoD CIO, June 2007,
available at: http://www.defenselink.mil/cio-
nii/docs/GIGArchVision.pdf

[HWA06] Hwang, M.H., Zeigler, B.P., "A Modular
Verification Framework using Finite and
Deterministic DEVS", Proceedings of 2006 DEVS
Symposium, Huntsville, Alabama, USA, April,
pp57-65

 [MIT07c] Mittal, S., Risco-Martin, J.L., Zeigler, B.P.
“DEVS/SOA: A Cross Platform framework for Net-
Centric Modeling and Simulation in DEVS Unified
Process”, SIMULATION: Transactions of SCS,
under review

[MIT07e] Mittal, S., Risco-Martin, J.L., Zeigler,
B.P. “DEVSML: Automating DEVS Simulation
over SOA using Transparent Simulators”, DEVS
Syposium, 2007

[MIT07f] Mittal, S., Risco-Martin, J.L., Zeigler,
B.P. “DEVS-Based Web Services for Net-centric
T&E”, Summer Computer Simulation Conference,
2007

[MIT07g] Mittal, S, DEVS Unified Process for
Integrated Development and Testing of Service
Oriented Architectures, Ph. D. Dissertation,
University of Arizona

[MIT07h] Mittal, S., M.H., Zeigler, B.P.,Hwang “XFD-
DEVS: An Implementation of W3C Schema for
Finite Deterministic DEVS”, in progress, Demo
available at:

 http://www.saurabh-mittal.com/fddevs
[MIT08] Mittal, S., Zeigler, B.P., Risco-Martin, J.L.,

et.al, “Modeling and Simulation for System of
systems Engineering”, chapter in “Systems of
Systems engineering for 21st Century”, in press

[MIT08b] Mittal, S., Jose Luis Risco Martin, Bernard P.
Zeigler, James Nutaro, “Design and Analysis of
Service Oriented Architectures using DEVS/SOA-
Based Modeling and Simulation”, submitted to
SIMULATION: Transactions of SCS

[MIT08c] Mittal, S., Zeigler, B.P., Martin, J.L.R.,
“Implementation of Formal Standard for
Interoperability in M&S/System of Systems
Integration with DEVS/SOA”, Abstract accepted,
manuscript in review at International Command and
Control, C2 Journal

[NCES] Net-Centric Enterprise Service
http://www.disa.mil/nces/

[PYKE] Pyke, Jon, XPDL: The Silent Workhorse of
BPM , April 2007 online article

 http://www.bpm.com/FeatureRO.asp?FeatureId=232
[SODV] DEVS/SOA sample demonstration in .avi

format http://www.saurabh-
mittal.com/demos/demoSOADEVS.avi

[SOAP] Simple Object Access Protocol
http://www.w3.org/TR/soap/

[WSDL] Web Services Description Language
http://www.w3.org/TR/wsdl

[ZEI00] Zeigler, B. P., T. G. Kim, and H. Praehofer.
(2000). Theory of Modeling and Simulation. New
York, NY, Academic Press.

[ZEI03] DEVSJAVA:
http://www.acims.arizona.edu/SOFTWARE/devsjav
a_licensed/CBMSManuscript.zip

[ZEI07] Zeigler, B.P., and P. Hammonds,
“Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-
Centric Information Exchange”, 2007, New York,
NY: Academic Press.

[ZEI08] Zeigler, B.P., Mittal, S., Hu, X., “Towards a
Formal Standard for Interoperability in
M&S/Systems of Systems Engineering”, Critical
Issues in C4I, AFCEA-George Mason University
Symposium, May 2008

AUTHORS BIOGRAPHY

Saurabh Mittal is the CEO at DUNIP Technologies,
India. Previously he worked as Research Assistant
Professor at the Department of Electrical and Computer
Engineering at the University of Arizona where he
received his Ph. D in 2007. His areas of interest
include Web-based M&S using SOA, executable
architectures, Distributed Simulation, and System of
Systems engineering using DoDAF. He can be reached
at saurabh.mittal@duniptechnologies.com

José L. Risco-Martín is an Assistant Professor in
Complutense University of Madrid, Spain. He received
his PhD from Complutense University of Madrid in
2004. His research interests are computational theory of
modeling and simulation, with emphasis on DEVS,
Dynamic memory management of embedded systems,
and net-centric computing. He can be reached at
jlrisco@dacya.ucm.es

Bernard P. Zeigler is Professor of Electrical and
Computer Engineering at the University of Arizona,
Tucson and Director of the Arizona Center for
Integrative Modeling and Simulation. He is developing
DEVS-methodology approaches for testing mission
thread end-to-end interoperability and combat
effectiveness of Defense Department acquisitions and
transitions to the Global Information Grid with its
Service Oriented Architecture (GIG/SOA). He can be
reached at zeigler@ece.arizona.edu

Jesús M. de la Cruz is Professor at the Department of
Computer Architecture and Automation at the
Complutense University of Madrid, Spain, where he is
the head of the Automatic Control and Robotics
Group. His interest covers broad aspects of automatic
control and its pplications, real time control, simulation,
optimization, statistical learning, and robotics. He can
be reached at jmcruz@fis.ucm.es.

