
Scalable Knowledge Interchange Broker: Design and Implementation for

Semiconductor Supply Chain Systems

by

James Melkon Smith

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2012 by the
Graduate Supervisory Committee:

Hessam Sarjoughian, Chair

Hasan Davulcu
Georgios Fainekos

ARIZONA STATE UNIVERSITY

December 2012

i

ABSTRACT

A semiconductor supply chain modeling and simulation platform using

Linear Program (LP) optimization and parallel Discrete Event System Specification

(DEVS) process models has been developed in a joint effort by ASU and Intel

Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to

broker information synchronously between the DEVS and LP models. Recently a

single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for

forecast bias in customer demand data using different smoothing techniques. The

optimization model could then use information provided by the forecast model to

make better decisions for the process model. The composition of ISM with LP and

DEVS models resulted in the first realization of what is now called the Optimization

Simulation Forecast (OSF) platform. It could handle a single echelon supply chain

system consisting of single hubs and single products

In this thesis, this single-echelon simulation platform is extended to handle

multiple echelons with multiple inventory elements handling multiple products. The

main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such

that ISM interactions with the LP and DEVS models could also be supported. To

achieve this, a new, scalable XML schema for the KIB has been developed. The

XML schema has also resulted in strengthening the KIB execution engine design. A

sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX

optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to

compute forecast customer demands and safety stocks over multiple hubs and

products.

ii

Basic examples for semiconductor manufacturing spanning single and two

echelon supply chain systems have been developed and analyzed. Experiments using

perfect data were conducted to show the correctness of the OSF platform design

and implementation. Simple, but realistic experiments have also been conducted.

They highlight the kinds of supply chain dynamics that can be evaluated using

discrete event process simulation, linear programming optimization, and heuristics

forecasting models.

iii

ACKNOWLEDGEMENTS

I would like to acknowledge Dr. Hessam Sarjoughian for his mentorship throughout

my work at ASU and for being the advisory for this research. From Intel, I would

like to give special thanks to Dr. Gary Godding for his past work and ongoing help

within the domain of supply chain. Also from Intel, I want to give thanks to Dr.

Asima Mishra and David Bayba for help with the definition of the Inventory Strategy

Module and Multi-Echelon Inventory Optimization. For implementing the first

iteration of the Inventory Strategy Module within a Discrete Event System

Specification (DEVS) model and going through the verification process of the code,

I want to give thanks to Dr. Mohammed Muqsith, a former student of ASU. Thank

you to the members of the supervisory committee for qualifying this work. Finally,

thanks to Intel for continuing to sponsor this project.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. ix

LIST OF FIGURES .. x

CHAPTER

1 INTRODUCTION .. 1

1.1 Purpose Statement .. 1

1.2 Intended Audience .. 1

1.3 Problem Definition ... 1

1.3.1 Semiconductor Supply Chain ... 1

1.3.2 Optimization, Simulation, and Forecast ... 2

1.3.3 Knowledge Interchange Broker .. 4

1.3.3.1 XML Schema Design ... 4

1.3.3.2 KIB Structure .. 5

1.4 Contributions ... 7

2 BACKGROUND AND RELATED WORKS ... 10

2.1 Background .. 10

2.1.1 Definition of Supply Chain .. 10

2.1.2 Multi-Echelon Inventory Optimization & Sequential Based Stock 12

2.1.3 XML and XML Schemas .. 12

2.1.4 DEVS/LP Knowledge Interchange Broker (KIB)....................................... 13

v

CHAPTER Page

2.1.4.1 History .. 13

2.1.4.2 Overview of Transformations ... 15

2.1.5 Integrating Forecast Model with Optimization and Simulation Models ... 18

2.2 Related Works .. 22

2.2.1 Using Model Predictive Control in a Supply Chain 22

2.2.2 Inner and Outer Loop Optimization .. 22

3 APPROACH ... 24

3.1 Knowledge Interchange Broker Model XML Schema .. 24

3.1.1 Premise for Design .. 24

3.1.2 Decomposition of XML ... 26

3.1.3 Generalization .. 27

3.1.4 Removal of String Parsing .. 29

3.2 Using the KIB with the Inventory Strategy Module .. 32

3.3 Development of KIB .. 33

3.4 Experimentation/Evaluation ... 34

4 CONCEPT & XML DESIGN OF KIB .. 36

4.1 File Decomposition ... 36

4.2 Module Schema ... 37

4.2.1 Model Element ... 37

vi

CHAPTER Page

4.2.2 Module Element .. 38

4.2.3 DataInput and DataOutput Elements .. 39

4.2.4 DataVariable Element ... 39

4.3 Control Schema ... 40

4.3.1 Control Element .. 40

4.3.2 Execution Element .. 41

4.4 Relationship Schema ... 42

4.4.1 Relationship Element .. 42

4.4.2 Map Element .. 42

4.4.3 Source DataOutput Element ... 43

4.4.4 Target DataInput Element ... 44

4.4.5 Transformation Element .. 44

4.4.6 Source DataVariable Element .. 47

4.4.7 Target DataVariable Element .. 48

4.4.8 Index Element .. 48

4.4.9 Field Element ... 48

5 SCHEMA IMPLEMENTATION ... 49

5.1 Object Structure and Data Structure Mapping ... 49

5.1.1 KIB Entry Point .. 49

vii

CHAPTER Page

5.1.2 KIB Module Objects ... 50

5.1.3 KIB Control Object .. 52

5.1.4 KIB Relationship Objects .. 53

5.1.5 Adding an Interface ... 54

5.1.6 Designing a KIB Model .. 56

5.2 ISM Implementation ... 57

5.3 Single Echelon Implementation .. 64

5.3.1 Single Echelon Timeline ... 64

5.3.2 Configuration and GUI .. 67

5.3.3 KIB Implementation ... 73

5.4 Multi-Echelon Implementation ... 79

5.4.1 KIB Implementation ... 79

6 RESULTS ... 81

6.1 Regression Testing .. 81

6.2 Evaluation of Scalability ... 81

6.3 Experiments ... 82

6.3.1 Single-Echelon Results.. 82

6.3.1.1 Execution Time Analysis ... 82

6.3.1.2 Verification of the OSF Model ... 83

viii

CHAPTER Page

6.3.1.3 Simulation Weekly Step/Optimization Weekly Step 84

6.3.1.4 Simulation Daily Step/Optimization Weekly Step 86

6.3.2 Multi-Echelon Results ... 89

6.3.2.1 Computation of Upper Echelon Safety Stock 89

6.3.2.2 Simulation Weekly Step/Optimization Weekly Step 90

7 CONCLUSIONS .. 94

7.1 Future Work ... 95

REFERENCES .. 97

APPENDIX A: ABBREVIATIONS AND DEFINITIONS 99

APPENDIX B: TRANSFORMATION DEFINITION.. 101

ix

LIST OF TABLES

Table Page

1. Array to Set Lines Transformation Example .. 17

2. Historic and Forecasted Data Example ... 21

3. XML File Content Breakdown .. 82

4. Double Echelon XML File Content Breakdown ... 93

x

LIST OF FIGURES

Figure Page

1. Supply Chain Model Composition Structure .. 4

2. High Level View of KIB Interaction Model for DEVS and LP 4

3. Original Conceptual Design of Model to Model Transformation 7

4. Inventory Model .. 11

5. Shipping Model .. 11

6. Customer Model .. 11

7. Supply Chain Example ... 12

8. Types of Data Aggregation (Godding 2008) ... 16

9. Disaggregation Example ... 18

10. Hub H1, Product P4 ð Historic Data ... 19

11. Hub H1, Product P4 ð Forecast Data over Time .. 20

12. Graph of Table 2 ... 21

13. KIB Model Interaction ... 24

14. KIB Mapping ... 25

15. Proposed Conceptual Design of Model to Model Transformation 26

16. Original KIB XML Definition Example .. 27

17. Module Input/Output String Definition Example .. 30

18. Data Transformation String Definition Example 1 ... 31

19. Data Transformation String Definition Example 2 ... 31

20. Data Transformation String Definition Example 3 ... 32

21. Control Type String Definition ... 32

22. Separating ISM from SIM .. 33

xi

Figure Page

23. Interface Relationship with KIB ... 34

24. KIB_Paths.xsd Schema Graphic Representation ... 36

25. KIB_Modules.xsd Schema Graphic Representation Level 1 37

26. KIB_Modules.xsd Schema Graphic Representation Level 2 38

27. KIB_Control.xsd Schema Graphical Representation .. 40

28. KIB_Relationship.xsd Schema Graphic Representation Level 1 42

29. KIB_Relationship.xsd Schema Graphic Representation Level 2 43

30. KIB_Relationship.xsd Schema Graphic Representation Level 3 44

31. KIB_Relationship.xsd Schema Graphic Representation Level 4 47

32. UML KIB Entry Point Objects ... 49

33. UML Objects Relating to KIB_Modules.xsd Part 1 .. 51

34. UML Objects Relating to KIB_Modules.xsd Part 2 .. 52

35. UML Object Relating to KIB_Control.xsd ... 53

36. UML Objects Relating to KIB_Relationship.xsd ... 54

37. InterfaceName Name Definitions .. 55

38. Instantiating DataModelNode ... 55

39. Instantiating DecisionEngineInterface ... 56

40. KIB with ISM .. 58

41. Three Model KIB Communications ... 63

42. OSF Model ... 64

43. Single Echelon Timeline ... 66

44. ISM Client Schema .. 68

45. Single Echelon GUI: ISM Connection Tab .. 68

file:///C:/Users/jmsmit47/Dropbox/Supply-Chain-System/Thesis/WRITEUP.docx%23_Toc342937209

xii

Figure Page

46. System Schema ... 70

47. Single Echelon GUI: System Tab ... 70

48. Experiment Schema .. 72

49. Single Echelon GUI: Independent Experiments Tab .. 73

50. Path Definitions for KIB ... 75

51. DEVS Modules H1 KIB Definition ... 76

52. LP Modules H1 and HX KIB Definition .. 77

53. KIB Relationship Mapping for H1 ... 78

54. KIB Control Definition for Single Echelon, 7:1:1 ... 79

55. Multi-Echelon ISM Modules ... 80

56. JUnit Test Output ... 81

57. Single-Echelon Model ... 82

58. Single Echelon Execution Time .. 83

59. Using Perfect Data .. 84

60. Deterministic, 2 Week Shipping .. 85

61. Log-Normal Shipping, 2 Week Mean, 0 Week Min ... 86

62. TimeUnit Class .. 87

63. Deterministic, 14 Day Shipping .. 88

64. Log-Normal Shipping, 10 Day Mean, 8 Day Min .. 89

65. Double-Echelon Model .. 89

66. Double Echelon Result: Average Inventory at CW for Service Level 91

67. Double Echelon Result: Average Inventory at H1 for Service Level 91

68. Double Echelon Result: Global Average Inventory for Service Level 92

1

1 INTRODUCTION

1.1 Purpose Statement

This report was written to satisfy degree requirements for Masters of Science in

Computer Science and course requirements for independent study with Professor

Sarjoughian in order to describe the accomplishments made in the development of

the Knowledge Interface Broker (KIB). This work is also used in the development of

the multi-echelon supply chain simulation project. The bottom line goal of the

Supply Chain project is to develop a multi-echelon simulation model with multi-

echelon inventory strategy and optimization modules. All work must be scalable for

large models on the order of hundreds of components. The purpose of model

development within this system is to better understand the behavior of some

semiconductor products.

1.2 Intended Audience

The intended audiences for this report are the members of the graduate committee

Dr. Hessam Sarjoughian [chairperson], Dr. Hasan Davulcu, and Dr. Georgios

Fainekos; sponsor Intel, which includes employees working with the Supply Chain

Simulation project; and anyone in the field either continuing this work or using this

as a source in their own work. A portion of the code accompanying the design

described in this thesis is planned to be released for general public use.

1.3 Problem Definition

1.3.1 Semiconductor Supply Chain

In any type of industry that needs to distribute products in different physical

locations with varying markets, there is a constant question of how much, how often,

and where to distribute the products in order to meet the end demand of each

2

customer. Enough of each product needs to be shipped in order to meet demand as

soon as products are requested to keep the customers happy and increase the

chances of repeat business. On the other hand, if too much product is built, this

often results in wasted inventory and financial loss to the product maker. Ideally,

exactly enough product should be shipped at the right time instances to all customers

in order to meet the exact demand value and nothing more.

To get a better idea of what the customers need, companies can ask for an

estimate of how much product will be needed well in advance. If the customer could

give perfect data, the problem could be relatively easily solved. Unfortunately, to

keep customer ratings high, companies need to allow the customer to change their

orders at a momentõs notice, close to the delivery date. Companies need to look at

the forecasted demand numbers and compare them to the historical data to make a

prediction of the customerõs actual need.

1.3.2 Optimization, Simulation, and Forecast

The Optimization, Simulation, and Forecast (OSF) platform is built atop previous

efforts (Godding 2008, Huang 2008). The OSF platform (Sarjoughian et al, 2012)

introduces forecasting capability to earlier simulation/optimization platform built

using Linear Programming (LP), Discrete Event Simulator (DEVS), and KIBDEVS/LP

(Godding 2008). The OSF is conceptualized and developed using a simple logistics

supply chain which has a customer warehouse, a single shipping route, a single hub,

and a single customer. The supply chain supports single products moving from

customer warehouse and delivered to customer.

The optimization and simulation models are developed in OPL-

Studio/ CPLEX optimization engine and the DEVS-Suite simulator, respectively.

3

OPL-Studio is a platform managed by IBM. This platform is used to develop LP

models. When an LP model is compiled by the platform, it may then run through the

CPLEX optimizer to compute an optimal solution given values for the defined set of

constraints. The DEVS-Suite modeling and simulation platform was built and is

managed by staff and students at ASU under the guidance of Dr. Hessam

Sarjoughian. For this research, the term òmodeló is used to refer to an engine that

can execute a set of instructions. In this sense, the DEVS-Suite simulator combined

with just mentioned supply-chain process model is called the DEVS model. The KIB

transforms data and control messages between the optimization and simulation

models. The KIB is itself a standalone model that can be specified in XML. The KIB

model in the form of XMLs has an accompanying execution engine which is

developed in Java. The KIB execution is governed using the DEVS-Suite simulator

protocol. The optimization model is defined as a Linear Program (LP) and is used to

compute an optimal solution given a set of constraints. It is used in this instance to

determine how many products to be released from a component warehouse to a hub

given the state on the model at each point. The model, built in DEVS, is a discrete-

event representation of a single-echelon system which can handle a single hub

shipping a single product to one customer. The executions of the DEVS, LP and

KIB models are governed using the DEVS-Suite simulator protocol.

The structure of the OSF platform is shown in Figure 1. The forecast model

consists of an Inventory Strategy Module (ISM) that looks at historic and forecast

data to determine how much extra stock to hold at the hub. This data is sent to the

optimization module for computing release command to the simulator. Even though

4

the execution of ISM is entirely functional, it is devised as an atomic model within

DEVS in order to ensure it is used correctly alongside simulation model.

SIM => LP
LP => SIM

SIM
(DEVS Suite)

LP

KIB

ISM

Figure 1. Supply Chain Model Composition Structure

1.3.3 Knowledge Interchange Broker

A KIB instance is defined using XML. This XML selects the functionality of each

interface and the KIB interaction model. An interface is defined as a Java class that is

written to connect the functionality of any external model to the KIB model. The

high level view in Figure 2 shows an example of a KIB system interfacing DEVS and

LP models.

DEVS
Implementation

Interaction Model

DEVS
Interface

KIB Instance

XML

DEVS Instance

LP Implementation
(OPL Studio & CPLEX)

LP Interface
LP Instance

Java Java

Figure 2. High Level View of KIB Interaction M odel for DEVS and LP

1.3.3.1 XML Schema Design

The original KIB XML specification is difficult to be extended. Because many of the

elements within the XML were labeled with the names of the interfaces themselves,

if an XML schema was created, the schema would have to be re-written for each new

5

interface that is added to the KIB. Under each interface element defined, the schema

would contain redundant definitions of nodes. This becomes cumbersome and is not

scalable. The specification needs to be updated so that an XML schema can be

defined to allow for XML instances using all current and future model interfaces

without any change to the XML schema definition itself.

The structure of XML files created for the KIB allowed for multiple data

variables for each data input or output, but these elements were defined as a single

string for each data definition. This string would then have to be parsed within Java

code to interpret the meaning. This same process was done upon each relationship

and the control definition. This made it more difficult to define model elements,

especially for someone who is not familiar with KIB semantics.

Modules within the KIB define partitions of data within the connecting

models. Keep in mind that this should not be confused with the forecast modules

which form the ISM, a separate model in the system. As new modules and their

relationships were defined within the KIB XML, the file became large in size and

difficult to manage. There was no systematic method to break up the XML definition

into separate, manageable pieces. This also posed difficulties for XML reuse . If

another model was created that was structurally similar, but contained different

relationships and control, anew file had to be created.

1.3.3.2 KIB Structure

A module is an autonomous component within an interaction model that is given

different definitions depending on the interface implementation within Java code.

The design of the KIB itself called for a set of interfaces to be held within each

module definition. Refer to Figure 3 for an example of a KIB instance model at the

6

conceptual level. When creating a KIB instance model, modules had to be

conceptualized as entities that existed between two interfaces. This design was

implemented due to the early formalization that each module component should

have a single corresponding module component in the mapped model. As the design

was expanded, the constraints needed to be relaxed in order to allow data

transformation between two modules of differing names. This can be seen in Figure

3 when DEVS in Module B needs to communicate to LP in Module C. This design

added difficulty in conceptualizing the structure because now modules within the

KIB not only provided links between interfaces, but links between modules of

differing names were acceptable by the design too.

7

Module C

Data
Transformation

LP DEVS

Module B

Data
Transformation

LP DEVS

Data
Transformation

Module A

Data
Transformation

LP DEVS

Data
Transformation

Execution
Control

Figure 3. Original Conceptual Design of Model to Model Transformation

The KIB also assumed that each model within the system was labeled with

the same name. This not only restricts the designer to label each model with the

same name, but it also makes it impossible to define multiple models within the same

interface for the KIB. There was a 1:1 distinction between an interface and an

instance of a model defined in the KIB. This restricted the definition to a maximum

of a single model for each interface.

1.4 Contributions

The main contribution of this work has been the following:

8

¶ The development of KIB XML schema design and refactoring of the KIB

serves as a foundational component in the scalability of the OSF platform.

o The structure of the KIB has been redesigned for better usability and

comprehension of model design. Since separate model designs are formed

using their own definitions of module components, it makes sense to define

these elements separately within the KIB.

o To define a schema that meets the current need and is scalable for future

development, elements within the XML design has been generalized. The

naming of elements is not used to enumerate elements within the KIB.

Instead, attributes are used to select items within an enumeration.

o To better define and constrain the structure of a KIB model built in XML,

post-process parsing of data has been removed. In order to accomplish this,

each element of the KIB has been well defined. From these definitions, a

schema was developed with the proper structure and constraints. The

culmination of all this data can serve as a userõs guide for future use and

development.

o This document itself serves as a userõs guide for future development of KIB

models.

¶ The ISM has been greatly expanded to test the scalability of the KIB.

o The modularization of the ISM was necessary as it is designed as a

functional formalism. Communication to and from the ISM is now handled

through the KIB using a new interface.

9

o The ISM has been expanded to handle multiple hubs and products.

Initialization of data sent through the KIB now contains arrays defining

hub/product pairs.

o The design of the ISM was extended to handle multiple echelons using

research on Multiple Echelon Inventory Optimization (MEIO) methods.

Although, this work has yet to be completed, the structure has been put in

place to send the correct sets of data through the KIB.

10

2 BACKGROUND AND RELATED WORK S

2.1 Background

2.1.1 Definition of Supply Chain

The work in this project specifically references supply chains in the semiconductor

domain. A supply chain, in a very general sense, contains product generator elements

followed by shipping and inventory elements with customers as end nodes. Product

usually moves in one direction toward the customer, but in some circumstances, may

move in a vertical or opposite direction. For simplicity, the model used in this

research only allows for product to move toward the customer which, in most cases,

is the path with the lowest cost and highest return.

When looking at a supply chain purely in terms of inventory movement, the

supply chain consists of the model elements of inventory, shipping, and customer

components which are diagrammed in figures 4, 5, and 6 respectively. The inventory

model receives product from the previous element at any time. At some point, that

product is moved from the incoming bucket into the store where it is processed.

Product is only moved from the store to the outgoing bucket when a release

command is received from the optimizer. The shipping model is similar to the

inventory element with two distinctions: 1) When product is moved into the store, it

is stored in buckets of higher granularity. As time progresses, product moves from

one intransit bucket to the next. 2) Once the product reaches the final intransit

bucket, it is immediately moved to the outgoing bucket without any release

command. This means that the shipping element cannot be externally controlled

once product has entered it. The customer model is simplistic in that it receives

whatever product that comes to it in order to meet demand.

11

Outgoing
Bucket

Incomming
Bucket

Store

Internal Transition

Incoming Stock
due to External

Event

Outgoing Stock
due to Output

Function

Inventory Model

Release due to
External Event

Figure 4. Inventory Model

Store

Intransit buckets

Outgoing
Bucket

Incomming
Bucket

Internal Transition

Incoming Stock
due to External

Event

Outgoing Stock
due to Output

Function

Shipping Model

Internal Transition

Figure 5. Shipping Model

Incoming Stock
due to External

Event

Customer Model

Demand
Data

Figure 6. Customer Model

Figure 7 shows an example of a simple double echelon supply chain. The

òFAó inventory element on the very left represents a factory. This is where inventory

is generated. The product is then shipped to the òCW" inventory element which

represents the Component Warehouse. The CW may handle the packaging or

another phase in assembly. Finally, the product is shipped to either the òHub1ó or

òHub2ó inventory elements. Product is then immediately distributed to the òGCó

elements or Geo Customer which, in the real world, is located in the same physical

location as the hub.

12

FA CW

Hub1

Ship

Ship

Hub2Ship

GC1

GC2

Figure 7. Supply Chain Example

The Supply Chain Council is involved in creating a standardized framework

for supply chains called the Supply Chain Operations Reference (SCOR) model.

Although this research does not follow this model, the work that has been done ties

in with the section of the SCOR model that pertains to òcapturing the configuration

of a supply chainó (òWhat is SCORó n.d.). In this section, the supply chain model is

broken up into segments: plan, source, make, deliver, and return.

2.1.2 Multi -Echelon Inventory Optimization & Sequential Based Stock

The theory behind Multi-Echelon Inventory Optimization (MEIO) is to compute a

safety stock value for each single echelon starting from the most downstream

element and passing the result up. As we move up the supply chain, the average

delay of each stage is applied to the customer demand. In other words, to satisfy the

demand of the downstream element on time, we must release stock X weeks early

where X is the time that it takes to ship product to the downstream element (Graves

& Willems 2000).

2.1.3 XML and XML Schemas

XML was originally developed in 1996 by the World Wide Web Consortium (W3C)

for òease of implementation and for interoperability with both SGML and HTML.ó

One of the goals of the XML specification is to make it easy for a developer to

create documentation (òExtensible Markup Languageó n.d.). This makes an XML

13

definition easy to read, but XML files are generally not lightweight. This data

formalism was used to create KIB models because it allows someone who is less

familiar with code design to develop a model.

 The structure of an XML file is largely comprised of elements and attributes.

Elements can contain simple or complex data. Under the classification of complex

data, there may be a set of single or multiple child elements. Attributes are singleton

simple data variables that can only exist within an element. The W3C organization

provide a set of uses for an attribute, but in this research, all attributes defined will be

used to specify a value that is attributable to an element. For further definition of

XML, refer to the specifications available on the W3C website (òExtensible Markup

Languageó n.d.).

 The structure of an XML schema was first designed in 2001 by the W3C to

define the structure and constraints of an XML document (òW3C XML Schemaó

n.d.). Any simple value defined can be constrained to a set of values such as an

enumeration of strings or a numeric value within a set range and/or granularity. For

further definition of an XML schema, refer to the specifications available on the

W3C website (òW3C XML Schemaó n.d.).

2.1.4 DEVS/LP Knowledge Interchange Broker (KIB)

2.1.4.1 History

Since 2003, Intel has been working with ASU to develop models for evaluation and

improvement of its supply-chain processes. More recently, this effort has expanded

to address the optimization of inventory stocking to meet or exceed specified service

levels across a multiple logistics echelon. The DEVS simulator has been used to

develop a skeleton model of a single-echelon supply chain. This model consisted of

14

inventory and shipping components. An inventory component processes stock then

holds it until an appropriate release command is generated. A shipping component

will hold its incoming products for a period of time before delivering them to the

next component in the supply-chain process.

At every interval of time that the system runs for, an LP model is used to

determine the optimal plan for the supply chain to generate release commands for

the inventory components. The LP is modeled in OPL Studio which is written in

C++, unlike DEVS which is developed in Java. In order to get the two models to

communicate, an interface was designed to overcome not only the differences in

implementation languages, but in the simulation operation as well. This interface is

known as the Knowledge Interchange Broker (KIB) (Godding 2008).

The KIB at its core is conceptualized to be generic as part of Gary Wade

Goddingõs (2008) defense for his doctoral thesis entitled, òA Multi-Modeling

Approach Using Simulation and Optimization for Supply-Chain Network Systemsó

(Godding 2008). It has a model that formulates data transformations under a time-

based execution control scheme. Time is updated from the controlling model which

is the model that also calls the KIB. For DEVS/LP, at some time interval, the LP

model receives information from the DEVS (controlling) model via the KIB model.

LP then computes release commands which are sent to the DEVS model via the

KIB model. In this way, all communications (i.e., data transformation and control

logic) between the LP and DEVS models are managed by the KIB. It is important to

understand the distinction of the controlling model in the supply chain system.

DEVS depends on the execution of the LP. Therefore, even though DEVS is labeled

as the controlling model for the KIB, from a systematic perspective, the LP is the

15

model that controls the DEVS models with release commands. The purpose of Gary

Goddingõs thesis was to make a generic modeling system that brokers the interaction

between a simulation and optimization models synchronously. The motivation

behind the project was to develop a supply chain system from a modeling and

simulation perspective. Different aspects within the supply chain planning process

depended on differing principals and are modeled using different formalisms. The

KIB concept with a basic theory is described in (Sarjoughian 2006; Sarjoughian and

Plummer 2002). The concept of KIB was further developed by Gary Mayer (2009).

His work can be seen in (Mayer 2009; Mayer and Sarjoughian 2009).

From the DEVS/LP KIB, different branches were created to support new

methods with realizations. This includes a supply-chain system communicating

between DEVS and Model Predictive Controller (MPC) as well as human and

landscape dynamics with communication between DEVS and a Cellular Automata

(CA) model. These realizations can be seen in (Godding 2008; Godding, Sarjoughian,

and Kempf 2004; Godding, Sarjoughian, and Kempf 2007; Huang 2008; Huang et.

al. 2006; Huang et. al. 2009). The work done in this thesis can be applied to any

branch of the KIB as well as any possible future research.

2.1.4.2 Overview of Transformations

The way that a KIB model was defined was through an XML file where source and

target modules were defined for the required interfaces as well as the necessary

transformation. The XML file also provided a control which defined a controlling

model element and an interval to execute. A controlling model element needed to be

defined to keep track of the current time and when the interfacing models need to be

executed.

16

As the KIB system was developed, several transformations between 3

dimensions were added. In the KIB, a set of data form a table where key values are

defined. Each set may contain several single values or 1-dimensional arrays. As the

KIB receives this data, it is time stamped, which forms the third dimension

(Godding 2008). Refer to Figure 8 for an example of aggregation of data from

current set or sets over time. Doing the computation on the 3 dimensions of data

through the KIB instead of at the source or destination models simplifies the process

for the model designer. The aggregation and disaggregation of data over time

accounts for differing model granularity. Simple mathematical functions are built in

such as min, max, and mean. Data may also be set to be treated as sets or units. All

these features are further documented in chapter 0 with the development of the KIB

XML schema.

Figure 8. Types of Data Aggregation (Godding 2008)

If the model in Figure 7 needed to be implemented into the OSF platform,

this model would first need to be designed in the simulator. In this example, the

simulation runs at a daily time granularity and the optimizer runs at a weekly

granularity. This means that the optimization executes once for every 7 time ticks of

the simulator. At each tick of time, the inventory models report to the KIB their

Beginning On Hand (BOH) and Actual Out (AO) data; the shipping models report

17

their in-transit data and AO data; and finally the time stamp value as a single integer

value. At time of execution of the optimizer, 7 sets of data are available at the

simulator data store. Only the most recent state data is meaningful to the optimizer,

so only the newest set of data should be transformed.

 For the optimization to read the in-transit data correctly, the array of values

needs to be transformed into a row for each value. Refer to Table 1 for an example

of this transformation. The array of size 2 with the value of [50, 75] is transformed

so that each row contains a single integer value for quantity. This is achieved by

adding the key column of period. The BOH and AO data donõt need any

conditioning and can be passed right through.

Table 1. Array to Set Lines Transformation Example

Shipping
Name

Product Quantity[2]

CW2HxShip P1 [50, 75]

TRANSFORMATION

\ /

Shipping
Name

Product Period Quantity

CW2HxShip P1 0 50

CW2HxShip P1 1 75

The optimizer generates a set of release commands which needs to be

distributed to each of the inventory elements. To do this, a disaggregation

transformation is used. Refer to Figure 9 for an example of disaggregation. Each

value is divided equally between the 7 time buckets within the simulation. The

standard rounding algorithm is used to round each resulting value to the nearest

integer. At each time tick, the KIB provides to the simulation a single set of values

over 7 ticks. At the end of the 7th tick, the optimizer is run again for another 7 sets of

data.

18

t = [0...6]

TRANSFORMATION
=>

Figure 9. Disaggregation Example

2.1.5 Integrating Forecast Model with Optimization and Simulation Models

The definition of the ISM was provided by personal communication with employees

of Intel. This definition was then used to create a functional implementation of the

model. Some arbitrary test data was also provided in order to test and qualify the

functionality.

Working with Input Demand Data

The combination of hub H1 and product P4 was selected to do analysis on for this

project. The chart in Figure 10 shows the comparison of Historic Forecast demand,

HFC, and Actual Customer Demand, ACD, for hub H1 and product P4. This data is

used to compute a bias within the ISM. All data in this chart is considered as historic

data. Therefore, for example, if the current time period is week 7 then the ISM

would only be able to view the data up to week 7.

19

Figure 10. Hub H1, Product P4 ð Historic Data

 At each time period, forecasts of future weeks are made. The chart in Figure

11 shows a three dimensional representation of the forecast data for the ISM.

Forecasts evolve over time as new data arrives. For example, the forecast for week

11 at week 7 is 46816 units. The following week, week 8, the forecast for week 11 is

46654. Between week 7 and week 8, a total of 162 units were canceled for week 20.

This volatile forecast data adds difficulty when finding an optimal solution for the

system. This is, of course, what the ISM is going to bias against.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Q
u

a
n

tit
y

Week Index

Historic Data

ACD

HFC

20

Figure 11. Hub H1, Product P4 ð Forecast Data over Time

Computation of Safety Stock

Refer to Table 2 and the corresponding graph in Figure 12 for an example of the

data the ISM uses for week 7. The data shown up to week 7 is historic data, while the

data after week 7 is forecasted data. The single echelon ISM first computes a

multiplier based on the smoothing algorithm, target service level, replenishment

time, and how well the historic actual customer demand did against the historic

forecasted demand. Historic data is marked in blue in Table 2. The smoothing

algorithm was an implementation of the smoothing interface of either exponential,

kernel, or no smoothing. The target service level is a value between 0 and 100%. This

this can be seen as a customer satisfaction level to be targeted. Replenishment time is

the time in weeks for inventory to go from the upstream inventory, through a

shipping delay, and be available for the customer in the downstream element. This

includes any time that the downstream inventory takes to process the product.

0 5 10 15 20 25 30 35 40

0

50000

100000

150000

0
5
10
15
20
25
30
35
40

Forecast Week

Q
u

a
n

ti
ty

Current Week

Forecast Data

100000-150000

50000-100000

0-50000

21

Table 2. Historic and Forecasted Data Example

 Week
Index

Actual
Customer
Demand

Forecasted
Customer
Demand

 0 800 460

H
is

to
ric

 D
a

ta

 1 470 530

 2 480 520

 3 510 520

 4 370 540

 5 350 500

 6 280 90

This Week-> 7 230 210

Next Week-> 8 190

F
o

re
c
a

s
te

d
 D

a
ta

 9 160

 10 150

 11 120

 12 130

 13 140

 14 50

 15 0

Figure 12. Graph of Table 2

A bias is calculated based on all the data that the ISM uses for the current

time period. This bias is then applied to the forecasted data to produce a safety

stock value. The safety stock value tells the optimizer how much extra stock on top

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
u

a
n

tit
y

o
f

P
ro

d
u

c
t

Week Index

ACD

HFC

FCCD

Current Week

22

of the future demand to keep in inventory in order to achieve the desired service

level.

2.2 Related Works

2.2.1 Using Model Predictive Control in a Supply Chain

The work done by Jay D. Schwartz, Manuel R. Arahal, Daniel E. Rivera, and Kirk D.

Smith (2009) focuses on a supply chain planner in which the main goal is to keep

inventory at a set level at a specific location using a Model Predictive Control (MPC).

In this design, an MPC is connected to an inventory component in a feedback loop

configuration with an injected feed-forward demand forecast signal. At each time

instance, there is a set level of stock that must be left in the inventory after the

inventory release of the previous instance. This set level is similar to a safety stock as

discussed in 2.1.5. A fluid analogy is used to describe the process where a fluid needs

to stay at a certain level within a tank. More fluid needs to be added to the tank at the

same rate the fluid is released in order to maintain a given fluid level (Schwartz et al.

2009; Schwartz and Rivera 2010).

 The MPC used in the configuration as described above handles the

prediction of inventory movement at each individual location. Since it does not make

a prediction of the movement of product as a whole, it may not be scalable to more

complex models. The LP as discussed in 2.1.4 does the same job of the MPC in this

instance for simple models by setting constraints such that the expected inventory

after a release will not fall below the given safety stock value.

2.2.2 Inner and Outer Loop Optimization

The work done by Wenlin Wang, Daniel E. Riviera, and Hans D. Mittelmann (2009)

focuses on a semiconductor supply chain system with a stochastic òouter loop,ó

23

which runs planning at a lower granularity, and a stochastic òinner loop,ó which

makes day-to-day decisions at a higher granularity. Similar to what is discussed in

2.1.4, an LP optimization model is used to create planning at a lower granularity.

Inventory algorithms are used to compute safety stock values, similar to the ISM

discussed in 2.1.5. After the LP model is executed, the results are split over 7 days

and sent to the Model Predictive Control (MPC) which makes day-to-day

optimization and planning in feedback and feedforward configurations. The MPC

works similar to what is described in 2.2.1 except the data computed by the LP is

also used by the MPC in order to make better predictions relating to the state of the

system as a whole. (Wang, Riviera, Mittelmann 2009).

 The focus of the work discussed above is on how to handle higher

granularity, stochastic demand with a plan generated by a lower granularity optimizer.

This issue is outside the scope of this thesis since no day-to-day demand is provided

to the system, so day-to-day demand is generated by evenly distributing the given

week-to-week data into 7 buckets. Therefore, it is much easier to predict demand on

a day-to-day basis by simply dividing the weekly plan generated by the LP into 7

equal buckets. However, since the work in this thesis demonstrates a design to

connect model components with scalability in mind, it would be feasible to combine

these works in the future.

24

3 APPROACH

3.1 Knowledge Interchange Broker Model XML Schema

3.1.1 Premise for Design

The structure of the KIB needs to be updated without changing the underlying

functionality. The diagram in Figure 13 corresponds to the high level view of KIB

model in Figure 2 and shows how different elements in each model are mapped to a

module within the KIB. Each model implementation has a different definition as to

how its module is defined. In general, a module is an atomic component of a model.

During runtime, the interfaces can read from the data stored in the KIB module

outputs and deposit the data into their respective models. After a model is executed,

an interface can then read the output data given by its model and deposit into the

correct module inputs of the KIB.

Interaction Model LP
Implementation

DEVS
Implementation

KIB InstanceDEVS
Interface

DEVS Instance LP
Interface

LP Instance

Atomic
Model 1

Atomic
Model 2

Atomic
Model 3

ÈiÆjeÊhj

Êhm×ÂÊoÂ×

¿×Ä¿eohnModules

Atomic
Models

DEVS Interface
Definition

KIB
Modules

LP Interface
Definitions

Decision &
Data Variables

DEVS Model KIB Model LP Model

Figure 13. KIB Model Interaction

 Also defined within a KIB instance model is a set of mappings as depicted in

Figure 14. A mapping itself defines the source module output and destination

module input though which data will be routed. Within a mapping, there are a set of

transformations that define how data is to be manipulated in this block.

Transformations can manipulate data as a whole and/or as a singular value. When a

25

mapping is called to execute during runtime, all transformations within that mapping

will be executed based on a priority set within the KIB.

Mapping

Transformation

Transformation

Module BModule A
..
.

Figure 14. KIB Mapping

 The diagram in Figure 15 shows a conceptual representation of the new

XML schema design which corresponds to the same example given in Figure 3. Each

model is associated with an interface within the KIB. Within each model, there are a

set of modules. Unlike the previous design, modules belong to each model

(interface) and the transformations are completely separate entities from the

modules. Take note that the solid arrows in the diagram show how data moves

though the components during transform and not how the schema is to be defined.

Since the transformation blocks are now completely separated from the modules, a

source module output and target module input need to be explicitly referenced using

the distinct module and data input/output names for each transformation. The

control component, like the previous design, is still a separate singleton entity which

references a data output line.

26

Si
n
gl

eE
ch

el
o
n
 :

D
EV

S

Module_A

Module_B Module_C

LP
_S

E
: L

P

Module_A

Module_C

Execution
Control

Data
Trans.

Data
Trans.

Data
Trans.

Data
Trans.

Data
Trans.

Module_B

Figure 15. Proposed Conceptual Design of Model to Model Transformation

3.1.2 Decomposition of XML

To assess the problem with code reusability, the KIB XML can be broken up into

smaller pieces. After removing the transformation entities from the modules

themselves, the XML can then be broken down into three types of data. The

diagram in Figure 15 shows this split with the colors green, red, and blue. The green

elements represent groupings of model definitions with their accompanying modules

for the KIB. The red element in the middle then represents the module to module

mapping and transformations. Finally, the blue element represents what data variable

will be used as the KIB clock. The model and transformation elements can then be

further decomposed by the designer as necessary.

27

3.1.3 Generalization

Refer to Figure 16 for an example of how a KIB XML file was originally structured.

The way that nodes were named did not allow a schema to be designed to satisfy

current and future functionality. To correct this problem, the naming of each node

can be made more general and instead use attributes and child elements to define

what specific type of data there is under the element.

<?xml version="1.0" encoding="utf-8" ?>
<KIBMODEL>

 <MODULE_SPECIFICATION Name = "H1">
 <LPINTERFACE>
 <DataVariable Name="H_BOH">
 <Type>Collection,Record,Key:String:hub,Key:String:product,Int:quantity</Type>
 </DataVariable>
 <DecisionVariable Name="H_RELEASE">
 <Type>Collection,Record,Key:String:product,key:String:destination,Int:period,Float:quantity</Type>
 </DecisionVariable>
 </LPINTERFACE>
 <DEVSINTERFACE>
 <DataOutput Name="BOH">
 <Type>Collection,Record,Key:String:hub,Key:String:product,Int:Quantity</Type>
 </DataOutput>
 <DataInput Name="RELEASE">
 <Type>Collection,Record,Key:String:product,Key:String:destination,Int:Quantity</Type>
 </DataInput>
 </DEVSINTERFACE>
 <INTERFACE_RELATIONSHIP>
 <DEVSLPMAP>
 <DEVSNAME>BOH</DEVSNAME>
 <LPNAME>H_BOH</LPNAME>
 <DATA_TRANSFORMATION>NONE</DATA_TRANSFORMATION>
 </DEVSLPMAP>
 <LPDEVSMAP>
 <LPNAME>H_RELEASE</LPNAME>
 <DEVSNAME>RELEASE</DEVSNAME>
 <DATA_TRANSFORMATION>FloatToInteger:Round,Index:period,quantity,Quantity</DATA_TRANSFORMATION>
 </LPDEVSMAP>
 </ INTERFACE_RELATIONSHIP>
 </MODULE_SPECIFICATION>

 <KIBCONTROL>
 <CONTROLLING_MODEL>DEVS</CONTROLLING_MODEL>
 <MODULENAME>Synchronization</MODULENAME>
 <VARIABLENAME>LP_SYNC</VARIABLENAME>
 <CONTROLTYPE>Periodic:DEVSCYCLES:1</CONTROLTYPE>
 </KIBCONTROL>
</KIBMODEL>

.

.

.

.

.

.

Figure 16. Original KIB XML Definition Example

28

The original design contained 2 interfaces; DEVS and LP. Within a KIB

XML file under a module, each interface needed to be enumerated by using one of

the nodes <DEVSINTERFACE> or <LPINTERFACE>. In the redefined design,

a node <Interface> may be used with an attribute ônameõ to enumerate the type of

interface. To take this a step further, a model name can be attached to the interface

so that there may be multiplicity of models within a KIB design. So now a node

<Model> may be used with a ônameõ attribute naming the model and an ôinterfaceõ

attribute that connects the model to an interface. The distinct name of the model

must now be referenced within the remainder of the XML.

In the previous design, in order to select which is the source interface and

which is the target interface, nodes with names like <DEVSLPMAP> or

<LPDEVSMAP> were used to select a DEVS->LP or LP->DEVS mapping

respectively. To make this more generic, a node <Map> may now be used with the

attributes ôsourceõ and ôtargetõ which determine which interface is the source and

which is the target. To take into account the design of the <Model> node in the

generalization above and the original premise in mind, a source model, module, and

data output with a target model, module, and data input must instead be defined

under the <Map> element. Instead of defining source and target attributes, source

and target elements may now be defined each with the attribute set model, module,

and data.

The LP interface required the use of <DataVariable> and

<DecisionVariable> element for inputs and outputs while the DEVS interface used

<DataInput> and <DataOutput>. This broke any sort of generalized input/output

elements that could be created. Since data variables and decision variables still map

29

to what the LP considers as input and an output, the definitions of these elements

can be changed in code to match the other interfaces to come to a more generalized

definition of an input and output within the schema.

3.1.4 Removal of String Parsing

Any entity of the XML that can be parsed should be further decomposed into XML

attributes and elements. The following shows how each string is parsed and how the

decomposition of this string can be handled by the XML file. Deeper explanations of

what each of the definitions mean will be handled later on in this paper.

¶ Module Input/Output Definition

The string in Figure 17 shows a sample definition of an input or output of a

module.

o Parts ủ1 and ủ2 tell the KIB that the following data is a collection of record

definitions, but this is more or less ignored since all data should be a

collection of records. Therefore, it will be ignored in the schema design.

o Parts ủ3 , ủ4 , and ủ5 each define a record. If the flag òKeyó is given before

the definition then the record will be a key field. This can be handled by an

attribute giving a Boolean value to specify whether the field is a key or not.

If the flag òArrayó is given before the definition then the record will be an

array. The size of the array must be given after the definition of the type or

set to òVariableó if the size of the array is a variable size. This can be

handled with an optional attribute where if set, then the value is an array

type. The value of this attribute should be either a positive integer or the

string òVariable.ó In every field definition, there needs to be a type string

that is either òString,ó òFloat,ó or òIntó which can be handled by a type

30

attribute. Finally, the name of each field is defined which can be handled by

a name attribute.

Collection,Record,Key:String:destination,Key:String:product,Array:Int:Variable:Quantity
1 2 3 4 5

Figure 17. Module Input/Output String Definition Example

¶ Data Transformation Definition

The strings in figures 18, 19, and 20 show a few examples of how a

transformation string is defined which, as a whole, cover all the different

attributes and flags that make up a transformation string.

o In each figure, part ủ1 defines the name of the transformation used. This

can be handled by a name attribute with an enumerated list of all possible

transformations available.

o Part ủ2 in Figure 18 and part ủ3 in Figure 20 set different types of rounding

flags. The rounding can be òRound,ó òCeiling,ó or òFlooró which map to

the corresponding rounding function, with òRoundó being the default. An

optional rounding attribute can handle this with an enumerated list of the

three type strings.

o Part ủ2 of Figure 20 defines how the data should be handled (granularity) in

the transformation. The value here can be òUnits,ó òSets,ó òCurrentUnits,ó

or òCurrentSets.ó This can be handled by another optional attribute with an

enumerated list of strings.

o Part ủ4 in Figure 20 gives an optional multiplier value by which the

transformed value is multiplied by before being sent to the destination. This

can easily be handled by an optional multiplier attribute.

31

o Part ủ3 of Figure 18 gives the index variable and a value associated with it.

Only a single index variable may be given per transformation. This can be

handled by an optional index element where both a name and index value

needs to be given if it is defined.

o Parts ủ2 and ủ3 of Figure 19 give field definitions. Some transformations

require one or more fields to be defined while others do not require any at

all. This can be handled by an optional field element where there must be a

name and value if a field is defined. This element must have [0..n]

multiplicity.

o Part ủ4 in figures 18 and 19 and part ủ5 in Figure 20 give the source

variable. Part ủ5 in Figure 20 give optional starting and ending index values.

This can be handled with a mandatory source element with the attributes

that represent the variable name, starting index, and ending index. The name

is required, but starting and ending indices are optional.

o Part ủ5 in figures 18 and 19 and part ủ6 in Figure 20 give the target variable.

Like the source variable, starting and ending index values may also be

provided. This can be handled with a mandatory target element that has a

definition same as the source element.

FloatToInteger:Round,Index:period=0,quantity,Quantity
1 2 3 4 5

Figure 18. Data Transformation String Definition Example 1

FieldValueToVariable,Field:product=prodX,Field:Destination=route66,quantity,quantity
1 2 3 4 5

Figure 19. Data Transformation String Definition Example 2

32

Aggregate:UNITS:Ceiling,Multiplier:10,quantity[1..5],quantity
1 2 3 4 5 6

Figure 20. Data Transformation String Definition Example 3

¶ Control

The string in Figure 21 shows an example of how a control type string is

defined.

o Part ủ1 defines the type of control execution. In code, this value is saved,

but never used. To leave room for future development, it was decided that

this entry should be used in the new design. This can be handled by an

attribute that has a one value enumeration of òPeriodicó for the current

version of the KIB.

o Part ủ2 was read in and ignored. This value has no meaning and will be

removed.

o Part ủ3 gives the frequency value. This can be handled with an attribute

constrained to a positive, non-zero integer value.

Periodic:DEVSCYCLES:7
1 2 3

Figure 21. Control Type String Definition

3.2 Using the KIB with the Inventory Strategy Module

Figure 1 above shows how the entire system was conceptualized at a high level. As

stated in the problem, the Inventory Strategy Module (ISM) was a functional model,

but was contained within an atomic model within DEVS. Since the ISM is built upon

a different formalism, it makes sense to be a completely separate entity. Figure 22

shows how the ISM can be separated and the communication lines to be established

through the KIB. The dashed lines show the communication that did not exist with

33

the previous design. There is a sequential order of communication and execution in

this network:

1. Execute the SIM for one step

o For our model, òone stepó means the length of time the LP will optimize

over. This is usually over one week.

2. Transform data SIM => LP and SIM => ISM

3. Execute ISM

4. Transform data ISM => SIM and ISM => LP

o Communication from ISM back the SIM should only be used for

transducer accumulation of data.

5. Execute LP

6. Transform LP => SIM

7. Repeat from step 1 until complete

SIM => LP
LP => SIM

SIM => ISM
ISM => SIM

ISM => LP

ISM

SIM
(DEVS Suite)

LP KIB

Figure 22. Separating ISM from SIM

3.3 Development of KIB

Combining the KIB design premise described in 3.1.1 with the modularization of the

ISM as described in 3.2, the code structure should then look like it does in Figure 23.

Like before, DEVS, being the controlling model, starts the KIB through the DEVS

34

Interface. At each DEVS time tick, the time is updated in the KIB and, if it is time to

do a transformation, the transformations and execution sequence in 3.2 is run. When

transformations or executions in any of the interfaces are required, the interface

object functions are called to perform the desired action. Once the sequence is

complete, the resulting data is returned back to DEVS and the simulation continues.

KIB:SingleEchelonWeekly

DEVS:SingleEchelon
(Controlling Model)

LP:SupplyChainDecision

ISM:SupplyChainISM

Calls

DEVS Interface (Data Return)

LP Interface
(SupplyChainDecision

Instance)

ISM Interface
(SupplyChainISM

Instance)

(Instantiates,
Runs,

Data Transform)

(Instantiates,
Runs,

Data Transform)

KIB_Relationship.
xsd

References
Controlling Element

KIB_Module.xsd

KIB_Path.xsd

Operational Side Data Model Side (XML)

SingleEchelon
DEVS Model
(Instance)

KIB_Control.xsd

Control

Frequency
Execution Sequence

KIB

Figure 23. Interface Relationship with KIB

3.4 Experimentation/Evaluation

Refactoring the XML schema must not disrupt the functionality of the KIB

execution within Java. To determine whether the redesign is a success, the previous

35

OSF modelõs KIB xml file will be re-written and the results will be tested to make

sure the model produces the exact same data. On top of this, the previous unit tests

must be rewritten and pass all execution pertaining to the KIB.

Some quantifiable measurements will test the scalability of the new KIB

structure such as number of lines and number of elements. The new KIB design will

then be used to develop a multi-echelon supply chain model. The ISM, being a new

interface within the KIB, will be used to test the scalability of the KIB XML design

when an addiction of an interface is required. The new XML schema and Java code

must be easier to follow and manage. In other words, the design must make logical

sense to one who is not familiar with the design.

XML code reuse is an important feature in any code design. As the KIB

XML instance model is developed for the OSF platform, previous elements of the

design that needs to be reused must be implemented without being rewritten.

There must be no post-process string parsing of the XML definition in Java

code. All elements must be decomposed to their smallest atomic element within the

XML schema. All constraints must be well documented.

 A set of experiments will test the OSF system as a whole. The generation of

meaningful experimental results shows that the entire system works with the new

KIB and provides some data pertaining to the original goal to create a supply chain

simulation model capable of running dynamic single and multiple echelon models.

The run time scalability of the system should be tested to determine how feasible it

will be to run models with thousands of components.

36

4 CONCEPT & XML DESIGN OF KIB

4.1 File Decomposition

With the new design premise, the XML schema is decomposed into three separate

components: the modules, transformation and a control. The KIB_Paths.xsd schema

defines the paths to where each piece of the KIB model is defined. Figure 24 shows

a graphical representation of the KIB_Paths.xsd schema. Within this schema, one or

more paths need to be defined for each set of components with the exception of the

control which requires exactly one path. The path must define another XML file

with the correct pieces of the KIB model. The paths can be absolute or be relative to

the location of the KIB_Paths instance. Any XML that is referenced here must begin

with a KIBMODEL element which signifies that the file is part of the KIB model.

Figure 24. KIB_Paths.xsd Schema Graphic Representation

This design allows the entire KIB model to be decomposed into multiple

parts and allow for partial definition in each file. This can greatly help out with

development when the structures of the models stay the same, but the way they

operate changes. For instance, with the supply chain model, when the discrete event

simulator model changes from a weekly step size to a daily one and the LP model

37

still runs every week, the module definitions stay the same, but the transformations

and control will change to accommodate this.

4.2 Module Schema

The module component defined in KIB_Modules.xsd does two things: it ties an

interface to a model name, and it defines a set of modules that belong to the model.

Figures 25 and 26 show the graphical representation of the KIB_Modules.xsd

schema.

Figure 25. KIB_Modules.xsd Schema Graphic Representation Level 1

4.2.1 Model Element

Under the Model element, there are two attributes named ôNameõ and ôInterfaceõ.

The definition for ôNameõ is a distinct name for the model within the KIB instance.

This name is used as a referencing name to this model for the transformations

definition. This name is also sent to the model interface in order to open the correct

model. The definition for ôInterfaceõ must be one of the enumerated values set

38

within code. Currently, this includes òDEVS,ó òLP,ó and òISM.ó This maps the

distinct model name to an interface definition within code. Providing a unique model

name for the interface allows a developer to create multiple models under the same

interface. It also helps with labeling each component in the KIB.

4.2.2 Module Element

Each model contains a set of modules. Under the Module element, there is a ôNameõ

attribute. The definition for ôNameõ here is a distinct string name that references

something within the model. This name is also referenced within the transformations

definition. As Gary points out in his research, these modules can be seen as different

things depending on the environment used (Gary 2008). Within DEVS, a module is

closely tied to an atomic model component whereas within an LP the module does

not hold much meaning.

Figure 26. KIB_Modules.xsd Schema Graphic Representation Level 2

39

4.2.3 DataInput and DataOutput Elements

Each module has a set of input and output data lines associated with it. This would

be the DataInput and DataOutput elements. Even though providing neither of these

elements in a KIB XML would be semantically correct according to the schema, the

module would serve no purpose. Therefore, a designer should always define at least

one input or output. There is no difference between the schema definition of

DataInput and DataOutput. The only difference is the way that they are treated

within the KIB. A DataInput is used when data goes into the model and a

DataOutput is used when data comes out of the model. Under the DataInput and

DataOutput elements is a ôNameõ attribute which uniquely identifies the port and is

also associated with something within the model instance.

4.2.4 DataVariable Element

The type of data that is produced and consumed under a DataOutput or DataInput

is defined as the DataVariable element. Each entry defines a column within a table.

The DataVariable element contains the following attributes:

¶ Name ð label for the variable. The name must be distinct for the DataInput

or DataOutput group.

¶ Type - must be one of the following:

o String

o Int

o Float

¶ IsKey ð must either be òtrueó or òfalseó depending on if the variable is a key

for the set. During runtime, there can never be two entries where all the key

values are the same. This is similar to how a primary key set works in a

40

database. The newer set will overwrite the older set if all of the key values

match. If no keys are set, the key is assumed to be ônullõ for each incoming

value and only the newest value set may be passed at each time step.

¶ ArraySize ð is an optional value. This is set if the data variable is an array field

and signifies the size of the array. This value must be a positive integer value

greater than 0 or the string òVariableó if the size of the array is unknown.

4.3 Control Schema

The control schema defines frequency and the order of the transformation actions.

Figure 27 shows the graphical representation of the KIB_Control.xsd schema.

Figure 27. KIB_Control.xsd Schema Graphical Representation

4.3.1 Control Element

Within the Control element are the following attributes:

¶ Model

o Defines the name of the model which contains the controlling variable

41

¶ Module

o Defines the name of the module under the previously defined model which

contains the controlling variable

¶ DataOutput

o Defines the name of the data output under the previously defined module

which contains the controlling variable

¶ DataVariable

o Defines the name of the data variable under the previously defined data

output which is the controlling integer variable

¶ Type

o Can only be set to the string òPeriodicó for the current version of the KIB.

This signifies that transformations happen periodically. Future

developments of the KIB may allow for other options.

¶ Frequency

o Must be an integer value greater than 0 which defines how often the non-

controlling model elements be executed ð For instance, if this value is set to

2, execution will occur at instances 0, 2, 4, and so on until the model

terminates.

4.3.2 Execution Element

A single Execution element must be defined under the Control element. The

Execution element gives the order of execution models to run at the frequency

instances. One or more Run elements must be defined under the Execution element

and order of given elements is crucial. For each Run element that is defined, the

Model attribute should give the name of the model to execute. The model name

42

must be previously given elsewhere within the KIB modules definitions and cannot

be the model that is defined as the controlling model.

4.4 Relationship Schema

The relationship schema provides the structure and constraints of the transformation

definitions. Figures 28, 29, 30, and 31 show the graphical representation of the

KIB_Relationship.xsd schema.

Figure 28. KIB_Relationship.xsd Schema Graphic Representation Level 1

4.4.1 Relationship Element

A single Relationship element signifies that this is an XML that defines the

relationships of the KIB model.

4.4.2 Map Element

One or more Map elements must be defined under the Relationship element. The

Map element defines a mapping between a DataOutput of one Module to a

DataInput of another Module. The ôIntervalõ and ôIntervalOffsetõ attributes within

the Map element define when all the transformations within a mapping should take

place. These values are relative to the control frequency that is defined above in 4.3.

The ôIntervalõ defines how often to execute this mapping transformation. This must

be a positive, non-zero integer value. For example, if the frequency in the control is

43

set to 7 and the interval here is set to 2, the mapping will be executed on 0, 14, 28,

and so on until the system terminates. The ôIntervalOffsetõ defines at what time the

first transformation is executed. This must be a non-negative integer value. For

example, taking the above case where frequency set to 7 and interval of mapping set

to 2, if the interval offset is set to 5, the mapping will be executed on 5, 19, 33, and

so on until the system terminates.

Figure 29. KIB_Relationship.xsd Schema Graphic Representation Level 2

4.4.3 Source DataOutput Element

Under each Map element is a Source element. The Source element contains the

attributes ôModelõ, ôModuleõ, and ôDataõ which correspond to the names of a Model,

Module, and DataOutput that has been previously defined. This makes up the

address of a DataOutput element.

44

4.4.4 Target DataInput Element

Under each Map element is also a Target element. The definition of a Target element

is the same as the Source element. The only distinction is that the ôDataõ attribute

references a DataInput element.

Figure 30. KIB_Relationship.xsd Schema Graphic Representation Level 3

4.4.5 Transformation Element

At least one Transformation definition must be given for each mapping. A

Transformation element defines how data shall be transformed at the execution of

this mapping within the KIB. The order of transformations does not make any

different in the end result. Within the ôNameõ attribute is an enumeration of

transform types which corresponds to a name of a transformation within the KIBõs

45

execution object. This name may be one of the names given in the list below. For a

deeper explanation of each of these transformations, refer to APPENDIX B.

¶ NONE

¶ COPY

¶ IntegerToFloat

¶ FloatToInteger

¶ Aggregate

¶ MAX

¶ MIN

¶ MEDIAN

¶ MEAN

¶ NewestValue

¶ OldestValue

¶ SET_TO_VALUES

¶ VALUES_TO_SET

¶ FieldValueToVariable

¶ VariableToFieldValue

¶ ASSIGN_FIELD_VALUES

¶ DisaggregateIntoEqualBuckets

¶ AllToOneValue

¶ AllCurrentToOneValue

 The attribute ôRoundingõ defines how to round the data before it is

transformed. If the source value is already an integer value, any of the rounding

46

functions will not affect the value in any one of these cases. The ôRoundingõ attribute

may be defined as one of the following:

¶ Round: Rounds a floating point value to the nearest integer value.

¶ Ceiling: Rounds a floating point value up to the next integer value.

¶ Floor: Rounds a floating point value down to the previous integer value.

 The attribute ôGranularityõ defines how data should be aggregated when a

transformation takes a set of values and changes it to a single value or single set of

values. It may be one of the following:

¶ Units: Data input is in terms of units, handled horizontally. For example, if

ôMINõ transformation is used and the sets {5, 9, 0} {2, 2, 2} are sent from the

source array, the target value will be 0; the smallest overall value.

¶ Sets: Data input is in terms of sets of data, handled vertically. For example, if

ôMINõ transformation is used and the sets {5, 9, 0} and {2, 2, 2} are sent from

the source array, the target value will be {2, 2, 0}; the minimum value of each

index value individually.

¶ CurrentUnits: Same as ôUnits,õ but use only the most recent data.

¶ CurrentSets: Same as ôSets,õ but use only the most recent data.

The ôMultiplierõ attribute defines a value in which should be used to multiply the

target value by after transformation has been completed. This may be any real value.

The multiplier value will only be used if the target value is numerical.

47

Figure 31. KIB_Relationship.xsd Schema Graphic Representation Level 4

4.4.6 Source DataVariable Element

Under each Transformation element a single Source element may be defined. This

element is optional if the transformation does not require its definition. The

ôDataVariableõ attribute references a name of a DataVariable. This DataVariable must

be defined under the Source DataOutput of the mapping. The ôStartIndexõ and

ôEndIndexõ attributes are used only if the DataVariable referenced is an array type

and a specific range needs to be selected for this transformation. The ôStartIndexõ is

constrained to a non-negative integer value and the ôEndIndexõ is constrained to a

positive, non-zero number. A StartIndex may be defined without an EndIndex if

only a single value within an array is selected. If the EndIndex is defined, it must be

greater than the StartIndex.

48

4.4.7 Target DataVariable Element

The Target element provides the same definition as the Source element within the

schema. The only distinction is that the Targetõs DataVariable referenced the name

of a DataVariable within the Target DataInput of the mapping.

4.4.8 Index Element

The Index element should define the DataVariable name on either the source or

target that data should be indexed by. This is used in certain transformations when

data is being transformed to or from an array. The value attribute must be an integer

value greater than or equal to 0. This defines the starting index value (usually either 0

or 1).

4.4.9 Field Element

The Field element gives a set of key/value pairs used when a transformation requires

it such as FieldValueToVariable and VariableToFieldValue.

49

5 SCHEMA IMPLEMENTATION

5.1 Object Structure and Data Structure Mapping

With the changes made to the schema as drawn out with the example in Figure 15,

the object structure in code has been implemented with this structure as well. This

provides a more succinct definition between the connection of XML structure and

code structure.

5.1.1 KIB Entry Point

The diagram in Figure 32 shows a high level UML diagram of the entry point into

the KIB. An instance of the KIBExecution object instantiates the KIBDataStore

then sends the reference to ConfigurationReader where the KIBDataStore is filled

with the appropriate metadata. This structure did not change since the previous

version of the KIB. The ConfigurationReader has been updated to follow the new

schema design.

Figure 32. UML KIB Entry Point Objects

ConfigurationReader
(from execution)

KIBExecution

cycle : int

executionSequence : ArrayList...

decisionEngines : Hashtable

(from execution)

KIBDataStore

moduleList : Logical View::java::util::Hashtable

debug : boolean

(from execution)

-$instance

-kibDS-kibds

50

5.1.2 KIB Module Objects

Since now, from the schema design modules belong to model elements, this matches

in the module metadata elements within the object design. The diagram in Figure 33

shows the upper level of the module objects. The KIBDataStore maps each model

to a list of KIBModules. The ModelName object connects a string name to a value

in the interface enumeration. Now each instance of a KIBModule belongs to a single

model. The KIBModule contains a list of DataModelNodes which correspond to all

DataInputs and DataOutputs associated with the Module in the schema. If the

KIBModule instance is a target, it will contain a list of all DataRelationship objects

for which this module is a target.

51

Figure 33. UML Objects Relating to KIB_Modules.xsd Part 1

 Figure 34 shows the UML object diagram of the second level of the module

objects. The only addition to this structure since the previous version is the

DataType enumeration which enumerates String, Int, or Float and holds their string

representations. Each DataVariable maps into an instance of NameTypeValue. The

RecordDefinition object keeps the list of all NameTypeValues and marks the

variables that are key values. As data is entered during runtime, instances of

DataRecord are created with the value entries.

KIB_Modules

Module

DataInput

DataOutput

DataModelNode
(from node)

DataRelationship
(from execution)

ArrayList<DataModelNode>
(from Basic KIB Structure)

InterfaceName

name : String

isSolverType : boolean

(from kib)

<<Enum>> KIBModule
(from execution)

ModelName

modelName : String

(from kib)

ArrayList<KIBModule>
(from Basic KIB Structure)

The set of

mappings for

the target

module
Map

Hashtable<ModelName,ArrayList>
(from Basic KIB Structure)

KIBDataStore

moduleList : Logical View::java::util::Hashtable

debug : boolean

(from execution)

0..n

1

0..n

1

0..n

1

0..n

1

1

1

1

1

-interfaceName

0..n

1

0..n

1

0..n

1key

0..n

1

0..n

1 value

0..n

1

52

Figure 34. UML Objects Relating to KIB_Modules.xsd Part 2

5.1.3 KIB Control Object

The ControlConfiguration object shown in Figure 35 has a direct mapping to the

data given in the KIB_Control.xsd schema. This objectõs structure does not differ

from the previous version. The main difference is that the executionSequence is

filled and executed in the given order which was previously ignored.

DataInput

DataOutput

DataVariable Metadata

DataVariable Metadata w/ data

ArrayList<NameTypeValue>
(from Basic KIB Structure)

DataRecord

fields : ArrayList

keyFieldNames : ArrayList

(from kib)

StringM
BoundedQueue

(from util)

RecordDefinition

fieldDefinitions : ArrayList

keyFieldNames : ArrayList

(from kib)

LinkedHashMap<String,BoundedQueue>
(from Basic KIB Structure)

DataModelNode
(from node)

DataType

name : Logical View::java::lang::String

VARIABLE_LENGTH_ARRAY : Logical View::java::lang::String = "variable"...

(from kib)

<<Enum>>

NameTypeValue

name : Logical View::java::lang::String

isArray : boolean

arraySize : int

data : Logical View::java::lang::Object

isTransformValue : boolean

(from kib)

TransformConfig
(from transforms)

Transformation

1

1

1

1

0..n

1

0..n

1

1

1

1

1

0..n

1key

0..n

1

0..n

1

value

0..n

1

1

1

1

1
0..n 10..n 1

0..n

1

0..n

1

-dataType

1

1

1

-transformConfiguration

1

53

Figure 35. UML Object Relating to KIB_Control.xsd

5.1.4 KIB Relationship Objects

Figure 36 shows a UML diagram of the objects that map to the data in the

KIB_Relationship.xsd schema. A ModelRelation object has been added to map the

source model to the target model. Enumerations for granularity, rounding, and

transformation name have been added to map string definitions within XML to flags

in code. Definitions of these enumerations match what is given in 4.4.5.

Control

KIB_Control

ControlConfiguration

controlFrequency : int

controllingModel : Logical View::java::lang::String

controlDataModule : Logical View::java::lang::String

controlDataVariable : Logical View::java::lang::String

controlDataElement : Logical View::java::lang::String...

controlType : Logical View::java::lang::String

executionSequence : ArrayList

(from execution)

KIBDataStore

moduleList : Logical View::java::util::Hashtable

debug : boolean

(from execution)

-control

54

Figure 36. UML Objects Relating to KIB_Relationship.xsd

5.1.5 Adding an Interface

The process to add a new interface was made to be as simple as possible. When

adding a new interface for the KIB, the following steps need to be taken:

1. Create an interface model node extending the DataModelNode class. This

step is optional if no extensions of the DataModelNode are necessary for the

model. This can be seen, for example, with the addition of the ISM model.

KIB_Relationship

Map

Transformation

ModelName

modelName : String

(from kib)

ModelRelation
(from kib)

-source
-target

DataRelationship

name : String

transformList : ArrayList

setsToValues : boolean

valuesToSet : boolean

disaggregation : boolean

fieldValueDependentTarget : boolean

fieldAssignmentTransform : boolean

allToOneValue : boolean

allCurrentToOneValue : boolean

arrayRegionCopy : boolean

sourceDataName : String

targetModuleName : String

targetDataName : String

interval : int

intervalOffset : int

(from execution)

1

1

1

-relation

1

GranularityName

name : Logical View::java::lang::String

(from transforms)

<<Enum>>

RoundingName

name : Logical View::java::lang::String

(from transforms)

<<Enum>>

TransformConfig

parameters : Logical View::java::lang::String

variables : Logical View::java::lang::String

multipleTargetValues : boolean

multipleTargetVariables : boolean

multipleSourceValues : boolean

multipleSourceVariables : boolean

arrayRegionCopy : boolean

relatedFieldTransforms : ArrayList

indexFieldName : Logical View::java::lang::String

startingIndex : int

multiplier : double

transformSourceField : Logical View::java::lang::String

transformTargetField : Logical View::java::lang::String

transformSourceFieldArrayBounds[] : int

transformTargetFieldArrayBounds[] : int

matchFieldNames : ArrayList

fieldMatchValues : ArrayList

(from transforms)

-structuralTransform

1

1..n

1

-fieldAssignmentTransformConfig

1..n

-itemGranularity

-roundingAlgorithm

TransformationName

name : Logical View::java::lang::String...

(from transforms)

<<Enum>>
-transformType

Transformation

55

2. Create a KIB interface object implementing DecisionEngineInterface; define

all required operations using a DataModelNode object either as defined in

step 1 or the base DataModelNode itself

3. Create a name that will represent the interface and add it to the enumeration

InterfaceName (refer to Figure 37)

Figure 37. InterfaceName Name Definitions

4. If a new interface model node has been created, have the

ConfigurationReader.addVariable() function instantiate the new

DataModelNode from step 1 with the given InterfaceName from step 3

(refer to Figure 38)

Figure 38. Instantiating DataModelNode

5. Have the KIBExecution.initializeEngine() function instantiate the new

DecisionEngineInterface from step 2 with the given InterfaceName from

step 3

56

Figure 39. Instantiating DecisionEngineInterface

5.1.6 Designing a KIB Model

Steps in a certain order should be taken in order to develop a KIB model. In general,

following the following steps will lead to a working KIB model:

1. Create all necessary interfaces as described in 5.1.5

2. Implement and test each model separately to make sure each model

component is formalized properly

3. For each model, create a separate XML file that implements the

KIB_Modules.xsd schema defining things in a way that goes in line with how

the interface for each model is designed from step 1

o A separate file is not necessary to define each model contents, but this

helps partition the components in succinct way. For smaller models, it

may be reasonable for all modules to be defined in one file.

4. Decide where the controlling DataVariable resides and define them as such

in an XML file that implements KIB_Control.xsd

5. Decide the data couplings and transformation scheme for all data and define

as such in an XML file that implements KIB_Relationship.xsd

6. Reference all XML definitions from steps 3, 4, and 5 into an XML file that

implements KIB_Paths.xsd

57

7. In code, load the file defined in step 6 into the ConfigurationReader object

which will setup a KIBDataStore

5.2 ISM Implementation

To completely separate the ISM component from the rest of the project, Javaõs

Remote Method Invocation (RMI) technology is used. RMI is a way to setup a

server/client connection using Java interfaces as if the implementations for the

interfaces reside on the client system. Once a serverõs method is called, the required

attribute values are sent to the server where the function is executed remotely. The

return value of the function is then sent back to the client if one exists. The

definition of any complex structure that is being used in the communication must

reside on both the client and server. The diagram in Figure 40 shows a block level

communication between the KIB and each model. In this setup, the ISM is the RMI

server and the ISM interface within the KIB is an RMI client. An interface package is

also created that contains the RMI interface and the object, ISMResult, which

contains the result of the ISM computation for a time step.

58

DEVS Model
(Controlling

Model)

OPL Studio LP

ISMRMI

Customer
Demand
Database

KIB

DEVS
Interface
Definition

LP
Interface
Definition

ISM
Interface
Definition

Transform Configuration

Control
Configuration

Figure 40. KIB with ISM

The modularized ISM model has a static set of variables associated with it.

Below are a list of these elements; the first level being the modules, second level

being either data input or data output, and third level being the set of data variables

for the data input/output. A short explanation is given for each data variable.

¶ ISM_TARGET

o FC_CD (O)

Á echelon_index (Int): Index for the selected echelon

Á hub (String): Inventory element name

Á product (String): Product name

Á quantity[] (Int): Values of forecasted customer demand for

the current period up to the length of the planning horizon

59

o HUB_SS (O)

Á echelon_index (Int)

Á hub (String)

Á product (String)

Á quantity[] (Int): Values of safety stock in the hub inventories

for the current period up to the length of the planning

horizon

o CW_SS (O)

Á echelon_index (Int)

Á hub (String)

Á product (String)

Á quantity[] (Int): Values of safety stock in the component

warehouse inventories for the current period up to the length

of the planning horizon

o LOG_SS_FC (O)

Á echelon_index (Int)

Á hub (String)

Á product (String)

Á quantity [] (Int): Values of forecasted customer demand for

the current period up to the length of the planning horizon

Á target (Int): target order up to

Á destination (Int): safety stock

Á value (String): week label

Á current_time (Float): clock time

60

Á weight (Int): weight for the week (0 or 1)

¶ ISM_INIT

o ISM_INIT_DATA (I)

Á name (String): Name of the key element for initialization data

Á value (String): Value of the value element for initialization

data

o HUB_LIST (I)

Á echelon_index (Int)

Á hub[] (String): List of hub names for the echelon (names may

exists more than once)

o PRODUCT_LIST (I)

Á echelon_index (Int)

Á product[] (String): For each hub in the HUB_LIST input, this

list gives an accompanying product creating (hub, product)

pairs

o TO_INVENTORY_LIST (I)

Á echelon_index (Int)

Á hub (String)

Á destination[] (String): List of destination inventory elements

in the downstream echelon that this inventory ships to

o TO_SHIP_TIME_LIST (I)

Á echelon_index (Int)

Á hub (String)

61

Á value[] (Int): Shipping time for each of the lanes given in

TO_INVENTORY_LIST

¶ ISM_RUN

o BOWK (I)

Á name (String): This key variable is not used in the current

implementation of ISM

Á value (Int): The Beginning Of Week index

o BOH (I)

Á echelon_index (Int)

Á hub (String)

Á product (String)

Á quantity (Int): Value for the Beginning On Hand value for the

product in the inventory given in the key

o INTRANSIT (I)

Á echelon_index (Int)

Á hub (String)

Á product (String)

Á quantity[] (Int): The in-transit values for the shipping for the

product to the inventory given in the key

o INTRANSIT_AO (I)

Á echelon_index (Int)

Á hub (String)

Á product (String)

62

Á quantity (Int): The value coming out of the shipping element

for the product to the inventory given in the key

¶ Synchronization

o ISM_SIM_SYNC (I)

Á current_time (Int): The current time value used for labeling

There are some potential issues with the KIB when it is expanded to allow

three models communicating between each other. The KIB is designed to transform

data between two models. Therefore, with three model communication, each

transformation must be executed between pairs of models only. The diagram in

Figure 41 shows a conceptual representation of three models communicating

through the KIB. The execution and transformation are not only synchronous, but

are also sequential, so the execution sequence of DEVS, ISM, LP is selected. This is

because DEVS, being the controlling model in the KIB, needs to first send its state

to both the ISM and LP. The LP is then dependent upon the computations done in

the ISM. Since the LP and ISM are both point solution models, this execution

sequence is simplified. For KIB solutions with models that arenõt executed

sequentially and/or contain multiple models that arenõt point solutions, the control

may need to be redesigned to allow a more complex environment. Concepts and

methods for such control were developed in a dissertation by Dongping to allow

asynchronous execution between DEVS and MPC (Huang 2008).

63

SingleEchelonISM
 : ISM

LP
_S

E
: L

P

M
od

ul
e_

AM
od

ul
e_

C

M
od

ul
e_

B

KIB
M

odule_A

M
odule_B

SingleEchelon : DEVS

Module_A

Module_C

Data
Trans.

Execution
Control

Data
Trans.

Data
Trans.

Data
Trans.

Figure 41. Three Model KIB Communications

 A block diagram showing the communication between the three models of

the OSF platform is given in Figure 42. This gives a high level view of the data that is

being sent between the models. DEVS sends its state to the LP and the week index

to the ISM. The ISM uses the week index to look up the correct Actual Customer

Demand (ACD), Historic Forecast (HFC), and Forecast Customer Demand (FCCD)

for the correct period. ISM then computes a Safety Stock (SS) value and then sends

this along with the FCCD data to the LP. The ISM also sends some data back to

DEVS (not explicitly depicted in the figure) to be used strictly by the transducers for

data collection. LP then computes a plan for a period of time and sends this plan

back to DEVS in the form of release commands. DEVS also uses Lot Generator

(LG) to determine the amount of inventory to be generated in the most upstream

inventory in order to replenish released inventory. The ACD data is used by the

64

customers in the DEVS model to determine if demand has been fulfilled at each

period of time.

Figure 42. OSF Model

5.3 Single Echelon Implementation

5.3.1 Single Echelon Timeline

To properly map the execution and time base of the simulation with the execution

and time base of the LP and ISM, the sample diagram in Figure 43 was created. This

diagram represents a model with a single hub, shipping to a single component

warehouse through one shipping lane. The following assumptions are also used.

¶ Model provides perfect fulfillment for demand

¶ The Hub and Component Warehouse models are set to process arrivals

immediately

¶ Hub delivers all of its inventory to the Geo Customer at each time period

The simulation, ISM, and LP all execute on a weekly time step. The Decision

Connector component contains the connection to the KIB. Single arrows downward

represent product being sent to the next component. Double arrows upward are

state messages being sent to the Decision Connector. Double arrows downward are

65

release messages to be delivered to their respective components. The following

constraints are set:

Ὕ ᴙ ȟ

Ὕ ᴚ ȟ

Ὑὼ π ×ÈÅÒÅ ὼ π

ὸɴ Ὕ (Time in DEVS is in real increments)

ὸᴂɴ Ὕᴂ (Time used for KIB is on integral steps)

Ўίɴ ᴚ ȟ (Shipping time from CW to hub)

Ὑὸ ᴚ ȟ (Release command function at the CW)

66

Figure 43. Single Echelon Timeline

To the simulation, the execution of each week is not an instantaneous event.

A set of events occur over a period of time. The model was implemented to execute

certain things at certain periods of time in order to force a deterministic execution

order within DEVS. Thus, the simulation has varying states throughout each time

step. The ISM and LP only care about the state of the system at the integer time

values as they only execute over integer granularity. If this was expanded to a setup

t
ς

1
.л
м
л
Ɏ

ǘΩ
-1

 =

t-
1
.0

0
0

t-
0
.9

9
0

t-
0
.9

8
0

t-
0
.9

7
5

t-
0
.9

6
5

t-
0
.0

0
1

t
=
ǘΩ

D
ec

is
io

n
C
o
n
n
ec

to
r

C
o
m

p
o
n
en

t
W

ar
eh

o
u
se

Sh
ip

p
in

g

H
u
b

G
eo

C
u
st

o
m

er

K
IB

Id
le

W
ai

ti
n
g

Fo
r

D
ec

is
io

n

U
p
d
at

in
g

St
at

u
s

St
ar

ti
n
g

M
at

er
ia

ls

P
ro

ce
ss

in
g

R
ec

ei
vi

n
g

O
rd

er
s

U
p
d
at

in
g

R
el

ea
se

R
(ǘ
Ω-
1
)

B
O

H
& A
O In
-

Tr
an

si
t

&
 A

O

B
O

H
& A
O

Ex
ec

u
ti

o
n
 &

 T
ra

n
sf

o
rm

at
io

n

B
eg

in
n
in

g
O

f
D

ay
En

d
 O

f
D

ay
P
H

A
SE

 K
EY

:

D
el

iv
er

Lo

ts

R
(ǘ
Ω-
s-

2
)

P
ro

ce
ss

In

co
m

in
g

Lo
ts

P
ro

ce
ss

D

ep
ar

ti
n
g

Lo
ts

 R
(ǘ
Ω-
1
)

P
ro

ce
ss

In

co
m

in
g

Lo
ts

 R
(ǘ
Ω-
s-

2
)

P
ro

ce
ss

D

ep
ar

ti
n
g

Lo
ts

 R
(ǘ
Ω-
s-

2
)

Se
n
d
 L

o
ts

R
(ǘ
Ω-
s-

2
)

Se
n
d
 L

o
ts

R
(ǘ
Ω-
1
)

P
ro

ce
ss

In

co
m

in
g

Lo
ts

 R
(ǘ
Ω-
1
)

P
ro

ce
ss

D

ep
ar

ti
n
g

Lo
ts

 R
(ǘ
Ω-

s-
1
)

B
O

H
& A
O In
-

Tr
an

si
t

&
 A

O

B
O

H
& A
O

t-
0
.9

9
9

M
at

er
ia

l
A

rr
iv

ed

&
 C

D

M
at

er
ia

l
A

rr
iv

ed

&
 C

D

A
O

 =
 R

(ǘ
Ω-
1
)

In
-T

ra
n
si

t
=

{R
(ǘ
Ω-

1
),
 Χ

, R
(ǘ
Ω-

s)
}

A
O

 =
 R

(ǘ
Ω-

s-
1
)

B
O

H
 =

 0
A

O
 =

 R
(ǘ
Ω-

s-
2
)

67

where the simulation ran on a daily time step with ISM and LP running weekly, the

ISM and LP would only care about the state of the system at times {0, 7, 14, é, n}.

5.3.2 Configuration and GUI

A configuration schema and GUI was created in order to quickly run experiments on

the single echelon model. The ISM Client schema in Figure 44 and the

accompanying GUI in Figure 45 provide entries for connecting to the ISM server.

The ISM client configuration consists of the following information:

¶ Hostname

The hostname is the name of the host for which the ISM server resides. This

can be in the form of an IP address, a URL, or the string òlocalhostó if the

server resides on the local host machine. The elements useLocalHost and

useMyIP can be set to true or false. If useLocalHost is set to true, the string

òlocalhostó is used. If useMyIP is set to true, the IP address of the local

machine is retrieved and used. Otherwise, a host name string can be given under

the name element. Only one of these three entries should be given.

¶ Port

This is the port number, as an integer, that the ISM server is setup on. The

default port for the ISM server is 2020.

¶ Create Server and Server Path

If the createServer flag is set to true, the executable jar file at the serverPath is

executed to start the server with the given hostname and port arguments. If the

createServer flag is set to false, the serverPath is ignored.

68

Figure 44. ISM Client Schema

Figure 45. Single Echelon GUI: ISM Connection Tab

 The system schema in Figure 46 and accompanying GUI in Figure 47

provide the system entries. This should hold any information that need to be sent to

the system as a whole. The system configuration contains the following data:

¶ configPath

The configuration path is the path to the directory containing òKIBó and

òLP_Modelsó folders where the KIB and LP models are stored.

69

¶ dataDir

The data directory is the path to the directory containing the input customer

demand data.

¶ outDir

The output directory is the path to the directory where the resulting data from

the model run should be stored.

¶ stepSize

This should be set to òWeeklyó or òDailyó depending on the step size

granularity for the simulation model.

¶ lpstepSize

This should be set to òWeeklyó or òDailyó depending on the step size

granularity for the optimization model.

¶ hubs

The hubs element should contain a list of hubs that can be selected to run in the

experiments.

¶ products

The products element should contain a list of products that can be selected to

run in the experiments.

70

Figure 46. System Schema

Figure 47. Single Echelon GUI: System Tab

 For this project, the scope for what is known as an experiment configuration

is any data that is inputted to select certain functionality for a model to run. This

should not affect the overall structure of the model. The experiment schema in

Figure 48 and accompanying GUI in Figure 49 provide the experiment

71

configuration. This holds a list of experiment configuration settings to run. Each

experiment element in the experiment configuration should contain the following

information:

¶ name

This element defines the name of the experiment used to label the data.

¶ products

This element defines a list of products to run in this experiment.

¶ hubs

This element defines a list of hubs to run in this experiment.

¶ startingWeek

This element defines a string representation of the week for which the model is

initialized to.

¶ endingWeek

This element defines a string representation of the week when the model should

terminate.

¶ smoothing

This element defines a list of smoothing names to be used. Each smoothing

selection is run with each service level (below).

¶ serviceLevel

This element defines a list of service level values (between 0 and 100) that

should be used; run one at a time with each smoothing name (above).

¶ planningHorizon

72

This element defines how many weeks into the future to plan for in the ISM.

This value must be greater than 0.

¶ historySize

This element defines how many weeks to smooth with historic data in the ISM.

This value must be greater than 0.

Figure 48. Experiment Schema

73

Figure 49. Single Echelon GUI: Independent Experiments Tab

5.3.3 KIB Implementation

For each component, the granularity of daily or weekly has been considered. The LP

in the real world runs on a weekly basis, but could be run on a daily basis even

though it may not produce any meaningful results. The simulation in the past only

ran on a weekly basis, but a daily basis would better match real world operations.

The configuration with the simulation running on a weekly basis with the LP running

on a daily basis should be ignored since is does not make sense to optimize faster

than the simulation can run. The data provided for customer demand and forecast is

given in weekly granularity. Therefore, running the ISM on a daily granularity with

this data would not provide any better results. With these constraints defined, we

have the following 3 configurations of running granularity:

A. Simulation: weekly, LP: weekly, ISM: weekly

74

B. Simulation: daily, LP: weekly, ISM: weekly [closest to real world]

C. Simulation: daily, LP: daily, ISM: weekly

 For each of these configurations, the KIB needs to be setup in a different

way. Configuration A requires a 1:1:1 execution scheme; the LP and ISM execute

once for every step in the simulation. Configuration B requires a 7:1:1 execution

scheme; the LP and ISM execute once for every 7 steps in the simulation.

Configuration B also requires disaggregation transformations. Configuration C will

be ignored for this implementation since it may or may not produce meaningful

results. The KIB model has been partitioned with the following xml files:

1. Instances of KIB_Paths

a. SingleEchelon_Sim[W]_LP[W]_ISM[W].xml

b. SingleEchelon_Sim[D]_LP[W]_ISM[W].xml

2. Instances of KIB_Modules

a. DEVS_Modules.xml

b. ISM_Modules.xml

c. LP_Modules.xml

3. Instances of KIB_Control

a. Control_Freq1.xml

b. Control_Freq7.xml

4. Instances of KIB_Relationship

a. ISM_Relationships.xml

b. Relationship_Sim[W]_LP[W]_ISM[W]

c. Relationship_Sim[D]_LP[W]_ISM[W]

75

 To load the KIB for configuration A, the file

SingleEchelon_Sim[W]_LP[W]_ISM[W].xml is called. This loads the module

definitions in all of 2, the control 3.a, and the relationships defined in 4.a and 4.b. To

load the KIB for configuration B, the file

SingleEchelon_Sim[D]_LP[W]_ISM[W].xml is called. This loads the module

definitions in all of 2; the control 3.b; and the relationships defined in 4.a and 4.c. See

the XML code in Figure 50 for the definition of this XML file. For either of these

KIB models, all of the defined instances of KIB_Modules are called since the

structure does not change between configurations. All of the relationships going to

or from the ISM do not change per configuration, so it was a design choice to use

the same definition between the two as well.

<?xml version="1.0" encoding="UTF-8"?>
<KIBPATHS xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Paths.xsd">

<MODULE_FILE Path="DEVS_Modules.xml"/>
<MODULE_FILE Path="LP_Modules.xml"/>
<MODULE_FILE Path="ISM_Modules.xml"/>

<RELATIONSHIP_FILE Path="Relationship_Sim[D]_LP[W]_ISM[W].xml"/>
<RELATIONSHIP_FILE Path="ISM_Relationships.xml"/>

<CONTROL_FILE Path="Control_Freq7.xml"/>
</KIBPATHS>

Figure 50. Path Definitions for KIB

 The XML code in Figure 51 shows the definition of the module H1 for the

DEVS side of the KIB. The H1 module directly maps to the atomic inventory

component with the name òH1.ó The H1 inventory model creates a BOH message

which contains the amount of product that is left in the inventory from the previous

step. An input to this inventory model is a release message. When the model receives

a release message, it will release the given amount of inventory.

76

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="DEVS" Name="SingleEchelon">

<Module Name="H1">
<DataOutput Name="BOH">

<DataVariable Name="hub" Type="String" IsKey="true"/>
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="Quantity" Type="Int" IsKey="false"/>

</DataOutput>

<DataInput Name="RELEASE">
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="source" Type="String" IsKey="true"/>
<DataVariable Name="destination" Type="String" IsKey="true"/>
<DataVariable Name="Quantity" Type="Int" IsKey="false"/>

</DataInput>
</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

Figure 51. DEVS Modules H1 KIB Definition

 The XML code in Figure 52 shows the definition of H1 and HX modules on

the LP side of the KIB. Modules do not mean anything to the LP, so the definitions

of modules here are only symbolic to the KIB itself. The H_BOH input under the

HX module aggregates all the data from every hub into a single input. The

H_RELEASE output under the H1 module contains release messages for every hub

that will later need to be filtered within the mapping definition.

77

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="LP" Name="LP_SE">

<Module Name="HX">
<DataInput Name="H_BOH">

<DataVariable Name="hub" Type="String" IsKey="true"/>
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="quantity" Type="Int" IsKey="false"/>

</DataInput>
</Module>

<Module Name = "H1">
<DataOutput Name="H_RELEASE">

<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="source" Type="String" IsKey="true"/>
<DataVariable Name="destination" Type="String" IsKey="true"/>
<DataVariable Name="period" Type="Int" IsKey="false"/>
<DataVariable Name="quantity" Type="Float" IsKey="false"/>

</DataOutput>
</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

Figure 52. LP Modules H1 and HX KIB Definition

 The XML code in Figure 53 shows a section of the relationship definition for

configuration B. This portion of the relationship definition gives the mappings for

H1 and HX in the LP and DEVS modules. The first Map element defines the

mapping between the BOH of H1 in DEVS to H_BOH of HX in LP. The

transformation is set to NONE which means that all data is passed right through.

Since the LP interface only uses the newest data, only the BOH data from the latest

definition will be passed over. The second Map element defines the mapping for the

release commands to H1 in DEVS. The FieldValueToVariable transformation

removes any elements in the source DataOutput that doesnõt match the source

DataVariable with the value of òH1.ó The ASSIGN_FIELD_VALUES

transformation sets all target DataVariables with the name destination to the value

òGC_H1.ó This assumes that H1 in the simulation is attached to the customer with

the name GC_H1. The final transformation, DisaggregateIntoEqualBuckets, will

78

take the quantity data from the source and distribute the value equally to all target

time buckets. The divisor is determined by the frequency value in the control.

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="KIB_Relationship.xsd">

<Relationship>

<Map>
<Source Model="SingleEchelon" Module="H1" Data="BOH"/>
<Target Model="LP_SE" Module="HX" Data="H_BOH"/>
<Transformation Name="NONE"/>

</Map>

<Map>
<Source Model="LP_SE" Module="H1" Data="H_RELEASE"/>
<Target Model="SingleEchelon" Module="H1" Data="RELEASE"/>
<Transformation Name="FieldValueToVariable" Rounding="Round">

<Source DataVariable="source"/>
<Target DataVariable="source"/>
<Field Name="source" Value="H1"/>

</Transformation>
<Transformation Name="ASSIGN_FIELD_VALUES">

<Source DataVariable="destination"/>
<Target DataVariable="destination"/>
<Field Name="destination" Value="GC_H1"/>

</Transformation>
<Transformation Name="DisaggregateIntoEqualBuckets" Rounding="Round">

<Source DataVariable="quantity"/>
<Target DataVariable="quantity"/>

</Transformation>
</Map>

</Relationship>
</KIBMODEL>

.

.

.

.

.

.

Figure 53. KIB Relationship Mapping for H1

 The XML code in Figure 54 shows the definition of the control for

configuration B. This file defines the DataVariable named current_time in the

DataOutput LP_SYNC in the Model SingleEchelon, previously defined as a DEVS

model, as the controlling time value. The frequency is set to 7 which means that the

models defined under execution will execute once for every 7 time steps in the

SingleEchelon DEVS model. Under the execution element, it is defined that the

model SupplyChainISM will be executed followed by the model LP_SE.

79

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Control.xsd">

<Control Frequency="7" Type="Periodic" DataVariable="current_time" DataOutput="LP_SYNC"
Module="Synchronization" Model="SingleEchelon">
<Execution>

<Run Model="SupplyChainISM"/>
<Run Model="LP_SE"/>

</Execution>
</Control>

</KIBMODEL>

Figure 54. KIB Control Definition for Single Echelon, 7:1:1

5.4 Multi -Echelon Implementation

To create an OSF implementation with multi-echelon support, a double-echelon LP

model was created and the ISM was extended to handle multiple echelons. The ISM

requires the model structure and state data from each time period in order to

compute the appropriate data for the upper echelons.

5.4.1 KIB Implementation

The same configuration that was setup for the single-echelon is used for the multi-

echelon instance that is labeled òDoubleEchelon.ó An echelon index was

incorporated to address each echelon separately in the KIB. The XML code in

Figure 55 shows the definition of the ISM with multiple-echelon support. Model

structure data is passed to the ISM through TO_INVENTORY_LIST and

TO_SHIP_TIME_LIST. Every upper echelon needs to have data about where

product is shipped to in the lower echelon. State data is passed through BOH,

INTRANSIT, and INTRANSIT_AO. Every upper echelon needs to know how

much stock there is in the lower echelon in order to compute demand.

80

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="ISM" Name="SupplyChainISM">

<Module Name="ISM_INIT">
<DataInput Name="ISM_INIT_DATA">

<DataVariable Name="name" Type="String" IsKey="true"/>
<DataVariable Name="Value" Type="String" IsKey="false"/>

</DataInput>
<DataInput Name="HUB_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="hub" Type="String" IsKey="false" ArraySize="Variable" />
</DataInput>
<DataInput Name="PRODUCT_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="product" Type="String" IsKey="false" ArraySize="Variable" />
</DataInput>
<DataInput Name="TO_INVENTORY_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="hub" Type="String" IsKey="true"/>
 <DataVariable Name="destination" Type="String" IsKey="false" ArraySize="Variable"/>
</DataInput>
<DataInput Name="TO_SHIP_TIME_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="hub" Type="String" IsKey="true"/>
 <DataVariable Name="value" Type="Int" IsKey="false" ArraySize="Variable"/>
</DataInput>

</Module>
<Module Name="ISM_RUN">

<DataInput Name="BOWK">
<DataVariable Name="name" Type="String" IsKey="true"/>
<DataVariable Name="Value" Type="Int" IsKey="false"/>

</DataInput>
<DataInput Name="BOH">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="hub" Type="String" IsKey="true"/>
 <DataVariable Name="product" Type="String" IsKey="true"/>
 <DataVariable Name="Quantity" Type="Int" IsKey="false"/>
</DataInput>

<DataInput Name="INTRANSIT">
<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>

 <DataVariable Name="hub" Type="String" IsKey="true"/>
 <DataVariable Name="product" Type="String" IsKey="true"/>
 <DataVariable Name="Quantity" Type="Int" IsKey="false" ArraySize="Variable"/>
</DataInput>
<DataInput Name="INTRANSIT_AO">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
 <DataVariable Name="hub" Type="String" IsKey="true"/>
 <DataVariable Name="product" Type="String" IsKey="true"/>
 <DataVariable Name="Quantity" Type="Int" IsKey="false"/>
</DataInput>

</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

Figure 55. Multi -Echelon ISM Modules

81

6 RESULTS

6.1 Regression Testing

A set of JUnit Tests were formulated for the previous version of the KIB. These unit

tests covered all of the functionality of the KIB from definition to execution. In

order to use these tests for the updated KIB, all of the XML definitions for the JUnit

Tests were updated for the new XML schema. Where applicable, the JUnit Tests

were also updated to accommodate the new Java structure. After running this

updated set of unit tests, the result in Figure 56 was returned in the Eclipse IDE with

0 errors and 0 failures. A 100% pass shows that the new structure does not affect any

of the KIB functionality from past revisions.

Figure 56. JUnit Test Output

6.2 Evaluation of Scalability

To evaluate scalability, the structure of the single echelon model in the previous

version is compared against the same model defined using the new structure. Table 3

gives a quick breakdown that quantifies the definition of the same KIB in the

82

previous version of the XML code with the redesigned version of the XML code.

Because definitions are broken down into each atomic element, it takes more than

twice as many lines and elements to define the same KIB. However, since the code is

broken down into multiple pieces, there is about a third less content per file.

Table 3. XML File Content Breakdown

Original
Version

Redesigned
Version

Number of Files: 1 7

Total Number of Lines: 248 530

Total Number of Elements: 147 388

Average Lines Per File: 248 76

Average Elements Per File: 147 55

6.3 Experiments

6.3.1 Single-Echelon Results

For the single-echelon model, the hub H1 and product P1 was selected for the

experiment set. The single-echelon model in Figure 57 shows the configuration setup

for this set of experiments.

CW H1Ship GC1

Figure 57. Single-Echelon Model

6.3.1.1 Execution Time Analysis

An analysis of the required run-time was done to determine how the scalability of the

OSF platform is as a whole. The chart in Figure 58 shows the running time of a

single-echelon model with the simulation running on a weekly granularity and the

optimization running on a weekly granularity for 41 weeks. The values on the X axis

represent the product of the number of hubs and the number of products the model

is running with. As this number increases, the total time to execute increases

83

exponentially with most of the time taken in the execution of the optimization

model.

Figure 58. Single Echelon Execution Time

6.3.1.2 Verification of the OSF Model

In this model, òperfect dataó is defined as the data used in order to give the model

perfect knowledge of the future. In other words, the model knows exactly how much

demand will be needed in the future for the length of the planning horizon. When

using a deterministic shipping time with safety stock set to 0, this should result in

100% service level with 0 average BOH value.

 The chart in Figure 59 shows how well the customer demand, CD, is

satisfied using perfect input data with the safety stock set to 0 for every week. With

inventory stock in the hub initially set to 0, it takes 3 weeks for the first shipment to

be sent to the customer. This is due to the 2-week shipping between the CW and the

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 20 40 60 80 100 120 140 160

T
im

e
 (

m
in

u
te

s)

Number of Hubs x Number of Products

Test Machine:
CPU: Intel Core 2 Duo
E7500 (2 cores @ 2.93GHz)
RAM: 4GB
OS: Windows 7 32-bit

84

hub plus the 1-step processing time in the hub. Since the simulation model for this

experiment was set to weekly granularity, 1 step equals 1 week, so the total time from

the output of CW to the output of the hub is 3 weeks. After this ramp up time,

exactly enough is shipped to the hub 1 time step before it needs to be delivered to

the customer. Disregarding the first three weeks, the end result is 0 average stock at

the hub with 100% service level as expected.

Figure 59. Using Perfect Data

6.3.1.3 Simulation Weekly Step/Optimization Weekly Step

To begin on the experimentation on the OSF platform as a whole, the same model

from past work was tested. The chart in Figure 60 shows the results of running a

yearõs worth of data in the OSF platform on hub H1 an product P4. Based on this

data, the no-smoothing algorithm outperforms other smoothing techniques. This

corresponds to the data retrieved previously for this hub and product.

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35 40

In
ve

n
to

ry

Week Index

Single Echelon Model using Perfect Data

CD

Hub AO

Shipping_AO

85

Figure 60. Deterministic, 2 Week Shipping

 Since shipping in the real world is not so deterministic, a log-normal shipping

distribution was selected. This means that most of the time, each package makes it

through the shipping in 2 weeks. Rarely, the package will make it through in 1 week,

and very rarely, the package will make it through in 0 or 3 weeks, based on a pseudo-

random algorithm. The chart in Figure 61 shows the result after setting up the model

the same way as above, with only the shipping element changing to a log-normal

distribution. Less average stock is recorded, but the service level has also taken a hit.

The same general shape as Figure 60 appears though, so no-smoothing is still the

best smoothing technique to use for this configuration.

0

10000

20000

30000

40000

50000

60000

70000

75% 80% 85% 90% 95%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Single Echelon Results for Hub H1, Product P4

ES

KS

NS

86

Figure 61. Log-Normal Shipping, 2 Week Mean, 0 Week Min

6.3.1.4 Simulation Daily Step/Optimization Weekly Step

The OSF platform was tested using a more òtrue to lifeó setup. Having the

simulation run from day-to-day matches a real world shipping schedule where

shipments arrive at a single time each day. Optimizations and forecasts are still re-

evaluated once each week. In this setup, the KIBõs disaggregation components are

tested.

 Having a strict definition of a time step is not necessary, but labeling a unit of

time in a more formal way allows for better usability. In order to formalize a time

step metric, the TimeUnit enumeration as shown in Figure 62 was designed. The

internal Unit enumeration defines a set of base units from a picosecond all the way

up to a millennium. A value is assigned to each instance of Unit which corresponds

to how many seconds are in that unit. Setting a base unit of time in the Unit

0

10000

20000

30000

40000

50000

60000

70000

75% 80% 85% 90% 95%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Single Echelon Results for Hub H1, Product P4

ES

KS

NS

87

enumeration allows for simple conversion from one unit value to another. The

TimeUnit enumeration contains values such as WEEKLY and DAILY. In each

TimeUnit instance, there are 3 attributes associated with it: the string ònameó is a

distinct name for the instance that is used for labeling, the Unit òunitó is the base

unit, and the integer òticksPerUnitó sets how many simulation ticks make up the

length of time of the base unit. In other words, WEEKLY is set to 1 tick per week

and DAILY is set to 1 tick per day. Conversion from one time unit to another is

provided in the given set of operations.

Figure 62. TimeUnit Class

 The chart in Figure 63 shows the data obtained after running a daily

simulation with a weekly optimization using a deterministic, 14-day shipping model.

Comparing this to the chart in Figure 60, more stock is recorded across the board.

The kernel and exponential smoothing techniques do worse overall since the

outputting service level does not change much as the amount of stock needed goes

up. However, the no-smoothing technique does significantly better and is still the

best technique for hub H1 and product P4.

88

Figure 63. Deterministic, 14 Day Shipping

 Now that the simulation runs on a higher granularity, the shipping buckets

can be broken down into smaller pieces. Because of this, the log-normal shipping

distribution can be setup to better match a real world situation. For the next run, a

log-normal shipping component was setup with a 10-day mean and an 8-day min.

The chart in Figure 64 shows the results with this setup. With these results, a slightly

greater average inventory was recorded. This is because the ISM and LP still assumes

an average of 2 weeks for shipping. Since these run on a weekly granularity, the

shipping value is rounded up to the nearest week in order to optimize. This results in

shipments on average arriving a few days sooner than they are needed. The shape

overall is similar to the one above and no-smoothing is once again the best

smoothing technique to use.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

85% 90% 95% 100%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Single Echelon Results for Hub H1, Product P4

ES

KS

NS

89

Figure 64. Log-Normal Shipping, 10 Day Mean, 8 Day Min

6.3.2 Multi -Echelon Results

Hub H1 and product P4 was again selected for the multi-echelon experiment set.

The model in Figure 65 shows the double-echelon model that was setup. A single

CW element was used to keep the overall model simple. This CW needs to also be

able to handle product P4 to send to hub H1.

CW H1Ship GC1FA Ship

Figure 65. Double-Echelon Model

6.3.2.1 Computation of Upper Echelon Safety Stock

In order for the upper echelon to compute a safety stock, a set of adjusted demand

values for the upper echelon need to be computed. This is done by applying a delay

function on the demand data at GC1 by the shipping time to H1. An error for the

current periodõs demand is computed using the following formula:

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

85% 90% 95% 100%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Single Echelon Results for Hub H1, Product P4

ES

KS

NS

90

Ὁὶὶέὶ ὛὛ ὄὕὌ ὍὲὸὶὥὲίὭὸ ὪὭὰὰ

¶ ὛὛ is the safety stock computed for the downstream echelon

¶ ὄὕὌ is the amount of product that is stored in the inventory of the

downstream echelon for the current period

¶ ὍὲὸὶὥὲίὭὸ is the amount of product that is on its way to the inventory of

the downstream echelon for the current period

¶ ὪὭὰὰ is the sum of demand at GC1 for the time indexes up to the time

that it takes for product to reach H1

The error computed is added to the forecast value of the current period to obtain the

actual demand for the current period. This value is recorded for historical data in

order to compute a bias at future points.

6.3.2.2 Simulation Weekly Step/Optimization Weekly Step

For testing the double echelon model, a shipping time of 0 weeks was selected

between factory to component warehouse and 2 weeks between component

warehouse and hub. All shipping times in this experiment are constant and

deterministic. The charts in figures 66, 67, and 68 show the results double echelon

experiment using a multi-echelon ISM. Figure 66 shows an average inventory at the

component warehouse; Figure 67 shows an average inventory at the hub (H1); and

Figure 68 shows the total average inventory held between the hub and component

warehouse in the Y-axis. Overall, kernel smoothing is the best technique for this

double-echelon model. Unlike some other modeling concepts for this simplistic

model, inventory is kept at the component warehouse instead of releasing the entire

stock of inventor immediately to the hub at each time period.

91

Figure 66. Double Echelon Result: Average Inventory at CW for Service Level

Figure 67. Double Echelon Result: Average Inventory at H1 for Service Level

0

5000

10000

15000

20000

25000

30000

35000

55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 a
t

C
W

 (
A

ft
e

r
R

a
m

p
-U

p
 T

im
e

)

Actual Service Level (After Ramp-Up Time)

Double Echelon Results for Hub H1, Product P4

ES

KS

NS

0

5000

10000

15000

20000

25000

30000

35000

55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0%

A
ve

ra
g
e

 I
n

ve
n

to
ry

 a
t

H
1

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Double Echelon Results for Hub H1, Product P4

ES

KS

NS

92

Figure 68. Double Echelon Result: Global Average Inventory for Service Level

 Communication between the three model components through the

redesigned KIB functions as desired for a double echelon model. Table 4 shows the

XML file content breakdown for the double-echelon model. Comparing this to the

average lines and average elements per file for a single echelon model in Table 3, a

double-echelon model still produces a manageable amount of XML code per file.

The average lines and average elements per file is relatively the same as the amount

for a single echelon model with the original design of the KIB, but if the original

design was used to create this model, the XML file would be around 1550 lines. This

would make the KIB definition difficult to navigate and manage. The XML file

structure in the redesigned version of the KIB may also be manipulated easily in

order to minimize the average amount of code per file even more.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

55.0% 60.0% 65.0% 70.0% 75.0% 80.0% 85.0% 90.0%

T
o

ta
l A

ve
ra

g
e

 I
n

ve
n

to
ry

 (
A

ft
e

r
R

a
m

p-U
p

 T
im

e
)

Actual Service Level (After Ramp-Up Time)

Duble Echelon Results for Hub H1, Product P4

ES

KS

NS

93

Table 4. Double Echelon XML File Content Breakdown

Redesigned XML:
Double Echelon

Number of Files: 7

Total Number of Lines: 1550

Total Number of Elements: 1155

Average Lines Per File: 221

Average Elements Per File: 165

94

7 CONCLUSIONS

This project is grounded on creating a multi-echelon simulation with multi-echelon

forecast biasing and optimization. Having a supply chain simulation that can quickly

and accurately optimize and predict the release of precisely enough stock to meet

demand is a highly desired software tool among many corporations. Through the

help of several people at ASU and Intel since 2003, as well as the work laid out here,

the OSF platform has been established to solve this problem. This platform has the

functionality to solve single- and double-echelon supply chain models containing

multiple products in multiple inventory elements.

To create a multi-echelon model that is scalable for future design, the original

version of the platform needed to be rebuilt from the ground up, starting with the

KIB. The KIB, being the backbone of the system, has been redesigned in a way that

allows a designer to quickly implement new configurations and allows for better

usability, reusability, and scalability.

The designer may now reuse code over multiple configurations by utilizing

the KIB_Paths schema design that splits up a KIB definition across multiple files.

Components of the KIB are broken down by the definition of modules, control, and

transformations through the schemas defined as KIB_Modules, KIB_Control, and

KIB_Transformations respectively. Constraining an XML file to define these specific

sets of data keeps an organizational pattern that allows for better usability.

A user may now conceptualize a KIB model in the same way a model is

designed in each component. The original design has been changed to put modules

within models instead of defining interfaces within modules. This not only allows the

95

designer to create a KIB model more quickly, but multiple models can be defined for

a single interface.

Every element of the KIB is broken down to their atomic components to

allow for better usability and scalability. When using the auto code completion in

IDEs such as Eclipse, defining the KIB in the correct structure can be done in a

more guided way. Although the resulting XML files for the definition of the KIB

have grown to about twice the size of the same definition given in the old design,

having the definition broken down across multiple files reduces the number of lines

per file to more manageable chunks.

7.1 Future Work

The next step in the scalability of the KIB is to create a user interface which will

allow a designer to better visualize the KIB design. To begin with, a GUI that shows

what a previously defined KIB model looks like will help with verification. From

here, the interface could be expanded to a clickable model design that allows the user

to create new components and connect them together. Different views would need

to be designed to zoom into details and zoom out to see the bigger picture. From

here, more constraints can be handled that the schema cannot track such as

addressing modules within a mapping.

 Only initial work has been done for the OSF platform to run a multiple

echelon model. The ISM running multiple echelons need to be qualified to ensure

that the formalism is correctly matched with definitions of a multi-echelon ISM that

Intel and other supply network companies use. The ISM can then be enhanced to

handle more complex models for shipping from one to many or many to one

inventory elements.

96

 The experiment configuration for this project was used to select functionality

for a model to run. As this platform is built upon, more front end work will need to

be done to not only select functionality, but to build the structure of a model from a

GUI as well. This gives a user who is less familiar with code design the ability to

configure and run a model with ease. This is work that is left for future development.

Since each model within the OSF platform was designed to be loosely coupled,

integrating elements of data together in a way that will confine the definition, while

still maintaining loosely coupled components is not a simple change.

97

REFERENCES

òExtensible Markup Language (XML) 1.0 (Fifth Edition).ó World Wide Web
Consortium (W3C). http://www.w3.org/TR/REC-xml/ .

Godding, Gary. 2008. A Multi-Modeling Approach Using Simulation and
Optimization for Supply-Chain Network System. PhD diss., Arizona State University.

Godding, Gary, Hessam S. Sarjoughian, and Karl G. Kempf. 2004. Multi-
Formalism Modeling Approach for Semiconductor Supply/Demand Networks. (paper
presented at Society for Modeling & Simulation International: Winter Simulation
Conference, Washington DC, December 2004).

Godding, Gary, Hessam S. Sarjoughian, and Karl Kempf. 2007. Application of
Combined Discrete-event Simulation and Optimization Models in Semiconductor Enterprise
Manufacturing Systems. (paper presented at Society for Modeling & Simulation
International: Winter Simulation Conference, Washington DC, December 2007).

Graves, Stephen and Willems, Sean. 2000. Optimizing Strategic Safety Stock
Placement in Supply Chains. Manufacturing & Service Operations Management 2(1): 68-83.

Huang, Dongping. 2008. Composable Modeling and Distributed Simulation
Framework for Discrete Supply-Chain Systems with Predictive Control. PhD diss., Arizona
State University.

Huang, Dongping, Hessam S. Sarjoughian, Gary Godding, Daniel E. Rivera,

and Karl G. Kempf. 2006. Experiment Analysis of Hybrid Discrete Event Simulation with
Model Predictive Control for Semiconductor Supply Chain Systems. (paper presented at Society
for Modeling & Simulation International: Winter Simulation Conference, Monterey,
CA, December 2006).

Huang, Dongping, Hessam S. Sarjoughian, Welin Wang, Gary Godding,

Daniel E. Rivera, Karl Kempf, Hans D. Mittelmann. 2009. Simulation of
Semiconductor Manufacturing Supply-Chain Systems with DEVS, MPC, and KIB.
IEEE Transactions on Semiconductor Manufacturing 22(1): 165-174.

Koch, Markus, Tolujew, Juri, and Schenk, Michael. 2012. Approaching

Complexity in Modeling and Simulation of Logistics Systems (WIP). (paper presented at The
Society for Modeling & Simulation International: Spring Simulation Conference,
Orlando, FL, 2012).

Mayer, Gary R. 2009. Composing Hybrid Discrete Event System and Cellular
Automata Models. PhD diss., Arizona State University.

Mayer, Gary R., Hessam S. Sarjoughian. 2009. Composable Cellular
Automata. Simulation Transactions 85(11-12): 735-749.

98

Sarjoughian, Hessam S. 2006. Model Composability. (paper presented at The
Society for Modeling & Simulation International: Winter Simulation Conference,
Monterey, CA, 2006).

Sarjoughian, Hessam S. and Yu Chen. 2011. Standardizing DEVS Models: An
Endogenous Standpoint. (paper presented at The Society for Modeling & Simulation
International: Symposium on Theory of Modeling, Boston, MA, 2011)

Sarjoughian, Hessam S., Gary Mayer. 2010. Modeling Interactions among
Heterogeneous Models. Discrete Event Simulation and Modeling, Edited by G. Wainer
and P. Mosterman (CRC Press), 111-137.

Sarjoughian, Hessam, and Jeff Plummer. "Design and implementation of a

bridge between RAP and DEVS." Computer Science and Engineering, Arizona State
University, Tempe, AZ (2002).

Sarjoughian, Hessam S., James Smith, and Gary Godding. (In-Preperation).
Optimization, Simulation, and Forecasting: A Platform for Evaluating Long-Term Supply Chain
Dynamics Under Demand Uncertainty

 Schwartz, Jay D., Manuel R. Arahal, Daniel E. Rivera, and Kirk D. Smith.
2009. Control-relevant demand forecasting for tactical decision-making in
semiconductor manufacturing supply chain management. IEEE Transactions on
Semiconductor Manufacturing22(1): 154-163.

 Schwartz, Jay D. and Daniel E. Rivera. 2010. A process control approach to
tactical inventory management in production-inventory systems. Int. J. Production
Economics125(1): 111-124.

òW3C XML Schema.ó World Wide Web Consortium (W3C).
http://www.w3.org/XML/Schema.

 Wang, Wenlin, Daniel E. Rivera, and Hans D. Mittelmann. 2009. Inner and
outer loop optimization in semiconductor manufacturing supply chain management.
Computational Management Science6(4)

òWhat is SCOR?.ó Supply Chain Council. http://supply-chain.org/scor.

99

APPENDIX A

ABBREVIATIONS AND DEFINITIONS

100

ABBREVIATIONS AND DEFINITIONS

¶ ACD: Actual Customer Demand

¶ DEVS: Discrete Event System

¶ FCCD: Forecasted Customer Demand

¶ HFC: Historic Forecast

¶ IDE: Integrated Development Environment

¶ ISM: Inventory Strategy Module

¶ KIB: Knowledge Interchange Broker

¶ LP: Linear Program

¶ SIM: Simulator/Simulation

¶ XML: Extensible Markup Language

101

APPENDIX B

TRANSFORMATION DEFINITION

102

TRANSFORMATION DEFINITION

Except for the transformation labeled as òNONE,ó each transformation type is
classified as a group transformation, value transformation, or both. A group
transformation transforms data as a whole while a value transformation transforms
data from a single source to a single target. Some group transformations work with
other group transformations and some do not.
NONE Transformation
The NONE transformation requires that the target module contains all the data
elements of the source module. All the target data elements must also be of the same
type as the source data elements. Any attributes for this transformation are ignored
and no other transformation should be defined for a mapping if a NONE
transformation is defined.
Group Transformations and Priority

1. SET_TO_VALUES
o This transform takes set of values that has index field, and maps them to

an ordered array list to the target model. The order is sequence to send
values to target by time period. Each target value maps to a value to be
passed in one time period. The index element must be defined for this
transformation.

2. VALUES_TO_SET
o Values in a source array are mapped to set lines. The index element must

be defined for this transformation.
3. FIELD_VALUE_TO_VARIABLE

o Preform transformations only on data that match what is defined in the
Field element(s).

4. DisaggregateIntoEqualBuckets
o Value is divided equally into multiple time period buckets.

5. AllToOneValue, AllCurrentToOneValue, and Aggregate
o All record values to one target value

6. (No group transformation defined)
o Data is transformed in a 1:1 manor

Value Transformations

¶ NewestValue
o In a list of records as given by model, get only the data record that has been

received most recently within the current time period

¶ OldestValue
o In a list of records as given by model, get only the data record that has been

received first within the current time period

¶ Copy
o Same as NewestValue

¶ FloatToInteger
o Converts source data to target type

¶ IntegerToFloat
o Converts source data to target type (same as FloatToInteger)

¶ Aggregate

103

o Aggregates (sums) an array value to single target value or value set (must be
numeric)

¶ MAX
o Selects the target maximum value from an array (must be numeric)

¶ MEAN
o Mean of array is calculated to single target value (must be numeric)

¶ MEDIAN
o Selects the target median value from an array (must be numeric)

¶ MIN
o Selects the target minimum value from an array (must be numeric)

¶ SET_TO_VALUES
o Converts source data to target type

¶ VALUES_TO_SET
o Converts source data to target type

¶ FieldValueToVariable
o Target is Array: Converts an indexed array to the array target type
o Target is Non-array: Converts source data to target type

¶ VariableToFieldValue
o Sets to static field value

¶ ASSIGN_FIELD_VALUES
o Not much different to VariableToFieldValue

¶ DisaggregateIntoEqualBuckets
o Divides numeric value by the number of buckets

