Scalable Knowledge Interchange Broker: Design and Implementation for
Semiconductor Supply Chain Systems
by

JameMelkonSmith

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved November 2012 by the
Graduate Supervisory Committee:

Hessam Sarjoughja@hair

Hasan Davulcu
Georgios Fainekos

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

A semiconductor supply chain modeling and simulation platform using
Linear Program (LP) optimization and parallel Discrete Event System Specification
(DEVS) process models has been dewkiopejoint effort by ASU and Intel
Corporation. A Knowledge Interchange Broker (KiBr) was developed to
broker information synchronously between the DEVS and LP models. Recently a
singleechelon heuristic Inventory Strategy Module (ISM) was addectd for
forecast bias in customer demand data using different smoothing techniques. The
optimization model could then use information provided by the forecast model to
make better decisions for the process model. The composition of ISM with LP and
DEVS models resulted in the first realization of what is now called the Optimization
Simulation Forecast (OSF) platform. It could handle a single echelon supply chain
system consisting of single hubs and single products

In this thesis, this singgehelon saulation platform is extended to handle
multiple echelons with multiple inventory elements handling multiple products. The
main aspect for the mudichelon OSF platform was to extend the,KiR» such
that ISM interactions with the LP and DEVS modrl&lalso be supported. To
achieve this, a new, scalable XML schema for the KIB has been developed. The
XML schema has also resulted in strengthening the KIB execution engine design. A
sequential scheme controls the executions of the-B&EWSsimulatoGPLEX
optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to
compute forecast customer demands and safety stocks over multiple hubs and

products.

Basic examples for semiconductor manufacturing spanning single and two
echelon soply chain systems have been developed and analyzed. Experiments using
perfect data were conducted to show the correctness of the OSF platform design
and implementation. Simple, but realistic experiments have also been conducted.
They highlight the kind$ supply chain dynamics that can be evaluated using
discrete event process simulation, linear programming optimization, and heuristics

forecasting models.

ACKNOWLEDGEMENTS
| would like to acknowled@®. Hessam Sarjoughifmm his mentorship throughout
mywork at ASU and for being the advisory for this research. From Intel, | would
like togive specidghanls toDr. Gary Godding for his past work and ongoing help
within the domain of supply chain. Also from Ihteknt to give thanks r.
Asima Mishrand David Bayba for help with the definition of the Inventory Strategy
Moduleand MultiEchelon Inventory OptimizatioRor implementing the first
iteration of the Inventory Strategy Module wihiscrete #ent System
SpecificatioDEVS) modeland going through the verification process of the code,
| want to give thanks @r. MohammedJugsith a former student of ASThank
you to the members of the supervisory committee for qualifying this work. Finally,

thanks to Intel for continuing to spsam this project.

TABLE OF CONTENTS

Page
LIST OF TABLES.......o e eeeeim e eemmm et e iX
LIST OF FIGURES..... .. eeem e e s e X
CHAPTER
1 INTRODUCTION ...t eemmmm ettt mmmmmm et e e e e eea s e 1
1.1 PUrpoSe STAtEMENL.........uueeiiiis e et emmmmmm e e e e e e e eseeees 1
1.2 Int@ded AUIENCE.........eeiiiiieie et eeeeeee et mmmeeee e e e mmnes 1
1.3 Problem DefiNitiON...........eeeiiiiiiiit e seeeeee e e e 1
1.3.1 Semiconductor Supply Chain..........cccoooi e e 1
1.3.2 Optimization, Simulation, and Forecast...............cocccceeevevvvevnnnnnn. 2...
1.3.3 Knowledge Interchange BrokKer................ooiceeemeiiiiiiiiiiiiiiiieeaeeeas 4
1.3.3.1 XML Schema DesSign..........cccuueeeiiiicmmmeiiiiiiiiie s eeee s 4
1.33.2 KIB SHUCIUIE.......ccoiiiiiiiiiiimmmmmme e eeeeeen e S...
1.4 CONtriDULIONS. ...t mmmmmen s s e s
2 BACKGROUND AND RELATED WORKS.......cooiiiiiieeiiiiemmmce e 10.
2.1 BaCKQrOUNG........oiiiiieiie e e e 10
2.1.1 Definition of SUPPlY Chain...........ovvviiiiiieccec e 10

2.1.2 MultEchelon Inventory Optimization & Sequential Based Stackl2
2.1.3 XML and XML SChemas...........ccoiiiiiiiecceeeiiiiiiiee e 12

21.4 DEVS/LP Knowledge Interchange Broker (KIB).............cccovveees 13

iv

CHAPTER Page

2.1.4. 1 HISTOIY....uiiiiiiiiiiiiiiieieet e e e e mmmmeee e e e e e e eeeeeea 13.
2.1.4.2 Overview of Transformations.........covee v e e 15.

2.1.5 Integrating Forecast Model with Optimization and Simulation Miilels

2.2 Related WOIKS......ooeeiiieiiiiiit ettt mmmmmmnae 22
2.2.1 Using Model Predictive Control in a Supply Chain.................... 22
2.2.2 Inner and Outer Loop Optimization............ccoevvicceeeeerevvnniieeennn. 22..

S APPROACH. .. e nm et s 24

3.1 Knowledge Interchange Broker Model XML Schema.......................24

3.1.1 Premise fOr DeSIQN.........coovviviiiiceeeeeeie e eeeeeee e 24..
3.1.2 Decomposition Of XML.......cccooiiiiiiiicreeeee e mmmmmeee 26
3.1.3 GeneraliZatiOn............cooeiiiiiceeeeee e emeeeee e 27
3.1.4 Renoval of String Parsing.............coovviviceeeeeeriiiie e eeeeeeeeenns 29
3.2 Using the KIB with the Inventory Strategy Module.................ceeeeeee.. 32

3.3 Development Of KIB.........ouuuiiiiiii s mmmmmme e 33..
3.4Experimentation/Evaluation............ccoooe e e i ceeeeeeeec e e 34
4 CONCEPT & XML DESIGN OF KIB.....ccuuiiiiiiiiiiiieeiiceceeem e eeeeeeee 36
4.1 File DECOMPOSItIQNuiiiiiiiiii et ceeeeem e e et e e e et eenmmmm e e e e e eeanasane 36
4.2 Module SChema...........ooo oo eeeeeee e e 37
4.2.IMOdEl EIBMENL.....ciiiiiiiiiiiieeee e e 37

CHAPTER Page

4.2.2 MOAUIE EIEMENL.......oiiiiiiiiiiiiit e 38..
4.2.3 Datalnput and DataOutput Elements.............ccccoeemeemmeeieeeeeeeeee, 39..
4.2.4 DataVariable EIEMENL.............ooviiiimmeeeeie e mmeeeee e 39,
4.3 CoNtrol SCNEMA........coi i ceeeeee e e 40
4.3.1 CoNtrol EI@MENL.......ccooiiiiiiiit et mcmmme e 40...
4.3.2EXECULiON EIEMENL.......ooiiiiiiiiit e e 41.
4.4 Relationship Schema...........ccccviieeeeeeei e A2
4.4.1 Relationship Element............coooviiiceeeeeeiiiieeeer e A2,
442 Map Element..........ooovviiiiiieeeem e eeeeenn e e B2
4.4.3 Sowe DataOutput Element...........cooooiiiceeeeee oo, 43
4.4.4 Target Datalnput Element...........ccooooiiicceceec e eeeeeee 44
4.4.5 Transformation EIeMent...........coooiiiiieeeeee e ereeeee e 44
4.4.6 Source DataVariable Element.............cooo e A7
4.4.7 Target DataVariable Element...........ccoooviicceccee e eeeeeen . 48
4.4.8 INdeX EIBMENL ... mreeeee e cne 48
4.4.9 Field Element..........uuuiiiiiiiiceeeeee e seemeee e e 8
5 SCHEMA IMPLEMENTATION.....cottiiiiiiiie et eeemem e eememmm e 49
5.1 Object Structure and Data Structure Mapping...........ccoeveeeeemceereennnn. 49
5.1.1KIB ENtrY POINE....cooiiiiiiiiiiii e eeeeeee it e 49..

Vi

CHAPTER Page

5.1.2 KIB MOdUIE ODJECLS........uuuuiiiiiiiiiieeeeeee e e mmmmmmm s 50.
5.1.3 KIB Control ObJECL......ccciiiieeiieieieceeeeee e e e 52.
5.1.4 KIB Relationship ObJECLES..........ccoiiiiiiiiceeeeeeciee e eeeeeeeeeaens 53
5.1.5 Adding an INterfaCe..........uueuiiiiiii e e 54.
5.1.6 Designing a KIB Model...............uvuiimmmcc e eeeeeee 56
5.2 ISM IMplementation.............ooviiiiiiceeeeeeiiee e e 51..
5.3 Single Echelon Implementation..............oooioceecec i e 64
5.3.1 Single Echelon Timeline...........coooviiiceeeeeeiieee e, 64
5.3.2 Configuration and GUL..............ouuiiimmmcce e eeeeeee 67
5.3.3 KIB IMpIementation.............ccccuuuuimeeeeeeeieieeeeeeee e mmmmmm s 73.
5.4 MultiEchelon Implementation...................icemmeeeeee e eeeeeeeen L9
5.4.1 KIB Implementation.................uiiimmmcc e eeeeene e 79.
B RESULT S .. eeeemm et eer oo ettt e e e e et mmmmm et e e e eeenes 81.
6.1 RegresSion TeSHNQ.....uuuuiiiii e mmmmmme e e e e e e e eeeee e 81
6.2 Evaluation of Scalability................uuuieemmmiii e 81.
6.3 EXPEIMENTSoiiiiiiiiiiiiii ittt emmmmmmn e 82
6.3.1 SINgIEChelon RESULLS..........ccvuiiiiiiiiceeeeee e 82
6.3.1.1 Execution Time ANalySIS.......cccoeeiiiiiiiiceeice e 82
6.3.1.2 Verification of the OSF Model............ccccoooiicrciiiiinns 83.

Vii

CHAPTER Page

6.3.1.3 Simulation Weekly Step/Optimization Weekly.Step......... 84

6.3.1.4 Simulation Daily Step/Optimization Weekly Step............ 36.

6.3.2 MUIHEChEIoN RESULLS..........oviiiiiiiiiceeeee e e 89,
6.3.2.1 Computation of Upper Echelon Safety Stock................... 89..

6.3.2.2 Simulation Weekly Step/Optimization Weekly.Step......... Q0

7 CONCLUSIONS ... et emmee e e e e e e e mmmmnmm e 94

T L FULUIE WOTK ... et mmmmmmn e 95

REFERENCES........o e m e et een e e eeaans 97

APPENDIX A: ABBREVIATIONS AND DEFINITIONS.........ccooviiiiiiiiieeeee 99

APPENDIX B: TRANSFORMATION DEFINITION ..ot e, 101

viii

LIST OF TABLES

Table Page
1. Array to Set Lines Transformation Example..........ccoooviicccceee e 17..
2. Historic and Forecasted Data Example..............ccooiemmeeeeiiieiniieieiiiiiees 21
3. XML File Content BreakdOWN.............ccooeiiimemeeeeeeeiiiiieeeee e emeeeen e e 82
4. Double Echelon XML File Content Breakdown.............cccccommeeeeeeeennne a3

LIST OF FIGURES

Figure Page
1. Supply Chaiiviodel Composition StruCtuLe..............eeeeeiiccceeeeeeeeeennnnnns 4.
2. High Level View of KIB Interaction Model for DEVS and.LP.................. 4.
3. Original Conceptual Design of Model to Model Transformatian............. 7...
N 1 0\ V7= 01 (o Y/ 1Y, [Yo [U 11
5. Shipping MOEL..........iiiiiiee it eenmmme s 11
6. CUSIOMEr MOEL......coii it e 11
7. Supply Chain EXample ... 2.
8. Types of Data Aggregation (Godding 2008)..........cceeeericccccceeeereeeiinnnens 16..
9. Disaggregation EXample..........ooooiiiiiicemmeeeiiiiiee et 18..
10. Hub H1, Product P4 HiStoric Data............cuuiiieenieeeee e emmmas 19
11. Hub H1, Product P8 Forecast Data over TIME.........ccooeevvvniiiccemmmneennns 20
12. Graph of TabIle 2.......oooriii e e 21
13. KIB Model INTEraction.........cccooiiiiiiceeeeee et mmmmmm s 24..
14. KIB M@APPING.....cceeieeieieeeieiee e ceeeeee ittt e mmmm e meennee e ee e 25
15. Proposed Conceaml Design of Model to Model Transformation........... 26.
16. Original KIB XML Definition Example............coooooiiiiiommriiiiee 27
17. Module Input/Output String Definition Example............ccccoovvieeee e 30
18. Data Transformation String Definition Example.L..............ccoiceeeeeeens 31
19. Data Transformation String Definition Example.2............c..ccoieeennn. 31
20. Data Transformation String Definition Example.3..............coovvceee e 32
21. Control Type String Definition..........cooouuiii i cceeeeee e eeeeeee e 32
22.Separating ISM from SLM..........cccoouiiiiicreeeee e 33..

Figure Page

23. Interface Relationship With KIB............ccooi e 34
24. KIB_Paths.xsd Schema Graphic Representation................ccceeeeveveeeeen. 36
25. KIB_Modules.xsd Schema Graphic Representation Level.1................ 37.
26. KIB_Modules.xsd Schema Graphic Representation Level.2................ 38.
27. KIB_Control.xsd Schema GraphicapResentation...............ccccccveeeeee.... 40
28. KIB_Relationship.xsd Schema Graphic Representation Level.1.......... 42.
29. KIB_Relationship.xsd Schema Graphic Representation Level.2.......... 43.
30. KIB_Relationship.xsd Schema Graphic Representation Level .3.......... 44..
31. KIB_Relationship.xsd Schema Graphjgr&entation Level 4.................. 47..
32. UML KIB Entry Point ODjJecCts...........ccceeiiiiiii s eemmeee e 49
33. UML Objects Relating to KIB_Modules.xsd Part.1..........cccoeeeimmeenee... 51
34. UML Objects Relating to KIB_Modules.xsd Part.2...........ccccoeeceeee.... B2
35. UML Object Relating to KIB_Control.XSd.........ccooeeeeeiiicceeee e 53..
36. UML Objects Relating to KIB_Relationship.Xsd............coceeiceeeevennnns 54
37. InterfaceName Name Definitions.............coooiiiimemeeee e eeeeeee 55
38. Instantiating DataModelNOdE..............ccoiiiiceeeeeecce e, 55
39. Instantiating DecisionENnginelnterface..............ouvceecccc e 56
40. KIB WItN ISM ... eemmmmm st eeemmnn e e e e e e e e e e s mmmnneneeeees 58
41. Three Model KIB CommuNIiCatiQNS.........cvviiiiiiii e 63
42. OSF MOUEL....ceiiiiiiiiiiei ettt mmmmmmm e 64
43. Single Echelon TIMelNe..........cooi it ceeeeeeccen et 6a..
44. ISM Client SCNEMA..........cooiiiii i ceeeeee ittt e eeeeeas 68
45.Single Echelon GUI: ISM Connection Tah...........coouviicceeviine e, 68..

Xi

file:///C:/Users/jmsmit47/Dropbox/Supply-Chain-System/Thesis/WRITEUP.docx%23_Toc342937209

Figure Page

46. SYStem SChema..........oiiiiii e eeennnn e D
47. Single Echelon GUI: System Tab...........cccooceeeeeeceeeenn 20
48. Experiment SChema.............uuviiiiiceeeeee e seeeeeeeeeeeeeeeeeeeeeeee e 2
49. Single Echelon GUI: Independent Experiments.Tab.................cceeeeen.. 73
50. Path Definitions for KIB............cccccuiiiiiieeeeeee e ceeeeee e DL
51. DEVS Modules H1 KIB Definitian............ccooeriiiicmmmmmiiiiiiiiiiiiiie e 76
52. LP Modules H1 and HX KIB Definition............cccccooiiieeeeeccseciiiieeeee e o
53. KIB Relationship Mapping for HL...........oooriiiiiiceomeee e, 78
54. KIB Control Definition for Single Echelon, 7:L:.1...........cccccovieeeeeeen.... 19
55. Multi-Echelon ISM ModUIES..............ooviiiiiimeeeee e 80.
56. JUNItTEST OULPUL.....uuiiiiii e ceeeeeeeie e e e e e s e e e e o 81
57. SingleEchelon MOdel.............oooviiiiiceeeee e eeeeeee e 82
58. Single Echelon EXecution Time.........ccooiiiiiiiceeceeencees e e 83
59. UsiNg Perfect Data................uvuuiieemmmmmiie et eeeeeen s e 84
60. Deterministic, 2 Week Shipping..........coooiiiiiiceeeeeeiiiiie et 85
61. Log-Normal Shipping, 2 Week Mean, 0 Week.Min.................ceeeeeennnnn.. 86
62. TIMEUNIL ClASS.uuuiiiiiiiiiiiit e eeemeen bbb eeen s 87
63. Deterministic, 14 Day SNIPPINGuuururrmiriiiiiaeaeea e eeeeeee e 38
64. Log-Normal Shipping, 10 Day Mean, 8 Day .Min..............ccooocccccmnnnnnnee 89
65. DoubleEchelon Model............uuiiiiiiiiiceeeeee e 89...

66. Double Echelon Result: Average Inventory at CW for Service .Level...91
67. Double Echelon Result: Average Inventory at H1 for Service.Level....91

68. Double Echelon Result: Global Average Inventory for Service.Level...92

Xii

1INTRODUCTION

1.1Purpose Statement

Thisreport was written to satisfy degree requirements for Masters of Science in
Computer Science and course requirements for independent study with Professor
Sarjoughian in order to describe the accomplishments made in the development of
the Knowledge InterfadBroker (KIB). This work is also used in the development of
the multiechelon supply chain simulation project. The bottom line goal of the
Supply Chain project is to develop a reahielon simulation model with multi
echelon inventory strategy and o@tion modules. All work must be scalable for
large modelsmthe order of hundreds of componefitse purpose of model
development within this system is to better understand the behavior of some
semiconductor products.

1.2Intended Audience

The intended audiees for this report are the members of the graduate committee
Dr. Hessam Sarjoughian [chairperson], Dr. Hasan Davulcu, and Dr. Georgios
Fainekossponsor Intel, which includes employees working with the Supply Chain
Simulation project; and anyone in tblel feither continuing this work or using this

as a source iheir own work. A portion of the code accompanying the design
described in thihesis is planned be releasefr general publiase

1.3Problem Definition

1.3.1Semiconductor Supply Chain

In any typeof industry that needs tistributeproducsin different physical

locations with varying markets, there is a constant question of hgwaenuoften,

and wher¢o distributehe productsn order to meet the end deman@acth

1

customerEnoughof eaclproductneedto be shipped in order to meet demand as
soon as produstrerequested to keep the custaappy and increase the
chances of repeat business. On the other hand, if too much product is built, this
oftenresults in wasted inventory diméncialossto the product makeldeally,
exactly enough product should be shippéige right time instanaesall customers

in order tomeetthe exact demand vakmed nothing more.

To get a better idea of what the customers need, compani&sfaaaras
estimate of how much product will be needed well in advance. If the customer could
give perfect data, the problem couldetetivelyeasily solved. Unfortunately, to
keep customer ratings high, companies need to allow the customer to change their
orders at a,close toétedelivery daBrhpanes need to look at
the forecasted demand numbers and compare them to the historical data to make a
prediction of the custontes act u al need
1.3.20ptimization, Simulation, and Forecast
The Optimiation, Simulation, and Fored@$8F)platformis built atop previous
efforts (Godding 2008Huang 208). The OSF platforniSarjoughian et al, 2012)
introduces forecasting capability to earlier simulation/optimization platform built
usingLinear Programmin(LP), Discrete Event Simulat@EVS), and KIB,g,g,p
(Godding 2008). The O%-conceptualized and developed uaisigiple logistics
supply chaimwhich has customer warehousesingleshipping route, a sindiab,
and a single customer. The supply chgiportssingle produstmoving from
customer warehouaed delivered toustomer

The optimization and simulatioodelsare developed OPL-

Studid CPLEX optimization engirendthe DEVS-Suitesimulatorrespeadvely.

2

OPL-Studioisa platform managed by IBM. This platform is used to dé\Rlop
models. When an LP model is compiled by the platform, it may then run through the
CPLEX optimizer to compute an optimal solution given valugefdefinedet of
constrints. The DEVSSuite modeling and simulation platform was built and is
managed by staff and students at ASU under the guidance of Dr. Hessam
Sarjoughiarkor thisresearcth e trmeodeh 0 s used to refer to an
canexecuta set of instructie In this sense, the DEV&lite simulator combined
with just mentioned suppthain process model is catle®DEVS model The KIB
transformslataand contromessagdsetween theptimization and simulation
models The KIBisitselfa standalone metthat can be specifiedXML. The KIB
model in the form of XMLs has an accompanying execution engine which is
developed in Javehe KIB executiotis governedsingthe DEVSSuite simulator
protocol The optimization modé& defined aa Linear PrograniiP) and is used to
compute an optimal solution given a set of constriiistsised in this instance to
determindhow many products to be releasethfeocomponent warehouse to a hub
given the state on the model at each piiet modelbuilt in DEVSis adiscrete
eventrepresentation ofsangleechelorsystenwhichcanhandle a single hub
shipping &ingle product to one customBEne executions of the DEVS, LP and
KIB models are governed using the DES{8e simulator protocol.

The structure of th@SF platforms shown irFigurel. Theforecasmodel
consist®f an Inventory Strategy Module (ISM) that looks at historic anakstorec
data to determin@gow much extra stock bmld at the hub. This datsisent to the

optimizationrmodulefor computing release command to the simuaen though

the execution of ISM is entirely functioas, deviseds a atomic model within

DEVSin order to ensuri¢is used correctly alongside simulationeinod

KIB

SM =>1LP
LP=>3M

M
(DEVSSuite)

ISV

Figure L Supply Chain ModelComposition Structure

1.3.3Knowledge Interchange Broker

A KIB instance is definagingXML. This XML selectthefunctionalityof each
interface and th€IB interaction modehn interface is defined as a Java class that is
written to connect the functionality of any external model to the KIB mioelel.

high level view iRigure2 showsan example of a KIB system interfacing DEVS and

LP models.
DEVS Interaction Model LP Implementation
Implementation (OPLSudio & CPLEX)
DEVS KIB Instance LP Interface
DEVSiInstance Interface LPInstance
Java XML Java

Figure 2. High Level View ofKIB Interaction M odel for DEVS and LP
1.3.3.1 XML Schema Design

The originaKIB XML specification is difficult to be extendgecause many of the
elements within the XML were labeled with the names of the interfaces themselves

if an XML schema was creattbe, schema would have to bevrétenfor each new

interface that is added to the KiBder each interface element defirfelsthema
would contain redundant definitions of nodéssbecomes cumbersome and is not
scalableThe specification needs to be updated so that an XML schema can be
definedto allow forXML instances using all current and future model interfaces
without any change to the XML schema definition itself.

The structure of XML files created for the KIB allowed for multiple data
variables for each data input or output, liege elements were defined as a single
string for each data definition. This string would then havepswdselvithin Java
code to interpret the meaning. This same process was done upon each relationship
and the control definition. This made it moreatifif to define model elements,
especially for someone who is not familiar with KIB semantics.

Modules within the KlBlefinepartitionsof datawithinthe connecting
models. Keep in mind that this should not be confused with the forecast modules
which formthe ISM, a separate model in the sygtemew modules and their
relationships were definethin the KIB XML, thefile becaméarge in size and
difficult to manage. There wassystematic methdd break up the XML definition
into separate, manageaézes. This algpmsed difficulties foKML reuse . If
another model was created that was structurally similar, but contained different
relationships and controheav file had to be created
1.3.3.2 KIB Structure
A moduleis an autonomous compongithin a interactiormodelthat isgiven
different definitions depending on thierface implementation within Java code.
The design of the KIB itself called for a set of interfaces to be held within each
moduledefinition Refer toFigure3 for an example of a KIB instance maddhe

5

conceptual levalVhen creating a KIB instance model, modules had to be
conceptualized as entities that existed betweémterfaces. This design was
implemented due to the early formalization that each module component should
have a single correspondingdule component in tmeappednodel. As the design
was expanded, the constraints netxlpd relaxed in order to alloata
transformation between twwoduleof differing named his can be seenkigure
3when DEVS in Module Beed4o communicate to LP in ModuleThisdesign
added difficulty in conceplizing the structure because now modules within the
KIB not only provided links between interfaces, but links between modules of

differing names were acceptable by the design too.

Module A

"N

Execution
Gontrol

||

Transformation

Data
Transformation

Module B

LP DEVS

[ou

Transformation

Data
Transformation

Module C

P LP DEVS

Data
Transformation

Figure 3. Original ConceptualDesign of Model to Model Transformation

The KIB alsoassumed thaat model within the system was labeled with
the same nam@&his not onlyestrictdhe designer to label each med#i the
same name, bittalso makeis impossible to define multiple models within the same
interface for the KIB. There was a 1:1 distinction between an interface and an
instancef amodeldefined in the KIBThis restricted the definitionaanaximum
of a single model foaeh interface.
1.4Contributions

The main contribution of this wonlas been the following:

1 The developmemtf KIB XML schema dggn and refactoring of the KIB

serves as a foundational component in the scalability of tida@&

0 The structure of the KIBas been redesigned for better usability and
comprehension of model desi§mce separate model designs are formed
using their own definitions of module components, it makes sense to define
these elements separately within the KIB.

o To define a schema timeetghecurrent need and is scalable for future
development,Jements within the XML desigas beegeneralized. The
naming of elemesits notused to enumerate elements within the KIB.

Instead, attributes are used to select items within an enumeration

0 To better define and constrain the structure of a KIB model built in XML,
postprocess parsing of data has been removed. In order to accomplish this,
each element of the KIB has been well defined. From these definitions, a
schema was developed with ttaoer structure and constraints. The
cul mination of all t hfordutuccaseandcan serve
development.

o This document itself serves as a useros
models.

1 The ISM has been greatly expanded to testalteility of the KIB.

0 The modularization of the ISM was necessary as it is designed as a

functional formalism. Communication to and from the ISM is now handled

through the KIBusing a new interface.

0 ThelSM has been expanded to handle multiple hulys@chatts.
Initialization of data sent through the KIB now contains arrays defining
hub/product pairs.

o The desigof the ISMwas extended to handle multiple echelons using
research on Multiple Echelon Inventory Optimization (MEIO) methods.
Although, this wark has yet to be completed, the structure has been putin

place to send the correct sets of data through the KIB.

2 BACKGROUND AND RELATED WORK S
2.1Background
2.1.1Definition of Supply Chain
The work in this project specifically references supply chains mitosdector
domainA supply chain, in a very general sense, contains product generator elements
followed by shipping and inventory elements with customers as end nodes. Product
usually moves in one direction toward the customer, but in some circunnségnces,
move ina vertical oopposite directiar-or simplicity, the model used in this
researclonly allows for product to move toward the customer which, in most cases,
is the path with the lowest cost and highest return

When looking at a supply chaingbyin terms ohventorymovementthe
supply chain consists of the model elementsaitiory, shipping, and customer
componentsvhich are diagraned infiguresd, 5, and6 respectivelylhe inventory
modelreceives product from the previous eleinat any time. At some point, that
product is moved from the incomimgcketinto the store where it is processed.
Product is only moved from the storgéhteoutgoingoucketwhen a release
command is received from the optimizer. The shippoaglis smilar to the
inventory element with two distinctioh/hen product is moved into the store, it
is stored in buckets of higher granularity. As time progresses, product moves from
one intransit bucket to the neXtOnce the product reaches the finahimgit
bucket, it is immediately moved to the outgoing bucket without any release
commandThis means thalhé¢ shipping element cannotexéernallgontrolled
once product has enteredrite customemodel is simplistic in tharéceives
whatever prodt that comes to it in order to meet demand.

10

Inventory Model

Incomming Sore QOutgoing
) Bucket Bucket)
Incoming Sock Outgoing Sock
due to BExternal C E due to Qutput
Bvent Function
Internal Transition f>
N
Release due to
External Bvent
Figure 4. Inventory Model
Shipping Model
Incomming Sore Outgoing
| ina Sock Bucket Bucket Outaoing Sock
ncoming Soc . tgoing Soc
Intransit bucket
due to External [rTEnst Bucets E due to Qutput
Bvent Function
| Internal Transition » | | Internal Transiti%

Figure 5. Shipping Model

Qustomer Model

Incoming Sock
due to Bxternal Demand
Data
Bvent

Figure 6. Customer Model

Figure7 shows an example of a siengouble echelon supply chain. The
OFAG6 inventory #repeseatsa facony. THishsevheveanventory e
is generated. The product is then shipped
represents the Component Warehouse. Then@y\handle the packaging or
another phase in assembly. Finally, the product is sioijgiteér thed H ddor
0 Hu bn¥enhtory elemestProduct is then immediatdly st ri but ed to t he
elementsr Geo Customer whicin the real worlds located in the same physical

location as the hub.

11

ooy
ZaC) i

Figure 7. Supply Chain Example

The Supply Chain Counisilinvolved in creating a standardized framework
for supply chains called the Supply Chain Operations Reference (SCOR) model
Although this research does not follow this model,dHethat has been done ties
in with the section of the SCOR model gaatainst@ c apt uring t he
of a s upgdivhayis SCO& i mld this section, the supply chain model is
broken up intsegmentgplan, source, make, deliver, atdrn.
2.1.2Multi -Echelon Inventory Optimization & Sequential Based Stock
The theory behind MulEichelon Inventory Optimization (MEIO) is to compute a
safety stock value for each single echelon starting from the most downstream

element and passing the ragplAs we move up the supply chain, the average

config

delay of each stage is applied to the customer demand. In other words, to satisfy the

demand of the downstream element on time, we must release stock X weeks early

where X is the timihat it takeso shipproduct to the downstream elem@taves

& Willems 2000).

2.1.3XML and XML Schemas

XML wasoriginallydevelopedn 1996by the World Wide Web Consorti{vi3C)
for oease of | mpl e tiywitrabbth SGML and IHTM& o r
One of the goals ohé XML specification is to make it easy for a developer to
create documentatid@Extensible Markup Languége n. This makes an XML

12

ntero

definition easy to read, but XML filesgererally ndightweight. This data
formalism was used to create KIB modetsibse it allows someone vghess
familiar with code design to develop a model.

The structure of an XMtile is largely comprisededéments and attributes.
Elementgancontain simple or complex data. Under the classification of complex
data theremay be a set of single or multiple child elements. Attributes are singleton
simple data variables thah onlyexistwithinan elemenfThe W3C organization
provide a deof uses for an attribute, but in this reseaitthitributes defined will be
used ¢ spedy a value that is attributable to an elerR@ntfurther definition of
XML,refert o t he specifications available on t he
Languagedé n. d.)

The structure of an XML schema was first designed in 20@M3C to
definethestructure and cofraints of an XML documeniW/3C XML Schenda
n.d). Any simple value defined carcbestrained to a set of values such as an
enumeration of strings or a numeric value within a setaradigegranularity. For
furtherdefinition of an XML schema, referthe specifications available on the
W3C websit@W3C XML Schenta .. d .
2.1.4DEVS/LP Knowledge Interchange Broker (KIB)
2.1.4.1 History
Since 20Q3ntel has been working with ASU to develop models for evaluation and
improvement bits supplychain processes. More recently, this effort has expanded
to addresshe optimization ofnventory stocking to meet or exceed specified service
levels acrossmultiple logistics echelon. The DEVS simuladsrbeen used to
develop a skeletonoatel of a singlechelon supplghain. This model consisted of

13

inventory and shipping components. An inventory component processes stock then
holdsit until an appropriate release command is generated. A shipping component
will hold its incoming productsrfa period of time before delivering them to the

next component in the supjalgain process.

At every interval of time that the system runsridtPamodel is used to
determine the optimal plan for the supply chain to generate release céonmands
the inventory component3he LP is modeled in OPL Studio which is written in
C++, unlike DEVS which is developed in Java. In order to get the two models to
communicate, an interface was designegetcomenot only the differences in
implementation languaglestin the simulation operation as well. This interface is
known as the Knowledge Interchange Broker ((GBjyiding 2008).

The KIB at its core is conceptualized to be geaepart of Gary Wade
Goddi(20@8d ef ense for hi s AMult-iMadeliagg t hesi s ent
Approach Using Simulation and Optimization for Suplya i n Net wor k Sy st en
(Godding 2008}t has a model that formulates data transformations under a time
basé execution control schem@ne is updated from the controlling model which
is the model that alsalls the KIB. For DEVS/LP, at some time interval, the LP
model receives information from the DEVS (controlling) model via the KIB model.
LP then computes release commands which are sent to the DEVS model via the
KIB model. In this &y, all communications (i.e., data transformation and control
logic) betweetheLP and DEVS models are manalggthe KIB. It is important to
understand the distinction of the controlling model in the supply chain system.
DEVS depends on the executionhef LP. Therefore, even though DEVS is labeled
as the controlling model for the KfBgm a systematic perspectthe,LP is the

14

model that controls the DEVS models with release comriiedsurpose of Gary
Goddingds t hesi s wa systemthdmek&retheanterqationer i ¢ mo d
between a simulation and optimization models synchrofitwsiypotivation
behind the project was to develop a supply chain system from a modeling and
simulation perspective. Different aspects within the supply emaimg@lprocess
depended on differing principals and are modeled using different forrhhksms.
KIB concept with a basic theory is described in (Sarjoughian 2006; Sarjoughian and
Plummer 2002T.he concept of KIB was further developed by Gary Mayer (2009).
His work can be seen in (Mayer 2009; Mayer and Sarjoughian 2009).

From the DEVS/LP KIB, different branches were created to suppart n
methods with realizatiarihis includes supplychain system communicating
between DEVS and Model Predictive Contr@iié*C) as well as human and
landscape dynamiegh communication between DEVS ar@@ediular Automata
(CA)model.These realizations can be seen in (Godding@0688ing, Sarjoughian,
and Kempf 200450dding, Sarjoughian, and Kempf 2007; Huang 2008y dua
al. 2006; Huang et. al. 200%e work done in this thesis can be applied to any
branch of the KIB as well as any possible future research.
2.1.4.2 Overview of Transformations
The way that a KIB model was defined was through an XML file where source and
target modules were defined for thquirednterfaces as wels the necessary
transformation. The XML file also provided a control which defined a controlling
model element and arterval to execute. A controllimpdelelement needed to be
defined to kep track of the current time and when the interfacing models need to be
executed.

15

As the KIB system was developed, several transformations between 3
dimensions weigdded In the KIB, a set of data form a table where key values are
defined. Each set mayntain several single values-dmiensional arrays. As the
KIB receives this data, it is time stamped, which forms the third dimension
(Godding 2008Refer toFigure8 for an example of aggregation of data from
current set or sets over tinbwing the computation on the 3 dimensions of data
through the KIB instead of at the source or destination models simplifies the process
for the model designdie aggregation and disaggregation of data over time
accounts for differing model granulaBiyaple mathematical functions are built in
such as min, max, and mean. Data may also be set to be treated as sets or units. All
these features drether docurantedin chapteO with the development of the KIB

XML schema.

t-2 t-2

XX X w
<

t-1

Aggregation across Aggregation across Aggregation across
historical values current values current and historical values

Figure 8. Types of Data AggregationGodding 2008)
If themodel inFigure7 needed to be implemeniatb the OSF platform,

this model would first need to be designed in the simidatis example, the
simulation runs at a daily time granularity and the optimizer runs at a weekly
granularity. This means that the optimization executes once for every 7 time ticks of
the simulatorAt each tick of timehe inventory models req to the KIB their
Beginning OmHand (BOH) and Actual Out (AO) data; the shipping models report

16

their intransit data and AO data; and finally the time stamp value as a single integer
value At time of executioof the optimizer, 7 sets of dat@available ahe
simulator data stor@nly the most recent state dateneaningful to the optimizer,
so only the newest set of data should be transformed.

For the optimization toead then-transit dat@orrectly the array of values
needs to be transformed intma for each value. ReferTtablel for an example
of this transformation. The array of size 2 with the value of [50, 75] is transformed
so that eactow contains a single integer value for quantity. This is achieved by
adding the key column of period. The BOH
conditioning and can be passed right through.

Table 1 Array to Set Lines Transformation Exarple

Shipping Product | Quantity[2]

Name

CW?2HxShip| P1 [50, 75]

TRANSFORMATION
\/

Shipping Product | Period | Quantity
Name
CW2HxShip P1 0 50
CW?2HxShip P1 1 75

The optimizer generateset of release commands which needs to be
distributed to each of the inventory elemdmislo this, a disaggregati
transformation is used. RefeFtgure9 for an example of disaggregation. Each
value is divided equally between the 7 time buckets within the simulation. The
standard rounding algorithm is used to round each resulting value to the nearest
integer. At each time tick, the KIB provides to thelation a single set of values
over 7 ticks. At the end of th&tick, the optimizer isinagain for another 7 sets of

data.
17

t =[0...6]

Inventory | Quantity Inventory | Quantity
Name Mame

F& J0 TRANSFORMATION Fﬂ_ 10

Cw 77 CW 11

Aub 60 Hub B i

Figure 9. Disaggregation Example

2.1.5Integrating Forecast Model with Optimization and Simulation Models

The definition of the ISM was providagpersonal communication with employees

of Intel. This definition was then used to create a functional implementation of the
model. Some arbitrary test data was also provided in ordeanadl tgsalify the
functionality.

Working with Input Demand Data

The combination of hub H1 and product P4 was selected to do analysis on for this
project. The chart iRigurel0Oshows the comparison of Historic Forecast demand,
HFC, and Actual Customer Demand, ACD, for hub H1 and product P4. This data is
used to compute a bias within the ISM. All data in this chart is considered as historic
data. Therefore, for example, if theremt time period is week 7 then the ISM

would only be able to view the data up to week 7.

18

160000 Historic Data

140000
120000
_ 100000 —e—ACD__
§ 80000 R 2 —=—HFC__
&

oo AT [T Y
o000 | {2\

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Week Index

Figure 1Q Hub H1, Product P44 Historic Data

At each time period, forecasts of future weeks are made. Thekigarein
11shows a three dimensional representation of the forecast data for the ISM.
Forecasts evolve over time as newatdtees For exarple, the forecast for week
1latweek 7 is 46816 units. The following week, week 8, the forecast for week 11 is
46654. Between week 7 and week 8, a total of 162 units were canceled for week 20.
Thisvolatile forecast data adds difficulty when findimgp@mal solution for the

systemThis is, of course, what the ISM is going to bias against.

19

150000

100000-150000
m 50000-100000
m 0-50000

15
o o 10 Forecast Week

Figure 11 Hub H1, Product P49 Forecast Data over Time

Computation of Safety Stock

Refer toTable2 and the corresponding graphtirigurel2for an example of the

data the ISM uséar week 7The data shown up to week 7 is historic data, while the
data after week 7 is forecasted désingle echelon ISM fichmputes

multiplier based on the smoothing algorithm, target service level, replenishment
time, and how well the histori¢usd customer demand did against the historic
forecasted demand. Historic data is marked in blablieR. The smoothing

algorithm wa an implementan of the smoothinmterfaceof either exponential,
kernel, or no smoothing. The target service level is a value between 0 and 100%. This
this can be seen as a customer satisfaction level to be. lReg@e&zishment time is

the time in weeks for inveny to go from the upstream inventory, through a
shippingdelay, and be available for the customer in the downstream element. This

includes any time thiéie downstream inventdgkes to process the product.

20

Table 2. Historic and Forecasted Data Example

Week| Actual Forecasted
Index | Customer| Customer
Demand | Demand
0 800 460
1 470 530 -
2 480 520 =
3 510 520 §
4 370 540 o
5 350 500 g
6 280 90 QD
This Week> 7 230 210
Next Week> 8 190
9 160 T
10 150 o
11 120 Y
12 130 =
13 140 o
14 50 g
15 0)
900
800 \
_ 700 \ Current Week —— ——acD
[&]
§600 -|-HFC —
9_;500 _M.\\ =—4=FCCD ——
Z 400
C
§,300
200
100
O T T T T T T T T T T T T T _\
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Week Index

Figure 12 Graph of Table 2

A bias is calculated based on all the data that the ISM uses for the current
time period. This bias is then appigetthe forecasted data to produce a safety
stock value. The safety stock value tells the optimizer how much extra stock on top

21

of the future demand to keep in inventory in order teakhe desired service
level.
2.2Related Works
2.2.1Using Model Predictive Contol in a Supply Chain
The work done by Jay D. Schwartz, Manuel R. Arahal, Daniel E.dRivétiak D.
Smith(2009¥ocuses omsupply chaiplanner in which the main goal is to keep
inventory at a set level at a specific locationasitoglel Predictiv€ontrol (MPC).
In this design, an MPCdsnnected to an inventory component in a feedback loop
configuratiorwith an injected feddrward demand forecast sigidleach time
instance, there is a set level of stock that must be left in the investting aft
inventory release of the previous instance. This set level is similar to a safety stock as
discussed iR.1.5 A fluid analogy is useddescribe the procewhere a fluid needs
to stay at a certain level within a tank. More fluid needs to be added to the tank at the
same ratthefluid isreleased in order to maintaigiverfluid level (Schwartz et al.
2009 Schwartz and Rivera 2p10

The MPC used in thenfiguration as described above handles the
prediction of inventory movement at each individual location. Since it does not make
a prediction of the movement of product as a whole, it may salable to more
complex models. The LP as discuss2d.iddoes the same job of the MPC in this
instance for simple models by setting constraints such that the expected inventory
after a release will not fall below the given safety stock value.
2.2.2Inner and Outer Loop Optimization
Thework done by Wenlin Wang, Darite Riviera, and Hans D. Mittelmg2009)
focuses om semiconductor supply chain systtimas t oc hast i,@ oout er

22

0C

which runs planning at a lower granulatityd a st och@aswhccbéinner
makeslayto-daydecisions at a higher granula8igilar to what is discussed in
2.1.4 an LP optimization model is used to create planning at a lower granularity.
Inventory algorithms are used to compute sstfatit values, similar to the ISM
discussed iR.1.5After the LP model is executed, the results are split over 7 days
and sent to the Model Predictive Control@yW®hich makes d&y-day
optimization and plannimg feedback and feedforward configuratibhe MPC
works similar to what is describe@.ilexcept the dat@omputed by the LP is
also used by the MPC in order to make better predictions relating to the state of the
system as a who{&/ang, Riviera, Mittelmann 2009).

The focus of the work discussed abowe i®w to handle higher
granularity, stochastic demavith aplan generated byawer granularity optimizer.
This issue is outside the scope of this thesissidegto-daydemand is provided
to the system, so dayrday demand is generated by evenly distrilboéingven
weekto-week datanto 7 buckts Therefoe, it is much easier to predict demand on
a dayto-day basis by simply dividing the weeklyganarated by the lifto 7
equal buckets. However, since the wotlkis thesislemonstrates a design to
connect model components with scalakilitgind, it would be feasible to combine

these works ithefuture.

23

(

3 APPROACH

3.1Knowledge Interchange BrokeModel XML Schema

3.1.1Premise for Design

Thestructure of the KIB needs to be updated without changing the underlying
functionalityThe diagram ikigurel3corresponds to the high level view of KIB
model inFigure2 and shows how different elements in each racetebpped to a
module within the KIB. Each model implementation has a different definition as to
how its module is defindd general, enodule is an atomic component of a model.
During runtime, thenterfaces can read from the data stored in the KIB module
outputs and deposit the data into their respective models. After a model is executed,
an interface can then read the output data given by its model and deposit into the

correct module inputs ofdtKIB.

DEVSModel KIB Model LP Model
DEVS Interaction Model LP
Implementation Implementation
DEVSiInstance DEVS KB Instance LP LP Instance

Interface Interface B A e fnj

Atomic :| j T
Model 1 J{En mx ABo Ax

el Hed T Jusse T] THexace o nn
Model 2
Atomic | N T L] ’
Model 3

\‘//-\
Atomic DEVSInterface KIB LPInterface Decision &
Models Definition Modules Definitions Data Variables

Figure 13 KIB Model Interaction

Also defined within a KIB instance model is a set of magsiahgsicted in
Figureld A mapping itseliefines the soureceodule output and destination
module inputhough whictdata will be routed. Within a mapping, there are a set of
transformations that define how data ise manipulated in this block.

Transformations can manipulate data as a whole and/or as a singular value. When a
24

mapping is called to execute during runtime, all transformations within that mapping

will be executed based on a priority set within the KIB.

Mapping
Module A g Transfo'rmatlon * Module B

Figure 14 KIB Mapping

The diagram iRigurel5shows a conceptual representaifdhe new
XML schema desigmhich corresponds to the same example givegure3. Each
model is associated with an interface within the KIB. Within each timer@ehre a
set of modules. Unlike the previous desigidlules belong to each model
(interface) anthe transformations are completely separate entities from the
modules. Take note that the solid arrows in the diagram show how data moves
though the comgnents during transform and not how the schema is to be defined.
Since the transformation blocks are now completely separated from the modules, a
source module output and target module input need to be explicitly referenced using
the distinct module andtdanput/output names for each transformafidre
control component, like the previous design, is still a separate singleton entity which

references a data output line.

25

Module_A
Module_B Module_C

Module_B
Module_C
Module_A

Figure 15 ProposedConceptualDesign of Model to Model Transformation

3.1.2Decomposition of XML

To assess the problem with code reusability, the KIB XML baokke up into

smaller pieces. After removing the transformation entities from the modules
themselves, the XML can then be broken down into three types of data. The
diagram irFigurel5shows this split with the colors greed, and blue. The green
elementsepresent groupings of model definitions with their accompanying modules
for the KIB. Theredelementn the middlehenrepresentthe module to module
mapping anttansformations. Finally, the blue elemepresenta/hat data variable

will be used as the KIB clodlhe model and transformation elements can then be

further decomposed by the designer as necessary.

26

3.1.3Gengalization

Refer toFigurel6for an example of how a KIB XML file was originally structured.
Theway that nodes were nandidi not allow a schema te designed to satisfy
current and future functionality. To correct this problem, the naming of each node
can be madmore general and instead use attrilaung<hild elements define

what specific type of data there is under the element.

<?xml version="1.0" encoding="utf-8" 2>
<KIBMODH>

<MODULE_SPECHCATION Name ="H1">
<LPINTERFACE>
<DataVariable Name="H_BOH">
<Type>Collection,Record,Key:Sring:hub,Key:Sring:product, Int:quantity</ Type>
</DataVariable>
<DecisionVariable Name="H_RHFASE'>
<Type>Collection,Record,Key:Sring:product key:Sring:destination, Int:period,Hoat :quantity</ Type>
</ DecisionVariable>
</LPINTERFACE>
<DEVSNTERFACE>
<DataOutput Name="BOH">
<Type>Collection,Record,Key:Sring:hub,Key:Sring:product,Int:Quantity</ Type>
</DataOutput>
<Datalnput Name="RE.LEASE">
<Type>Collection,Record,Key:Sring:product,Key:Sring:destination, Int:Quantity</ Type>
</ Datalnput>
</ DEVINTERFACE>
<INTERFACE_REATIONSHIP>
<DEVS PMAP>
<DEVSNAM E>BOH</ DEVINAME>
<LPNAME>H_BOH</LPNAME>
<DATA TRANSFORMATION>NONE</ DATA_TRANSFORMATION>
</DEVS PMAP>
<LPDEVIVIAP>
<LPNAME>H_RAFAS/LPNAME>
<DEVINAM E>RA FASE</ DEVSNAM E>
<DATA_ TRANSFORMATION>Hoat Tolnteger:Round,Index:period,quantity,Quantity</ DATA_ TRANSFORMATION>
</LPDEVaVIAP>
</ INTERFACE_RELATIONSHIP>
</MODULE_SPECIHCATION>

<KIBOONTROL>
<CONTROLLING M ODH>DEVS</ CONTROLLING MODH >
<MODULENAME>Synchronization</ MODULENAME>
<VARABLENAME>LP_SYNC</ VARABLENAME>
<OONTROLTYPE>Periodic: DEVSCYALES 1</ CONTROLTYPE>
</KIBOONTROL>
</KIBMODE>

Figure 16 Original KIB XML Definition Example
27

The original design contairieimterfacs; DEVS and.P. Within a KIB
XML file under a module, each interface needed to be enumerated heusing o
the noes <DEVSINTERFACE> okLPINTERFACE>. In the redefined design
a node <Interface> may be used with an att
interface. To take this a step further, a model name can be attached to the interface
so that there may be muitity of modelsvithin a KIB design. So nawode
<Model > may be used with a O0Onamed attribute
attribute that connects the model to an interfdwedistinct name of the model
mustnow be referenced within the remaimaolethe XML
In the previous design, in order to select which is the source interface and
which is the target interface, nodes with names like <IHBA/SP> or
<LPDEVSMAP> were used to select a DEXMS? or LP->DEVS mapping
respectively. To make this moreggie, a node <Map> maypw be used with the
attributed sour ced® and O6targetd which determine
which is the target. To take into account the design of the <Model> node in the
generalization above and the original premisimd) a source model, module, and
data output with a target model, module, and data input must instead be defined
under the <Map> element. Instead of defining source and target attributes, source
and target elements nrepyv be defied each with the attute set model, module,
and data.
The LP interface required the use obtdariable and
<D ecisioWVariable element for inputs and outputkile the DEVS interface used
<Datalnput> and <DataOutput>This broke any sort of generalized input/output
elements that could be created. Slatevariables and decision variatilemap

28

to what the LP consideaisinput and an output, the definitions of these elements
can be changed in code to match theranterfaces to come to a more generalized
definition of an input and output within the schema.

3.1.4Removal of String Parsing
Any entity of the XML that can be parsed should be further decomposed into XML
attributes and element$e following shows how éestring is parsed and how the
decomposition of this string can be handled by the XMDéiger explanations of
what each of the definitions mean will be handled later on in this paper.

1 Module Input/Output Definition

The string irFigurel7shows a samptkefinition of arinput or output of a

module.
o Partst and? tell the KIB that the following data is a collectioreobrd

definitions, but this is more or less ignored since all data should be a

collection of records. Therefore, it will be ignored in the schema design.
o Parts®,®,and’f eachdefina record. | f the flag o0Key

the definition then the record will be a key field. This can be handled by an

attribute giving a Boolean value to specify whether the field is a key or not.

| f the flag O0OArrayo6 nthergcordvallibednef ore t he
array. The size of the array must be given after the definition of the type or

set to oVariabledé if thescambeze of the ar
handled with an optional attribute where if set, then the value is an array

type. The value of this attribute should be either a positive integer or the

string oVariable.déd I n every field defin

that is either 0String,o6 OFloat, 6 or ol
29

attribute. Finally, the namkeach field is defined which can be handled by

a name attribute.

ollection,Record, Key:Sring:destination,Key:Sring:product, Array:Int:Variable:Quantity

@ @ © @
Figure 17 Module Input/Output String Definition Example

91 Data TransformatioBefinition

The strings ifiguresl8 19 and20show a few examples of how a

transformation string is defined which, @bale, cover all the different

attributes and flags that make up a transformation string.

o Ineach figure, pait defines the name of the transformation UHed.
can be handled by a name attribute with an enumerated list of all possible
transformations available.

o Part® inFigurel8and part® in Figure20set different types of rounding
flagsThe rounding can be ORound, é6 0Ceil i ng
the corresponding rounding function, wi
optional roundig attribute can handle this with an enumerated list of the
three type strings.

o Parte of Figure20defines how the data should be teth@granularity) in
the transformation. The value here can
or O0CurrentSets. o6 This can be handled b
enumerated list of strings.

o Part®# in Figure20gives an optional multiplier vahyewhichthe
transformed value is multiplied by bebmmg sento the destinatio:his

can easily be handled by an optiondtiplier attribute.

30

o Part® of Figurel8gives the indexariableand a value associated with it.
Only a single indesariablanay bagiven per transformation. This can be
handled by an optional index element where both a name and index value
needs to be given if it is defined.

o Partsi? and(® of Figurel9give field definitions. Some transformations
require one or more fields to be defined while others do not require any at
all. This can be handled by an optional field element where thdye anust
name and value if a field is defined. This element must have [0..n]
multiplicity.

o Part®* infiguresl8andl19and parts in Figure20give the source
variable. Pars in Figure20give optionastarting and ending index values.
This can be handled witmandatorgource element with the attributes
that represent the variable name, starting index, and ending index. The name
is required, but starting and endimticesare optional.

o Part®s infiguresl8and19and parts in Figure20give the target variable.
Like the source variable, starting and ending index values may also be
provided. This can be handled with a mandatory target element that has a

definition samas the source element.

HoatTolnteger:Round,Index:period=0,quantity, Quantity

©, ©, ® @ ©

Figure 18 Data Transformation String Definition Example 1

HeldValueToVariable,Feld:product=prodX FHeld:Destination=route66,quantity,quantity

©, @ ©, @

Figure 19 Data Transformation String Definition Example 2

31

Agaregate:UNITS Ceiling,Multiplier:10,quantity[1..5],quantity

@ & &6 O ® ©

Figure 20. Data Transformation String Definition Example 3

1 Control

The string irfFigure21shows an example of how a control type string is

defined.

o Partlt defines théype of control execution. In code, this value is saved,
but never used. To leave room for future development, it was decided that
this entry should be used in the new design. This can be handled by an
attribute that has a iomné fvarl uteh ee ncuurerr ean
version of the KIB.

o Partle was read in and ignored. This value has no meaning and will be
removed.

o Part® gives the frequency value. This can be handled with an attribute

constrained to a positive, Apgro integer value.

Periodic. DEVSCYALES7

©, @ ©

Figure 21 Control Type String Definition

3.2Using the KIB with the Inventory Strategy Module

Figurel aboveshows how the entire system was conceptualiadightlevel. As

stated in the problem, the Inventory Strategy Module (ISM) was a functional model,
but was contained within an atomic model within DEVS. Since the ISM is built upon
a different formalisnit, makes sense b@a completely separate enkigure22

shows how the ISM can be separated and the communication lines to be established

through the KIB. The dashed lines show the communication that did not exist with

32

the previous design. Thera isequential order of communication and execution in
this network:
1. Execute the SIM for one step
o For our model, Oone stepoO6 means t he
over. This is usually over one week.
2. Transform data SIM => LP and SIM => ISM
3. Execute 18I
4. Transform data ISM => SIM and ISM => LP
o Communication from ISM back the SIM should only be used for
transducer accumulation of data.
5. Execute LP
6. Transform LP => SIM

7. Repeat from step 1 until complete

P KIB R

ISV =>LP TR

SM =>1P M =>1SM
LP=>3M ISM =>3M

-

M
(DEVSAQlite)

Figure 22 Separating ISMfrom SIM
3.3Development of KIB

Combininghe KIB design premise described.ihlwith the modularizatioof the
ISM as described $12 the code structure should then look like it doeigime23

Like before, DEVS, being the controlling model, starts the KIB through the DEVS

33

Interface. At each DEVS time tick, the time is updated in the KIB and, if it is time to
do a transformation, the transformations and execution sequg@cerum. When
transformations or executions in any of the interfaces are required, the interface
object functions are called to perform the desired d@tiog.the sequence is

complete, the resulting data is returned back to DEVS and the simulation continues.

KIB

Data Model Sde (XML)

KIB:SngleEchelonWeekly

Operational Sde

1S9V: SupplyChainISvi KB_Path.xsd
ISM Interface (nstantitas, @ @_ /
(QupplyChainlsv — Rns]

Instance)
LP:SupplyChainDecision %

LPInterface (Instantiates, C]_ D
(upplyChainDecision «— mms ——

Instance) DalaTrangorrp)
DEVSSngleEchelon »
(Controlling Model)

SngleEchelon @_I—
DEVSModel DEVSInterface l«— (Dmam;um) - »
(Instance) —Callst D(

e |

KIB_Modulexsd

KIB_Relationship.
xsd

References
Qontrolling Bement

Figure 23 Interface Relationship with KIB

3.4Experimentation/Evaluation
Refactoring the XML schema must not disrupt the éunadity of the KIB

execution within JavBo determinevhetheithe redesign is a success, the previous

34

OSF model 6s KI Bvrittemand thieiresuéts will bel tdstedateemakee
sure the moderoduces the exact same data. On top of this, theywewiit tests
must be rewritten and pass all execution pertaining to the KIB.

Some quantifiable measurements will test the scalability of the new KIB
structure such as number of lines and number of elememsw KéB design will
thenbe used to devel@multiechelon supply chain modeie ISM, being a new
interface within the KIB, will be used to test the scalability of the KIB XML design
when an addiction of an interface is required. The new XML schema and Java code
must be easier to follow and ngmdn other words, the design must make logical
sense to one who is not familiar with the design.

XML code reuse is an important feature in any code design. As the KIB
XML instance model is developed for the OSF platform, previous elements of the
designhat needs to be reused must be imgheed without being rewritten.

There must be no pegtocesstringparsing of the XML definition in Java
code. All elements must be decomposed to their smallest atomic element within the
XML schema. All constraints stde well documented.

A set of experiments will test the OSF system as a whole. The generation of
meaningful experimental results shows that the entire system works with the new
KIB and provides some data pertaining to the original goal to creatg alsippl
simulation model capable of running dynamic single and multiple echelon models.
The run time scalability of the system should be tested to determine how feasible it

will be to run models with thousands of components.

35

4 CONCEPT & XML DESIGN OF KIB

4.1File Decomposition

With the new design premise, the XML schegecomposed into three separate
components: the modules, transformation and a control. The KIB_Paths.xsd schema
defines the paths to where each piece of the KIB model is defijnee24 shows

a graphical representation of the KIB_Paths.xsd schema. Within this schema, one or
more pathseedo be defined for each set of comguats with the exception of the
control which requires exactly one path. The path must define another XML file

with the correct pieces of the KIB model. The paths can be absolute or be relative to
the location of the KIB_Paths instarfsey XML that is refenced here must begin

with a KIBMODEL element which signifies that the file is part of the KIB model.

(] sttributes
MODULE_FILE 5]+
Lo
] attributes
[E__' El‘]_
KIBPATHS ? RELATIONSHIP_FILE
I\ -
- :
==

B sttributzs
—| CONTROL_FILE E]—

Figure 24. KIB_Paths.xsd Schema Graphic Representation

This design allows the entire KIB model to be decomposed into multiple
parts and allow for partial definition in each file. This can greatly help out with
development when the structures of the models stay the same, but the way they
operate changeFor instance, with the supply chain model, when the discrete event

simulatomodel changes from a weekly step size to a daily one and the LP model

36

still runs every week, the module defirgstay the same, but the transformations

and control will change to accommodate this.

4.2Module Schema

The module component definedilB_Modules.xsd does two thinggies an

interfacedo a model name, and it defines a set of modules that belong to the model.
Figure5and26show the graphical representation of the KIB_Modules.xsd

schema.

o] stteibutes

Marne of model (st be
unique for all madels in KIB)

Marne of the inteface used
[roust be given in the
Madelrarme enurmeration
within java code)

KIBMODEL [} =+ |5 Model £
; = & aftvibutes
e)

Marne of madule

(= IZH Module [e
—=l r-a DataQutput
1.0 Rt I;I ---------
L0
| [Zutput From cantrolling
v model)

''''''''''''''''''''''''''

[Input ta contralling rodel)

Figure 25 KIB_Modules.xsd Schema Graphic Represeation Level 1
4.2.1Model Element

Under the Model el ement, there are two att
The definition for O6Named is a distinct na
This name is used as a referencing name to this model fansfa@nations

definition. This name is also sent to the model interface in order to open the correct

model . The definition for 0l nterfaced must

37

within code. Curremtl, t his
distinct model name to an interface definition within code. Providing a unique model

name for the interface allows a developer to create multiple models under the same

interface. It also helps with labeling each component in the KIB.

4.2.2Module Element

Each nodel contains a set of modules. Under the Module ¢élement her e

attributeT h e

something within the model. This name is also referenced within the transformations
definition.As Gary points out in his research, these modules can be seen as different
things depending on the environment (&€aaty 2008)//ithin DEVS, a module is

closely tied to an atomic model compomdrgreas within an LtRe module does

definition for

not hold much meaning.

madel)

'''''''''''''''

[Dutput Forn cantralling

& sttvitates

Marne aof output

== DataVariable [
—

o

1.0

Drafines a colurnn in a data
table

>

(Input ta contralling rodel)

Figure 26. KIB_Modules.xsd Schema Graphic Representation Level 2

38

6 Named

B sttrivntes

narne of watiable

i, Int, Float, String

true, False

Define if data elerment is
array. Set ta "Warabla" iF
watiable size.

her e

S

S

i ncl wvdtheds 0d BBW S, 6T ha lsP ,ma ps t

4.2.3Datalnput and DataOutput Elements
Eachmodule has a set of input and output data lines associated with it. This would
be the Datalnput and DataOutput elements. Even though providing neither of these
elements ia KIB XML would be semantically correct according to the schema, the
module wouldesve no purpose. Therefore, a designer should always define at least
one input or output. There is no difference between the schema definition of
Datalnput and DataOutput. The only difference is the way that they are treated
within the KIB.A Datalnput isised when data goes into the model and a
DataOutput is used when data comes out of the model. Under the Datalnput and
Dat aOutput el ements is a O6Named attribute
also associated with something within the modeldastan
4.2.4DataVariableElement
The type of data that is produced and consumer a DataOutput or Datalnput
is defined athe DataVariable elemeBach entry defines a column within a table.
The DataVariable element contains the following attributes:
1 Name d label for the variable. The name must be distinct for the Datalnput
or DataOutput group.
1 Type - must be one of the following:
o String
o Int
o Float
7 Iskeydmust either be Otrueo or ofalsed0 dep
for the set. During runtime, thexan never be two entries where all the key

values are the same. This is similar to how a primary key set works in a
39

database. The newer set will overwrite the older set if all of the key values

mat c h. I f no keys ar e sredchinconting key i s a

N

value and only the newest value set may be passed at each time step.

1 ArraySized is an optional value. This is set ifdhtavariable is an arréigld
and signifies the size of the array. This value must be a positive integer value
greatr than O or the string oVariabled if
4.3Control Schema
The control schema defines frequency and the order of the transformation actions.

Figure27shows the graphical representation of the KIB_Control.xsd schema.

E attributes
[Moder |

DataOutput

DataVariable

(] attributes

B & (=B B

Figure 27. KIB_Control.xsd Schema Graphical Representation

4.3.1Control Element

Withinthe Control element are the following attributes:
1 Model

o Defines the name of the moddlich contains the controlling variable

40

1 Module
o Definesthe name of the module under the previously defined model which

contains the controlling variable

1 DataOutput
o Defines the name of the data output under the previtaisigd module
which contains the controlling variable
1 DataVariable
o Defines the name of the data variable under the previously defined data
output which is the controlling integer variable
. Type
o Can only be set t thecurreetvesaftheK¢B. 0 Per i odi ¢
This signifies that transformations happen periodically. Future
developments of the KIB may allow for other options.
1 Frequency
0 Must be an integer value greater than 0 which defines how often the non
controlling model elements be execatedr instance, if this value is set to
2, execution will occur at instances 0, 2, 4, and so on until the model
terminates.
4.3.2Execution Element
A single Execution element must be defined under the Control eldraent.
Execution element gives the order of di@tmodels to run at the frequency
instanceOneor moreRun elements must be defil under the Execution element
and order of given elements is crue@l each Run element that is defined, the

Model attribute should give the name of the model totex&be model name
41

must be previoustyivenelsewhere within the KiBodules definitiorsnd cannot

be the model that is definaslthe controlling model.

4.4Relationship Schema

Therelationshischema provides the structure and constraints of the transiormat
definitionsFigure28, 29 30, and31show the grdpcal representation of the

KIB_Relationship.xsd schema.

] attributes
i Interval |
The interval in which ta
1 process this mapping
IntervalOffset
The affzet of interwal in
which to pracess this
KIBMODEL [] (== Relationship [}~ Map [mapping

1.0

———————]

1.

Figure 28 KIB_Relationship.xsd Schema Graphic Representation Level 1

4.4.1Relationship Element

A single Relationship elemsignifies that this is an XML that defines the

relationships of the KIB model.

4.4.2Map Element

Oneor moreMap elements must be definedler the Relationship element. The

Map element defines a mapping between a DataOutput of one Module to a

Datalnput of anther ModuleThe dntervabanddntervalOffsebattributes within

the Map element defimdnen all the transformations within a mapping should take

place. These values are relative to the control frequency that ietefiaad:.3

The o6l nterval &8 def i rmppmngtramcsfeormationt Thismusto exec ut

be a positive, nezero integer value. For example, if the frequency in the control is
42

set to 7 and the interval here is set to 2, the mapping will be executed on 0, 14, 28,

and s

(0] on

unt il

t hevalyOftfesnett @ r adne Nian e s .

first transformation is executed. This must be aegative integer vall@r

example, taking the above case where frequency set to 7 and interval of mapping set

to 2, if the interval offset is set to 5, the mapmpill be executed on 5, 19, 388d

S0 on until the system terminates.

attributes

E sttribuates

Saurce madel name

Source module narme

Data

Saurce data narme

[attritutes

Target radel narme

Target madule narme
Data

Target data narme

——]

1.1

Figure 29 KIB_Relationship.xsd Schema Graphic Representation Level 2

4.4.3SourceDataOutput Element

Under each Map element is a Source element. The Source element contains the

attri

but es

OModel 0

O Modul

e 0,

and

6Dat ao

Module, and DataOutput that has been previously defined. This makes up the

address of a DataOutpelement.

43

atlr hwl

4.4.4Target Datalnput Element

Under each Map element is also a Target element. The definition of a Target element

i s the same as t he

references a Datalnput element.

| source [

—| Transformation EI]—
1.0

Figure 30. KIB_Relationship.xsd Schema Graphic Représentation Level 3

4.4 5Transformation Element

At least one Transformation definition must be given for each mapping. A

Source el

A sttributes

i, FloatTolnterger or
VALJES T SET, e,

Unitz, Sets, Curentlnits,
CurrentSets

Multiplier For the transfamned
walue (rurneric)

0. .o

ement

The

Transformation element defines how data shall be transformed at the execution of

this mapping within the KIB. The order of transformations does not make any
differentintheendresWi/i t hi n t

transform types whi

44

he

ch corresponds

6 Named

attri

but e

0] a

onl

S

n

a

am

execution object. T@ihame may be one of the names given in the list below. For a

deeper explanation of each of these transformations, reRIPENDIX B.
1 NONE

1 COPY

1 IntegerToFloat

1 FloatTolnteger

1 Aggregate

1T MAX

1T MIN

1 MEDIAN

1 MEAN

1 NewestValue

9 OldestValue

1 SET_TO_VALUES

1 VALUES TO SET

1 FieldvalueToVariable

1 VariableToFieldValue

1 ASSIGN_FIELD_VALUES

1 DisaggregatelntoEqualBuckets
1 AllToOneValue

1 AllCurrentToOneValue
The attribute O6Roundingd defines how to

transformed. If the source value is already an integer value, any of the rounding
45

functions wil|l not affect the value 1 n any
may be defined ase of the following:
1 Round: Rounds a floating point value to the nearest integer value.
1 Ceiling: Rounds a floating point value up to the next integer value.
1 Floor: Rounds a floating point value down to the previous integer value.
The attri hytbte de@e®n amrews| @roiw data should be
transformation takes a set of values and changes it to a single value or single set of
values. It may be one of the following:
1 Units: Data input is in terms of units, handled horizontally. For example, if
OMNO transformation is used and the sets
source array, the target value will be 0; the smallest overall value.
1 Sets Data input is in terms of sets of data, handled vertically. For example, if
0 MI NGO t r an sefl and theaseéts {B, 8, O}iarsd {2u 2 2} are sent from
the source array, the target value will be {2, 2, 0}; the minimum value of each
index value individually.

A ~

I CurrentUnits:Same as O6Units, & but use only the r
1 CurrentSets S a me & gse @nlg e nsost decebt data.

The O6Multiplierd attribute defines a value
target value by after transformation has been completed. This maghlevahye.

The multiplier value will only be used if the tagjaevs numerical.

46

attribate s

A sttrivutes
DataVariable

- R
— |
1.0 : [attrivutes

DataVariable

A sttributes

h
;___: Index E_ Fla‘u:lta elernent narne of source
[. index

Figure 31 KIB_Relationship.xsd Schema Graphic Representation Level 4

4.4.6SourceDataVariable Element

Under each Transformation element a single Source element may be defined. This

element is optional if theansformation des not require its definition. The
o0DataVariabled attribute references a name
be defined under the Source DataOutput of
OEndl ndexd attr i DataVariableaeferencedssamarraytypey i f t he
and a specific range needs to be selected
constrainedtoanemegat i ve i nteger value and the O6EN
positive, nofzero number. A Startindex maydefined without an Endindex if

only a single value within an array is selected. If the Endindex is defined, it must be

greater than the Startindex.
47

4.4.7Target DataVariableElement

The Target element provides the same definition as the Source elemdimé within
schema. The only distinction is that the
of a DataVariable within the Target Datalnput of the mapping.

4.4.8Index Element

The Index element should define the DataVariable name on either the source or
target that da should be indexed by. This is used in certain transformations when
data is being transformed to or from an array. The value attribute must be an integer
value greater than or equal to 0. This defines the starting index value (usually either O
or 1).

4.4 9Field Element

The Field element gives a set of key/value pairs used when a transformation requires

it such as FieldValueToVariable and VariableToFieldValue.

48

5 SCHEMA IMPLEMENTATION

5.10bject Structure and Data Structure Mapping

With the changes made to the schema as drawn out with the exgigpiels

the object structure in code haen implemented withis structure as wellhis
provides a more succinct definition between the connection of XML structure and
code structure.

5.1.1KIB Entry Point

The diagram iRigure32shows digh level UML diagram of the entry point into

the KIB. An instance of the KIBExecution object instantiates the KIBDataStore
then sends the reference to ConfigurationReader where the KIBDataStore is filled
with the appropriate metadata. This structure did not change since the previous
version of the KIB. The ConfigurationReader has been updated to follow the new

schema design.

KIBExecution

(from execution) OorTﬁguraIionReader
%cycle: int - (from execution)
@execuionSequenoe . ArrayL...

%decisionEngines : Hashtale

A Nginstance

~kibds kibDS
KIBDataStore
(from execution)
&moduleList : Logical View::javer:util::Hashtable
@debug: boolean

Figure 32 UML KIB Entry Point Objects

49

5.1.2KIB Module Objects

Since nowfrom the schema design modules belong to model elements, this matches
in the module metadata elements within the object design. The di&igane36

shows the upper level of the module objectsKiBiPataStore maps each model

to a list olKIBModules The ModelName object connects a strange to a value

in the interface enumeration. Now each instance of a KIBModule belongs to a single
model The KIBModule contains a list of DataModelNodes which correspond to all
Datalnputs and DataOutputs associated with the Module in the d€lteena.

KIBModule instance is a target, it will contain a list of all DataRelationship objects

for which this modules a target

50

KIBDetaStore

(from exeaution)
EmoduleList : Logical View:;java::util:: Hashtable
E¥debug : boolean

Hashtable<ModelName, ArayList>
(from Basic KIB Structure)

V 1 value
0 KIB_Modules
ModelName -N -
(rom ib) 0.n

Q}modell\hme: String

ArrayList<KIBModule>
(from Basic KIB Structure)
I—interfaceName T
Module io..n The set of
<<Enum>> KIBModule mappings for

InterfaceName (fomexeation) ¢ the target

(from kib) module
Einame : String T ‘N n__Map
%isSoI\erType : boolean $ DataRelationship

1

ArrayList<DataModelNode>
(from Basic KIB Structure)

(from exeauti on)

1
Datalnput
DateOutput /N
DataModelNode

(from node)

Figure 33 UML Objects Relating to KIB_Modules.xsd Part 1
Figure34shows the UML object diagram of the second letted eiodule

objectsThe only addition to this structure since the previous version is the
DataType enumeration which enumerates Stiingy IFloat and holds their string
representationkach DataVariable maps into an instance of NameTypeValue. The
RecordDefinition object keeps the list of all NameTypeValues and marks the
variables that are key values. As data is entered during mstamess of

DataRecord are created with the value entries.

51

Datalnput

DataOutput
- } DataModelNode
LinkedHashMap<String,BoundedQueue> < | (omndg
(from Basic KIB Structure)
0.n 1
1
key 1
Va(l)ue DataVariable Metadata i .
. N RecordDefinition
Stri .N (from kib)
BoundedQueue
fromuti) ikfieldDefinitions : ArrayList
&ikeyFieldNames : ArayList
DataVariable Metadataw/ data
. DataRecord
Trandormation Fromkib)
TransformConfig &fields : ArrayList
(from trangforms) &JkeyFieldNames : ArayList
T
:
-transfarmConfiguration 1

<<Enum>>

DataType
fromkib)

ArrayList<NameTypeValue>
(from Basic KIB Structure)

&1
1 o.n

NameTypeValue
(from kib)

&name : Logical View::java::lang::String
GVARABLE _LENGTH ARRAY : Logic....

Ename : Logical View::java::lang::String
lQ?isArray : boolean

lQ?arraySize s int

&data : Logical View::java::lang::Object
&isTransformValue : boolean

Figure 34 UML Objects Relating to KIB_Modules.xsd Part 2

5.1.3KIB Control Object

The ControlConfiguration object showrrigure35has a direct mapping to the

dat a

ven in the

gi

KI'B_Control

xsd

schema.

from the previous version. The main difference is that the executionSequence is

filled and executed in the given order which was previously ignored.

52

KIB_Control

Control
KiBDataStore ControlConfiguration

: (f'rom EXectl G_q) : (from execution)
gmodulel_lbsotOI Logical View::java:: util::Hashtable - %conh‘olFrequency: int
debug : boolean . [&conrolingviode : Logical View:java:lang:String
controlDataModue : Logical View::jaw: :lang: :String
&¥controlDataModu jcal View::jaw: 1 i
controlDataVariable : Logcal View: java::lang::Stiing
Econtrol iabl jcal View: jaec:| i
controlDetaElerent : Logical View: javec:lang: :Stril...
&ScontroiDetaEl jcal View. jar:l i
controlType : Logical View: java: :lang: :String
&ScontralTy jcal View: ja | i
executi uence : ArrayList
& ionSeq ArrayLi

Figure 35 UML Object Relating to KIB_Control.xsd
5.1.4KIB Relationship Objects

Figure36shows a UML diagram of the objects that map to the data in the
KIB_Relationship.xsd schema. A ModelRelation object has been axaedhe
source model to the target model. Enumerations for granularityngoand
transfomation name haveeen added to map string definitions within XML to flags

in code. Definitions of these enumerations match what is givérbin

53

KIB_Relatiorship ModelNarme
(from kib)

Map @rmdelName : Stiing
DataRelationship
(fromexecution)
%name : String -source
EtransformList : AmayList -target

%setsToValues: boolean
\eluesToSet : boolean :
Bdisaggregation : boolean ModelRelation

®fevalueDependentTarget bodleany AN (on)
@ﬁeldAssignmemTrarsfa'm : boolean 1
EallToOneValue : boolean 1

EallcurrentToOneValue : boolean

%arrayRegionCopy : boolean
&JsourceDataName : String

%targetModjel\Bme : String 1
%targetDaIaName : String fieldAssignment TransformConfig
@mtenal s -structural Transform
intenalOffset : int Trandormation
TransformConfig
(from transforms)
G <<||Enl_Jm>> @parameters : Logicd View:javat: lang:: String
ety e Bariables : Logical View:java::lang: String

(fromtranformg

multipeTargetValues : bodean
%name:LogicaJ\ﬁew:ja\a:lar‘g::Stﬁng % HeTargetv

itemGranularity %rmlu: peTargetVariables : boolean
\ &@JmultipeSourceValues : boolean
Emut peSourceVaiades : boolean
<<Enum>> EarayRegionCopy : boolean
RoundingNarme &JrdatedFieldTransfoms : AnmayList
{romtransiorms : & indexFieldName : Logical View: jave: 1ang; :Stiing
Bname : Logical View:javectlang::Stiing | roundingAlgorithm | @startinginde : it

Emultiplier : double
&jtransfomSourceField : Logical View ;java::lang::Stiing
<<Enum>> & transfomTargetField : Logical View::jaa: lang: :String
TransformationName AransfomType BtransfomSourceFiel dArayBounds] : int
fomiandams &transfomTargetFieldArayBounds(] : int
@nan‘e: Logical View::java::lang::Strir...| @mChﬁddNam : AraylList

EfieldVetchvalues : Araylist

Figure 36. UML Obijects Relating to KIB_Relationship.xsd
5.1.5Adding an Interface

The process to add a new interface was made to be as simple as\fussible.
adding anew interface for the KIB, the following steps need to be taken:
1. Create an interface model node extending the DataModelNadehisass
step is optional if no extensions of the DataModelNode are necessary for the

model. This can be seen, for example tigtaddition of the ISM model.

54

2. Create a KIB interface object implementing DecisionEnginelnterface; define
all required operations using a DataModelNode object either as defined in
step 1 or the base DataModelNode itself

3. Create a name that will represent the interface and add it to the enumeration

InterfaceName (refer teigure37)

public enum InterfaceName {
LP{"LPF"), OPC{"OPC"), ISM("ISM"), DEVS{"DEVS", false);

Figure 37. InterfaceName Name Definitions

4. If a new interface model node hasb®@eated, have the
ConfigurationReader.addVariable() function instantiate the new
DataModelNode from stefpwith the given InterfaceName from sBep

(refer toFigure38)

* Instantiate appropriate data model node here

if (solver.getInterfaceName()} == InterfaceName.LP)
dmn = new LPDataModelNode(variableName, type, rd,
kibD5. getHistorysize());
else if (solver.getInterfaceName() == InterfaceName.DEVS)
dmn = new DEVSDataMocdelNode(variableName, type, rd,
kibDS.getHistorySize());
else if (solwver.getInterfaceName() == InterfaceName.OPC)
dmn = new OPCDataModelMode(variableName, type, rd,
kibD5. getHistorysize());
else
dmn = new DataModelNode(variableName, type, rd,
kibDS.getHistorySize());

Figure 38 Instantiating DataModelNode

5. Have the KIBExecution.initializeEngine() function instantiate the new
DecisionEnginelnterface fromstewith the given InterfaceName from

step3

55

* Instantiate solver

if (model.getInterfaceName() == InterfaceName.LP) {
decisionInterface = new LPInterface(decisionModelPath,model);

} else if (model.getInterfaceName() == InterfaceName.OPC) {
decisionInterface = new OpcHoneywellAdapter(

decisionModelPath, model);

decisionInterface.initializeEngine(kibds);

} else if (model.getInterfaceName() == InterfaceName.ISM) {
decisicnInterface = new ISMInterface(model);
decisicnInterface.initializeEngine(kibds);

}
Figure 39 Instantiating DecisionEnginelnterface

5.1.6Designing a KIB Model
Steps in a certain order should be taken in order to develop a KIB model. In general,
following the following gbs wil lead to a working KIB model:
1. Create all necessary interfaces as describgdin
2. Implement and test each model sepatateiake sure each model
component is formalized properly
3. For each model, create a separate XML file that implements the
KIB_Modules.xsd schema defmthings in a way that goes in line with how
the interface for each model is designed from step 1
0 A separate file is not necessary to define each model contents, but this
helps partition the components io@oct way. For smaller mogiéls
may beeasonllefor all moduleso be defined in one file.
4. Decide where the controlling DataVariable resides andtdefires such
in an XML file that implements KIB_Control.xsd
5. Decide the data couplings and transformation scheme for all data and define
as such inmaXML file that implements KIB_Relationship.xsd
6. Reference all XML definitions from steps 3, 4, and 5 into an XML file that

implements KIB_Paths.xsd

56

7. In code, dad the file defined in step 6 into the ConfigurationReader object
which will setup a KIBDataStore

5.2I1SM Implementation

To completely separate the | SM component f

Remote Method Invocation (RMI) technology is used. RMI is a way to setup a
server/client connection using Java interfaces asnfgleenentations for the
interfaceses de on the client syst etmereqguedc e a
attribute values are sent to the server where the function is executed Témotely
return value of the function is then sent back to the client if one exists. The
defintion of any complex structure that is being used in the communication must
reside on both the client and serViae diagram ikigure40shows a bloclevel
communication between the KIB and each model. In this setup, the ISM is the RMI
server and the ISM interface within the KIB is an RMI dienhterface package is

also created that contains the RMI interface and the object, ISMResult, which

contans the result of the ISM computation for a time step.

57

servyv

KIB

< |

DEVSModel
(Gontrolling
Model)

DEVS
Interface
Definition

LP
Interface
Definition

OPL Sudio LP

Transform Configuration

S — N
< =0

Interface RMI
Definition

Control
Gonfiguration

/ /
g/ Qustomer ,*/

\ Demand |

\ Database \\

Figure 40. KIB with ISM

The modularized ISM model has a static set of learagsociated with it.
Belowarea list of these elemts; he first level being the modulescond level
being @her data input or data outpand third level being the set of data variables
for the data input/output. A short explanation is given for each data variable.

1 ISM_TARGET
o FC_CD (0)

echelon_indefnt): Index for the selected echelon
hub (String): Inventory element name

product(String): Product name

> > > >

guantity[] (Int): Values of forecasted customer demand for

the current period up to the length of the planning horizon
58

o HUB_SS (O)

A echelon_indefnt)

A hub(String)

A product(String)

A quantity] (Int): Values of safety stock in the hub inventories
for the current period up to the length of the planning
horizon

o CW_SS(0)
echelon_indefint)

hub (String)

product(String)

> > > >

guantity[] (Int): Values of safety stock in the component
warehouse inventes for the current period up to the length
of the planning horizon

o LOG_SS_FC (O)

>

echelon_indefint)

hub(String)

> >

product(String)

>

guantity [] (Int): Values of forecasted customer demand for
the current period up to the length of the planning horizon
targe (Int): target order ujp

destination (Int): safety stock

value (String): week label

> > > >

current_time (Float): clock time
59

T

A weight (Int): weight for the wegkor 1)

ISM_INIT

o ISM_INIT_DATA (1)
A name(String): Name of the key element for initialization data
A value (String): Value of the value element for initialization
data
0 HUB_LIST (1)
A echelon_indefint)
A hub[] (String): List of hub names for the echelon (names may
exists more than once)
0o PRODUCT_LIST (I)
A echelon_indefint)
A product[] (String): For each huliie HUB_LIST input, this
list gives an accompanying product creating (hub, product)
pairs
o TO_INVENTORY_LIST (I)
A echelon_indefint)
A hub(String)
A destination[] (String): List of destination inventory elements
in the downstream echelon that this inventapsgo
o TO_SHIP_TIME_LIST (1)
A echelon_indefint)

A hub(String)

60

1 ISM_RUN

A value[] (Int): Shipping time for each of the lanes given in

TO_INVENTORY_LIST

o BOWK ()

A name(String): This key variaidenot used in the current
implementation of ISM

A value (Int): Th8eginning Of Week index

o BOH (I)

(0]

o

A echelon_indefnt)

A hub(String)

A product(String)

A quantity (Int): Value for the Beginning On Hand value for the

product in the inventory given in the key

INTRANSIT (1)

A echelon_indefint)

A hub(String)

A product(String)

A quantity[] (Int): The Hransit values for the shipping for the

product to the inventory given in the key

INTRANSIT_AO (1)

A echelon_indefint)
A hub(String)

A product(String)

61

A quantity (Int): The value coming out of the shipping element
for the product to th inventory given in the key
1 Synchronization
o ISM_SIM_SYNC ()
A current_time (Int): The current time value used for labeling
There are some potential issues with the KIB when it is expanded to allow

three models communicating between each other. The K8gseatl to transform
data between two models. Thereferth three model communication, each
transformation mudte executed between pairs of models ©h/diagram in
Figuredlshows a conceptual representation of three models communicating
through the KIB. Tie execution and transformatayenot only synchronoubut
arealso sequentjao the execution sequence of DEVS, ISM, LP is selected. This is
because DEV.®eing the controlling model in the KIB, needs to first send its state
to both the ISM and LP. The LP is then dependent upon the computations done in
the ISM.Since the LP and ISM are both point solution models, this execution
sequence is simplifidbrK 1 B s ol uti ons with model s that &
sequentially afat contaiimu | t i pl e model s that arendt poi
may need to be redesigned to allow a more complex envir@@oneepts and
methods for such control were developed irsartggion by Dongping to allow

asynchronous execution between DEVS and MPC (Huang 2008).

62

Module_A
Module_C

Figure 41 Three Model KIB Communications

A block diagram showing the communication between the three models of
the OSF platform is givenkigure42 This gives a high level view of the data that is
being sent between the modeEYS sends its state to the LP and the week index
to the ISMThelSM uses the week index to look up the coAetual Customer
Demand (ACD), Historic Forecast (HFC), and Forecast Customer Demand (FCCD)
for the correct period. ISM then computes a Safety Stock (SS) value and then sends
this along with the FCCD data to the TRelSM also sends some data back to
DEVS (not explicitly depictadthe figure) to be used strictly by the transducers for
data collection. LP then computes a plan for a period of time and sends this plan
back to DEVS in the form of release commands. DEVS also uses Lot Generator
(LG) to detemine the amount of inventory to be generated in the most upstream

inventory in order to replenish released inventory. The ACD data is used by the

63

customers in the DEVS model to determine if demand has been fulfilled at each

period of time.

FCCD,SS
P | — | L L L s |
|7 T —. sTaiE KIB — T i
Wk#— I
| E— |
PM& ACD, HFC,
AT — FCCD

1
_____ |
LG: Lot Generator E -
55 Stock D EV S Two copies of
)

Database {DB
ACD: Actual Customer Demand 1 are uses;e _(on:z
HFC: Historic Forecasted Customer Demand R LGACD ——— !

FCCD: Forecasted Customer Demand

Figure 42 OSF Model

for DEVS and one
for ISM

5.3Single Echelon Implementation
5.3.1Single Echelon Timeline
To properly map the execution and time base of the simulation with the execution
and time base of the LP and ISM, the sample diagFiguiie43was created. This
diagram represents a model with a single hub, shipping to a single component
warehouse through one shipping.l@he bllowing assumptions are also used.

1 Model provides perfect fulfilment for demand

1 The Hub and Component Warehouse models are set to process arrivals

immediately

1 Hub delivers all of its inventory to the Geo Customer at each time period
The simulation, ISMynd LP all execute on a weekly time $tepDecision
Connectocomponentontains the connection to the KIB. Single arrows downward
represent product being sent to the next component. Double aprosarsiare

state messages being sent to the Decision Connector. Doubld@momardare

64

release messages to be delivered to their respective components. The following

constraints are set:

ON "Y(Time in DEVS is in real increments)

e "B¢Time used for KIB is on integral steps)

Yi N ¥ (Shipping time from CW to hub)

YO ¥4 j (Release command function at the CW)

Yo mnxEAOAnN

65

o c D m% CE» 20 p= r
Eﬂghg%gégggs g ||\§’\'—T
SLSEERINE T WA
57 o= e 9 |88T
tEQ
[
|
5 | '
i RE
>
8
)
&
= = o7
g §E2 l0:d
S S8ul 82%
- £3 8§
N
0 2 @
- S 28 24
(=) |54 € 3
z & BE
' 2 2 2al (224
g §Egllcs fed g:4
e g8 sg8 8% EgT
- = 3 E§ §
>
8 8 Zeod
5 S 8 ﬁ
2=
c
=
[o))
&
o
3
<
B S
ko]
£
g S B
2 I5 g
""“§ Eg’ > 44‘ (e} o 5‘2 o =
o “"§°5< < Eéaa <4 o3
i c
K]
g
o]
(v P —
- c O € 8 (@) o
o]
58 | £8 8 2 °oE | m
= = > o
Sh= gg =2 T 3 5 X
85 6% © 3

Figure 43 Single Echelon Timeline

To the simulation, the execution of each week is not an instantaneous event.
A set of events occur over a period of time. The model was implemented to execute
certain things at certain periods of time in order to force a deterministic execution
order withn DEVS. Thus, the simulation has varying states throughout each time
step. The ISM and LP only care about the state of the system at the integer time

values as they only execute over integer granularity. If this was expanded to a setup
66

where the simulatioan on a daily time step with ISM and LP running weekly, the
ISM and LP would only care about the state of the system at tihég {®,, n}.
5.3.2Configuration and GUI
A configuration schema and GUI was created in order to quickly run experiments on
the sngle echelon moddlhe ISM Client schemafigure44and the
accompanying GUI iRigure45provide entries faronnecting to the ISM server.
The ISM client configuration consists of the following information:
1 Hostname
The hostname is the name of the host for which the ISM server resides. This
canbe in the form of aiP address,HRL, or t he string o0l ocal hc
server resides on the local host machine. The elements useLocalHost and
useMyIP can be set to true or false. If useLocalHost is set to true, the string
0l ocal host 0 iissetto sue,dhe IPladdress sféehdlipchal P
machine is retrieved and used. Otherwise, a host name string can be given under
the name elemer@nly one of these three entries should be given.
1 Port
This is the port number, as an integer, that the ISM isesetup on. The
default port for the ISM server is 2020.
1 Create Server and Server Path
If the createServer flag is set to true, the executable jar file at the serverPath is
executed to start the server with the given hosthame and port arguments. If the

createServer flag is set to false, the serverPath is ignored.

67

client i] m— =port

Figure 44. ISM Client Schema

r Y
| £| Supply Chain Simulation - Single Echelon =a=g X |

File

System | ISM Connection I’Experiments

Host Hame

@ Local Host
) Use My IP

) Custom Hostname:

Port: 2020

Create Server Server Path: |lib\ForecastServer jar

| Save & Run! || Cancel

Figureh45 Single Echelon GUI: ISM Connection Tab

The system schemaFigure46and accompanying GUI kigure47
provide the system entrigéhis shouldhold any information that need to bet $e
the system as a whole. The system configuration contains the following data:
1 configPath
The configuration path is the path to th

oLP_Model s6 folders wheestoredd t he KI B and LP
68

1 dataDir

The data directory is the path to the directory containing the input customer

demand data.

1 outDir

The output directory is the path to the directory where the resulting data from

the model run should be stored.

1 stepSize

Thisshould be seto o0 Weekl y6 or oDailydéd depending
granularity for the simulation model.

1 IpstepSize

This should be set to oWeeklyd or oDaily
granularity for the optimization model.

1 hubs

The hubs element should contain a likubk that can be selected to run in the
experiments.

1 products

The products element should contain a list of products that can be selected to

run in the experiments.

69

Generated by XMLSpy www .altova.com
Figure 46. System Schema
r|é| Supply Chain Simulation - Single Echelon [=HC ér

File

[System | 1SM Connection | Experiments

Configuration Directory Path: |.1src‘nSupplyNelwork‘nGeographicDistributionNelwork‘. |

Input Directory Path: |.1InputData1. |

Qutput Directory Path: |.\0 utdirt |

DEVS Step Size: ® Weekly Daily

LP Step Size: ® Weekly) Daily
Hub List:

Hub Name:

Add Hub > H3
Ha

[T»

4]

Remove

Product List:

[T »

Product Name:

Add Product > P3
P4

4]

Remove

| Save & Run! || Cancel

FigureL47. Single Echelon GUI: System Tab

For this project, the scope for what is known as an experiment configuration
is any data that is inputted to select certain functionality for a model to run. This
should not affect the overall structure of the mdtlelexperimenschema in

Figure48and accompanying GUI kigure49provide the experiment

70

configurationThisholds a list of experimeconfiguration settings to rugach
experiment element in the experiment configuration should contain the following
information

1 name

This element definéise name fothe eyperiment used to label the data.

1 products

This element definaslist of products to run in thispeximent.

1 hubs

This element definadlist ofhubs to run in this experiment.

1 startingWeek

This element definesting representation of theek dr which the model is

initialized to.

1 endingWeek

This element definesting representation of the wedien the model should

terminate

1 smoothing

This element definaslis of smoothing names to be used. Each smoothing

selection is run with easérvie level (below).

1 servicelLevel

This element definadlist of service level values (between 0 and 100) that

should be used; run one at a time with each smoothing name (above).

1 planningHorizon

71

This element definé®w many weeks into the future to planrfahe ISM.
This value must be greater than 0.

1 historySize

This element definé®w many weeks to smooth with historic olatiae ISM.

This value must be greater than 0.

products [

[1]
[1]
0

8

startingWeek

(o [omermont B - -[onanave
—]

1.0

| E
[1]
i
=

B 45

-

emoothing £ =

serviceLevel [=
~ planningHorizon

8 15

=y

Figure 48 Experiment Schema

72

| £| Supply Chain Simulation - Single Echelon | o S
File
[system | ISM Connection | Experiments
Available Hubs Selected Hubs Experiment Name |I_S E_H1 F‘=1-_SH2_RT3_S‘.“."_L‘.“J_I‘.“J|
Ho H1 History Size [3 |
2 L] i Hoizon| |
H3 Planning Horizon (3
H4 IZ' Starting Week [200945 |
Ez Ending Week [201042 |
Kernel Exponential
Smoothing
Available Products Selected Products None
PO = P4 -
— Service Level(s)
. =
o =] ;
Level:

P3 — o
PS5
:
o -

Add Experiment

Experiment List

Edit Delete

| Save & Run! | | Cancel

Figureh49. Single Echelon GUI:Independent ExperimentsTab
5.3.3KIB Implementation

For each component, the granularity of daily or wesklyeenonsidered. The LP

in the real world runs on a weekly basis, but could be run on a dagbasis e

though it may not produce any meaningful results. The simulation in the past only
ran on a weekly basis, but a daily basis would better match real world operations.
The configuration with the simulation running on a weekly basis with the LP running
on a daily basis should be ignored since is does not make sense to optimize faster
than the simulation can run. The data provided for customer demand and forecast is
given in weekly granularity. Therefore, running the ISM on a daily granularity with
this datavould not provide any better results. With these constraints deéned,

have the following 3 configurations of running granularity:

A. Simulation: weekly, LP: weekly, ISM: weekly

73

B. Simulation: daily, LP: weekly, ISM: weekly [closest to real world]
C. Simulationdaily, LP: daily, ISM: weekly
For each of these configurations, the KIB needsdetbpn a different
way.Configuration A requires a 1:1:1 execution scheme; the LP and ISM execute
once for every step in the simulation. Configuration B requirdsex&cltion
scheme; the LP and ISM execute once for every 7 steps in the simulation.
Configuration B also requires disaggregation transform@oafiguration C will
be ignored for this implementation since it may or may not produce meaningful
resultsThe KIB model has been partitioned with the following xml files:
1. Instances of KIB_Paths
a. SingleEchelon_Sim[W]_LP[W]_ISM[W].xml
b. SingleEchelon_Sim[D]_LP[W]_ISM[W].xmI
2. Instances of KIB_Modules
a. DEVS_Modules.xml
b. ISM_Modules.xml
c. LP_Modules.xml
3. Instances oKIB_Control
a. Control_Fregl.xml
b. Control_Freq7.xml
4. Instances of KIB_Relationship
a. ISM_Relationships.xml
b. Relationship_Sim[W]_LP[W]_ISM[W]

c. Relationship_Sim[D]_LP[W]_ISM[W]

74

To load the KIB for configuration A, the file
SingleEchelon_Sim[W]_LP[W]_ISM[W].xmllied¢& his loads thenodule
definitions in all of 2, the control 3aad the relationships defined in 4.a andd.b.
load the KIB for configuration B, the file
SingleEchelon_Sim[D]_LP[W]_ISM[W].xml is callled.loads the module
definitions in all of;2he control 3.b; and the relationships defined in 4.a aBdel.c.
the XML code irFigure50for the definition of this XML fild=or either of thes
KIB models, all of thdefinednstances of KIB_Modules are called since the
structure does not change between configuratibos the relationships going to
or from the ISM do not changerconfiguration, so it was a design choice to use

the same dimmition between the two as well.

<?xml version="1.0" encoding="UTF8"?>

<KIBPATHSxmins:xsi="http://www.w3.org/ 2001/ XMLShema-instance” xsi:noNamespaceSchemalocation="KIB_Paths.xsd">
<MODULE_HLEPath="DEVS Modules.xml"/>
<MODULE _HLEPath="LP_Modules.xml"/>
<MODULE_HLE Path="ISM_Modules.xml"/>

<RELATIONHIP_ALE Path="Relationship_Sm[D]_LP[W]_ISM[W].xmlI"/>
<RELATIONSHIP_HLE Path="19V_Relationships.xml"/>

<OONTROL_HLEPath="Control_Feq7.xml"/>
</KIBPATHS>

Figure 50. Path Definitions for KIB
The XML code irFigure51shows the definition of the module H1 for the

DEVS side of the KIB. The H1 module directly maps to the atomic inventory
component wi t fhetHhireventory madel oréhtes alBOH agess

which contains the amount of product that is left in the inventory from the previous
step. An input to this inventory model is a release message. When the model receives

a release message, it will release the given amount of inventory.

75

<?xml version="1.0" encoding="UTF8"?>
<KIBMODH. xmins:xsi="http://www.w3.org/ 2001/ XMLSchema-instance" xsi:noNamespaceSchemalocation="KIB_Modules.xsd">
<Model Interface="DEVS' Name="SngleEchelon">

<Module Name="H1">
<DataOutput Name="BOH">
<DataVariable Name="hub" Type="3ring" Iskey="true"/>
<DataVariable Name="product" Type="Sring" Iskey="true"/>
<DataVariable Name="Quantity" Type="Int" Iskey="false"/>
</DataQutput>

<Datalnput Name="RELEASE'>
<DataVariable Name="product" Type="3ring" Iskey="true"/>
<DataVariable Name="source" Type="3ring" Iskey="true"/>
<DataVariable Name="destination" Type="Sring" Iskey="true"/>
<DataVariable Name="Quantity" Type="Int" Iskey="false"/>
</Datalnput>
</Module>

</Model>
</ KIBVIODE>

Figure 51 DEVS Modules H1 KIB Definition
The XML code irFigure52shows the definition of H1 and HX modules on

the LP side of thKIB. Modules do not mean anything to the LP, so the definitions
of modules here are only symbolic to the KIB itself. The H_BOH input under the
HX module aggregates all the data from every hub into a singl€haput

H_RELEASE output under the H1 modutntains release messages for every hub

that will later need to be filtered within the mapping definition.

76

<?xml version="1.0" encoding="UT~8"?>
<KIBMODHEL xmins:xsi="http://www.w3.org/ 2001/ XM LSchema-instance" xsi:noNamespaceSchemalocation="KIB_Modules.xsd">
<Model Interface="LP' Name="LP_SE'>

<Module Name="HX">
<Datalnput Name="H_BOH">
<DataVariable Name="hub" Type="Sring" Iskey="true"/>
<DataVariable Name="product" Type="3ring" Iskey="true"/>
<DataVariable Name="quantity" Type="Int" Iskey="false"/>
</Datalnput>
</Module>

<Module Name ="H1">
<DataOutput Name="H_RE.EASE'>
<DataVariable Name="product" Type="Sring" Iskey="true"/>
<DataVariable Name="source" Type="3ring" Iskey="true"/>
<DataVariable Name="destination" Type="Sring" Iskey="true"/>
<DataVariable Name="period" Type="Int" Iskey="false"/>
<DataVariable Name="quantity" Type="Hoat" IsKey="false"/>
</DataOutput>
</Module>

</Model>
</KIBMODB>

Figure 52 LP Modules H1 and HX KIB Definition

The XML code irFigure53shows a section of the relationship definition for
configuration B. This portion of the relationship definition gives the mappings for
H1 and HX in the LP and DEVS modul€ke first Map element dedis the
mapping between the BOH of H1 in DEVS to H_BOH of HX in LP. The
transformation is set to NONE which means that all data is passed right through.
Since the LP interface only uses the newest data, only the BOH data from the latest
definition will bgpassed over. The second Map element defines the mapping for the
release commands to H1 in DEVS. The FieldValueToVariable transformation
removes any el ements in the source DataOut
DataVariabl e with {HGNeFIELDARVALBESOf OH1.6 The A
transformation sets all target DataVariables with the name destination to the value
0GC _H1.6 This assumes that H1 in the si mul

the name GC_HIIhe final transformation, DisaggregatelntoEqualBuckiéts, wi

77

take the quantity data from the source and distribute the value equally to all target

time buckets. The divisor is determined by the frequency value in the control.

<?xml version="1.0" encoding="UT~8"?>
<KIBMODH. xmins:xsi="http://www.w3.org/ 2001/ XMLSchema-instance"
xsi:noNamespaceSchemalocation="KIB_Relationship.xsd">
<Relationship>
<Map>
<Source Model="SngleEchelon" Module="H1" Data="BOH"/>
<Target Model="LP_SF' Module="HX' Data="H_BOH"/>
<Transformation Name="NONE'/>
</Map>
<Map>
<Source Model="LP_SE' Module="H1" Data="H_RE.EASE'/>
<Target Model="SngleEchelon" Module="H1" Data="RELEAE'/>
<Transformation Name="FeldValueToVariable" Rounding="Round">
<Source DataVariable="source"/>
<Target DataVariable="source"/>
<Held Name="source" Value="H1"/>
</Transformation>
<Transformation Name="ASSGN_HHD_VALUES'>
<Source DataVariable="destination"/>
<Target DataVariable="destination"/>
<Held Name="destination" Value="GC H1"/>
</Transformation>
<Transformation Name="DisaggregatelntoEqualBuckets’ Rounding="Round">
<Source DataVariable="quantity"/>
<Target DataVariable="quantity"/>
</Transformation>
</Map>
</Relationship>
</KIBMODHE>

Figure 53 KIB Relationship Mapping for H1
The XML code irFigure54 shows the definition of the control for

configuration B. This file defines the DataVariable named current_time in the
DataOutput LP_SYNC irheé Model SingleEchelon, previously defined as a DEVS
model, as the controlling time value. The frequency is set to 7 which means that the
models defined under execution will execute once for every 7 time steps in the
SingleEchelon DEVS model. Under theeten element, it is defined thz

modelSupplyChainlSM will be executed followetthéynodelLP_SE.

78

<?xml version="1.0" encoding="UTF8"?>
<KIBMODH. xmlIns:xsi="http://www.w3.org/ 2001/ XM LSchema-instance" xsi:noNamespaceSchemalocation="KIB_Control.xsd">
<Control Frequency="7" Type="Periodic" DataVariable="current_time" DataOutput="LP_SYNC'
Module="Synchronization" Model="SngleEchelon">
<Execution>
<Run Model="SupplyChainISM"/>
<Run Model="LP_SE'/>
</Execution>
</Control>
</KIBMODH>

Figure 54. KIB Control Definition for Single Echelon, 7:1:1

5.4Multi -Echelon Implementation

To create an OSF implementatiotinwnultiechelon support, a douldehelon LP

model was created and the ISM was extended to handle multiple echelons. The ISM
requires the model structure and state data from each time period in order to
compute the appropriate data for the upper echelons.

5.4.1KIB Implementation

The same configuratidghat was setup for the singtghelon is used for the multi
echelon instance t haAnedhaslonindebveat ed o0Doubl eEc
incorporated to address each echelon separately in tAd&MML code in
Figure55shows the defition of the ISM with multiplechelon support. Model

structure data is passed to the ISM through TO_INVENTORY _LIST and
TO_SHIP_TIME_LIST. Every upper echelon needs to have data about where
product is shipped to in the lower echelon. State data is passed through BOH,
INTRANSIT, and INTRANSIT_AO. Every upper echelon needs to know how

much stock there is in the lower echelon in order to compute demand.

79

<?xml version="1.0" encoding="UTF8"?>
<KIBMODH. xmins:xsi="http://www.w3.0rg/ 2001/ XM LSchema-instance™ xsi:noNamespaceSchemalocation="KIB_Modules.xsd">
<Model Interface="ISV" Name="SupplyChainISV">

<Module Name="ISM_INIT">
<Datalnput Name="ISVI_INIT_DATA">
<DataVariable Name="name" Type="Sring" Iskey="true"/>
<DataVariable Name="Value" Type="3ring" Iskey="false"/>
</Datalnput>
<Datalnput Name="HUB_LIST">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="3ring" Iskey="false" ArraySze="Variable" />
</Datalnput>
<Datalnput Name="PRODUCT_LIST">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="product" Type="3ring" Iskey="false" ArraySze="Variable" />
</Datalnput>
<Datalnput Name="TO_INVENTORY_LIST">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="Sring" Iskey="true"/>
<DataVariable Name="destination" Type="3ring" Iskey="false" ArraySze="Variable"/>
</Datalnput>
<Datalnput Name="TO_SHIP_TIME _LIST">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="8ring" Iskey="true"/>
<DataVariable Name="value" Type="Int" Iskey="false" ArraySze="Variable"/>
</Datalnput>
</Module>
<Module Name="I19VI_RUN">
<Datalnput Name="BOWK'>
<DataVariable Name="name" Type="Sring" Iskey="true"/>
<DataVariable Name="Value" Type="Int" Iskey="false"/>
</Datalnput>
<Datalnput Name="BOH">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="8ring" Iskey="true"/>
<DataVariable Name="product" Type="Sring" Iskey="true"/>
<DataVariable Name="Quantity" Type="Int" Iskey="false"/>
</Datalnput>
<Datalnput Name="INTRANST">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="Sring" Iskey="true"/>
<DataVariable Name="product" Type="Sring" Iskey="true"/>
<DataVariable Name="Quantity" Type="Int" Iskey="false" ArraySze="Variable"/>
</Datalnput>
<Datalnput Name="INTRANST_AO">
<DataVariable Name="echelon_index" Type="Int" Iskey="true"/>
<DataVariable Name="hub" Type="Sring" Iskey="true"/>
<DataVariable Name="product" Type="Sring" Iskey="true"/>
<DataVariable Name="Quantity" Type="Int" Iskey="false"/>
</Datalnput>
</Module>

</Model>
</KIBMODH>

Figure 55 Multi -Echelon ISM Modules

80

6 RESULTS

6.1Regression Testing

A set of JUniTests were formulated for the previous version of the KIB. These unit
tests covered all of the functionality of the KIB from definition to exedution.

order to use these tests for the updated HlIBf ethe XML definitions for the JUnit
Tests were uptid for the new XML schema. Where applicable, the JUnit Tests
were also updated to accommodate the new Java structure. After running this
updated set of unit tests, the resuRigure56wasreturnedn the Eclipse IDBEvith

0 errors and O failures 100% pass shows that the new structure does not affect any

of the KIB functionality from past revisions.

[2 Package Explorer | f2 Type Hierarchy [JUnit 52 =0
Finished after 0,889 seconds CRlE i i - 7
(1) 4
Runs: $8/88 @ BD
4 fe] Test for default package [Runner: Jnit 3] (0,452 5) -

- He] kibounittests,DatabdodelModeTest (0,000 53
» Hel kibounittests,DataRecordTest (0,000 53
- fel kibounittests InterfaceDataTypesTest (0000 5)
- [l kibounittests LPInterfaceTest (0,062)
- el kibounittests, OPLDataBufferTest (0063)
- [l kibounittests KIBModuleTest (0,015 5)
- fe] kibounittests,ModelRelationshipTest (0,000 5)
- He] kibounittests TransformEngineTest (0,141 5)
E kibounittests, Bounded QueueTest (0L000 5}
- He] kib.unittests, DemandReaderTest (0,015 5)
- Hel kibounittests TransformadlgarithrmsTest (0,000 =)
- el kibounittests, SetToWaluesTest (0,016 5)
- el kibounittestsValuesToSetTest (0,015 5)
- Hel kibounittests ValuesToVariables (0,016 5)
- He] kibounittestsVariableToFieldWalue (0,000 5
- He kibounittests WaluedssignmentTest (0.062 5)
- [l kibuunittests.AggregateialuesTolariable (0.000 53
- e kibounittests TestTransforminterval (0,016)
- He] kibounittests, CopyTransformTest (0,000 53
» e kibounittests, bultiSoleerTest (0,000 5 -

Figure 56. JUnit Test Output

m

6.2 Evaluation of Scalability
To evaluate scalability, the structure of the single echelon model in the previous
version is compared against the same model defined using the new Bable@ire.

gives a quick breakdown that quantifies the definition of the same KIB in the

81

previous version of the XML code with the redesigned version of the XML code.
Because definitions are broken down into each atomic eletakes, more than
twice as many lines and elements to define the santéoliB.er, since the code is
broken down into multiple pieces, there is about a third less content per file.

Table 3. XML File Content Breakdown

Original Redesigned

Version Version
Number of Files: 1 7
Total Number of Lines: 248 530
Total Number of Elements: 147 388
Average Lines Per File 248 76
Average Elements Per File 147 55

6.3 Experiments

6.3.1Single-Echelon Results

For the singlechelon model, the hiti and product P1 was selected for the
experiment set. The glaechelon model iRigure57 shows the configuration setup

for this set of experiments

Figure 57. Single-Echelon Model

6.3.1.1 Execution Time Analysis

An analysis of thequired rustime was done to determine hibw scalability dhe

OSF platform is as a wholde chart irfFigure58shaws the running time of a
singleechelon model with the simulation running on a weekly granularity and the
optimization running on a weekly granularity for 41 weeks. TheonaleX axis
represent the product of the number of hubs and the number of products the model

is running with. As this number increases, the total time to execute increases

82

exponentially with most of the time taken in the execution of the optimization

mockl.
5.00
450 - Test Machine
CPU: Intel Core 2 Duo
4.00 - E7500 (2 cores @ 2.93GHz)
RAM: 4GB /
3:50 = os: Windows 7 38it /

w

o

S
|

/

Time (minutes)
- N N
a1 o a1
o o o

1.00 /

0.50

0. 00 T T T T T T T 1
0 20 40 60 80 100 120 140 160

Number of Hubs x Number of Products

Figure 58 Single Echelon Execution Time

6.3.1.2 Verification of the OSF Model
I n this model, oOperfect dataod is defined
perfect knowledge of the future. In other words, the model kexaatty how much
demand will be needed in the future for the length of the planning horizon. When
using a deterministic shipping tiwith safety stock set tq this should result in
100% service level with 0 average BOH value.
The chart irFigure59shows how well the customer demand, CD, is
satisfied using perfect input data with the safety stock set to O for every week. With
inventory stock in thieub initially set to 0O, it takes 3 weeks for the first shipment to

be sent to the customer. This is due to4leegk shipping between the CW and the

83

hub plus the-step processing time in the hub. Since the simulation model for this
experiment was setweekly granularity, 1 step equals 1 week, so the total time from
the output of CW to the output of the hub is 3 weeks. After this ramp up time,
exactly enough is shipped to the hub 1 time step before it needs to be telivered
the customeDisregardinge first three weeksiet end result is 0 average stock at

the hub with 100% service level as expected.

Single Echelon Model using Perfect Data

140000
120000 A
.., 100000 Il
g 80000 I N-\ .
£ 60000 4 —=— Hub AO
gl 11
40000 Y /I \ —— Shipping_AO
20000 J &/V W/ X TN

.
0 _"l’ TT1T TrrrrrrrrrrrrrrrrrT II“IQIAH\’VYW—YWYYY‘]
0 5 10 15 20 25 30 35 40
Week Index

Figure 59 Using Perfect Data
6.3.1.3 Simulation Weekly Step/Optimization Weekly Step

To begin on the experimentatmmthe OSkplatform as a whqgléhe same model
from past work was tested. The chaRigure60shows the results of running a
year d8s wor t h atformbahumHliamprotucté4. BeSded omthis
data, the n@moothing algorithm outperforms other smoothing techniques. This

corresponds to the data retrieved previously for this hub and product.

84

Single Echelon Results for Hub H1, Product P4

70000

60000 _

50000 //
40000

Average Inventory (After RamfpJp Time)

=9=ES
30000 —W=KS
NS
20000 -
10000
o T T T 1
75% 80% 85% 90% 95%

Actual Service Level (After Rarylp Time)

Figure 60 Deterministic, 2 Week &ipping

Since shipping in the real world is not so deterministienartogl shipping
distributon was selectet@ihismeanghatmost of the time, each package makes it
through the shipping in 2 weeks. Rarely, the package will make it thrauggkin 1
and very rarely, the package will make it throughr iBvdeeksbased on a pseudo
random algorithnThe chart ifFigure61shows the result afteetting up the model
the same way as above, with only the shipping element changingdonagbg
distribution. Less average stock is recpbigdhe service level has also taken a hit.
The same general shapEigare60appears though, so-smoothing is still the

best smoothing technique to use for this configuration.

85

70000

Single Echelon Results for Hub H1, Product P4

60000

50000 /
40000

30000 /

——ES

20000

==—-KS
NS

10000

Average Inventory (After RamfpJp Time)

O T T T

75% 80% 85% 90%
Actual Service Level (After Rarylp Time)

95%

Figure 61 Log-Normal Shipping, 2 Week Mean0 WeekMin

6.3.1.4 Simulation Daily Step/Optimization Weekly Step
The OSF platform was testedngthesi ng
simulation run from dap-daymatches a real world shipping schedule where

shipments arrive at a single time each day. Optimszatid forecasts are still re

evaluated once each week.

tested.

I'n this

a

mor e

setup,

Having a strict definition of a time step is not necessary, but labeling a unit of

time in a more formal way allows for better ugatiiorder to formalize a time
step metric, the TimeUmhumeratiomas shown ifrigure62was designed. The
internal Unienumerationlefinesa set of base unit®m a picosecond all the way
up to a millennium. A value is assigned toiesigmce obnit which corresponds

to how many seconds are in that unit. Setting a base unit of time in the Unit

86

0

t

enumeration allows for simple conversion from one unit valugtheraifhe

TimeUnit enumeration contains values such as WEEKLY and DAILY. In each

TimeUnit instance, there &attributes associated withhe¢ r i n g

distinct name for the instartbat is used for labelitgh e Uni t

unita n d

the integer

ot

i cksPer Uni

oOnamebo
ounitao
t6 sets

length of time of the base unit. In other words, WEEKLY is set to 1 tick per week

and DAILY is set to 1 tick per d&onversion from one time utatanother is

provided in the given set of operations.

<<Enum=>
TimeUnit

(from Timing)

BticksPerUnit : int
&name : Logical View:java::lang::String

%getTicksPerMinute()
%getTicksPerHour()
%getTicksPerDay()
%getTicksPerWeek()

-umit

<<Enum=>=>
Unit

(from TimeUnit)

#TimeUnit()
%getTicksPerUnit()
SgetName()

“parse()

“convert()
@hgetTicksPerSecond()
@hgetTicksPerUnit()

“setModelUnit()

“%getModelUnit()

%getModelUnitName()

-$modelUnit

Figure 62 TimeUnit Class

&ssecondsPerUnit : double

+*Unit)
“getSecondPerUnit()

The chart ifFigure63shows the data tdined after running a daily

simulation with a weekly optimization using a detistioj 14day shipping model.

Comparing this to the chartRigure60, more stock is recorded across the board.

The kernel and exponential smoothing techniques do worsesoveaathik
outputting service level does not change much as the amount of stock needed goes

up. However, the nemoothing technique doggnificatly better and is still the

best technique for hub H1 and product P4.

87

S

s

how

a

h

Single Echelon Results for Hub H1, Product P4

90000

80000

70000 r
|

60000

o
£
l_
o
2
£
©
5 /
£ 50000
g; —o—ES
g 40000 Ks
g 30000 : NS
o ¥
S 20000
o
Z 10000
0 T T 1
85% 90% 95% 100%

Actual Service Level (After Rarmygp Time)

Figure 63 Deterministic, 14 Day Shipping

Now that the simulation runs on a higher granularity, the shipping buckets
can be loken down into smaller piecBscause of this, the agrmal shipping
distribution can be setup to better match a real world situation. For the next run, a
log-normal shipping ecoponent was setup with ad&y mean and ard@y min.
The chart irfFigure64 shows the results with this setup. With these results, a slightly
greateaverage inventory was recorded. This is because the ISM and LP still assumes
an average of 2 weeks fapping. Since these run on a weekly granularity, the
shipping value is rounded up to the nearest week in order to optimize. This results in
shipments on average arriving a few days sooner than they are needed. The shape
overall is similar to the one abawel nesmoothing is once again the best

smoothing technique to use.

88

Single Echelon Results for Hub H1, Product P4

90000
80000 r
70000

60000

50000
=—ES

—8—KS
30000 NS

40000

20000

Average Inventory (After RampJp Time)

10000

0 T T 1
85% 90% 95% 100%

Actual Service Level (After Rarylp Time)

Figure 64 Log-Normal Shipping, 10 Day Mean8 Day Min
6.3.2Multi -Echelon Results

Hub H1 and prodct P4was again selected for the madtielon experiment set.
The nodel inFigure65shows the doublechelon model that was setup. A single
CW element was used to keep the overall siag@e This CW needs to alke

able to handle product P4 to send to hub H1.

7 e/ A W) oA HLH oL

Figure 65 Double-Echelon Model

6.3.2.1 Computation of Upper Echelon Safety Stock

In order for the upper echelon to compute a safety stock, a set of adjusted demand
values for the upper extn need to be computed. This is done by applying a delay
function on the demand data at GC1 by the shipping time to H1. An error for the

current periodds demand is computed us
89

ng

Oi i &€ 7YY 600 ©Otoiac¢ i@
1 °YY s the safety stock computed for the downstream echelon
1 6 0O isthe amount of product thiatstored in the inventory of the
downstream echelon for the current period
1 "O¢ o1 @b éisithi®amount of product that is ibs way to the inventory of
the downstream echelon for the current period
1 "Qfa is the sum of demand at GC1 for the time indexes up to the time
that it takes for product to reach H1
Theerrorcomputeds added to the forecast value of the cupemdd to obtain the
actual demand for the current period. This value is recorded for historical data in
order to compute a biasfuture points
6.3.2.2 Simulation Weekly Step/Optimization Weekly Step
For testing the double echelon modéhj@pag time of Qveeks was selected
between factory to component warehouse and 2 weeks between component
warehouse and hubll shipping times in this experiment are constant and
deterministicThe chadin figures66 67, and68showthe result double echelon
experiment using a medtthelon ISMFigure66shows an average inventory at the
component warehougggure67 shows an average inventory at the hub (H1); and
Figure68showshe totalaverage inventoheldbetweerthe huband component
warehouse in the-akis.Overall, kernel smoothing is the best technique for this
doubleechelon model. Unlike some other modeling concepts for this simplistic
model, inventory is kept at the component warehouse instead of releasing the entir

stock of inventor immediately to the hub at each time period.

90

Double Echelon Results for Hub H1, Product P4

35000

/

30000

/

25000

20000

15000

S/
/

10000

5000 -

Average Inventory at CW (After Rarigp Time)

0

/
=/
J

=

55.0%

60.0% 65.0% 70.0% 75.0% 80.0%
Actual Service Level (After Ranigp Time)

85.0%

90.0%

——ES
== KS
=d=NS

Figure 66. Double Echelon Result: Average Inventory at C\ér Service Leve

Double Echelon Results for Hub H1, Product P4

35000

30000

25000

/

20000

15000

10000 -

5000

Average Inventory at H1 (After RarAgp Time)

0
55.0%

60.0% 65.0% 70.0% 75.0% 80.0%
Actual Service Level (After Ranrip Time)

85.0%

90.0%

——ES
= KS
=te=NS

Figure 67. Double Echelon Result: Average Inventory at H1 f@ervice Level

91

Duble Echelon Results for Hub H1, Product P4

100000

90000

P

80000

/

70000

y’

60000

/

50000

=7

40000

20000

30000 +— —

10000

Total Average Inventory (After Rampp Time)

0

55.0%

60.0% 65.0% 70.0%
Actual Service Level (After Ramgp Time)

75.0% 80.0% 85.0%

90.0%

——ES
==—-KS
NS

Figure 68 Double Echelon Result Global Average Inventory for Service Level

Communication between the three model components through the

redesignelIB functions as desiréor a double echelon mod€hble4 shows the

XML file content breakdown for the doublghelon model. Comparing this to the

average lines and average elements per file for a single echelomaiuda| a

doubleechelon model still produces a manageable amount of XML code per file.

The average lines and average elements gerdiddively the samethg amount

for a single echelon model with the original design of the KIB, but if the original

design was used to create this model, the XML file would be around 1550 lines. This

would make the KIB definition difficult to navigate and manageXML file

structure in the redesigned version of the KIB may also be manipulated easily in

order to minimize the average amount of code per file even more.

92

Table 4. Double Echelon XML File Content Breakdown

Redesigned XML.:
Double Echelon

Number of Files: 7

Total Number of Lines: 1550
Total Number of Elements: 1155
Average Lines Per File 221
Average Elements Per File 165

93

7 CONCLUSIONS

This projectsgrounded on creating a ngitihelon simulation with medithelon
forecast biasing and optimizatiiaving a supply chain simulation that can quickly
and accurately optimize and predict the release of precisely enough stock to meet
demand is a highlysieedsoftwaregool among many corporations. Through the

help of several peo@eASU and Intedince 208 as well aghe work laid out here,

the OSF platfon has been established to solve this probl@splatformhas the
functionality tasolve singleand doubleechelon supply chain models containing
multiple products in multiple inventory elements.

To create a muldchelon model that is scalable for future desigor,idineal
version of thglatform needed to be rebuilt from the groundtgstingwith the
KIB. The KIB, being the backbone of the system, has been redesigned in a way that
allows a designer to quickly iempént new configuratioasd allows for better
usability, reusability, and scalability.

The designer may now reuse code ovempfeutbnfigurations by utilizing
theKIB_Pathsschema design that splits up a KIB defindmnssnultiple files
Components of the KIB are broken down by the definition of modules, control, and
transformatioathrough the schemas defined as KIB_Modkil&s,Control, and
KIB_Transformations respectively. Constraining an XML file to tdedseespecific
sets of data keeps an organizational pattern that allows for better usability.

A user may now conceptualize a KIB model in the same way a model is
designedh each componerithe original design has bebangedo put modules

within models instead of defining interfaces within modules. This not only allows the

94

designer to create a KIB model more quickly, but multiple models can be defined for
a single intéace.

Everyelementf the KIB is broken down to their atomic components to
allow forbetter usabilityand scalabilityVhen using the auto code completion in
IDEs such as Eclipse, defining the KiBhe correct structugan be done in a
more guided waylthough the resulting XML files for the definition of the KIB
have grown to about twice the size of the same definition given in the old design,
having the definition broken dowarossnultiple files reduces the number of lines
per file to more manadwa chunks.
7.1Future Work
The next step in the scalability of the KIB is to create a user interface which will
allow a designer to better visualize the KIB design. To begin with, a GUI that shows
what a previously defined KIB model looks like will helpvedification. From
here, the interface could be expanded to a clickatis design that allows the user
to create new components and connect them together. Different views would need
to be designed to zoom into details and zoom out to see the bigger piom
here, more constraints can be handled that the schema cannot track such as
addressing modules within a mapping.

Only initial work has been done for the OSF platform to run a multiple
echelon model. The ISM running multiple echelons needuallfied to ensure
that the formalism is correctly matched with definitions of aeuiudtion ISM that
Intel and other supply network companies use. The ISM can then be enhanced to
handle more complex models for shipping from one to many or many to one
inventory elements.

95

Theexperimentonfiguration for this project was used to select functionality
for a model to run. As this platform is built upon, more front end work will need to
be done to not only select functionality, but to build the structuneocafeh from a
GUI as well. This gives a user wHeds familiar witbode desigthe ability to
configure and run a model with edsgs is work that is left for future development.
Since each model within the OSF platform was designed to be lopéedy cou
integratingelements of data together in a way that will confine the definition, while

still maintaining loosely coupled componisnist a simple change.

96

REFERENCES

OExtensible Markup Language (XML) 1.0 (Fifth EdiGavprid Wide Web
ConsortiumW3C) http://www.w3.0rg/TR/REC-xml/.

Godding, Gary. 2008. Mult-Modeling Approach Using Simulation and
Optimization for Su@plgin Network Syskhi. diss., Arizona State University.

Godding, Gary, Hessam S. SarjoughrahKarl G. Kempf2004 Mult-
Formalism Modeling Appro&eimioonductor Supply/Demand Npaperks.
presented &@ociety for Modeling & Simulation Internationahter Simulation
Conference, Washington [@=cembef004)

Godding, Gary, Hessam S. SarjoughraKarl Kempf. 2007Application of
Combined Disaretmt Simulation and Optimization Models in Semiconductor Enterprise
Manufacturing Systpapger presented @bciety for Modeling & Simulation
InternationalWinter Simulation Conferendgashington D{CDecener2007).

Graves, Stephen and Willems, Sean. 2000. Optimizing Strategic Safety Stock
Placement in Supply ChaMsinufacturing & Service Operations M2y &&Sit

Huang, Dongping. 200Bomposable Modeling and Distributed Simulation
FramewortirfDiscrete Su@blgin Systems with PredictiveRb@ntlisis., Arizona
State University.

Huang, Dongping, Hess@nSarjoughia@ary Godding, Daniel E. Rivera,
and KarlG. Kempf 2006 Experiment Analysis of Hybrid Discrete Event Simulation with
Madel Predictive Control for Semiconductor Supply (Phper Pystemied Society
for Modeling & Simulation Internationadinter Simulation Conferenddonterey,
CA, December 2006).

Huang, ngping Hessam S. Sarjoughian, W&lang, Gary Godding,
Daniel E. Rivera, Kakempf, Hans D. Mittelmann. 2008imulation of
Semiconductor Manufacturing SugpihainSystems with DEVS, MPC, and KIB.
IEEE Transactions on Semiconductor MagafBct6sir4.

Koch, Markus, Tolujewuri, and Schenk, Michael. 2@Jdhroaching
Complexity in Modeling and Simulation of Logistics Sys=tperpf@dé)ted at The
Society for Modeling & Simulation International: Sgimgjation Conference
Orlando, FL, 2012).

Mayer, GarjR. 2009Composing Hybrid Discrete Event System and Cellular
Automata Mod&lkD diss., Arizona State University.

Mayer, @Gry R., Hessam S. Sarjoughian. Zxdfposable Cellular
AutomataSimulation TransadBigthd-12): 735749

97

Sarjoughian, Hessam S. 20tlel Composalfiper presented at The
Society for Modeling & Simulation International: W8itarlation Conference
Monterey, CA, 2006).

Sarjoughian, Hessam S. and Yu Chen. 2ihtlardizing DEVS Models: An
Endogero8tandpoifdaper presented at The Society for Modeling & Simulation
International: Symposium on Theory of Modeling, Boston, MA, 2011)

Sarjoughian, éssam S., GaMayer 2010Modeling Interactions among
Heterogeneous ModeBiscrete Event Simukatidmodelifglited byG. Wainer
and P. Mosterman (CRC Prek$}137

Sarjoughian, éssamand éff Plummer. "Design and implementation of a
bridge between RAP and DEVS." Computer Science and Engineering, Arizona State
University, Tempe, AZ (2002).

Sarjoughian, Hessam S., James Smith, and Gary Godeingpération).
Optimization, Simulation, and Forecasting: A Platform for EValmatBwgppbnGhain
Dynamics Under Demand Uncertainty

Schwartz, Jay D., Manuel R. Arahal, Daniel E. RindrKjrk D. Smith.
2009 Controlrelevant demand forecasting for tactical deeisadang in
semiconductor manufacturing supplgilc managemetEEE Transactions on
Semiconductor Manuf@aa)irig4163

Schwartz,ayD. and Daniel E. Rivera010A process control approach to
tactical inventory managemenptioductiornventory systemint. J. Production
Economi@g1): 11:124

OW3C XML SchemaWorld Wide Web Consortium (W3C).
http://www.w3.org/XML/Schema

Wang, Veénlin Daniel E. Rivera, and HdbsMittelmann 2009Inner and
outer loop optimization in semiconductor marufay supply chain management.
Computational Managemer@i@cience

OWhat is SCOR®?Supply Chain Coundilttp://supply-chain.org/scar

98

APPENDIX A

ABBREVIATIONS AND DEFINITIONS

99

= =4 4 -8 4 -5 _9_45_°9_-2°

ABBREVIATIONS AND DEFINITIONS

ACD: Actual Customer Demand

DEVS: Discrete Event System

FCCD: Forecasted Customer Demand
HFC: Historic Forecast

IDE: Integrateddevelopment Environment
ISM: Inventory Strategy Module

KIB: Knowledge Interchange Broker

LP: Linear Program

SIM: Simulator/Simulation

XML: Extensible Markup Language

100

APPENDIX B

TRANSFORMATION DEFINITION

101

Exceptf or t he

TRANSFORMAION DEFINITION

transfor mat.
classified as a group transformation, value transformation, or both. A group
transformation transforms data as a whole while a value transformation transforms

on

abel

ed

as

data from a single souroeatsingle target. Some group transformations work with

other group transformations and some do not.

NONE Transformation
The NONE transformation requires that the target module contains all the data
elements of the source module. All the target data edemest also be of the same

type as the source data elements. Any attributes for this transformation are ignored

and no other transformation should be defined for a mapping if a NONE
transformation is defined.

Group Transformations and Priority

1. SET_TO_VALLES

5.

6.

o This transform takes set of values that has index field, and maps them to
an ordered array list to the target model. The order is sequence to send
values to target by time period. Each target value maps to a value to be
passed in one time period. Thaexelement must be defined for this

transformation.
VALUES TO SET

o Values in a source array are mapped to set lines. The index element must
be defined for this transformation.

FIELD VALUE_TO_ VARIABLE
o Preform transformations only on data that match wtietined in the

Field element(s).

DisaggregatelntoEqualBuckets
o Value is divided equally into multiple time period buckets.
AllToOneValue, AllCurrentToOneValue, and Aggregate

o All record values to one target value
(No group transformation defined)
o Data is tansformed in a 1:1 manor

Value Transformations

1

NewestValue

o In alist of records as given by model, get only the data record that has been
received most recently within the current time period

OldestValue

o Inalist of records as given by model, get onijatlaerecord that has been

received first within the current time period

Copy
0 Same as NewestValue

FloatTolnteger

o Converts source data to target type

IntegerToFloat

o Converts source data to target type (same as FloatTolnteger)

Aggregate

102

O NONE

0 Aggregates (sums)amay value to single target value or value set (must be
numeric)

MAX

0 Selects the target maximum value from an array (must be numeric)

MEAN

o0 Mean of array is calculated to single target value (must be numeric)

MEDIAN

0 Selects the target median value froarray (must be numeric)

MIN

0 Selects the target minimum value from an array (must be numeric)

SET_TO_VALUES

o Converts source data to target type

VALUES TO SET

o Converts source data to target type

FieldvValueToVariable

o0 Target is Array: Converts an indexed &rthe array target type

o Targetis Norarray: Converts source data to target type

VariableToFieldValue

0 Sets to static field value

ASSIGN_FIELD_VALUES

o Not much diferent to VariableToFieldValue

DisaggregatelntoEqualBuckets

o Divides numeric value by thember of buckets

103

