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ABSTRACT 

A semiconductor supply chain modeling and simulation platform using 

Linear Program (LP) optimization and parallel Discrete Event System Specification 

(DEVS) process models has been developed in a joint effort by ASU and Intel 

Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to 

broker information synchronously between the DEVS and LP models. Recently a 

single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for 

forecast bias in customer demand data using different smoothing techniques. The 

optimization model could then use information provided by the forecast model to 

make better decisions for the process model. The composition of ISM with LP and 

DEVS models resulted in the first realization of what is now called the Optimization 

Simulation Forecast (OSF) platform. It could handle a single echelon supply chain 

system consisting of single hubs and single products  

In this thesis, this single-echelon simulation platform is extended to handle 

multiple echelons with multiple inventory elements handling multiple products.  The 

main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such 

that ISM interactions with the LP and DEVS models could also be supported. To 

achieve this, a new, scalable XML schema for the KIB has been developed. The 

XML schema has also resulted in strengthening the KIB execution engine design. A 

sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX 

optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to 

compute forecast customer demands and safety stocks over multiple hubs and 

products.  
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Basic examples for semiconductor manufacturing spanning single and two 

echelon supply chain systems have been developed and analyzed. Experiments using 

perfect data were conducted to show the correctness of the OSF platform design 

and implementation. Simple, but realistic experiments have also been conducted. 

They highlight the kinds of supply chain dynamics that can be evaluated using 

discrete event process simulation, linear programming optimization, and heuristics 

forecasting models.  
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1 INTRODUCTION  

1.1 Purpose Statement 

This report was written to satisfy degree requirements for Masters of Science in 

Computer Science and course requirements for independent study with Professor 

Sarjoughian in order to describe the accomplishments made in the development of 

the Knowledge Interface Broker (KIB). This work is also used in the development of 

the multi-echelon supply chain simulation project. The bottom line goal of the 

Supply Chain project is to develop a multi-echelon simulation model with multi-

echelon inventory strategy and optimization modules. All work must be scalable for 

large models on the order of hundreds of components. The purpose of model 

development within this system is to better understand the behavior of some 

semiconductor products. 

1.2 Intended Audience 

The intended audiences for this report are the members of the graduate committee 

Dr. Hessam Sarjoughian [chairperson], Dr. Hasan Davulcu, and Dr. Georgios 

Fainekos; sponsor Intel, which includes employees working with the Supply Chain 

Simulation project; and anyone in the field either continuing this work or using this 

as a source in their own work. A portion of the code accompanying the design 

described in this thesis is planned to be released for general public use. 

1.3 Problem Definition 

1.3.1 Semiconductor Supply Chain 

In any type of industry that needs to distribute products in different physical 

locations with varying markets, there is a constant question of how much, how often, 

and where to distribute the products in order to meet the end demand of each 
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customer. Enough of each product needs to be shipped in order to meet demand as 

soon as products are requested to keep the customers happy and increase the 

chances of repeat business. On the other hand, if too much product is built, this 

often results in wasted inventory and financial loss to the product maker. Ideally, 

exactly enough product should be shipped at the right time instances to all customers 

in order to meet the exact demand value and nothing more.  

To get a better idea of what the customers need, companies can ask for an 

estimate of how much product will be needed well in advance. If the customer could 

give perfect data, the problem could be relatively easily solved. Unfortunately, to 

keep customer ratings high, companies need to allow the customer to change their 

orders at a momentõs notice, close to the delivery date. Companies need to look at 

the forecasted demand numbers and compare them to the historical data to make a 

prediction of the customerõs actual need. 

1.3.2 Optimization, Simulation, and Forecast 

The Optimization, Simulation, and Forecast (OSF) platform is built atop previous 

efforts (Godding 2008, Huang 2008). The OSF platform (Sarjoughian et al, 2012) 

introduces forecasting capability to earlier simulation/optimization platform built 

using Linear Programming (LP), Discrete Event Simulator (DEVS), and KIBDEVS/LP 

(Godding 2008). The OSF is conceptualized and developed using  a simple logistics 

supply chain which has a customer warehouse, a single shipping route, a single hub, 

and a single customer. The supply chain supports single products moving from 

customer warehouse and delivered to customer.  

The optimization and simulation models are developed in OPL-

Studio/ CPLEX optimization engine and the DEVS-Suite simulator, respectively. 
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OPL-Studio is a platform managed by IBM. This platform is used to develop LP 

models. When an LP model is compiled by the platform, it may then run through the 

CPLEX optimizer to compute an optimal solution given values for the defined set of 

constraints. The DEVS-Suite modeling and simulation platform was built and is 

managed by staff and students at ASU under the guidance of Dr. Hessam 

Sarjoughian. For this research, the term òmodeló is used to refer to an engine that 

can execute a set of instructions. In this sense, the DEVS-Suite simulator combined 

with just mentioned supply-chain process model is called the DEVS model. The KIB 

transforms data and control messages between the optimization and simulation 

models. The KIB is itself a standalone model that can be specified in XML. The KIB 

model in the form of XMLs has an accompanying execution engine which is 

developed in Java. The KIB execution is governed using the DEVS-Suite simulator 

protocol. The optimization model is defined as a Linear Program (LP) and is used to 

compute an optimal solution given a set of constraints. It is used in this instance to 

determine how many products to be released from a component warehouse to a hub 

given the state on the model at each point. The model, built in DEVS, is a discrete-

event representation of a single-echelon system which can handle a single hub 

shipping a single product to one customer. The executions of the DEVS, LP and 

KIB models are governed using the DEVS-Suite simulator protocol.  

The structure of the OSF platform is shown in Figure 1. The forecast model 

consists of an Inventory Strategy Module (ISM) that looks at historic and forecast 

data to determine how much extra stock to hold at the hub. This data is sent to the 

optimization module for computing release command to the simulator. Even though 
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the execution of ISM is entirely functional, it is devised as an atomic model within 

DEVS in order to ensure it is used correctly alongside simulation model. 

SIM => LP
LP => SIM

SIM
(DEVS Suite)

LP

KIB

ISM

 
Figure 1. Supply Chain Model Composition Structure 

1.3.3 Knowledge Interchange Broker 

A KIB instance is defined using XML. This XML selects the functionality of each 

interface and the KIB interaction model. An interface is defined as a Java class that is 

written to connect the functionality of any external model to the KIB model. The 

high level view in Figure 2 shows an example of a KIB system interfacing DEVS and 

LP models. 

DEVS
Implementation

Interaction Model

DEVS 
Interface

KIB Instance

XML

DEVS Instance

LP Implementation 
(OPL Studio & CPLEX)

LP Interface
LP Instance

Java Java

 
Figure 2. High Level View of KIB Interaction M odel for DEVS and LP 

1.3.3.1 XML Schema Design 

The original KIB XML specification is difficult to be extended. Because many of the 

elements within the XML were labeled with the names of the interfaces themselves, 

if an XML schema was created, the schema would have to be re-written for each new 
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interface that is added to the KIB. Under each interface element defined, the schema 

would contain redundant definitions of nodes. This becomes cumbersome and is not 

scalable. The specification needs to be updated so that an XML schema can be 

defined to allow for XML instances using all current and future model interfaces 

without any change to the XML schema definition itself. 

The structure of XML files created for the KIB allowed for multiple data 

variables for each data input or output, but these elements were defined as a single 

string for each data definition. This string would then have to be parsed within Java 

code to interpret the meaning. This same process was done upon each relationship 

and the control definition. This made it more difficult to define model elements, 

especially for someone who is not familiar with KIB semantics. 

Modules within the KIB define partitions of data within the connecting 

models. Keep in mind that this should not be confused with the forecast modules 

which form the ISM, a separate model in the system. As new modules and their 

relationships were defined within the KIB XML, the file became large in size and 

difficult to manage. There was no systematic method to break up the XML definition 

into separate, manageable pieces. This also posed difficulties for XML reuse . If 

another model was created that was structurally similar, but contained different 

relationships and control, anew file had to be created. 

1.3.3.2 KIB Structure 

A module is an autonomous component within an interaction model that is given 

different definitions depending on the interface implementation within Java code. 

The design of the KIB itself called for a set of interfaces to be held within each 

module definition. Refer to Figure 3 for an example of a KIB instance model at the 
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conceptual level. When creating a KIB instance model, modules had to be 

conceptualized as entities that existed between two interfaces. This design was 

implemented due to the early formalization that each module component should 

have a single corresponding module component in the mapped model. As the design 

was expanded, the constraints needed to be relaxed in order to allow data 

transformation between two modules of differing names. This can be seen in Figure 

3 when DEVS in Module B needs to communicate to LP in Module C. This design 

added difficulty in conceptualizing the structure because now modules within the 

KIB not only provided links between interfaces, but links between modules of 

differing names were acceptable by the design too. 
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Module C

Data 
Transformation

LP DEVS

Module B

Data 
Transformation

LP DEVS

Data 
Transformation

Module A

Data 
Transformation

LP DEVS

Data 
Transformation

Execution 
Control

 
Figure 3. Original Conceptual Design of Model to Model Transformation 

The KIB also assumed that each model within the system was labeled with 

the same name. This not only restricts the designer to label each model with the 

same name, but it also makes it impossible to define multiple models within the same 

interface for the KIB. There was a 1:1 distinction between an interface and an 

instance of a model defined in the KIB. This restricted the definition to a maximum 

of a single model for each interface. 

1.4 Contributions 

The main contribution of this work has been the following: 
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¶ The development of KIB XML schema design and refactoring of the KIB 

serves as a foundational component in the scalability of the OSF platform. 

o The structure of the KIB has been redesigned for better usability and 

comprehension of model design. Since separate model designs are formed 

using their own definitions of module components, it makes sense to define 

these elements separately within the KIB. 

o To define a schema that meets the current need and is scalable for future 

development, elements within the XML design has been generalized. The 

naming of elements is not used to enumerate elements within the KIB. 

Instead, attributes are used to select items within an enumeration. 

o To better define and constrain the structure of a KIB model built in XML, 

post-process parsing of data has been removed. In order to accomplish this, 

each element of the KIB has been well defined. From these definitions, a 

schema was developed with the proper structure and constraints. The 

culmination of all this data can serve as a userõs guide for future use and 

development. 

o This document itself serves as a userõs guide for future development of KIB 

models. 

¶ The ISM has been greatly expanded to test the scalability of the KIB. 

o The modularization of the ISM was necessary as it is designed as a 

functional formalism. Communication to and from the ISM is now handled 

through the KIB using a new interface. 



 

9 

o The ISM has been expanded to handle multiple hubs and products. 

Initialization of data sent through the KIB now contains arrays defining 

hub/product pairs. 

o The design of the ISM was extended to handle multiple echelons using 

research on Multiple Echelon Inventory Optimization (MEIO) methods. 

Although, this work has yet to be completed, the structure has been put in 

place to send the correct sets of data through the KIB. 
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2 BACKGROUND AND RELATED WORK S 

2.1 Background 

2.1.1 Definition of Supply Chain 

The work in this project specifically references supply chains in the semiconductor 

domain. A supply chain, in a very general sense, contains product generator elements 

followed by shipping and inventory elements with customers as end nodes. Product 

usually moves in one direction toward the customer, but in some circumstances, may 

move in a vertical or opposite direction. For simplicity, the model used in this 

research only allows for product to move toward the customer which, in most cases, 

is the path with the lowest cost and highest return. 

When looking at a supply chain purely in terms of inventory movement, the 

supply chain consists of the model elements of inventory, shipping, and customer 

components which are diagrammed in figures 4, 5, and 6 respectively. The inventory 

model receives product from the previous element at any time. At some point, that 

product is moved from the incoming bucket into the store where it is processed. 

Product is only moved from the store to the outgoing bucket when a release 

command is received from the optimizer. The shipping model is similar to the 

inventory element with two distinctions: 1) When product is moved into the store, it 

is stored in buckets of higher granularity. As time progresses, product moves from 

one intransit bucket to the next. 2) Once the product reaches the final intransit 

bucket, it is immediately moved to the outgoing bucket without any release 

command. This means that the shipping element cannot be externally controlled 

once product has entered it. The customer model is simplistic in that it receives 

whatever product that comes to it in order to meet demand. 
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Outgoing 
Bucket

Incomming 
Bucket

Store

Internal Transition

Incoming Stock 
due to External 

Event

Outgoing Stock 
due to Output 

Function

Inventory Model

Release due to 
External Event

 
Figure 4. Inventory Model 

Store

Intransit buckets

Outgoing 
Bucket

Incomming 
Bucket

Internal Transition

Incoming Stock 
due to External 

Event

Outgoing Stock 
due to Output 

Function

Shipping Model

Internal Transition

 
Figure 5. Shipping Model 

Incoming Stock 
due to External 

Event

Customer Model

Demand 
Data

 
Figure 6. Customer Model 

Figure 7 shows an example of a simple double echelon supply chain. The 

òFAó inventory element on the very left represents a factory. This is where inventory 

is generated. The product is then shipped to the òCW" inventory element which 

represents the Component Warehouse. The CW may handle the packaging or 

another phase in assembly. Finally, the product is shipped to either the òHub1ó or 

òHub2ó inventory elements. Product is then immediately distributed to the òGCó 

elements or Geo Customer which, in the real world, is located in the same physical 

location as the hub. 
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FA CW

Hub1

Ship

Ship

Hub2Ship

GC1

GC2

 
Figure 7. Supply Chain Example 

The Supply Chain Council is involved in creating a standardized framework 

for supply chains called the Supply Chain Operations Reference (SCOR) model. 

Although this research does not follow this model, the work that has been done ties 

in with the section of the SCOR model that pertains to òcapturing the configuration 

of a supply chainó (òWhat is SCORó n.d.). In this section, the supply chain model is 

broken up into segments: plan, source, make, deliver, and return.  

2.1.2 Multi -Echelon Inventory Optimization & Sequential Based Stock 

The theory behind Multi-Echelon Inventory Optimization (MEIO) is to compute a 

safety stock value for each single echelon starting from the most downstream 

element and passing the result up. As we move up the supply chain, the average 

delay of each stage is applied to the customer demand. In other words, to satisfy the 

demand of the downstream element on time, we must release stock X weeks early 

where X is the time that it takes to ship product to the downstream element (Graves 

& Willems 2000). 

2.1.3 XML and XML Schemas 

XML was originally developed in 1996 by the World Wide Web Consortium (W3C) 

for òease of implementation and for interoperability with both SGML and HTML.ó 

One of the goals of the XML specification is to make it easy for a developer to 

create documentation (òExtensible Markup Languageó n.d.). This makes an XML 
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definition easy to read, but XML files are generally not lightweight. This data 

formalism was used to create KIB models because it allows someone who is less 

familiar with code design to develop a model. 

 The structure of an XML file is largely comprised of elements and attributes. 

Elements can contain simple or complex data. Under the classification of complex 

data, there may be a set of single or multiple child elements. Attributes are singleton 

simple data variables that can only exist within an element. The W3C organization 

provide a set of uses for an attribute, but in this research, all attributes defined will be 

used to specify a value that is attributable to an element. For further definition of 

XML, refer to the specifications available on the W3C website (òExtensible Markup 

Languageó n.d.). 

 The structure of an XML schema was first designed in 2001 by the W3C to 

define the structure and constraints of an XML document (òW3C XML Schemaó 

n.d.). Any simple value defined can be constrained to a set of values such as an 

enumeration of strings or a numeric value within a set range and/or granularity. For 

further definition of an XML schema, refer to the specifications available on the 

W3C website (òW3C XML Schemaó n.d.). 

2.1.4 DEVS/LP Knowledge Interchange Broker (KIB) 

2.1.4.1 History  

Since 2003, Intel has been working with ASU to develop models for evaluation and 

improvement of its supply-chain processes. More recently, this effort has expanded 

to address the optimization of inventory stocking to meet or exceed specified service 

levels across a multiple logistics echelon. The DEVS simulator has been used to 

develop a skeleton model of a single-echelon supply chain. This model consisted of 
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inventory and shipping components. An inventory component processes stock then 

holds it until an appropriate release command is generated. A shipping component 

will hold its incoming products for a period of time before delivering them to the 

next component in the supply-chain process. 

At every interval of time that the system runs for, an LP model is used to 

determine the optimal plan for the supply chain to generate release commands for 

the inventory components. The LP is modeled in OPL Studio which is written in 

C++, unlike DEVS which is developed in Java. In order to get the two models to 

communicate, an interface was designed to overcome not only the differences in 

implementation languages, but in the simulation operation as well. This interface is 

known as the Knowledge Interchange Broker (KIB) (Godding 2008). 

The KIB at its core is conceptualized to be generic as part of Gary Wade 

Goddingõs (2008) defense for his doctoral thesis entitled, òA Multi-Modeling 

Approach Using Simulation and Optimization for Supply-Chain Network Systemsó 

(Godding 2008). It has a model that formulates data transformations under a time-

based execution control scheme. Time is updated from the controlling model which 

is the model that also calls the KIB. For DEVS/LP, at some time interval, the LP 

model receives information from the DEVS (controlling) model via the KIB model. 

LP then computes release commands which are sent to the DEVS model via the 

KIB model. In this way, all communications (i.e., data transformation and control 

logic) between the LP and DEVS models are managed by the KIB. It is important to 

understand the distinction of the controlling model in the supply chain system. 

DEVS depends on the execution of the LP. Therefore, even though DEVS is labeled 

as the controlling model for the KIB, from a systematic perspective, the LP is the 
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model that controls the DEVS models with release commands. The purpose of Gary 

Goddingõs thesis was to make a generic modeling system that brokers the interaction 

between a simulation and optimization models synchronously. The motivation 

behind the project was to develop a supply chain system from a modeling and 

simulation perspective. Different aspects within the supply chain planning process 

depended on differing principals and are modeled using different formalisms. The 

KIB concept with a basic theory is described in (Sarjoughian 2006; Sarjoughian and 

Plummer 2002). The concept of KIB was further developed by Gary Mayer (2009). 

His work can be seen in (Mayer 2009; Mayer and Sarjoughian 2009). 

From the DEVS/LP KIB, different branches were created to support new 

methods with realizations. This includes a supply-chain system communicating 

between DEVS and Model Predictive Controller (MPC) as well as human and 

landscape dynamics with communication between DEVS and a Cellular Automata 

(CA) model. These realizations can be seen in (Godding 2008; Godding, Sarjoughian, 

and Kempf 2004; Godding, Sarjoughian, and Kempf 2007; Huang 2008; Huang et. 

al. 2006; Huang et. al. 2009). The work done in this thesis can be applied to any 

branch of the KIB as well as any possible future research. 

2.1.4.2 Overview of Transformations 

The way that a KIB model was defined was through an XML file where source and 

target modules were defined for the required interfaces as well as the necessary 

transformation. The XML file also provided a control which defined a controlling 

model element and an interval to execute. A controlling model element needed to be 

defined to keep track of the current time and when the interfacing models need to be 

executed. 
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As the KIB system was developed, several transformations between 3 

dimensions were added. In the KIB, a set of data form a table where key values are 

defined. Each set may contain several single values or 1-dimensional arrays. As the 

KIB receives this data, it is time stamped, which forms the third dimension 

(Godding 2008). Refer to Figure 8 for an example of aggregation of data from 

current set or sets over time. Doing the computation on the 3 dimensions of data 

through the KIB instead of at the source or destination models simplifies the process 

for the model designer. The aggregation and disaggregation of data over time 

accounts for differing model granularity. Simple mathematical functions are built in 

such as min, max, and mean. Data may also be set to be treated as sets or units. All 

these features are further documented in chapter 0 with the development of the KIB 

XML schema. 

 
Figure 8. Types of Data Aggregation (Godding 2008) 

If the model in Figure 7 needed to be implemented into the OSF platform, 

this model would first need to be designed in the simulator. In this example, the 

simulation runs at a daily time granularity and the optimizer runs at a weekly 

granularity. This means that the optimization executes once for every 7 time ticks of 

the simulator. At each tick of time, the inventory models report to the KIB their 

Beginning On Hand (BOH) and Actual Out (AO) data; the shipping models report 
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their in-transit data and AO data; and finally the time stamp value as a single integer 

value. At time of execution of the optimizer, 7 sets of data are available at the 

simulator data store. Only the most recent state data is meaningful to the optimizer, 

so only the newest set of data should be transformed. 

 For the optimization to read the in-transit data correctly, the array of values 

needs to be transformed into a row for each value. Refer to Table 1 for an example 

of this transformation. The array of size 2 with the value of [50, 75] is transformed 

so that each row contains a single integer value for quantity. This is achieved by 

adding the key column of period. The BOH and AO data donõt need any 

conditioning and can be passed right through. 

Table 1. Array to Set Lines Transformation Example 

Shipping 
Name 

Product Quantity[2]  

CW2HxShip P1 [50, 75] 
 

 
TRANSFORMATION 

\ /  
 

Shipping 
Name 

Product Period Quantity 

CW2HxShip P1 0 50 

CW2HxShip P1 1 75 
 

 
The optimizer generates a set of release commands which needs to be 

distributed to each of the inventory elements. To do this, a disaggregation 

transformation is used. Refer to Figure 9 for an example of disaggregation. Each 

value is divided equally between the 7 time buckets within the simulation. The 

standard rounding algorithm is used to round each resulting value to the nearest 

integer. At each time tick, the KIB provides to the simulation a single set of values 

over 7 ticks. At the end of the 7th tick, the optimizer is run again for another 7 sets of 

data. 
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t = [0...6]

TRANSFORMATION 
=>

 
Figure 9. Disaggregation Example 

2.1.5 Integrating Forecast Model with Optimization and Simulation Models 

The definition of the ISM was provided by personal communication with employees 

of Intel. This definition was then used to create a functional implementation of the 

model. Some arbitrary test data was also provided in order to test and qualify the 

functionality.  

Working with Input Demand Data 

The combination of hub H1 and product P4 was selected to do analysis on for this 

project. The chart in Figure 10 shows the comparison of Historic Forecast demand, 

HFC, and Actual Customer Demand, ACD, for hub H1 and product P4. This data is 

used to compute a bias within the ISM. All data in this chart is considered as historic 

data. Therefore, for example, if the current time period is week 7 then the ISM 

would only be able to view the data up to week 7. 
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Figure 10. Hub H1, Product P4 ð Historic Data 

 At each time period, forecasts of future weeks are made. The chart in Figure 

11 shows a three dimensional representation of the forecast data for the ISM. 

Forecasts evolve over time as new data arrives. For example, the forecast for week 

11 at week 7 is 46816 units. The following week, week 8, the forecast for week 11 is 

46654. Between week 7 and week 8, a total of 162 units were canceled for week 20. 

This volatile forecast data adds difficulty when finding an optimal solution for the 

system. This is, of course, what the ISM is going to bias against. 
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Figure 11. Hub H1, Product P4 ð Forecast Data over Time 

Computation of Safety Stock 

Refer to Table 2 and the corresponding graph in Figure 12 for an example of the 

data the ISM uses for week 7. The data shown up to week 7 is historic data, while the 

data after week 7 is forecasted data. The single echelon ISM first computes a 

multiplier based on the smoothing algorithm, target service level, replenishment 

time, and how well the historic actual customer demand did against the historic 

forecasted demand. Historic data is marked in blue in Table 2. The smoothing 

algorithm was an implementation of the smoothing interface of either exponential, 

kernel, or no smoothing. The target service level is a value between 0 and 100%. This 

this can be seen as a customer satisfaction level to be targeted. Replenishment time is 

the time in weeks for inventory to go from the upstream inventory, through a 

shipping delay, and be available for the customer in the downstream element. This 

includes any time that the downstream inventory takes to process the product.  
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Table 2. Historic and Forecasted Data Example 

 Week 
Index 

Actual 
Customer 
Demand 

Forecasted 
Customer 
Demand 

 

 0 800 460 

H
is

to
ric

 D
a

ta 

 1 470 530 

 2 480 520 

 3 510 520 

 4 370 540 

 5 350 500 

 6 280 90 

This Week-> 7 230 210 

Next Week-> 8  190 

F
o

re
c
a

s
te

d
 D

a
ta
 

 9  160 

 10  150 

 11  120 

 12  130 

 13  140 

 14  50 

 15  0 

 

 
Figure 12. Graph of Table 2 

A bias is calculated based on all the data that the ISM uses for the current 

time period.  This bias is then applied to the forecasted data to produce a safety 

stock value. The safety stock value tells the optimizer how much extra stock on top 
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of the future demand to keep in inventory in order to achieve the desired service 

level. 

2.2 Related Works 

2.2.1 Using Model Predictive Control in a Supply Chain 

The work done by Jay D. Schwartz, Manuel R. Arahal, Daniel E. Rivera, and Kirk D. 

Smith (2009) focuses on a supply chain planner in which the main goal is to keep 

inventory at a set level at a specific location using a Model Predictive Control (MPC). 

In this design, an MPC is connected to an inventory component in a feedback loop 

configuration with an injected feed-forward demand forecast signal. At each time 

instance, there is a set level of stock that must be left in the inventory after the 

inventory release of the previous instance. This set level is similar to a safety stock as 

discussed in 2.1.5. A fluid analogy is used to describe the process where a fluid needs 

to stay at a certain level within a tank. More fluid needs to be added to the tank at the 

same rate the fluid is released in order to maintain a given fluid level (Schwartz et al. 

2009; Schwartz and Rivera 2010). 

 The MPC used in the configuration as described above handles the 

prediction of inventory movement at each individual location. Since it does not make 

a prediction of the movement of product as a whole, it may not be scalable to more 

complex models. The LP as discussed in 2.1.4 does the same job of the MPC in this 

instance for simple models by setting constraints such that the expected inventory 

after a release will not fall below the given safety stock value. 

2.2.2 Inner and Outer Loop Optimization 

The work done by Wenlin Wang, Daniel E. Riviera, and Hans D. Mittelmann (2009) 

focuses on a semiconductor supply chain system with a stochastic òouter loop,ó 
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which runs planning at a lower granularity, and a stochastic òinner loop,ó which 

makes day-to-day decisions at a higher granularity. Similar to what is discussed in 

2.1.4, an LP optimization model is used to create planning at a lower granularity. 

Inventory algorithms are used to compute safety stock values, similar to the ISM 

discussed in 2.1.5. After the LP model is executed, the results are split over 7 days 

and sent to the Model Predictive Control (MPC) which makes day-to-day 

optimization and planning in feedback and feedforward configurations. The MPC 

works similar to what is described in 2.2.1 except the data computed by the LP is 

also used by the MPC in order to make better predictions relating to the state of the 

system as a whole. (Wang, Riviera, Mittelmann 2009). 

 The focus of the work discussed above is on how to handle higher 

granularity, stochastic demand with a plan generated by a lower granularity optimizer. 

This issue is outside the scope of this thesis since no day-to-day demand is provided 

to the system, so day-to-day demand is generated by evenly distributing the given 

week-to-week data into 7 buckets. Therefore, it is much easier to predict demand on 

a day-to-day basis by simply dividing the weekly plan generated by the LP into 7 

equal buckets. However, since the work in this thesis demonstrates a design to 

connect model components with scalability in mind, it would be feasible to combine 

these works in the future. 

  



 

24 

3 APPROACH 

3.1 Knowledge Interchange Broker Model XML Schema 

3.1.1 Premise for Design 

The structure of the KIB needs to be updated without changing the underlying 

functionality. The diagram in Figure 13 corresponds to the high level view of KIB 

model in Figure 2 and shows how different elements in each model are mapped to a 

module within the KIB. Each model implementation has a different definition as to 

how its module is defined. In general, a module is an atomic component of a model. 

During runtime, the interfaces can read from the data stored in the KIB module 

outputs and deposit the data into their respective models. After a model is executed, 

an interface can then read the output data given by its model and deposit into the 

correct module inputs of the KIB.  

Interaction Model LP 
Implementation

DEVS
Implementation

KIB InstanceDEVS 
Interface

DEVS Instance LP 
Interface

LP Instance

Atomic 
Model 1

Atomic 
Model 2

Atomic 
Model 3

ÈiÆjeÊhj

Êhm×ÂÊoÂ×

¿×Ä¿eohnModules

Atomic 
Models

DEVS Interface 
Definition

KIB 
Modules

LP Interface 
Definitions

Decision & 
Data Variables

DEVS Model KIB Model LP Model

 
Figure 13. KIB Model Interaction 

 Also defined within a KIB instance model is a set of mappings as depicted in 

Figure 14. A mapping itself defines the source module output and destination 

module input though which data will be routed. Within a mapping, there are a set of 

transformations that define how data is to be manipulated in this block. 

Transformations can manipulate data as a whole and/or as a singular value. When a 
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mapping is called to execute during runtime, all transformations within that mapping 

will be executed based on a priority set within the KIB. 

Mapping

Transformation

Transformation

Module BModule A
..
.

 
Figure 14. KIB Mapping 

 The diagram in Figure 15 shows a conceptual representation of the new 

XML schema design which corresponds to the same example given in Figure 3. Each 

model is associated with an interface within the KIB. Within each model, there are a 

set of modules. Unlike the previous design, modules belong to each model 

(interface) and the transformations are completely separate entities from the 

modules. Take note that the solid arrows in the diagram show how data moves 

though the components during transform and not how the schema is to be defined. 

Since the transformation blocks are now completely separated from the modules, a 

source module output and target module input need to be explicitly referenced using 

the distinct module and data input/output names for each transformation. The 

control component, like the previous design, is still a separate singleton entity which 

references a data output line. 
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Figure 15. Proposed Conceptual Design of Model to Model Transformation 

3.1.2 Decomposition of XML  

To assess the problem with code reusability, the KIB XML can be broken up into 

smaller pieces. After removing the transformation entities from the modules 

themselves, the XML can then be broken down into three types of data. The 

diagram in Figure 15 shows this split with the colors green, red, and blue. The green 

elements represent groupings of model definitions with their accompanying modules 

for the KIB. The red element in the middle then represents the module to module 

mapping and transformations. Finally, the blue element represents what data variable 

will be used as the KIB clock. The model and transformation elements can then be 

further decomposed by the designer as necessary. 



 

27 

3.1.3 Generalization 

Refer to Figure 16 for an example of how a KIB XML file was originally structured. 

The way that nodes were named did not allow a schema to be designed to satisfy 

current and future functionality. To correct this problem, the naming of each node 

can be made more general and instead use attributes and child elements to define 

what specific type of data there is under the element.  

<?xml version="1.0" encoding="utf-8" ?> 
<KIBMODEL>
    

    
    <MODULE_SPECIFICATION Name = "H1">
        <LPINTERFACE>
            <DataVariable Name="H_BOH">
               <Type>Collection,Record,Key:String:hub,Key:String:product,Int:quantity</Type>
            </DataVariable>
            <DecisionVariable Name="H_RELEASE">
               <Type>Collection,Record,Key:String:product,key:String:destination,Int:period,Float:quantity</Type>
            </DecisionVariable>
        </LPINTERFACE>
        <DEVSINTERFACE>
            <DataOutput Name="BOH">
               <Type>Collection,Record,Key:String:hub,Key:String:product,Int:Quantity</Type>
            </DataOutput>
            <DataInput Name="RELEASE">
                <Type>Collection,Record,Key:String:product,Key:String:destination,Int:Quantity</Type>
            </DataInput>
        </DEVSINTERFACE>
        <INTERFACE_RELATIONSHIP>
            <DEVSLPMAP>
                <DEVSNAME>BOH</DEVSNAME>
                <LPNAME>H_BOH</LPNAME>
                <DATA_TRANSFORMATION>NONE</DATA_TRANSFORMATION>
            </DEVSLPMAP>            
            <LPDEVSMAP>
                <LPNAME>H_RELEASE</LPNAME>
                <DEVSNAME>RELEASE</DEVSNAME>
                <DATA_TRANSFORMATION>FloatToInteger:Round,Index:period,quantity,Quantity</DATA_TRANSFORMATION>
            </LPDEVSMAP>
        </ INTERFACE_RELATIONSHIP>
    </MODULE_SPECIFICATION>
    
    
    
    <KIBCONTROL>
                <CONTROLLING_MODEL>DEVS</CONTROLLING_MODEL>
                <MODULENAME>Synchronization</MODULENAME>
                <VARIABLENAME>LP_SYNC</VARIABLENAME>
                <CONTROLTYPE>Periodic:DEVSCYCLES:1</CONTROLTYPE>
    </KIBCONTROL>
</KIBMODEL>

.

.

.

.

.

.

Figure 16. Original KIB XML Definition Example  
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The original design contained 2 interfaces; DEVS and LP. Within a KIB 

XML file under a module, each interface needed to be enumerated by using one of 

the nodes <DEVSINTERFACE> or <LPINTERFACE>. In the redefined design, 

a node <Interface> may be used with an attribute ônameõ to enumerate the type of 

interface. To take this a step further, a model name can be attached to the interface 

so that there may be multiplicity of models within a KIB design. So now a node 

<Model> may be used with a ônameõ attribute naming the model and an ôinterfaceõ 

attribute that connects the model to an interface. The distinct name of the model 

must now be referenced within the remainder of the XML. 

In the previous design, in order to select which is the source interface and 

which is the target interface, nodes with names like <DEVSLPMAP> or 

<LPDEVSMAP> were used to select a DEVS->LP or LP->DEVS mapping 

respectively. To make this more generic, a node <Map> may now be used with the 

attributes ôsourceõ and ôtargetõ which determine which interface is the source and 

which is the target. To take into account the design of the <Model> node in the 

generalization above and the original premise in mind, a source model, module, and 

data output with a target model, module, and data input must instead be defined 

under the <Map> element. Instead of defining source and target attributes, source 

and target elements may now be defined each with the attribute set model, module, 

and data. 

The LP interface required the use of <DataVariable> and 

<DecisionVariable> element for inputs and outputs while the DEVS interface used 

<DataInput> and <DataOutput>. This broke any sort of generalized input/output 

elements that could be created. Since data variables and decision variables still map 
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to what the LP considers as input and an output, the definitions of these elements 

can be changed in code to match the other interfaces to come to a more generalized 

definition of an input and output within the schema. 

3.1.4 Removal of String Parsing 

Any entity of the XML that can be parsed should be further decomposed into XML 

attributes and elements. The following shows how each string is parsed and how the 

decomposition of this string can be handled by the XML file. Deeper explanations of 

what each of the definitions mean will be handled later on in this paper. 

¶ Module Input/Output Definition 

The string in Figure 17 shows a sample definition of an input or output of a 

module.  

o Parts ủ1  and ủ2  tell the KIB that the following data is a collection of record 

definitions, but this is more or less ignored since all data should be a 

collection of records. Therefore, it will be ignored in the schema design.  

o Parts ủ3 , ủ4 , and ủ5  each define a record. If the flag òKeyó is given before 

the definition then the record will be a key field. This can be handled by an 

attribute giving a Boolean value to specify whether the field is a key or not. 

If the flag òArrayó is given before the definition then the record will be an 

array. The size of the array must be given after the definition of the type or 

set to òVariableó if the size of the array is a variable size. This can be 

handled with an optional attribute where if set, then the value is an array 

type. The value of this attribute should be either a positive integer or the 

string òVariable.ó In every field definition, there needs to be a type string 

that is either òString,ó òFloat,ó or òIntó which can be handled by a type 
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attribute. Finally, the name of each field is defined which can be handled by 

a name attribute.  

Collection,Record,Key:String:destination,Key:String:product,Array:Int:Variable:Quantity
1 2 3 4 5

 
Figure 17. Module Input/Output String Definition Example  

¶ Data Transformation Definition 

The strings in figures 18, 19, and 20 show a few examples of how a 

transformation string is defined which, as a whole, cover all the different 

attributes and flags that make up a transformation string.  

o In each figure, part ủ1  defines the name of the transformation used. This 

can be handled by a name attribute with an enumerated list of all possible 

transformations available.  

o Part ủ2  in Figure 18 and part ủ3  in Figure 20 set different types of rounding 

flags. The rounding can be òRound,ó òCeiling,ó or òFlooró which map to 

the corresponding rounding function, with òRoundó being the default. An 

optional rounding attribute can handle this with an enumerated list of the 

three type strings.  

o Part ủ2  of Figure 20 defines how the data should be handled (granularity) in 

the transformation. The value here can be òUnits,ó òSets,ó òCurrentUnits,ó 

or òCurrentSets.ó This can be handled by another optional attribute with an 

enumerated list of strings. 

o Part ủ4  in Figure 20 gives an optional multiplier value by which the 

transformed value is multiplied by before being sent to the destination. This 

can easily be handled by an optional multiplier attribute. 
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o Part ủ3  of Figure 18 gives the index variable and a value associated with it. 

Only a single index variable may be given per transformation. This can be 

handled by an optional index element where both a name and index value 

needs to be given if it is defined. 

o Parts ủ2  and ủ3  of Figure 19 give field definitions. Some transformations 

require one or more fields to be defined while others do not require any at 

all. This can be handled by an optional field element where there must be a 

name and value if a field is defined. This element must have [0..n] 

multiplicity. 

o Part ủ4  in figures 18 and 19 and part ủ5  in Figure 20 give the source 

variable. Part ủ5  in Figure 20 give optional starting and ending index values. 

This can be handled with a mandatory source element with the attributes 

that represent the variable name, starting index, and ending index. The name 

is required, but starting and ending indices are optional. 

o Part ủ5  in figures 18 and 19 and part ủ6 in Figure 20 give the target variable. 

Like the source variable, starting and ending index values may also be 

provided. This can be handled with a mandatory target element that has a 

definition same as the source element. 

FloatToInteger:Round,Index:period=0,quantity,Quantity
1 2 3 4 5

 
Figure 18. Data Transformation String Definition Example 1 

FieldValueToVariable,Field:product=prodX,Field:Destination=route66,quantity,quantity
1 2 3 4 5  

Figure 19. Data Transformation String Definition Example 2 
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Aggregate:UNITS:Ceiling,Multiplier:10,quantity[1..5],quantity
1 2 3 4 5 6

 
Figure 20. Data Transformation String Definition Example 3 

¶ Control 

The string in Figure 21 shows an example of how a control type string is 

defined. 

o Part ủ1  defines the type of control execution. In code, this value is saved, 

but never used. To leave room for future development, it was decided that 

this entry should be used in the new design. This can be handled by an 

attribute that has a one value enumeration of òPeriodicó for the current 

version of the KIB. 

o Part ủ2  was read in and ignored. This value has no meaning and will be 

removed. 

o  Part ủ3  gives the frequency value. This can be handled with an attribute 

constrained to a positive, non-zero integer value. 

Periodic:DEVSCYCLES:7
1 2 3

 
Figure 21. Control Type String Definition 

3.2 Using the KIB with the Inventory Strategy Module 

Figure 1 above shows how the entire system was conceptualized at a high level. As 

stated in the problem, the Inventory Strategy Module (ISM) was a functional model, 

but was contained within an atomic model within DEVS. Since the ISM is built upon 

a different formalism, it makes sense to be a completely separate entity. Figure 22 

shows how the ISM can be separated and the communication lines to be established 

through the KIB. The dashed lines show the communication that did not exist with 
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the previous design. There is a sequential order of communication and execution in 

this network: 

1. Execute the SIM for one step 

o For our model, òone stepó means the length of time the LP will optimize 

over. This is usually over one week. 

2. Transform data SIM => LP and SIM => ISM 

3. Execute ISM 

4. Transform data ISM => SIM and ISM => LP 

o Communication from ISM back the SIM should only be used for 

transducer accumulation of data. 

5. Execute LP 

6. Transform LP => SIM 

7. Repeat from step 1 until complete 

SIM => LP
LP => SIM

SIM => ISM
ISM => SIM

ISM => LP

ISM

SIM
(DEVS Suite)

LP KIB

 
Figure 22. Separating ISM from SIM 

3.3 Development of KIB 

Combining the KIB design premise described in 3.1.1 with the modularization of the 

ISM as described in 3.2, the code structure should then look like it does in Figure 23. 

Like before, DEVS, being the controlling model, starts the KIB through the DEVS 
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Interface. At each DEVS time tick, the time is updated in the KIB and, if it is time to 

do a transformation, the transformations and execution sequence in 3.2 is run. When 

transformations or executions in any of the interfaces are required, the interface 

object functions are called to perform the desired action. Once the sequence is 

complete, the resulting data is returned back to DEVS and the simulation continues. 

KIB:SingleEchelonWeekly

DEVS:SingleEchelon
(Controlling Model)

LP:SupplyChainDecision

ISM:SupplyChainISM

Calls

DEVS Interface (Data Return)

LP Interface
(SupplyChainDecision 

Instance)

ISM Interface
(SupplyChainISM 

Instance)

(Instantiates, 
Runs, 

Data Transform)

(Instantiates, 
Runs, 

Data Transform)

KIB_Relationship.
xsd

References
Controlling Element

KIB_Module.xsd

KIB_Path.xsd

Operational Side Data Model Side (XML)

SingleEchelon
DEVS Model
(Instance)

KIB_Control.xsd

Control

Frequency
Execution Sequence

KIB

 
Figure 23. Interface Relationship with KIB 

3.4 Experimentation/Evaluation  

Refactoring the XML schema must not disrupt the functionality of the KIB 

execution within Java. To determine whether the redesign is a success, the previous 



 

35 

OSF modelõs KIB xml file will be re-written and the results will be tested to make 

sure the model produces the exact same data. On top of this, the previous unit tests 

must be rewritten and pass all execution pertaining to the KIB. 

Some quantifiable measurements will test the scalability of the new KIB 

structure such as number of lines and number of elements. The new KIB design will 

then be used to develop a multi-echelon supply chain model. The ISM, being a new 

interface within the KIB, will be used to test the scalability of the KIB XML design 

when an addiction of an interface is required. The new XML schema and Java code 

must be easier to follow and manage. In other words, the design must make logical 

sense to one who is not familiar with the design. 

XML code reuse is an important feature in any code design. As the KIB 

XML instance model is developed for the OSF platform, previous elements of the 

design that needs to be reused must be implemented without being rewritten.  

There must be no post-process string parsing of the XML definition in Java 

code. All elements must be decomposed to their smallest atomic element within the 

XML schema. All constraints must be well documented. 

 A set of experiments will test the OSF system as a whole. The generation of 

meaningful experimental results shows that the entire system works with the new 

KIB and provides some data pertaining to the original goal to create a supply chain 

simulation model capable of running dynamic single and multiple echelon models. 

The run time scalability of the system should be tested to determine how feasible it 

will be to run models with thousands of components. 
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4 CONCEPT & XML DESIGN OF KIB  

4.1 File Decomposition 

With the new design premise, the XML schema is decomposed into three separate 

components: the modules, transformation and a control. The KIB_Paths.xsd schema 

defines the paths to where each piece of the KIB model is defined. Figure 24 shows 

a graphical representation of the KIB_Paths.xsd schema. Within this schema, one or 

more paths need to be defined for each set of components with the exception of the 

control which requires exactly one path. The path must define another XML file 

with the correct pieces of the KIB model. The paths can be absolute or be relative to 

the location of the KIB_Paths instance. Any XML that is referenced here must begin 

with a KIBMODEL element which signifies that the file is part of the KIB model. 

 
Figure 24. KIB_Paths.xsd Schema Graphic Representation 

This design allows the entire KIB model to be decomposed into multiple 

parts and allow for partial definition in each file. This can greatly help out with 

development when the structures of the models stay the same, but the way they 

operate changes. For instance, with the supply chain model, when the discrete event 

simulator model changes from a weekly step size to a daily one and the LP model 
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still runs every week, the module definitions stay the same, but the transformations 

and control will change to accommodate this.  

4.2 Module Schema 

The module component defined in KIB_Modules.xsd does two things: it ties an 

interface to a model name, and it defines a set of modules that belong to the model. 

Figures 25 and 26 show the graphical representation of the KIB_Modules.xsd 

schema. 

 
Figure 25. KIB_Modules.xsd Schema Graphic Representation Level 1 

4.2.1 Model Element 

Under the Model element, there are two attributes named ôNameõ and ôInterfaceõ. 

The definition for ôNameõ is a distinct name for the model within the KIB instance. 

This name is used as a referencing name to this model for the transformations 

definition. This name is also sent to the model interface in order to open the correct 

model. The definition for ôInterfaceõ must be one of the enumerated values set 
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within code. Currently, this includes òDEVS,ó òLP,ó and òISM.ó This maps the 

distinct model name to an interface definition within code. Providing a unique model 

name for the interface allows a developer to create multiple models under the same 

interface. It also helps with labeling each component in the KIB. 

4.2.2 Module Element 

Each model contains a set of modules. Under the Module element, there is a ôNameõ 

attribute. The definition for ôNameõ here is a distinct string name that references 

something within the model. This name is also referenced within the transformations 

definition. As Gary points out in his research, these modules can be seen as different 

things depending on the environment used (Gary 2008). Within DEVS, a module is 

closely tied to an atomic model component whereas within an LP the module does 

not hold much meaning. 

 
Figure 26. KIB_Modules.xsd Schema Graphic Representation Level 2 
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4.2.3 DataInput and DataOutput Elements 

Each module has a set of input and output data lines associated with it. This would 

be the DataInput and DataOutput elements. Even though providing neither of these 

elements in a KIB XML would be semantically correct according to the schema, the 

module would serve no purpose. Therefore, a designer should always define at least 

one input or output. There is no difference between the schema definition of 

DataInput and DataOutput. The only difference is the way that they are treated 

within the KIB. A DataInput is used when data goes into the model and a 

DataOutput is used when data comes out of the model. Under the DataInput and 

DataOutput elements is a ôNameõ attribute which uniquely identifies the port and is 

also associated with something within the model instance.  

4.2.4 DataVariable Element 

The type of data that is produced and consumed under a DataOutput or DataInput 

is defined as the DataVariable element. Each entry defines a column within a table. 

The DataVariable element contains the following attributes: 

¶ Name ð label for the variable. The name must be distinct for the DataInput 

or DataOutput group. 

¶ Type - must be one of the following: 

o String 

o Int 

o Float 

¶ IsKey ð must either be òtrueó or òfalseó depending on if the variable is a key 

for the set. During runtime, there can never be two entries where all the key 

values are the same. This is similar to how a primary key set works in a 
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database. The newer set will overwrite the older set if all of the key values 

match. If no keys are set, the key is assumed to be ônullõ for each incoming 

value and only the newest value set may be passed at each time step. 

¶ ArraySize ð is an optional value. This is set if the data variable is an array field 

and signifies the size of the array. This value must be a positive integer value 

greater than 0 or the string òVariableó if the size of the array is unknown. 

4.3 Control Schema 

The control schema defines frequency and the order of the transformation actions. 

Figure 27 shows the graphical representation of the KIB_Control.xsd schema. 

 
Figure 27. KIB_Control.xsd Schema Graphical Representation 

4.3.1 Control Element 

Within the Control element are the following attributes: 

¶ Model 

o Defines the name of the model which contains the controlling variable 
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¶ Module 

o Defines the name of the module under the previously defined model which 

contains the controlling variable 

¶ DataOutput 

o Defines the name of the data output under the previously defined module 

which contains the controlling variable 

¶ DataVariable 

o Defines the name of the data variable under the previously defined data 

output which is the controlling integer variable 

¶ Type 

o Can only be set to the string òPeriodicó for the current version of the KIB. 

This signifies that transformations happen periodically. Future 

developments of the KIB may allow for other options. 

¶ Frequency 

o Must be an integer value greater than 0 which defines how often the non-

controlling model elements be executed ð For instance, if this value is set to 

2, execution will occur at instances 0, 2, 4, and so on until the model 

terminates. 

4.3.2 Execution Element 

A single Execution element must be defined under the Control element. The 

Execution element gives the order of execution models to run at the frequency 

instances. One or more Run elements must be defined under the Execution element 

and order of given elements is crucial. For each Run element that is defined, the 

Model attribute should give the name of the model to execute. The model name 
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must be previously given elsewhere within the KIB modules definitions and cannot 

be the model that is defined as the controlling model. 

4.4 Relationship Schema 

The relationship schema provides the structure and constraints of the transformation 

definitions. Figures 28, 29, 30, and 31 show the graphical representation of the 

KIB_Relationship.xsd schema. 

 
Figure 28. KIB_Relationship.xsd Schema Graphic Representation Level 1 

4.4.1 Relationship Element 

A single Relationship element signifies that this is an XML that defines the 

relationships of the KIB model. 

4.4.2 Map Element 

One or more Map elements must be defined under the Relationship element. The 

Map element defines a mapping between a DataOutput of one Module to a 

DataInput of another Module. The ôIntervalõ and ôIntervalOffsetõ attributes within 

the Map element define when all the transformations within a mapping should take 

place. These values are relative to the control frequency that is defined above in 4.3. 

The ôIntervalõ defines how often to execute this mapping transformation. This must 

be a positive, non-zero integer value. For example, if the frequency in the control is 
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set to 7 and the interval here is set to 2, the mapping will be executed on 0, 14, 28, 

and so on until the system terminates. The ôIntervalOffsetõ defines at what time the 

first transformation is executed. This must be a non-negative integer value. For 

example, taking the above case where frequency set to 7 and interval of mapping set 

to 2, if the interval offset is set to 5, the mapping will be executed on 5, 19, 33, and 

so on until the system terminates. 

 
Figure 29. KIB_Relationship.xsd Schema Graphic Representation Level 2 

4.4.3 Source DataOutput Element 

Under each Map element is a Source element. The Source element contains the 

attributes ôModelõ, ôModuleõ, and ôDataõ which correspond to the names of a Model, 

Module, and DataOutput that has been previously defined. This makes up the 

address of a DataOutput element.  
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4.4.4 Target DataInput Element 

Under each Map element is also a Target element. The definition of a Target element 

is the same as the Source element. The only distinction is that the ôDataõ attribute 

references a DataInput element. 

 
Figure 30. KIB_Relationship.xsd Schema Graphic Representation Level 3 

4.4.5 Transformation Element 

At least one Transformation definition must be given for each mapping. A 

Transformation element defines how data shall be transformed at the execution of 

this mapping within the KIB. The order of transformations does not make any 

different in the end result. Within the ôNameõ attribute is an enumeration of 

transform types which corresponds to a name of a transformation within the KIBõs 
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execution object. This name may be one of the names given in the list below. For a 

deeper explanation of each of these transformations, refer to APPENDIX B. 

¶ NONE 

¶ COPY 

¶ IntegerToFloat 

¶ FloatToInteger 

¶ Aggregate 

¶ MAX 

¶ MIN 

¶ MEDIAN  

¶ MEAN 

¶ NewestValue 

¶ OldestValue 

¶ SET_TO_VALUES 

¶ VALUES_TO_SET 

¶ FieldValueToVariable 

¶ VariableToFieldValue 

¶ ASSIGN_FIELD_VALUES 

¶ DisaggregateIntoEqualBuckets 

¶ AllToOneValue 

¶ AllCurrentToOneValue 

 The attribute ôRoundingõ defines how to round the data before it is 

transformed. If the source value is already an integer value, any of the rounding 
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functions will not affect the value in any one of these cases. The ôRoundingõ attribute 

may be defined as one of the following: 

¶ Round: Rounds a floating point value to the nearest integer value. 

¶ Ceiling: Rounds a floating point value up to the next integer value. 

¶ Floor: Rounds a floating point value down to the previous integer value. 

 The attribute ôGranularityõ defines how data should be aggregated when a 

transformation takes a set of values and changes it to a single value or single set of 

values. It may be one of the following: 

¶ Units: Data input is in terms of units, handled horizontally. For example, if 

ôMINõ transformation is used and the sets {5, 9, 0} {2, 2, 2} are sent from the 

source array, the target value will be 0; the smallest overall value. 

¶ Sets: Data input is in terms of sets of data, handled vertically. For example, if 

ôMINõ transformation is used and the sets {5, 9, 0} and {2, 2, 2} are sent from 

the source array, the target value will be {2, 2, 0}; the minimum value of each 

index value individually. 

¶ CurrentUnits: Same as ôUnits,õ but use only the most recent data. 

¶ CurrentSets: Same as ôSets,õ but use only the most recent data. 

The ôMultiplierõ attribute defines a value in which should be used to multiply the 

target value by after transformation has been completed. This may be any real value. 

The multiplier value will only be used if the target value is numerical. 



 

47 

 
Figure 31. KIB_Relationship.xsd Schema Graphic Representation Level 4 

4.4.6 Source DataVariable Element 

Under each Transformation element a single Source element may be defined. This 

element is optional if the transformation does not require its definition. The 

ôDataVariableõ attribute references a name of a DataVariable. This DataVariable must 

be defined under the Source DataOutput of the mapping. The ôStartIndexõ and 

ôEndIndexõ attributes are used only if the DataVariable referenced is an array type 

and a specific range needs to be selected for this transformation. The ôStartIndexõ is 

constrained to a non-negative integer value and the ôEndIndexõ is constrained to a 

positive, non-zero number. A StartIndex may be defined without an EndIndex if 

only a single value within an array is selected. If the EndIndex is defined, it must be 

greater than the StartIndex.   
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4.4.7 Target DataVariable Element 

The Target element provides the same definition as the Source element within the 

schema. The only distinction is that the Targetõs DataVariable referenced the name 

of a DataVariable within the Target DataInput of the mapping. 

4.4.8 Index Element 

The Index element should define the DataVariable name on either the source or 

target that data should be indexed by. This is used in certain transformations when 

data is being transformed to or from an array. The value attribute must be an integer 

value greater than or equal to 0. This defines the starting index value (usually either 0 

or 1). 

4.4.9 Field Element 

The Field element gives a set of key/value pairs used when a transformation requires 

it such as FieldValueToVariable and VariableToFieldValue. 
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5 SCHEMA IMPLEMENTATION  

5.1 Object Structure and Data Structure Mapping 

With the changes made to the schema as drawn out with the example in Figure 15, 

the object structure in code has been implemented with this structure as well. This 

provides a more succinct definition between the connection of XML structure and 

code structure. 

5.1.1 KIB Entry Point  

The diagram in Figure 32 shows a high level UML diagram of the entry point into 

the KIB. An instance of the KIBExecution object instantiates the KIBDataStore 

then sends the reference to ConfigurationReader where the KIBDataStore is filled 

with the appropriate metadata. This structure did not change since the previous 

version of the KIB. The ConfigurationReader has been updated to follow the new 

schema design.  

 
Figure 32. UML KIB Entry Point Objects  

ConfigurationReader
(from execution)

KIBExecution

cycle : int

executionSequence : ArrayList...

decisionEngines : Hashtable

(from execution)

KIBDataStore

moduleList : Logical View::java::util::Hashtable

debug : boolean

(from execution)

-$instance

-kibDS-kibds
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5.1.2 KIB Module Objects 

Since now, from the schema design modules belong to model elements, this matches 

in the module metadata elements within the object design. The diagram in Figure 33 

shows the upper level of the module objects. The KIBDataStore maps each model 

to a list of KIBModules. The ModelName object connects a string name to a value 

in the interface enumeration. Now each instance of a KIBModule belongs to a single 

model. The KIBModule contains a list of DataModelNodes which correspond to all 

DataInputs and DataOutputs associated with the Module in the schema. If the 

KIBModule instance is a target, it will contain a list of all DataRelationship objects 

for which this module is a target. 
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Figure 33. UML Objects Relating to KIB_Modules.xsd Part 1 

 Figure 34 shows the UML object diagram of the second level of the module 

objects. The only addition to this structure since the previous version is the 

DataType enumeration which enumerates String, Int, or Float and holds their string 

representations. Each DataVariable maps into an instance of NameTypeValue. The 

RecordDefinition object keeps the list of all NameTypeValues and marks the 

variables that are key values. As data is entered during runtime, instances of 

DataRecord are created with the value entries. 
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Figure 34. UML Objects Relating to KIB_Modules.xsd Part 2 

5.1.3 KIB Control Object 

The ControlConfiguration object shown in Figure 35 has a direct mapping to the 

data given in the KIB_Control.xsd schema. This objectõs structure does not differ 

from the previous version. The main difference is that the executionSequence is 

filled and executed in the given order which was previously ignored. 
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Figure 35. UML Object Relating to KIB_Control.xsd 

5.1.4 KIB Relationship Objects 

Figure 36 shows a UML diagram of the objects that map to the data in the 

KIB_Relationship.xsd schema. A ModelRelation object has been added to map the 

source model to the target model. Enumerations for granularity, rounding, and 

transformation name have been added to map string definitions within XML to flags 

in code. Definitions of these enumerations match what is given in 4.4.5. 

Control

KIB_Control

ControlConfiguration

controlFrequency : int

controllingModel : Logical View::java::lang::String

controlDataModule : Logical View::java::lang::String
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Figure 36. UML Objects Relating to KIB_Relationship.xsd 

5.1.5 Adding an Interface 

The process to add a new interface was made to be as simple as possible. When 

adding a new interface for the KIB, the following steps need to be taken: 

1. Create an interface model node extending the DataModelNode class. This 

step is optional if no extensions of the DataModelNode are necessary for the 

model. This can be seen, for example, with the addition of the ISM model. 
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2. Create a KIB interface object implementing DecisionEngineInterface; define 

all required operations using a DataModelNode object either as defined in 

step 1 or the base DataModelNode itself 

3. Create a name that will represent the interface and add it to the enumeration 

InterfaceName (refer to Figure 37) 

 
Figure 37. InterfaceName Name Definitions 

4. If a new interface model node has been created, have the 

ConfigurationReader.addVariable() function instantiate the new 

DataModelNode from step 1 with the given InterfaceName from step 3 

(refer to Figure 38) 

 
Figure 38. Instantiating DataModelNode 

5. Have the KIBExecution.initializeEngine() function instantiate the new 

DecisionEngineInterface from step 2 with the given InterfaceName from 

step 3 
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Figure 39. Instantiating DecisionEngineInterface 

5.1.6 Designing a KIB Model 

Steps in a certain order should be taken in order to develop a KIB model. In general, 

following the following steps will lead to a working KIB model: 

1. Create all necessary interfaces as described in 5.1.5 

2. Implement and test each model separately to make sure each model 

component is formalized properly 

3. For each model, create a separate XML file that implements the 

KIB_Modules.xsd schema defining things in a way that goes in line with how 

the interface for each model is designed from step 1 

o A separate file is not necessary to define each model contents, but this 

helps partition the components in succinct way. For smaller models, it 

may be reasonable for all modules to be defined in one file. 

4. Decide where the controlling DataVariable resides and define them as such 

in an XML file that implements KIB_Control.xsd 

5. Decide the data couplings and transformation scheme for all data and define 

as such in an XML file that implements KIB_Relationship.xsd 

6. Reference all XML definitions from steps 3, 4, and 5 into an XML file that 

implements KIB_Paths.xsd 
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7. In code, load the file defined in step 6 into the ConfigurationReader object 

which will setup a KIBDataStore 

5.2 ISM Implementation 

To completely separate the ISM component from the rest of the project, Javaõs 

Remote Method Invocation (RMI) technology is used. RMI is a way to setup a 

server/client connection using Java interfaces as if the implementations for the 

interfaces reside on the client system. Once a serverõs method is called, the required 

attribute values are sent to the server where the function is executed remotely. The 

return value of the function is then sent back to the client if one exists. The 

definition of any complex structure that is being used in the communication must 

reside on both the client and server. The diagram in Figure 40 shows a block level 

communication between the KIB and each model. In this setup, the ISM is the RMI 

server and the ISM interface within the KIB is an RMI client. An interface package is 

also created that contains the RMI interface and the object, ISMResult, which 

contains the result of the ISM computation for a time step.  
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Figure 40. KIB with ISM  

The modularized ISM model has a static set of variables associated with it. 

Below are a list of these elements; the first level being the modules, second level 

being either data input or data output, and third level being the set of data variables 

for the data input/output. A short explanation is given for each data variable. 

¶ ISM_TARGET 

o FC_CD (O) 

Á echelon_index (Int): Index for the selected echelon 

Á hub (String): Inventory element name 

Á product (String): Product name 

Á quantity[] (Int): Values of forecasted customer demand for 

the current period up to the length of the planning horizon 
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o HUB_SS (O) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 

Á quantity[] (Int): Values of safety stock in the hub inventories 

for the current period up to the length of the planning 

horizon 

o CW_SS (O) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 

Á quantity[] (Int): Values of safety stock in the component 

warehouse inventories for the current period up to the length 

of the planning horizon 

o LOG_SS_FC (O) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 

Á quantity [] (Int): Values of forecasted customer demand for 

the current period up to the length of the planning horizon 

Á target (Int): target order up to 

Á destination (Int): safety stock 

Á value (String): week label 

Á current_time (Float): clock time 
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Á weight (Int): weight for the week (0 or 1) 

¶ ISM_INIT 

o ISM_INIT_DATA (I) 

Á name (String): Name of the key element for initialization data 

Á value (String): Value of the value element for initialization 

data 

o HUB_LIST (I) 

Á echelon_index (Int) 

Á hub[] (String): List of hub names for the echelon (names may 

exists more than once) 

o PRODUCT_LIST (I) 

Á echelon_index (Int) 

Á product[] (String): For each hub in the HUB_LIST input, this 

list gives an accompanying product creating (hub, product) 

pairs 

o TO_INVENTORY_LIST (I) 

Á echelon_index (Int) 

Á hub (String) 

Á destination[] (String): List of destination inventory elements 

in the downstream echelon that this inventory ships to 

o TO_SHIP_TIME_LIST (I) 

Á echelon_index (Int) 

Á hub (String) 
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Á value[] (Int): Shipping time for each of the lanes given in 

TO_INVENTORY_LIST 

¶ ISM_RUN 

o BOWK (I) 

Á name (String): This key variable is not used in the current 

implementation of ISM 

Á value (Int): The Beginning Of Week index 

o BOH (I) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 

Á quantity (Int): Value for the Beginning On Hand value for the 

product in the inventory given in the key 

o INTRANSIT (I) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 

Á quantity[] (Int): The in-transit values for the shipping for the 

product to the inventory given in the key 

o INTRANSIT_AO (I) 

Á echelon_index (Int) 

Á hub (String) 

Á product (String) 
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Á quantity (Int): The value coming out of the shipping element 

for the product to the inventory given in the key 

¶ Synchronization 

o ISM_SIM_SYNC (I) 

Á current_time (Int): The current time value used for labeling 

There are some potential issues with the KIB when it is expanded to allow 

three models communicating between each other. The KIB is designed to transform 

data between two models. Therefore, with three model communication, each 

transformation must be executed between pairs of models only. The diagram in 

Figure 41 shows a conceptual representation of three models communicating 

through the KIB. The execution and transformation are not only synchronous, but 

are also sequential, so the execution sequence of DEVS, ISM, LP is selected. This is 

because DEVS, being the controlling model in the KIB, needs to first send its state 

to both the ISM and LP. The LP is then dependent upon the computations done in 

the ISM. Since the LP and ISM are both point solution models, this execution 

sequence is simplified. For KIB solutions with models that arenõt executed 

sequentially and/or  contain multiple models that arenõt point solutions, the control 

may need to be redesigned to allow a more complex environment. Concepts and 

methods for such control were developed in a dissertation by Dongping to allow 

asynchronous execution between DEVS and MPC (Huang 2008). 
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Figure 41. Three Model KIB Communications 

 A block diagram showing the communication between the three models of 

the OSF platform is given in Figure 42. This gives a high level view of the data that is 

being sent between the models. DEVS sends its state to the LP and the week index 

to the ISM. The ISM uses the week index to look up the correct Actual Customer 

Demand (ACD), Historic Forecast (HFC), and Forecast Customer Demand (FCCD) 

for the correct period. ISM then computes a Safety Stock (SS) value and then sends 

this along with the FCCD data to the LP. The ISM also sends some data back to 

DEVS (not explicitly depicted in the figure) to be used strictly by the transducers for 

data collection. LP then computes a plan for a period of time and sends this plan 

back to DEVS in the form of release commands. DEVS also uses Lot Generator 

(LG) to determine the amount of inventory to be generated in the most upstream 

inventory in order to replenish released inventory. The ACD data is used by the 
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customers in the DEVS model to determine if demand has been fulfilled at each 

period of time. 

 
Figure 42. OSF Model 

5.3 Single Echelon Implementation 

5.3.1 Single Echelon Timeline 

To properly map the execution and time base of the simulation with the execution 

and time base of the LP and ISM, the sample diagram in Figure 43 was created. This 

diagram represents a model with a single hub, shipping to a single component 

warehouse through one shipping lane. The following assumptions are also used. 

¶ Model provides perfect fulfillment for demand 

¶ The Hub and Component Warehouse models are set to process arrivals 

immediately 

¶ Hub delivers all of its inventory to the Geo Customer at each time period 

The simulation, ISM, and LP all execute on a weekly time step. The Decision 

Connector component contains the connection to the KIB. Single arrows downward 

represent product being sent to the next component. Double arrows upward are 

state messages being sent to the Decision Connector. Double arrows downward are 
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release messages to be delivered to their respective components. The following 

constraints are set: 

 

Ὕ ᴙ ȟ  

Ὕ ᴚ ȟ  

Ὑὼ π ×ÈÅÒÅ ὼ π 

ὸɴ Ὕ (Time in DEVS is in real increments) 

ὸᴂɴ Ὕᴂ (Time used for KIB is on integral steps)  

Ўίɴ ᴚ ȟ  (Shipping time from CW to hub) 

Ὑὸ ᴚ ȟ  (Release command function at the CW) 
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Figure 43. Single Echelon Timeline 

To the simulation, the execution of each week is not an instantaneous event. 

A set of events occur over a period of time. The model was implemented to execute 

certain things at certain periods of time in order to force a deterministic execution 

order within DEVS. Thus, the simulation has varying states throughout each time 

step. The ISM and LP only care about the state of the system at the integer time 

values as they only execute over integer granularity. If this was expanded to a setup 

t 
ς 

1
.л
м
л
Ɏ

ǘΩ
-1

 =
 

t-
1
.0

0
0

t-
0
.9

9
0

t-
0
.9

8
0

t-
0
.9

7
5

t-
0
.9

6
5

t-
0
.0

0
1
 

t 
= 
ǘΩ

D
ec

is
io

n
C
o
n
n
ec

to
r

C
o
m

p
o
n
en

t
W

ar
eh

o
u
se

Sh
ip

p
in

g

H
u
b

G
eo

C
u
st

o
m

er

K
IB

Id
le

W
ai

ti
n
g

Fo
r

D
ec

is
io

n

U
p
d
at

in
g

St
at

u
s

St
ar

ti
n
g

M
at

er
ia

ls

P
ro

ce
ss

in
g

R
ec

ei
vi

n
g 

O
rd

er
s

U
p
d
at

in
g

R
el

ea
se

R
(ǘ
Ω-
1
)

B
O

H
& A
O In
-

Tr
an

si
t

&
 A

O

B
O

H
& A
O

Ex
ec

u
ti

o
n
 &

 T
ra

n
sf

o
rm

at
io

n

B
eg

in
n
in

g 
O

f 
D

ay
En

d
 O

f 
D

ay
P
H

A
SE

 K
EY

:

D
el

iv
er

 
Lo

ts
 

R
(ǘ
Ω-
s-

2
)

P
ro

ce
ss

 
In

co
m

in
g 

Lo
ts

P
ro

ce
ss

 
D

ep
ar

ti
n
g 

Lo
ts

 R
(ǘ
Ω-
1
)

P
ro

ce
ss

 
In

co
m

in
g 

Lo
ts

 R
(ǘ
Ω-
s-

2
)

P
ro

ce
ss

 
D

ep
ar

ti
n
g 

Lo
ts

 R
(ǘ
Ω-
s-

2
)

Se
n
d
 L

o
ts

 
R
(ǘ
Ω-
s-

2
)

Se
n
d
 L

o
ts

R
(ǘ
Ω-
1
)

P
ro

ce
ss

 
In

co
m

in
g 

Lo
ts

 R
(ǘ
Ω-
1
)

P
ro

ce
ss

 
D

ep
ar

ti
n
g 

Lo
ts

 R
(ǘ
Ω-

s-
1
)

B
O

H
& A
O In
-

Tr
an

si
t

&
 A

O

B
O

H
& A
O

t-
0
.9

9
9

M
at

er
ia

l 
A

rr
iv

ed
 

&
 C

D

M
at

er
ia

l 
A

rr
iv

ed
 

&
 C

D

A
O

 =
 R

(ǘ
Ω-
1
)

In
-T

ra
n
si

t 
= 

{R
(ǘ
Ω-

1
),
 Χ

, R
(ǘ
Ω-

s)
}

A
O

 =
 R

(ǘ
Ω-

s-
1
)

B
O

H
 =

 0
A

O
 =

 R
(ǘ
Ω-

s-
2
)



 

67 

where the simulation ran on a daily time step with ISM and LP running weekly, the 

ISM and LP would only care about the state of the system at times {0, 7, 14, é, n}. 

5.3.2 Configuration and GUI 

A configuration schema and GUI was created in order to quickly run experiments on 

the single echelon model. The ISM Client schema in Figure 44 and the 

accompanying GUI in Figure 45 provide entries for connecting to the ISM server. 

The ISM client configuration consists of the following information: 

¶ Hostname 

The hostname is the name of the host for which the ISM server resides. This 

can be in the form of an IP address, a URL, or the string òlocalhostó if the 

server resides on the local host machine. The elements useLocalHost and 

useMyIP can be set to true or false. If useLocalHost is set to true, the string 

òlocalhostó is used. If useMyIP is set to true, the IP address of the local 

machine is retrieved and used. Otherwise, a host name string can be given under 

the name element. Only one of these three entries should be given. 

¶ Port 

This is the port number, as an integer, that the ISM server is setup on. The 

default port for the ISM server is 2020. 

¶ Create Server and Server Path 

If the createServer flag is set to true, the executable jar file at the serverPath is 

executed to start the server with the given hostname and port arguments. If the 

createServer flag is set to false, the serverPath is ignored. 
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Figure 44. ISM Client Schema 

 
Figure 45. Single Echelon GUI: ISM Connection Tab 

 The system schema in Figure 46 and accompanying GUI in Figure 47 

provide the system entries. This should hold any information that need to be sent to 

the system as a whole. The system configuration contains the following data: 

¶ configPath 

The configuration path is the path to the directory containing òKIBó and 

òLP_Modelsó folders where the KIB and LP models are stored. 
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¶ dataDir 

The data directory is the path to the directory containing the input customer 

demand data. 

¶ outDir 

The output directory is the path to the directory where the resulting data from 

the model run should be stored. 

¶ stepSize 

This should be set to òWeeklyó or òDailyó depending on the step size 

granularity for the simulation model. 

¶ lpstepSize 

This should be set to òWeeklyó or òDailyó depending on the step size 

granularity for the optimization model. 

¶ hubs 

The hubs element should contain a list of hubs that can be selected to run in the 

experiments. 

¶ products 

The products element should contain a list of products that can be selected to 

run in the experiments. 
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Figure 46. System Schema 

 
Figure 47. Single Echelon GUI: System Tab 

 For this project, the scope for what is known as an experiment configuration 

is any data that is inputted to select certain functionality for a model to run. This 

should not affect the overall structure of the model. The experiment schema in 

Figure 48 and accompanying GUI in Figure 49 provide the experiment 
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configuration. This holds a list of experiment configuration settings to run. Each 

experiment element in the experiment configuration should contain the following 

information: 

¶ name 

This element defines the name of the experiment used to label the data. 

¶ products 

This element defines a list of products to run in this experiment. 

¶ hubs 

This element defines a list of hubs to run in this experiment. 

¶ startingWeek 

This element defines a string representation of the week for which the model is 

initialized to. 

¶ endingWeek 

This element defines a string representation of the week when the model should 

terminate. 

¶ smoothing 

This element defines a list of smoothing names to be used. Each smoothing 

selection is run with each service level (below). 

¶ serviceLevel 

This element defines a list of service level values (between 0 and 100) that 

should be used; run one at a time with each smoothing name (above). 

¶ planningHorizon 
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This element defines how many weeks into the future to plan for in the ISM. 

This value must be greater than 0. 

¶ historySize 

This element defines how many weeks to smooth with historic data in the ISM. 

This value must be greater than 0. 

 
Figure 48. Experiment Schema 
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Figure 49. Single Echelon GUI: Independent Experiments Tab 

5.3.3 KIB Implementation  

For each component, the granularity of daily or weekly has been considered. The LP 

in the real world runs on a weekly basis, but could be run on a daily basis even 

though it may not produce any meaningful results. The simulation in the past only 

ran on a weekly basis, but a daily basis would better match real world operations. 

The configuration with the simulation running on a weekly basis with the LP running 

on a daily basis should be ignored since is does not make sense to optimize faster 

than the simulation can run. The data provided for customer demand and forecast is 

given in weekly granularity. Therefore, running the ISM on a daily granularity with 

this data would not provide any better results. With these constraints defined, we 

have the following 3 configurations of running granularity: 

A. Simulation: weekly, LP: weekly, ISM: weekly 
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B. Simulation: daily, LP: weekly, ISM: weekly [closest to real world] 

C. Simulation: daily, LP: daily, ISM: weekly 

 For each of these configurations, the KIB needs to be setup in a different 

way. Configuration A requires a 1:1:1 execution scheme; the LP and ISM execute 

once for every step in the simulation. Configuration B requires a 7:1:1 execution 

scheme; the LP and ISM execute once for every 7 steps in the simulation. 

Configuration B also requires disaggregation transformations. Configuration C will 

be ignored for this implementation since it may or may not produce meaningful 

results. The KIB model has been partitioned with the following xml files: 

1. Instances of KIB_Paths 

a. SingleEchelon_Sim[W]_LP[W]_ISM[W].xml 

b. SingleEchelon_Sim[D]_LP[W]_ISM[W].xml 

2. Instances of KIB_Modules 

a. DEVS_Modules.xml 

b. ISM_Modules.xml 

c. LP_Modules.xml 

3. Instances of KIB_Control 

a. Control_Freq1.xml 

b. Control_Freq7.xml 

4. Instances of KIB_Relationship 

a. ISM_Relationships.xml 

b. Relationship_Sim[W]_LP[W]_ISM[W] 

c. Relationship_Sim[D]_LP[W]_ISM[W] 
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 To load the KIB for configuration A, the file 

SingleEchelon_Sim[W]_LP[W]_ISM[W].xml is called. This loads the module 

definitions in all of 2, the control 3.a, and the relationships defined in 4.a and 4.b. To 

load the KIB for configuration B, the file 

SingleEchelon_Sim[D]_LP[W]_ISM[W].xml is called. This loads the module 

definitions in all of 2; the control 3.b; and the relationships defined in 4.a and 4.c. See 

the XML code in Figure 50 for the definition of this XML file. For either of these 

KIB models, all of the defined instances of KIB_Modules are called since the 

structure does not change between configurations. All of the relationships going to 

or from the ISM do not change per configuration, so it was a design choice to use 

the same definition between the two as well. 

<?xml version="1.0" encoding="UTF-8"?>
<KIBPATHS xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Paths.xsd">

<MODULE_FILE Path="DEVS_Modules.xml"/>
<MODULE_FILE Path="LP_Modules.xml"/>
<MODULE_FILE Path="ISM_Modules.xml"/>

<RELATIONSHIP_FILE Path="Relationship_Sim[D]_LP[W]_ISM[W].xml"/>
<RELATIONSHIP_FILE Path="ISM_Relationships.xml"/>

<CONTROL_FILE Path="Control_Freq7.xml"/>
</KIBPATHS>

 
Figure 50. Path Definitions for KIB 

 The XML code in Figure 51 shows the definition of the module H1 for the 

DEVS side of the KIB. The H1 module directly maps to the atomic inventory 

component with the name òH1.ó The H1 inventory model creates a BOH message 

which contains the amount of product that is left in the inventory from the previous 

step. An input to this inventory model is a release message. When the model receives 

a release message, it will release the given amount of inventory. 
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<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="DEVS" Name="SingleEchelon">

<Module Name="H1">
<DataOutput Name="BOH">

<DataVariable Name="hub" Type="String" IsKey="true"/>
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="Quantity" Type="Int" IsKey="false"/>

</DataOutput>
    

<DataInput Name="RELEASE">
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="source" Type="String" IsKey="true"/>
<DataVariable Name="destination" Type="String" IsKey="true"/>
<DataVariable Name="Quantity" Type="Int" IsKey="false"/>

</DataInput>
</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

 
Figure 51. DEVS Modules H1 KIB Definition 

 The XML code in Figure 52 shows the definition of H1 and HX modules on 

the LP side of the KIB. Modules do not mean anything to the LP, so the definitions 

of modules here are only symbolic to the KIB itself. The H_BOH input under the 

HX module aggregates all the data from every hub into a single input. The 

H_RELEASE output under the H1 module contains release messages for every hub 

that will later need to be filtered within the mapping definition. 
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<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="LP" Name="LP_SE">

<Module Name="HX">
<DataInput Name="H_BOH">

<DataVariable Name="hub" Type="String" IsKey="true"/>
<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="quantity" Type="Int" IsKey="false"/>

</DataInput>
</Module>

<Module Name = "H1">
<DataOutput Name="H_RELEASE">

<DataVariable Name="product" Type="String" IsKey="true"/>
<DataVariable Name="source" Type="String" IsKey="true"/>
<DataVariable Name="destination" Type="String" IsKey="true"/>
<DataVariable Name="period" Type="Int" IsKey="false"/>
<DataVariable Name="quantity" Type="Float" IsKey="false"/>

</DataOutput> 
</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

 
Figure 52. LP Modules H1 and HX KIB Definition  

 The XML code in Figure 53 shows a section of the relationship definition for 

configuration B. This portion of the relationship definition gives the mappings for 

H1 and HX in the LP and DEVS modules. The first Map element defines the 

mapping between the BOH of H1 in DEVS to H_BOH of HX in LP. The 

transformation is set to NONE which means that all data is passed right through. 

Since the LP interface only uses the newest data, only the BOH data from the latest 

definition will be passed over. The second Map element defines the mapping for the 

release commands to H1 in DEVS. The FieldValueToVariable transformation 

removes any elements in the source DataOutput that doesnõt match the source 

DataVariable with the value of òH1.ó The ASSIGN_FIELD_VALUES 

transformation sets all target DataVariables with the name destination to the value 

òGC_H1.ó This assumes that H1 in the simulation is attached to the customer with 

the name GC_H1. The final transformation, DisaggregateIntoEqualBuckets, will 
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take the quantity data from the source and distribute the value equally to all target 

time buckets. The divisor is determined by the frequency value in the control.  

<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="KIB_Relationship.xsd">

<Relationship>

<Map>
<Source Model="SingleEchelon" Module="H1" Data="BOH"/>
<Target Model="LP_SE" Module="HX" Data="H_BOH"/>
<Transformation Name="NONE"/>

</Map>

<Map>
<Source Model="LP_SE" Module="H1" Data="H_RELEASE"/>
<Target Model="SingleEchelon" Module="H1" Data="RELEASE"/>
<Transformation Name="FieldValueToVariable" Rounding="Round">

<Source DataVariable="source"/>
<Target DataVariable="source"/>
<Field Name="source" Value="H1"/>

</Transformation>
<Transformation Name="ASSIGN_FIELD_VALUES">

<Source DataVariable="destination"/>
<Target DataVariable="destination"/>
<Field Name="destination" Value="GC_H1"/>

</Transformation>
<Transformation Name="DisaggregateIntoEqualBuckets" Rounding="Round">

<Source DataVariable="quantity"/>
<Target DataVariable="quantity"/>

</Transformation>
</Map>

</Relationship>
</KIBMODEL>

.

.

.

.

.

.

 
Figure 53. KIB Relationship Mapping for H1 

 The XML code in Figure 54 shows the definition of the control for 

configuration B. This file defines the DataVariable named current_time in the 

DataOutput LP_SYNC in the Model SingleEchelon, previously defined as a DEVS 

model, as the controlling time value. The frequency is set to 7 which means that the 

models defined under execution will execute once for every 7 time steps in the 

SingleEchelon DEVS model. Under the execution element, it is defined that the 

model SupplyChainISM will be executed followed by the model LP_SE. 
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<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Control.xsd">

<Control Frequency="7" Type="Periodic" DataVariable="current_time" DataOutput="LP_SYNC" 
Module="Synchronization" Model="SingleEchelon">
<Execution>

<Run Model="SupplyChainISM"/>
<Run Model="LP_SE"/>

</Execution>
</Control>

</KIBMODEL>

 
Figure 54. KIB Control Definition for Single Echelon, 7:1:1 

5.4 Multi -Echelon Implementation 

To create an OSF implementation with multi-echelon support, a double-echelon LP 

model was created and the ISM was extended to handle multiple echelons. The ISM 

requires the model structure and state data from each time period in order to 

compute the appropriate data for the upper echelons.  

5.4.1 KIB Implementation  

The same configuration that was setup for the single-echelon is used for the multi-

echelon instance that is labeled òDoubleEchelon.ó An echelon index was 

incorporated to address each echelon separately in the KIB. The XML code in 

Figure 55 shows the definition of the ISM with multiple-echelon support. Model 

structure data is passed to the ISM through TO_INVENTORY_LIST and 

TO_SHIP_TIME_LIST. Every upper echelon needs to have data about where 

product is shipped to in the lower echelon. State data is passed through BOH, 

INTRANSIT, and INTRANSIT_AO. Every upper echelon needs to know how 

much stock there is in the lower echelon in order to compute demand.  
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<?xml version="1.0" encoding="UTF-8"?>
<KIBMODEL xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="KIB_Modules.xsd">

<Model Interface="ISM" Name="SupplyChainISM">

<Module Name="ISM_INIT">
<DataInput Name="ISM_INIT_DATA">

<DataVariable Name="name" Type="String" IsKey="true"/>
<DataVariable Name="Value" Type="String" IsKey="false"/>

</DataInput>
<DataInput Name="HUB_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="hub" Type="String" IsKey="false" ArraySize="Variable" />
</DataInput>
<DataInput Name="PRODUCT_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="product" Type="String" IsKey="false" ArraySize="Variable" />
</DataInput>
<DataInput Name="TO_INVENTORY_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="hub" Type="String" IsKey="true"/>
    <DataVariable Name="destination" Type="String" IsKey="false" ArraySize="Variable"/>
</DataInput>
<DataInput Name="TO_SHIP_TIME_LIST">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="hub" Type="String" IsKey="true"/>
    <DataVariable Name="value" Type="Int" IsKey="false" ArraySize="Variable"/>
</DataInput>

</Module>
<Module Name="ISM_RUN">

<DataInput Name="BOWK">
<DataVariable Name="name" Type="String" IsKey="true"/>
<DataVariable Name="Value" Type="Int" IsKey="false"/>

</DataInput>
<DataInput Name="BOH">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="hub" Type="String" IsKey="true"/>
    <DataVariable Name="product" Type="String" IsKey="true"/>
    <DataVariable Name="Quantity" Type="Int" IsKey="false"/>
</DataInput>

<DataInput Name="INTRANSIT">
<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>

    <DataVariable Name="hub" Type="String" IsKey="true"/>
    <DataVariable Name="product" Type="String" IsKey="true"/>
    <DataVariable Name="Quantity" Type="Int" IsKey="false" ArraySize="Variable"/>
</DataInput>
<DataInput Name="INTRANSIT_AO">

<DataVariable Name="echelon_index" Type="Int" IsKey="true"/>
    <DataVariable Name="hub" Type="String" IsKey="true"/>
    <DataVariable Name="product" Type="String" IsKey="true"/>
    <DataVariable Name="Quantity" Type="Int" IsKey="false"/>
</DataInput>

</Module>

</Model>
</KIBMODEL>

.

.

.

.

.

.

 
Figure 55. Multi -Echelon ISM Modules 
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6 RESULTS 

6.1 Regression Testing 

A set of JUnit Tests were formulated for the previous version of the KIB. These unit 

tests covered all of the functionality of the KIB from definition to execution. In 

order to use these tests for the updated KIB, all of the XML definitions for the JUnit 

Tests were updated for the new XML schema. Where applicable, the JUnit Tests 

were also updated to accommodate the new Java structure. After running this 

updated set of unit tests, the result in Figure 56 was returned in the Eclipse IDE with 

0 errors and 0 failures. A 100% pass shows that the new structure does not affect any 

of the KIB functionality from past revisions. 

 
Figure 56. JUnit Test Output 

6.2 Evaluation of Scalability 

To evaluate scalability, the structure of the single echelon model in the previous 

version is compared against the same model defined using the new structure. Table 3 

gives a quick breakdown that quantifies the definition of the same KIB in the 
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previous version of the XML code with the redesigned version of the XML code. 

Because definitions are broken down into each atomic element, it takes more than 

twice as many lines and elements to define the same KIB. However, since the code is 

broken down into multiple pieces, there is about a third less content per file.  

Table 3. XML File Content Breakdown 

 

Original 
Version 

Redesigned 
Version 

Number of Files: 1 7 

Total Number of Lines: 248 530 

Total Number of Elements: 147 388 

Average Lines Per File: 248 76 

Average Elements Per File: 147 55 

6.3 Experiments 

6.3.1 Single-Echelon Results  

For the single-echelon model, the hub H1 and product P1 was selected for the 

experiment set. The single-echelon model in Figure 57 shows the configuration setup 

for this set of experiments. 

CW H1Ship GC1

 
Figure 57. Single-Echelon Model 

6.3.1.1 Execution Time Analysis 

An analysis of the required run-time was done to determine how the scalability of the 

OSF platform is as a whole. The chart in Figure 58 shows the running time of a 

single-echelon model with the simulation running on a weekly granularity and the 

optimization running on a weekly granularity for 41 weeks. The values on the X axis 

represent the product of the number of hubs and the number of products the model 

is running with. As this number increases, the total time to execute increases 
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exponentially with most of the time taken in the execution of the optimization 

model.  

 
Figure 58. Single Echelon Execution Time 

6.3.1.2 Verification of the OSF Model 

In this model, òperfect dataó is defined as the data used in order to give the model 

perfect knowledge of the future. In other words, the model knows exactly how much 

demand will be needed in the future for the length of the planning horizon. When 

using a deterministic shipping time with safety stock set to 0, this should result in 

100% service level with 0 average BOH value. 

 The chart in Figure 59 shows how well the customer demand, CD, is 

satisfied using perfect input data with the safety stock set to 0 for every week. With 

inventory stock in the hub initially set to 0, it takes 3 weeks for the first shipment to 

be sent to the customer. This is due to the 2-week shipping between the CW and the 
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hub plus the 1-step processing time in the hub. Since the simulation model for this 

experiment was set to weekly granularity, 1 step equals 1 week, so the total time from 

the output of CW to the output of the hub is 3 weeks. After this ramp up time, 

exactly enough is shipped to the hub 1 time step before it needs to be delivered to 

the customer. Disregarding the first three weeks, the end result is 0 average stock at 

the hub with 100% service level as expected. 

 
Figure 59. Using Perfect Data 

6.3.1.3 Simulation Weekly Step/Optimization Weekly Step 

To begin on the experimentation on the OSF platform as a whole, the same model 

from past work was tested. The chart in Figure 60 shows the results of running a 

yearõs worth of data in the OSF platform on hub H1 an product P4. Based on this 

data, the no-smoothing algorithm outperforms other smoothing techniques. This 

corresponds to the data retrieved previously for this hub and product. 
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Figure 60. Deterministic, 2 Week Shipping 

 Since shipping in the real world is not so deterministic, a log-normal shipping 

distribution was selected. This means that most of the time, each package makes it 

through the shipping in 2 weeks. Rarely, the package will make it through in 1 week, 

and very rarely, the package will make it through in 0 or 3 weeks, based on a pseudo-

random algorithm. The chart in Figure 61 shows the result after setting up the model 

the same way as above, with only the shipping element changing to a log-normal 

distribution. Less average stock is recorded, but the service level has also taken a hit. 

The same general shape as Figure 60 appears though, so no-smoothing is still the 

best smoothing technique to use for this configuration. 
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Figure 61. Log-Normal Shipping, 2 Week Mean, 0 Week Min  

6.3.1.4 Simulation Daily Step/Optimization Weekly Step 

The OSF platform was tested using a more òtrue to lifeó setup. Having the 

simulation run from day-to-day matches a real world shipping schedule where 

shipments arrive at a single time each day. Optimizations and forecasts are still re-

evaluated once each week. In this setup, the KIBõs disaggregation components are 

tested.  

 Having a strict definition of a time step is not necessary, but labeling a unit of 

time in a more formal way allows for better usability. In order to formalize a time 

step metric, the TimeUnit enumeration as shown in Figure 62 was designed. The 

internal Unit enumeration defines a set of base units from a picosecond all the way 

up to a millennium. A value is assigned to each instance of Unit which corresponds 

to how many seconds are in that unit. Setting a base unit of time in the Unit 
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enumeration allows for simple conversion from one unit value to another. The 

TimeUnit enumeration contains values such as WEEKLY and DAILY. In each 

TimeUnit instance, there are 3 attributes associated with it: the string ònameó is a 

distinct name for the instance that is used for labeling, the Unit òunitó is the base 

unit, and the integer òticksPerUnitó sets how many simulation ticks make up the 

length of time of the base unit. In other words, WEEKLY is set to 1 tick per week 

and DAILY is set to 1 tick per day. Conversion from one time unit to another is 

provided in the given set of operations. 

 
Figure 62. TimeUnit Class 

 The chart in Figure 63 shows the data obtained after running a daily 

simulation with a weekly optimization using a deterministic, 14-day shipping model. 

Comparing this to the chart in Figure 60, more stock is recorded across the board. 

The kernel and exponential smoothing techniques do worse overall since the 

outputting service level does not change much as the amount of stock needed goes 

up. However, the no-smoothing technique does significantly better and is still the 

best technique for hub H1 and product P4. 
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Figure 63. Deterministic, 14 Day Shipping 

 Now that the simulation runs on a higher granularity, the shipping buckets 

can be broken down into smaller pieces. Because of this, the log-normal shipping 

distribution can be setup to better match a real world situation. For the next run, a 

log-normal shipping component was setup with a 10-day mean and an 8-day min. 

The chart in Figure 64 shows the results with this setup. With these results, a slightly 

greater average inventory was recorded. This is because the ISM and LP still assumes 

an average of 2 weeks for shipping. Since these run on a weekly granularity, the 

shipping value is rounded up to the nearest week in order to optimize. This results in 

shipments on average arriving a few days sooner than they are needed. The shape 

overall is similar to the one above and no-smoothing is once again the best 

smoothing technique to use. 
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Figure 64. Log-Normal Shipping, 10 Day Mean, 8 Day Min 

6.3.2 Multi -Echelon Results 

Hub H1 and product P4 was again selected for the multi-echelon experiment set. 

The model in Figure 65 shows the double-echelon model that was setup. A single 

CW element was used to keep the overall model simple. This CW needs to also be 

able to handle product P4 to send to hub H1. 

CW H1Ship GC1FA Ship

 
Figure 65. Double-Echelon Model 

6.3.2.1 Computation of Upper Echelon Safety Stock 

In order for the upper echelon to compute a safety stock, a set of adjusted demand 

values for the upper echelon need to be computed. This is done by applying a delay 

function on the demand data at GC1 by the shipping time to H1. An error for the 

current periodõs demand is computed using the following formula: 
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Ὁὶὶέὶ ὛὛ ὄὕὌ ὍὲὸὶὥὲίὭὸ  ὪὭὰὰ  

¶ ὛὛ  is the safety stock computed for the downstream echelon 

¶ ὄὕὌ  is the amount of product that is stored in the inventory of the 

downstream echelon for the current period 

¶ ὍὲὸὶὥὲίὭὸ  is the amount of product that is on its way to the inventory of 

the downstream echelon for the current period 

¶ ὪὭὰὰ  is the sum of demand at GC1 for the time indexes up to the time 

that it takes for product to reach H1 

The error computed is added to the forecast value of the current period to obtain the 

actual demand for the current period. This value is recorded for historical data in 

order to compute a bias at future points. 

6.3.2.2 Simulation Weekly Step/Optimization Weekly Step 

For testing the double echelon model, a shipping time of 0 weeks was selected 

between factory to component warehouse and 2 weeks between component 

warehouse and hub. All shipping times in this experiment are constant and 

deterministic. The charts in figures 66, 67, and 68 show the results double echelon 

experiment using a multi-echelon ISM. Figure 66 shows an average inventory at the 

component warehouse; Figure 67 shows an average inventory at the hub (H1); and 

Figure 68 shows the total average inventory held between the hub and component 

warehouse in the Y-axis. Overall, kernel smoothing is the best technique for this 

double-echelon model. Unlike some other modeling concepts for this simplistic 

model, inventory is kept at the component warehouse instead of releasing the entire 

stock of inventor immediately to the hub at each time period.  
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Figure 66. Double Echelon Result: Average Inventory at CW for Service Level 

 
Figure 67. Double Echelon Result: Average Inventory at H1 for Service Level 
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Figure 68. Double Echelon Result: Global Average Inventory for Service Level 

 Communication between the three model components through the 

redesigned KIB functions as desired for a double echelon model. Table 4 shows the 

XML file content breakdown for the double-echelon model. Comparing this to the 

average lines and average elements per file for a single echelon model in Table 3, a 

double-echelon model still produces a manageable amount of XML code per file. 

The average lines and average elements per file is relatively the same as the amount 

for a single echelon model with the original design of the KIB, but if the original 

design was used to create this model, the XML file would be around 1550 lines. This 

would make the KIB definition difficult to navigate and manage. The XML file 

structure in the redesigned version of the KIB may also be manipulated easily in 

order to minimize the average amount of code per file even more. 
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Table 4. Double Echelon XML File Content Breakdown 

 

Redesigned XML: 
Double Echelon 

Number of Files: 7 

Total Number of Lines: 1550 

Total Number of Elements: 1155 

Average Lines Per File: 221 

Average Elements Per File: 165 
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7 CONCLUSIONS 

This project is grounded on creating a multi-echelon simulation with multi-echelon 

forecast biasing and optimization. Having a supply chain simulation that can quickly 

and accurately optimize and predict the release of precisely enough stock to meet 

demand is a highly desired software tool among many corporations. Through the 

help of several people at ASU and Intel since 2003, as well as the work laid out here, 

the OSF platform has been established to solve this problem. This platform has the 

functionality to solve single- and double-echelon supply chain models containing 

multiple products in multiple inventory elements. 

To create a multi-echelon model that is scalable for future design, the original 

version of the platform needed to be rebuilt from the ground up, starting with the 

KIB. The KIB, being the backbone of the system, has been redesigned in a way that 

allows a designer to quickly implement new configurations and allows for better 

usability, reusability, and scalability.  

The designer may now reuse code over multiple configurations by utilizing 

the KIB_Paths schema design that splits up a KIB definition across multiple files. 

Components of the KIB are broken down by the definition of modules, control, and 

transformations through the schemas defined as KIB_Modules, KIB_Control, and 

KIB_Transformations respectively. Constraining an XML file to define these specific 

sets of data keeps an organizational pattern that allows for better usability. 

A user may now conceptualize a KIB model in the same way a model is 

designed in each component. The original design has been changed to put modules 

within models instead of defining interfaces within modules. This not only allows the 
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designer to create a KIB model more quickly, but multiple models can be defined for 

a single interface. 

Every element of the KIB is broken down to their atomic components to 

allow for better usability and scalability. When using the auto code completion in 

IDEs such as Eclipse, defining the KIB in the correct structure can be done in a 

more guided way. Although the resulting XML files for the definition of the KIB 

have grown to about twice the size of the same definition given in the old design, 

having the definition broken down across multiple files reduces the number of lines 

per file to more manageable chunks.  

7.1 Future Work 

The next step in the scalability of the KIB is to create a user interface which will 

allow a designer to better visualize the KIB design. To begin with, a GUI that shows 

what a previously defined KIB model looks like will help with verification. From 

here, the interface could be expanded to a clickable model design that allows the user 

to create new components and connect them together. Different views would need 

to be designed to zoom into details and zoom out to see the bigger picture. From 

here, more constraints can be handled that the schema cannot track such as 

addressing modules within a mapping. 

 Only initial work has been done for the OSF platform to run a multiple 

echelon model. The ISM running multiple echelons need to be qualified to ensure 

that the formalism is correctly matched with definitions of a multi-echelon ISM that 

Intel and other supply network companies use. The ISM can then be enhanced to 

handle more complex models for shipping from one to many or many to one 

inventory elements. 
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 The experiment configuration for this project was used to select functionality 

for a model to run. As this platform is built upon, more front end work will need to 

be done to not only select functionality, but to build the structure of a model from a 

GUI as well. This gives a user who is less familiar with code design the ability to 

configure and run a model with ease. This is work that is left for future development. 

Since each model within the OSF platform was designed to be loosely coupled, 

integrating elements of data together in a way that will confine the definition, while 

still maintaining loosely coupled components is not a simple change.  
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APPENDIX A 

ABBREVIATIONS AND DEFINITIONS 
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ABBREVIATIONS AND DEFINITIONS 

¶ ACD: Actual Customer Demand 

¶ DEVS: Discrete Event System 

¶ FCCD: Forecasted Customer Demand 

¶ HFC: Historic Forecast 

¶ IDE: Integrated Development Environment 

¶ ISM: Inventory Strategy Module 

¶ KIB: Knowledge Interchange Broker 

¶ LP: Linear Program 

¶ SIM: Simulator/Simulation 

¶ XML: Extensible Markup Language 
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APPENDIX B 

TRANSFORMATION DEFINITION 
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TRANSFORMATION DEFINITION  

Except for the transformation labeled as òNONE,ó each transformation type is 
classified as a group transformation, value transformation, or both. A group 
transformation transforms data as a whole while a value transformation transforms 
data from a single source to a single target. Some group transformations work with 
other group transformations and some do not. 
NONE Transformation  
The NONE transformation requires that the target module contains all the data 
elements of the source module. All the target data elements must also be of the same 
type as the source data elements. Any attributes for this transformation are ignored 
and no other transformation should be defined for a mapping if a NONE 
transformation is defined. 
Group Transformations and Priority 

1. SET_TO_VALUES 
o This transform takes set of values that has index field, and maps them to 

an ordered array list to the target model. The order is sequence to send 
values to target by time period. Each target value maps to a value to be 
passed in one time period. The index element must be defined for this 
transformation. 

2. VALUES_TO_SET 
o Values in a source array are mapped to set lines. The index element must 

be defined for this transformation. 
3. FIELD_VALUE_TO_VARIABLE 

o Preform transformations only on data that match what is defined in the 
Field element(s).  

4. DisaggregateIntoEqualBuckets 
o Value is divided equally into multiple time period buckets. 

5. AllToOneValue, AllCurrentToOneValue, and Aggregate 
o All record values to one target value 

6. (No group transformation defined) 
o Data is transformed in a 1:1 manor 

Value Transformations 

¶ NewestValue 
o In a list of records as given by model, get only the data record that has been 

received most recently within the current time period 

¶ OldestValue 
o In a list of records as given by model, get only the data record that has been 

received first within the current time period 

¶ Copy 
o Same as NewestValue 

¶ FloatToInteger 
o Converts source data to target type 

¶ IntegerToFloat 
o Converts source data to target type (same as FloatToInteger) 

¶ Aggregate 



   

103 

o Aggregates (sums) an array value to single target value or value set (must be 
numeric) 

¶ MAX 
o Selects the target maximum value from an array (must be numeric) 

¶ MEAN 
o Mean of array is calculated to single target value (must be numeric) 

¶ MEDIAN  
o Selects the target median value from an array (must be numeric) 

¶ MIN 
o Selects the target minimum value from an array (must be numeric) 

¶ SET_TO_VALUES 
o Converts source data to target type 

¶ VALUES_TO_SET 
o Converts source data to target type 

¶ FieldValueToVariable 
o Target is Array: Converts an indexed array to the array target type 
o Target is Non-array: Converts source data to target type 

¶ VariableToFieldValue 
o Sets to static field value 

¶ ASSIGN_FIELD_VALUES 
o Not much different to VariableToFieldValue 

¶ DisaggregateIntoEqualBuckets 
o Divides numeric value by the number of buckets 

 


