
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

A CO-DESIGN MODELING APPROACH FOR COMPUTER NETWORK SYSTEMS

Weilong Hu Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85281-8809, U.S.A.

ABSTRACT

Co-design modeling is considered key toward handling the
complexity and scale of network systems. The ability to
separately specify the software and hardware aspects of
computer network systems offers new capabilities beyond
what is supported in modeling frameworks and tools such
as NS-2 and OPNET. The DEVS/DOC simulation envi-
ronment supports logical co-design specification based on
the Distributed Object Computing (DOC) abstract model.
To overcome DEVS/DOC’s lack of support for visual and
persistent modeling, this paper presents SESM/DOC, a
novel approach, which is based on the Scaleable Entity
Structure Modeler (SESM), a component-based modeling
framework. This approach supports logical, visual and per-
sistent modeling. Modelers can develop software and
hardware models separately and systematically integrate
them to specify a family of computer network system de-
signs. This paper details the SESM/DOC co-design model-
ing approach with the help of a search engine system ex-
ample, and presents a discussion for future research
directions.

1 INTRODUCTION

Simulation is commonly used for analysis and design of
systems ranging from embedded devices to distributed
network systems. In recent years, the modeling and simu-
lating of combined discrete/continuous systems has wit-
nessed major advances. Frameworks such as DEVS
(Zeigler, Praehofer et al. 2000) and Ptolemy II (Eker, Jan-
neck et al. 2003) offer capabilities to describe discrete and
continuous aspects of a system and their integration. The
underlying concept of these frameworks is to support co-
design where a system is divided into software and hard-
ware layers and their integration is specified through A/D
and D/A conversions. However, the underlying abstrac-
tions of these frameworks are not well suited for modeling
and simulating computer network systems.

Networked systems are important to be described in
terms of software and hardware layers. Model abstractions
are defined in terms of software applications executing on

hardware nodes. Modeling and simulation approaches that
are used for networked system modeling are generally
monolithic – hardware and software components are not
separately modeled and combined systematically. For ex-
ample, to model and simulate a network system, NS-2 (ns-
2 2004) can be used to describe the system’s communica-
tion protocol and hardware resources. With this framework
and its toolset, modelers use abstractions that have com-
bined software and hardware aspects of computing nodes.
This and others such as OPNET (OPNET 2004), however,
do not support separate specification of software and
hardware with the capability to synthesize them.

A framework that explicitly separates software and
hardware layers of networked systems is known as Distrib-
uted Object Computing (Butler 1995). An abstract specifi-
cation is provided to describe a system in terms of its soft-
ware and hardware components and the mapping of the
former to the latter. The Discrete Event System Specifica-
tion (DEVS) modeling and simulation framework has been
used to realize the Distributed Object Computing concept
and abstractions (Hild 2000; Sarjoughian, Hild et al. 2000).
The DEVS/DOC approach extends the generic DEVS
modeling concepts and models to support co-design speci-
fication of network systems. It enables modelers, for ex-
ample, to model a computer network in terms of separate
sets of hardware and software components and software to
hardware mappings. With this approach, the hardware and
software layers can be independently specified and the
software to hardware mapping be used to configure system
designs. This level of flexibility is useful for evaluating al-
ternative designs – i.e., hardware designs and topologies,
software application capabilities, and how they are synthe-
sized (Hild, Sarjoughian et al. 2002; Hu and Sarjoughian
2006).

Aside from logical specification of network systems us-
ing DEVS/DOC, it is also important to support visual and
persistent modeling (Burmester 2005). Visual and persis-
tent modeling need to have their own concepts and ele-
ments. A component-based modeling framework called
Scaleable Entity Structure Modeling (SESM) offers a uni-

Hu and Sarjoughian (Accepted)

fied logical, visual, and persistent foundation for develop-
ing hierarchical simulation models (Sarjoughian 2001; Fu
2002; Sarjoughian 2007). A realization of this framework
is developed which supports the semi-automatic translation
of SESM logical models into the simulation code for exe-
cution in DEVSJAVA. However, the SESM framework
does not support co-design modeling as described above.
In this work, we have introduced the DOC co-design mod-
eling into the SESM. This has resulted in the SESM/DOC
approach which supports logical, visual, and persistent co-
design modeling with support for generating partial simu-
lation models that once completed can be executed using
DEVS/DOC simulation environment.

2 BACKGROUND

2.1 DEVS/DOC

Distributed object computing (DOC) offers concepts and
an abstract model for describing a network system in terms
of a software layer mapped onto a hardware layer (see Fig-
ure 1). The software layer describes software components
of the network system in terms of a Distributed Coopera-
tive Object (DCO) model. The hardware layer describes
the hardware components of the network system in terms
of a loosely coupled network (LCN) model. The mapping
of DCO onto LCN is described in terms of an Object Sys-
tem Mapping (OSM).

Figure 1. DOC Conceptual View

The Distributed Cooperative Object is for modeling
software components. A software object is defined to have
attributes (data members) and methods (function). The size
of a software object is defined by the collective memory
requirements of these attributes and methods. The attrib-
utes include size, thread mode, and initial method. The
Loosely Coupled Network is for modeling the hardware
components including the CPU, the transport, the link, the
router (network router and routing unit), and the network

interface. Another hardware component is processor which
consists of the CPU, the transport, and the routing unit
components. The Object System Mapping defines a set of
axioms for assigning software components to hardware
components.

The hardware provides computation and memory re-
source for software. It also presents the network topology
(Hild, Sarjoughian et al. 2002). When a software object is
invoked, its size loads into the memory of its assigned
processor. Besides memory, another resource needed to
run a software object is the processing mode which handles
the workload of the software. Software objects are defined
to be executed in one of three modes: none, object, method.
In the none mode, the software can only process one job at
a time, all other jobs need to be queued. In the object
mode, a software object can have one job per defined
method concurrently active. In the method mode, all the
incoming jobs of a software object can be processed con-
currently.

DEVS/DOC provides a mechanism for managing the
workload of software objects. Each software object can
generate, send/receive, and finish jobs. The software object
workload is managed by classifying jobs and handling in
different stages (i.e., need to be ‘done’, is in ‘processing,’
and ‘finished’). The software object records its number of
done jobs which is used to determine when the software
has finished its tasks. Once all the software objects have
completed their work, the simulation is completed and will
be stopped. The control of the simulation execution is de-
fined in terms of pre- or user-defined experimental frame
models.

The Object System Mapping defines the assignment of
the components in the DCO layer to the components in the
LCN layer. The OSM mapping concept is formulated in
terms of couplings in the DEVS/DOC. The software object
loads itself into its assigned processor memory by sending
a load software message to the processor. The selected
method in the software object will be executed by the
processor’s CPU. When all the jobs are done, the software
object will unload itself from the hardware and release the
processor’s memory.

The Distributed Object Computing abstract model
components and their relationships were formalized in
DEVS and implemented in the DEVSJAVA simulation
environment. The DEVS/DOC environment supports mod-
eling the components of the DCO and LCN layers with
their OSM component. The structure and behavior of these
components are specified as atomic and coupled DEVS
models (see Table 1 for the partial Routing Unit model
specification). Details of the transition and time advance
function specifications for all models can be found in (Hild
2000). Compare to other environments such as DEVS, NS-

Hu and Sarjoughian (Accepted)

2, and OPNET, DEVS/DOC provides direct support for
discrete-event co-design specification of network systems.

Table 1. A partial Routing Unit DEVS/DOC Model

Routing Unit <X, Y, S, δext, δint, δconf, λ, ta>
InPorts {inLoop, inLink}

OutPorts {outLoop, outLink}

X {(import, pdu)}

pdu (clientID, searching key word, size, request format)

Y {(outPort, pdu)}

S Phase × σ × OutLoopBuffer × OutLinkBuffer ×
OutLoopDelay × OutLinkDelay × SearchingIndex

Phase ∈{passive, busy}, σ ∈ R+
0,∞

2.2 Scalable System Entity Structure Modeler

The Scalable System Entity Structure Modeler (SESM)
(Sarjoughian 2001; Fu 2002; Bendre and Sarjoughian
2005; Sarjoughian and Flasher 2007) is a framework aimed
at hierarchical component-based modeling. Its specifica-
tion capabilities are derived from Entity-Relation (ER),
System Entity Structure (SES) (Zeigler and Hammonds
2007) , and Object-Oriented (OO) modeling approaches. It
introduces visual modeling and transforming logical mod-
els into simulation models. Its realization is a modeling en-
gine for developing specifications that have formal logical
syntax and semantics (see Figure 2).

In SESM, the logical models are defined to consist of
primitive and composite model types. A composite model
consists of one to many primitive and/or composite com-
ponents. The composite model and its components have
the same model type. The primitive and composite model
types can be used to define different kinds of models. For
example, SESM supports partial specification of atomic
models and complete coupled models (Bendre and Sar-
joughian 2005). Similarly, it supports specifying XML
schemas (Sarjoughian and Flasher, 2007). .

Visual
Modeling

Model
Translator

Persistent
Modeling

Simulation
Code

Logical
Modeling

Scalable Entity Structure Modeler

Standardized
Models

Visual
Modeling

Model
Translator

Persistent
Modeling

Simulation
Code

Simulation
Code

Logical
Modeling

Scalable Entity Structure Modeler

Standardized
Models

Standardized
Models

Figure 2. Logical, Visual, and Persistent Model Types

Each primitive and composite model type is defined in
terms of Template, Instance Template, and Instance model
types. A primitive Template Model can have input/output
with ports and states. The collection of input and output
ports for each component is defined as its interface. Input
and output ports may be used to receive or send simple
data or complex objects. A composite model can have in-
put/outputs with ports, states, and a set of links connecting
the components that are contained in it. Any two compo-
nents can send and receive information using links. Every
composite component for a Template Model or Instance
Template Model has a unique name and tree structure. The
allowed relationships among composite components are
whole-part. Given a component, a sub-component and su-
per-component composition relationship may exist only
when no sub-component can be the same as its (immediate
or higher) super-component. The sub-component is re-
ferred to as part and the component and super-component
are referred to as whole. Composite components can be
used in multiple composite Instance Template Models. The
hierarchy depth of a composite component is equal or
greater than two. All instances of a composite component
(corresponding to the Instance Model) are distinguishable
from one another using their assigned (or given) names.
The primitive and composite Instance Models are instances
of their respective Instance Template Models. The models
satisfy the uniformity constraint which states two compo-
nents having the same name must have identical structures.
The is-a relationship is also defined for primitive and com-
posite components. It can be used to specify a model (spe-
cialize) to be specialized to one or more other models (spe-
cialized). The specializee and specialized are defined such
that the former is replaced with the latter when instance
models are generated. Instance models can be generated
from Instance Template models. An Instance model can be
total or partial — i.e., a model hierarchy can be of any hi-
erarchical depth depending on the model that is being
transformed.

Two types of logical models are defined – simulatable
ad non-simulatable (Sarjoughian and Flasher, 2007). This
separation is introduced to differentiate between models
that can be simulated in time from models whose behavior
is not defined in terms of time. For example, models of a
processor and queue have dynamical behaviors. However,
a processor model, for example specified in DEVS, can
process a job given a finite period of time. In contrast, a
queue model, for example specified in UML, can return a
job that is queued without taking any time. Given the
specifications of the simulatable and non-simulatable mod-
els, the simulatable models are defined to contain non-
simulatable models, but not vice versa. For example, the
processor model can have a queue model.

SESM is visual modeling environment and therefore
supports visual modeling of logical model. Visual models

Hu and Sarjoughian (Accepted)

are represented as hierarchical blocks and tree structures.
These provide complementary visual models such that the
block models depict coupling of ports and the tree structure
shows multi-level model hierarchy. Coupling is presented
as a line with an arrow showing the direction of informa-
tion flow. A component in a composite model can be either
a primitive model or a composite model. Three different
kinds of couplings are supported. They are internal, exter-
nal input and external output couplings. These couplings
are defined according to the DEVS coupled specifications,
but they may be changed to support other kinds of models
(e.g., block models in Simulink).

Another key aspect of the SESM framework is its sup-
port for model persistence. Logical models are stored ac-
cording to a set of relational schemas. Model persistence in
a relational database supports retrieving information about
any model component efficiently. This capability is par-
ticularly useful for large-scale and complex models.

3 COMBINED SOFTWARE/HARDWARE
MODEL SPECIFICATION

The software and hardware parts of a system can be mod-
eled based on the SESM’s modeling framework. Users
may develop models according to the distributed object
computing framework. The modelers must apply the DOC
concepts and methods manually. The use of SESM without
direct support for logical co-design modeling concepts and
constructs is ad-hoc and undesirable. Furthermore, the
SESM’s framework does not support visual and persistent
co-design modeling. To overcome these limitations, it is
desirable to introduce the DOC co-design concepts and
methods to the SESM framework. The resulting
SESM/DOC can support co-design from logical aspect as
well as the visual, persistence, and model transformation
aspects. For example, the logical models stored in the
SESM database cannot distinguish among software and
hardware model components. Similarly visual models can-
not be differentiated to represent DCO and LCN models.
Additionally, the concept of software to hardware mapping
(OSM) is supported.

The main capability of the SESM/DOC is independent
specifications for software and hardware model compo-
nents. This separation is to support by database schemas
that conform to the DOC abstract specification. Further-
more, visual model design is to support modeling of soft-
ware, hardware, and their integration. SESM/DOC must
also support integrating software and hardware layers by
mapping the former to the latter based on the OSM specifi-
cation. Therefore, to handle the separation and integration
of software and hardware layers, new model types and
constraints are introduced to the SESM framework.

3.1 Example Model

Before detailing the SESM/DOC, a server-client network
system which includes two servers and two clients is con-
sidered (see Figure 3). The two servers can be used by cli-
ents to search for information. One server supports text file
search and the other supports video file search. A client
can search for mixed text and video information. From a
co-design perspective, the network system shown in Figure
3 can be designed to consist of software and hardware
components and their integration. The Text File Server and
Video File Server are two software components. The Link
1, Router 1, and Hub_ethernet_1 are examples of LCN
components. In the following sections, this system network
will be studied based on the separation of its software ap-
plications and hardware facilities.

Figure 3. Network System Example

3.2 Co-Design Model Types

In order to support co-design model specification, the
SESM/DOC approach defines primitive and composite
model types for software and hardware model components.
These models extend the syntax and semantics of the
SESM models. Each of the software and hardware models
can have whole/part and coupling relationships. Model
may have specialization relationships to one another. For
example, a model may not contain other models as compo-
nents or a composite model may have specific whole/part
relationships (see LCN models). The SESM/DOC models
are defined as follows:

 Software layer (SESM/DCO): alternative software
model specifications and configurations are supported
using a predefined software model.

 Hardware layer (SESM/LCN): alternative hardware
specifications and configurations are supported using a
predefined collection of hardware models.

Hu and Sarjoughian (Accepted)

 Object System Mapping Layer (SESM/OSM): alterna-
tive assignments of software models to hardware mod-
els to define combined software/hardware models.

3.2.1 Software Layer Model Types

The software layer model in SESM/DOC specification cor-
responds to the Distributed Object Computing (DCO)
layer. It is defined to have two model types. They are
Software Layer Model (SLM) and Software Application
Model (SAM). The SLM and SAM correspond to the Dis-
tributed Object Computing layer and the software object
defined in DCO. The SLM is a composite model which is
specified in terms of one or more SAMs. Every SAM is a
primitive model which corresponds to a software applica-
tion that is to be modeled. The SESM/DOC supports the
following modeling constraints in the software layer:

1. SLM is a composite model that can only contain a finite
number of SAMs;

2. SLM has to contain at least one SAM;
3. SAM is primitive model;
4. SAM can only be contained in a SLM;
5. SLM and SAM can only be coupled with one another.

Figure 4. Server-Client Software Specification

In the example shown in Figure 3, the server-client net-
work architecture has two server applications and two cli-
ent applications in the software layer. These can be speci-
fied in the software modeling working section as shown in
Figure 4. The software layer model has four software ap-
plication models. The SoftwareApplication01 and Soft-
wareApplication02 are the server software applications;
(these are called “Text File Server” and “Video File
Server” in Figure 3). The SoftwareApplication03 and Soft-
wareApplication04 are the client software applications.
The ports defined for SAM and SLM are bi-directional and
therefore couplings between the software layer model and
these software application models are bi-directional.

3.2.2 Hardware Layer Model Types
The hardware layer model in SESM/DOC specification
corresponds to the Loosely Coupled Network (LCN) layer.
It is defined to consist of Hardware Layer Model (HLM)
and a set of primitive and composite hardware model
types. The hardware model types are Processor Model
(PM), Network Interface Model (NIM), Link Model (LM),
and Router Model (RM). The composite models are Proc-
essor Group Model (PGM), Network Interface Group
Model (NIGM), Link Group Model (LGM), Router Group
Model (RGM), Processor and Network Interface Unit
Model (PNM), and Processor and Network Interface Unit
Group Model (PNGM).

Figure 5. Model Selection in Hardware Model Working
Section

Given the kinds of hardware models that can be de-

fined based on the constraints that are defined for LCN, the
following modeling constraints are supported in
SESM/DOC.

1. HLM can only contain group models (PGM, NIGM,

LGM, RGM);
2. PGM can only contain PM;
3. NIGM can only contain NIM;
4. LGM can only contain LM;
5. RGM can only contain RM;
6. PNGM can only contain PNM;
7. PNM can only contain one PM and one NIM;
8. RM, NIM, LM, RM are primitive models.

These model types and the composition relationships

among them allow specifying different hardware network
topologies. The coupling constraints between these differ-
ent model types are defined as follows.

1. HLM can only be coupled with group models
2. RM can only be coupled with RGM;
3. NIM can only be coupled with NIGM;
4. LM can only be coupled with LGM;
5. PNM can only be coupled with PNGM;
6. RGM can only be coupled with RM and NIGM;

Hu and Sarjoughian (Accepted)

7. NIGM can only be coupled with NIM, RGM, LGM,

PM, PNGM and RGM;
8. LGM can only be coupled with NIGM or PNGM;
9. RGM can only be coupled with NIGM.

Given the distinctions between the software and hard-
ware models a modeler must choose the kind of a model
that is to be developed. The “DOC Model” allows the
modeler to choose either the Software Layer Model or
Hardware Layer Model. For modeling the hardware layer
of a network system, the selection of hardware provides a
list of model components as listed above and shown in
Figure 5.

Figure 6. Server-Client Network System Architecture
Hardware Design

Figure 7: Instance Template Model for HardwareLayer01

Given the above model types and constraints, a hard-

ware layer model such as HardwareLayer01 can be speci-
fied as shown in Figure 6. Furthermore, SESM/DOC sup-

ports specifying alternative model specifications. For
example, an alternative hardware network specification for
the HardwareLayer01 can be defined using PNGM. These
different models are specified in terms of the Instance
Template Model with additional information such as the
number of processors, the number of links, and routers (see
Figure 7). The topology of the hardware layer can be
changed which results in different computer network sys-
tem models.

3.2.3 Object System Mapping Layer

Unlike the DOC and LCN, the OSM specifies mapping
software to hardware components. The OSM model layer
allows specifying three model types: SLM and HLM mod-
els and how they may be synthesized. Similar to SLM and
HLM, the OSM Layer model satisfies some constraints.
These composition and coupling constraints are.

1. the OSM model contains only one SLM and one HLM;
2. the SLM to HLM can only be coupled with another.

In SESM/DOC, the choices of the SLM and HLM mod-
els that can be used in the OSM layer are specified in the
simulatable software and hardware layers.

3.3 Multiple Working Sections for Software/Hardware
Layer Model Design

As a co-design modeling approach, SESM/DOC offers
three modeling working sections: software modeling,
hardware modeling, and system modeling. Figure 4 depicts
the user-interface of the SESM/DOC. This environment
extends the software architecture of SESM and is imple-
mented using JavaTM and MS ACCESS database technolo-
gies. In each working section, the SESM concepts and
functionalities that separates simulatable and non-
simulatable modeling are used. The Template Model,
Template Instance Model, and Instance Model are sup-
ported and thus modelers to create (or delete/modify)
DCO, LCN, and OSM models. For software modeling,
Software Template Model (STM), Software Instance Tem-
plate Model (SITM), and Software Instance Model (SIM)
are defined (see Figure 8). Similarly, Hardware Template
Model (HTM), Hardware Instance Template Model
(HITM), and Hardware Instance Model (HIM) and OSM
Template Model (OTM), OSM Instance Template Model
(OITM), and OSM Instance Model (OIM) are defined. All
software and hardware component models (e.g., software
template model) are specified as simulatable models that
can have non-simulatable models as state variables or input
and output values (see Section 2).

Each of the working sections has its own unique tree
structure and block models and support model operations
that are unique to DCO, LCN, and OSM. For example,
Figure 8 provides the view of a software model working

Hu and Sarjoughian (Accepted)

section which has “Template_SoftwareModel_Tree” (a
tree structure only for software models) and also a view for
software models (see the “softwareApplication02” model
in the right panel). Every simulatable model component in
the software modeling working section can be a software
application or a software layer (similarly, every simulat-
able model component in the hardware modeling working
section can be a hardware application or a hardware layer).
Alternative system models can be synthesized from the
DCO and LCN layers.

Figure 8. Software Model Working Section

The models in the software and hardware working sec-
tions are separated. The software model (or hardware
model) can only be created, edited and viewed in its desig-
nated working section. In the OSM section, the modeling
of software components mapped to hardware components
is supported. Therefore, in OSM, there are three kinds of
models – software, hardware and object system mapping.
When an OSM model is created, a software layer model
needs to be selected from the simulatable software model
and a hardware layer model needs to be selected from the
simulatable hardware model. Figure 9 shows a software
layer model chosen for an OSM model in the OSM work-
ing section.

Figure9. Model Integration in OSM Working Section

3.4 Model Visualization and Persistent
As shown above, SESM/DOC supports logical model
specifications. It also needs to support visual modeling.
Furthermore, all logical models need to be stored in a rela-
tional database. The visual and persistent co-design model-
ing defined simplifies model development, reuse of mod-
els, separation of software and hardware, and alternative
software/hardware specifications. The visual and persistent
modeling capabilities are particularly important for large-
scale, complex model systems. This because visual model-
ing using tree structure and block models reduces model
development effort and supports maintaining consistency
among a family of alternative models.

3.4.1 Model Visualization

The visual modeling separates software and hardware from
one another by extending the SESM visuals for co-design.
The distinction among model types defined for software
and hardware components, software/hardware layers, and
multiple mappings of software layers to hardware layers is
important in the modeling of computer network systems.

As the scale of a model grows, it is important to reduce
the number of components and their relationships. This is
because visual models of large-scale systems is known to
be NP hard problem (Young, Cook et al. 2003). Hierarchi-
cal modeling combined with a diagonal layout of model
components of a composite model reduces significantly the
difficulty of visualizing model couplings. However, since
couplings between components (or layers) are bi-
directional, it is important to use visual notations that dis-
tinguish between uni- and bi-directional visual notations. A
uni-directional coupling is defined for coupling and shown
as a dashed line with a single direction. A bi-directional
coupling is defined for mapping and is shown as a direc-
tionless dashed line.

Figure 10. SoftwareLayer01 to HardwareLayer01 Mapping

The use of bi-directional coupling reduces visual clutter
that can result even with small-scale models. For example,
since software components have bi-directional couplings

Hu and Sarjoughian (Accepted)

with the software layer, the couplings in SESM/DOC are
shown as a directionless dashed line (see Figure 4). This
reduces significantly the number of couplings. For hard-
ware components, they have bi-directional coupling and
thus directionless links are also used (see Figure 6). Con-
sidering the OSM layer, the mapping is shown as a dotted
line with an arrow (see Figure 10). This visual notation
helps to separate compositions defined for software and
hardware layers of a system from the assignments of the
software layer model to hardware layer model.

3.4.2 Model Persistent

DCO, LCN, and OSM models are stored in a set of rela-
tional database tables. The SESM/DOC database schemas
play a major role since it allows storing software and hard-
ware co-design models systematically. The logical DCO,
LCN, and OSM models specified in SESM/DOC are stored
in three sets of tables which are extensions of those defined
for SESM. The Entity-Relationship schemas are defined in
accordance with the software/hardware co-design logical
specification presented above. The different schemas for
the DCO, LCN, and OSM conform to the DEVS/DOC
logical model abstractions. The “ModelType” schema
(i.e., a table in the SESM/DOC database) is introduced to
distinguish among DCO, LCN, and OSM models. The
software layer and hardware layer, and object system
model types and their constraints are also defined as sche-
mas.

3.4.3 Model Consistency

SESM/DOC is devised to ensure consistency among logi-
cal, visual, and persistent models. First, it uses the SESM’s
concepts and constructs to guarantee that all visual model-
ing operations are consistent with the logical model. Sec-
ond, the consistency is extended based on the DEVS/DOC
models. The SESM/DOC data schemas ensure that the vis-
ual models are developed and stored in accordance to their
logical specifications. For example, the LCN link group
model (LGM) can only contain link models (LM). When a
component is added to the LGM, the type of the container
model and the model to be added are checked to have
proper model types. If the added component is a link
model (LM), then the SQL query succeeds. Otherwise, the
query fails and an error message is displayed. As another
example, when a modeler wants to add a router model
(RM) to a link group model, SESM/DOC displays the “A
Link Group Model Can Not Contain a Router Model!”
since this is an invalid operation. In order to allow only
well-defined composite models, the SESM/DOC examines
every coupling and only allows those that satisfy the DOC
specification. For example, a router group model (RGM)
can only be connected to a network interface group model
(NIGM); if a RGM is connected to a processor group

model (PGM), SESM/DOC displays the “A Router Group
Model Can Not be Connected to a Processor Group
Model!”. Besides ensuring the above constraints, model
types are important for object system mapping modeling.
In the OSM working section, when a system model is cre-
ated, only one software layer model and one hardware
layer model can be added to the system model. The soft-
ware layer model and the hardware layer model can be
used to define system mapping assignment.

4 DISCUSSION

Since SESM/DOC supports independent software and
hardware modeling with the capability to synthesize them,
it can be extended with new model types for software and
hardware components that are not defined in DOC. Given
the existence of the models in a database, simulation mod-
els can be partially transformed to simulation code. For ex-
ample, given DEVS/DOC, the automatically generated
primitive and composite software and hardware simulation
models have full structural specifications. Specification of
primitive models are partial. For example, transition and
time advance functions of a primitive model cannot be de-
fined visually or stored in the database.

The separation of concern afforded by SESM/DOC co-
design is important toward model Validation, Verification,
and Accreditation (VV&A). As the scale and complexity
of models increase, verification and validation becomes
more difficult. To reduce the immense effort required for
developing correct models, the SESM/DOC provides a ba-
sis for separately carrying out VV&A for software and
hardware as well as their combination. The separation af-
fords systematic verification and validation using the com-
bined logical, visual, and persistent models – i.e., every
model’s structure is guaranteed to be consistent with the
DOC abstract specification. To ensure compliance, the
structural model specifications are examined for correct-
ness given the logical software, hardware, and object sys-
tem mapping model specifications. However, as with all
other modeling approaches and tools, a modeler may spec-
ify models that are consistent with the DOC abstract model
but unsuitable given some desired aspect and/or resolution
of a network system structure and behavior. In terms of
simulation modeling (and thus validation), even though
SESM/DOC can generate partial simulation models, the
amount of effort it takes could be significantly less, espe-
cially for large-scale and complex models.

5 CONCLUSION

A co-design modeling approach has been developed for
describing computer network systems that are defined in
terms of combined software and hardware models. It sup-
ports visual modeling according to the distributed object
computing abstract model. With SESM/DOC, computer
network system can be specified in terms of a set of soft-

Hu and Sarjoughian (Accepted)

ware model components (software model layer) mapped
onto a set of hardware model components (hardware model
layer). The co-design modeling approach is aimed at speci-
fying families of models and also supports generating par-
tial simulation code for DEVS/DOC. This modeling ap-
proach is attractive for systems that are being developed to
execute using the Global Information Grid and Service
Oriented Computing frameworks and technologies.

REFERENCES

ACIMS, Arizona Center for Integrative Modeling and
Simulation, Available via <http://www.
acims.arizona.edu> [accessed June 2007].

Bendre, S. and H. Sarjoughian 2005. Discrete-Event Be-
havioral Modeling in SESM: Software Design and
Implementation. In Proceeding of the 2005 Ad-
vanced Simulation Technology Conference, pp.
23-28, San Diego, CA.

Burmester, H., S. Henkler 2005. Visual Model-Driven De-
velopment of Software Intensive Systems: A Sur-
vey of Available Techniques and Tools. In Pro-
ceeding of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, Dal-
las, Texas, USA.

Butler, J. 1995. Quantum Modeling of Distributed Object
Computing. Simulation Digest 24(2): 20-39.

Eker, J., W. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs and Y. Xiong 2003. Tam-
ing Heterogeneity--the Ptolemy Approach. In
Proceedings of the IEEE 91(2): 127-144.

Fu, T. 2002. Hierarchical Modeling of Large-Scale Sys-
tems Using Relational Databases. Master thesis,
Department of Electrical & Computer Engineer-
ing, University of Arizona, Tucson, AZ, USA.

Hild, D. 2000. DEVS-Based Co-Design Modeling and
Simulation Framework and Its Supporting Envi-
ronment. Ph.D. thesis, Electrical & Computer En-
gineering, University of Arizona, Tucson, AZ,
USA.

Hild, D., H. Sarjoughian and B. Zeigler 2002. DEVS-
DOC: A Modeling and Simulation Environment
Enabling Distributed Codesign. IEEE SMC
Transactions 32(1): 78-92.

Hu, W., H. Sarjoughian 2005. Discrete-Event Simulation
of Network Systems Using Distributed Object
Computing Hybrid Discrete, In Proceeding of
2005 Symposium on Performance Evaluation of
Computer and Telecommunication Systems, pp.
884-893, Philadelphia, PA.

Mathworks. "MATLAB/SIMULINK." Available via
<http://www.mathworks.com/> [accessed March
2007].

ns-2. 2004. "The Network Simulator - ns-2." Available via
< http://www.isi.edu/nsnam/ns> [accessed March
2006].

OPNET. 2004. OPNET Modeler. Available via
<http://www.opnet.com> [accessed December
2006].

Sarjoughian, H. 2001. An Approach for Scaleable Model
Representation and Management. Internal Report,
pp. 1-11, Arizona State University, Tempe, AZ.

Sarjoughian, H. 2005. A Scalable Component-based Mod-
eling Environment Supporting Model Validation.
In Proceeding of 2005 Interserive/Industry Train-
ing, Simulation, and Education Conference, pp. 1-
11, Orlando, FL.

Sarjoughian, H., D. Hild and B. Zeigler 2000. DEVS-
DOC: A Co-Design Modeling and Simulation
Environment. IEEE Computer 3(33): 110-113.

Sarjoughian, H., R. Flasher 2007. System Modeling with
Mixed Object and Data Models. In Proceeding of
the 2007 DEVS Symposium, Spring Simulation
Multi-conference pp. 199-206, Norfolk, VA,
USA.

Young, M., J. Cook and L. Mahabadi. 2003. Stochastic
Local Search Algorithms for Minimizing Edge
Crossings in Complete Rectilinear Graphs.
Available via <http://www.cs.unm
edu/~young/final_report.pdf> [accessed June
2006].

Zeigler, B., P. E. Hammonds 2007. Modeling & Simula-
tion-Based Data Engineering: Introducing Prag-
matics into Ontologies for Net-Centric Informa-
tion Exchange, in-press.

Zeigler, B., H. Praehofer and T. Kim 2000. Theory of
Modeling & Simulation, New York: Academic.

AUTHOR BIOGRAPHIES

WEILONG HU is a PhD candidate in the Computer Sci-
ence and Engineering department at ASU. His research is
in simulation-based co-design and software engineering.
He can be contacted at <weilong.hu@asu.edu>.

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science & Engineering at ASU and Co-Director
of the Arizona Center for Integrative Modeling and Simu-
lation. His research focuses on multi-formalism modeling,
collaborative modeling, distributed simulation, and soft-
ware architecture. He can be contacted at <sar-
joughian@asu.edu>.

