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Abstract 
  One approach to support the creation of executable 
UML models is to utilize an existing DEVS simulation 
environment. The Discrete Event System Specification 
(DEVS) formalism excels at modeling complex discrete 
event systems. An approach to specifying DEVS-compliant 
models is presented via Unified Modeling Language (UML) 
state machines. Resultant UML models are executable 
within DEVS simulation frameworks such as DEVSJAVA. 
Constructing DEVS-compliant UML models enables early 
simulation and verification of a design. This paper outlines 
how the specifics of simulation can be naturally expressed 
in UML models without significant burden to the UML 
practitioner. Simulatable models are an excellent precursor 
and companion to the current models normally developed 
during design and implementation and may result in 
significant cost and time savings.   
 
1. INTRODUCTION 
 
1.1.  Motivation 
 Modeling via a combination of DEVS [1] and UML [2] 
provides a structured approach for the creation of a UML 
model that can be simulated under an executable DEVS 
framework. Although, such models cannot be simply 
handed off to developers for implementation, instead these 
executable models promote early understanding of a system 
and allow for formal verification of important aspects of a 
system which would otherwise have been difficult using 
UML alone. Additionally, simulatable models have reuse 
and extensibility potential throughout the software 
development lifecycle. Simulation is a more attractive 
proposition when the creation of executable UML models 
requires only a basic understanding of simulation for a UML 
practitioner and these simulation constructs can be included 
into a model with little overhead. 
 

1.2. Why Simulate? 
 El Sheik et al. [3] present thirteen incentives for 
employing simulation. Simulation allows for 
experimentation, time compression and expansion, 
replaying events to discover why they occurred, animation 
and visualization of a system, and training. However, 
objections to simulation of software systems have been 
raised including the cost of testing twice, once in the 
simulated version and then again in the real system, and also 
a belief that with a modern iterative development approach 
simulation is no longer necessary since the real system can 
be evolved incrementally thereby nullifying many of the 
incentives for simulation.  
 We recommend creating a simulation model using 
UML wherein most of the aspects of the model particular to 
simulation are modeled separately wherever possible. Since 
the UML becomes the common modeling language for both 
the simulation model and the real software system, the 
perception of simulation as a disjoint and unnecessary 
exercise can be reduced. Furthermore, the perceived value 
of the simulation models will likely be enhanced since these 
models are the easiest to create and execute due to their 
relative simplicity. In terms of iteratively developing 
models, a modeler can begin with a simulatable model and 
as requirements are solidified evolve a separate model 
driving the specification of the system for the developers. In 
so doing we can diminish the resistance to employing 
simulation during the conceptualization and development of 
a system. It should be noted that it is possible to evolve a 
simulatable model into greater and greater levels of 
precision through decomposition of the model whilst still 
remaining a simulatable model.  
 Once we progress into the prototype and production 
phases, the models become qualitatively different in nature 
and this progression should not be seen as a simple one-to-
one mapping between models and neither should it been 
seen as sequential phases, rather the development and 
evolution of the simulation models can continue in parallel 
through all phases of the software development lifecycle. 
Beyond the architectural phases, where the simulatable 
models become mature, the models continue to serve as 
important tools to verify, experiment, and instruct. 



Whenever changes are under consideration, or when various 
what-if scenarios need examination, additional 
experimentation using simulatable models may be 
employed.  
 
1.3. Why DEVS? 
 According to Zeigler et al [1] “DEVS is the unique 
form of representation that underlies any system with 
discrete event behavior”. UML is inherently a discrete 
modeling language [4]. It is therefore natural to consider 
what forms a DEVS-compliant UML model may take. 
Models expressed using the Discrete Event System 
Specification (DEVS) represent a class of systems theoretic 
models that permit parallel event-based behavior to be 
expressed concisely and in a manner that lend themselves to 
formal verification [1].  Although many different simulation 
formalisms have been advanced over the years, the DEVS 
formalism has emerged as the preferred formalism due to 
the fact that other formalisms have been proven to have an 
equivalent DEVS representation [1]. In particular, a 
differential equation system specification (DESS) can be 
simulated by a discrete time system specification (DTSS) 
through the selection of a sufficiently small constant time 
interval. A DTSS model, in turn, can be simulated by a 
DEVS model by constraining the time advance to a constant 
time. As such, simulations based on DEVS are more general 
in nature than other approaches such as continuous 
simulation [6]. DEVS is appealing since it operates at a high 
level of abstraction yet can yield critical information during 
an architectural phase that might otherwise not come to light 
until much later.  
 Further, it has been shown that DEVS models are 
particularly suited to the expression of many design patterns 
and allow an architect to employ patterns usefully at an 
architectural and modeling stage [7].  It is important to 
recognize DEVS models solve a general class of problems, 
but are by no means suitable for all types of problems. 
 
2. MODELING APPROACH 
 Various approaches to modeling DEVS in UML 
already exist [5,13,14,11,15]. The focus of this paper is to 
remedy issues relating to time and synchronization of 
message delivery such that we have an approach that will 
enable executable models using existing DEVS simulation 
frameworks. The approach outlined in this paper 
summarizes existing thesis work [16]. 
 
2.1. Model Architecture 
 In DEVS, any component that contains other 
components is called a coupled model; non-container 
components are called atomic models. All behavior is 
derived from atomic models. Generally in UML, a state 
machine is used to model an atomic model. A coupled 
model can also be modeled using a state machine. Thus, 

from a UML perspective one way to think of a DEVS-
compliant model is a hierarchy of communicating state 
machines. Each non-leaf sub-tree represents a coupled 
model. Each leaf node represents an atomic model. In our 
approach messages bound for a peer node must travel 
through the parent node representing the coupled model and 
then down to the peer node. This way the state machine for 
each node is only aware of a generic parent state machine. 
Data messages always originate from atomic models. 
 
2.2. Ports 
 In DEVS components (atomic and coupled models) 
have input and output ports. Output ports from one 
component can be connected to the inputs of another peer 
component or to the output ports of a containing component. 
Likewise, input ports of a containing component connect to 
the input ports of immediate sub-components or directly to 
their own output ports.  
 In UML, a Structured Class is a rough analogue to a 
DEVS coupled model though it has the capability to have its 
own responsibilities beyond being a simple container and its 
ports are bi-directional. We recommend using a UML 
Composite Structured Diagram to represent a DEVS 
coupled model, with the restrictions that ports must be 
named and unidirectional, and there can be no connections 
from a part back to itself. Corresponding to each port we 
introduce an event signal type – by convention the name of 
the port matches the name of the event signal type.  In 
UML, connectors need not attach to components (more 
correctly parts) via ports; this is not an option in DEVS and 
hence not an option in DEVS-compliant UML. If ports are 
specified to provide or require an interface, there should 
only be one such interface specified in DEVS-compliant 
UML. 
 For state machines, we map DEVS input ports to events 
and output ports to event signal generation. If desired, 
atomic and coupled models could join a system dynamically 
at runtime. A registration process maps ports to event signal 
types. In the event output ports remain unconnected after 
registration they are connected to a null output port for the 
coupled model, meaning that their outputs are discarded.  
 
2.3. Time in UML 
 Time is central to DEVS models but in UML 2.0, the 
handling of time, especially as required for simulation, has 
significant shortcoming. The UML Profile for 
Schedulability, Performance and Time Specification [8] 
seeks to address these shortcomings but is unnecessary for 
our needs since the profile introduces more complexity than 
required to achieve a UML representation of a DEVS 
model. Instead, a simple protocol of time-related events is 
introduced to resolve these issues. UML does have specific 
time-related constructs such as after, but in terms of 
simulation the use of UML after is problematic since 



synchronized behavior among models cannot be guaranteed 
because the time cost of simulation is left unaccounted. 
Within our modeling approach, time passes only as 
accounted for by the special event evSleep(n). The act of 
setting state variables, performing transitions, generating 
output etc. all occurs in zero time. This simulation-specific 
overhead cannot be reliably accounted for via the UML 
after function.   
 
2.4. Simulating Time 
 When we communicate between models we need to 
ensure that, where timing is relevant, the passage of time 
witnessed by both models is the same. Although a global 
clock is not defined in UML our protocol of event signaling 
provides the timing coordination necessary for simulation. 
Time is counted via event ticks, which are simulations of 
real time. The elapsed real (wall clock) time between each 
tick may be of varying duration. The outermost coupled 
model, the coordinator, issues a evTick(n,sleepExpired) to 
each of its contained models and awaits an 
acknowledgement. These evTick events are passed along 
recursively to all active sub-models. Depending on the 
desired simulation speed, the delay between each tick is 
adjusted to run faster or slower than wall clock time. Since 
the execution of the simulation itself, such as sending and 
receiving messages, takes some time, this time is subtracted 
from the amount of time to sleep between clock ticks. Thus, 
by specifying a simulation time of zero, thereby indicating 
that we should not sleep between ticks, the simulation speed 
is dictated by the speed of the computer and its resources. 
We can get close to our intended real time in our simulation 
if we pause between ticks for the amount of time remaining 
after the simulation control logic has completed. Obviously, 
if the amount of overhead involved in simulating is longer 
that the amount of time we intend each tick to represent then 
we need a faster computer for our simulation but rarely do 
we need simulated time to match real time. The beauty of 
DEVS is that the simulated time unit can be shortened or 
lengthened to accommodate whatever level of granularity 
we choose to model.  
 
2.5. Sequence of Events 
 In DEVS, the outputs from (or events generated by) an 
atomic model are generated in the output function which is 
invoked immediately prior to the internal transition function 
and never in direct response to an external event. This is the 
primary contractual obligation of a designer creating 
UML2.0 state charts compatible with DEVS. Whilst this 
may appear counterintuitive at first, it is natural from a 
simulation perspective – outputs only occur after some 
(perhaps zero) amount of processing time. Maintaining this 
restriction keeps the model specification consistent and 
reduces complexity for large systems. In our approach the 
output event signals are generated as part of a transition 

triggered on the internal transition event, evTick, which is 
generated in response to an earlier evSleep(n) event.  
 
2.6. Simulating Processing 
 Our executable models don’t actually perform any real 
work instead we simulate the amount of time the real system 
would spend on a task by sleeping through the generation of 
an evSleep(n) event where n is the number of units of time 
after which an evTick signal will be triggered. This is 
analogous to the UML after event but after is not suitable 
for use in state machines in DEVS-compliant UML since all 
events must be globally coordinated due to timing 
considerations. 
 If a signal should be generated after some amount of 
time, then instead of using the after keyword we generate an 
event signal to the containing coupled model requesting to 
be woken after that period of time. In DEVS, it is possible 
for the subsequent time expiration event evTick and an input 
event to occur simultaneously. We can set a precedence for 
which event is to be handled first. In DEVS this is called the 
confluent function. 
 
2.7. Modeling Simultaneous Events 
 There is a thorny issue of handling multiple 
simultaneous events. If we perceive the inputs to an atomic 
model as events, then we are confronted with the restriction 
that multiple simultaneous events cannot be expressed in a 
UML state machine unless they occur in orthogonal regions 
[2]. This restriction may appear reasonable where events are 
processed in close to zero time, but from a DEVS 
perspective it represents a fundamental hurdle in the UML 
specification for reactive behavior. DEVS supports multiple 
events being processed at a given point in time. DEVS also 
supports time events (e.g. after 10 seconds) occurring 
simultaneously with other events. Practically speaking, 
whether two events are truly simultaneous is debatable, but 
from a modeling perspective it is nonetheless possible, 
reasonable, and practical to say two events happen say 
simultaneously precisely 10 seconds from now.  
 We are left with the challenge of how we react to such 
simultaneous events. Since simultaneous events are only 
partially supported in UML2.0, we must compensate for this 
in our modeling approach. For example, if events e1 and e2 
are simultaneous, in DEVS, we can model handling these 
events and then ignoring an event e3 that occurs during the 
processing of e1 and e2. In UML2.0 this is less 
straightforward. In UML events are handled one at a time. 
 As an aside, one may argue that the likelihood of 
accepting multiple simultaneous events and then rejecting 
subsequent events does not have many practical applications 
and simultaneity is only a function of the accuracy of the 
clock: if the clock were at a much finer grain, simultaneous 
events may not be simultaneous at all. Simultaneous are 
therefore events are those that occur within a given window 



of time and from a simulation perspective these event are 
unordered – they should be presented together.  
 In order to simulate the simultaneous arrival of multiple 
messages we wrap the atomic model with another model 
that is responsible for bagging all the individual messages 
destined for the atomic model at the same time. To 
complicate matters, DEVS allows a model to react to a 
message and send an output message without time passing, 
hence multiple bags of input messages may be delivered 
separately to model at the same time (the clock is stopped 
during the delivery phase). Each such delivery occurs during 
a different simulation cycle. The reason we use a message 
bag and not a list is to represent the fact that the messages 
arriving during one clock period have no order since they 
arrive “at the same time” even if, during simulation, one 
event appears to precede another (remember the clock is 
stopped so any ordering during this time must be invisible to 
the observer – any order must be made explicitly in the 
model itself).  

 
2.8. Simulation Cycles 

evTick(1,true)

evTick(0,sleepExpired)
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evMsg() message 
delivery and/or

evSleep(0)

Overhead non-model
“Zero Time”

UML “after”

Modeled/Real Time

Simulation 
overhead 

processing

evTick(0,sleepExpired)

evTick(0,sleepExpired)

sleepExpired=true if tick sent in response to expiring evSleep

 
Figure 1.  Simulation Cycle 

 
 A clock cycle may have multiple simulation cycles. 
During the first simulation cycle, a model receives an 
evTick(n,sleepExpired) event with a parameter indicating 
the amount of time that has elapsed since the last evTick 
message received. A coupled model will only receive an 
evTick message in the event that it has a timeNext of zero.  
Since atomic models may generate outputs in response to an 
evTick signal those messages must be delivered during this 
clock cycle. However, it is preferred that these messages be 
delivered as a bag of messages and not delivered 
individually. To facilitate delivering bags of messages, a 
coupled model marks as active any model to which it sends 
an evMsg message. Atomic model simulators do not pass 
messages directly to atomic models upon receipt but rather 
wait for an evTick(n=0) message to arrive. An evTick(n=0) 
will never be the first evTick message in the clock cycle 
since there will never be undelivered messages from a 
previous clock cycle. Thus, the first evTick message in a 

clock cycle will always have a non-zero amount of time 
elapsed.  An evTick(n=0) may also be triggered by the 
generation of an evSleep(0) message by an atomic model. 
 
3. MODELING BEHAVIOR 
 As in UML where is no formal action language 
specification, there is no formal action language syntax 
defined as part of DEVS. Often a DEVS specification 
involves informal pseudo-code but for executable UML this 
is not an option. Within the DEVJAVA [12] framework 
Java is the language of choice. There are reservations to 
using a procedural language such as Java, for example 
Stephen Mellor [9] objects to using Java or a similar 
programming language since modelers are likely to develop 
specifications that compromise the intended level of 
abstraction with non-domain specific constructs such as 
pointers and arrays. Whilst these objections are justified, a 
pragmatic approach suggests that Java employed in the 
specification of a DEVS model is not necessarily a poor 
choice so long as the modeler exercises good choices with 
respect to its application. Further since simulation models 
are disjoint from the models used as specification for 
developers, such code is less likely to leach unchecked into 
the production code. 
 
4. MODEL COMPONENTS 
To recap, each system is composed of a hierarchy of 
models. The leaf nodes are atomic models, each with an 
associated atomic model simulator. An atomic model 
resides in a coupled model which may in turn reside in 
another coupled model. The outermost coupled model is the 
coordinator. Also, a special type of atomic model called an 
experiment may be specified to drive test execution. 

 
4.1. Atomic Model Simulator 
 The atomic model simulator acts as the interface to the 
atomic model. This separate state machine handles the 
arrival and bagging of messages. We also account for the 
confluent function in this model. Also, since UML event 
signals must be sent to an object, and since we want state 
charts for atomic models to be reusable components all 
events generated by an atomic model are sent via the atomic 
model simulator. 

 
4.2. Simulation State Machines 

 

 During simulation the coupled models and atomic 
model simulators control message flow and timing. Both 
share a similar state machine. The signal evTick comes from 
the containing model and is relayed to any active model and 
to any model with an expiring timeNext. The evAck signal is 
generated by a model when it has received an evAck from 
each sub-model to which it sent an evTick signal. 



Coupled Model / Atomic Model Simulator

Registration

Simulating

evTick(n) evSleep(n)

evAck(isActive) evMsg(bag)

evRun()
evEnd()

 
Figure 2.  Simplified State Machine for Coupled Models 

and Atomic Model Simulators 
 

 The evAck signal has one parameter, isActive, which 
indicates whether any sub-model is active. Note, an active 
model is any model for which the corresponding atomic 
model simulator has a non-empty message bag. In this way, 
the coordinator knows whether there are any active models 
in the system, and if so, whether another simulation cycle is 
necessary. An atomic model must generate an evAck in 
response to an evTick event after it has generated any 
external output messages – that is, at the end of its output 
function 

 
5. EVENTS 
 Events are either application or control events. 
Application events are those used for passing the application 
messages between models during execution and should be 
derived from the evMsg event type. Control events are those 
used to control the execution of the simulation itself, such as 
controlling time (evTick) and performing registration of 
models with their respective containers. Since most of the 
classes used in the simulation are state machines, they 
receive messages such as the declaration of the input and 
output ports of the contained models within their event 
loops via event signals from the atomic or coupled model 
instances that they contain. The important events are now 
presented. There are other control events involved in 
registration and test setup that are not presented. 

 
5.1. evMsg 
 All application data messages should derive from this 
event signal type. This event signal as it arrives at its 
destination atomic model holds an unordered bag of 
messages sent to the model during that clock cycle. 
 

 When a coupled model receives an event it is forwarded 
to the models that have registered to receive it. If the 
coupled model has an output port mapped to the event it is 
sent to the containing coupled model.   
 If the event is simply passed through directly from an 
input port to an output port and since these port names must 
be different the event is signaled using the new output port 
name.  

cmUponEvMsg(Event ev)

foreach Model m in models {
     if ( m.isInputEvent(ev) ) {
       m.signal(ev);ackExp++;
       activeClients[m]=true;
       isActive=true;
     }
  }
  if ( container != null ){
    if ( isOutputEvent(ev) )
      container.signal(ev);
    if ( isPassThruEvent(ev) )
       signalPassThru(ev);
  }

 
Figure 3.  Transition action for evMsg in Coupled Model 

 
amsUponEvMsg(Event ev)

  if ( isOutputEvent(ev) )
    container.signal(mapEvent(ev));
  else 
     messageBag.concat(ev.messageBag);

 
Figure 4.  Atomic Model Simulator evMsg transition action 

 

 The evMsg signal is generated by an atomic model as 
part of its output function. The output function is the logic 
performed upon receipt of an evTick signal and before the 
evAck signal is generated. The output function is the only 
time during which external evMsg messages may be 
generated. The evMsg type is itself an abstract message 
type. The atomic model must send a concrete sub-class of 
this message type. For a coupled model, when an evMsg 
message is received, it is relayed to any sub-models that 
have the corresponding concrete message type as an input. 
The evMsg is also relayed to the containing model if the 
coupled model has itself the   corresponding concrete 
message type as an output 
 
5.2. evSleep(n) 
 evSleep(n) signal is a request to be sent a evTick after 
expiration of  n units of time. This is generally used to 
simulate the amount of time take to perform processing.  

 
cmUponEvSleep(Event ev)

  Model m=models[ev.sender]
  m.timeNext=ev.n; // n is ticks to sleep
  m.timeElapsed=0;
  int newTimeNext = getMinTimeNext();
  if ( this.timeNext != newTimeNext ){
     this.timeNext=newTimeNext;
     if ( container != null ) // not coordinator
       container.signal(new EvSleep(newTimeNext));
  }

 
Figure 5.  Transition action for evSleep in Coupled Model 



 

 The evSleep(n) signal is initially generated by the 
atomic model and relayed through the atomic model 
simulator to the coupled model. The coupled model stores 
the time contained in the evSleep(n) event as the timeNext 
for the model. As part of the event signal, the sender is also 
identified. A coupled model also contains a timeNext for 
itself representing the earliest timeNext of all its sub-models. 
This is recalculated each time an evSleep event arrives since 
such an event may change the overall timeNext for the 
model. If the new timeNext is different than the coupled 
model’s current timeNext, then it communicates this new 
timeNext to its own container. 

 
amsUponEvSleep(Event ev)

    container.signal(ev);
 

Figure 6.  Atomic Model Simulator evSleep transition 
 

 Also note that if the atomic model wishes to indicate a 
passive state where evSleep(n) has a value of infinity, it can 
pass a value of -1 as the duration of the evSleep(n). In this 
way, the atomic model simulator will remain dormant until 
it receives another external event 

 
5.3. evTick(n,sleepExpired) 
 evTick(n,sleepExpired) is an event that represents the 
passage of n units of time. Since we must not employ UML 
time constructs such as after we must model time explicitly 
through our own events. Each evTick(n,sleepExpired) event 
has an n parameter that specifies the amount of time that has 
elapsed since the last tick. Within the same clock cycle, 
there may be a need for the message bag to be relayed to the 
atomic model multiple times (each time with a new bag). 
The fact of its being in the same clock cycle should be 
transparent to the atomic model simulator with a new tick 
event having a value of zero for n.    
 When an external event is received the timeNext == 0 
condition will evaluate to false since timeNext will be less 
than zero. The confluent function will not be entered.  One 
thing that has not been addressed thus far is passing the 
elapsed time since the last internal or external transition to 
the atomic model itself. This is easily accommodated by 
adding this time as an argument to the messages sent to the 
atomic model from the atomic model simulator.  
 
5.4. Processing Ticks in Coupled Models 
 The algorithm for accepting evTick events in a coupled 
model simulator is as follows: 
 

 
Figure 7.  Transition action for evTick in Coupled Model 

 

 For each model contained within the coupled model, a 
timeNext is maintained containing the amount of time 
remaining until the next scheduled evTick. Also, a 
timeElapsed is maintained containing the amount of time 
elapsed since the last evTick was sent to that model. If there 
is no scheduled evTick, then the time remaining will be a 
negative number. Atomic models send an evSleep(-1) to 
indicate a passive state where the sleep value should be 
considered as infinity. A coupled model is considered active 
if any of its sub-models are active. Once a coupled model 
sends an evTick to a sub-model, that sub-model is no longer 
considered active.  
 

amsUponEvTick(Event ev)

   if ( messageBag.isEmpty() ) {
     model.signal(ev);
   } else { // n will always be zero
     model.signal(new EvMsg(messageBag));
     if ( e.isSleepExpired ){
       container.signal(new EvTick(0)); 
     }
   }

 
Figure 8.  Atomic Model Simulator evTick transition 

  
 When signaled to an atomic model evTick corresponds 
to invocation of the DEVS internal transition function – this 
signals the expiration of time intended to simulate the 
performance of a task as indicated by the preceding evSleep 
signal generated by the atomic model.  This signal is issued 
by the atomic model simulator and sent to the atomic model 
when the atomic model simulator receives an evTick event. 
 



5.5. evAck(isActive) 
 The evAck signal is generated by the atomic model 
when it receives an evTick signal and after it has completed 
generating any external evMsg messages.  

 

cmUponEvAck(Event ev)

  ackCount++;
  if ( ! isActive )
    isActive=ev.isActive;
  if (ackCount == ackExp){
     if ( container == null ) { //coordinator
        if ( timeNext < 0 ){ // finished – all passive
            self.signal(new EvEnd());
        } else {
            self.signal(new EvTick(timeNext));
        }
     } else {
        container.signal(new EvAck(isActive));
     }
  }

 
Figure 9.  Transition action for evAck in Coupled Model 

 

The evAck message has one parameter, called isActive, 
which is always set to false in the case of an atomic model. 
For coupled models, the evAck signal is generated upon 
receipt of the final evAck from each of its sub-models and 
the isActive parameter is set to true depending upon whether 
there are any active sub-models. 

 
5.6. Confluent Events 
 By default, any atomic models that have an expiring 
evSleep, and thus an imminent internal transition via an 
evTick event, receive that expiration notification 
simultaneously (during the first simulation cycle of the 
clock cycle). Since outputs are delivered as part of the next 
simulation cycle, the notion of a confluent function becomes 
a non-issue, except where a model issues an evSleep(0) 
during a simulation cycle, and that model is also sent 
messages during that same simulation cycle by another 
model.  In such a case, there are confluent internal and 
external events. Confluent events are simultaneous events 
that occur during the same simulation cycle. Events 
occurring at the same time but occurring during different 
simulation cycles during the same clock cycle are not 
considered confluent events.  
 The precedence for confluent events is handled in the 
atomic model simulator. If external  evMsg events are to be 
given precedence over internal evTick events then upon a 
evTick(n,sleepExpired) event where sleepExpired is true, an 
evSleep(0) should be issued and upon the next evTick(0) 
received any messages can be passed to the atomic model 
and then the evTick can be passed to the atomic model. If 
desired you can repeated signal evSleep(0) until there are no 
outstanding evMsg messages incoming for the atomic model 

and only then the evTick() message can be delivered to the 
atomic model.  
 
6. UML MODELING RULES 
 Under DEVS-compliant UML, an instance of a class 
may participate in a model, if and only if, it is contained 
within an instance of simulatable object or is itself an 
instance of a simulatable object. 
 A simulatable object is one that has its behavior defined 
via a compliant state machine. This implies that all 
communication is essentially asynchronous insofar as 
replies to messages require an internal transition before a 
response is available. However, since evSleep(n) can be 
specified with zero time delay, the distinction is moot. 
 
A compliant state machine has the following characteristics: 
• Each event signaled must correspond to an output port 

name defined for the model. 
• Each event received must correspond to an input port 

name defined for the model. 
• Input and output port names must be disjoint. 
• All time-dependent behavior is expressed via evSleep(n) 

signals and evTick events. There shall be no after or other 
UML time-related references in the state machine 
specification.  

• Each atomic model state machine has an associated 
atomic model simulator. 

• The state machine must only send external signals to 
atomic model simulator. A state machine may send 
signals to itself. 

• The state machine must only receive external signals from 
atomic model simulator. A state machine may receive 
signals from itself. 

• All signals sent to the atomic model simulator must occur 
upon receipt of an evTick event and before the evTick 
transition completes – this is the output phase. Such 
activity is defined in the action part of the specification of 
the transition triggered by the evTick event. 

• An evAck signal must be generated and sent to the atomic 
model simulator upon completion of processing of an 
external event. All processing from receipt of the external 
event through the generation of the evAck signal must be 
atomic – it must run to completion. 

• An evSleep(n) event signal is generated and sent to the 
atomic model simulator whenever the state machine 
wishes to simulate the amount of time required to 
complete some hypothetical processing, transmission 
time, or other such delay. This event is sent to the 
associated atomic simulator object. The atomic simulator 
will send an evTick event back to the state machine upon 
expiration of this time. The state machine remains 
dormant (quiescent) during this period or until it receives 
another external event (i.e. other than an evTick event).  



• If an evSleep(n) event signal is generated, it must 
immediately precede the evAck signal generation. 

• Upon receipt of an external event, an atomic model may 
issue a new evSleep(n) signal which supersedes any 
previously generated evSleep(n) signal event. Otherwise, 
any existing evSleep(n) will remain in effect. A duration 
of -1 in an evSleep(n) signal indicates infinity or passive 
state. As such no evTick event will be issued to the atomic 
model and the state machine will be dormant until the 
next external event. 

• All processing time involved in handling events during 
simulation is performed in zero time unless explicitly 
accounted for via evSleep(n) signals.   

• All messages (event signals) are transmitted and received 
in zero time – the simulation clock is stopped. Likewise, 
all logic performed in the state machine is performed in 
zero time. Any requirement to model this time must be 
explicitly accounted for in the model via evSleep(n) 
signals. 

• At any point there should only be one state in which 
simulated processing is ongoing as expressed via an 
evSleep(n) signal generation. This signal expresses the 
fact that there is processing that takes a certain amount of 
time, possibly zero, before it completes. Such states are, 
however, be interruptible. Note, in UML it is possible to 
have states in orthogonal regions within a state machine 
that may be performing actions simultaneously – for 
DEVS-compliant UML, the restriction is that only one 
state responds to an evTick event at any time. 

 
7. CONCLUSIONS 
 Those unfamiliar with DEVS and more comfortable 
with the UML now have a convenient and relatively 
straightforward modeling approach by which their UML 
models can be executed and verified at an early stage of 
design. This approach has a wide generality in terms of the 
types of systems and problems to which it can be applied. 
The models produced are component-based, and given the 
closure property of DEVS, any component can be replaced 
by a different component with a greater degree of 
decomposition with the resulting system having an 
equivalent behavior. This modeling approach fits neatly 
within the modern iterative approach used to develop 
software systems. Modeling in this manner helps broaden 
and deepen the appreciation and application of simulation as 
a discipline within the field of software architecture. 
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