
A Framework for Executable UML Models

Joe Mooney
General Dynamics
Scottsdale, Arizona

Email: Joe.Mooney@asu.edu

Hessam Sarjoughian
ACIMS

Department of Computer Science and Engineering
Arizona State University

Email: Sarjoughian@asu.edu

Keywords: Discrete event simulation, DEVS, Executable
UML, State Machine.

Abstract
 One approach to support the creation of executable
UML models is to utilize an existing DEVS simulation
environment. The Discrete Event System Specification
(DEVS) formalism excels at modeling complex discrete
event systems. An approach to specifying DEVS-compliant
models is presented via Unified Modeling Language (UML)
state machines. Resultant UML models are executable
within DEVS simulation frameworks such as DEVSJAVA.
Constructing DEVS-compliant UML models enables early
simulation and verification of a design. This paper outlines
how the specifics of simulation can be naturally expressed
in UML models without significant burden to the UML
practitioner. Simulatable models are an excellent precursor
and companion to the current models normally developed
during design and implementation and may result in
significant cost and time savings.

1. INTRODUCTION

1.1. Motivation
 Modeling via a combination of DEVS [1] and UML [2]
provides a structured approach for the creation of a UML
model that can be simulated under an executable DEVS
framework. Although, such models cannot be simply
handed off to developers for implementation, instead these
executable models promote early understanding of a system
and allow for formal verification of important aspects of a
system which would otherwise have been difficult using
UML alone. Additionally, simulatable models have reuse
and extensibility potential throughout the software
development lifecycle. Simulation is a more attractive
proposition when the creation of executable UML models
requires only a basic understanding of simulation for a UML
practitioner and these simulation constructs can be included
into a model with little overhead.

1.2. Why Simulate?
 El Sheik et al. [3] present thirteen incentives for
employing simulation. Simulation allows for
experimentation, time compression and expansion,
replaying events to discover why they occurred, animation
and visualization of a system, and training. However,
objections to simulation of software systems have been
raised including the cost of testing twice, once in the
simulated version and then again in the real system, and also
a belief that with a modern iterative development approach
simulation is no longer necessary since the real system can
be evolved incrementally thereby nullifying many of the
incentives for simulation.
 We recommend creating a simulation model using
UML wherein most of the aspects of the model particular to
simulation are modeled separately wherever possible. Since
the UML becomes the common modeling language for both
the simulation model and the real software system, the
perception of simulation as a disjoint and unnecessary
exercise can be reduced. Furthermore, the perceived value
of the simulation models will likely be enhanced since these
models are the easiest to create and execute due to their
relative simplicity. In terms of iteratively developing
models, a modeler can begin with a simulatable model and
as requirements are solidified evolve a separate model
driving the specification of the system for the developers. In
so doing we can diminish the resistance to employing
simulation during the conceptualization and development of
a system. It should be noted that it is possible to evolve a
simulatable model into greater and greater levels of
precision through decomposition of the model whilst still
remaining a simulatable model.
 Once we progress into the prototype and production
phases, the models become qualitatively different in nature
and this progression should not be seen as a simple one-to-
one mapping between models and neither should it been
seen as sequential phases, rather the development and
evolution of the simulation models can continue in parallel
through all phases of the software development lifecycle.
Beyond the architectural phases, where the simulatable
models become mature, the models continue to serve as
important tools to verify, experiment, and instruct.

Whenever changes are under consideration, or when various
what-if scenarios need examination, additional
experimentation using simulatable models may be
employed.

1.3. Why DEVS?
 According to Zeigler et al [1] “DEVS is the unique
form of representation that underlies any system with
discrete event behavior”. UML is inherently a discrete
modeling language [4]. It is therefore natural to consider
what forms a DEVS-compliant UML model may take.
Models expressed using the Discrete Event System
Specification (DEVS) represent a class of systems theoretic
models that permit parallel event-based behavior to be
expressed concisely and in a manner that lend themselves to
formal verification [1]. Although many different simulation
formalisms have been advanced over the years, the DEVS
formalism has emerged as the preferred formalism due to
the fact that other formalisms have been proven to have an
equivalent DEVS representation [1]. In particular, a
differential equation system specification (DESS) can be
simulated by a discrete time system specification (DTSS)
through the selection of a sufficiently small constant time
interval. A DTSS model, in turn, can be simulated by a
DEVS model by constraining the time advance to a constant
time. As such, simulations based on DEVS are more general
in nature than other approaches such as continuous
simulation [6]. DEVS is appealing since it operates at a high
level of abstraction yet can yield critical information during
an architectural phase that might otherwise not come to light
until much later.
 Further, it has been shown that DEVS models are
particularly suited to the expression of many design patterns
and allow an architect to employ patterns usefully at an
architectural and modeling stage [7]. It is important to
recognize DEVS models solve a general class of problems,
but are by no means suitable for all types of problems.

2. MODELING APPROACH
 Various approaches to modeling DEVS in UML
already exist [5,13,14,11,15]. The focus of this paper is to
remedy issues relating to time and synchronization of
message delivery such that we have an approach that will
enable executable models using existing DEVS simulation
frameworks. The approach outlined in this paper
summarizes existing thesis work [16].

2.1. Model Architecture
 In DEVS, any component that contains other
components is called a coupled model; non-container
components are called atomic models. All behavior is
derived from atomic models. Generally in UML, a state
machine is used to model an atomic model. A coupled
model can also be modeled using a state machine. Thus,

from a UML perspective one way to think of a DEVS-
compliant model is a hierarchy of communicating state
machines. Each non-leaf sub-tree represents a coupled
model. Each leaf node represents an atomic model. In our
approach messages bound for a peer node must travel
through the parent node representing the coupled model and
then down to the peer node. This way the state machine for
each node is only aware of a generic parent state machine.
Data messages always originate from atomic models.

2.2. Ports
 In DEVS components (atomic and coupled models)
have input and output ports. Output ports from one
component can be connected to the inputs of another peer
component or to the output ports of a containing component.
Likewise, input ports of a containing component connect to
the input ports of immediate sub-components or directly to
their own output ports.
 In UML, a Structured Class is a rough analogue to a
DEVS coupled model though it has the capability to have its
own responsibilities beyond being a simple container and its
ports are bi-directional. We recommend using a UML
Composite Structured Diagram to represent a DEVS
coupled model, with the restrictions that ports must be
named and unidirectional, and there can be no connections
from a part back to itself. Corresponding to each port we
introduce an event signal type – by convention the name of
the port matches the name of the event signal type. In
UML, connectors need not attach to components (more
correctly parts) via ports; this is not an option in DEVS and
hence not an option in DEVS-compliant UML. If ports are
specified to provide or require an interface, there should
only be one such interface specified in DEVS-compliant
UML.
 For state machines, we map DEVS input ports to events
and output ports to event signal generation. If desired,
atomic and coupled models could join a system dynamically
at runtime. A registration process maps ports to event signal
types. In the event output ports remain unconnected after
registration they are connected to a null output port for the
coupled model, meaning that their outputs are discarded.

2.3. Time in UML
 Time is central to DEVS models but in UML 2.0, the
handling of time, especially as required for simulation, has
significant shortcoming. The UML Profile for
Schedulability, Performance and Time Specification [8]
seeks to address these shortcomings but is unnecessary for
our needs since the profile introduces more complexity than
required to achieve a UML representation of a DEVS
model. Instead, a simple protocol of time-related events is
introduced to resolve these issues. UML does have specific
time-related constructs such as after, but in terms of
simulation the use of UML after is problematic since

synchronized behavior among models cannot be guaranteed
because the time cost of simulation is left unaccounted.
Within our modeling approach, time passes only as
accounted for by the special event evSleep(n). The act of
setting state variables, performing transitions, generating
output etc. all occurs in zero time. This simulation-specific
overhead cannot be reliably accounted for via the UML
after function.

2.4. Simulating Time
 When we communicate between models we need to
ensure that, where timing is relevant, the passage of time
witnessed by both models is the same. Although a global
clock is not defined in UML our protocol of event signaling
provides the timing coordination necessary for simulation.
Time is counted via event ticks, which are simulations of
real time. The elapsed real (wall clock) time between each
tick may be of varying duration. The outermost coupled
model, the coordinator, issues a evTick(n,sleepExpired) to
each of its contained models and awaits an
acknowledgement. These evTick events are passed along
recursively to all active sub-models. Depending on the
desired simulation speed, the delay between each tick is
adjusted to run faster or slower than wall clock time. Since
the execution of the simulation itself, such as sending and
receiving messages, takes some time, this time is subtracted
from the amount of time to sleep between clock ticks. Thus,
by specifying a simulation time of zero, thereby indicating
that we should not sleep between ticks, the simulation speed
is dictated by the speed of the computer and its resources.
We can get close to our intended real time in our simulation
if we pause between ticks for the amount of time remaining
after the simulation control logic has completed. Obviously,
if the amount of overhead involved in simulating is longer
that the amount of time we intend each tick to represent then
we need a faster computer for our simulation but rarely do
we need simulated time to match real time. The beauty of
DEVS is that the simulated time unit can be shortened or
lengthened to accommodate whatever level of granularity
we choose to model.

2.5. Sequence of Events
 In DEVS, the outputs from (or events generated by) an
atomic model are generated in the output function which is
invoked immediately prior to the internal transition function
and never in direct response to an external event. This is the
primary contractual obligation of a designer creating
UML2.0 state charts compatible with DEVS. Whilst this
may appear counterintuitive at first, it is natural from a
simulation perspective – outputs only occur after some
(perhaps zero) amount of processing time. Maintaining this
restriction keeps the model specification consistent and
reduces complexity for large systems. In our approach the
output event signals are generated as part of a transition

triggered on the internal transition event, evTick, which is
generated in response to an earlier evSleep(n) event.

2.6. Simulating Processing
 Our executable models don’t actually perform any real
work instead we simulate the amount of time the real system
would spend on a task by sleeping through the generation of
an evSleep(n) event where n is the number of units of time
after which an evTick signal will be triggered. This is
analogous to the UML after event but after is not suitable
for use in state machines in DEVS-compliant UML since all
events must be globally coordinated due to timing
considerations.
 If a signal should be generated after some amount of
time, then instead of using the after keyword we generate an
event signal to the containing coupled model requesting to
be woken after that period of time. In DEVS, it is possible
for the subsequent time expiration event evTick and an input
event to occur simultaneously. We can set a precedence for
which event is to be handled first. In DEVS this is called the
confluent function.

2.7. Modeling Simultaneous Events
 There is a thorny issue of handling multiple
simultaneous events. If we perceive the inputs to an atomic
model as events, then we are confronted with the restriction
that multiple simultaneous events cannot be expressed in a
UML state machine unless they occur in orthogonal regions
[2]. This restriction may appear reasonable where events are
processed in close to zero time, but from a DEVS
perspective it represents a fundamental hurdle in the UML
specification for reactive behavior. DEVS supports multiple
events being processed at a given point in time. DEVS also
supports time events (e.g. after 10 seconds) occurring
simultaneously with other events. Practically speaking,
whether two events are truly simultaneous is debatable, but
from a modeling perspective it is nonetheless possible,
reasonable, and practical to say two events happen say
simultaneously precisely 10 seconds from now.
 We are left with the challenge of how we react to such
simultaneous events. Since simultaneous events are only
partially supported in UML2.0, we must compensate for this
in our modeling approach. For example, if events e1 and e2
are simultaneous, in DEVS, we can model handling these
events and then ignoring an event e3 that occurs during the
processing of e1 and e2. In UML2.0 this is less
straightforward. In UML events are handled one at a time.
 As an aside, one may argue that the likelihood of
accepting multiple simultaneous events and then rejecting
subsequent events does not have many practical applications
and simultaneity is only a function of the accuracy of the
clock: if the clock were at a much finer grain, simultaneous
events may not be simultaneous at all. Simultaneous are
therefore events are those that occur within a given window

of time and from a simulation perspective these event are
unordered – they should be presented together.
 In order to simulate the simultaneous arrival of multiple
messages we wrap the atomic model with another model
that is responsible for bagging all the individual messages
destined for the atomic model at the same time. To
complicate matters, DEVS allows a model to react to a
message and send an output message without time passing,
hence multiple bags of input messages may be delivered
separately to model at the same time (the clock is stopped
during the delivery phase). Each such delivery occurs during
a different simulation cycle. The reason we use a message
bag and not a list is to represent the fact that the messages
arriving during one clock period have no order since they
arrive “at the same time” even if, during simulation, one
event appears to precede another (remember the clock is
stopped so any ordering during this time must be invisible to
the observer – any order must be made explicitly in the
model itself).

2.8. Simulation Cycles

evTick(1,true)

evTick(0,sleepExpired)

Finite number of
Simulation Cycles

Multiple simulation
cycles when we have

evMsg() message
delivery and/or

evSleep(0)

Overhead non-model
“Zero Time”

UML “after”

Modeled/Real Time

Simulation
overhead

processing

evTick(0,sleepExpired)

evTick(0,sleepExpired)

sleepExpired=true if tick sent in response to expiring evSleep

Figure 1. Simulation Cycle

 A clock cycle may have multiple simulation cycles.
During the first simulation cycle, a model receives an
evTick(n,sleepExpired) event with a parameter indicating
the amount of time that has elapsed since the last evTick
message received. A coupled model will only receive an
evTick message in the event that it has a timeNext of zero.
Since atomic models may generate outputs in response to an
evTick signal those messages must be delivered during this
clock cycle. However, it is preferred that these messages be
delivered as a bag of messages and not delivered
individually. To facilitate delivering bags of messages, a
coupled model marks as active any model to which it sends
an evMsg message. Atomic model simulators do not pass
messages directly to atomic models upon receipt but rather
wait for an evTick(n=0) message to arrive. An evTick(n=0)
will never be the first evTick message in the clock cycle
since there will never be undelivered messages from a
previous clock cycle. Thus, the first evTick message in a

clock cycle will always have a non-zero amount of time
elapsed. An evTick(n=0) may also be triggered by the
generation of an evSleep(0) message by an atomic model.

3. MODELING BEHAVIOR
 As in UML where is no formal action language
specification, there is no formal action language syntax
defined as part of DEVS. Often a DEVS specification
involves informal pseudo-code but for executable UML this
is not an option. Within the DEVJAVA [12] framework
Java is the language of choice. There are reservations to
using a procedural language such as Java, for example
Stephen Mellor [9] objects to using Java or a similar
programming language since modelers are likely to develop
specifications that compromise the intended level of
abstraction with non-domain specific constructs such as
pointers and arrays. Whilst these objections are justified, a
pragmatic approach suggests that Java employed in the
specification of a DEVS model is not necessarily a poor
choice so long as the modeler exercises good choices with
respect to its application. Further since simulation models
are disjoint from the models used as specification for
developers, such code is less likely to leach unchecked into
the production code.

4. MODEL COMPONENTS
To recap, each system is composed of a hierarchy of
models. The leaf nodes are atomic models, each with an
associated atomic model simulator. An atomic model
resides in a coupled model which may in turn reside in
another coupled model. The outermost coupled model is the
coordinator. Also, a special type of atomic model called an
experiment may be specified to drive test execution.

4.1. Atomic Model Simulator
 The atomic model simulator acts as the interface to the
atomic model. This separate state machine handles the
arrival and bagging of messages. We also account for the
confluent function in this model. Also, since UML event
signals must be sent to an object, and since we want state
charts for atomic models to be reusable components all
events generated by an atomic model are sent via the atomic
model simulator.

4.2. Simulation State Machines

 During simulation the coupled models and atomic
model simulators control message flow and timing. Both
share a similar state machine. The signal evTick comes from
the containing model and is relayed to any active model and
to any model with an expiring timeNext. The evAck signal is
generated by a model when it has received an evAck from
each sub-model to which it sent an evTick signal.

Coupled Model / Atomic Model Simulator

Registration

Simulating

evTick(n) evSleep(n)

evAck(isActive) evMsg(bag)

evRun()
evEnd()

Figure 2. Simplified State Machine for Coupled Models

and Atomic Model Simulators

 The evAck signal has one parameter, isActive, which
indicates whether any sub-model is active. Note, an active
model is any model for which the corresponding atomic
model simulator has a non-empty message bag. In this way,
the coordinator knows whether there are any active models
in the system, and if so, whether another simulation cycle is
necessary. An atomic model must generate an evAck in
response to an evTick event after it has generated any
external output messages – that is, at the end of its output
function

5. EVENTS
 Events are either application or control events.
Application events are those used for passing the application
messages between models during execution and should be
derived from the evMsg event type. Control events are those
used to control the execution of the simulation itself, such as
controlling time (evTick) and performing registration of
models with their respective containers. Since most of the
classes used in the simulation are state machines, they
receive messages such as the declaration of the input and
output ports of the contained models within their event
loops via event signals from the atomic or coupled model
instances that they contain. The important events are now
presented. There are other control events involved in
registration and test setup that are not presented.

5.1. evMsg
 All application data messages should derive from this
event signal type. This event signal as it arrives at its
destination atomic model holds an unordered bag of
messages sent to the model during that clock cycle.

 When a coupled model receives an event it is forwarded
to the models that have registered to receive it. If the
coupled model has an output port mapped to the event it is
sent to the containing coupled model.
 If the event is simply passed through directly from an
input port to an output port and since these port names must
be different the event is signaled using the new output port
name.

cmUponEvMsg(Event ev)

foreach Model m in models {
 if (m.isInputEvent(ev)) {
 m.signal(ev);ackExp++;
 activeClients[m]=true;
 isActive=true;
 }
 }
 if (container != null){
 if (isOutputEvent(ev))
 container.signal(ev);
 if (isPassThruEvent(ev))
 signalPassThru(ev);
 }

Figure 3. Transition action for evMsg in Coupled Model

amsUponEvMsg(Event ev)

 if (isOutputEvent(ev))
 container.signal(mapEvent(ev));
 else
 messageBag.concat(ev.messageBag);

Figure 4. Atomic Model Simulator evMsg transition action

 The evMsg signal is generated by an atomic model as
part of its output function. The output function is the logic
performed upon receipt of an evTick signal and before the
evAck signal is generated. The output function is the only
time during which external evMsg messages may be
generated. The evMsg type is itself an abstract message
type. The atomic model must send a concrete sub-class of
this message type. For a coupled model, when an evMsg
message is received, it is relayed to any sub-models that
have the corresponding concrete message type as an input.
The evMsg is also relayed to the containing model if the
coupled model has itself the corresponding concrete
message type as an output

5.2. evSleep(n)
 evSleep(n) signal is a request to be sent a evTick after
expiration of n units of time. This is generally used to
simulate the amount of time take to perform processing.

cmUponEvSleep(Event ev)

 Model m=models[ev.sender]
 m.timeNext=ev.n; // n is ticks to sleep
 m.timeElapsed=0;
 int newTimeNext = getMinTimeNext();
 if (this.timeNext != newTimeNext){
 this.timeNext=newTimeNext;
 if (container != null) // not coordinator
 container.signal(new EvSleep(newTimeNext));
 }

Figure 5. Transition action for evSleep in Coupled Model

 The evSleep(n) signal is initially generated by the
atomic model and relayed through the atomic model
simulator to the coupled model. The coupled model stores
the time contained in the evSleep(n) event as the timeNext
for the model. As part of the event signal, the sender is also
identified. A coupled model also contains a timeNext for
itself representing the earliest timeNext of all its sub-models.
This is recalculated each time an evSleep event arrives since
such an event may change the overall timeNext for the
model. If the new timeNext is different than the coupled
model’s current timeNext, then it communicates this new
timeNext to its own container.

amsUponEvSleep(Event ev)

 container.signal(ev);

Figure 6. Atomic Model Simulator evSleep transition

 Also note that if the atomic model wishes to indicate a
passive state where evSleep(n) has a value of infinity, it can
pass a value of -1 as the duration of the evSleep(n). In this
way, the atomic model simulator will remain dormant until
it receives another external event

5.3. evTick(n,sleepExpired)
 evTick(n,sleepExpired) is an event that represents the
passage of n units of time. Since we must not employ UML
time constructs such as after we must model time explicitly
through our own events. Each evTick(n,sleepExpired) event
has an n parameter that specifies the amount of time that has
elapsed since the last tick. Within the same clock cycle,
there may be a need for the message bag to be relayed to the
atomic model multiple times (each time with a new bag).
The fact of its being in the same clock cycle should be
transparent to the atomic model simulator with a new tick
event having a value of zero for n.
 When an external event is received the timeNext == 0
condition will evaluate to false since timeNext will be less
than zero. The confluent function will not be entered. One
thing that has not been addressed thus far is passing the
elapsed time since the last internal or external transition to
the atomic model itself. This is easily accommodated by
adding this time as an argument to the messages sent to the
atomic model from the atomic model simulator.

5.4. Processing Ticks in Coupled Models
 The algorithm for accepting evTick events in a coupled
model simulator is as follows:

Figure 7. Transition action for evTick in Coupled Model

 For each model contained within the coupled model, a
timeNext is maintained containing the amount of time
remaining until the next scheduled evTick. Also, a
timeElapsed is maintained containing the amount of time
elapsed since the last evTick was sent to that model. If there
is no scheduled evTick, then the time remaining will be a
negative number. Atomic models send an evSleep(-1) to
indicate a passive state where the sleep value should be
considered as infinity. A coupled model is considered active
if any of its sub-models are active. Once a coupled model
sends an evTick to a sub-model, that sub-model is no longer
considered active.

amsUponEvTick(Event ev)

 if (messageBag.isEmpty()) {
 model.signal(ev);
 } else { // n will always be zero
 model.signal(new EvMsg(messageBag));
 if (e.isSleepExpired){
 container.signal(new EvTick(0));
 }
 }

Figure 8. Atomic Model Simulator evTick transition

 When signaled to an atomic model evTick corresponds
to invocation of the DEVS internal transition function – this
signals the expiration of time intended to simulate the
performance of a task as indicated by the preceding evSleep
signal generated by the atomic model. This signal is issued
by the atomic model simulator and sent to the atomic model
when the atomic model simulator receives an evTick event.

5.5. evAck(isActive)
 The evAck signal is generated by the atomic model
when it receives an evTick signal and after it has completed
generating any external evMsg messages.

cmUponEvAck(Event ev)

 ackCount++;
 if (! isActive)
 isActive=ev.isActive;
 if (ackCount == ackExp){
 if (container == null) { //coordinator
 if (timeNext < 0){ // finished – all passive
 self.signal(new EvEnd());
 } else {
 self.signal(new EvTick(timeNext));
 }
 } else {
 container.signal(new EvAck(isActive));
 }
 }

Figure 9. Transition action for evAck in Coupled Model

The evAck message has one parameter, called isActive,
which is always set to false in the case of an atomic model.
For coupled models, the evAck signal is generated upon
receipt of the final evAck from each of its sub-models and
the isActive parameter is set to true depending upon whether
there are any active sub-models.

5.6. Confluent Events
 By default, any atomic models that have an expiring
evSleep, and thus an imminent internal transition via an
evTick event, receive that expiration notification
simultaneously (during the first simulation cycle of the
clock cycle). Since outputs are delivered as part of the next
simulation cycle, the notion of a confluent function becomes
a non-issue, except where a model issues an evSleep(0)
during a simulation cycle, and that model is also sent
messages during that same simulation cycle by another
model. In such a case, there are confluent internal and
external events. Confluent events are simultaneous events
that occur during the same simulation cycle. Events
occurring at the same time but occurring during different
simulation cycles during the same clock cycle are not
considered confluent events.
 The precedence for confluent events is handled in the
atomic model simulator. If external evMsg events are to be
given precedence over internal evTick events then upon a
evTick(n,sleepExpired) event where sleepExpired is true, an
evSleep(0) should be issued and upon the next evTick(0)
received any messages can be passed to the atomic model
and then the evTick can be passed to the atomic model. If
desired you can repeated signal evSleep(0) until there are no
outstanding evMsg messages incoming for the atomic model

and only then the evTick() message can be delivered to the
atomic model.

6. UML MODELING RULES
 Under DEVS-compliant UML, an instance of a class
may participate in a model, if and only if, it is contained
within an instance of simulatable object or is itself an
instance of a simulatable object.
 A simulatable object is one that has its behavior defined
via a compliant state machine. This implies that all
communication is essentially asynchronous insofar as
replies to messages require an internal transition before a
response is available. However, since evSleep(n) can be
specified with zero time delay, the distinction is moot.

A compliant state machine has the following characteristics:
• Each event signaled must correspond to an output port

name defined for the model.
• Each event received must correspond to an input port

name defined for the model.
• Input and output port names must be disjoint.
• All time-dependent behavior is expressed via evSleep(n)

signals and evTick events. There shall be no after or other
UML time-related references in the state machine
specification.

• Each atomic model state machine has an associated
atomic model simulator.

• The state machine must only send external signals to
atomic model simulator. A state machine may send
signals to itself.

• The state machine must only receive external signals from
atomic model simulator. A state machine may receive
signals from itself.

• All signals sent to the atomic model simulator must occur
upon receipt of an evTick event and before the evTick
transition completes – this is the output phase. Such
activity is defined in the action part of the specification of
the transition triggered by the evTick event.

• An evAck signal must be generated and sent to the atomic
model simulator upon completion of processing of an
external event. All processing from receipt of the external
event through the generation of the evAck signal must be
atomic – it must run to completion.

• An evSleep(n) event signal is generated and sent to the
atomic model simulator whenever the state machine
wishes to simulate the amount of time required to
complete some hypothetical processing, transmission
time, or other such delay. This event is sent to the
associated atomic simulator object. The atomic simulator
will send an evTick event back to the state machine upon
expiration of this time. The state machine remains
dormant (quiescent) during this period or until it receives
another external event (i.e. other than an evTick event).

• If an evSleep(n) event signal is generated, it must
immediately precede the evAck signal generation.

• Upon receipt of an external event, an atomic model may
issue a new evSleep(n) signal which supersedes any
previously generated evSleep(n) signal event. Otherwise,
any existing evSleep(n) will remain in effect. A duration
of -1 in an evSleep(n) signal indicates infinity or passive
state. As such no evTick event will be issued to the atomic
model and the state machine will be dormant until the
next external event.

• All processing time involved in handling events during
simulation is performed in zero time unless explicitly
accounted for via evSleep(n) signals.

• All messages (event signals) are transmitted and received
in zero time – the simulation clock is stopped. Likewise,
all logic performed in the state machine is performed in
zero time. Any requirement to model this time must be
explicitly accounted for in the model via evSleep(n)
signals.

• At any point there should only be one state in which
simulated processing is ongoing as expressed via an
evSleep(n) signal generation. This signal expresses the
fact that there is processing that takes a certain amount of
time, possibly zero, before it completes. Such states are,
however, be interruptible. Note, in UML it is possible to
have states in orthogonal regions within a state machine
that may be performing actions simultaneously – for
DEVS-compliant UML, the restriction is that only one
state responds to an evTick event at any time.

7. CONCLUSIONS
 Those unfamiliar with DEVS and more comfortable
with the UML now have a convenient and relatively
straightforward modeling approach by which their UML
models can be executed and verified at an early stage of
design. This approach has a wide generality in terms of the
types of systems and problems to which it can be applied.
The models produced are component-based, and given the
closure property of DEVS, any component can be replaced
by a different component with a greater degree of
decomposition with the resulting system having an
equivalent behavior. This modeling approach fits neatly
within the modern iterative approach used to develop
software systems. Modeling in this manner helps broaden
and deepen the appreciation and application of simulation as
a discipline within the field of software architecture.

Reference List or References
[1] Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000.

Theory of modeling and simulation: Integrating discrete
event and continuous complex dynamic systems. 2nd
ed. San Diego: Academic Press.

[2] OMG. 2007. UML Profile for Schedulability,
Performance, and Time. http://www.omg.org.

[3] El Sheik, A., A. Al Ajeeli, and E. Abu-Taieh. 2008.
Simulation and modeling: Current technologies and
applications. New York: IGI Publishing.

[4] Douglass, B. P. 2004. Real-time UML: Developing
efficient objects for embedded systems. 3rd ed. Boston:
Addison-Wesley Longman Publishing Co., Inc.

 [5] Hong, S.-Y. and T. G. Kim. 2004. Embedding UML
Subset into Object-oriented DEVS Modeling Process,
Proceedings of the Summer Computer Simulation
Conference, San Jose, CA, July

[6] Kofman, E., M. Lapadula, and E. Pagliero. 2003.
PowerDEVS: A DEVS–based environment for hybrid
system modeling and simulation. TR-LSD0306.

 [7] Ferayorni, A., and H. S. Sarjoughian. 2007. Domain
driven modeling for simulation of software
architectures. Proceedings of the Summer Computer
Simulation Conference. San Diego, CA.

 [8] OMG. 2005. UML 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

 [9] Mellor, S. J., and M. J. Balcer. 2002. Executable UML -
A foundation for model-driven architecture. Boston:
Addison-Wesley Longman Publishing Co., Inc.

[10] OMG. 2003. MDA Guide. http://www.omg.org/cgi-
bin/apps/doc?omg/03-06-01.pdf.

[11] Nikolaidou M., V. Dalakas, G. Kapos, L. Mitsi, and D.
Anagnostopoulos. 2007. A UML2.0 profile for DEVS:
Providing code generation capabilities for simulation.
Proceedings of Software Engineering and Data
Engineering, Las Vegas, NV.

[12] ACIMS. 2007. DEVSJAVA.
http://www.acims.arizona.edu.

[13] Huang, D., and H. S. Sarjoughian. 2004. Software and
simulation modeling for real-time software-intensive
systems. Proceedings of the 8th IEEE International
Symposium on Distributed Simulation and Real-Time
Applications. Washington, DC.

 [15]Risco-Martin, J. L., S. Mittal, B. P. Zeigler, and J. de la
Cruz. 2007. From UML state charts to DEVS state
machines using XML. Proceedings of the IEEE/ACM
International Conference on Model-Driven Engineering
Languages and Systems. Nashville, TN.

[14] Zinoviev, D. 2005. Mapping DEVS models onto UML
models. Proceedings of the DEVS Integrative M&S
Symposium, San Diego, CA.

[15] Schulz, S., T. C. Ewing, and J. W. Rozenblit. 2000.
Discrete event system specification (DEVS) and
statemate statecharts equivalence for embedded systems
modeling, Proceedings of the 7th IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems. Edinburgh.

[16] Mooney J. 2008. DEVS/UML - A Framework for
Simulatable UML Models [M.S. thesis], Department of
Computer Science and Engineering, Arizona State
University, Tempe, AZ.

