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Abstract 
 
This paper describes an activity based design pattern 
for solving partial differential equations. The pattern 
can be applied to any explicit or implicit single-step 
numerical method to construct an asynchronous 
modification with improved execution performance. 
For explicit methods, the modification results in no 
loss of accuracy while for implicit methods, we show 
how accuracy can be controlled by several 
parameters. To illustrate the approach we show how to 
apply the design pattern to standard single step 
methods for simulating the advection and diffusion 
problems in one dimension and demonstrate 
significant execution time reduction with minimal loss 
of accuracy compared to the original methods. We 
conclude by relating the concept of activity as 
employed in this paper to that discussed in earlier 
work and relate the design pattern to the existing 
DEVS-based quantization approaches. 
 
 
1. Introduction 
 
 The concept of activity has been developed in [1, 2, 
and 3]. Many types of systems that are modeled as 
partial differential equations change significantly only 
in relatively small areas of the spatial domain at any 
given time. The work done previously introduced a 
way to characterize the amount of change in the 
solution through time and space, independently of the 
solution technique that is employed. In this paper we 
simplify the application of the concept to demonstrate 
some of the basic principles while still showing 
important consequences. In general, the activity at a 
cell refers to the magnitude of its partial time 
derivative. In contrast, in this paper we will distinguish 
only between zero and non-zero magnitude of the 
derivative. The set of cells for which the activity is not 

zero will be called the activity domain. We show how 
to restrict computation to this region as it evolves to 
significantly speed up the computation in cases where 
the activity region is relatively small and easy to track. 
 
The flowchart in figure 1 illustrates the activity-based 
design pattern described in this paper. The pattern can 
be applied to any explicit or implicit single-step 
numerical method to construct an asynchronous 
modification with improved execution performance.  
The pattern augments the original method by 
attempting to restrict its application to the activity 
domain and accounting for the change in this domain 
as time proceeds. The resulting method works by 
restricting the initial space to obtain the initial activity 
domain. It then steps through time by following the 
illustrated sub-steps: 1) applying a method to 
minimally over-estimate the next activity domain 
based on properties of the partial differential equation, 
2) applying the original method to the estimated 
activity domain, and 3) applying a method to restrict 
the estimated activity domain to the actual activity 
domain for the resulting state. The processing iterates 
until the simulation is done. Methods for estimating the 
next activity domain and restricting this domain to the 
true activity domain after one step iteration are part of 
the pattern and must be appropriately selected for each 
application. In the following sections, we show 
application of the design pattern to one-dimensional 
PDEs that have some general significance, advection 
and diffusion. We provide details of the augmentation 
methods required to work in these cases and show that 
they are simple enough to enable significant speed up 
in computation with near or nearly the same accuracy 
as provided by the original method. 
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Figure 1: Flowchart which illustrates the 
activity based design pattern 

 
2. Estimating Speed-up 
 

The speed up that results with the use of the activity 
based design pattern over a standard single-step 
method is estimated by  

*

Area of space time
Ratio Area of activity in space time

nx nt
Area of activity in space time

−
= −

= −

 

where  is the number of grid points in the spatial 
dimension and  is the number of time steps in the 
simulation interval. 

nx
nt

Figure 2(b) illustrates the effective computational 
region in solving 1-d diffusion used by a method to 
which the activity based design pattern has been 
applied 
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Figure 2: Shows the effective computational 
region used by a method to which the activity 
based design pattern has been applied Step1: Minimally 

overestimate the next 
activit

 
y domain 3. Example 1: Forward Time Centered 

Space and Lax-methods for the Advection t=t+1 

equation ( , ) ( , )u x t u x t
ct x

∂ ∂
=∂ ∂  Step 2: 

Apply the original single step 
method (explicit or implicit) to 
the overestimated domain 

The advection equation is given by ( , ) ( , )u x t u x t
ct x

∂ ∂
=∂ ∂  

where  is the velocity of the wave. In this paper, the 
advection equation is solved with periodic boundary 
conditions when a pulse centered at 

c

2
L  (where is the 

length of the space) is taken as the initial condition. 
L

Step3: 
Restrict the result to 
obtain the next current 
activity domain 

The activity based design pattern is applied to two 
commonly used explicit methods (FTCS and Lax [6]) 
for solving the advection equation. The flowchart in 
figure 3 illustrates the application of the design pattern 
to the FTCS and Lax methods. The initial condition is 
taken as follows , 
where

2( ,0) exp( *( ) / 2)U x fac x= −

((1: ) 0.5)* 2
Lx N h= − − ,  is the number of grid points, 

 is the length and  is the spatial resolution. The 
width of the pulse is controlled by the

N

L h

fac . This width 
determines the size of the activity domain relative to 
the space and therefore, the expected increase in 
computation speed. As illustrated in figure 3, we first 
define a threshold (similar to quantum in a DEVS-
based implementation [4]) and find the left-most cell, 

and right-most cell, where the pulse is greater than 
the threshold. If we choose a large threshold, then 

and will coincide with the boundaries of the spatial 
domain in which case, we just use the original method. 
Otherwise, we restrict the computation to the interval 
in which the value of the pulse is greater than the 
threshold. This is the region of activity since cells 
outside this region have negligible activity as 
determined by the threshold, i.e., cells whose value is 
zero and whose neighbors’ values are zero have zero 
time derivative. This is true except for cells adjacent to 
the boundary of the activity region. These need to be 
included in the estimated activity domain for the next 
iteration. Thus, we have 

L R

L R

 
Step 1: 
Estimated activity domain = [ 1  for FTCS , 1]L R− +



This is exact for the explicit FTCS method since it can 
expand activity at most to one neighbor on either side 
of the activity interval. Similarly, the Lax method 
employs two neighbors, therefore estimated activity 
domain: = [ 2 for Lax. , 2]L R− +

Set the activity domain to the interval 
[L, R] as defined in text. 

Current Activity 
Domain 

 
Step 2: 
Using vector notation, as in MATLAB, it is 
straightforward to restrict the single step 
transformation to the estimated activity domain: Step1: 

Set estimated activity domain  
 = [L-1, R+1] for FTCS 
 = [L-2, R+2] for Lax 

  For the FTCS method:  
( 1 : 1) ( 1 : 1) ( * /(2 * )) * ( ( : 2)

( 2 : ));

U L R U L R c h U L R

U L R

τ− + = − + − +

− −
 

t=t+1 
  For the Lax method: 

( 1 : 1) 0.5 * ( ( : 2) ( 2 : ))

( * / 2 * )) * ( ( : 2) ( 2 : ));

U L R U L R U L R

c h U L R U L Rτ

− + = + + −

− + − −
 Step 2: 

Apply the FTCS/Lax 
method to the estimated 
activity domain 

where is the time step and h is the spatial cell size. τ

  For further details the reader is referred to [6]. 
 
Step 3: Obtain next activity domain 

( ( 1) )

1;

( ( 1) )

1;

if U L threshold

L L

if U R threshold

R R

+ >

= +

+ >

= +

 

 
 
We will show that applying the activity based design 
pattern to the FTCS and Lax methods can offer 
potential speed up without loss of accuracy. For the 
purposes of computation, both (modified and 
unmodified) codes have been run with 1000 grid 
points, =velocity =1, L = [0, 1], =time step = 
0.001 sec, number of time steps = 10 (therefore total 
time of simulation = 0.01 sec). The width factor was 
varied from 100 to 1000. The execution times shown 
here were measured by running the original method 
and the method to which the design pattern was 
applied for 1000 times and taking the average. Also, it 
should be noted that these numbers are relative i.e. if 
the programs were to be executed on a faster computer, 
the numbers may be smaller but the relative difference 
should be the same. The following table summarizes 
the comparison between the standard FTCS method 
and the FTCS method to which the design pattern was 
applied for solving the advection equation. 

c τ

 
 

 
Figure 3: Flowchart which illustrates the 
activity based design pattern for the 
Advection process 

Step3: 
If (U 
(L+1)>threshold) 
L=L+1; 
If (U(R+1)>threshold) 

 
Table 1: Comparison between the standard 
and modified FTCS method for advection 
equation 

fac 
(fac 
controls 
the 
pulse 
width) 

FTCS 
method to 
which the 
design 
pattern was 
applied 
using a 
threshold of 
10^-3 
(Execution 
time in 
milli 
seconds) 
 

Absolute 
Error for 
FTCS 
method to 
which the 
design 
pattern was 
applied 
(measured 
using 2-
norm) 

Standard 
FTCS 
method 
(Execution 
time in 
milli 
seconds) 

Absolute 
Error for 
standard 
FTCS 
method 
(measured 
using 2-
norm) 

100 1.25 0.0061 2.24 0.0058 
200 1.11 0.0100 2.447 0.0097 
300 1.04 0.0135 2.40 0.0132 
400 1.037 0.0166 2.575 0.0163 
500 0.698  0.0196 2.468   0.0193 
1000 0.661 0.0328 2.468   0.0326 

 
As can be seen, as the initial pulse is given a narrower 
profile relative to the whole space, the modified 



method executes more rapidly both in absolute terms 
and in relation to the original method.  Moreover, there 
is no loss in accuracy for explicit methods. 
  
The following table summarizes the comparison 
between the standard Lax method and the Lax method 
to which the design pattern was applied for solving the 
advection equation. 
Table 2: Comparison between the standard 
and modified Lax method for advection 
equation 
fac 
(fac 
controls 
the pulse 
width) 

Lax 
method to 
which the 
design 
pattern 
was 
applied, 
using 
threshold 
of  
10^-15 
(Execution 
time in 
milli 
seconds) 

Absolute 
Error for 
modified 
Lax 
method 
(measured 
using 2-
norm) 

Standard 
Lax 
method 
(Execution 
time in 
milli 
seconds) 

Absolute 
Error for 
standard Lax 
method 
(measured 
using 2-
norm) 

100 3.85 6.9*10^-6 3.85 6.9*10^-6 
200 3.87 5.55*10^-

11 
3.55 5.55*10^-11 

300 1.65 3.40*10^-
15 

3.54 2.6*10^-15 

400 1.54 3.40*10^-
15 

3.56 2.70*10^-15 

500 1.47 3.49*10^-
15 

3.55 2.77*10^-15 

1000 1.30 4.6*10^-
15 

3.56 4.10*10^-15 

 
Noting that the Lax method is second order accurate in 
both time and space, we see that the same results 
continue to hold as for the first order FTCS method. 
However, there is no advantage obtained with the 
modified method until the pulse is sufficiently narrow 
(at factor = 300). Indeed, the effect of the additional 
sub-steps is noted in the extra overhead for the case of 
factor = 200. 
 
4. Example 2: Forward Time Centered 
Space (FTCS) and Backward Time 
Centered Space (BTCS)-methods for the 
Diffusion equation 2( , ) ( , )

2
u x t u x t

t x
α∂ ∂=

∂ ∂
 

The diffusion equation is given by 
2( , ) ( , )

2
u x t u x t

t x
α∂ ∂=

∂ ∂
where is the diffusion coefficient. In 

this paper, the diffusion equation is solved with open 
boundary conditions (i.e. and ) when the 
initial condition is taken as the same in example 1. 

α

(0) 0U = ( ) 0U L =

The activity based design pattern is applied to two 
commonly used explicit and implicit methods (FTCS 
and BTCS) for solving the advection equation. We will 
show that the modified methods offer potential 
speedups when compared with the original methods. 
They also offer approximately the same accuracy as 
the original methods. 
The initial condition is taken as follows 

( ) 2
2( ,0) exp *

Lx
U x fac L

⎛ ⎞⎛ −⎜ ⎞
⎜ ⎟= −⎜ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L

;

⎟
⎟  where  is the length of the 

space. In the following we describe the application of 
the design pattern to the BTCS method (the FTCS case 
is similar to Example 1). 
 
In the following, we describe how the activity based 
design pattern was applied to the BTCS method. We 
follow a similar procedure to that in section 3 with 
some modifications that take into account the 
properties of the diffusion process. 
 
Step 1:  Since diffusion spreads outward, the estimated 
activity domain is expanded on both ends by two cells, 
i.e., [ 2 . However, for the implicit BTCS, the 
transition is global and can expand the activity interval 
in principle to the whole space. Nevertheless, we 
employ the same estimate and examine the resulting 
error production.  

, 2]L R− +

 
Step 2:   

The BTCS is interesting since it is an implicit 
method that nominally is a global matrix 
inversion on the whole space.  However, the 
LU decomposition method is commonly 
employed to reduce this operation from 
quadratic to linear in the number of cells. 
Using MATLAB’s vector notation, the 
matrices representing the BTCS operator can 
be restricted to the estimated activity domain, 
as follows: 
 

2
( / ) * ( 5, 1)

(1/ )* ( 5,1) 2* ;

;

(1) 1; (1) 0;

( ) 1; ( ) 0;

a dx ones R L

b dt ones R L a

c a

b c

b end a end

α= − − +

= − + −

=

= =

= =

 

The LU decomposition is then computed for 
the restricted domain as: 
 
[ , ] ( , , );e f tridiagLU a b c=  
 



The state vector at time t, is restricted to the 
activity domain as: 

( 2 : 2, ) /

(1) 0; ( ) 0;

d U L R t dt

d d end

= − +

= =

;
 

 
Finally, the state at time t+1 is computed as: 

( 2: 2, 1) ( , , , , ( 2: 2, ))U L R t tridiagLUSolve d a e f U L R t− + + = − +  
 where tridiagLUSolve computes the result in 
R-L+5 iterations.  For details on the standard 
BTCS method the reader is referred to [7]. 

 
Step 3: In the case of pulse diffusion, the activity 
domain first expands and then contracts. So to find the 
new activity domain after the state transition we 
employ tests for expansion and contraction.  The cell 
adjacent to the right boundary checks whether it has 
become active and if so, becomes the new boundary 
cell: 

  
( ( 1) )

1;

if U R threshold

R R

+ >

= +

 
On the other hand, if the boundary cell becomes 
inactive, then it contracts the boundary inward: 
 

  
( ( ) )

1;

elseif U R threshold

R R

<

= −

   
 
The left boundary is handled similarly. 
For the BTCS, both (modified and unmodified) codes 
have been run with 50000 grid points, alpha=diffusion 
coefficient =0.1, L = [0, 1000], time step = 0.5 sec, 
total time of simulation = 500 sec, factor = 4000. A 
threshold of 10^-5 was used when the design pattern 
was applied to original FTCS and BTCS methods in 
order to modify them. 
 
 
The following table summarizes the comparison 
between the original BTCS method and the BTCS 
method to which the design pattern was applied for 
solving the advection equation. 
 
 
 
 
 
 
 
 
 

Table 3: Comparison between the standard 
and modified BTCS method for diffusion 
equation 
fac Modified 

BTCS 
method 
(Execution 
time in 
seconds) 
using 
threshold of 
10^-5 
 

Absolute 
Error for 
modified 
BTCS 
method 
(measured 
using 2-
norm) 

Standard 
BTCS 
method 
(Execution 
time in 
seconds) 
 

Absolute 
Error for 
standard 
BTCS 
method 
(measured 
using 2-
norm) 

1000    25.0 3.41 75 3.41 
4000     12.8 7.36 127 7.36 
 
Note that a speed up of approximately 10 is obtained 
for the narrower pulse without loss in accuracy. 
 
Since the FTCS method is explicit, both the modified 
and unmodified FTCS methods were run using 5000 
grid points, with a time step of  0.001 sec and total 
time of simulation = 50 sec (rest of the parameters 
weren’t changed). A threshold of 10^-5 was used when 
the design pattern was applied to original FTCS and 
BTCS methods in order to modify them. The following 
table summarizes the comparison between the original 
FTCS method and the FTCS method to which the 
design pattern was applied for solving the advection 
equation. 
As it was mentioned before, since the FTCS method is 
explicit, there is no loss in accuracy when the activity 
based design pattern is applied to it. Note that a speed 
up of approximately 20 is obtained for the narrower 
pulse without loss in accuracy.  
 
Table 4: Comparison between the standard 
and modified FTCS method for diffusion 
equation 
fac Modified 

FTCS 
method 
(Execution 
time in 
seconds) 
using 
threshold of 
10^-5 
 

Absolute 
Error for 
modified 
FTCS 
method 
(measured 
using 2-
norm) 

Standard 
FTCS 
method 
(Execution 
time in 
seconds) 
 

Absolute 
Error for 
standard 
FTCS 
method 
(measured 
using 2-
norm) 

1000    10.6 0.12 31 0.12 
4000     8.0 0.32 156 0.32 
 
To verify the correctness of the modified methods, 
simulation runs were extended until the diffusion 
process terminated with all cell values under threshold. 
Visual inspection of the resulting plots confirmed that 
the correct behavior was preserved.  
 



The unmodified Matlab codes for advection were 
taken from [6]. The unmodified Matlab codes for 
diffusion were taken from [7]. 

 
5. Discussion 
 
Table 5 summarizes our results by comparing actual 
execution time ratios to estimates using the approach 
in section 2.  
 
Table 5: Summary of Results 

Experiment Speed-up (Ratio 
of 
original method 
execution time to 
modified method 
execution time) 

Speed-up 
estimate using 
activity ratio 

Advection(FTCS,fac=1000) 3.7 4.0 
Advection(Lax,fac=1000) 2.0 4.0 
Diffusion(BTCS,fac=1000) 3.0 4.0 
Diffusion(BTCS,fac=4000) 10.0 10.0 
Difusion(FTCS,fac=1000) 2.9 4.0 
Diffusion(FTCS,fac=4000) 19 10.0 
 
The activity ratios were computed analytically using 
the given thresholds as illustrated in figure 2(b). We 
see that generally the estimated speed-ups are close to 
the actual results. 
 
6. Conclusion 
This paper described an activity based design pattern 
for solving partial differential equations. The pattern 
can be applied to any explicit or implicit single-step 
numerical method to construct an asynchronous 
modification with improved execution performance. 
The approach was illustrated by showing how to apply 
the design pattern to standard single step methods for 
simulating the advection and diffusion problems in one 
dimension. For explicit methods, the modification 
results in no loss of accuracy while for implicit 
methods, we showed how accuracy can be controlled 
by selecting appropriate activity estimation and 
restriction methods. Although the illustrated 
applications were admittedly relatively simple in 
nature, the design patterns they instantiate opens up the 
possibility of research into more challenging 
applications.  
 
We conclude by relating the concept of activity as 
employed in this paper to that discussed in earlier work 
[1, 2, and 3]. In general, the activity at a cell refers to 
the magnitude of its partial time derivative.  Existing 
DEVS-based quantization approaches exploit the 
heterogeneity of activity distributions by creating an 
asynchronous simulation model such that the time 

advances of its cells are inversely proportional to the 
magnitude of their partial time derivatives. In this way, 
computational resources are automatically allocated in 
relation to current activity, viz.; cells with small time 
advances (i.e., high activity) are reprocessed more 
rapidly than those with large advances. In contrast, in 
this paper we will distinguish only between zero and 
non-zero magnitude of the derivative. This 
corresponds to distributions in which cells are either 
passive (with infinite time advances) or active (and 
given the same constant time step). This results in 
asynchronous simulation since at any time there is a 
distribution of active and passive cells, although active 
cells are all synchronously processed. The DEVS-
based quantization approaches are generalizations in 
the sense that they result in truly asynchronous models 
that can be executed in distributed simulations to 
exploit heterogeneity in time and space. The speed-up 
analysis of section 2 is generalized to quantization 
approaches in reference [1]. 
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