
A Generic Pattern for Modifying Traditional PDE Solvers to Exploit
Heterogeneity in Asynchronous Behavior

Rajanikanth Jammalamadaka, Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation,
Department of Electrical and Computer Engineering,

 University of Arizona,
1230 E Speedway Blvd,

Tucson, Arizona.
{rajani, zeigler}@ece.arizona.edu

Abstract

This paper describes an activity based design pattern
for solving partial differential equations. The pattern
can be applied to any explicit or implicit single-step
numerical method to construct an asynchronous
modification with improved execution performance.
For explicit methods, the modification results in no
loss of accuracy while for implicit methods, we show
how accuracy can be controlled by several
parameters. To illustrate the approach we show how to
apply the design pattern to standard single step
methods for simulating the advection and diffusion
problems in one dimension and demonstrate
significant execution time reduction with minimal loss
of accuracy compared to the original methods. We
conclude by relating the concept of activity as
employed in this paper to that discussed in earlier
work and relate the design pattern to the existing
DEVS-based quantization approaches.

1. Introduction

 The concept of activity has been developed in [1, 2,
and 3]. Many types of systems that are modeled as
partial differential equations change significantly only
in relatively small areas of the spatial domain at any
given time. The work done previously introduced a
way to characterize the amount of change in the
solution through time and space, independently of the
solution technique that is employed. In this paper we
simplify the application of the concept to demonstrate
some of the basic principles while still showing
important consequences. In general, the activity at a
cell refers to the magnitude of its partial time
derivative. In contrast, in this paper we will distinguish
only between zero and non-zero magnitude of the
derivative. The set of cells for which the activity is not

zero will be called the activity domain. We show how
to restrict computation to this region as it evolves to
significantly speed up the computation in cases where
the activity region is relatively small and easy to track.

The flowchart in figure 1 illustrates the activity-based
design pattern described in this paper. The pattern can
be applied to any explicit or implicit single-step
numerical method to construct an asynchronous
modification with improved execution performance.
The pattern augments the original method by
attempting to restrict its application to the activity
domain and accounting for the change in this domain
as time proceeds. The resulting method works by
restricting the initial space to obtain the initial activity
domain. It then steps through time by following the
illustrated sub-steps: 1) applying a method to
minimally over-estimate the next activity domain
based on properties of the partial differential equation,
2) applying the original method to the estimated
activity domain, and 3) applying a method to restrict
the estimated activity domain to the actual activity
domain for the resulting state. The processing iterates
until the simulation is done. Methods for estimating the
next activity domain and restricting this domain to the
true activity domain after one step iteration are part of
the pattern and must be appropriately selected for each
application. In the following sections, we show
application of the design pattern to one-dimensional
PDEs that have some general significance, advection
and diffusion. We provide details of the augmentation
methods required to work in these cases and show that
they are simple enough to enable significant speed up
in computation with near or nearly the same accuracy
as provided by the original method.

0
200

400
600

800
1000 0

200000

400000

600000

800000

1×106

0
0.25
0.5

0.75

1

0
200

400
600

800

Obtain the initial activity
domain

Current Activity Domain

Figure 1: Flowchart which illustrates the
activity based design pattern

2. Estimating Speed-up

The speed up that results with the use of the activity
based design pattern over a standard single-step
method is estimated by

*

Area of space time
Ratio Area of activity in space time

nx nt
Area of activity in space time

−
= −

= −

where is the number of grid points in the spatial
dimension and is the number of time steps in the
simulation interval.

nx
nt

Figure 2(b) illustrates the effective computational
region in solving 1-d diffusion used by a method to
which the activity based design pattern has been
applied

 (a) (b)
Figure 2: Shows the effective computational
region used by a method to which the activity
based design pattern has been applied Step1: Minimally

overestimate the next
activit

y domain 3. Example 1: Forward Time Centered

Space and Lax-methods for the Advection t=t+1

equation (,) (,)u x t u x t
ct x

∂ ∂
=∂ ∂ Step 2:

Apply the original single step
method (explicit or implicit) to
the overestimated domain

The advection equation is given by (,) (,)u x t u x t
ct x

∂ ∂
=∂ ∂

where is the velocity of the wave. In this paper, the
advection equation is solved with periodic boundary
conditions when a pulse centered at

c

2
L (where is the

length of the space) is taken as the initial condition.
L

Step3:
Restrict the result to
obtain the next current
activity domain

The activity based design pattern is applied to two
commonly used explicit methods (FTCS and Lax [6])
for solving the advection equation. The flowchart in
figure 3 illustrates the application of the design pattern
to the FTCS and Lax methods. The initial condition is
taken as follows ,
where

2(,0) exp(*() / 2)U x fac x= −

((1:) 0.5)* 2
Lx N h= − − , is the number of grid points,

 is the length and is the spatial resolution. The
width of the pulse is controlled by the

N

L h

fac . This width
determines the size of the activity domain relative to
the space and therefore, the expected increase in
computation speed. As illustrated in figure 3, we first
define a threshold (similar to quantum in a DEVS-
based implementation [4]) and find the left-most cell,

and right-most cell, where the pulse is greater than
the threshold. If we choose a large threshold, then

and will coincide with the boundaries of the spatial
domain in which case, we just use the original method.
Otherwise, we restrict the computation to the interval
in which the value of the pulse is greater than the
threshold. This is the region of activity since cells
outside this region have negligible activity as
determined by the threshold, i.e., cells whose value is
zero and whose neighbors’ values are zero have zero
time derivative. This is true except for cells adjacent to
the boundary of the activity region. These need to be
included in the estimated activity domain for the next
iteration. Thus, we have

L R

L R

Step 1:
Estimated activity domain = [1 for FTCS , 1]L R− +

This is exact for the explicit FTCS method since it can
expand activity at most to one neighbor on either side
of the activity interval. Similarly, the Lax method
employs two neighbors, therefore estimated activity
domain: = [2 for Lax. , 2]L R− +

Set the activity domain to the interval
[L, R] as defined in text.

Current Activity
Domain

Step 2:
Using vector notation, as in MATLAB, it is
straightforward to restrict the single step
transformation to the estimated activity domain: Step1:

Set estimated activity domain
 = [L-1, R+1] for FTCS
 = [L-2, R+2] for Lax

 For the FTCS method:
(1 : 1) (1 : 1) (* /(2 *)) * ((: 2)

(2 :));

U L R U L R c h U L R

U L R

τ− + = − + − +

− −

t=t+1
 For the Lax method:

(1 : 1) 0.5 * ((: 2) (2 :))

(* / 2 *)) * ((: 2) (2 :));

U L R U L R U L R

c h U L R U L Rτ

− + = + + −

− + − −
 Step 2:

Apply the FTCS/Lax
method to the estimated
activity domain

where is the time step and h is the spatial cell size. τ

 For further details the reader is referred to [6].

Step 3: Obtain next activity domain

((1))

1;

((1))

1;

if U L threshold

L L

if U R threshold

R R

+ >

= +

+ >

= +

We will show that applying the activity based design
pattern to the FTCS and Lax methods can offer
potential speed up without loss of accuracy. For the
purposes of computation, both (modified and
unmodified) codes have been run with 1000 grid
points, =velocity =1, L = [0, 1], =time step =
0.001 sec, number of time steps = 10 (therefore total
time of simulation = 0.01 sec). The width factor was
varied from 100 to 1000. The execution times shown
here were measured by running the original method
and the method to which the design pattern was
applied for 1000 times and taking the average. Also, it
should be noted that these numbers are relative i.e. if
the programs were to be executed on a faster computer,
the numbers may be smaller but the relative difference
should be the same. The following table summarizes
the comparison between the standard FTCS method
and the FTCS method to which the design pattern was
applied for solving the advection equation.

c τ

Figure 3: Flowchart which illustrates the
activity based design pattern for the
Advection process

Step3:
If (U
(L+1)>threshold)
L=L+1;
If (U(R+1)>threshold)

Table 1: Comparison between the standard
and modified FTCS method for advection
equation

fac
(fac
controls
the
pulse
width)

FTCS
method to
which the
design
pattern was
applied
using a
threshold of
10^-3
(Execution
time in
milli
seconds)

Absolute
Error for
FTCS
method to
which the
design
pattern was
applied
(measured
using 2-
norm)

Standard
FTCS
method
(Execution
time in
milli
seconds)

Absolute
Error for
standard
FTCS
method
(measured
using 2-
norm)

100 1.25 0.0061 2.24 0.0058
200 1.11 0.0100 2.447 0.0097
300 1.04 0.0135 2.40 0.0132
400 1.037 0.0166 2.575 0.0163
500 0.698 0.0196 2.468 0.0193
1000 0.661 0.0328 2.468 0.0326

As can be seen, as the initial pulse is given a narrower
profile relative to the whole space, the modified

method executes more rapidly both in absolute terms
and in relation to the original method. Moreover, there
is no loss in accuracy for explicit methods.

The following table summarizes the comparison
between the standard Lax method and the Lax method
to which the design pattern was applied for solving the
advection equation.
Table 2: Comparison between the standard
and modified Lax method for advection
equation
fac
(fac
controls
the pulse
width)

Lax
method to
which the
design
pattern
was
applied,
using
threshold
of
10^-15
(Execution
time in
milli
seconds)

Absolute
Error for
modified
Lax
method
(measured
using 2-
norm)

Standard
Lax
method
(Execution
time in
milli
seconds)

Absolute
Error for
standard Lax
method
(measured
using 2-
norm)

100 3.85 6.9*10^-6 3.85 6.9*10^-6
200 3.87 5.55*10^-

11
3.55 5.55*10^-11

300 1.65 3.40*10^-
15

3.54 2.6*10^-15

400 1.54 3.40*10^-
15

3.56 2.70*10^-15

500 1.47 3.49*10^-
15

3.55 2.77*10^-15

1000 1.30 4.6*10^-
15

3.56 4.10*10^-15

Noting that the Lax method is second order accurate in
both time and space, we see that the same results
continue to hold as for the first order FTCS method.
However, there is no advantage obtained with the
modified method until the pulse is sufficiently narrow
(at factor = 300). Indeed, the effect of the additional
sub-steps is noted in the extra overhead for the case of
factor = 200.

4. Example 2: Forward Time Centered
Space (FTCS) and Backward Time
Centered Space (BTCS)-methods for the
Diffusion equation 2(,) (,)

2
u x t u x t

t x
α∂ ∂=

∂ ∂

The diffusion equation is given by
2(,) (,)

2
u x t u x t

t x
α∂ ∂=

∂ ∂
where is the diffusion coefficient. In

this paper, the diffusion equation is solved with open
boundary conditions (i.e. and) when the
initial condition is taken as the same in example 1.

α

(0) 0U = () 0U L =

The activity based design pattern is applied to two
commonly used explicit and implicit methods (FTCS
and BTCS) for solving the advection equation. We will
show that the modified methods offer potential
speedups when compared with the original methods.
They also offer approximately the same accuracy as
the original methods.
The initial condition is taken as follows

() 2
2(,0) exp *

Lx
U x fac L

⎛ ⎞⎛ −⎜ ⎞
⎜ ⎟= −⎜ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L

;

⎟
⎟ where is the length of the

space. In the following we describe the application of
the design pattern to the BTCS method (the FTCS case
is similar to Example 1).

In the following, we describe how the activity based
design pattern was applied to the BTCS method. We
follow a similar procedure to that in section 3 with
some modifications that take into account the
properties of the diffusion process.

Step 1: Since diffusion spreads outward, the estimated
activity domain is expanded on both ends by two cells,
i.e., [2 . However, for the implicit BTCS, the
transition is global and can expand the activity interval
in principle to the whole space. Nevertheless, we
employ the same estimate and examine the resulting
error production.

, 2]L R− +

Step 2:

The BTCS is interesting since it is an implicit
method that nominally is a global matrix
inversion on the whole space. However, the
LU decomposition method is commonly
employed to reduce this operation from
quadratic to linear in the number of cells.
Using MATLAB’s vector notation, the
matrices representing the BTCS operator can
be restricted to the estimated activity domain,
as follows:

2
(/) * (5, 1)

(1/)* (5,1) 2* ;

;

(1) 1; (1) 0;

() 1; () 0;

a dx ones R L

b dt ones R L a

c a

b c

b end a end

α= − − +

= − + −

=

= =

= =

The LU decomposition is then computed for
the restricted domain as:

[,] (, ,);e f tridiagLU a b c=

The state vector at time t, is restricted to the
activity domain as:

(2 : 2,) /

(1) 0; () 0;

d U L R t dt

d d end

= − +

= =

;

Finally, the state at time t+1 is computed as:

(2: 2, 1) (, , , , (2: 2,))U L R t tridiagLUSolve d a e f U L R t− + + = − +
 where tridiagLUSolve computes the result in
R-L+5 iterations. For details on the standard
BTCS method the reader is referred to [7].

Step 3: In the case of pulse diffusion, the activity
domain first expands and then contracts. So to find the
new activity domain after the state transition we
employ tests for expansion and contraction. The cell
adjacent to the right boundary checks whether it has
become active and if so, becomes the new boundary
cell:

((1))

1;

if U R threshold

R R

+ >

= +

On the other hand, if the boundary cell becomes
inactive, then it contracts the boundary inward:

(())

1;

elseif U R threshold

R R

<

= −

The left boundary is handled similarly.
For the BTCS, both (modified and unmodified) codes
have been run with 50000 grid points, alpha=diffusion
coefficient =0.1, L = [0, 1000], time step = 0.5 sec,
total time of simulation = 500 sec, factor = 4000. A
threshold of 10^-5 was used when the design pattern
was applied to original FTCS and BTCS methods in
order to modify them.

The following table summarizes the comparison
between the original BTCS method and the BTCS
method to which the design pattern was applied for
solving the advection equation.

Table 3: Comparison between the standard
and modified BTCS method for diffusion
equation
fac Modified

BTCS
method
(Execution
time in
seconds)
using
threshold of
10^-5

Absolute
Error for
modified
BTCS
method
(measured
using 2-
norm)

Standard
BTCS
method
(Execution
time in
seconds)

Absolute
Error for
standard
BTCS
method
(measured
using 2-
norm)

1000 25.0 3.41 75 3.41
4000 12.8 7.36 127 7.36

Note that a speed up of approximately 10 is obtained
for the narrower pulse without loss in accuracy.

Since the FTCS method is explicit, both the modified
and unmodified FTCS methods were run using 5000
grid points, with a time step of 0.001 sec and total
time of simulation = 50 sec (rest of the parameters
weren’t changed). A threshold of 10^-5 was used when
the design pattern was applied to original FTCS and
BTCS methods in order to modify them. The following
table summarizes the comparison between the original
FTCS method and the FTCS method to which the
design pattern was applied for solving the advection
equation.
As it was mentioned before, since the FTCS method is
explicit, there is no loss in accuracy when the activity
based design pattern is applied to it. Note that a speed
up of approximately 20 is obtained for the narrower
pulse without loss in accuracy.

Table 4: Comparison between the standard
and modified FTCS method for diffusion
equation
fac Modified

FTCS
method
(Execution
time in
seconds)
using
threshold of
10^-5

Absolute
Error for
modified
FTCS
method
(measured
using 2-
norm)

Standard
FTCS
method
(Execution
time in
seconds)

Absolute
Error for
standard
FTCS
method
(measured
using 2-
norm)

1000 10.6 0.12 31 0.12
4000 8.0 0.32 156 0.32

To verify the correctness of the modified methods,
simulation runs were extended until the diffusion
process terminated with all cell values under threshold.
Visual inspection of the resulting plots confirmed that
the correct behavior was preserved.

The unmodified Matlab codes for advection were
taken from [6]. The unmodified Matlab codes for
diffusion were taken from [7].

5. Discussion

Table 5 summarizes our results by comparing actual
execution time ratios to estimates using the approach
in section 2.

Table 5: Summary of Results

Experiment Speed-up (Ratio
of
original method
execution time to
modified method
execution time)

Speed-up
estimate using
activity ratio

Advection(FTCS,fac=1000) 3.7 4.0
Advection(Lax,fac=1000) 2.0 4.0
Diffusion(BTCS,fac=1000) 3.0 4.0
Diffusion(BTCS,fac=4000) 10.0 10.0
Difusion(FTCS,fac=1000) 2.9 4.0
Diffusion(FTCS,fac=4000) 19 10.0

The activity ratios were computed analytically using
the given thresholds as illustrated in figure 2(b). We
see that generally the estimated speed-ups are close to
the actual results.

6. Conclusion
This paper described an activity based design pattern
for solving partial differential equations. The pattern
can be applied to any explicit or implicit single-step
numerical method to construct an asynchronous
modification with improved execution performance.
The approach was illustrated by showing how to apply
the design pattern to standard single step methods for
simulating the advection and diffusion problems in one
dimension. For explicit methods, the modification
results in no loss of accuracy while for implicit
methods, we showed how accuracy can be controlled
by selecting appropriate activity estimation and
restriction methods. Although the illustrated
applications were admittedly relatively simple in
nature, the design patterns they instantiate opens up the
possibility of research into more challenging
applications.

We conclude by relating the concept of activity as
employed in this paper to that discussed in earlier work
[1, 2, and 3]. In general, the activity at a cell refers to
the magnitude of its partial time derivative. Existing
DEVS-based quantization approaches exploit the
heterogeneity of activity distributions by creating an
asynchronous simulation model such that the time

advances of its cells are inversely proportional to the
magnitude of their partial time derivatives. In this way,
computational resources are automatically allocated in
relation to current activity, viz.; cells with small time
advances (i.e., high activity) are reprocessed more
rapidly than those with large advances. In contrast, in
this paper we will distinguish only between zero and
non-zero magnitude of the derivative. This
corresponds to distributions in which cells are either
passive (with infinite time advances) or active (and
given the same constant time step). This results in
asynchronous simulation since at any time there is a
distribution of active and passive cells, although active
cells are all synchronously processed. The DEVS-
based quantization approaches are generalizations in
the sense that they result in truly asynchronous models
that can be executed in distributed simulations to
exploit heterogeneity in time and space. The speed-up
analysis of section 2 is generalized to quantization
approaches in reference [1].

7. References

[1] R. Jammalamadaka, “Activity Characterization of Spatial
Models: Application to the Discrete Event Solution of Partial
Differential Equations”, M.S Thesis: Fall 2003, Electrical
and Computer Engineering Dept, University of Arizona.

[2] J. Nutaro, B.P. Zeigler, R. Jammalamadaka, S. Akerkar,
“Discrete Event Solution of Gas Dynamics within the DEVS
Framework: Exploiting Spatiotemporal Heterogeneity”,
ICCS, Melbourne, Australia, July 2003.

[3] Bernard P. Zeigler, R. Jammalamadaka, S. Akerkar,
“Continuity and Change (Activity) Are Fundamentally
Related In DEVS Simulation of Continuous Systems”,
AIS’04, October 4-6, Korea.

[4] Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim,
Theory of Modeling and Simulation, 2nd Edition, Academic
Press.

[5] Alexandre Muzy, A. Aiello, Paul-Antoine Santoni,
Bernard P. Zeigler, James J. Nutaro, and Rajanikanth
Jammalamadaka. Discrete event simulation of large-scale
spatial continuous systems. In International Conference on
Systems, Man and Cybernetics (SMC), Hawaii, USA,
October 2005. IEEE.

[6] Alejandro L. Garcia, Numerical Methods for Physics,
Prentice Hall, Englewood Cliffs, NJ, 2000.

[7] Gerald W. Recktenwald, Finite-Difference
Approximations to the Heat Equation, Class Notes, 2004.

	1. Introduction
	2. Estimating Speed-up
	7. References

