
A Modular Verification Framework
Based on Finite & Deterministic DEVS

Moon Ho Hwang and Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation,
Electrical and Computer Engineering Department,

The University of Arizona, Tucson, AZ 85721, USA
{mhhwang, zeigler}@ece.arizona.edu

Keywords: Discrete Event System Specification (DEVS),
Finite and Deterministic DEVS, Modular Verification
Framework, Illegal Behavior, Legal Behavior;

Abstract
In order to check if the system behavior satisfies

the requirement set, this paper uses a class of DEVS,
called finite & deterministic DEVS (FD-DEVS). Since
the infinite state behavior of FD-DEVS networks can be
abstracted as a finite reachable graph, this paper utilizes
the reachable graph structure to check the emptiness of
illegal behavior detected by checkers, called rejectors, as
well as the non-emptiness of legal behavior generated by
components under testing.

I. Introduction
Hierarchical and modular system modeling function-

ality has been strongly demanded [8] so Discrete Event
System Specification (DEVS) has been evolved from a
non-hierarchical formalism [13] to a hierarchical and
modular one [14]. This formalism has been intensively
researched from the view point of simulation and execu-
tion over past 30 years [15]. In spite of the advantage of
DEVS’s hierarchical and modular modeling capability, the
verification method based on DEVS has been successful
only recently, by abstracting the infinite state behavior of
DEVS [6].

In order to check if the system behavior satisfies
the requirement set, this paper uses a class of DEVS,
called finite & deterministic DEVS. Since the infinite state
behavior of FD-DEVS networks can be abstracted as a
finite reachable graph[7], this paper utilizes the reachable
graph structure to check the emptiness of illegal behavior
detected by checkers, called rejectors, as well as the non-
emptiness of legal behavior generated by components
under testing.

This paper is organized as follows. Section II defines
the time event segment and its concatenation operation.
The formal definition of FD-DEVS is given from the view

points of the atomic model as well as the coupled model
in Section III. Section IV introduces the language of FD-
DEVS as a set of event segments to reach an acceptance
state. Thus we will check if the illegal langauge is empty
as well as the legal language is not empty. Section V
illustrates a verification example using an intersection
traffic light control. Section VI summarizes contributions
of our proposed framework. Finally, conclusions and
further research directions are given in Section VII.

II. Timed Event Segment
Given an arbitrary event set Z and a time based T =

R[0,∞]
def
= {t|0 ≤ t ≤ ∞}, a timed event is defined

as a pair of (t, ā) such that t ∈ T and ā ∈ Z∗ is an
event string, where Z∗ is the Kleene closure of Z [5].
The Kleene closure of an event set Z is a set of all finite
length of strings over Z, for example Z = {a, b}, then
Z∗ = {ε, a, b, aa, ab, bb, aab, aba, . . .} where ε denotes
the empty string or the nonevent. Therefore, an event
trajectory ω : T → Z∗ is used for describing all timed
events over the time horizon from 0 to ∞. For example,
the event trajectory ω = (t1, b)(t2, aab) is ω(t) = b for
t = t1; ω(t) = aab for t = t2; ω(t) = ε otherwise. If the
number of events in an event trajectory ω is denoted by
|ω|, for ω = (t1, b)(t2, aab), |ω|=4. Obviously, |ε|=0.

We define the all possible events over Z at all times
as ΩZ = T× Z∗. An event segment can be defined from
a time interval [tl, tu] 1 and the domain function, dom is
a map from an event segment to its observation interval.
An event segment in ΩZ[tl,tu] can be written as ω[tl,tu]

or ω : [tl, tu] → Z∗ such that dom(ω[tl,tu]) = [tl, tu].
Sometimes we omit the observation interval such as ω ∈
ΩZ if dom(ω) = [0,∞] or dom(ω) is not important.

Given two time events (t, ab) and (t, ba) at a time t,
the concatenation of (t, ab) and (t, ba) is (t, ab)(t, ba)
and it can be also written as (t, abba). A pair of con-

1For simplicity, we focus on the closed boundary interval only.

DEVS/HPC/MMS'06 57 ISBN 1-56555-304-7

mailto:mhhwang@ece.arizona.edu,zeigler@ece.arizona.edu

tiguous segments ω1 ∈ ΩZ[t1,t2] and ω2 ∈ ΩZ[t2,t3],
the concatenation of ω1 and ω2 is defined as a form of
ω1 · ω2 : [t1, t3] → Z∗ such that ω1 · ω2(t) = ω1(t) for
t ∈ [t1, t2); ω1(t) ·ω2(t) for t = t2; ω2(t) for t ∈ (t2, t3];
If there is no confusion, we will omit ‘·’ so ω1ω2 is the
same as ω1 · ω2.

The empty segment within [tl, tu], denoted by ε[tl,tu],
is that ω(t) = ε for t ∈ [tl, tu]. Since ε is the identity of
concatenation of events [5], i.e., ε · z = z where z ∈ Z,
if ω = ε[tl,t](t, z)ε[t,tu] where t ∈ dom(ω) = [tl, tu] and
z ∈ Z, it can be simply written as ω = (t, z).

III. FD-DEVS
A. Atomic FD-DEVS

1) Definition of Atomic FD-DEVS: An atomic FD-
DEVS is a 9-tuple,

M =< X, Y, S, s0, τ, δx, ρ, δτ , λ >

where,

• X and Y are finite sets of input and output events,
respectively such that X ∩ Y = ∅.

• S is a non-empty and finite states set.
• s0 ∈ S is the initial state.
• τ : S → Q[0,∞] is the time advance function

where Q[0,∞] denotes a set of non-negative rational
numbers with infinity.

• δx : S ×X → S is the external transition function.
• ρ : S × X → B is the reschedule-indicating

function that returns 1 when a reschedule is needed;
otherwise, returns 0.

• δτ : S → S is the internal transition function.
• λ : S → Y ∪ {ε} is the internal output function. ¤
Notice that δx δτ and λ are partial functions that can

be defined for some elements in the domain.2

2) State Transition of Atomic FD-DEVS: Given
M =< X, Y, S, s0, τ, δx, ρ, δτ , λ >, the total states set
considers the schedule ts and its elapsed time e as well
as state s such that

Q = {(s, ts, e)|s ∈ S, ts ∈ Q[0,∞], 0 ≤ e ≤ ts}

From the total state set Q and the total event set Z =
X∪Y ∪{ε}, the total state transition function δ : Q×Z →
Q maps to other total state. For (s, ts, e) ∈ Q where
ts ∈ Q[0,∞] and z ∈ Z,

δ((s, ts, e), z) = (s′, t′s, e
′)

where

2In this paper f(. . .) ` denotes that f(. . .) is defined for any partial
function f(. . .). For example, δx(s, x) ` means that δx(s, x) is defined.

Fig. 1. (a) Lights Configuration (b) Controller FD-DEVS (c) Mutual
Exclusion Rejector (d) The Verification Frame

[External Transition] For z ∈ X , (s′, t′s, e
′) =





(δx(s, x), τ(δx(s, x)), 0) for δx(s, z) `, ρ(s, z) = 1
(δx(s, x), ts, e) for δx(s, z) `, ρ(s, z) = 0
(s, ts, e) otherwise

[Internal Transition] For z ∈ Y ∪ {ε}, (s′, t′s, e
′) =

{
(δτ (s), τ(δτ (s)), 0) for z = λ(s), e = ts

undefined otherwise

3) Execution of Atomic FD-DEVS: An execution of an
atomic FD-DEVS M is a sequence of state changes from
q ∈ Q according to a sequence of I/O events. Formally,
an execution is defined as ∆ : Q × ΩZ → Q: For q =
(s, ts, e) ∈ Q,ω, ω′ ∈ ΩZ[0,t], t ∈ T and z ∈ Zε

∆((s, ts, e), ω) =




δ((s, ts, e + t), z) for ω = ε[0,t](t, z), δ1 `
δ(∆(q, ω′[0,t]), z) for ω = ω′[0,t](t, z), δ2 `
undefined otherwise

where δ1 and δ2 means δ((s, ts, e + t), z) and
δ(∆(q, ω′[0,t]), z), respectively.

Example 1: Let’s consider a cross road system in
which there are two lights: G© for green and W© for
walk, as shown in Figure 1(a). Figure 1(b) shows
an atomic FD-DEVS, CRC that controls G© and W©
lights. The formal model of CRC is: X={p}; Y ={g:0,
g:1, w:0, w:1 } where ports g and w stand for

ISBN 1-56555-304-7 58 DEVS/HPC/MMS'06

“green” and “walk”, while values 0 and 1 for ”off”
and “on”, respectively; S={I0,I1,G,GR,WW,W,DW }
where I0 and I1 are initializing states, G stands for
“green on”, GR for “green to red”,WW for “waiting
for walk on”, W for “walk on”, DW for “don’t walk”;
τ (I0)=τ (I1)=0, τ (G)=10, τ (GR)=5, τ (WW)=2, τ (W)=26,
τ (DW)=2; δτ (I0)=I1, δτ (I1)=G, δτ (G)=G, δτ (GR)=WW,
δτ (WW)=W, δτ (W)=DW, δτ (DW)=G; λ(I0)=w:0,
λ(I1)=g:1, λ(G)=ε, λ(GR)=g:0, λ(WW)=w:1,
λ(W)=w:0, λ(DW)=g:1; δx(G,p)=GR; ρx(G,p)=1; 3

For ω[0,44.3] = (0,w:0)(0,g:1)(27,p)(32,g:0)(34,w:1)
ε[34,44.3], ∆((I0, 0), ω)=(W,26,5.7). ¤
B. Coupled FD-DEVS

1) Definition of coupled FD-DEVS: A coupled FD-
DEVS is a 6-tuple,

N =< X, Y,D, Cxx, Cyx, Cyy >

where
• X and Y are finite sets of input and output events,

respectively such that X ∩ Y = ∅.
• D = {Mi} is the finite set of sub-component FD-

DEVSs that are atomic FD-DEVSs. 4

• Cxx ⊆ X× ⋃
Mi∈D

Xi (res. Cyx ⊆
⋃

Mi∈D

Yi×
⋃

Mi∈D

Xi

and Cyy =
⋃

Mi∈D

Yi → Y ∪{ε}) is the external input

(internal and external output) coupling relation. ¥
For example, VCM shown in Figure 1(d) is a coupled FD-
DEVS VCM=< X, Y, D,Cxx, Cyx, Cyy > where X={ p
}; Y =∅; D={CRC, MXR }; Cxx={ (VCM.p, CRC.p)};
Cyx={ (CRC.g, MXR.a), (CRC.w, MXR.b)}; Cyy=∅;

2) State Transition of Coupled FD-DEVS: The total
state set of N is defined as the combination of sub-
components’ total states such that

Q = {(. . . , (si, tsi, ei), . . .)|(si, tsi, ei) ∈ Qi, Mi ∈ D}
We consider its state can change with a triggering event

z ∈ Z = X
⋃

Mi∈D

Yi ∪ {ε}. Thus the state transition

function δ : Q× Z → Q

δ((. . . , (si, tsi, ei), . . .), z) = (. . . , (s′i, t
′
si, e

′
i), . . .)

can be categorized into two transitions according to the
triggering events:

[External Transition Triggering] For z ∈ X ,

(s′i, t
′
si, e

′
i) =

{
δi((si, tsi, ei), xi) for (z, xi) ∈ Cxx

(si, tsi, ei) otherwise

3To distinguish the internal transition from the external transition, we
use ! in front of an output event, ? for an input event for each transition
in all state transition diagrams of this paper.

4This restriction of only atomic FD-DEVS for sub-components is for
the simple explanation. For analysis of hierarchical FD-DEVS networks,
we first flatten them, then apply this explanation.

[Internal Transition Triggering] For z ∈ ⋃
Mi∈D

Yi ∪{ε}
and λi∗(si∗) = z,

(s′i, t
′
si, e

′
i) =





δi((si, tsi, tsi), z) for Mi = Mi∗

δi((si, tsi, ei), xi) for (z, xi) ∈ Cyx

(si, tsi, ei) otherwise

However, if z ∈ ⋃
Mi∈D

Yi ∪ {ε}, e 6= tsi∗ or λi∗(si∗) 6=
z, then (s′i, t

′
si, e

′
i) is undefined because δi((si, tsi, ei), z)

is undefined.
3) Execution of Coupled FD-DEVS: Similar to the

atomic FD-DEVS, an execution of a coupled FD-DEVS
N from q ∈ Q with ω ∈ Ω is defined as ∆ : Q×ΩZ → Q:
For q = (. . . , qi, . . .) where qi = (si, tsi, ei) ∈ Qi, z ∈ Z
and ω, ω′ ∈ ΩZ[0,t], ∆(q, ω) =




δ((. . . , (si, tsi, ei + t), . . .), z) for ω = ε[0,t](t, z), δ1 `
δ((. . . , ∆i(qi, ω

′
[0,t]), . . .), z) for ω = ω′[0,t](t, z), δ2 `

undefined otherwise

where δ1 and δ2 means δ((. . . , (si, tsi, ei+t), . . .), z) and
δ((. . . , ∆i(qi, ω

′
[0,t]), . . .), z), respectively.

IV. Verification Framework
This paper focuses our interest on a segment ω ∈ ΩZ

such that |ω| = ∞ and dom(ω) = [0,∞] because our
interesting system is a live system that works forever. For
ω s.t. |ω| = ∞, since FD-DEVS has finite states, the
resulting ∆(q0, ω) can either stay at a q′ ∈ Q whose
τ(q′) = ∞ or move around in the set of state in a
transition loop. Both cases can be seen as staying at a
strongly connect components that we will talk about from
now on.
A. Behavior of Atomic FD-DEVS

Given a total state q ∈ Q, q is said to be reachable to
q′ ∈ Q if ∃ω ∈ ΩZ such that ∆(q, ω) = q′. The strong
components (or strongly connected components) of q ∈ Q
is the maximal set whose every element is reachable to q,
and vice versa. Formally, the strong components of q is
defined by a function SC : Q → 2Q such that

SC(q) = {q′|ω, ω′ ∈ ΩZ : ∆(q, ω) = q′, ∆(q′, ω′) = q}
For example, in CRC of Figure 1 (b), SC((I1,0,0))=

{(I1,0,0)} and SC((G,10,[0,10]))= {(G,10,[0,10]), (GR,5,
[0,5]), (WW,2,[0,2]), (W,26,[0,26]), (DW,2,[0,2]) }.

To define a set of goals in our model easily, we would
use the discrete state s ∈ S rather than a total set q ∈ Q.
To drop time information from a total state q = (s, ts, e) ∈
Q, we use the discrete state of q as disc-s(q) = s. The
disc-s is also overloaded as a function disc-s : 2Q → 2S

such that for Q′ ⊆ Q,

disc-s(Q′) = {s|(s, tsi, e) ∈ Q′}

DEVS/HPC/MMS'06 59 ISBN 1-56555-304-7

For example, in CRC of Figure 1(b), disc-
s(SC((G,10,[0,10]))={G, GR, WW, W, DW}

Given a pair of (M, A) where M is an atomic FD-
DEVS and A ⊆ S is its acceptance states, the behavior
(or language) of (M,A) is defined as

L(M,A) = {ω ∈ ΩZ |disc-s(SC(∆(q0, ω))) ∩A 6= ∅}
In other words, the language of (M, A) is the set of all

possible segments that reach s ∈ A infinitely often. Let
A={W} for CRC shown in Figure 1(b), then L(CRC, A) =
{ω|ω=(0,w:0)(0,g:1)((ti,p)(ti+5,g:0)(ti+7,w:1)(ti+33,
w:0)(ti+35, g:1))i where i = 0 to ∞. }.
B. Behavior of Verification Frame

If a coupled FD-DEVS N is built for verification
of a system, the components D of N may consist of
two disjointed components: components under testing and
tester, called rejectors. A rejector is supposed to have its
acceptance states as bad situations. If there is no event
segment that leads any rejector to reach a bad situation,
all behaviors of components under testing can be legal
behavior unless there no component under testing cannot
reach its acceptance state. Thus, we need to show that
no rejectors reach bad situations while also showing that
all components under testing can reach their acceptance
states.

Suppose that N is a verification frame N whose
subcomponents D consists of a set of components under
testing DT and a set of rejectors DR such that D =
DT ∪DR and DT ∩DR = ∅ while the set of acceptance
states of N is the n-tuple A =< . . . , Ai, . . . > where
n = |D| and Ai denotes the set of acceptance states of
Mi ∈ D. The projected discrete states from Q′ with i for
a set of total states Q′ ⊆ Q is

disc-s(Q′, i) = {si ∈ Si|(. . . , (si, tsi, ei), . . .) ∈ Q′}
Then, the illegal behavior (or illegal language) is defined
as LR(N, A) =

{ω ∈ ΩZ |∃Mi ∈ DR : disc-s(SC(∆(q0, ω)), i)∩Ai 6= ∅}
where q0 = (. . . , qi0, . . .) is the initial total state of N
such that for all Mi qi0 = (s0i, τ(s0i), 0). In other words,
LR(N, A) is a set of segments that lead at least one
rejector to reach a bad situation.

In addition, the behavior (or language) of components
under testing is defined as LT (N, A) =

{ω ∈ ΩZ |∀Mi ∈ DT : disc-s(SC(∆(q0, ω)), i)∩Ai 6= ∅}
Thus LT (N, A) is a set of segments that make all com-

ponents under testing reach an acceptance state infinitely
often.

A pair of (N,A) is said to be accepted if LR(N,A) =
∅ and LT (N, A) 6= ∅.

C. Decidability of (N, A) Acceptance
For checking if LT (N, A) 6= ∅ and LR(N, A) = ∅, to

generate all possible segments in ΩZ might be impossible
because the number of segments under testing can be
infinite.

Instead of generating all segments directly, we can
use the graph structure of all possible transitions of FD-
DEVS. This paper utilizes a finite reachable graph for
FD-DEVS networks. 5 The finite reachable graph of a a
coupled FD-DEVS, N =< X,Y, D, Cxx, Cyx, Cyy > is
define as

RG(N) =< Z, V, v0, E >

where
• Z = X

⋃
Mi∈D

Yi ∪ {ε} is the set of triggering events.

• V is a set of zones. A zone v =
((. . . , (si, tsi), . . .),D) consists of a state-scheduler
vector (. . . , (si, tsi), . . .) and a clock zone D.

• v0 ∈ V is the initial zone such that v =
((. . . , (s0i, τi(s0i)), . . .),D0) where D0 is the initial
clock zone.

• E ⊆ V × Z × V is a transition relation
that satisfies the following property: For q =
(. . . , (si, tsi, ei), . . .), q′ = (. . . , (s′i, t

′
si, e

′
i), . . .) and

z ∈ Z,
δ(q, z) = q′ ⇔ (v, z, v′) ∈ E

such that v = ((. . . , (si, tsi), . . .),D), ∀ei ∈ D and
v′ = ((. . . , (s′i, t

′
si), . . .),D′), ∀e′i ∈ D′. ¤

A transition path is a state transition sequence caused
by an event sequence z̄ = z0z1 . . . zn ∈ Z∗ from the
initial vertex v0 to v and we denote it as v0

z̄→ vn if
(v0, z0, v1) ∈ E, . . . , (vn−1, zn, vn) ∈ E. To define the
infinite length of transition sequence, we define strong
components of v ∈ V again. SC : V → 2V defines a
strong components of v such that

SC(v) = {v′|∃z̄, z̄′ ∈ Z∗, v z̄→ v′, v′ z̄′→ v}
The kernel directed and acyclic graph (shortly kernel

DAG) of a graph G [9] is used in checking the emptiness
of the illegal behavior. The kernel DAG of RG(N) is

K(RG(N)) =< V, E >

where
• V is the set of SC(v) for each v ∈ V of RG(N). In

particular, v0 = SC(v0) is the initial node.
• E ⊆ V × V is the set of arcs such that (v1, v2) ∈

E implies (v1, z, v2) ∈ E of RG(N) such that
SC(v1) = v1 and SC(v2) = v2.

5For details of a generating algorithm of the finite reachable graph
for coupled FD-DEVS, the reader can refer to [7].

ISBN 1-56555-304-7 60 DEVS/HPC/MMS'06

In K(RG(N)), a node v ∈ V is reachable from v0

if there is a sequence of arcs that reaches from v0 to v.
And we overload the projected discrete sets functions for
v ∈ V of RG(N) and v ∈ V of K(RG(N)), respectively:

disc-s(v, i) = si for v = ((. . . , (si, tsi), . . .),D)

and
disc-s(v, i) = {disc-s(v, i)|v ∈ v}

Theorem 1: Suppose that N is a verification frame
and A is the vector of acceptance states for N . Then
LR(N, A) = ∅ and LT (N, A) 6= ∅ if ∀v ∈ V reachable
from v0 s.t. ∀Mi ∈ DR, disc-s(v, i)∩Ai = ∅ and ∃v ∈ V
reachable from v0 s. t. ∀Mi ∈ DT , disc-s(v, i)∩Ai 6= ∅.

Proof: If ∀v ∈ V reachable from v0 s.t. ∀Mi ∈
DR, disc-s(v, i) ∩Ai = ∅.
⇒ ∀Mi ∈ DR, ∃v ∈ v s.t. disc-s(v, i) ∩Ai = ∅.
⇒ ∀ω ∈ ΩZ s.t. disc-s(∆(q0, ω), i) ∩Ai = ∅.
⇒ LR(N, A) = ∅.

If ∃v ∈ V reachable from v0 s.t. ∀Mi ∈
DT , disc-s(v, i) ∩Ai 6= ∅.
⇒ ∀Mi ∈ DT , ∃v ∈ v s.t. disc-s(v, i) ∩Ai 6= ∅.
⇒ ∃ω ∈ ΩZ s.t. disc-s(∆(q0, ω), i) ∩Ai 6= ∅.
⇒ LT (N,A) 6= ∅.

Lemma 1: Given the pair of (N, A), checking
L(N, A) = 0 is decidable.

Proof: By Theorem 1, we can show that ∃v ∈ V
is reachable from v0 s. t. ∀Mi ∈ DT , disc-s(v, i) ∩
Ai 6= ∅ and ∀v ∈ V is reachable from v0 s.t. ∀Mi ∈
DR, disc-s(v, i)∩Ai = ∅ for checking if LT (N, A) 6= ∅
and LR(N,A) = ∅. It is known that generating RG(N)
is decidable in exponential time of |D| that is the number
of atomic FD-DEVS [7]. Constructing K(RG(N)) is
decidable with O(|V | + |E|) complexity where |V | and
|E| are the numbers of zones and transitions of RG(N),
respectively [9].

Example 2 (Mutual Exclusion between G© and W©):
Let’s consider again the cross road lights G© and W©
shown in Figure 1(a) and suppose that they are controlled
by CRC shown in Figure 1(b) through output ports g
and w, respectively. Now we want to check whether G©
and W© have “on” exclusively or not. To do this, we use
rejector MXR that reaches R11 state when CRC violates
the requirement, that means, it transmits 1 though g
before sending 0 though w, vice versa.

We can build a verification frame, VCM shown in
Figure 1(d) where DT ={CRC}, DR={MXR}; Given the
vector of acceptance states A =< ACRC, AMXR >=<
{W}, {R11} >, we first check LT (VCM, A) 6= ∅ using
K(RG(N)). Figure 2(a) shows RG(VCM) whose a vertex
is a reachable state of RG(VCM) so there are 7 vertices.
We can make K(RG(VCM)) by combining SC(v) for

Fig. 2. Reachable Graph of Cross Road Verification: (a) Empty Illegal
Behavior (b) Nonempty Illegal Behavior

each v ∈ V of RG(VCM) so that 5 vertices surrounded
by a dashed line are contained by v2 in K(RG(VCM)).

To verify if LR(VCM, A) = ∅, we need to
check for all v ∈ V with index MXR such that
disc-s(v0,MXR) ∩AMXR={A00} ∩ {R11} = ∅; disc-
s(v1,MXR) ∩AMXR={A00} ∩ {R11} = ∅; disc-
s(v0,MXR) ∩AMXR={A01, A00, A10 } ∩ {R11} = ∅;
Thus we can say that LR(VCM, A) = ∅.

Similarly, we can check if LT (VCM, A) 6= ∅. For
RT ={CRC} since disc-s(v2,CRC) ∩ACRC={ G, GR, WW,
W, DW } ∩ {W}={W} 6= ∅, so LT (VCM, A) 6= ∅.
Therefore, we can accept the implementation, CRC, under
the tester (rejector), MXR.

However, if we switch outputs of states GR and WW of

DEVS/HPC/MMS'06 61 ISBN 1-56555-304-7

Fig. 3. Configuration of Intersection Lights

CRC such that λ(GR) = w:1 and λ(WW) = g:0, we get
a different reachable graph from the original, as shown in
Figure 2(b). Even though LT (VCM, A) 6= ∅ as the same
as the original, we can find the bad behavior detected
by MXR: disc-s(v5,MXR) ∩ {R11} = disc-s(v6,MXR) ∩
{R11} = {R11} 6= ∅. Therefore, this implementation of
CRC controller is rejected by MXR. ¤
V. Illustrative Example

This section shows an example of modular verification
of an intersection traffic light system that is shown in
Figure 3. This intersection has four ways and each way
has three lights: green (G©), left turn (←©), and red (R©)
for traffic, and two lights: walk (W©) and don’t walk (D©))
for pedestrians.
A. System Requirements

The requirements for this system control can be enu-
merated as follows.

1) Intra Traffic Way
a) (Safety) Only one light among G© ←©, and R©

can be on. More than one light on is allowed
within 0.01 sec.

b) (Time Constraints) Once G© is on, it lasts
35±1 sec., while ←© for 15±1 sec.

c) (Fairness) The circulation order of turning on
is R©, G©, ←© and R© again unless the pausing
signal externally occurs.

2) Cross Road
a) (Safety) W© and D© are mutual-exclusively on

with switching tolerant time 0.01 sec.

b) (Safety) When W© is on, R© should be on.
c) (Fairness and Time Constraints) Without push-

ing button, D© is on. If one pushes the button
when D© is on, W© will be on 2±0.1 sec. after
R© becomes newly on again. This behavior
repeats forever.

3) Inter Traffic Ways: Notice that pairs (Way1 and
Way3) and (Way2 and Way4) should be controlled
in the same way at the same time. For example,
Way1 has ←© on, so Way3 does. Thus we need to
build the control logics for Way1 and Way2 not for
all four traffic ways. From now on, we focus the
control logic between Way1 and Way2.

a) (Starting) We can push the starting button after
the booting time 5 sec. is passed. When the
starting button is pushed, Way1 has G©.

b) (Terminating) For emergency or maintenance,
when the pause button is pushed, all ways
become R© within less than 5 sec. and the
system returns to the booting status.

c) (Fairness) G© moves to the other way (Way1
¿ Way2). This circulation repeats until the
pause button is pushed.

d) (Time Constraints for Safety) When G© turns
from one to another, there is 2±0.5 sec. delay
unless the pause button is pushed.

e) (Safety) When one way has G© or ←©, other
side has R©.

B. Implementation
1) Intra Traffic Controller: Figure 4 illustrates how

we implemented a verification frame for the intra-traffic
controller. Figure 4 (a) shows an implementation of
Spec1-a that is a rejector detecting violation of the mutual
exclusion between g, a, and r where MXR1, MXR2,
MXR3 are the atomic FD-DEVS introduced in Example
1. For checking time constrains of Spec1-b, we made an
atomic FD-DEVS TimeRangeD_R which detects “too
early error” from E to RJ or “too late error” from L
to RJ where time tolerant range is [d − t, d + t]. Using
TimeRangeD_R, we could build the Spec1-b checker as
shown in Figure 4(c). Figure 4(d) illustrates an atomic
FD-DEVS model for the Spec1-c checker that detects the
violation of circulating order among R©, G© and ←©. Figure
4(e) shows the verification frame for checking Spec1-a,
Spec1-b and Spec1-c are not violated and the controller,
GAR has the legal and live behavior. GAR has its initial
state IR that generates r:1 to turn R© on first, and then
turn G© and ←© off by output g:0 and a:0 at IG and
IA, respectively. When receiving state signal s:1, GAR
gets into D that turns R© off by r:0 and moves to R2G
turning G© on by g:1. After staying 35 sec. at G, GAR
turns G© off by g:0 and changes into G2A that turns ←©

ISBN 1-56555-304-7 62 DEVS/HPC/MMS'06

Fig. 4. Verification Frame of Intra-Traffic Control (a) Checker for
Spec1-a (b) TimeRangeD R (c) Checker for Spec1-b (d) Checker for
Spec1-c (e) Verification Frame for Spec1

on by a:1. After staying 15 sec. at A, it turns ←© off by
a:0 and goes back to R with turning R© on again. When
pausing event s:0 occurs at either D, R2G, G, G2A or A,
the current state moves to IR for re-initializing all lights
G©,←© and R©.

2) Cross Road Controller: To construct the verifica-
tion frame for cross road specifications we model com-
ponents as illustrated in Figure 5. The checker for safety
requirement Spec2-b was implemented as shown in Figure
5(a) while the time constrained behavior of Spec2-c was
built as Figure 5(b). The component under testing was a
coupled FD-DEVS whose one model is a push switch PS
shown in Figure 5(c) and the other is NOT gate (whose
state diagram is omitted here). Figure 5(d) shows the
verification frame checking the cross road requirements.

3) Inter Traffic Controller: To control inter traffic
ways, we used an atomic FD-DEVS model, called module

Fig. 5. Verification Frame of Cross Road Control (a) Checker for Spec2-
b (b) Checker for Spec2-c (c) Push Switch (d) Verification Frame for
Spec2

circulator (MC) as shown in Figure 6(a). This model is
booting for 2 seconds at B and it becomes ready to handle
the starting event s at state I. Once it gets the starting
signal s at I, it moves to toM1 whose τ(toM1)=2 for
a safety then moves to M1 with output g1:1 that is
triggering the circulation of G©,←© and R© at Way1. When
getting r1:1, the circulation moves to Way2 through
toM2 and M2. Then it repeats forever unless the pausing
event p happens. If p occurs, depending on the current
states it moves directly to B or it moves via P1 or P2 to
B.

As shown in Figure 7(b), we could construct a inter-
traffic controller (ITC) using one MC and two GARs
named GAR1 and GAR2 which were introduced first in
Figure 4(e). We built the checker for Spec3-abcd as one
atomic FD-DEVS as shown in Figure 6(c). That is, it
checks, the starting and terminating behaviors, circulation
fairness of authority between Way1 and Way2 as well as
time constraints for staying at a state. The checker for
Spec3-e was implemented using two OR gates and two
mutually inclusion rejector, MIR1 and MIR2 as shown at
the bottom of Figure 6(d). Whole coupling information of
the verification frame for the inter-traffic control is shown
in Figure 6(d).

Finally, as we can see Figure 7, the intersection light
controller (ILC) could be built using one ITC and four
cross road controllers that are grouped as (CRC1, CRC3)
and (CRC2, CRC4).

DEVS/HPC/MMS'06 63 ISBN 1-56555-304-7

Fig. 6. Verification Frame of Inter-Traffic Control (a) Module Circulator
(b) Inter-Traffic Controller (c) Checker for Spec3-abcd (d) Verification
Frame for Spec3

Fig. 7. Implementation of Intersection Lights Control

C. Verification Performance
Hardware platform in which we implemented has In-

tel Pentium-4TM (3 GHz) with 512 MBytes RAM. We
used Microsoft Visual.Net 2005TM for compiling the C-#
language.

We first checked the emptiness of illegal behavior
using the set of checkers for Spec1, Spec2, and Spec3
whose configurations have been illustrated in Figure 4,
Figure 5, and Figure 6, respectively. All of the checkers
could not find any bad behavior. For checking the non-
emptiness of legal behavior of the integrated components
ILC shown in Figure 7, we varied the number of push
buttons used ranging from none to 3 (we stopped the case
of full usage of all push buttons in cross roads because
of the memory lack). All of configurations have the non-
empty legal behavior. Table I summarizes the result of our

TABLE I
PERFORMANCE OF CHECKING ILLEGAL AND LEGAL BEHAVIORS

Behavior |D| P |S| |V1| Time1 |V2| Time2

LR

a 7 42 38 0.4 2 0.4
b 5 30 23 0.14 6 0.06
c 8 65 128 0.14 19 0.1

LT

0 13 80 311 1.47 272 1.39
1 13 80 690 2.88 427 2.86
2 13 80 2,663 11.23 718 11.98
3 13 80 19,086 1:47.44 1,329 1:58.45

LR : LR(N, A); LT : LT (N, A); a: Spec1; b: Spec2; c: Spec3;
0: no push button; 1: using push button1; 2: using push buttons 1 &
2; using push buttons 1,2 & 3; |D|: the number of involved atomic
FD-DEVS;

P |S|: the number of all states in D; |V1|: the number of
vertices of RG(N); Time1: the elapsed time for generating RG(N);
|V2|: the number of vertices of K(RG(N)); Time2: the elapsed time
for generating K(RG(N));

performance experiment.

VI. Contributions
This paper proposes a verification framework based

on a sub-class of DEVS, called FD-DEVS so that the
finite reachable graph of FD-DEVS networks is used
for checking the emptiness of the illegal behavior as
well as the non-emptiness of the legal behavior. One of
the advantages of this verification framework over other
formalism such as timed automata [2] is its modularity,
which has been originated from the coupling scheme of
DEVS [14]. Each component in our verification frame-
work can work as an independent module as interacting
with other components through the coupling relation.
However, since the synchronization of state transition
between two timed automata is done by the same name
of events [2] [1] [11], a component might not be reused
for different purposes. For example, the identical mutual
exclusion rejectors, MXR1, MXR2, and MXR3 with input
ports a and b shown in Figure 4(a) should change their
port names for synchronization with different events g,
a and r when using the synchronization used in the
automata theory.

The applicability of this proposed verification frame-
work is much broader than other DEVS approaches [12],
[4], [10] that seem to be applicable in only closed systems
which don’t interact with external influences. In addition,
compared to the experimental framework which is based
on the simulation of DEVS models [15], this proposed
framework has advantages because it generates all pos-
sible reachable states while simulation attempts to trace
one possible trajectory in a run. In other words, we don’t
know when we can stop the simulation experiment for
the perfect testing, especially in case of the system under
testing being an open system.

ISBN 1-56555-304-7 64 DEVS/HPC/MMS'06

VII. Conclusion and Further Research
To check if the implementation of a system satisfies the

requirement set, this paper proposed a verification frame-
work based on FD-DEVS networks whose components
are partitioned into testers (or checkers), called rejectors,
and components under testing. In the proposed verification
framework, the illegal behaviors can be detected mod-
ularly by any rejector, while non-empty legal behavior
of components under testing can be guaranteed by the
kernel DAG of the finite reachable graph that covers
all acceptance conditions of each component. As an
illustrative example, an intersection traffic control system
has been verified that it’s implementation met the whole
set of requirements.

However, as we could see in Section V, even though
the number of reachable states is finite, it can be exploded
as the number of subcomponents or the number of exter-
nal influences increases. Thus, extending scalability can
be one of the most demanding research in our approach.
One possible way for this might employee the ordered
binary decision diagram [3] in which the behavior is
preserved while the size of memory requirement can be
greatly reduced. Another possibility might be the state
reduction in which the behavior can be different from the
origin if the difference can be tolerated. To do this, we
can think other finite state DEVS with non-determinism
in terms of time advance as well as state transitions. In
addition, the performance range of coupled FD-DEVS
will be needed in terms of the optimistic and pessimistic
cases as done in the schedule-preserved DEVS [6]

Acknowledgment
This work was supported by the Korea Research Foun-

dation Grant (No: M01-2004-000-20045-0).

References
[1] R. Alur. Timed Automata. 11th International Conference on

Computer-Aided Verification, LNCS, 1633:8–22, 1999.
[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.
[3] R.E. Bryant. Graph-Based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, 35(8), 1986.
[4] K.J. Hong and T.G. Kim. Timed I/O Test Sequences for Discrete

Event Model Verification. In 13th International Conference on
AI, Simulation, and Planning in High Autonomy Systems, volume
3397 of LNCS, pages 257–284. Springer, 2005.

[5] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison Wesley,
second edition, 2000.

[6] M.H. Hwang. Tutorial: Verification of Real-time System Based
on Schedule-Preserved DEVS. In Proceedings of 2005 DEVS
Symposium, San Diego, CA, Apr. 2-8 2005. SCS.

[7] M.H. Hwang and B.P. Zeigler. A Reachable Graph of Finite
and Deterministic DEVS Networks. In Proceedings of 2006
DEVS Symposium. SCS, http://www.u.arizona.edu/∼mhhwang,
2006. Accepted.

[8] D.H. Withers R.G. Sargent, J.H. Mize and B.P. Zeigler. Hierarchi-
cal Modelling for Discrete Event Simulation (Panel). In Proceed-
ings of the 25th Winter Simulation Conference, Los Angeles, CA,
1993. ACM Press.

[9] R. Sedgewick. Algorithms in C++, Part 5 Graph Algorithm.
Addison Wesley, Boston, third edition, 2002.

[10] H.S. Song and T.G. Kim. Application of Real-Time DEVS to
Analysis of Safety-Critical Embedded Control Systems: Railroad
Crossing Control Example. SIMULATION, 81(2):119–136, Feb.
2005.

[11] S. Tripakis and S. Yovine. Analysis of timed systems using
time-abstracting bisimulations. Formal Methods in System Design,
18:25–68, 2001.

[12] B. P. Zeigler and S.D. Chi. Symbolic Discrete Event System Spec-
ification. IEEE Transactions on Systems, Man, and Cybernetics,
22(6):1428–1443, Nov./Dec. 1992.

[13] Bernard P. Zeigler. Theory of Modelling and Simulation. Wiley
Interscience, New York, first edition, 1976.

[14] Bernard P. Zeigler. Multifacetted Modeling and Discrete Event
Simulation. Academic Press, London,Orlando, first edition, 1984.

[15] B.P. Zeigler, H.Praehofer, and T.G. Kim. Theory of Modelling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press, London, second edition, 2000.

DEVS/HPC/MMS'06 65 ISBN 1-56555-304-7

http://www.u.arizona.edu/~mhhwang

	TITLE PAGE
	PROCEEDINGS LIST
	DEVS Table of Contents
	ACROBAT HELP
	A Modular Verification Framework Based on Finite & Deterministic DEVS
	Keywords:
	Abstract
	I. Introduction
	II. Timed Event Segment
	III. FD-DEVS
	A. Atomic FD-DEVS
	B. Coupled FD-DEVS

	IV. Verification Framework
	A. Behavior of Atomic FD-DEVS
	B. Behavior of Verification Frame
	C. Decidability of (N;A) Acceptance

	V. Illustrative Example
	A. System Requirements
	B. Implementation
	C. Verification Performance

	VI. Contributions
	VII. Conclusion and Further Research
	Acknowledgment
	References

