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Glossary 
 
Behavior  
The observable manifestation of an interaction with a system 
 
DEVS  
Discrete Event System Specification formalism describes models developed for 
simulation; applications include simulation based testing of collaborative services 
 
Endomorphic Agents 
Agents that contain models of themselves and/or of other endomorphic Agents. 
 
Levels of Interoperability 
Levels at which systems can interoperate such as syntactic, semantic and pragmatic. The 
higher the level, the more effective is information exchange among participants. 
 
Levels of System Specification 
Levels at which dynamic input/output systems can be described, known, or specified 
ranging from behavioral to structural 
 
Metadata 



Data that describes other data; a hierarchical concept in which metadata are a descriptive 
abstraction above the data it describes. 
 
 
Model-based automation 
Automation of system development and deployment that employs models or system 
specifications, such as DEVS, to derive artifacts. 
 
Modeling and Simulation Ontology  
The SES is interpreted as an ontology for the domain of hierarchical, modular simulation 
models specified with the DEVS formalism. 
 
Net-Centric Environment 
Network Centered, typically Internet-centered or web-centered information exchange 
medium 
 
Ontology 
Language that describes a state of the world from a particular conceptual view and usually 
pertains to a particular application domain  
 
Pragmatic Frame 
A means of characterizing the consumer’s use of the information sent by a producer; 
formalized using the concept of processing network model 
 
Pragmatics 
Pragmatics is based on Speech Act Theory and focuses on elucidating the intent of the 
semantics constrained by a given context.  Metadata tags to support  pragmatics include 
Authority, Urgency/Consequences, Relationship, Tense and Completeness 
 
Predicate logic 
An expressive form of declarative language that can describe ontologies using symbols for 
individuals, operations, variables, functions with governing axioms and constraints  
 
Schema 
An advanced form of XML document definition, extends the DTD concept 
 
Semantics 
Semantics determines the content of messages in which information is packaged. The 
meaning of a message is the eventual outcome of the processing that it supports 
 
Sensor 
Device that can sense or detect some aspect of the world or some change in such an aspect 
 
System Specification 
Formalism for describing or specifying a system. There are levels of system specification 
ranging from behavior to structure. 



 
Service Oriented Architecture  
Web service architecture in which services are designed to be 1) accessed without 
knowledge of their internals through well-defined interfaces and 2)  readily discoverable 
and composable. 
 
Structure 
The internal mechanism that produces the behavior of a system. 
 
System Entity Structure  
Ontological basis for modeling and simulation.  Its pruned entity structures can describe 
both static data sets and dynamic simulation models.  
 
Syntax 
Prescribes the form of messages in which information is packaged. 
 
UML 
Unified Modeling Language is a software development language and environment that can 
be used for ontology development and has tools that map UML specifications into  
XML  
 
XML 
eXtensible Markup Language provides a syntax for document structures containing tagged 
information where tag definitions set up the basis for semantic interpretation. 
 
 
1.Definition and the Subject and its Importance 
 
This article discusses the role of Artificial Intelligence (AI) in Modeling and Simulation 
(M&S). AI is the field of computer science that attempts to construct computer systems 
that emulate human problem solving behavior with the goal of understanding human 
intelligence.  M&S is a multidisciplinary field of systems engineering, software 
engineering, and computer science that seeks to develop robust methodologies for 
constructing computerized models with the goal of providing tools that can assist humans 
in all activities of the M&S enterprise.  Although each of these disciplines has its core 
community there have been numerous intersections and cross-fertilizations between the 
two fields. From the perspective of this article, we view M&S as presenting some 
fundamental and very difficult problems whose solution may benefit from the concepts 
and techniques of AI.  
 

2. Introduction  
 
To state the M&S problems that may benefit from AI we first briefly review a system-
theory based framework for M&S that provides a language and concepts to facilitate 
definitive problem statement. We then introduce some key problem areas: verification and 



validation,  reuse and composability, and distributed simulation and systems of systems 
interoperability.  After some further review of software and AI-related background, we go 
on to outline some areas of AI that have direct applicability to the just given problems in 
M&S. In order to provide a unifying theme for the problem and solutions, we then raise 
the question of whether all of M&S can be automated into an  integrated autonomous 
artificial modeler/simulationist.  We then proceed to explore an approach to developing 
such an intelligent agent and present a concrete means by which such an agent could 
engage in M&S. We close with consideration of an advanced feature that such an agent 
must have if it is fully emulate human capability – the ability, to a limited, but significant 
extent, to construct and employ models of its own “mind” as well of the ‘minds” of other 
agents.  
 

3. Review of System Theory and Framework for Modeling and 
Simulation 
 
 
Hierarchy of System Specifications 
 
Systems theory [1] deals with a hierarchy of system specifications which defines levels at 
which a system may be known or specified. Table 1 shows this Hierarchy of System 
Specifications (in simplified form, see  [2] for full exposition). 
 

Level Name What we specify  at this level 
4 Coupled 

Systems 
System built up by several component 
systems which are coupled together 

3 I/O System System with state and state transitions 
to generate the behavior 

2 I/O Function Collection of input/output pairs 
constituting the  allowed behavior 
partitioned according to the initial state 
the system is in when the input is 
applied 

1 I/O Behavior Collection of input/output pairs 
constituting the  allowed behavior of 
the system from an external Black Box 
view 

0 I/O Frame Input and output variables and ports 
together with allowed values 

Table 1: Hierarchy of System Specifications 
 

• At level 0 we deal with the input and output interface of a system.  
 

• At level 1 we deal with purely observational recordings of the behavior of a system. 
This is an I/O relation which consists of a set of pairs of input behaviors and 
associated output behaviors.  



 
• At level 2  we have knowledge of the initial state when the input is applied. This 

allows partitioning the  input/output pairs of level 1 into non-overlapping subsets, 
each subset associated with a different starting state. 

 
• At level 3 the system is described by state space and state transition functions. The 

transition function describes the state-to-state transitions caused by the inputs and 
the outputs generated thereupon.  

 
• At level 4 a system is specified by a set of components and a coupling structure. 

The components are systems on their own with their own state set and state 
transition functions. A coupling structure defines how those interact. A property of 
coupled system which is called “closure under coupling” guarantees that a coupled 
system at level 3 itself specifies a system. This property allows hierarchical 
construction of systems, i.e., that coupled systems can be used as components in 
larger coupled systems.  

 
As we shall see in a moment, the system specification hierarchy provides a mathematical 
underpinning to define a framework for modeling and simulation. Each of the entities (e.g., 
real world, model, simulation, and experimental frame) will be described as a system 
known or specified at some level of specification. The essence of modeling and simulation 
lies in establishing relations between pairs of system descriptions. These relations pertain 
to the the validity of a system description at one level of specification relative to another 
system description at a different (higher, lower, or equal) level of specification.  
 
Based on the arrangement of system levels as shown in Table 1, we distinguish between 
vertical and horizontal relations. A vertical relation is called an association mapping and 
takes a system at one level of specification and generates its counterpart at another level of 
specification. The downward motion in the structure-to-behavior direction, formally 
represents the process by which the behavior of a model is generated. This is relevant in 
simulation and testing when the model generates the behavior which then can be 
compared with the desired behavior.   
 
The opposite upward mapping relates a system description at a lower level with one at a 
higher level of specification. While the downward association of specifications is 
straightforward, the upward association is much less so. This is because in the upward 
direction information is introduced while in the downward direction information is 
reduced. Many structures exhibit the same behavior and recovering a unique structure 
from a given behavior is not possible. The upward direction, however, is fundamental in 
the design process where a structure (system at level 3) has to be found which is capable 
to generate the desired behavior (system at Level 1).  

3.1 Framework for Modeling and Simulation 
 
The Framework for M&S as described in [Zeigler] establishes entities and their 
relationships that are central to the M&S enterprise (see Figure 1).   The entities of the 



Framework are: source system, model, simulator, and experimental frame; they are related 
by the modeling and the simulation relationships.  Each entity is formally characterized as 
a system at an appropriate level of specification of a generic dynamic system.   

Source 
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

 
Figure 1.  Framework Entities and Relationships 
 
Source System 
 
The source system is the real or virtual environment that we are interested in modeling. It 
is viewed as a source of observable data, in the form of time-indexed trajectories of 
variables. The data that has been gathered from observing or otherwise experimenting 
with a system is called the system behavior database.  This data is viewed or acquired 
through experimental frames of interest to the model development and user. As we shall 
see, in the case of model validation, these data is the basis for comparison with data 
generated by a model. Thus these data must be sufficient in scope to enable reliable 
comparison as well accepted by both the model developer and the test agency as the basis 
for comparison. Data sources for this purpose might be measurement taken in prior 
experiments, mathematical representation of the measured data, or expert knowledge of 
the system behavior by accepted subject matter experts. 
 
Experimental Frame 
 
An experimental frame is a specification of the conditions under which the system is 
observed or experimented with [3]. An experimental frame is the operational formulation 
of the objectives that motivate a M&S project. A frame is realized as a system that 
interacts with the system of interest to obtain the data of interest under specified 
conditions.    
 
An experimental frame specification consists of 4 major subsections: 



 
• input stimuli: specification of the class of admissible input time-dependent stimuli.  

This is the class from which individual samples will be drawn and injected into the 
model or system under test for particular experiments.  

• control: specification of the conditions under which an the model or system will be 
initialized, continued under examination, and terminated.  

• metrics: specification of the data summarization functions and the measures to be 
employed to provide quantitative or qualitative measures of the input/output 
behavior of the model. Examples of such metrics are performance indices, 
goodness of fit criteria, and error accuracy bound. 

• analysis: specification of means by which the results of data collection in the frame 
will be analyzed to arrived at final conclusions. The data collected in a frame 
consists of pairs of input/output time functions.  

 
When an experimental frame is realized as a system to interact with the model or system 
under test the specifications become components of the driving system. For example, a 
generator of output time functions implements the class of input stimuli.  
 
An experimental frame is the operational formulation of the objectives that motivate a 
modeling and simulation project. Many experimental frames can be formulated for the 
same system (both source system and model) and the same experimental frame may apply 
to many systems. Why would we want to define many frames for the same system? Or 
apply the same frame to many systems?  For the same reason that we might have different 
objectives in modeling the same system, or have the same objective in modeling different 
systems.  There are two equally valid views of an experimental frame. One, views a frame 
as a definition of  the type of data elements that will go into the database. The second 
views a frame as a system that interacts with the system of interest to obtain the data of 
interest under specified conditions. In this view, the frame is characterized by its 
implementation as a measurement system or observer.  In this implementation, a frame 
typically has three types of components (as shown in Figure 3): generator, that generates 
input segments to the system; acceptor that monitors an experiment to see the desired 
experimental conditions are met; and transducer that observes and analyzes  the system 
output segments.  
 
An experimental frame can be viewed as a system that interacts with the system under test 
(SUT) to obtain the data of interest under specified conditions. In this view, a frame 
typically has three types of components (as shown in Figure 2a): generator that generates 
input segments to the system; acceptor that monitors an experiment to see the desired 
experimental conditions are met; and transducer that observes and analyzes the system 
output segments.  
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Figure 2: Experimental Frame and Components 
 
 
Figure 2b) illustrates a simple, but ubiquitous, pattern for experimental frames that 
measure typical job processing performance metrics, such as relate to round trip time and 
throughput. Illustrated in the web context, a generator produces service request messages 
at a given rate. The time that has elapsed between sending of a request and its return from 
a server is the round trip time. A transducer notes the departures and arrivals of requests 
allowing it to compute the average round trip time and other related statistics, as well as 
the throughput and unsatisfied (or lost) requests. An acceptor notes whether performance 
achieves the developer’s objectives, for example, whether the throughput exceeds the 
desired level and/or whether say 99% of the round trip times are below a given threshold.  
 
Objectives for modeling relate to the role of the model in systems design, management or 
control. Experimental frames translate the objectives into more precise experimentation 
conditions for the source system or its models.  We can distinguish between objectives 
concerning those for verification and validation of  a) models and b) systems. In the case 
of models, experimental frames translate the objectives into more precise experimentation 
conditions for the source system and/or its models. A model under test is expected to be 
valid for the source system in each such frame.  Having stated the objectives, there is 
presumably a best level of resolution to answer these questions.  The more demanding the 
questions, the greater the resolution likely to be needed to answer them. Thus, the choice 
of appropriate levels of abstraction also hinges on the objectives and their experimental 
frame counterparts. 
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Figure 3   Experimental Frame and its Components. 
 
In the case of objectives for verification and validation of systems,  we need to be given, 
or be able to  formulate, the requirements for the behavior of the system at the IO behavior 
level. The experimental frame then is formulated to translate these requirements into a set 
of possible experiments to test whether the system actually performs its required behavior. 
In addition we can formulate measures of the effectiveness (MOE) of a system  in 
accomplishing its goals. We call such measures, outcome measures. In order to compute 
such measures, the system  must expose relevant variables, we’ll call output variables, 
whose values can be observed during execution runs of the system. 
 
Model  
 
A model is a system specification, such as a set of instructions, rules, equations, or 
constraints for generating input/output behavior. Models may be expressed in a variety of 
formalisms that may be understood as means for specifying subclasses of dynamic 
systems. The Discrete Event System Specification  (DEVS) formalism delineates the 
subclass of discrete event systems and it can also represent the systems specified within 
traditional formalisms such as differential (continuous) and difference (discrete time) 
equations [4 ]. In DEVS , as in systems theory, a model can be atomic, i.e., not further 
decomposed, or coupled, in which cases it consists of a components that are coupled or 
interconnected together.  
 
Simulator 
 



A simulator is any computation system (such as a single processor, or a processor network, 
or more abstractly an algorithm), capable of executing a model to generate its behavior.   
The more general purpose a simulator is the greater the extent to which it can be 
configured to execute a variety of model types.  In order of increasing capability, 
simulators can be: 

• Dedicated to a particular model or small class of similar models 
• Capable of accepting all (practical) models from a wide class, such as an 

application domain (e.g., communication systems) 
• Restricted to models expressed in a particular modeling formalism, such as 

continuous differential equation models 
• Capable of accepting multi-formalism models (having components from several 

formalism classes, such as continuous and discrete event). 
 
A simulator can take many forms such as on a single computer or multiple computers 
executing on a network.  
 
 

4. Fundamental Problems in M&S 
 
We have now reviewed a system-theory based framework for M&S that provides a 
language and concepts in which to formulate key problems in M&S . Next on our agenda 
is to discuss such problem areas: verification and validation,  reuse and composability, and 
distributed simulation and systems of systems interoperability. These are challenging, and 
heretofore, unsolved problems at the core of the M&S enterprise. 
 

Validation and Verification  
 
The basic concepts of verification and validation (V&V)  have been described in different 
settings, levels of details, and points of views and are still evolving. These concepts have 
been studied by a variety of scientific and engineering disciplines and various flavors of 
validation and verification concepts and techniques have emerged from a modeling and 
simulation perspective. Within the modeling and simulation community, a variety of 
methodologies for V&V have been suggested in the literature [5, 6, 7].  A categorization 
of 77 verification, validation and testing techniques along with 15 principles has been 
offered to guide the application of these techniques [8].  However, these methods vary 
extensively – e.g., alpha testing, induction, cause and effect graphing, inference, predicate 
calculus, proof of correctness, and user interface testing and are only loosely related to one 
another. Therefore such a categorization can only serve as an informal guideline for the 
development of a process for V&V of models and systems. 
Validation and verification concepts are themselves founded on more primitive concepts 
such as system specifications and homomorphism as discussed in the framework of M&S 
[2]. In this framework, the entities system, experimental frame, model, simulator take on 
real importance only when properly related to each other. For example, we build a model 
of a particular system for some objective only some models, and not others, are suitable. 



Thus, it is critical to the success of a simulation modeling effort that certain relationships 
hold. Two of the most important are validity and simulator correctness. 
 
The basic modeling relation, validity, refers to the relation between a model, a source 
system and an experimental frame. The most basic concept, replicative validity, is 
affirmed if, for all the experiments possible within the experimental frame, the behavior of 
the model and system agree within acceptable tolerance. The term accuracy is often used 
in place of validity. Another term, fidelity, is often used for a combination of both validity 
and detail. Thus, a high fidelity model may refer to a model that is both highly detailed 
and valid (in some understood experimental frame). However when used this way, the 
assumption seems to be that high detail alone is needed for high fidelity, as if validity is a 
necessary consequence of high detail. In fact, it is possible to have a very detailed model 
that is nevertheless very much in error, simply because some of the highly resolved 
components function in a different manner than their real system counterparts.  
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Figure 4.  Basic Approach to Model Validation 
 
 
The basic approach to model validation is comparison of the behavior generated by a 
model and the source system it represents within a given experimental frame.  The basis 
for comparison serves as the reference against which the accuracy of the model is 
measured.  
 
The basic simulation relation, simulator correctness, is a relation between a simulator and 
a model. A simulator correctly simulates a model if it is guaranteed to faithfully generate 
the model’s output behavior given its initial state and its input trajectory. In practice, as 



suggested above, simulators are constructed to execute not just one model but also a 
family of possible models. For example, a network simulator provides both a simulator 
and a class of network models it can simulate.  In such cases, we must establish that a 
simulator will correctly execute the particular class of models it claims to support.  
Conceptually, the approach to testing for such execution, illustrated in Figure 5, is to 
perform a number of test cases in which the same model is provided to the simulator under 
test and to a “gold standard simulator” which is  known to correctly simulate the model. 
Of course such test case models must lie within the class supported by the simulated under 
test as well as presented in the form that it expects to receive them. Comparison of the 
output behaviors in the same manner as with model validation is then employed to check 
the agreement between the two simulators.  
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Figure 5. Basic Approach to Simulator Verification 

 
If the specifications of both the simulator and the model are available in separated form 
where each can be accessed independently, it may be possible to prove correctness 
mathematically. 
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Figure 6  Basic Approach to System Validation 
 
The case of system validation is illustrated in Figure 6.  Here the system is considered as a 
hardware and/or software implementation to be validated against requirements for its 
input/output behavior. The goal is to develop test models that can stimulate the 
implemented system with inputs and can observe its outputs to compare them with those 
required by the behavior requirements. Also shown is a dotted path in which a reference 
model is constructed that is capable of simulation execution.  Construction of such a 
reference model is more difficult to develop than the test models since it requires not only 
knowing in advance what output to test for, but to actually to generate such an output. 
Although such a reference model is not required, it may be desirable in situations in which 
the extra cost of development is justified by the additional range of tests that might be 
possible and the consequential increased coverage this may provide.  
 

Model Reuse and Composability 
 
Model reuse and composability are two sides of the same coin – it is patently desirable to 
reuse models, the fruits of earlier or others work. However, typically such models will 
become components in a larger composite model and must be able to interact 
meaningfully with them. While software development disciplines are successfully 
applying component-based approach to build software systems, the additional systems 
dynamics involved in simulation models has resisted straight forward reuse and 
composition approaches. A model is only reusable to the extent that its original dynamic 
systems assumptions are consistent with the constraints of the new simulation application. 
Consequently, without contextual information to guide selection and refactoring, a model 



may not be reused to advantage within a new experimental frame. Davis and Anderson [9] 
argue that to foster such reuse, model representation methods should distinguish, and 
separately specify, the model, simulator, and the experimental frame. However, Yilmaz 
and Oren [10] pointed out that more contextual information is needed beyond the 
information provided by the set of experimental frames to which a model  is applicable 
[11], namely, the characterization of the context in which the model was constructed. 
These authors extended the basic model-simulator-experimental frame perspective to 
emphasize the role of context in reuse They make a sharp distinction between the 
objective context within which a simulation model is originally defined and the intentional 
context in which the model is being qualified for reuse. They extend the system theoretic 
levels of specification discussed earlier to define certain behavioral model dependency 
relations needed to formalize conceptual, realization, and experimental aspects of context. 
 
As the scope of simulation applications grows, it is increasingly the case that more than 
one modeling paradigm is needed to adequately express the dynamics of the different 
components. For systems  composed of models with dynamics that are intrinsically 
heterogeneous, it is crucial to use multiple modeling formalisms to describe them. 
However, combining different model types poses a variety of challenges  [12, 9, 13]. 
Sarjoughian [14], introduced an approach to multi-formalism modeling that employs an 
interfacing mechanism called a Knowledge Interchange Broker  to  compose model 
components expressed in diverse formalisms. The KIB supports translation from the 
semantics of one formalism into that of a second to ensure coordinated and correct 
execution simulation algorithms of distinct modeling formalisms.  
 

Distributed Simulation  and System of Systems interoperability 
 

The problems of model reuse and composability manifest themselves strongly in the 
context of distributed simulation where the objective is to enable existing geographically 
dispersed simulators to meaningfully interact, or federate, together. We briefly review 
experience with interoperability in the distributed simulation context and a linguistically 
based approach to the System of Systems (SoS) interoperability problem [15].  Sage and 
Cuppan [16] drew the parallel between viewing the construction of SoS as federation of 
systems and the federation that is supported by the High Level Architecture (HLA), an 
IEEE standard fostered by the DoD to enable composition of simulations [17,18].  
HLA is a network middleware layer that supports message exchanges among simulations, 
called federates, in a neutral format. However, experience with HLA has been 
disappointing and forced acknowledging the difference between technical interoperability 
and  substantive interoperability [19]. The first only enables heterogeneous simulations to 
exchange data but does not guarantee the second, which is the desired outcome of 
exchanging meaningful data, namely, that coherent interaction among federates takes 
place. Tolk and Muguirra [20] introduced the Levels of Conceptual Interoperability Model 
(LCIM) which identified seven levels of interoperability among participating systems. 
These levels can be viewed as a refinement of the operational interoperability type which 
is one of three defined by [15]. The operational type concerns linkages between systems in 
their interactions with one another, the environment, and with users. The other types apply 
to the context in which systems are constructed and acquired. They are constructive – 



relating to linkages between organizations responsible for system construction and 
programmatic – linkages between program offices to manage system acquisition. 

5. AI-Related Software Background 
 
To proceed to the discussion of the role of AI in address key problems in M&S, we need 
to provide some further software and AI-related background. We offer a brief historical 
account of object-orientation and agent-based systems as a springboard to discuss the 
upcoming concepts of object frameworks, ontologies and endomorphic agents. 
 

Object-Orientation and Agent-Based Systems 
 
Many of the software technology advances of the last 30 years have been initiated from 
the field of M&S. Objects, as code modules with both structure and behavior, were first 
introduced in the SIMULA simulation language [21]. Objects blossomed in various 
directions and became institutionalized in the widely adopted programming language C++ 
and later in the infrastructure for the web in the form of Java [22 ] and its variants. The 
freedom from straight-line procedural programming that object-orientation championed 
was taken up in AI in two directions: various forms of knowledge  representation and of 
autonomy. Rule-based systems aggregate modular if-then logic elements – the rules – that 
can be activated in some form of causal sequence (inference chains) by an execution 
engine [23].  In their passive state, rules represent static discrete pieces of inferential logic, 
called declarative knowledge. However, when activated, a rule influences the state of the 
computation and the activation of subsequent rules, providing the system a dynamic or 
procedural, knowledge characteristic as well. Frame-based systems further expanded 
knowledge representation flexibility and inferencing capability by supporting slots and 
constraints on their values – the frames – as well as their taxonomies based on 
generalization/specialization relationships [24].  Convergence with object-orientation 
became apparent in that frames could be identified as objects and their taxonomic 
organization could be identified with classes within object-style organizations that are 
based on sub-class hierarchies.   
 
On the other hand, the modular nature of objects together with their behavior and 
interaction with other objects, led to the concept of agents which embodied increased 
autonomy and self-determination [25]. Agents represent individual threads of computation 
and are typically deployable in distributed form over computer networks where they 
interact with local environments and communicate/coordinate with each other.  A wide 
variety of agent types exists in large part determined by the variety and sophistication of 
their processing capacities – ranging from agents that simply gather information on packet 
traffic in a network to logic-based entities with elaborate reasoning capacity and authority 
to make decisions (employing knowledge representations just mentioned.)  The step from 
agents to their aggregates is natural, thus leading to the concept of multi-agent systems or 
societies of agents, especially in the realm of modeling and  simulation [26]. 
 



To explore the role of AI in M&S at the present, we project the just-given historical 
background to the concurrent concepts of object frameworks, ontologies and endomorphic 
agents. The Unified Modeling Language (UML) is gaining a strong foothold as the 
defacto standard for object-based software development. Starting as a diagrammatical 
means of software system representation, it has evolved to a formally specified language 
in which the fundamental properties of objects are abstracted and organized [27 , 28].  
Ontologies are models of the world relating to specific aspects or applications that are 
typically represented in frame-based languages and form the knowledge components for 
logical agents on the Semantic Web [29]. A convergence is underway that re-enforces the 
commonality of the object-based origins of AI and software engineering. UML is being 
extended to incorporate ontology representations so that software systems in general will 
have more explicit models of  their domains of operation. As we shall soon see, 
endomorphic agents refer to agents that include abstractions of their own structure and 
behavior within their ontologies of the world [30].  
 

The M&S Framework within Unified Modeling Language (UML) 
 
With object-orientation as unified by UML and some background in agent-based systems, 
we are in position to discuss the computational realization of the M&S framework 
discussed earlier. The computational framework is based on the Discrete Event System 
Specification (DEVS) formalism and implemented in various object oriented 
environments. Using UML we can represent the framework as a set of classes and 
relations as illustrated in Figures 8 and 9.  Various software implementations of DEVS 
support different subsets of the classes and relations In particular, we mention a recent 
implementation of DEVS within a Service Oriented Architecture (SOA) environment 
called DEVS/SOA [31,32]. This implementation exploits some of the benefits afforded by 
the web environment mentioned earlier and provides a context for consideration of the 
primary target of our discussion, comprehensive automation of the M&S enterprise. 
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Figure 7: M&S Framework formulated within UML 

 
We use one of the UML constructs, the use case diagram, to depict the various capabilities 
that would be involved in automating all or parts of the M&S enterprise. Use 
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Figure 8: M&S Framework Classes and Relations in a UML representation 

 
cases are represented by ovals that connect to at least one actor (stick figure) and to other 
use cases through “includes” relations, shown as dotted arrows.  For example, a sensor 
(actor) collects data (use case) which includes storage of data (use case). A memory actor 
stores and retrieves models which include storage and retrieval (respectively) of data. 
Constructing models includes retrieving stored data within an experimental frame. 
Validating models includes retrieving models from memory as components and simulating 
the composite model to generate data within an experimental frame. The emulator-
simulator actor does the simulating to execute the model so that its generated behavior can 
be matched against the stored data in the experimental frame. The objectives of the  
human modeler  drive the model evaluator and hence the choice of experimental frames to 
consider as well as models to validate. Models can be used in (at least) two time 
frames[33]. In the long term, they support planning of actions to be taken in the future In 
the short term, models support execution and control in real-time of previously planned 
actions .  
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Figure 9: UML Use Case Formulation of the Overall M&S Enterprise  

 
 

6. AI Methods in Fundamental Problems of M&S 
 
The enterprise of modeling and simulation is characterized by activities such as model, 
simulator and experimental frame creation, construction, reuse, composition, verification 



and validation. We have seen that valid model construction requires significant expertise 
in all the components of the M&S enterprise, e.g., modeling formalisms, simulation 
methods, and domain understanding and knowledge.  Needless to say, few people can 
bring all such elements to the table, and this situation creates a significant bottleneck to 
progress in such projects. Among the contributing factors are lack of trained personnel 
that must be brought in, expense of such high capability experts, and the time needed to 
construct models to the resolution required for most objectives.  This section introduces 
some AI-related technologies that can ameliorate this situation: Service Oriented 
Architecture (SOA) and Semantic Web, ontologies, constrained natural language 
capabilities, and genetic algorithms. Subsequently we will consider these as components 
in unified, comprehensive, and autonomous automation of M&S. 
 

Service Oriented Architecture (SOA) and Semantic Web 
 

On the World Wide Web, a Service Oriented Architecture (SOA) is a market place of 
open and discoverable web-services incorporating, as they mature, Semantic Web 
technologies [34]. The eXtensible Markup Language (XML) is the standard format for 
encoding data sets  and there are standards for sending and receiving XML [35]. 
Unfortunately, the problem just starts at this level. There are myriad ways, or Schemata, to 
encode data into XML and a good number of such Schemata have already been developed. 
More often than not, they are different in detail when applied to the same domains. What 
explains this incompatibility?  

 
In a Service Oriented Architecture, the producer sends messages containing XML 
documents generated in accordance with a schema. The consumer receives and interprets 
these messages using the same schema in which they were sent.  Such a message encodes 
a world state description (or changes in it) that is a member of a set delineated by an 
ontology. The ontology takes into account the pragmatic frame, i.e., a description of how 
the information will be used in downstream processing. In a SOA environment, data 
dissemination may be dominated by “user pull of data”, incremental transmission, 
discovery using metadata, and automated retrieval of data to meet user pragmatic frame 
specifications. This is the SOA concept of data-centered, interface-driven, loose coupling 
between producers and consumers. The SOA concept requires the development of 
platform-independent, community-accepted, standards that allow raw data to be 
syntactically packaged into XML and  accompanied by metadata that describes the 
semantic and pragmatic information needed to effectively process the data into 
increasingly higher-value products downstream.  

 
Ontologies 

 
Semantic Web researchers typically seek to develop intelligent agents that can draw 
logical inferences from diverse, possibly contradictory, ontologies such as a web search 
might discover. Semantic Web research has lead to a focus on ontologies [34]. These are 
logical languages that provide a common vocabulary of terms and axiomatic relations 
among them for a subject area.  In contrast, the newly emerging area of ontology 
integration assumes that human understanding and collaboration will not be replaced by 
intelligent agents. Therefore the goal is to create concepts and tools to help people develop 



practical solutions to incompatibility problems that impede “effective” exchange of data 
and ways of testing that such solutions have been correctly implemented.  
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Figure 10: Interoperability levels in distributed simulation 
 
As illustrated in Figure 10, interoperability of systems can be considered at three 
linguistically-inspired levels: syntactic, semantic, and pragmatic. The levels are 
summarized in Table 2. More detail is provided in [36]. 

Linguistic 
Level 

A collaboration of systems or services 
interoperates at this level if: 

Examples 

Pragmatic – how 
information in 
messages is used 

The receiver reacts to the message in a 
manner that the sender intends 

An order from a commander is obeyed 
by the troops in the field as the 
commander intended.  A necessary 
condition is that the information arrives 
in a timely manner and that its  
meaning has been preserved  (semantic  
interoperability)  

Semantic – shared  
understanding of 
meaning of messages  

The receiver assigns the same meaning as 
the sender did to the message.  

An order from a commander to multi-
national participants in a coalition 
operation is understood in a common 
manner despite translation into 
different languages. A necessary 
condition is that the information  can 
be unequivocally extracted from the 
data (syntactic  interoperability) 



Syntactic – common 
rules governing 
composition and 
transmitting of 
messages 

The consumer is able to receive and parse 
the sender’s message  

A common network protocol (e.g. 
IPv4)  is employed ensuring that all 
nodes on the network can send and 
receive data bit arrays adhering to a 
prescribed format. 

 
Table 2 Linguistic levels 

 
 
 

Constrained Natural Language 
 
Model development can be substantially aided by enabling users to specify modeling 
constructs using some form of  constrained natural language [37]. The goal is to overcome 
modeling complexity by letting users with limited or nonexistent formal modeling or 
programming background convey essential information using natural language, a form of 
expression that is natural and intuitive. Practicality demands constraining the actual 
expressions that can be used so that the linguistic processing is tractable and the input can 
be interpreted unambiguously. Some techniques allow the user to narrow down essential 
components for model construction. Their goal is to reduce ambiguity between the user's 
requirements and essential model construction components. A natural language interface 
allows model specification in terms of a verb phrase consisting  of a verb, noun, and 
modifier, for example "build car quickly."  Conceptual realization of a model from a verb 
phrase ties in closely with Checkland's [38] insight that an appropriate verb should be used 
to express the root definition, or core purpose, of a system. The main barrier between 
many people and existing modeling software is their lack of computer literacy and this 
provides a incentive to develop natural language interfaces as a means of bridging this 
gap. Natural language expression could create modelers out of people who think 
semantically, but do not have the requisite computer skills to express these ideas. A 
semantic representation frees the user to explore the system on the familiar grounds of 
natural language and opens the way for brain storming, innovation and testing of models 
before they leave the drawing board. 
 
 
Genetic Algorithms  
 
The	
  genetic	
  algorithm	
  is	
  a	
  subset	
  of	
  evolutionary	
  algorithms	
  that	
  model	
  biological	
  
processes	
   to	
   search	
   in	
   highly	
   complex	
   spaces.	
   A	
   genetic	
   algorithm	
   (GA)	
   allows	
   a	
  
population	
  composed	
  of	
  many	
  individuals	
  to	
  evolve	
  under	
  specified	
  selection	
  rules	
  to	
  a	
  
state	
   that	
  maximizes	
   the	
  “fitness”.	
  The	
   theory	
  was	
  developed	
  by	
   John	
  Holland	
  [39]	
  and	
  
popularized	
  by	
  Goldberg	
  who	
  was	
  able	
  to	
  solve	
  a	
  difficult	
  problem	
  involving	
  the	
  control	
  
of	
  gas	
  pipeline	
  transmission	
  for	
  his	
  dissertation	
  [40].	
  Numerous	
  applications	
  of	
  GAs	
  have	
  
since	
   been	
   chronicled	
   [41,	
   42].	
   	
   Recently,	
   GAs	
   have	
   been	
   applied	
   to	
   cutting	
   edge	
  
problems	
  in	
  automated	
  construction	
  of	
  simulation	
  models,	
  as	
  discussed	
  below	
  [43].	
  	
  
 



 

7. Automation of M&S 
 

We are now ready to suggest a unifying theme for the problems in M&S and possible AI-
based solutions, by raising the question of whether all of M&S can be automated into an  
integrated autonomous artificial modeler/simulationist.  First, we provide some 
background needed to explore an approach to developing such an intelligent agent based 
on the System Entity Structure/Model Base framework, a hybrid methodology that 
combines elements of AI and M&S.  

 

System Entity Structure 
 
The System Entity Structure (SES) concepts were first presented in [44]. They were 
subsequently extended and implemented  in a knowledge based design environment [45]. 
Application to model base management originated with [46]  Subsequent formalizations 
and implementations were developed in [47-51]. Applications to various domains are 
given in [52].  
 
A	
  System	
  Entity	
  Structure	
   is a knowledge representation formalism in which focuses on 
certain elements and relationships that relate to M&S.  Entities represent things that exist 
in the real world or sometimes in an imagined world. Aspects represent ways of 
decomposing things into more fine grained ones. Multi-aspects are aspects for which the 
components are all of one kind. Specializations represent categories or families of specific 
forms that a thing can assume.  provides	
  the	
  means	
  to	
  represent	
  a	
  family	
  of	
  models	
  as	
  a	
  
labeled	
   tree.	
   Two	
   of	
   its	
   key	
   features	
   are	
   support	
   for	
   decomposition	
   and	
  
specialization.	
  The	
  former	
  allows	
  decomposing	
  a	
  large	
  system	
  into	
  smaller	
  systems.	
  
The	
   latter	
   supports	
   representation	
   of	
   alternative	
   choices.	
   Specialization	
   enables	
  
representing	
   a	
   generic	
   model	
   (e.g.,	
   a	
   computer	
   display	
   model)	
   as	
   one	
   of	
   its	
  
specialized	
   variations	
   (e.g.,	
   a	
   flat	
   panel	
   display	
   or	
   a	
   CRT	
   display.)	
   Based	
   on	
   SES	
  
axiomatic	
   specifications,	
   a	
   family	
  of	
  models	
   (design-­‐space)	
   can	
  be	
   represented	
  and	
  
further	
   automatically	
   pruned	
   to	
   generate	
   a simulation	
  model.	
   Such	
  models	
   can	
   be	
  
systematically	
   studied	
   and	
   experimented	
   based	
   alternative	
   design	
   choices.	
   An	
  
important,	
  salient	
  feature	
  of	
  SES	
  is	
  its	
  ability	
  to	
  represent	
  models	
  not	
  only	
  in	
  terms	
  of	
  
their	
   decomposition	
   and	
   specialization,	
   but	
   also	
   their	
   aspects.	
   The	
   SES	
   represents	
  
alternative	
  decompositions	
  via	
  aspects.	
  The	
  system	
  entity	
  structure	
  (SES)	
  formalism	
  
provides	
  an	
  operational	
  language	
  for	
  specifying	
  such	
  hierarchical	
  structures.	
  An	
  SES	
  
is	
   a	
   structural	
   knowledge	
   representation	
   scheme	
   that	
   systematically	
   organizes	
   a	
  
family	
  of	
  possible	
  structures	
  of	
  a	
  system.	
  Such	
  a	
  family	
  characterizes	
  decomposition,	
  
coupling,	
   and	
   taxonomic	
   relationships	
   among	
   entities.	
   An	
   entity	
   represents	
   a	
   real	
  
world	
  object.	
  The	
  decomposition	
  of	
  an	
  entity	
  concerns	
  how	
  it	
  may	
  be	
  broken	
  down	
  
into	
   sub-­‐entities.	
   In	
   addition,	
   coupling	
   specifications	
   tell	
   how	
   sub-­‐entities	
   may	
   be	
  
coupled	
   together	
   to	
   reconstitute	
   the	
   entity	
   and	
   associated	
   with	
   an	
   aspect.	
   The	
  



taxonomic	
   relationship	
   concerns	
   admissible	
   variants	
   of	
   an	
   entity.	
   The	
   SES/Model-­‐
Base	
   framework	
   [52] is	
   a	
   powerful	
   means	
   to	
   support	
   the	
   plan-­‐generate-­‐evaluate	
  
paradigm	
   in	
   systems	
   design.	
   Within	
   the	
   framework,	
   entity	
   structures	
   organize	
  
models	
   in	
   model	
   base.	
   Thus,	
   modeling	
   activity	
   within	
   the	
   framework	
   consists	
   of	
  
three	
   sub-­‐activities:	
   specification	
   of	
   model	
   composition	
   structure,	
   specification	
   of	
  
model	
  behavior,	
  and	
  synthesis	
  of	
  a	
  simulation	
  model. 
 
The SES is governed by an axiomatic framework in which entities alternate with the other 
items. For example, a thing is made up of parts; therefore, its entity representation has a 
corresponding aspect which, in turn, has entities representing the parts. A System Entity 
Structure specifies a family of hierarchical, modular simulation models, each of which 
corresponds to a complete pruning of the SES. Thus, the SES formalism can be viewed as 
an ontology with the set of all simulation models as its domain of discourse. The mapping 
from SES to the Systems formalism, particularly to the DEVS formalism, is discussed in 
[36].  We note that simulation models include both static and dynamic elements in any 
application domain, hence represent an advanced form of ontology framework. 
 

8. SES/Model Base Architecture for an Automated 
Modeler/Simulationist 
 
In this section, we raise the challenge of creating a fully automated modeler/simulationist 
that can autonomously carry out all the separate functions identified in the M&S 
framework as well as the high level management of these functions that is currently under 
exclusively human control. Recall the use case diagrams in Figure 9 that depicts the 
various capabilities that would need to be involved in realizing a completely automated 
modeler/simulationist. To link up with the primary modules of mind, we assign model 
construction to the belief generator – interpreting beliefs as models [54]. Motivations 
outside the M&S component drive the belief evaluator and hence the choice of 
experimental frames to consider as well as models to validate. External desire generators 
stimulate the imaginer/envisioner to run models to make predictions within pragmatic 
frames and assist in action planning. 
 
The use case diagram of Figure 9, is itself a model of how modelling and simulation 
activities may be carried out within human minds.  We need not be committed to 
particular details at this early stage, but will assume that such a model can be refined to 
provide a useful representation of human mental activity from the perspective of M&S. 
This provides the basis for examining how such an artificially intelligent 
modeler/simulationist might work and considering the requirements for comprehensive 
automation of M&S. 
 
The SES/MB methodology, introduced earlier, provides a basis for formulating a 
conceptual architecture for automating all of the M&S activities depicted earlier in Figure 
9 into an  integrated system.  As illustrated in Figure 11, the dichotomy into real-time use 
of models for acting in the real world and the longer term development of models that can 
be employed in such real-time activities is manifested in the distinction between passive 



and active models. Passive models are stored in a repository that can be likened to long 
term memory. Such models under go the life-cycle mentioned  earlier in which they are 
validated and employed within experimental frames of interest for long term forecasting 
or decision-making.  However, in addition to this quite standard concept of operation,  
there is an input pathway from the short term, or working, memory in which models are 
executed in real-time. Such execution, in real-world environments, often results in 
deficiencies, which provide impetus and requirements  for instigating new model 
construction.  Whereas long term model development and application objectives are 
characterized by experimental frames, the short term execution objectives are 
characterized by pragmatic frames.  As  discussed in [36], a pragmatic frame provides a 
means of characterizing the use for which an executable model is being sought. Such 
models must be simple enough to execute within, usually, within stringent real-time 
deadlines. 
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Figure 11.  SES/Model Base Architecture for Automated M&S 

 
 

The M&S Framework within Mind Architecture 
 
An influential formulation of recent work relating to mind and brain [53]  views mind as 
the behavior of the brain, where mind is characterized by a massively modular architecture. 
This means that mind is, composed a large number of modules, each responsible for 
different functions, and each largely independent and sparsely connected with others. 
Evolution is assumed to favor such differentiation and specialization since under suitably 
weakly interactive environments they are less redundant and more efficient in consuming 
space and time resources.  Indeed, this formulation is reminiscent of the class of problems 
characterized by Systems of Systems  (SoS) in which the attempt is made to integrated 



existing systems, originally built to perform specific functions, in to a more 
comprehensive and multifunctional system. As discussed in [15 ], the components of each 
system can be viewed as communicating with each other within a common ontology, or 
model of the world that is tuned to the smooth functioning of the organization. However, 
such ontologies may well be mismatched to support integration at the systems level. 
Despite working on the results of a long history of pre-human evolution, the fact that 
consciousness seems to provide a unified and undifferentiated picture of mind, suggests 
that human evolution has to a large extent solved the SoS integration problem.  
 

The Activity Paradigm for Automated M&S 
 
At least for the initial part of its life, a modeling agent needs to work on a “first order” 
assumption about its environment, namely, that it can exploit only semantics-free 
properties [39]. Regularities, such as periodic behaviors, and stimulus-response 
associations, are one source of such semantics-free properties. In this section, we will 
focus on a fundamental property of systems, such as the brain’s neural network, that have 
a large number of components. This distribution of activity of such a system over space 
and time provides a rich and semantics-free substrate from which models can be generated.  
Proposing structures and algorithms to track  and replicate this activity should support 
automated modeling and simulation of patterns of reality. The goal of the activity 
paradigm is to extract mechanisms from natural phenomena and behaviors to automate 
and guide the M&S process.  
 
The brain offers a quintessential illustration of activity and its potential use to construct 
models. Figure 12 describes brain electrical activities [54]. Positron emission tomography 
(PET) is used to record electrical activity inside the brain. The PET method scans show 
what happens inside the brain when resting and when stimulated by words and music. The 
red areas indicate high brain activities. Language and music produce responses in opposite 
sides of the brain (showing the sub-system specializations). There are many levels of 
activity (ranging from low to high.)  
 
There is a strong link between modularity and the applicability of activity measurement as 
a useful concept. Indeed, modules represent loci for activity –  a distribution of activity 
would not be discernable over a network were there no modules that could be observed to 
be in different states of activity. As just illustrated, neuroscientists are exploiting this 
activity paradigm to associate brain areas with functions and to gain insight into areas that 
are active or inactive over different, but related, functions, such as language and music 
processing.  We can generalize this approach as a paradigm for an automated modeling 
agent.  
 
 



 
Figure 12. Brain module activities 

 
Component, activity and discrete-event abstractions 
 
Figure 13 depicts a brain description through components and activities. First, the modeler 
considers one brain activity (e.g., listening music.) This first level activity corresponds to 
simulation components at a lower level. At this level, activity of the components can be 
considered to be only on (grey boxes) or off (white boxes.) At lower levels, structure and 
behaviors can be decomposed. The structure of the higher component level is detailed at 
lower levels (e.g., to the neuronal network.) The behavior is also detailed through activity 
and discrete-event abstraction [55]. At the finest levels, activity of components can be 
detailed. 

 



 
Figure 13. Hierarchy of components, activity and discrete-event abstractions 

 
 
Using the pattern detection and quantization methods continuously changing variables can 
also be treated within the activity paradigm. As illustrated in Figure 14, small slopes and 
small peaks can signal low activity whereas high slopes and peaks can signal high activity 
levels. To provide for scale, discrete event abstraction can be achieved using quantization 
[56]. To determine the activity level, a quantum or measure of significant change has to be 
chosen. The quantum size acts as a filter on the continuous flow. For example, one can 
notice that in the figure, using the displayed quantum, smallest peaks will not be 
significant. Thus, different levels of resolution can be achieved by employing different 
quantum sizes. A genetic algorithm can be used find the optimum such level of resolution 
given for a given modeling objective [43]. 
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Figure 14. Activity sensitivity and discrete-events 

 
Activity tracking 
 
Within the activity paradigm, M&S consists of capturing activity paths through 
component processing and transformations. To determine the basic structure of the whole 
system, an automated modeler has to answer questions of the form:  where and how is 
activity produced, received, and transmitted? Figure 15 represents a component-based 
view of activity flow in a neuronal network. Activity paths through components are 
represented by full arrows. Activity is represented by full circles. Components are 
represented by squares. The modeler must generate such a graph based from observed data 
– but how does it obtain such data? One approach is characteristic of current use of PET 
scans by neuroscientists. This approach exploits a relationship between activity and 
energy – activity requires consumption of energy, therefore, observing areas of high 
energy consumption signals areas of high activity.  Notice that this correlation requires 
that energy consumption be localizable to modules in the same way that activity is so 
localized. So for example, current computer architectures that provide a single power 
source to all component do not lend themselves to such observation. How activity is 
passed on from component to component can be related to the modularity styles (none, 
weak, strong) of the components. Concepts relating such modularity styles to activity 
transfer need to be developed to support an activity tracking methodology that goes 
beyond reliance on energy correlation.  
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Figure 15. Activity paths in neurons 

 
 

 
Activity Model Validation 
 
Recall that having generated a model of an observed system (whether  through activity 
tracking or by other means), the next step is validation. In order to perform such 
validation, the modeler needs an approach to generating activity profiles from simulation 
experiments on the model and to comparing these profiles with those observed in the real 
system. Muzy and Nutaro [57] have developed algorithms that exploit activity tracking to 
achieve efficient simulation of DEVS models. These algorithms can be adopted to provide 
an activity tracking pattern applicable to a given simulation model to extract its activity 
profiles for comparison with those of the modeled system.   
 
A forthcoming monograph will develop the activity paradigm for M&S in greater detail 
[58]. 
 

9. Intelligent Agents in Simulation 
 
Recent trends in technology as well as the use of simulation in exploring complex 
artificial and natural information processes [62,63] have made it clear that simulation 
model fidelity and complexity will continue to increase dramatically in the coming 
decades. The dynamic and distributed nature of simulation applications, the significance 
of exploratory analysis of complex phenomena [64], and the need for modeling the micro-
level interactions, collaboration, and cooperation among real-world entities is bringing a 
shift in the way systems are being conceptualized. Using intelligent agents in simulation 
models is based on the idea that it is possible to represent the behavior of active entities in 
the world in terms of the interactions of an assembly of agents with their own operational 
autonomy. 
 
The early pervading view on the use of agents in simulation stems from the developments 
in Distributed Artificial Intelligence (DAI), as well as advances in agent architectures and 



agent-oriented programming.  The DAI perspective to modeling systems in terms of 
entities that  are capable of solving problems by means of reasoning through symbol 
manipulation resulted in various technologies that constitute the basic elements of agent 
systems. The early work on design of agent simulators within the DAI community focused 
on answering the question of how goals and intentions of agents emerge and how they 
lead to execution of actions that change the state of their environment. The agent-directed 
approach to simulating agent systems lies at the intersection of several disciplines: DAI, 
Control Theory, Complex Adaptive Systems (CAS), and Discrete-event 
Systems/Simulation. As shown in Figure 16, these core disciplines gave direction to 
technology, languages, and possible applications, which then influenced the evolution of 
the synergy between simulation and agent systems. 
 
Distributed Artificial Intelligence and Simulation 
	
  
While progress in agent simulators and interpreters resulted in various 
agent architectures and their computational engines, the ability to coordinate agent 
ensembles was recognized early as a key challenge [65]. The MACE system [66] is 
considered as one of the major milestones in DAI. Specifically, the proposed DAI system 
integrated concepts from concurrent programming (e.g., actor formalism [67]) and 
knowledge representation to symbolically reason about skills and beliefs pertaining to 
modeling the environment. Task allocation and coordination were considered as 
fundamental challenges in early DAI systems. The contract net protocol developed by [68] 
provided basis for modeling collaboration in simulation of distributed problem solving. 
	
  
Agent Simulation Architectures 
 
One of the first agent-oriented simulation languages, AGENT-0 [69], provided a 
framework that enabled the representation of beliefs and intentions of agents. Unlike 
object-oriented simulation languages such as SIMULA 67 [70], the first object-oriented 
language for specifying discrete-event systems, AGENT-O and McCarthy's Elephant2000 
language incorporated speech act theory to provide flexible communication mechanisms 
for agents. DAI and cognitive psychology influenced the development of cognitive agents 
such as those found in AGENT-0, e.g., the Belief- Desires-Intentions (BDI) framework 
[71].  However, procedural reasoning and control theory provided a basis for the design 
and implementation of reactive agents. Classical control theory enables the specification 
of a mathematical model that describes the interaction of a control system and its 
environment. The analogy between an agent and control system facilitated the 
formalization of agent interactions in terms of a formal specification of dynamic systems. 
The shortcomings of reactive agents (i.e., lack of mechanisms of goal-directed behavior) 
and cognitive agents (i.e., issues pertaining to computational tractability in deliberative 
reasoning) led to the development of hybrid architectures such as the RAP system [72].  



 
 

Figure 16. Evolution of the use of Intelligent Agents in Simulation 
 
 



Agents are often viewed as design metaphors in the development of models for simulation 
and gaming. Yet, this narrow view limits the potential of agents in improving various 
other dimensions of simulation. To this end, Figure 17 presents a unified paradigm of 
Agent- Directed Simulation that consists of two categories as follows: (1) Simulation for 
Agents (agent simulation), i.e., simulation of systems that can be modeled by agents (in 
engineering, human and social dynamics, military applications etc.) and (2) Agents for 
Simulation that can be grouped under two groups: agent-supported simulation and agent-
based simulation. 
	
  

 

Figure 17. Agent-directed Simulation Framework 
 
Agent Simulation 
 
Agent simulation involves the use of agents as design metaphors in developing simulation 
models. Agent simulation involves the use of simulation conceptual frameworks (e.g., 
discrete-event, activity scanning) to simulate the behavioral dynamics of agent systems 
and incorporate autonomous agents that function in parallel to achieve their goals and 
objectives. Agents possess high-level interaction mechanisms independent of the problem 
being solved. Communication protocols and mechanisms for interaction via task 
allocation, coordination of actions, and conflict resolution at varying levels of 
sophistication are primary elements of agent simulations. Simulating agent systems 
requires understanding the basic principles, organizational mechanisms, and technologies 
underlying such systems.  
 
Agent-based Simulation 
 
Agent-based simulation is the use of agent technology to monitor and generate model 
behavior. This is similar to the use of AI techniques for the generation of model behavior 
(e.g., qualitative simulation and knowledge-based simulation). Development of novel and 
advanced simulation methodologies such as multisimulation suggests the use of intelligent 
agents as simulator coordinators, where run-time decisions for model staging and updating 
takes place to facilitate dynamic composability. The perception feature of agents makes 
them pertinent for monitoring tasks. Also, agent-based simulation is useful for having 



complex experiments and deliberative knowledge processing such as planning, deciding, 
and reasoning. Agents are also critical enablers to improve composability and 
interoperability of simulation models [73]. 
 
Agent-supported Simulation 
 
Agent-supported simulation deals with the use of agents as a support facility to enable 
computer assistance by enhancing cognitive capabilities in problem specification and 
solving. Hence, agent-supported simulation involves the use of intelligent agents to 
improve simulation and gaming infrastructures or environments. Agent-supported 
simulation is used for the following purposes: 
 

• to provide computer assistance for front-end and/or back-end interface 
functions; 

• to process elements of a simulation study symbolically (for example, for 
consistency checks and built-in reliability); and 

• to provide cognitive abilities to the elements of a simulation study, such as 
learning or understanding abilities. 

 
For instance, in simulations with defense applications, agents are often used as support 
facilities to 

• see the battlefield, 
• fuse, integrate and de-conflict the information presented by the decision-maker, 
• generate alarms based on the recognition of specific patterns, 
• Filter, sort, track, and prioritize the disseminated information, and 
• generate contingency plans and courses of actions. 

	
  
A significant requirement for the design and simulation of agent systems is the distributed 
knowledge that represents the mental model that characterizes each agent’s beliefs about 
the environment, itself, and other agents. Endomorphic agent concepts provide a 
framework for addressing the difficult conceptual issues that arise in this domain.  

Endomorphic Agents 
 
We now consider an advanced feature that an autonomous, integrated and comprehensive 
modeler/simulationist agent must have if it is fully emulate human capability. – This is the 
ability, to a limited, but significant extent, to construct and employ models of its own 
mind as well of the minds of other agents. We use the term “mind” in the sense just 
discussed.  
 
The concept of endomorphic agent is illustrated in Figure 18 in a sequence of related 
diagrams.  The diagram labelled with an oval with embedded number 1 is that of Figure 9 
with the modifications mentioned earlier to match up with human motivation and 
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Figure 18 . M&S within Mind 

 
desire generation modules.  In diagram 2, the  label “mind”  refers to the set of M&S 
capabilities depicted in Figure 9.  As in [30], an agent, human or technological, is 
considered to be composed of a mind and a body. Here,” body” represents the external 
manifestation of the agent, which is observable by other agents. Whereas, in contrast, 
mind is hidden from view and must  be a construct, or model,  of other agents.  In other 
words, to use the term of evolutionary psychology, agents must develop a “theory of 
mind” about other agents from observation of their external behavior.  An endomorphic 
agent is represented in diagram 3 with a mental  model of the body and mind of  the agent 
in diagram 2. This second agent is shown more explicitly in diagram 4, with a mental 
representation of the first agent’s body and mind.  Diagram 5 depicts the recursive aspect 
of endomorphism, where the  (original) agent of diagram  2 has developed a model of the 
second agent’s body and mind. But the latter  model contains the  just-mentioned model of 
the first agent‘s body and mind.  This leads to a potentially infinite regress in which  – 
apparently –each agent can have a  representation of the other agent, and by reflection, of 
himself,  that increases in depth of nesting without end. Hofstadter [59 ] represents a 
similar concept in the diagram on page 144, in which the comic character Sluggo is 
“dreaming of himself dreaming of himself dreaming of himself, without end.”  He then 
uses the label on the Morton Salt box on page 145 to show how that not all self reference 
involves infinite recursion. On the label, the girl carrying the salt box obscures its label 
with her arm, thereby shutting down the regress. Thus the salt box has  a representation of 
itself  on its label but this representation is only partial. 
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Figure  19. Emergence of endomorphic agents 
 

[30] related the termination in self-reference to the agent’s objectives and requirements in 
constructing models of himself, other agents, and the environment. Briefly, the agent need 
only to go as deep as needed to get a reliable model of the other agents. The agent can stop at 
level 1 with a representation of the other’s bodies. However, this might not allow predicting 
another’s movements, particularly if the latter has a mind in control of these movements.  
This would force the first agent to include at least a crude model of the other agent’s mind. In 
a competitive situation, having such a model might give the first agent an advantage and this 
might lead the second agent to likewise develop a predictive model of the first agent. With 
the second agent now seeming to become less predictable, the first agent might develop a 
model of the second agent’s mind that restores lost predictive power. This would likely have 
to include a reflected representation of himself, although the impending regression could be 
halted if this representation did not, itself, contain a model of the other agent. Thus, the depth 
to which competitive endomorphic agents have models of themselves and others might be the 
product of a co-evolutionary  “mental arms race” in which an improvement in one side 
triggers a contingent improvement in the other – the improvement being an incremental 
refinement of the internal models by successively adding more levels of nesting.  
 
Minsky [60 ] conjectured that termination of the potentially infinite regress in agent’s models 
of each other within a society of mind might be constrained by shear limitations on the ability 
to martial the resources required to support the necessary computation.  We can go further by 
assuming that agents have differing mental capacities to support such computational nesting. 
Therefore an agent with greater capacity might be able to “out think” one of lesser capability. 
This is illustrated by the following real-life story drawn from a recent newspaper account a 
critical play in a baseball game.  



 
Interacting Models of Others in Competitive Sport 
 
The following account is illustrated in Figure xx.  
 

A Ninth Inning to Forget 
Cordero Can't Close, Then Base-Running Gaffe Ends Nats' Rally 
Steve Yanda - Washington Post Staff Writer 
Jun 24, 2007 
 
Copyright The Washington Post Company Jun 24, 2007Indians 4, Nationals 3 
 
Nook Logan played out the ending of last night's game in his head as he stood on 
second base in the bottom of the ninth inning. The bases were loaded with one out 
and the Washington Nationals trailed by one run. Even if Felipe Lopez, the batter 
at the plate, grounded the ball, say, right back to Cleveland Indians closer Joe 
Borowski, the pitcher merely would throw home. Awaiting the toss would be 
catcher Kelly Shoppach, who would tag the plate and attempt to nail Lopez at first. 
By the time Shoppach's throw reached first baseman Victor Martinez, Logan 
figured he would be gliding across the plate with the tying run. Lopez did ground 
to Borowski, and the closer did fire the ball home. However, Shoppach elected to 
throw to third instead of first, catching Logan drifting too far off the bag for the 
final out in the Nationals' 4-3 loss at RFK Stadium. "I thought [Shoppach] was 
going to throw to first," Logan said. And if the catcher had, would Logan have 
scored all the way from second? "Easy." 

 
We’ll analyze this account to show how it throws light on the advantage rendered by 
having an endomorphic capability to process to a nesting depth exceeding that of an 
opponent.  
 
The  situation starts the bottom of the ninth inning with the Washington Nationals at bats 
having the bases loaded with one out and the trailing by one run. The runner on second 
base, Nook Logan plays out the ending of the game in his head. This can be interpreted in 
terms of endomorphic models as follows. Logan makes a  prediction using  his models of 
the opposing pitcher and catcher, namely that the pitcher would throw home and the 
catcher would  tag the plate and attempt to nail the batter at first. Logan then makes a 
prediction using a model of himself, namely, that he would be able to reach home plate 
while the pitcher’s thrown ball was travelling to first base.  
 
In actual play, the catcher threw the ball to third and caught Logan out. This is evidence 
that the catcher was able to play out the simulation to a greater depth then was Logan. The 
catcher’s model of the situation agreed with that of Logan as it related to the other actors. 
The difference was that the catcher used a model of Logan that predicted that the latter 
(Logan) would predict the he (the catcher) would throw to first. Having this prediction, the 
catcher decided instead to throw the ball to the second baseman which resulted in putting 
Logan out. We note that  the catcher’s model was based on his model of Logan’s model so 



it was at one level greater in depth of nesting than the latter. To have succeeded, Logan 
would have had to be able to support one more level, namely, to have a model of the 
catcher that would predict that the catcher would use the model of himself (Logan) to out-
think him and then make the counter move, not to start towards third base.   
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Figure 20. Interacting Models of Others in Baseball 
 
 
The enigma of such endomorphic agents provides extreme challenges to further research 
in AI and M&S. The formal and computational framework that  the M&S framework 
discussed here provides may be of particular advantage to cognitive psychologists and 
philosophers interested an active area of investigation in which the terms “theory of mind”,  
“simulation”, and “mind reading” are employed without much in the way of definition 
[61].  
 
 
10. Future Directions 
 
M&S presents some fundamental and very difficult problems whose solution may benefit 
from the concepts and techniques of AI. We have discussed some key problem areas 
including verification and validation,  reuse and composability, and distributed simulation 
and systems of systems interoperability. We have also considered some  areas of AI that 
have direct applicability to problems in M&S, such as Service Oriented Architecture and 
Semantic Web, ontologies, constrained natural language, and genetic algorithms.  In order 



to provide a unifying theme for the problem and solutions, raised the question of whether 
all of M&S can be automated into an integrated autonomous artificial 
modeler/simulationist.  We explored an approach to developing such an intelligent agent 
based on the System Entity Structure/Model Base framework, a hybrid methodology that 
combines elements of AI and M&S. We proposed a concrete methodology by which such 
an agent could engage in M&S based on activity tracking. There are numerous challenges 
to AI that implementing such a methodology in automated form presents. We closed with 
consideration of endomorphic modeling capability, an advanced feature that such an agent 
must have if it is fully emulate human M&S capability. Since this capacity implies an 
infinite regress in which models contain models of themselves without end, it can only be 
had to a limited degree. However, it may offer critical insights into competitive co-
evolutionary human or higher order primate behavior to launch more intensive research 
into model nesting depth. This is the degree to which an endomorphic agent can marshal 
mental resources needed to construct and employ models of its own “mind” as well of the 
‘minds” of other agents. The enigma of such endomorphic agents provides extreme 
challenges to further research in AI and M&S, as well as related disciplines such as 
cognitive science and philosophy.  
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