
Artificial Intelligence in Modeling and Simulation a,b,c

aBernard Zeigler, Arizona Center for Integrative Modeling and Simulation, University
of Arizona,Tucson, Arizona, USA

b Alexander Muzy, CNRS, Università di Corsica, France
c Levent Yilmaz, Aurburn University, Alabama

 Glossary

1. Definition and the Subject and its Importance
2. Introduction
3. Review of System Theory and Framework for Modeling and Simulation
4. Fundamental Problems in M&S
5. AI-Related Software Background
6. AI Methods in Fundamental Problems of M&S
7. Automation of M&S
8. SES/Model Base Architecture for an Automated Modeler/Simulationist
9. Intelligent Agents in Simulation
10. Future Directions
11. Bibliography

Glossary

Behavior
The observable manifestation of an interaction with a system

DEVS
Discrete Event System Specification formalism describes models developed for
simulation; applications include simulation based testing of collaborative services

Endomorphic Agents
Agents that contain models of themselves and/or of other endomorphic Agents.

Levels of Interoperability
Levels at which systems can interoperate such as syntactic, semantic and pragmatic. The
higher the level, the more effective is information exchange among participants.

Levels of System Specification
Levels at which dynamic input/output systems can be described, known, or specified
ranging from behavioral to structural

Metadata

Data that describes other data; a hierarchical concept in which metadata are a descriptive
abstraction above the data it describes.

Model-based automation
Automation of system development and deployment that employs models or system
specifications, such as DEVS, to derive artifacts.

Modeling and Simulation Ontology
The SES is interpreted as an ontology for the domain of hierarchical, modular simulation
models specified with the DEVS formalism.

Net-Centric Environment
Network Centered, typically Internet-centered or web-centered information exchange
medium

Ontology
Language that describes a state of the world from a particular conceptual view and usually
pertains to a particular application domain

Pragmatic Frame
A means of characterizing the consumer’s use of the information sent by a producer;
formalized using the concept of processing network model

Pragmatics
Pragmatics is based on Speech Act Theory and focuses on elucidating the intent of the
semantics constrained by a given context. Metadata tags to support pragmatics include
Authority, Urgency/Consequences, Relationship, Tense and Completeness

Predicate logic
An expressive form of declarative language that can describe ontologies using symbols for
individuals, operations, variables, functions with governing axioms and constraints

Schema
An advanced form of XML document definition, extends the DTD concept

Semantics
Semantics determines the content of messages in which information is packaged. The
meaning of a message is the eventual outcome of the processing that it supports

Sensor
Device that can sense or detect some aspect of the world or some change in such an aspect

System Specification
Formalism for describing or specifying a system. There are levels of system specification
ranging from behavior to structure.

Service Oriented Architecture
Web service architecture in which services are designed to be 1) accessed without
knowledge of their internals through well-defined interfaces and 2) readily discoverable
and composable.

Structure
The internal mechanism that produces the behavior of a system.

System Entity Structure
Ontological basis for modeling and simulation. Its pruned entity structures can describe
both static data sets and dynamic simulation models.

Syntax
Prescribes the form of messages in which information is packaged.

UML
Unified Modeling Language is a software development language and environment that can
be used for ontology development and has tools that map UML specifications into
XML

XML
eXtensible Markup Language provides a syntax for document structures containing tagged
information where tag definitions set up the basis for semantic interpretation.

1.Definition and the Subject and its Importance

This article discusses the role of Artificial Intelligence (AI) in Modeling and Simulation
(M&S). AI is the field of computer science that attempts to construct computer systems
that emulate human problem solving behavior with the goal of understanding human
intelligence. M&S is a multidisciplinary field of systems engineering, software
engineering, and computer science that seeks to develop robust methodologies for
constructing computerized models with the goal of providing tools that can assist humans
in all activities of the M&S enterprise. Although each of these disciplines has its core
community there have been numerous intersections and cross-fertilizations between the
two fields. From the perspective of this article, we view M&S as presenting some
fundamental and very difficult problems whose solution may benefit from the concepts
and techniques of AI.

2. Introduction

To state the M&S problems that may benefit from AI we first briefly review a system-
theory based framework for M&S that provides a language and concepts to facilitate
definitive problem statement. We then introduce some key problem areas: verification and

validation, reuse and composability, and distributed simulation and systems of systems
interoperability. After some further review of software and AI-related background, we go
on to outline some areas of AI that have direct applicability to the just given problems in
M&S. In order to provide a unifying theme for the problem and solutions, we then raise
the question of whether all of M&S can be automated into an integrated autonomous
artificial modeler/simulationist. We then proceed to explore an approach to developing
such an intelligent agent and present a concrete means by which such an agent could
engage in M&S. We close with consideration of an advanced feature that such an agent
must have if it is fully emulate human capability – the ability, to a limited, but significant
extent, to construct and employ models of its own “mind” as well of the ‘minds” of other
agents.

3. Review of System Theory and Framework for Modeling and
Simulation

Hierarchy of System Specifications

Systems theory [1] deals with a hierarchy of system specifications which defines levels at
which a system may be known or specified. Table 1 shows this Hierarchy of System
Specifications (in simplified form, see [2] for full exposition).

Level Name What we specify at this level
4 Coupled

Systems
System built up by several component
systems which are coupled together

3 I/O System System with state and state transitions
to generate the behavior

2 I/O Function Collection of input/output pairs
constituting the allowed behavior
partitioned according to the initial state
the system is in when the input is
applied

1 I/O Behavior Collection of input/output pairs
constituting the allowed behavior of
the system from an external Black Box
view

0 I/O Frame Input and output variables and ports
together with allowed values

Table 1: Hierarchy of System Specifications

• At level 0 we deal with the input and output interface of a system.

• At level 1 we deal with purely observational recordings of the behavior of a system.
This is an I/O relation which consists of a set of pairs of input behaviors and
associated output behaviors.

• At level 2 we have knowledge of the initial state when the input is applied. This

allows partitioning the input/output pairs of level 1 into non-overlapping subsets,
each subset associated with a different starting state.

• At level 3 the system is described by state space and state transition functions. The

transition function describes the state-to-state transitions caused by the inputs and
the outputs generated thereupon.

• At level 4 a system is specified by a set of components and a coupling structure.

The components are systems on their own with their own state set and state
transition functions. A coupling structure defines how those interact. A property of
coupled system which is called “closure under coupling” guarantees that a coupled
system at level 3 itself specifies a system. This property allows hierarchical
construction of systems, i.e., that coupled systems can be used as components in
larger coupled systems.

As we shall see in a moment, the system specification hierarchy provides a mathematical
underpinning to define a framework for modeling and simulation. Each of the entities (e.g.,
real world, model, simulation, and experimental frame) will be described as a system
known or specified at some level of specification. The essence of modeling and simulation
lies in establishing relations between pairs of system descriptions. These relations pertain
to the the validity of a system description at one level of specification relative to another
system description at a different (higher, lower, or equal) level of specification.

Based on the arrangement of system levels as shown in Table 1, we distinguish between
vertical and horizontal relations. A vertical relation is called an association mapping and
takes a system at one level of specification and generates its counterpart at another level of
specification. The downward motion in the structure-to-behavior direction, formally
represents the process by which the behavior of a model is generated. This is relevant in
simulation and testing when the model generates the behavior which then can be
compared with the desired behavior.

The opposite upward mapping relates a system description at a lower level with one at a
higher level of specification. While the downward association of specifications is
straightforward, the upward association is much less so. This is because in the upward
direction information is introduced while in the downward direction information is
reduced. Many structures exhibit the same behavior and recovering a unique structure
from a given behavior is not possible. The upward direction, however, is fundamental in
the design process where a structure (system at level 3) has to be found which is capable
to generate the desired behavior (system at Level 1).

3.1 Framework for Modeling and Simulation

The Framework for M&S as described in [Zeigler] establishes entities and their
relationships that are central to the M&S enterprise (see Figure 1). The entities of the

Framework are: source system, model, simulator, and experimental frame; they are related
by the modeling and the simulation relationships. Each entity is formally characterized as
a system at an appropriate level of specification of a generic dynamic system.

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

Figure 1. Framework Entities and Relationships

Source System

The source system is the real or virtual environment that we are interested in modeling. It
is viewed as a source of observable data, in the form of time-indexed trajectories of
variables. The data that has been gathered from observing or otherwise experimenting
with a system is called the system behavior database. This data is viewed or acquired
through experimental frames of interest to the model development and user. As we shall
see, in the case of model validation, these data is the basis for comparison with data
generated by a model. Thus these data must be sufficient in scope to enable reliable
comparison as well accepted by both the model developer and the test agency as the basis
for comparison. Data sources for this purpose might be measurement taken in prior
experiments, mathematical representation of the measured data, or expert knowledge of
the system behavior by accepted subject matter experts.

Experimental Frame

An experimental frame is a specification of the conditions under which the system is
observed or experimented with [3]. An experimental frame is the operational formulation
of the objectives that motivate a M&S project. A frame is realized as a system that
interacts with the system of interest to obtain the data of interest under specified
conditions.

An experimental frame specification consists of 4 major subsections:

• input stimuli: specification of the class of admissible input time-dependent stimuli.

This is the class from which individual samples will be drawn and injected into the
model or system under test for particular experiments.

• control: specification of the conditions under which an the model or system will be
initialized, continued under examination, and terminated.

• metrics: specification of the data summarization functions and the measures to be
employed to provide quantitative or qualitative measures of the input/output
behavior of the model. Examples of such metrics are performance indices,
goodness of fit criteria, and error accuracy bound.

• analysis: specification of means by which the results of data collection in the frame
will be analyzed to arrived at final conclusions. The data collected in a frame
consists of pairs of input/output time functions.

When an experimental frame is realized as a system to interact with the model or system
under test the specifications become components of the driving system. For example, a
generator of output time functions implements the class of input stimuli.

An experimental frame is the operational formulation of the objectives that motivate a
modeling and simulation project. Many experimental frames can be formulated for the
same system (both source system and model) and the same experimental frame may apply
to many systems. Why would we want to define many frames for the same system? Or
apply the same frame to many systems? For the same reason that we might have different
objectives in modeling the same system, or have the same objective in modeling different
systems. There are two equally valid views of an experimental frame. One, views a frame
as a definition of the type of data elements that will go into the database. The second
views a frame as a system that interacts with the system of interest to obtain the data of
interest under specified conditions. In this view, the frame is characterized by its
implementation as a measurement system or observer. In this implementation, a frame
typically has three types of components (as shown in Figure 3): generator, that generates
input segments to the system; acceptor that monitors an experiment to see the desired
experimental conditions are met; and transducer that observes and analyzes the system
output segments.

An experimental frame can be viewed as a system that interacts with the system under test
(SUT) to obtain the data of interest under specified conditions. In this view, a frame
typically has three types of components (as shown in Figure 2a): generator that generates
input segments to the system; acceptor that monitors an experiment to see the desired
experimental conditions are met; and transducer that observes and analyzes the system
output segments.

agent
EF

portal
or server

service
request

round trip time =
time received - time sent

Generator

Transducer lost request =
number sent - number received

Is Service level agrement satisfied?
e.g., throughput > objective?

Acceptor

time

throughput =
number received/observation period

Gene
rator

Accep
tor

Trans
ducer

SYSTEM or
MODEL

EXPERIMENTAL FRAME

a)

b)

Figure 2: Experimental Frame and Components

Figure 2b) illustrates a simple, but ubiquitous, pattern for experimental frames that
measure typical job processing performance metrics, such as relate to round trip time and
throughput. Illustrated in the web context, a generator produces service request messages
at a given rate. The time that has elapsed between sending of a request and its return from
a server is the round trip time. A transducer notes the departures and arrivals of requests
allowing it to compute the average round trip time and other related statistics, as well as
the throughput and unsatisfied (or lost) requests. An acceptor notes whether performance
achieves the developer’s objectives, for example, whether the throughput exceeds the
desired level and/or whether say 99% of the round trip times are below a given threshold.

Objectives for modeling relate to the role of the model in systems design, management or
control. Experimental frames translate the objectives into more precise experimentation
conditions for the source system or its models. We can distinguish between objectives
concerning those for verification and validation of a) models and b) systems. In the case
of models, experimental frames translate the objectives into more precise experimentation
conditions for the source system and/or its models. A model under test is expected to be
valid for the source system in each such frame. Having stated the objectives, there is
presumably a best level of resolution to answer these questions. The more demanding the
questions, the greater the resolution likely to be needed to answer them. Thus, the choice
of appropriate levels of abstraction also hinges on the objectives and their experimental
frame counterparts.

SYSTEM or
MODEL

EXPERIMENTAL FRAME

Gene
rator

Accep
tor

Trans
ducer

Figure 3 Experimental Frame and its Components.

In the case of objectives for verification and validation of systems, we need to be given,
or be able to formulate, the requirements for the behavior of the system at the IO behavior
level. The experimental frame then is formulated to translate these requirements into a set
of possible experiments to test whether the system actually performs its required behavior.
In addition we can formulate measures of the effectiveness (MOE) of a system in
accomplishing its goals. We call such measures, outcome measures. In order to compute
such measures, the system must expose relevant variables, we’ll call output variables,
whose values can be observed during execution runs of the system.

Model

A model is a system specification, such as a set of instructions, rules, equations, or
constraints for generating input/output behavior. Models may be expressed in a variety of
formalisms that may be understood as means for specifying subclasses of dynamic
systems. The Discrete Event System Specification (DEVS) formalism delineates the
subclass of discrete event systems and it can also represent the systems specified within
traditional formalisms such as differential (continuous) and difference (discrete time)
equations [4]. In DEVS , as in systems theory, a model can be atomic, i.e., not further
decomposed, or coupled, in which cases it consists of a components that are coupled or
interconnected together.

Simulator

A simulator is any computation system (such as a single processor, or a processor network,
or more abstractly an algorithm), capable of executing a model to generate its behavior.
The more general purpose a simulator is the greater the extent to which it can be
configured to execute a variety of model types. In order of increasing capability,
simulators can be:

• Dedicated to a particular model or small class of similar models
• Capable of accepting all (practical) models from a wide class, such as an

application domain (e.g., communication systems)
• Restricted to models expressed in a particular modeling formalism, such as

continuous differential equation models
• Capable of accepting multi-formalism models (having components from several

formalism classes, such as continuous and discrete event).

A simulator can take many forms such as on a single computer or multiple computers
executing on a network.

4. Fundamental Problems in M&S

We have now reviewed a system-theory based framework for M&S that provides a
language and concepts in which to formulate key problems in M&S . Next on our agenda
is to discuss such problem areas: verification and validation, reuse and composability, and
distributed simulation and systems of systems interoperability. These are challenging, and
heretofore, unsolved problems at the core of the M&S enterprise.

Validation and Verification

The basic concepts of verification and validation (V&V) have been described in different
settings, levels of details, and points of views and are still evolving. These concepts have
been studied by a variety of scientific and engineering disciplines and various flavors of
validation and verification concepts and techniques have emerged from a modeling and
simulation perspective. Within the modeling and simulation community, a variety of
methodologies for V&V have been suggested in the literature [5, 6, 7]. A categorization
of 77 verification, validation and testing techniques along with 15 principles has been
offered to guide the application of these techniques [8]. However, these methods vary
extensively – e.g., alpha testing, induction, cause and effect graphing, inference, predicate
calculus, proof of correctness, and user interface testing and are only loosely related to one
another. Therefore such a categorization can only serve as an informal guideline for the
development of a process for V&V of models and systems.
Validation and verification concepts are themselves founded on more primitive concepts
such as system specifications and homomorphism as discussed in the framework of M&S
[2]. In this framework, the entities system, experimental frame, model, simulator take on
real importance only when properly related to each other. For example, we build a model
of a particular system for some objective only some models, and not others, are suitable.

Thus, it is critical to the success of a simulation modeling effort that certain relationships
hold. Two of the most important are validity and simulator correctness.

The basic modeling relation, validity, refers to the relation between a model, a source
system and an experimental frame. The most basic concept, replicative validity, is
affirmed if, for all the experiments possible within the experimental frame, the behavior of
the model and system agree within acceptable tolerance. The term accuracy is often used
in place of validity. Another term, fidelity, is often used for a combination of both validity
and detail. Thus, a high fidelity model may refer to a model that is both highly detailed
and valid (in some understood experimental frame). However when used this way, the
assumption seems to be that high detail alone is needed for high fidelity, as if validity is a
necessary consequence of high detail. In fact, it is possible to have a very detailed model
that is nevertheless very much in error, simply because some of the highly resolved
components function in a different manner than their real system counterparts.

SYSTEM

EXPERIMENTAL FRAME

MODEL

EXPERIMENTAL FRAME

compare
output
behaviors

Figure 4. Basic Approach to Model Validation

The basic approach to model validation is comparison of the behavior generated by a
model and the source system it represents within a given experimental frame. The basis
for comparison serves as the reference against which the accuracy of the model is
measured.

The basic simulation relation, simulator correctness, is a relation between a simulator and
a model. A simulator correctly simulates a model if it is guaranteed to faithfully generate
the model’s output behavior given its initial state and its input trajectory. In practice, as

suggested above, simulators are constructed to execute not just one model but also a
family of possible models. For example, a network simulator provides both a simulator
and a class of network models it can simulate. In such cases, we must establish that a
simulator will correctly execute the particular class of models it claims to support.
Conceptually, the approach to testing for such execution, illustrated in Figure 5, is to
perform a number of test cases in which the same model is provided to the simulator under
test and to a “gold standard simulator” which is known to correctly simulate the model.
Of course such test case models must lie within the class supported by the simulated under
test as well as presented in the form that it expects to receive them. Comparison of the
output behaviors in the same manner as with model validation is then employed to check
the agreement between the two simulators.

MODEL

GOLD STANDARD
SIMULATOR

MODEL

SIMULATOR UNDER
TEST

compare
output
behaviors

Figure 5. Basic Approach to Simulator Verification

If the specifications of both the simulator and the model are available in separated form
where each can be accessed independently, it may be possible to prove correctness
mathematically.

Tool Requirements
stated as System

Input/ Output
Behavior

Formalized Model
Supporting Test

Model
Development

Comparison
of Outputs

Reference
Model capable
of simulation
execution

Test Models/
Federations

Implemented
Tool

Figure 6 Basic Approach to System Validation

The case of system validation is illustrated in Figure 6. Here the system is considered as a
hardware and/or software implementation to be validated against requirements for its
input/output behavior. The goal is to develop test models that can stimulate the
implemented system with inputs and can observe its outputs to compare them with those
required by the behavior requirements. Also shown is a dotted path in which a reference
model is constructed that is capable of simulation execution. Construction of such a
reference model is more difficult to develop than the test models since it requires not only
knowing in advance what output to test for, but to actually to generate such an output.
Although such a reference model is not required, it may be desirable in situations in which
the extra cost of development is justified by the additional range of tests that might be
possible and the consequential increased coverage this may provide.

Model Reuse and Composability

Model reuse and composability are two sides of the same coin – it is patently desirable to
reuse models, the fruits of earlier or others work. However, typically such models will
become components in a larger composite model and must be able to interact
meaningfully with them. While software development disciplines are successfully
applying component-based approach to build software systems, the additional systems
dynamics involved in simulation models has resisted straight forward reuse and
composition approaches. A model is only reusable to the extent that its original dynamic
systems assumptions are consistent with the constraints of the new simulation application.
Consequently, without contextual information to guide selection and refactoring, a model

may not be reused to advantage within a new experimental frame. Davis and Anderson [9]
argue that to foster such reuse, model representation methods should distinguish, and
separately specify, the model, simulator, and the experimental frame. However, Yilmaz
and Oren [10] pointed out that more contextual information is needed beyond the
information provided by the set of experimental frames to which a model is applicable
[11], namely, the characterization of the context in which the model was constructed.
These authors extended the basic model-simulator-experimental frame perspective to
emphasize the role of context in reuse They make a sharp distinction between the
objective context within which a simulation model is originally defined and the intentional
context in which the model is being qualified for reuse. They extend the system theoretic
levels of specification discussed earlier to define certain behavioral model dependency
relations needed to formalize conceptual, realization, and experimental aspects of context.

As the scope of simulation applications grows, it is increasingly the case that more than
one modeling paradigm is needed to adequately express the dynamics of the different
components. For systems composed of models with dynamics that are intrinsically
heterogeneous, it is crucial to use multiple modeling formalisms to describe them.
However, combining different model types poses a variety of challenges [12, 9, 13].
Sarjoughian [14], introduced an approach to multi-formalism modeling that employs an
interfacing mechanism called a Knowledge Interchange Broker to compose model
components expressed in diverse formalisms. The KIB supports translation from the
semantics of one formalism into that of a second to ensure coordinated and correct
execution simulation algorithms of distinct modeling formalisms.

Distributed Simulation and System of Systems interoperability

The problems of model reuse and composability manifest themselves strongly in the
context of distributed simulation where the objective is to enable existing geographically
dispersed simulators to meaningfully interact, or federate, together. We briefly review
experience with interoperability in the distributed simulation context and a linguistically
based approach to the System of Systems (SoS) interoperability problem [15]. Sage and
Cuppan [16] drew the parallel between viewing the construction of SoS as federation of
systems and the federation that is supported by the High Level Architecture (HLA), an
IEEE standard fostered by the DoD to enable composition of simulations [17,18].
HLA is a network middleware layer that supports message exchanges among simulations,
called federates, in a neutral format. However, experience with HLA has been
disappointing and forced acknowledging the difference between technical interoperability
and substantive interoperability [19]. The first only enables heterogeneous simulations to
exchange data but does not guarantee the second, which is the desired outcome of
exchanging meaningful data, namely, that coherent interaction among federates takes
place. Tolk and Muguirra [20] introduced the Levels of Conceptual Interoperability Model
(LCIM) which identified seven levels of interoperability among participating systems.
These levels can be viewed as a refinement of the operational interoperability type which
is one of three defined by [15]. The operational type concerns linkages between systems in
their interactions with one another, the environment, and with users. The other types apply
to the context in which systems are constructed and acquired. They are constructive –

relating to linkages between organizations responsible for system construction and
programmatic – linkages between program offices to manage system acquisition.

5. AI-Related Software Background

To proceed to the discussion of the role of AI in address key problems in M&S, we need
to provide some further software and AI-related background. We offer a brief historical
account of object-orientation and agent-based systems as a springboard to discuss the
upcoming concepts of object frameworks, ontologies and endomorphic agents.

Object-Orientation and Agent-Based Systems

Many of the software technology advances of the last 30 years have been initiated from
the field of M&S. Objects, as code modules with both structure and behavior, were first
introduced in the SIMULA simulation language [21]. Objects blossomed in various
directions and became institutionalized in the widely adopted programming language C++
and later in the infrastructure for the web in the form of Java [22] and its variants. The
freedom from straight-line procedural programming that object-orientation championed
was taken up in AI in two directions: various forms of knowledge representation and of
autonomy. Rule-based systems aggregate modular if-then logic elements – the rules – that
can be activated in some form of causal sequence (inference chains) by an execution
engine [23]. In their passive state, rules represent static discrete pieces of inferential logic,
called declarative knowledge. However, when activated, a rule influences the state of the
computation and the activation of subsequent rules, providing the system a dynamic or
procedural, knowledge characteristic as well. Frame-based systems further expanded
knowledge representation flexibility and inferencing capability by supporting slots and
constraints on their values – the frames – as well as their taxonomies based on
generalization/specialization relationships [24]. Convergence with object-orientation
became apparent in that frames could be identified as objects and their taxonomic
organization could be identified with classes within object-style organizations that are
based on sub-class hierarchies.

On the other hand, the modular nature of objects together with their behavior and
interaction with other objects, led to the concept of agents which embodied increased
autonomy and self-determination [25]. Agents represent individual threads of computation
and are typically deployable in distributed form over computer networks where they
interact with local environments and communicate/coordinate with each other. A wide
variety of agent types exists in large part determined by the variety and sophistication of
their processing capacities – ranging from agents that simply gather information on packet
traffic in a network to logic-based entities with elaborate reasoning capacity and authority
to make decisions (employing knowledge representations just mentioned.) The step from
agents to their aggregates is natural, thus leading to the concept of multi-agent systems or
societies of agents, especially in the realm of modeling and simulation [26].

To explore the role of AI in M&S at the present, we project the just-given historical
background to the concurrent concepts of object frameworks, ontologies and endomorphic
agents. The Unified Modeling Language (UML) is gaining a strong foothold as the
defacto standard for object-based software development. Starting as a diagrammatical
means of software system representation, it has evolved to a formally specified language
in which the fundamental properties of objects are abstracted and organized [27 , 28].
Ontologies are models of the world relating to specific aspects or applications that are
typically represented in frame-based languages and form the knowledge components for
logical agents on the Semantic Web [29]. A convergence is underway that re-enforces the
commonality of the object-based origins of AI and software engineering. UML is being
extended to incorporate ontology representations so that software systems in general will
have more explicit models of their domains of operation. As we shall soon see,
endomorphic agents refer to agents that include abstractions of their own structure and
behavior within their ontologies of the world [30].

The M&S Framework within Unified Modeling Language (UML)

With object-orientation as unified by UML and some background in agent-based systems,
we are in position to discuss the computational realization of the M&S framework
discussed earlier. The computational framework is based on the Discrete Event System
Specification (DEVS) formalism and implemented in various object oriented
environments. Using UML we can represent the framework as a set of classes and
relations as illustrated in Figures 8 and 9. Various software implementations of DEVS
support different subsets of the classes and relations In particular, we mention a recent
implementation of DEVS within a Service Oriented Architecture (SOA) environment
called DEVS/SOA [31,32]. This implementation exploits some of the benefits afforded by
the web environment mentioned earlier and provides a context for consideration of the
primary target of our discussion, comprehensive automation of the M&S enterprise.

classes

construction	

mechanisms

relationships
constraints

create classes to
satisfy use cases

M&S
Framework
classes

interpretation
as
software code
(e.g. Java)

instances of classes
constitute an
implemented M&S
environment

Use Cases

UML

Figure 7: M&S Framework formulated within UML

We use one of the UML constructs, the use case diagram, to depict the various capabilities
that would be involved in automating all or parts of the M&S enterprise. Use

models

simulatorsSource
systems

Experimental
& Pragmatic
Frames

ontologies

EF
applicability

model

EF

validity
model Source

system

EF

abstraction
model model

simulator
correctness

model

Pragmatic
Frame

applicability
ontology

model
synthesizes

ontology

Figure 8: M&S Framework Classes and Relations in a UML representation

cases are represented by ovals that connect to at least one actor (stick figure) and to other
use cases through “includes” relations, shown as dotted arrows. For example, a sensor
(actor) collects data (use case) which includes storage of data (use case). A memory actor
stores and retrieves models which include storage and retrieval (respectively) of data.
Constructing models includes retrieving stored data within an experimental frame.
Validating models includes retrieving models from memory as components and simulating
the composite model to generate data within an experimental frame. The emulator-
simulator actor does the simulating to execute the model so that its generated behavior can
be matched against the stored data in the experimental frame. The objectives of the
human modeler drive the model evaluator and hence the choice of experimental frames to
consider as well as models to validate. Models can be used in (at least) two time
frames[33]. In the long term, they support planning of actions to be taken in the future In
the short term, models support execution and control in real-time of previously planned
actions .

collect
data

store
model

run
model

construct
model

store
data

simulate
model

sensor
retrieve
data

retrieve
model

validate
model

memory

control-
simulator predictive

-simulator

model
evaluator

model
generator

real world

model generated

goal-
generator

action planning
motor

objectives

M&S

apply
pragmatic

frame

apply
experimental

frame

Figure 9: UML Use Case Formulation of the Overall M&S Enterprise

6. AI Methods in Fundamental Problems of M&S

The enterprise of modeling and simulation is characterized by activities such as model,
simulator and experimental frame creation, construction, reuse, composition, verification

and validation. We have seen that valid model construction requires significant expertise
in all the components of the M&S enterprise, e.g., modeling formalisms, simulation
methods, and domain understanding and knowledge. Needless to say, few people can
bring all such elements to the table, and this situation creates a significant bottleneck to
progress in such projects. Among the contributing factors are lack of trained personnel
that must be brought in, expense of such high capability experts, and the time needed to
construct models to the resolution required for most objectives. This section introduces
some AI-related technologies that can ameliorate this situation: Service Oriented
Architecture (SOA) and Semantic Web, ontologies, constrained natural language
capabilities, and genetic algorithms. Subsequently we will consider these as components
in unified, comprehensive, and autonomous automation of M&S.

Service Oriented Architecture (SOA) and Semantic Web

On the World Wide Web, a Service Oriented Architecture (SOA) is a market place of
open and discoverable web-services incorporating, as they mature, Semantic Web
technologies [34]. The eXtensible Markup Language (XML) is the standard format for
encoding data sets and there are standards for sending and receiving XML [35].
Unfortunately, the problem just starts at this level. There are myriad ways, or Schemata, to
encode data into XML and a good number of such Schemata have already been developed.
More often than not, they are different in detail when applied to the same domains. What
explains this incompatibility?

In a Service Oriented Architecture, the producer sends messages containing XML
documents generated in accordance with a schema. The consumer receives and interprets
these messages using the same schema in which they were sent. Such a message encodes
a world state description (or changes in it) that is a member of a set delineated by an
ontology. The ontology takes into account the pragmatic frame, i.e., a description of how
the information will be used in downstream processing. In a SOA environment, data
dissemination may be dominated by “user pull of data”, incremental transmission,
discovery using metadata, and automated retrieval of data to meet user pragmatic frame
specifications. This is the SOA concept of data-centered, interface-driven, loose coupling
between producers and consumers. The SOA concept requires the development of
platform-independent, community-accepted, standards that allow raw data to be
syntactically packaged into XML and accompanied by metadata that describes the
semantic and pragmatic information needed to effectively process the data into
increasingly higher-value products downstream.

Ontologies

Semantic Web researchers typically seek to develop intelligent agents that can draw
logical inferences from diverse, possibly contradictory, ontologies such as a web search
might discover. Semantic Web research has lead to a focus on ontologies [34]. These are
logical languages that provide a common vocabulary of terms and axiomatic relations
among them for a subject area. In contrast, the newly emerging area of ontology
integration assumes that human understanding and collaboration will not be replaced by
intelligent agents. Therefore the goal is to create concepts and tools to help people develop

practical solutions to incompatibility problems that impede “effective” exchange of data
and ways of testing that such solutions have been correctly implemented.

a)

syntactic

semantic

pragmatic

syntactic

semantic

pragmatic

Figure 10: Interoperability levels in distributed simulation

As illustrated in Figure 10, interoperability of systems can be considered at three
linguistically-inspired levels: syntactic, semantic, and pragmatic. The levels are
summarized in Table 2. More detail is provided in [36].

Linguistic
Level

A collaboration of systems or services
interoperates at this level if:

Examples

Pragmatic – how
information in
messages is used

The receiver reacts to the message in a
manner that the sender intends

An order from a commander is obeyed
by the troops in the field as the
commander intended. A necessary
condition is that the information arrives
in a timely manner and that its
meaning has been preserved (semantic
interoperability)

Semantic – shared
understanding of
meaning of messages

The receiver assigns the same meaning as
the sender did to the message.

An order from a commander to multi-
national participants in a coalition
operation is understood in a common
manner despite translation into
different languages. A necessary
condition is that the information can
be unequivocally extracted from the
data (syntactic interoperability)

Syntactic – common
rules governing
composition and
transmitting of
messages

The consumer is able to receive and parse
the sender’s message

A common network protocol (e.g.
IPv4) is employed ensuring that all
nodes on the network can send and
receive data bit arrays adhering to a
prescribed format.

Table 2 Linguistic levels

Constrained Natural Language

Model development can be substantially aided by enabling users to specify modeling
constructs using some form of constrained natural language [37]. The goal is to overcome
modeling complexity by letting users with limited or nonexistent formal modeling or
programming background convey essential information using natural language, a form of
expression that is natural and intuitive. Practicality demands constraining the actual
expressions that can be used so that the linguistic processing is tractable and the input can
be interpreted unambiguously. Some techniques allow the user to narrow down essential
components for model construction. Their goal is to reduce ambiguity between the user's
requirements and essential model construction components. A natural language interface
allows model specification in terms of a verb phrase consisting of a verb, noun, and
modifier, for example "build car quickly." Conceptual realization of a model from a verb
phrase ties in closely with Checkland's [38] insight that an appropriate verb should be used
to express the root definition, or core purpose, of a system. The main barrier between
many people and existing modeling software is their lack of computer literacy and this
provides a incentive to develop natural language interfaces as a means of bridging this
gap. Natural language expression could create modelers out of people who think
semantically, but do not have the requisite computer skills to express these ideas. A
semantic representation frees the user to explore the system on the familiar grounds of
natural language and opens the way for brain storming, innovation and testing of models
before they leave the drawing board.

Genetic Algorithms

The	
 genetic	
 algorithm	
 is	
 a	
 subset	
 of	
 evolutionary	
 algorithms	
 that	
 model	
 biological	

processes	
 to	
 search	
 in	
 highly	
 complex	
 spaces.	
 A	
 genetic	
 algorithm	
 (GA)	
 allows	
 a	

population	
 composed	
 of	
 many	
 individuals	
 to	
 evolve	
 under	
 specified	
 selection	
 rules	
 to	
 a	

state	
 that	
 maximizes	
 the	
 “fitness”.	
 The	
 theory	
 was	
 developed	
 by	
 John	
 Holland	
 [39]	
 and	

popularized	
 by	
 Goldberg	
 who	
 was	
 able	
 to	
 solve	
 a	
 difficult	
 problem	
 involving	
 the	
 control	

of	
 gas	
 pipeline	
 transmission	
 for	
 his	
 dissertation	
 [40].	
 Numerous	
 applications	
 of	
 GAs	
 have	

since	
 been	
 chronicled	
 [41,	
 42].	
 	
 Recently,	
 GAs	
 have	
 been	
 applied	
 to	
 cutting	
 edge	

problems	
 in	
 automated	
 construction	
 of	
 simulation	
 models,	
 as	
 discussed	
 below	
 [43].	
 	

7. Automation of M&S

We are now ready to suggest a unifying theme for the problems in M&S and possible AI-
based solutions, by raising the question of whether all of M&S can be automated into an
integrated autonomous artificial modeler/simulationist. First, we provide some
background needed to explore an approach to developing such an intelligent agent based
on the System Entity Structure/Model Base framework, a hybrid methodology that
combines elements of AI and M&S.

System Entity Structure

The System Entity Structure (SES) concepts were first presented in [44]. They were
subsequently extended and implemented in a knowledge based design environment [45].
Application to model base management originated with [46] Subsequent formalizations
and implementations were developed in [47-51]. Applications to various domains are
given in [52].

A	
 System	
 Entity	
 Structure	
 is a knowledge representation formalism in which focuses on
certain elements and relationships that relate to M&S. Entities represent things that exist
in the real world or sometimes in an imagined world. Aspects represent ways of
decomposing things into more fine grained ones. Multi-aspects are aspects for which the
components are all of one kind. Specializations represent categories or families of specific
forms that a thing can assume. provides	
 the	
 means	
 to	
 represent	
 a	
 family	
 of	
 models	
 as	
 a	

labeled	
 tree.	
 Two	
 of	
 its	
 key	
 features	
 are	
 support	
 for	
 decomposition	
 and	

specialization.	
 The	
 former	
 allows	
 decomposing	
 a	
 large	
 system	
 into	
 smaller	
 systems.	

The	
 latter	
 supports	
 representation	
 of	
 alternative	
 choices.	
 Specialization	
 enables	

representing	
 a	
 generic	
 model	
 (e.g.,	
 a	
 computer	
 display	
 model)	
 as	
 one	
 of	
 its	

specialized	
 variations	
 (e.g.,	
 a	
 flat	
 panel	
 display	
 or	
 a	
 CRT	
 display.)	
 Based	
 on	
 SES	

axiomatic	
 specifications,	
 a	
 family	
 of	
 models	
 (design-­‐space)	
 can	
 be	
 represented	
 and	

further	
 automatically	
 pruned	
 to	
 generate	
 a simulation	
 model.	
 Such	
 models	
 can	
 be	

systematically	
 studied	
 and	
 experimented	
 based	
 alternative	
 design	
 choices.	
 An	

important,	
 salient	
 feature	
 of	
 SES	
 is	
 its	
 ability	
 to	
 represent	
 models	
 not	
 only	
 in	
 terms	
 of	

their	
 decomposition	
 and	
 specialization,	
 but	
 also	
 their	
 aspects.	
 The	
 SES	
 represents	

alternative	
 decompositions	
 via	
 aspects.	
 The	
 system	
 entity	
 structure	
 (SES)	
 formalism	

provides	
 an	
 operational	
 language	
 for	
 specifying	
 such	
 hierarchical	
 structures.	
 An	
 SES	

is	
 a	
 structural	
 knowledge	
 representation	
 scheme	
 that	
 systematically	
 organizes	
 a	

family	
 of	
 possible	
 structures	
 of	
 a	
 system.	
 Such	
 a	
 family	
 characterizes	
 decomposition,	

coupling,	
 and	
 taxonomic	
 relationships	
 among	
 entities.	
 An	
 entity	
 represents	
 a	
 real	

world	
 object.	
 The	
 decomposition	
 of	
 an	
 entity	
 concerns	
 how	
 it	
 may	
 be	
 broken	
 down	

into	
 sub-­‐entities.	
 In	
 addition,	
 coupling	
 specifications	
 tell	
 how	
 sub-­‐entities	
 may	
 be	

coupled	
 together	
 to	
 reconstitute	
 the	
 entity	
 and	
 associated	
 with	
 an	
 aspect.	
 The	

taxonomic	
 relationship	
 concerns	
 admissible	
 variants	
 of	
 an	
 entity.	
 The	
 SES/Model-­‐
Base	
 framework	
 [52] is	
 a	
 powerful	
 means	
 to	
 support	
 the	
 plan-­‐generate-­‐evaluate	

paradigm	
 in	
 systems	
 design.	
 Within	
 the	
 framework,	
 entity	
 structures	
 organize	

models	
 in	
 model	
 base.	
 Thus,	
 modeling	
 activity	
 within	
 the	
 framework	
 consists	
 of	

three	
 sub-­‐activities:	
 specification	
 of	
 model	
 composition	
 structure,	
 specification	
 of	

model	
 behavior,	
 and	
 synthesis	
 of	
 a	
 simulation	
 model.

The SES is governed by an axiomatic framework in which entities alternate with the other
items. For example, a thing is made up of parts; therefore, its entity representation has a
corresponding aspect which, in turn, has entities representing the parts. A System Entity
Structure specifies a family of hierarchical, modular simulation models, each of which
corresponds to a complete pruning of the SES. Thus, the SES formalism can be viewed as
an ontology with the set of all simulation models as its domain of discourse. The mapping
from SES to the Systems formalism, particularly to the DEVS formalism, is discussed in
[36]. We note that simulation models include both static and dynamic elements in any
application domain, hence represent an advanced form of ontology framework.

8. SES/Model Base Architecture for an Automated
Modeler/Simulationist

In this section, we raise the challenge of creating a fully automated modeler/simulationist
that can autonomously carry out all the separate functions identified in the M&S
framework as well as the high level management of these functions that is currently under
exclusively human control. Recall the use case diagrams in Figure 9 that depicts the
various capabilities that would need to be involved in realizing a completely automated
modeler/simulationist. To link up with the primary modules of mind, we assign model
construction to the belief generator – interpreting beliefs as models [54]. Motivations
outside the M&S component drive the belief evaluator and hence the choice of
experimental frames to consider as well as models to validate. External desire generators
stimulate the imaginer/envisioner to run models to make predictions within pragmatic
frames and assist in action planning.

The use case diagram of Figure 9, is itself a model of how modelling and simulation
activities may be carried out within human minds. We need not be committed to
particular details at this early stage, but will assume that such a model can be refined to
provide a useful representation of human mental activity from the perspective of M&S.
This provides the basis for examining how such an artificially intelligent
modeler/simulationist might work and considering the requirements for comprehensive
automation of M&S.

The SES/MB methodology, introduced earlier, provides a basis for formulating a
conceptual architecture for automating all of the M&S activities depicted earlier in Figure
9 into an integrated system. As illustrated in Figure 11, the dichotomy into real-time use
of models for acting in the real world and the longer term development of models that can
be employed in such real-time activities is manifested in the distinction between passive

and active models. Passive models are stored in a repository that can be likened to long
term memory. Such models under go the life-cycle mentioned earlier in which they are
validated and employed within experimental frames of interest for long term forecasting
or decision-making. However, in addition to this quite standard concept of operation,
there is an input pathway from the short term, or working, memory in which models are
executed in real-time. Such execution, in real-world environments, often results in
deficiencies, which provide impetus and requirements for instigating new model
construction. Whereas long term model development and application objectives are
characterized by experimental frames, the short term execution objectives are
characterized by pragmatic frames. As discussed in [36], a pragmatic frame provides a
means of characterizing the use for which an executable model is being sought. Such
models must be simple enough to execute within, usually, within stringent real-time
deadlines.

New
requirements Insertion

Long term memory

SES
Passive
Model
Repository

Experimental
Frame

prune
and
transform

Working memory

SES

Pragmatic
Frame

prune
and
activate

Immediate
perception

Real-time
Interaction
with
environment

Active
Model
Execution

Activatable
Model
Repository

Figure 11. SES/Model Base Architecture for Automated M&S

The M&S Framework within Mind Architecture

An influential formulation of recent work relating to mind and brain [53] views mind as
the behavior of the brain, where mind is characterized by a massively modular architecture.
This means that mind is, composed a large number of modules, each responsible for
different functions, and each largely independent and sparsely connected with others.
Evolution is assumed to favor such differentiation and specialization since under suitably
weakly interactive environments they are less redundant and more efficient in consuming
space and time resources. Indeed, this formulation is reminiscent of the class of problems
characterized by Systems of Systems (SoS) in which the attempt is made to integrated

existing systems, originally built to perform specific functions, in to a more
comprehensive and multifunctional system. As discussed in [15], the components of each
system can be viewed as communicating with each other within a common ontology, or
model of the world that is tuned to the smooth functioning of the organization. However,
such ontologies may well be mismatched to support integration at the systems level.
Despite working on the results of a long history of pre-human evolution, the fact that
consciousness seems to provide a unified and undifferentiated picture of mind, suggests
that human evolution has to a large extent solved the SoS integration problem.

The Activity Paradigm for Automated M&S

At least for the initial part of its life, a modeling agent needs to work on a “first order”
assumption about its environment, namely, that it can exploit only semantics-free
properties [39]. Regularities, such as periodic behaviors, and stimulus-response
associations, are one source of such semantics-free properties. In this section, we will
focus on a fundamental property of systems, such as the brain’s neural network, that have
a large number of components. This distribution of activity of such a system over space
and time provides a rich and semantics-free substrate from which models can be generated.
Proposing structures and algorithms to track and replicate this activity should support
automated modeling and simulation of patterns of reality. The goal of the activity
paradigm is to extract mechanisms from natural phenomena and behaviors to automate
and guide the M&S process.

The brain offers a quintessential illustration of activity and its potential use to construct
models. Figure 12 describes brain electrical activities [54]. Positron emission tomography
(PET) is used to record electrical activity inside the brain. The PET method scans show
what happens inside the brain when resting and when stimulated by words and music. The
red areas indicate high brain activities. Language and music produce responses in opposite
sides of the brain (showing the sub-system specializations). There are many levels of
activity (ranging from low to high.)

There is a strong link between modularity and the applicability of activity measurement as
a useful concept. Indeed, modules represent loci for activity – a distribution of activity
would not be discernable over a network were there no modules that could be observed to
be in different states of activity. As just illustrated, neuroscientists are exploiting this
activity paradigm to associate brain areas with functions and to gain insight into areas that
are active or inactive over different, but related, functions, such as language and music
processing. We can generalize this approach as a paradigm for an automated modeling
agent.

Figure 12. Brain module activities

Component, activity and discrete-event abstractions

Figure 13 depicts a brain description through components and activities. First, the modeler
considers one brain activity (e.g., listening music.) This first level activity corresponds to
simulation components at a lower level. At this level, activity of the components can be
considered to be only on (grey boxes) or off (white boxes.) At lower levels, structure and
behaviors can be decomposed. The structure of the higher component level is detailed at
lower levels (e.g., to the neuronal network.) The behavior is also detailed through activity
and discrete-event abstraction [55]. At the finest levels, activity of components can be
detailed.

Figure 13. Hierarchy of components, activity and discrete-event abstractions

Using the pattern detection and quantization methods continuously changing variables can
also be treated within the activity paradigm. As illustrated in Figure 14, small slopes and
small peaks can signal low activity whereas high slopes and peaks can signal high activity
levels. To provide for scale, discrete event abstraction can be achieved using quantization
[56]. To determine the activity level, a quantum or measure of significant change has to be
chosen. The quantum size acts as a filter on the continuous flow. For example, one can
notice that in the figure, using the displayed quantum, smallest peaks will not be
significant. Thus, different levels of resolution can be achieved by employing different
quantum sizes. A genetic algorithm can be used find the optimum such level of resolution
given for a given modeling objective [43].

t

Listening
music

Brain activity

t

t

S

S

S

Figure 14. Activity sensitivity and discrete-events

Activity tracking

Within the activity paradigm, M&S consists of capturing activity paths through
component processing and transformations. To determine the basic structure of the whole
system, an automated modeler has to answer questions of the form: where and how is
activity produced, received, and transmitted? Figure 15 represents a component-based
view of activity flow in a neuronal network. Activity paths through components are
represented by full arrows. Activity is represented by full circles. Components are
represented by squares. The modeler must generate such a graph based from observed data
– but how does it obtain such data? One approach is characteristic of current use of PET
scans by neuroscientists. This approach exploits a relationship between activity and
energy – activity requires consumption of energy, therefore, observing areas of high
energy consumption signals areas of high activity. Notice that this correlation requires
that energy consumption be localizable to modules in the same way that activity is so
localized. So for example, current computer architectures that provide a single power
source to all component do not lend themselves to such observation. How activity is
passed on from component to component can be related to the modularity styles (none,
weak, strong) of the components. Concepts relating such modularity styles to activity
transfer need to be developed to support an activity tracking methodology that goes
beyond reliance on energy correlation.

S

t

q

S

t
q

Activity No Activity

High activity

Low activity

No Activity…

Figure 15. Activity paths in neurons

Activity Model Validation

Recall that having generated a model of an observed system (whether through activity
tracking or by other means), the next step is validation. In order to perform such
validation, the modeler needs an approach to generating activity profiles from simulation
experiments on the model and to comparing these profiles with those observed in the real
system. Muzy and Nutaro [57] have developed algorithms that exploit activity tracking to
achieve efficient simulation of DEVS models. These algorithms can be adopted to provide
an activity tracking pattern applicable to a given simulation model to extract its activity
profiles for comparison with those of the modeled system.

A forthcoming monograph will develop the activity paradigm for M&S in greater detail
[58].

9. Intelligent Agents in Simulation

Recent trends in technology as well as the use of simulation in exploring complex
artificial and natural information processes [62,63] have made it clear that simulation
model fidelity and complexity will continue to increase dramatically in the coming
decades. The dynamic and distributed nature of simulation applications, the significance
of exploratory analysis of complex phenomena [64], and the need for modeling the micro-
level interactions, collaboration, and cooperation among real-world entities is bringing a
shift in the way systems are being conceptualized. Using intelligent agents in simulation
models is based on the idea that it is possible to represent the behavior of active entities in
the world in terms of the interactions of an assembly of agents with their own operational
autonomy.

The early pervading view on the use of agents in simulation stems from the developments
in Distributed Artificial Intelligence (DAI), as well as advances in agent architectures and

agent-oriented programming. The DAI perspective to modeling systems in terms of
entities that are capable of solving problems by means of reasoning through symbol
manipulation resulted in various technologies that constitute the basic elements of agent
systems. The early work on design of agent simulators within the DAI community focused
on answering the question of how goals and intentions of agents emerge and how they
lead to execution of actions that change the state of their environment. The agent-directed
approach to simulating agent systems lies at the intersection of several disciplines: DAI,
Control Theory, Complex Adaptive Systems (CAS), and Discrete-event
Systems/Simulation. As shown in Figure 16, these core disciplines gave direction to
technology, languages, and possible applications, which then influenced the evolution of
the synergy between simulation and agent systems.

Distributed Artificial Intelligence and Simulation
	

While progress in agent simulators and interpreters resulted in various
agent architectures and their computational engines, the ability to coordinate agent
ensembles was recognized early as a key challenge [65]. The MACE system [66] is
considered as one of the major milestones in DAI. Specifically, the proposed DAI system
integrated concepts from concurrent programming (e.g., actor formalism [67]) and
knowledge representation to symbolically reason about skills and beliefs pertaining to
modeling the environment. Task allocation and coordination were considered as
fundamental challenges in early DAI systems. The contract net protocol developed by [68]
provided basis for modeling collaboration in simulation of distributed problem solving.
	

Agent Simulation Architectures

One of the first agent-oriented simulation languages, AGENT-0 [69], provided a
framework that enabled the representation of beliefs and intentions of agents. Unlike
object-oriented simulation languages such as SIMULA 67 [70], the first object-oriented
language for specifying discrete-event systems, AGENT-O and McCarthy's Elephant2000
language incorporated speech act theory to provide flexible communication mechanisms
for agents. DAI and cognitive psychology influenced the development of cognitive agents
such as those found in AGENT-0, e.g., the Belief- Desires-Intentions (BDI) framework
[71]. However, procedural reasoning and control theory provided a basis for the design
and implementation of reactive agents. Classical control theory enables the specification
of a mathematical model that describes the interaction of a control system and its
environment. The analogy between an agent and control system facilitated the
formalization of agent interactions in terms of a formal specification of dynamic systems.
The shortcomings of reactive agents (i.e., lack of mechanisms of goal-directed behavior)
and cognitive agents (i.e., issues pertaining to computational tractability in deliberative
reasoning) led to the development of hybrid architectures such as the RAP system [72].

Figure 16. Evolution of the use of Intelligent Agents in Simulation

Agents are often viewed as design metaphors in the development of models for simulation
and gaming. Yet, this narrow view limits the potential of agents in improving various
other dimensions of simulation. To this end, Figure 17 presents a unified paradigm of
Agent- Directed Simulation that consists of two categories as follows: (1) Simulation for
Agents (agent simulation), i.e., simulation of systems that can be modeled by agents (in
engineering, human and social dynamics, military applications etc.) and (2) Agents for
Simulation that can be grouped under two groups: agent-supported simulation and agent-
based simulation.
	

Figure 17. Agent-directed Simulation Framework

Agent Simulation

Agent simulation involves the use of agents as design metaphors in developing simulation
models. Agent simulation involves the use of simulation conceptual frameworks (e.g.,
discrete-event, activity scanning) to simulate the behavioral dynamics of agent systems
and incorporate autonomous agents that function in parallel to achieve their goals and
objectives. Agents possess high-level interaction mechanisms independent of the problem
being solved. Communication protocols and mechanisms for interaction via task
allocation, coordination of actions, and conflict resolution at varying levels of
sophistication are primary elements of agent simulations. Simulating agent systems
requires understanding the basic principles, organizational mechanisms, and technologies
underlying such systems.

Agent-based Simulation

Agent-based simulation is the use of agent technology to monitor and generate model
behavior. This is similar to the use of AI techniques for the generation of model behavior
(e.g., qualitative simulation and knowledge-based simulation). Development of novel and
advanced simulation methodologies such as multisimulation suggests the use of intelligent
agents as simulator coordinators, where run-time decisions for model staging and updating
takes place to facilitate dynamic composability. The perception feature of agents makes
them pertinent for monitoring tasks. Also, agent-based simulation is useful for having

complex experiments and deliberative knowledge processing such as planning, deciding,
and reasoning. Agents are also critical enablers to improve composability and
interoperability of simulation models [73].

Agent-supported Simulation

Agent-supported simulation deals with the use of agents as a support facility to enable
computer assistance by enhancing cognitive capabilities in problem specification and
solving. Hence, agent-supported simulation involves the use of intelligent agents to
improve simulation and gaming infrastructures or environments. Agent-supported
simulation is used for the following purposes:

• to provide computer assistance for front-end and/or back-end interface
functions;

• to process elements of a simulation study symbolically (for example, for
consistency checks and built-in reliability); and

• to provide cognitive abilities to the elements of a simulation study, such as
learning or understanding abilities.

For instance, in simulations with defense applications, agents are often used as support
facilities to

• see the battlefield,
• fuse, integrate and de-conflict the information presented by the decision-maker,
• generate alarms based on the recognition of specific patterns,
• Filter, sort, track, and prioritize the disseminated information, and
• generate contingency plans and courses of actions.

	

A significant requirement for the design and simulation of agent systems is the distributed
knowledge that represents the mental model that characterizes each agent’s beliefs about
the environment, itself, and other agents. Endomorphic agent concepts provide a
framework for addressing the difficult conceptual issues that arise in this domain.

Endomorphic Agents

We now consider an advanced feature that an autonomous, integrated and comprehensive
modeler/simulationist agent must have if it is fully emulate human capability. – This is the
ability, to a limited, but significant extent, to construct and employ models of its own
mind as well of the minds of other agents. We use the term “mind” in the sense just
discussed.

The concept of endomorphic agent is illustrated in Figure 18 in a sequence of related
diagrams. The diagram labelled with an oval with embedded number 1 is that of Figure 9
with the modifications mentioned earlier to match up with human motivation and

collect
data

store
model

run
model

construc
t

model

store
data

simulate
model

sensor retri
eve
data

retrieve
model

validate
model

memory

imaginer
-envisioner emulator

-simulator

belief
evaluator

belief
generator

real world

model generated

desire
generator

action planning
motor

motivations

M&S

MIND

apply
pragmatic

frame

apply
experiment

al
frame

body mind=

Figure 18 . M&S within Mind

desire generation modules. In diagram 2, the label “mind” refers to the set of M&S
capabilities depicted in Figure 9. As in [30], an agent, human or technological, is
considered to be composed of a mind and a body. Here,” body” represents the external
manifestation of the agent, which is observable by other agents. Whereas, in contrast,
mind is hidden from view and must be a construct, or model, of other agents. In other
words, to use the term of evolutionary psychology, agents must develop a “theory of
mind” about other agents from observation of their external behavior. An endomorphic
agent is represented in diagram 3 with a mental model of the body and mind of the agent
in diagram 2. This second agent is shown more explicitly in diagram 4, with a mental
representation of the first agent’s body and mind. Diagram 5 depicts the recursive aspect
of endomorphism, where the (original) agent of diagram 2 has developed a model of the
second agent’s body and mind. But the latter model contains the just-mentioned model of
the first agent‘s body and mind. This leads to a potentially infinite regress in which –
apparently –each agent can have a representation of the other agent, and by reflection, of
himself, that increases in depth of nesting without end. Hofstadter [59] represents a
similar concept in the diagram on page 144, in which the comic character Sluggo is
“dreaming of himself dreaming of himself dreaming of himself, without end.” He then
uses the label on the Morton Salt box on page 145 to show how that not all self reference
involves infinite recursion. On the label, the girl carrying the salt box obscures its label
with her arm, thereby shutting down the regress. Thus the salt box has a representation of
itself on its label but this representation is only partial.

body mind body mind

=

collect
data

store
model

run
model

construc
t

model

store
data

simulate
model

sensor retri
eve
data

retrieve
model

validate
model

memory

imaginer
-envisioner emulator

-simulator

belief
evaluator

belief
generator

real world

model generated

desire
generator

action planning
motor

motivations

M&S

MIND

apply
pragmatic

frame

apply
experiment

al
frame=

1

2

3

4body

mind

body mind

body

mind

body mind
body

5

Figure 19. Emergence of endomorphic agents

[30] related the termination in self-reference to the agent’s objectives and requirements in
constructing models of himself, other agents, and the environment. Briefly, the agent need
only to go as deep as needed to get a reliable model of the other agents. The agent can stop at
level 1 with a representation of the other’s bodies. However, this might not allow predicting
another’s movements, particularly if the latter has a mind in control of these movements.
This would force the first agent to include at least a crude model of the other agent’s mind. In
a competitive situation, having such a model might give the first agent an advantage and this
might lead the second agent to likewise develop a predictive model of the first agent. With
the second agent now seeming to become less predictable, the first agent might develop a
model of the second agent’s mind that restores lost predictive power. This would likely have
to include a reflected representation of himself, although the impending regression could be
halted if this representation did not, itself, contain a model of the other agent. Thus, the depth
to which competitive endomorphic agents have models of themselves and others might be the
product of a co-evolutionary “mental arms race” in which an improvement in one side
triggers a contingent improvement in the other – the improvement being an incremental
refinement of the internal models by successively adding more levels of nesting.

Minsky [60] conjectured that termination of the potentially infinite regress in agent’s models
of each other within a society of mind might be constrained by shear limitations on the ability
to martial the resources required to support the necessary computation. We can go further by
assuming that agents have differing mental capacities to support such computational nesting.
Therefore an agent with greater capacity might be able to “out think” one of lesser capability.
This is illustrated by the following real-life story drawn from a recent newspaper account a
critical play in a baseball game.

Interacting Models of Others in Competitive Sport

The following account is illustrated in Figure xx.

A Ninth Inning to Forget
Cordero Can't Close, Then Base-Running Gaffe Ends Nats' Rally
Steve Yanda - Washington Post Staff Writer
Jun 24, 2007

Copyright The Washington Post Company Jun 24, 2007Indians 4, Nationals 3

Nook Logan played out the ending of last night's game in his head as he stood on
second base in the bottom of the ninth inning. The bases were loaded with one out
and the Washington Nationals trailed by one run. Even if Felipe Lopez, the batter
at the plate, grounded the ball, say, right back to Cleveland Indians closer Joe
Borowski, the pitcher merely would throw home. Awaiting the toss would be
catcher Kelly Shoppach, who would tag the plate and attempt to nail Lopez at first.
By the time Shoppach's throw reached first baseman Victor Martinez, Logan
figured he would be gliding across the plate with the tying run. Lopez did ground
to Borowski, and the closer did fire the ball home. However, Shoppach elected to
throw to third instead of first, catching Logan drifting too far off the bag for the
final out in the Nationals' 4-3 loss at RFK Stadium. "I thought [Shoppach] was
going to throw to first," Logan said. And if the catcher had, would Logan have
scored all the way from second? "Easy."

We’ll analyze this account to show how it throws light on the advantage rendered by
having an endomorphic capability to process to a nesting depth exceeding that of an
opponent.

The situation starts the bottom of the ninth inning with the Washington Nationals at bats
having the bases loaded with one out and the trailing by one run. The runner on second
base, Nook Logan plays out the ending of the game in his head. This can be interpreted in
terms of endomorphic models as follows. Logan makes a prediction using his models of
the opposing pitcher and catcher, namely that the pitcher would throw home and the
catcher would tag the plate and attempt to nail the batter at first. Logan then makes a
prediction using a model of himself, namely, that he would be able to reach home plate
while the pitcher’s thrown ball was travelling to first base.

In actual play, the catcher threw the ball to third and caught Logan out. This is evidence
that the catcher was able to play out the simulation to a greater depth then was Logan. The
catcher’s model of the situation agreed with that of Logan as it related to the other actors.
The difference was that the catcher used a model of Logan that predicted that the latter
(Logan) would predict the he (the catcher) would throw to first. Having this prediction, the
catcher decided instead to throw the ball to the second baseman which resulted in putting
Logan out. We note that the catcher’s model was based on his model of Logan’s model so

it was at one level greater in depth of nesting than the latter. To have succeeded, Logan
would have had to be able to support one more level, namely, to have a model of the
catcher that would predict that the catcher would use the model of himself (Logan) to out-
think him and then make the counter move, not to start towards third base.

Runner Catcher

catcher
will throw
to first --
I will run
to third

runner thinks I
will throw to
first so he will
run to third
-- I will throw to
second

Runner
•makes	
 prediction	
 based	
 on	
 model	
 of	
 catcher
•bases	
 action	
 on	
 prediction

Catcher
•makes	
 prediction	
 based	
 on	
 model	
 of	
 runner’s
use	
 of	
 model	
 of	
 catcher
•bases	
 action	
 on	
 prediction

Figure 20. Interacting Models of Others in Baseball

The enigma of such endomorphic agents provides extreme challenges to further research
in AI and M&S. The formal and computational framework that the M&S framework
discussed here provides may be of particular advantage to cognitive psychologists and
philosophers interested an active area of investigation in which the terms “theory of mind”,
“simulation”, and “mind reading” are employed without much in the way of definition
[61].

10. Future Directions

M&S presents some fundamental and very difficult problems whose solution may benefit
from the concepts and techniques of AI. We have discussed some key problem areas
including verification and validation, reuse and composability, and distributed simulation
and systems of systems interoperability. We have also considered some areas of AI that
have direct applicability to problems in M&S, such as Service Oriented Architecture and
Semantic Web, ontologies, constrained natural language, and genetic algorithms. In order

to provide a unifying theme for the problem and solutions, raised the question of whether
all of M&S can be automated into an integrated autonomous artificial
modeler/simulationist. We explored an approach to developing such an intelligent agent
based on the System Entity Structure/Model Base framework, a hybrid methodology that
combines elements of AI and M&S. We proposed a concrete methodology by which such
an agent could engage in M&S based on activity tracking. There are numerous challenges
to AI that implementing such a methodology in automated form presents. We closed with
consideration of endomorphic modeling capability, an advanced feature that such an agent
must have if it is fully emulate human M&S capability. Since this capacity implies an
infinite regress in which models contain models of themselves without end, it can only be
had to a limited degree. However, it may offer critical insights into competitive co-
evolutionary human or higher order primate behavior to launch more intensive research
into model nesting depth. This is the degree to which an endomorphic agent can marshal
mental resources needed to construct and employ models of its own “mind” as well of the
‘minds” of other agents. The enigma of such endomorphic agents provides extreme
challenges to further research in AI and M&S, as well as related disciplines such as
cognitive science and philosophy.

11. Bibliography

1. References

1. Wymore, A.W., Model-based Systems Engineering: An Introduction to the
Mathematical Wymore, A.W., Model-based Systems Engineering: An Introduction
to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of
System Design. 1993, Boca Raton: CRC.

2. Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000). Theory of Modeling and

Simulation. New York, NY, Academic Press.

3. Ören T.I. and Zeigler, B.P. (1979). Concepts for Advanced Simulation
Methodologies. Simulation, 32:3, 69-82.

4. http://en.wikipedia.org/wiki/DEVS

5. Knepell, P.L. and D.C. Aragno, Simulation Validation: A Confidence Assessment
Methodology. 1993, IEEE Computer Society Press: Los Alamitos.

6. Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis, 3rd Edition.

1999: McGraw-Hill.

7. Sargent, R.G. Verification and Validation of Simulation Models. in Winter
Simulation Conference. 1994.

8. Balci, O. Verification, Validation, and Testing. in Winter Simulation Conference.

1998.

9. Davis K. P. and Anderson A. R. (2003). Improving the Composability of
Department of Defense Models and Simulations, RAND Technical report.
http://www.rand.org/pubs/monographs/MG101/. Last accessed, Nov. 2007(see
also Journal of Defense Modeling and Simulation: Applications,Methodology,
Technology 1 (1): 5{17.

10. L.Ylmaz and T.I. Oren, “A Conceptual Model for Reusable Simulations within a

Model-Simulator-Context Framework, Conference on Conceptual Modeling and
Simulation” , Conceptual Models Conference, Genoa, Italy , October 28-31 2004

11. Traore M, Muxy A, Capturing the Dual Relationship between Simulation Models

and Their Context, Simulation Practice and Theory, Elsevier, 2004

12. Page, E., and J. Opper. 1999. Observations on the complexity of composable
simulation. In Proceedings of Winter Simulation Conference, pp 553-560.
Orlando, FL, USA.

13. Kasputis, S., and H. Ng. 2000. Composable simulations.In Proceedings of Winter

Simulation Conference, pp 1577-1584. Orlando, FL, USA.

14. Hessam S. Sarjoughain, Model Composability, in Proceedings of the 2006 Winter
Simulation Conference L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, eds.

15. M.J. DiMario System of Systems Interoperability Types and Characteristics in

Joint Command and Control, Proceedings of the 2006 IEEE/SMC International
Conference on System of Systems Engineering, Los Angeles, CA, USA - April
2006

16. A.P. Sage and C. D. Cuppan, "On the Systems Engineering and Management of

Systems of Systems and Federation of Systems," Information Knowledge Systems
Management, vol. 2, pp. 325 - 345, 2001.

17. Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for Simulation: As Simple
As Possible But Not Simpler The High Level Architecture For Simulation.
Simulation, 1998. 71(6): p. 378

18. Sarjoughian, H.S., B.P. Zeigler, "DEVS and HLA: Complimentary Paradigms for
M&S?" Transactions of the SCS, (17), 4, pp. 187-197, 2000

19. Yilmaz L. 2004. "On the Need for Contextualized Introspective Simulation Models
to Improve Reuse and Composability of Defense Simulations," Journal of Defense
Modeling and Simulation, vol.1, no. 3, pp. 135-145.

20. Tolk, A., and Muguira, J.A. The Levels of Conceptual Interoperability Model

(LCIM). Proceedings Fall Simulation Interoperability Workshop, 2003

21. http://en.wikipedia.org/wiki/Simula
22. http://en.wikipedia.org/wiki/Java
23. http://en.wikipedia.org/wiki/Expert_system
24. http://en.wikipedia.org/wiki/Frame_language
25. http://en.wikipedia.org/wiki/Agent_based_model
26. http://www.swarm.org/wiki/Main_Page
27. Unified Modeling Language (UML),

http://www.omg.org/technology/documents/formal/uml.htm
28. Object Modeling Group (OMG) www.omg.org
29. http://en.wikipedia.org/wiki/Semantic_web

30. Zeigler, B.P., Object Oriented Simulation with Hierarchical, Modular Models:

Intelligent Agents and Endomorphic Systems, Academic Press, Orlando, FL, 1990.

31. http://en.wikipedia.org/wiki/Service_oriented_architecture

32. Mittal.S., Mak, E. Nutaro, J.J., “DEVS-Based Dynamic Modeling & Simulation
Reconfiguration using Enhanced DoDAF Design Process”, special issue on
DoDAF, Journal of Defense Modeling and Simulation, Dec 2006

33. Simulation Methodology/Model Manipulation, in Encyclopedia of Systems and
Controls, Editor of subject area, Pergamon Press, England, 1988.

34. Alexiev V., M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen, Information
Integration with Ontologies, John Wiley, 2005

35. Kim, Larry, Official XMLSPY handbook, Indianapolis, IN : Wiley Pub., c2003

36. Zeigler, B.P., and P. Hammonds, “Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange”,
2007, New York, NY: Academic Press.

37. R.J. Simard, B.P. Zeigler, and J.N. Couretas, “Verb Phrase Model Specification

via System Entity Structures”, AI, Simulation, and Planning in High Autonomy
Systems, 1994. 'Distributed Interactive Simulation Environments'., Proceedings of
the Fifth Annual Conference, 7-9 Dec. 1994 Page(s):192 - 1989

38. Peter Checkland,Soft Systems Methodology in Action, 1999 Wiley
39. John H. Holland Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence The
MIT Press (April 29, 1992

40. D.E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine

Learning”, Addison-Wesley Professional, 1989

41. L Davis, “Genetic Algorithms and Simulated Annealing”, Morgan Kaufmann
Publishers Inc. San Francisco, CA, 1987

42. Zbigniew Michalewicz, “Genetic Algorithms + Data Structures = Evolution

Programs”, Springer, 1996

43. S. Cheon, “Experimental Frame Structuring for Automated Model
Construction:Application to Simulated Weather Generation”, Doct. Diss. Dept of
ECE, U. Ariz., Tucson, AZ, 2007

44. Zeigler, B.P., Multifaceted Modelling and Discrete Event Simulation, Academic
Press, 1984.

45. J.W. Rozenblit, J. Hu, B.P. Zeigler and T.G. Kim, "Knowledge-Based Design and

Simulation Environment (KBDSE): Foundational Concepts and Implementation,"
J. Operations Research Society, Vol. 41, No. 6, pp. 475-489, 1990.

46. T.G. Kim., C. Lee, B.P. Zeigler and E.R. Christensen, "System Entity Structuring
and Model Base Management," IEEE Trans. Sys. Man & Cyber., Vol. 20, No. 5,
pp. 1013-1024, 1990.

47. B.P. Zeigler and G. Zhang, The System Entity Structure: Knowledge

Representation for Simulation Modeling and Design," in: Artificial Intelligence,
Simulation and Modeling, (Eds. L.A. Widman, K.A. Loparo, and N. Nielsen), J.
Wiley, pp. 47 73, 1989.

48. Luh, C. and B.P. Zeigler, Model Base Management for Multifaceted Systems.

ACM Trans. on Modeling and Comp. Sim, 1991. 1(3): p. 195-218,

49. J. Couretas, “System Entity Structure Alternatives Enumeration Environment
(SEAS),” Ph.D. Thesis, Dept of ECE, University of Arizona, 1998.

50. Hyu C. Park and Tag G. Kim, "A Relational Algebraic Framework for VHDL
Models Management," Trans. of SCS, vol. 15, no.2, pp. 43-55, June, 1998.

51. Chi, S.D., J. Lee and Y. Kim, Using the SES/MB Framework to Analyze Traffic

Flow. Trans. of SCS, 1997. 14(4): p. 211-221.

52. T.H. Cho, B.P. Zeigler and J.W. Rozenblit, "A Knowledge Based Simulation
Environment for Hierarchical Flexible Manufacturing", IEEE Trans. Sys, Man &
Cyber- Part A: Systems and Humans, Vol. 26, No. 1, pp. 81-91, January 1996.

53. Carruthers P. Massively Modular Mind Architecture The Architecture of the Mind,

Oxford University Press, USA 2006, 480 pps
54. Roger Ressmeyer/Corbis
55. Zeigler, B.P., Discrete Event Abstraction: An Emerging Paradigm For Modeling

Complex Adaptive Systems Perspectives on Adaptation in Natural and Artificial
Systems, Essays in Honor of John Holland, Ed; Lashon Booker, Oxford University
Press

56. Nutaro, J. and B.P. Zeigler, On the Stability and Performance of Discrete Event

Methods for Simulating Continuous Systems. Journal of Computational Physics,
2007. 227(1): p. 797-819.

57. Muzy, A. and J.J. Nutaro. Algorithms for efficient implementation of the DEVS &
DSDEVS abstract simulators. in 1st Open International Conference on Modeling
and Simulation (OICMS). 2005. Clermont-Ferrand, France. p. 273-279.

58. Muzy, A. The Activity Paradigm for Modeling and Simulation of Complex
Systems (in process).

59. Douglas Hofstadter, I Am a Strange Loop,. Basic Books (March 26, 2007)

60. Marvin Minsky, Society of Mind Simon & Schuster (March 15, 1988)

61. Alvin I. Goldman Simulating Minds: The Philosophy, Psychology, and
Neuroscience of Mindreading Oxford University Press, USA (June 8, 2006)

62. P. J. Denning. Computing is a natural science. Communications of the ACM,
50(7):13-18, July 2007.

63. M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next
Generation Computing - A Roadmap for Agent Based Computing. Agentlink,
2003.

64. J. H. Miller and S. E. Page. Complex Adaptive Systems: An Introduction to
Computational Models of Social Life. Princeton University Press, Princeton, New
Jersey, 2007.

65. J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, 1999.

66. L. Gasser, C. Braganza, and N. Herman. Mace: A extensible testbed for distributed

AI Research. Distributed Artificial Intelligence - Research Notes in Artificial
Intelligence, pages 119-152, 1987.

67. G. Agha and C. Hewitt. Concurrent programming using actors: Exploiting large-
Scale Parallelism. Proceedings of the Foundations of Software Technology and
Theoretical Computer Science, Fifth Conference, pages 19-41, 1985.

68. R. G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, 29(12):1104-1113,
1980.

69. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51{92,
1993.

70. O. J. Dahl and K. Nygaard. SIMULA67 Common Base Definiton. Norweigan
Computing Center, Norway, June 1967.

71. A. S. Rao and M. P. George_. BDI-agents: from theory to practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

72. R. J. Firby. Building symbolic primitives with continuous control routines. In
Procedings of the First Int. Conf. on AI Planning Systems, pages 62{29, College
Park, MD, 1992.

73. L. Yilmaz and Swetha Paspuletti. Toward a meta-level framework for agent-
supported interoperation of defense simulations. Journal of Defense Modeling and
Simulation, 2(3):161-175, 2005.

2. Additional Reading

1. Alexiev V., M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen, Information
Integration with Ontologies, John Wiley, 2005

2. Carruthers P. Massively Modular Mind Architecture The Architecture of the Mind,

Oxford University Press, USA 2006, 480 pps

3. Alvin I. Goldman Simulating Minds: The Philosophy, Psychology, and
Neuroscience of Mindreading Oxford University Press, USA (June 8, 2006)

4. John H. Holland Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence The
MIT Press (April 29, 1992

5. Zeigler, B.P., Object Oriented Simulation with Hierarchical, Modular Models:

Intelligent Agents and Endomorphic Systems, Academic Press, Orlando, FL, 1990.

6. Zeigler, B.P., and P. Hammonds, “Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange”,
2007, New York, NY: Academic Press.

7. Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000). Theory of Modeling and Simulation.

New York, NY, Academic Press.

