
AutoDEVS: A Methodology for Automating M&S 
Software Development and Testing  

of Interoperable Systems 
 

 
by  

 

Manuel C. Salas 
Bernard Zeigler 

 
Abstract 

 
Despite the increasing use of software system development methodologies that follow a highly 
structured and systematic process, there remain critical limitations that need more advanced 
treatment. One such limitation is the failure to explicitly incorporate modeling and simulation 
(M&S) methodology which becomes essential as the scale of systems under development 
exceeds the range supported by analytical tools.  Other limitations include lack of automation to 
reduce routine work and incoherence among the abstractions developed at various stages in 
development. Originally introduced as formalism for discrete event modeling and simulation, the 
DEVS (Discrete Event System Specification) methodology has become an engine for advances 
within the wider area of information technology.  In this paper, we present a new DEVS-based 
tool called “AutoDEVS” that automates systems development and exploits “model continuity” to 
maintain coherence through the development process and to support test artifact continuity and 
traceability through phases of system development.  AutoDEVS creates models and systems that 
can be mapped to DEVS/SOA, a DEVS implementation compliant with a Service Oriented 
Architecture infrastructure such as adopted by the DoD’s Global Information Grid initiative.  After 
describing the AutoDEVS environment, we show how it provides a rapid means of integrated 
development and testing of defense command and control systems for interoperability.   

 
 
1. Introduction 

 
The development of complex software-intensive systems requires systematic 

methodologies to ensure that all requirements goals and objectives are met.  Many 
organizations make use of the System Development Life Cycle (SDLC) [Sdl08], Joint 
Application Development (JAD) [Jad08] and Rapid Application Development (RAD) 
[Rad08] methodologies to assist in developing systems. However, these methodologies 
tend to miss-handle evolving requirements during the development of the system, calling 
for support of feedback and iteration that is integral to the methodology and tools. Of 
particular interest in this paper,  are two main limitations: 



1. None of the current methodologies integrate Modeling and Simulation (M&S) 
techniques to develop systems. Modeling and Simulation helps to better 
understand and optimize performance and/or reliability of systems and verify 
the correctness of designs. Simulation allows for the development of “virtual 
environments” to observe and better understand the system under 
development. These virtual environments also permit speeding up the 
development process by validating the system early on the development cycle 
as possible, before the actual hardware is ready, thus reducing risks and costs 
encountered during the testing phase.  

2. These methodologies do not overcome the incoherence problem caused 
among the different phases of the development process. For instance, the lack 
of clarity in requirements could impact the elaboration of architectures and 
test plans for the system that could be detected not until later in the 
development process causing major design changes and costing the project 
both time and money.  

1.1  Motivation 

Several goals motivated the development of "AutoDEVS", a tool that brings new 
methodologies based on Discrete Event System Specification (DEVS) modular and 
hierarchical formalism: 
 

• improve systems development to reduce human effort, time constraints, and 
production costs between different design stages, 

• overcome the "incoherence problem" between different stages of the development 
process, 

• help developers spend most of their time on the parts of the system that really 
matter and reduce as much overhead as possible on repetitive activities, 

• introduce automation in the development of systems to increase productivity and 
produce high-quality, structured solutions to complex problems, 

• organize a family of alternative models from which a candidate model can be 
selected, generated, and evaluated, and 

• meet the needs of the entire team, from requirements capture to deploying high-
performance, real-time distributed executing models. 

 
Overall, the main contribution of this article is the demonstration of a practical 

methodology to automate the development and testing of complex, distributed, real-time 
systems. This methodology is based on DEVS and SES formalisms and overcomes the 
“incoherence problem” between different stages of the development process by 
connecting the outputs of one stage to the inputs of the next stage. It allows the users to 



go from requirements to automated models and simulation of a real-time distributed 
software system and make use of these models to auto-generate test models and make the 
system ready to run and interact with the real-world.  In particular, we discuss application 
of the methodology, as supported by the AutoDEVS tool set,  to complex distributed 
command and control systems for which interoperability is a key attribute.  

The remaining discussion is organized as follows: Section 2 discusses the state of the 
art in software development. Section 3 provides a brief review of the most advanced tools 
that are based on DEVS formalisms and methodologies for the development of systems. 
Section 4 introduces AutoDEVS as the next generation tool to automate the development 
and testing of systems, going from natural language to a real time executing system; 
exploiting the “model continuity” concept through the stages of a development process. 
Finally, section 5 provides conclusions for AutoDEVS and the importance of M&S in 
design and evaluation of systems of systems for data and computation interoperability. 

 
 
2. Software Development State of the Art 

 

Traditionally, many organizations make use of the Systems Development Life Cycle 
(SDLC) methodology to assist in developing systems, as it ensures that all functional and 
non-functional requirement goals and objectives are met. SDLC provides a set of models 
or methodologies such as waterfall, v-shaped, incremental, spiral, build and fix, and 
synchronize and stabilize. The waterfall model defines a sequence of stages in which the 
output of each stage becomes the input for the next [Wri08]. This model allows phases to 
be processed and completed one at a time but it is very rigid and changes to requirements 
can potentially have a negative impact on the system. The v-shaped model is similar to 
the waterfall model with the difference that testing procedures are developed before 
starting the implementation phase. The V-shaped model has more probability for success 
than the waterfall model due to the development of test plans early on during the life 
cycle process. On the other hand, no early prototypes of the system are produced [Lew08]. 
The incremental model consists of dividing the waterfall model into smaller, more easily 
managed iterations. The incremental model allows having a base working version of the 
system, where flaws are detected quickly and early in the process. On the other hand, 
system architecture problems may arise due to changes in requirements in later iterations 
[Lew08]. The spiral model is most often used in large, complex and expensive systems. 
This model is similar to the incremental model, with more emphases on risk analysis. The 
spiral model includes high amount of risk analysis that allows evaluating different 
alternatives to mitigate a specific problem and then choose the best fit for the system in 
development. On the other hand, the project success is highly dependent on the risk 
analysis phase. In the build and fix model a system is built with minimal requirements 
and specifications, no design or testing is executed. The build and fix model is usually 
effective in very small projects where the complexity is very limited. However, 
maintenance could become an issue since no documentation is produced and when this 
model is applied to highly-complex systems it can result in a low quality, delayed and 



costly system [Lew08]. In the synchronize and stabilize model, teams work concurrently 
on individual application modules, executing frequent code synchronization between the 
teams, and allowing to stabilize the system regularly throughout the development process. 
Since the synchronize and stabilize model allows changes at any point throughout the 
process, it is inherently more flexible, and allows responsiveness to changing business 
requirements. 

There are alternatives to the SDLC methodologies such as Joint Applications Design 
(JAD) and Rapid Application Development (RAD). The JAD technique allows end users 
to participate in the requirements development process to better understand their needs 
and set up the desired system. When the size of the group and the system is too large, the 
JAD technique could become expensive and cumbersome; however it reduces the 
ambiguity produced during the system requirements elaboration phase [Woo95].  The 
RAD model involves iterative development and construction of prototypes that allow 
emulating and provide the ability to quickly build working systems to test their 
usefulness. This model provides the ability to rapidly change system design as demanded 
by users. Following the rapid prototyping model can lead to a succession of prototypes 
that never culminate in a satisfactory production application [Mar91]. More speed and 
lower cost may lead to lower overall quality. Potential for inconsistent designs within and 
across systems and the difficulty with model reuse for future systems are some of the 
most common weaknesses of the RAD model [Cms08]. 

 Rational Rose RealTime is a complete lifecycle Unified Modeling Language (UML) 
development environment intended for modeling and component construction of 
enterprise-level software applications that are highly event driven, concurrent and 
distributed. Rose RealTime unifies the project team by providing an extensive set of tool 
integrations to meet the needs of the entire team, from requirements capture through 
high-performance code generation and debugging for real-time operating system targets 
[Acc00]. However, Rose RealTime is still suffering from several problems. First, the tool 
focuses on design and it is not fully suited for requirements modeling. Secondly, Rose 
RealTime does not support concurrency in Statechart Diagrams, which is a disadvantage 
during requirements and analysis phases. Finally, the tool doesn’t support activity 
diagrams at all [Ant01], and important processes such as the verification of properties 
(safety, utility, liveness), the simulation of the system, and the generation of test cases. 

Matlab is a high-level technical computing language and interactive environment for 
algorithm development, data visualization, data analysis, and numeric computation. 
Using the Matlab tool, developers can solve technical computing problems faster than 
with traditional programming languages, such as C, C++, and Fortran.  Matlab is 
currently being used by a wide range of applications, including signal and image 
processing, communications, control design, test and measurement, financial modeling 
and analysis, and computational biology. In addition, this tool provides a number of 
features for documenting and sharing developers work. Matlab can be integrated with 
other languages and applications. Simulink, is integrated with Matlab and it is an 
environment for multidomain simulation and Model-Based Design for dynamic and 
embedded systems. It provides an interactive graphical environment and a customizable 
set of block libraries that let you design, simulate, implement, and test a variety of time-

http://www.mathworks.com/computational-biology.html


varying systems, including communications, controls, signal processing, video processing, 
and image processing. The Matlab environment for Model-Based Design (MBD) allows 
engineers to mathematically model the behavior of the physical system, design the 
software and model its behavior, and then simulate the entire system model to accurately 
predict and optimize performance. The system model becomes a specification from 
which you can automatically generate real-time software for testing, prototyping, and 
embedded implementation, thus avoiding manual effort and reducing the potential for 
errors. [Mat08]. The major drawbacks of this environment are its size and relative 
complexity; it takes some time to become familiar with its language and become familiar 
with several of the main routines needed for basic simulations. Equations must be 
handled in certain form and sequence, requiring the user to understand the assumptions 
underlying the tool, in addition to the system’s phenomena being analyzed. Furthermore, 
good comprehension of numerical analysis, linear algebra and linear systems is required 
[Can97]. 

 
3.  DEVS Framework for M&S-Driven Software Development 

 

Discrete Event System Specification (DEVS) is a unified framework for developing 
real-time software systems in which logical analysis, performance evaluation, and 
implementation can be performed, all based on the DEVS formalism [Sar01]. DEVS 
framework is based on systems engineering principles and is used for modeling and 
simulation in many application domains. This framework supports a number of important 
features such as component based hierarchical simulation model development, scalability, 
reusability and distributed simulation. The framework was later extended to support 
parallel model specification and execution, hierarchical model development and 
modularity, and object orientation in 2003, namely Communicating DEVS for logical 
analysis and Real-time DEVS for implementation. DEVS framework has been 
implemented in different programming languages such as DEVSJAVA (java), ADEVS 
(C++) and DEVS# (C#) and over various middleware such as DEVS/CORBA, 
DEVS/HLA and DEVS/SOA [HuX04]. 

Real-Time DEVS (RTDEVS) formalism extends the classic DEVS formalism in 
atomic DEVS models. The RTDEVS formalism for coupled models remains the same as 
the original. In the classic DEVS formalism, simulation time advances only when a 
simulator calls the time advance function ta of the associated model. The time advance 
function ta in the RTDEVS formalism behaves the same as that in the classic DEVS 
formalism except that here the time is an integer, while in classic DEVS, time is a real 
number. The time calculated by the time advance function also synchronized with the 
wall clock time. This is because a simulation clock in RTDEVS is no longer a virtual 
clock but a real-time clock. An activity is an operation that takes a certain amount of time 
to complete the assigned task [Hon97]. This was adopted by [Hon97] to represent some 
time-consuming operations such as waiting for a message, processing a job, and so forth. 

http://physical-modeling.mathworks.com/


3.1  DEVS & DEVSJAVA 

DEVSJAVA implements the DEVS formalism on java. It provides a set of libraries on top of 
the java native libraries that allows the building of modular and hierarchical model compositions 
based on the closure-under-coupling paradigm to create a system, see Figure 3.1. 

 
Figure 3.1 Example system developed in DEVSJAVA. 

A system is described as a set of input/output events and internal states along with behavior 
functions regarding the event consumption/production and internal state transitions. Generally 
models are considered as either atomic models or coupled models. The atomic model can be 
illustrated as a black box having a set of inputs (X) and a set of outputs (Y). The atomic model 
includes a description of the interface as well as the data flow between itself and other DEVS 
models. The atomic model also specifies a set if internal states (S) with some operation functions 
such as external transition function (δext), internal transition function (δint), output function λ 
and time advance function ta to describe the dynamic behavior of the model. δext carries the 
input and changes the system states; δint changes internal variables from the previous state to 
the next when no events have occurred since the last transition; λ generates an output event to 
outside models in the current state;  ta determines the time of the next internal event after 
generating an output event. Basic models may be connected in the DEVS formalism to form a 
coupled model. A coupled model is the major class which embodies the hierarchical model 
composition constructs of the DEVS formalism [Zei00]. A coupled model is made up of 
component models, and the coupling relations which establish the desired communication links. 
A coupled model specified how to couple (connect) several component models together to form 
a new model. Therefore two essential activities involved in coupled models are specifying its 
component models and defining the couplings which create the desired communication paths 



[Zei00]. 

3.2  SES & SESBuilder 

The System Entity Structure (SES) [Zei07] is a high level ontology framework targeted to 
modeling, simulation, systems design and engineering. Its expressive power, both in strength and 
limitation, derive from that domain of discourse. An SES is a formal structure governed by a 
small number of axioms that provide clarity and rigor to its models. The structure supports 
hierarchical and modular compositions allowing large complex structures to be built in stepwise 
fashion from smaller, simpler ones. Tools have been developed to transform SESs back and forth 
to XML allowing many operations to be specified in either SES directly or in its XML guise. The 
axioms and functionally based semantics of the SES promote pragmatic design and are easily 
understandable by data modelers. Together with the availability of appropriate tool support, this 
makes development of XML Schema transparent to the modeler. Finally, SES structures are 
compact relative to equivalent Schema and automatically generate associated executable 
simulation models [Mit07]. 

SESBuilder is a powerful stand alone application which supports operations on System 
Entity Structures (SES), see Figure 3.2.  SESBuilder employs the XML to create Pruned Entity 
Structures (PES) that represents the logically possible set of world state descriptions consistent 
with the SES. At the implementation level, an SES is represented by a schema or DTD whose 
instance documents represent possible prunings. The SESBuilder supports convenient 
specification of SESs, pruning to create PESs, and transformation to XML representations, all 
through natural language and graphical interfaces [Sae08, Zei07]. Thus, it can be used to do 
serious data engineering with a powerful multi-tab graphic user interface. It supports local file 
system to load and save intermediate and final results for different purposes. SESBuilder is built 
on Java Standard Widget Toolkit (SWT) and could be deployed on either Windows or 
Unix/Linux based operating system [Rts08]. 



 
Figure 3.2 SESBuilder Natural Language View 

 
Some of the highlights of the SESBuilder tool are [Ses08]: 

 
• SES is an effective way of Knowledge Representation and data engineering in support of 

ontology development languages and environments based on SES Axioms. 
• SES Builder provides a data engineering work space based in XML for syntax and 

validity checks. 
• Modeling and Simulation-based Data Engineering is supported by SES & PES at 

ontology level implemented in XML Schemata and XML instances. 
• With its Modeling & Simulation-based Data Engineering approach, the SESBuilder 

supports the framework for information exchange for Net-centric environment. 
 

3.3  Finite Deterministic DEVS (FDDEVS) 

Finite Deterministic DEVS (FDDEVS) formalism was first introduced to restrict the class 
of DEVS models so as to allow deeper analysis of verifiable properties for the restricted class 
[Hwa06]. The simplicity of the FDDEVS formulation was subsequently recognized to provide a 
useful abstraction for development of DEVS models using template-based design [Mit08].  



 
Figure 3.3 FDDEVS GUI. 

As seen in Figure 3.3, the FDDEVS GUI allows the creation of Java and XML-expressed 
FD-DEVS models; it allows the user to easily specify the states, time advance, internal/external 
transitions, incoming/outgoing messages for the models to be generated. It also permits one to 
employ the generated atomic models to create coupled models as described in the previous 
section.  

 
As an alternative to the template-based design, the creation of FDDEVS models can be done 

using a constrained natural language input that has the following statement forms [Mit08]: 
 
to start hold in PHASE for time SIGMA !  
hold in PHASE for time SIGMA !  
after PHASE then output MSG ! 
from PHASE go to PHASE’ ! 
when in PHASE and receive MSG go to PHASE’ ! 
 

For convenience, some of these statements can be compounded as phrases in the 
following statements: 

 
hold in PHASE for time SIGMA then output MSG and go to PHASE' ! 
hold in PHASE for time SIGMA then go to PHASE' ! 
 
The semantics of these statements is provided by the following table along with examples of how 
to use them. 



Natural Language Phrase XFD-DEVS Specification Example 
to start hold in PHASE for time 
SIGMA! 
 
where SIGMA is 0, a positive 
real, or the symbol Infinity (other 
variants such as Inf are allowed) 

TimeAdvanceTable(PHASE) = SIGMA 
 
and also set PHASE as initial state 

to start hold in waitForJob 
for time Infinitiy! 
 
This can also be 
expressed as: to start 
passivate in waitForJob! 

hold in PHASE for time SIGMA 
 
where SIGMA = 0, a positive real, 
or the symbol Infinity(other 
variants such as Inf are allowed) 

TimeAdvanceTable(PHASE)=SIGMA hold in sendOut for time 
0.1 ! 

after PHASE then output MSG! OutputTable(PHASE) = MSG after sendOut then output 
Job ! 

from PHASE go to PHASE! InternalTransitionTable(PHASE) = PHASE' from sendOut go to 
waitForJob ! 

when in PHASE and receive 
MSG go to PHASE'! 

ExternalTransitionTable(PHASE,MSG) = 
PHASE' 

when in waitForJob and 
receive Job go to 
processing! 

when in PHASE and receive 
MSG go to PHASE’ eventually ! 

ExternalTransitionTable(PHASE, MSG) = 
PHASE'  
with a mark to note that this input is schedule-
preserving in this state 

when in waitForJob and 
receive Job go to 
processing eventually ! 

 
The semantics of compound statements are composed of the semantics of the individual phrases. 
 

 
Figure 3.4 WirelessDataGenerator State Diagram. 

 
 FDDEVS follows a XML schema that facilitates the development of state machines’ 
internal and external transition behaviors. For instance, the development of a wireless data 
generator FDDEVS model represented by the state diagram presented in Figure 3.4, can be 
translated into the following FDDEVS natural language: 



 
WirelessDataGenerator: to start passivate in passive! 
WirelessDataGenerator: when in phase passive and receive Start go to active! 
WirelessDataGenerator: hold in active for time 1 then output WirelessData and go to active! 
 
The generator outputs WirelessData every 1 unit of time.  In general, FDDEVS allows use of  
general DEVS timing capabilities except those requiring non-finite states. For example, the 
remaining time to transition after an input arrival cannot be saved and reused. 

3.4  DEVS/SOA 

DEVS/SOA [Mit07] is a prototype simulation framework that has been implemented using 
SOA technology. The central point resides in executing the simulator as a web service. The 
development of this framework helps to solve large-scale problems and guarantees 
interoperability among different networked systems and specifically DEVS-validated models. 
DEVS/SOA makes the DEVS simulation process transparent in the model-design cycle, allowing 
the modeler not to be concerned with the simulator compatibility or any platform issues as in 
earlier developments like DEVS/C++, DEVSJAVA, DEVS/RMI, and DEVS/CORBA. With this 
Simulation Service platform the designer is able to execute the model over the Internet through 
web services, using SOA as the communication protocol. This framework is able to execute 
DEVSJAVA models, and is extensible to other simulation platforms. 

A DEVS/SOA client takes the DEVS models package and through the dedicated servers 
hosting simulation services, it performs the following operations: 
1. Upload the models to specific IP locations 
2. Run-time compile at respective sites 
3. Simulate the coupled-model 
4. Receive the simulation output at client’s site 
 

The DEVS/SOA client as shown in Figure 3.5 below operates in the following sequential 
manner: 

 
1. The user selects the DEVS package folder at his machine 
2. The top-level coupled model is selected as shown in Figure 3.5 
3. Various available servers are selected. Any number of available servers can be selected.  
4. The user then uploads the model by clicking the Upload button. The models are 

partitioned in a round-robin mechanism and distributed among various chosen servers 
5. The user then compiles the models by clicking the Compile button at server’s end 
6. Finally, Simulate button is pressed to execute the simulation using the Simulation service 

hosted by these services. 
7. Once the simulation is over, the console output window displays the aggregated 

simulation logs from various servers at the client’s end. 
 



 
Figure 3.5 GUI snapshot of DEVS/SOA client hosting distributed simulation 

 
In accordance with the model continuity requirement, both logical time (time-managed) and real-
time discrete event simulation are supported by DEVS/SOA.  The user can determine the 
simulation mode of a model by selecting which simulation protocol to be used, whether logical 
or real-time, without changing the model itself. 

4. AutoDEVS Description 
 

 
As indicted earlier, AutoDEVS has been created to increase productivity in systems 

development by automating the life cycle process of a system in all the different phases. The 
name, AutoDEVS, comes from its support for automation of DEVSJAVA model generation. It 
provides methodologies to develop systems by generating models and testing models from a 
spreadsheet containing requirements specification that turn into an executing real-time system, 
see Figure 4.1. 



 
Figure 4.1 AutoDEVS Graphical User Interface 

 

4.1 AutoDEVS Lifecycle 

 
AutoDEVS process is iterative allowing return to modify the reference master DEVS-

model and the requirement’s specifications. Model continuity minimizes the artifacts that have to 
be modified as the process proceeds. The design methodology provides a process to transform 
the requirement’s specifications to a DEVS representation supporting evaluation and 
recommendations for a feasible design. 

 
As seen in Figure 4.2, AutoDEVS life cycle process combines system theory, M&S 

framework, and model-continuity concepts. As illustrated, the tool bifurcates the process into 
two main streams – system development and test suite development – that converge in the 
system testing phase. The system development includes the definition of requirements, capture of 
specifications to map formalized DEVS model components and create a reference master model, 
and use of model continuity to execute model in the DEVS real-time execution protocol, i.e. 
SimView. The test suite development includes development of test models, and execution of test 
models against the system under test to provide a feasible design from simulation and analysis 
results [Mit07]. 



 

 
Figure 4.2 Integrated Development and Testing Methodology 

4.2  AutoDEVS Tool 

 
AutoDEVS uses Natural Language (English) Specification of an SES as the preferred means of 
specifying discrete event systems and defining the structural aspects of the models being 
developed; see Figure 4.3 “SESMicroRepresentation” column. This Natural Language is 
bounded by rules that encompass all the possible interactions related to any message type. These 
rules also limit the way English language is used in terms of removing ambiguous statements. 

 
Figure 4.3 AutoDEVS: Requirements Specification 



 
 

The basic idea is as follows. The entity is considered as a collection of various message 
streams. It has been observed in complex systems that an entity node can act as receiver and 
sender simultaneously. It is logical to consider that a node may be processing more than one 
messages at a given instant. Consequently, developing a framework where the entity node model 
can operate with multiple message streams is the objective of this type of requirement 
specifications [Mit07]. 

The rules that provide a binding to this type of requirement specifications are provided in 
Table 4.1. The designer can specify each node’s behavior as a sender and a receiver with respect 
to any specific message type.  

Rules:     
1 Copula "is" and "are" are treated the same. 

2 Compounds 

x and y;  
x, y, and z; NOTE: the commas are 
mandatory for 3 or more constituents  
x, y, z, and w;  
x or y;  
x, y, or z;  
x, y, z, or w;  

3 Determiners 
“a”,”the”,… are removed from the 
input before processing  

4 End of Sentence use “!” instead of “.” 

5 Sentence Order 

· The entity mentioned first in the first 
sentence becomes the root of the SES. 
· A variable must be attached to an 
entity before giving it a range 
specification (see below).  
· Otherwise sentences can be in any 
order.  

6 Forms 

In the following, CAPITALs indicate 
variables, lower case indicate 
mandatory key words in the order 
shown. 

7 Specialization 

THING can be VARIANT1, 
VARIANT2, or VARIANT3 in 
CLASSFAMILY!  

8 Aspect 

From VIEW perspective, THING is 
made of COMPONENT1, 
COMPONENT2, and 
COMPONENT3 !  

9 MultiAspect 
From multiple perspective, THINGS 
are made of more than one THING ! 

10 Attached Variables THING has VAR1, VAR2, and 



VAR3!  

11 Range specifications of variables 
The range of THING's VAR1 is 
RANGE!  

Table 4-1 Rules for Restricted NLP based Requirement Specifications 

 
AutoDEVS then uses Finite-Deterministic DEVS Natural Language to describe the 

behavior aspect of the system being developed. This FDDEVS Natural Language defines the 
different states, internal and external transitions between the models being developed as 
described in section 3.3. 
 

See the “FDDEVSRepresentation” column of Figure 4.3. It contains the behavioral 
aspects of the system under development. AutoDEVS makes use of this column to automate the 
development of the behavioral aspects for the DEVS models being created. 
 After constructing the structural and behavior aspects of the system, AutoDEVS then 
executes automatic pruning on the models created based on the different specialization identified, 
see Figure 4.4. The PES can be transformed into a composition tree, see Figure 4.5 and 
eventually synthesized into a simulation model. AutoDEVS also provides the capability to 
modify the PES created by the tool and then simulate it to validate the models pruned, see Figure 
4.6. 

 
Figure 4.4 AutoDEVS: Automated PES 



 
Figure 4.5 AutoDEVS: tree representation of the PES created. 

 
Figure 4.6 AutoDEVS: PES user selection 

 After AutoDEVS has created all the models from the derived requirement specifications, 
it allows the user to automatically create DEVS test models for the system being developed. 
These test models are created with the objective to verify the correctness of the DEVS models. 
The test methodology is based on minimal testable I/O pairs restricted to messages, and 
assuming they are the only automatable observables available for testing.  The DEVS test models 
are in the form of an experimental frame and allow the developer to perform experiments against 
the System Under Test (SUT).  The test engineer analyzes the requirements (from the 
spreadsheet) and creates the test scenarios which describe the behaviors of the SUT. The 
requirements are written in minimal testable input/output representation, and the test models are 
created by applying the model mirroring concept that reverse the minimal testable I/O pairs. 



Both the minimal testable file and test models are written in XML format and represented by 
SES, allowing for the transformation between the two XML files.  The inputs/output pairs are 
now represented by three primitive atomic models: holdSend, waitReceive, and waitNotReceive. 
Since the input/output are in sequential order, only one atomic model is active each time, and the 
rest of the atomic models are passive.  In order to try out these test models against the real 
system, they are converted to software programming source code, refer to [Mit07] for more 
details. This testing methodology is still under development and will be available soon in the 
AutoDEVS tool.  
 Finally, the AutoDEVS tool provides an interface to the FDDEVS tool, SESBuilder, and 
DEVSJAVA SimView. Refer to Section 4 for the description of FDDEVS and SESBuilder tools. 
The DEVSJAVA SimView is a program included in the DEVSJAVA framework to view and 
check that all the models and couplings are built as expected. In addition, SimView allows the 
developers to run, observe and evaluate the real-time execution of the system under development, 
see Figure 4.7. 

 

Figure 4.7 DEVSJAVA SimView running system under development 



As seen in Figure 4.7, SimView allows the user to stop, run and restart the execution of 
the model being simulated. This helps the developers detect flaws easily when simulating and 
testing the system, as it shows the transactions and state transitions for each of the models that 
are being executed. SimView provides the flexibility to choose and run the desired model and 
simulate different models without having to reopen the SimView application. In addition, 
DEVSJAVA SimView allows the developer to simulate hierarchical models. These models are 
coupled models with components that may be atomic or coupled models that constitute a part of 
the entire system. This permits to simplify the scope of testing and find problems at different 
stages of the development, i.e. execute unit simulation to analyze models more concretely. 

One very useful feature of the AutoDEVS tool is that it displays the model’s debugging 
messages into an execution log textbox which is integrated in the tool. This permits the 
developer to quickly debug the system and resolve any bugs encountered during simulation or 
just monitor the application in execution. SimView also provides the capability to adjust the 
simulation speed of the models by increasing or decreasing the execution time by a scale factor. 
For example, a scale factor equals 1 means the simulation will run at the same speed as a wall 
clock; time scale factor equals to 0.5 means the simulation will run twice as fast as the wall clock, 
and so on. This allows the designer to analyze the data to determine if the system under test 
fulfills the logical behavior as desired. 

4.3  AutoDEVS & Model Continuity 

AutoDEVS is a software development methodology that supports model continuity for 
distributed real-time software development. This methodology is based on the DEVS modeling 
and simulation framework. Corresponding to the general “Design-Test-Execute” development 
procedure, this tool provides a “Modeling-Simulation-Execution” process which includes several 
stages to develop real-time software. During these stages, a model’s continuity is maintained 
because the same control models that are created will be tested by simulation methods and then 
deployed to the target system for execution. 

Next, is a description of the different stages that AutoDEVS methodology utilizes to develop 
systems showing model continuity. This description takes advantage of an Agent Development 
System simple example. The first stage of the AutoDEVS methodology is defining user 
requirements for the Agent Development System: 



 
Figure 4.8 Agent Development Example: Define Requirements 

As seen in Figure 4.8, the requirements for the new system are collected and organized in 
spreadsheet table, i.e. “RequirementText” column. The second stage is describing the structural 
aspects for each of the requirements of the Agent Development System, i.e. fill the 
“SESMicroRepresentation” column of the spreadsheet. The third stage is describing the 
behavioral aspects for each of the requirements, i.e. fill the “FDDEVSRepresentation” column of 
the spreadsheet. The fourth stage is defining the multi-aspect coupling for the coupled models 
which automates the coupling generation for multi-aspect models. This is defined in the 
“MultiCouplingTest” column of the spreadsheet, i.e. agent input/output coupling. The fifth stage 
is running the AutoDEVS tool to capture the spreadsheet data, i.e. agentDevelop.xls, see Figure 
4.9. 



 
Figure 4.9 Agent Development Example: Capture Spreadsheet Data 

 Notice that the user needs to set the folder and spreadsheet file to be captured in the 
AutoDEVS tool, i.e. “Set Folder” and “Select File” buttons. In addition, notice that subsequent to 
capturing the data from the spreadsheet, AutoDEVS encodes the captured data into an XML 
schema/document type definition (XSD or DTD), i.e. Sheet1agentDevelopRowsSchema.xsd, 
ses.dtd. The sixth stage is to generate FDDEVS models based on the schema type definition and 
the captured XML data from previous stage, i.e. behavioral aspects of the Agent Development 
System (FDDEVSRepresentation column). 



 
Figure 4.10 Agent Development Example: Generate FDDEVS 

 
As seen in Figure 4.10, DEVS java models are automatically generated, including an 

XML representation of those models, i.e. observer.java, observer.xml. Based on the 
MicroSESRepresentation column defined in the spreadsheet, the seventh stage is to add the 
structural aspects on the DEVS models created in the previous stage. During this stage a SES 
representation of the models is created and parsed into an XML file, i.e. 
agentDevelopagentCoupledModsSeS.xml. Notice that this file could serve to see the SES 
representation as a tree view, see Figure 4.11. In addition, an automatic PES that represents the 
logically possible set state descriptions consistent with the SES is created, i.e. 
agenDevCoupModInst.xml. 



 
Figure 4.11 Agent Development Example: SES Tree View 

 
 The eighth stage is to run the PES that was automatically created in the previous stage, i.e. 
Transform PEStoDEVS. During this stage the specialized models are created and the DEVS 
models are updated with the corresponding structural aspects, i.e. PES transformed into 
DEVSJAVA models. This PES can also be modified by the developer to create his own pruning 
and analyze the models of interest. The AutoDEVS tool allows choosing the PES desired and 
then run it using the tool, as shown in Figure 4.12. 



 
Figure 4.12 Agent Development Example: Choosing a PES 

 
The ninth stage is to create a set of test models to validate the system under development, see 
Figure 4.16. 



 
Figure 4.13 Agent Development Example: Generate Test Models 

 
As seen in Figure 4.13, AutoDEVS lets the developer choose the test models to create 

from a list given. As described previously, these test models are based on minimal testable I/O 
pairs restricted to messages and are created with the objective to verify the correctness of the 
DEVS models. This feature is being developed and will be available in the near future. 
 The tenth stage is to verify the models created in the FDDEVS Models and SES Builder 
DEVSJAVA SimView applications, i.e. Figure 4.14. Then modify the models accordingly to the 
desired needs and start simulation, see Figure 4.15. 



 
Figure 4.14 Agent Development Example: Verifying models in SES, FDDEVS, and SimView 

 

 
Figure 4.15 Agent Development Example: Running models in SimView 



 

4.4  Mapping AutoDEVS-generated Models to DEVS/SOA 

The DEVS/SOA tool as described in section 3.5 facilitates the developer to create transparent 
distributed simulation. It exploits model continuity by taking the generated AutoDEVS models 
and allowing the upload, compilation and simulation of the developed models in a distributed 
way among different available servers. AutoDEVS and DEVS/SOA tools minimize the number 
of modifications required to the developed source code to make possible the distributed 
simulation (see [Sal08] for details).  By distributing the simulation of the system developed in 
different machines, the memory requirements on any single system can be substantially smaller 
than the memory used in a single-workstation simulation. The developer needs to consider 
optimizing the transactions between the different workstations to allow the overall execution 
time of the simulation to be at least as fast as the original single-workstation simulation. 
Networking or distributing the simulation of the generated AutoDEVS models using the 
DEVS/SOA tool encourages improving the speed of highly parallelizable tasks by distributing 
pieces of the system across many computers that together form a distributed computing 
simulation system.  

 
Furthermore, AutoDEVS  together with DEVS/SOA provide an infrastructure  to implement 

structural and hierarchical real-time distributed systems.  In particular DEVS/SOA supports the 
fourth step where all the models are deployed to their target platforms and tested in the real 
physical environment. In this case, the target platforms and physical environment are the SOA 
services and underlying network infrastructure in which DEVS is implemented. The user can 
determine the simulation mode of a model by selecting the simulation protocol to use, whether 
logical or real-time, without changing the model itself. When executing under the real-time 
simulation model, the model effectively becomes an executing web service that operates in real-
time and can be distributed to geographically dispersed nodes as desire. An example application 
to support of negotiation is given by [Hwa06] . 

4.5 AutoDEVS Applications to M&S for Defense Test and Evaluation 

Modeling and Simulation (M&S) is finding increasing application in defense such as the 
incorporation of M&S functionality into command and control systems [Pul08] and the use of 
M&S to support the development and testing of System of Systems (SoS). The SoS concept 
relates to the attempt to integrate disparate systems to achieve new requirements with the 
defining concern being interoperability, or lack thereof, among the constituent system [Pul08, 
Sag07].  Achieving such interoperability is among the chief SoS engineering objectives in the 
development of command and control (C2) capabilities for joint and coalition warfare [Jac04, 
Zei08].  DEVS/SOA operation over web middleware enables it to operate within the net-centric 
environment of the Global Information Grid/Service Oriented Architecture (GIG/SOA) which is 
being developed to achieve a new level of defense interoperability. The development of 
AutoDEVS enhances the quality of solutions provided by DEVS technology to support Test and 
Evaluation (T&E) of interoperability in defense SoS, particularly in net-centric environments 
such as GIG/SOA [Zei05, Bri08]. Since  AutoDEVS can support model continuity through a 



simulation-based development and testing life cycle, the mapping of high-level requirement 
specifications into lower-level DEVS formalizations enables such specifications to be thoroughly 
tested in virtual simulation environments before being easily and consistently transitioned to 
operate in a real environment for further testing and fielding.  Indeed, the DEVS Unified Process 
[Mit07, Mit08a] provides methodology and SOA infrastructure for integrated development and 
testing. Extended DoD Architectural Framework (DoDAF) views support executable 
architectures using M&S for application to mission based testing for GIG/SOA [Zei05a, Mit08b]. 
The DEVS simulation architecture is layered to support technology neutrality and execution in 
different technological scenarios [Mit07a, Mit08a, Sar01a]. Separating a model from the act of 
simulation itself, which can be executed on single or multiple distributed platforms supports 
automated test generation and deployment in distributed simulation [HuX03].  
 

5. Conclusions  
 

We have presented a new DEVS-based tool called “AutoDEVS”  that automates systems 
development and exploits “model continuity” to maintain coherence through the development 
process and to support test artifact continuity and traceability through phases of system 
development.  AutoDEVS creates models and systems that can be mapped to DEVS/SOA, a 
DEVS implementation compliant with a Service Oriented Architecture infrastructure such as 
adopted by the DoD’s Global Information Grid initiative.  Therefore, it provides a rapid means 
of integrated development and testing of defense command and control systems for  
interoperability.   

Achieving interoperability is one of the chief System of Systems (SoS) engineering objectives 
in the development of command and control (C2) capabilities for joint and coalition warfare. The 
importance of M&S in SoS design and evaluation cannot be underestimated. M&S can be used 
strategically to provide early feasibility studies and aid the design process. As components 
comprising SoS are designed and analyzed, their integration and communication is the most 
critical part that must be addressed by the employed SoS M&S framework. The integration 
infrastructure must support interoperability at syntactic, semantic and pragmatic levels to enable 
such integration [Zei07, Zei08].  

Currently there are several other approaches to distributed simulation and to integration of 
M&S with advanced C2 systems.  These approaches build on the internet or other net-centric 
middleware to provide component connectivity and simulation services [Pul08, Rei02]. DEVS 
provides a formal systems-based abstraction that can support higher level interoperability, 
whether alone or on top of HLA.  The DEVS/SOA implementation provides a SOA 
implementation independent of HLA and is a viable approach to M&S integration with C2 SoS.  
DEVS components including decision making agents, sensor simulators, and environmental 
representations can bring the power of M&S to the development of C2 SoS as well as serving as 
support for command and control in real operation.  The underlying SOA standard that facilitates 
this interoperation can be expected to be widely implemented following its adoption by the 
DoD’s Global Information Grid initiative.  
  
 



6. REFERENCES 
 

[Acc00]   Accelerating Embedded e-development, Rational Rose Real Time, 
http://www.ghs.com/partners/rational/rose-rt.pdf

[Alb08] Jeannie Albrecht, Ryan Braud, Charles Killian, Priya Mahadevan, Kashi Vishwanath, 
and Amin Vahdat, An integrated software environment for distributed systems 
development, http://sysnet.cs.williams.edu/~jeannie/papers/plush-spie.pdf

[Ant01] Magnus Antonson, Pernilla Hansson, Modeling of Real-Time Systems in UML with 
Rational Rose and Rose Real-Time based on RUP, 
http://www.google.com/url?sa=U&start=6&q=http://rise.uni.lu/tiki/se2c-
bib_download.php%3Fid%3D455&usg=AFQjCNFqw153nT_4kw1OJ8hdmvqJ7D123w  

[Bri08] Steven Bridges, Bernard P. Zeigler, James Nutaro, Dane Hall, Tom Callaway, and Dale 
Fulton, Evolving Enterprise Infrastructure for Model & Simulation Based Testing of 
Net-Centric Systems, ITEA journal, 2008; Vol. 29, pps 51-61. 

[Can97]  Claudio A. Cañizares, Advantages and Disadvantages of Using Various Computer 
Tools in Electrical Engineering Courses, 
http://www.power.uwaterloo.ca/~claudio/papers/trace.pdf

[Cms08] CMS, Selecting a Development Approach, 
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopme
ntApproach.pdf

[Hon97]  J.S. Hong, and T.G. Kim, "Real-time Discrete Event System Specification Formalism 
for Seamless Real-time Software Development," Discrete Event Dynamic Systems: 
Theory and Applications, vol. 7, pp.355-375, 1997. 

[HuX03] Hu, X., Zeigler, B.P., Mittal, S., “Dynamic Configuration in DEVS Component-based 
Modeling and Simulation”, SIMULATION: Transactions of the Society of Modeling 
and Simulation International, November 2003 

 [HuX04] Hu Xiaolin, A Simulation-based software development methodology for distributed     
real-time systems, 
http://acims.arizona.edu/PUBLICATIONS/PDF/Xiaolin_dissertation.pdf. 

[HuX05]  Hu, Xiaolin and B.P. Zeigler, “Model Continuity in the Design of Dynamic Distributed Real-
Time Systems”, IEEE Transactions On Systems, Man And Cybernetics— Part A: Systems And 
Humans, 35: 6, pp. 867- 878, November, 2005 

[Jac04]  Jacobs, R.W. “Model-Driven Development of Command and Control Capabilities For 
Joint and Coalition Warfare,” Command and Control Research and Technology 
Symposium, June 2004. 

[Jad08]  Joint Application Development. 
http://en.wikipedia.org/wiki/Joint_application_development

 

 [Hwa06] Moon Ho Hwang and Bernard P. Zeigler, A Reachable Graph of Finite and 
Deterministic DEVS Networks, DEVS Integrative M&S Symposium (DEVS'06) (DEVS 
2006)  Huntsville, Alabama, USA, April 2 - 6, 2006 

 

http://www.ghs.com/partners/rational/rose-rt.pdf
http://sysnet.cs.williams.edu/%7Ejeannie/papers/plush-spie.pdf
http://www.google.com/url?sa=U&start=6&q=http://rise.uni.lu/tiki/se2c-bib_download.php%3Fid%3D455&usg=AFQjCNFqw153nT_4kw1OJ8hdmvqJ7D123w
http://www.google.com/url?sa=U&start=6&q=http://rise.uni.lu/tiki/se2c-bib_download.php%3Fid%3D455&usg=AFQjCNFqw153nT_4kw1OJ8hdmvqJ7D123w
http://www.power.uwaterloo.ca/%7Eclaudio/papers/trace.pdf
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://www.cms.hhs.gov/SystemLifecycleFramework/Downloads/SelectingDevelopmentApproach.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/Xiaolin_dissertation.pdf
http://en.wikipedia.org/wiki/Joint_application_development


 [Kil07]   C. Killian, J. W. Anderson, R. Braud, R. Jhala, A. Vahdat, Mace: language support for 
building distributed systems, Proc. Program. Lang. Design Implem., 2007. (accessed 21 
Mar 2008) http://mace.ucsd.edu

[Lew08] http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx
[Mar91] Martin, James, “Rapid Application Development”, Macmillan Publishing Co., Inc., 

1991. 
[Mat08] The MathWorks, http://www.mathworks.com/
[Mit07] Saurabh Mittal, DEVS unified process for integrated development and testing of service 

and testing fo service oriented architectures, Ph. D. Dissertation, Univ. of Arizona, 2007. 
[Mit07a] Mittal, S., Martin, J.L.R., Zeigler, B.P., “DEVSML: Automating DEVS Execution over 

SOA Towards Transparent Simulators”, Special Session on DEVS Collaborative 
Execution and Systems Modeling over SOA, DEVS Integrative M&S Symposium 
DEVS' 07, Spring Simulation Multi-Conference, March 2007 

[Mit08] Saurabh Mittal, Bernard P. Zeigler, Moon Ho Hwang , XFD-DEVS, 
http://www.saurabh-mittal.com/fddevs/

[Mit08a] Mittal, S., Zeigler, B.P., “DEVS Unified Process for Integrated Development       and 
Testing of System of Systems”, Critical Issues in C4I, AFCEA-George Mason University 
Symposium, May 2008 

[Mit08b] Mittal, S., “Extending DoDAF to allow DEVS-Based Modeling and       
       Simulation”, Special issue on DoDAF, Journal of Defense Modeling and     
        Simulation (JDMS), Vol 3. No. 2 
[Pal06]    Palaniappan, S., Sawheny, A., Sarjoughian, H.S., "Application of DEVS Framework in 

Construction Simulation", Winter Simulation Conference, Monterey, CA, 
http://acims.arizona.edu/PUBLICATIONS/PDF/constructionSim.pdf 

[Pto08]   The Ptolemy project, http://ptolemy.eecs.berkeley.edu/
[Pul08]  Pullen, M., Wilson, L.T.C.K, Hieb, M., Tolk, A., “Extensible Modeling and        
                Simulation Framework (XMSF) C4I Testbed,”    
                http://www.movesinstitute.org/xmsf/xmsf.html
[Rad08]    Rapid Application Development. 

http://en.wikipedia.org/wiki/Rapid_application_development
[Ras01]   Rastofer, U.; Bellosa, F., Component-based software engineering for distributed 

embedded real-time systems, Software, IEE Proceedings, Volume: 148 Issue: 3, June 
2001 

[Rei02]  Reichenthal, S.W., SRML - Simulation Reference Markup Language W3C Note 18 
December 2002 http://www.w3.org/TR/SRML/

[Rob00] Paul Robertson, Robert Laddaga, and Howie Shrobe, "Introduction: the first 
international workshop on self-adaptive software", Lecture Notes in Computer Science, 
2000, pp. 1-10 

[Rts08]   SESBuilder, http://www.rtsync.com/services/SESBuilder.html
[Sae08]  Saehoon Cheon, Doohwan Kim, Bernard P Zeigler, System Entity Structure For XML 

Meta Data Modeling; Application to the US Climate Normals, IEEE International 
Conference on Information Reuse and Integration, Las Vegas, NV, July 2008.  

[Sag07] Sage, A., “From Engineering  a System  to  Engineering  an Integrated System Family, 
From Systems Engineering to System of Systems Engineering”, 2007 IEEE 
International Conference on System of Systems Engineering (SoSE). April 16th -18th, 
2007, San Antonio, Texas 

http://mace.ucsd.edu/
http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx
http://www.mathworks.com/
http://www.u.arizona.edu/%7Esaurabh
http://www.acims.arizona.edu/MEMBERS/bio/BPZWebBio.htm
http://www.u.arizona.edu/%7Emhhwang/
http://www.saurabh-mittal.com/fddevs/
http://acims.arizona.edu/PUBLICATIONS/PDF/constructionSim.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/constructionSim.pdf
http://ptolemy.eecs.berkeley.edu/
http://www.movesinstitute.org/xmsf/xmsf.html
http://en.wikipedia.org/wiki/Rapid_application_development
http://www.w3.org/TR/SRML/
http://www.rtsync.com/services/SESBuilder.html
http://www.acims.arizona.edu/PUBLICATIONS/PDF/TH_2533.pdf
http://www.acims.arizona.edu/PUBLICATIONS/PDF/TH_2533.pdf


[Sal08] Salas, M.C., AutoDEVS: A Methodology for Automating Systems Development, 
Master’s Thesis, Electrical and Computer Engineering Dept., Univ. of Arizona, 2008. 
http://www.acims.arizona.edu/PUBLICATIONS/PDF/Salas_Thesis.pdf

[Sar01]   Hessam S. Sarjoughian, Francois E. Cellier, Discrete Event Modeling and Simulation 
Technologies: A Tapestry of Systems and AI-Based Theories and Methodologies, p.31, 
Springer 2001. 

[Sar01a]  Sarjoughian, H., Zeigler, B.P., and Hall, S., “A Layered Modeling and Simulation 
Architecture for Agent-Based System Developmen”t, Proceedings of the IEEE 89 (2); 
201-213, 2001 

[Sdl08]   Systems Development Life Cycle. 
http://en.wikipedia.org/wiki/Systems_Development_Life_Cycle

[Ses08]   http://www.sesbuilder.com/
[Sho98]  Shokri, E.; Crane, P.; Kim, K., An implementation model for time-triggered message-

triggered objectsupport mechanisms in CORBA-compliant COTS platforms, 
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel4/5419/14648/00666764.pdf?temp=x, 
1998 

[Soa08]  Service-oriented architecture, http://en.wikipedia.org/wiki/Service-
oriented_architecture

[Vah02]  A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, D. Becker,  
Scalability and accuracy in a large-scale network emulator, Proc. 5th USENIX OSDI   
Symp., 2002. (Accessed 21 Mar 2008) http://modelnet.ucsd.edu

[Wel01]  Wells, R.B.; Fisher, J.; Ying Zhou; Johnson, B.K.; Kyte, M.: Hardware and software 
considerations for implementing hardware-in-the-loop traffic simulation. Industrial 
Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE , 
Volume: 3 , 2001 

[Woo95] Wood, Jane and Silver, Denise; Joint Application Development, John Wiley & Sons 
Inc,       ISBN 0-47104-299-4

[Wri08] http://www.garywwright.com/sdlc.php
[Zei00]  B.P. Zeigler, T.G.Kim and H. Praehofer, “Theory of Modeling and Simulation: 

Integrating Discrete Event and Continuous Complex Dynamic Systems,” second edition 
Academic Press, Boston, 2000. 

[Zei03]  B. P.Zeigler, DEVS Today: Recent Advances in Discrete Event-based Information 
Technology, MASCOTS' 03, Orlando, FL, October 2003. 

[Zei05]  Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J., “Framework for M&S Based 
System Development and Testing in Net-centric Environment”, ITEA Journal, Vol. 26, 
No. 3, October 2005 

[Zei05a] Zeigler, B. P., Mittal, S., “Enhancing DoDAF with DEVS-Based System Life-    cycle 
Process”, IEEE International Conference on Systems, Man and Cybernetics, Hawaii, 
October 2005 

[Zei07]  B.P. Zeigler and P. Hammond,  “Modeling&Simulation-Based Data     Engineering: 
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange”, 
Academic Press, Boston, 2007. 448 pages 

[Zei08] Zeigler, B.P., Mittal, S., Hu, X., “Towards a Formal Standard for Interoperability in 
M&S/Systems of Systems Engineering”, Critical Issues in C4I, AFCEA-George Mason 
University Symposium, May 2008 

 

http://www.acims.arizona.edu/PUBLICATIONS/PDF/Salas_Thesis.pdf
http://en.wikipedia.org/wiki/Systems_Development_Life_Cycle
http://www.sesbuilder.com/
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel4/5419/14648/00666764.pdf?temp=x
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://modelnet.ucsd.edu/
http://en.wikipedia.org/wiki/Special:BookSources/0471042994
http://www.garywwright.com/sdlc.php
http://acims.arizona.edu/PUBLICATIONS/PDF/DevsToday2Col.pdf
http://acims.arizona.edu/PUBLICATIONS/PDF/DevsToday2Col.pdf
http://www.tk.uni-linz.ac.at/mascots2003/

	1. Introduction
	1.1  Motivation

	2. Software Development State of the Art
	3.  DEVS Framework for M&S-Driven Software Development
	3.1  DEVS & DEVSJAVA
	3.2  SES & SESBuilder
	3.3  Finite Deterministic DEVS (FDDEVS)
	3.4  DEVS/SOA

	4. AutoDEVS Description
	4.1 AutoDEVS Lifecycle
	4.2  AutoDEVS Tool
	4.3  AutoDEVS & Model Continuity
	4.4  Mapping AutoDEVS-generated Models to DEVS/SOA
	4.5 AutoDEVS Applications to M&S for Defense Test and Evaluation

	5. Conclusions 
	6. REFERENCES
	 [Hwa06] Moon Ho Hwang and Bernard P. Zeigler, A Reachable Graph of Finite and Deterministic DEVS Networks, DEVS Integrative M&S Symposium (DEVS'06) (DEVS 2006)  Huntsville, Alabama, USA, April 2 - 6, 2006


