
lSAI

SYSTEM THEORY BASED MODELING AND SIMULATION OF SOA-BASED SOFTWARE SYSTEMS

by

Muthukumar V. Ramaswamy

An Applied Project Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Engineering

ARIZONA STATE UNIVERSITY

May 2008

1

ABSTRACT

Service oriented architecture (SOA) has drawn increased attention from both

academic and industrial communities, and have put forth several standards and

solutions. However, we found there is no universally accepted tool or procedure

showing the importance of modeling a SOA-based software system based on the

important system theory’s characteristics known as (i) flat or hierarchical

composition, (ii) feed forward or feedback message flow, and (iii),sequential or

parallel processing. In this work, we use system theory and in particular the

Discrete event system specification (DEVS) formalism to create SOA domain-

specific models for a publish/subscribe SOA service composition. We then

modeled an example prototype scale SOA application in the DEVSJAVA

simulation environment to study the above characteristics using our DEVS-SOA

models. We also conducted simulation experiments and showed the correctness

of the DEVS-SOA models against the prototype SOA system from which the

simulation models were devised.

2

TABLE OF CONTENTS

1. INTRODUCTION... 5

1.1 Problem Definition ... 5

1.2 Report Organization .. 6

2. BACKGROUND... 7

2.1 System Modeling Requirements.. 7

2.2 DEVS Formalism Support ... 8

2.3 DEVS Formalism Constraint.. 8

2.4 Service Oriented Architecture.. 9

2.5 SOA Services .. 9

2.6 Service Composition types .. 10

2.7 Modeling SOA and Related Works.. 11

3. DEVS MODELING OF SOA SYSTEM .. 12

3.1 SOA Service Message .. 12

3.2 Atomic Models For Publish/Subscribe Composition 13

3.2.1 SOA Service Model... 14

3.2.2 Notification Service Model .. 16

3.2.3 Network Model .. 18

3.2.4 Subscription Service Model .. 21

3.3 Publish/Subscribe Broker Service Coupled Model 23

3.4 Implementing DEVS-SOA Models in DEVSJAVA 25

4. MODELING AND SIMULTATION OF A PUBLISH/SUBSCRIBE SOA

SYSTEM IN DEVSJAVA .. 27

4.1 Order Processing System.. 27

3

4.2 Modeling Purpose ... 29

4.3 Model... 30

4.4 Model Inputs.. 33

4.4.1 Input Variables .. 33

4.4.2 Inputs Constants and Other Assumptions....................................... 34

4.5 Model Verification.. 34

4.6 Model Validation.. 37

4.7 Simulation and Output Analysis... 38

5. Conclusion and Future Work ... 39

REFERENCES... 40

Appendix A ... 42

4

LIST OF FIGURES

Figure 3.1 Conceptual models of SOA service software components with

different operation types. .. 14

Figure 3.2 Intra-network type service communications 19

Figure 3.3 Inter-network type service communications 20

Figure 3.4 UML Component model of a publish/subscribe broker service and its

relationship with publisher and subscriber services.. 23

Figure 3.5 Publish/subscribe broker, its components, message types involved

and their flow.. .. 24

Figure 3.6 Class diagram of the DEVS-SOA Service messages. 26

Figure 3.7 Class diagram of DEVS-SOA service and Network models............ 26

Figure 3.8 Class diagram of DEVS-SOA publish/subscribe models with their

associations……... 27

Figure 4.1 Conceptual view of a publish/subscribe order processing system .. 28

Figure 4.2 Order processing sequence.. 29

Figure 4.3 Order class diagram.. 30

Figure 4.4 Graphical view of publish/subscribe broker coupled model in

DEVSJAVA simulation environment ... 31

Figure 4.5 Graphical view of the prototype system model and the experimental

frame in DEVSJAVA environment .. 32

Figure 4.6 Timing diagram for base case verification with known constant

processing time value... 35

Figure 4.7 Timing diagram for base case verification using known probable

values……… .. 36

Figure 4.8 Comparison of system and model total transaction time processing

per order….. ... 37

LIST OF TABLES

Table 4.1 Input variables summary for participating services in composition . 33

Table 4.2 Performance metrics for DEVS-SOA models.................................. 38

5

1. INTRODUCTION

1.1 Problem Definition
There is increasing demand in software systems area for more functionality,

distributed processing, reuse and integration. Due to this, service oriented

architecture has drawn more attention from both academic and industrial

communities. Leading vendors and standard organizations have put forth various

standards and solutions; however there is no universally accepted tool or

approach for modeling a service-oriented architecture (SOA) based on the

following system characteristics [ZD63, Wym93, ZPK00]:

(i) flat or hierarchical composition

(ii) feed forward or feedback type message flow

(iii) sequential or parallel processing

Modeling and Simulation (M&S) techniques can provide scientific basis for

decision making at all stages of a software system life cycle. For example, in

evaluating various design alternatives at the early architectural design stage of a

system, to measuring the systems operation effectiveness for various possible

operational changes. To conduct meaningful simulation studies, the models

developed should represent the source system with adequate accuracy. SOA-

based systems deliver composite applications by meeting the increasing

demands for scalability and reusability. Therefore, when modeling SOA-based

systems, it is imperative that a modeler should also create scalable and reusable

models.

A general and straightforward way to achieve scalability and reusability is, by

abstracting the domain specific characteristics and the general system

characteristics into separate layers, and cataloging the system models based on

this separation. Domain specific details for a SOA-based system includes the

6

implementation logic of participating component services, the composition type

they follow, and SOA service specific details like message, operations, transport

etc, in order to fulfill their functional requirements. Similarly, the general system

characteristics can be derived from the systems view of a SOA-based system as

listed above. This naturally leads us in creating scalable and reusable SOA

domain specific system models based on domain neutral model formalisms, as

found in [SSG04], for semiconductor supply chain domain.

Systems theory formalisms, like for example Discrete Event Systems (DEVS)

[Zeigler, et al., 2000], has well laid out foundation around the three system

properties. In this project, we first attempt to create SOA domain specific

publish/subscribe composition models in DEVS formalism based on the three

system characteristics, implement the DEVS-SOA models in DEVSJAVA

[DEVS04] M&S environment, use the implemented models to model a prototype

SOA system having the three system properties, perform model validation and

simulate the model for various simple scenarios. Besides, the simulation study

has also led us understand the system properties based on which the models

were created, play an important role in performance metrics calculation and can

provide inputs for deriving optimal architectural design.

1.2 Report Organization
The remaining portions of this report have been organized in five chapters.

Chapter 2 details the relevant background information on system modeling

requirements, DEVS formalism and its support for modeling, DEVS constraints,

SOA, modeling SOA using DEVS formalism, and related works found in our

literature review. Chapter 3 describes the DEVS-SOA models we developed in

the context of publish/subscribe SOA composition, and implementation details of

the DEVS-SOA models in the DEVSJAVA [DEVS04] M&S environment. Chapter

4 includes details of an example prototype system developed, modeling and

simulation of the prototype system using our DEVS-SOA models. In Chapter 5

we discuss our results and possible future extensions to this work within the

7

publish/subscribe composition scheme as well as to other SOA service

composition schemes.

2. BACKGROUND

2.1 System Modeling Requirements
A system can generally be expressed by its structure and behavior using a

formal notation, and system theory primarily deals with these two aspects.

[Zeigler, et al., 2000] has details on classifying the specification with respect to

the amount of detail one has, and can express the system formally. By viewing a

system as components arranged in a hierarchical or a flattened topology, and be

able to predict outputs from each component based on their state, or states and

inputs, we are attempting to study and model the system as interacting I/O

system components, which can be expressed at flat and hierarchical coupled

component levels of specification. It is essential that, when choosing a modeling

formalism to express the interacting components, the larger system they form by

composition, must also be expressed as an equivalent basic model in that same

formalism.

Besides, a modeler may represent the system based on two other system

characteristics known as sequential or parallel processing and feed forward or

feedback. At I/O system level, a sequential processing component can only

accept and process one input at a time, and at a coupled component level it

means there could be only one active processing component while the other

components are idle. Similarly, parallel processing of a component at an I/O

system level means, the component is capable of accepting simultaneous input

events, but would process one event at a time, and at the coupled component

level it means that, there could be more than one active component at a time. A

system may have a feed forward only control flow, where inputs enter and leave

the system at some point without revisiting any of the system components. In

8

other cases, the system can also have feedback control flow to maintain some

desired the control flow logic or be stable. Either way, it has significant impacts

on the overall system behavior, because the inputs either leave the system

quicker, or don’t leave the system or be in the system for prolonged duration.

Therefore, these essential system characteristics shall naturally form basic

requirements for a modeler and the chosen formalism should be able to support

them.

2.2 DEVS Formalism Support
[Zeigler, et al., 2000] provides DEVS formalism for both atomic and coupled

models and further classifies them into classic and parallel [CZ94] models.

Closure under coupling is proved for these formalisms and hence the hierarchical

model construction to represent system of systems is feasible. Parallel DEVS

formalism has the confluent function to ensure avoiding the collision caused by

the simultaneous events, and the input processor buffer to store the inputs

arriving, when the model is already processing an input.

2.3 DEVS Formalism Constraint
DEVS formalism supports zero processing time for a model component. Hence, it

has constraints on the feedback flow to avoid deadlock. A DEVS model

component cannot have a direct feedback to itself and can only have a feedback

to itself through another model component. This constraint does not have

impacts in modeling a SOA-based system because; a service can only call an

operation within itself through a network component it is connected. Based on the

support DEVS formalism has for flat and/or hierarchical, sequential or parallel

model construction (as discussed in Section 2.2) and the constraint on feedback

control flow, we understand that DEVS formalism can be used to model a SOA

system based on the three system properties we are interested, provided if we

were able to specify the component services at the I/O system level, and their

interactions at the coupled component level.

9

2.4 Service Oriented Architecture
Service oriented architecture (SOA) is an architectural style that attempts to

solve the issues of software reuse, distributed computing and integration. It

primarily supports the server side processing that is needed. In SOA, services

are building blocks. They use service message to communicate with other

services, irrespective of the platform they are developed and executing on. They

can be composed to form larger systems. From a simple service to a larger

system they form, they all comply with the service computing principles [Tho06].

The three party model of service provider, service broker or repository and

service consumer together form a SOA-based system implementation. Web

service is a SOA implementation based on HTTP and HTTPS transport layers.

2.5 SOA Services
The building blocks in service oriented architecture are services, which are able

to send and/or receive messages, in a pre-defined format, to fulfill a unit of work

[Tho06]. The discovery of a service can be enabled through a service broker.

The discovery process can be of dynamic type occurring during runtime, or a

static type occurring during design time. Either way, the discovery is necessary

for a SOA system composition in an ad hoc services network environment. In this

work we have assumed the network of services is not ad hoc, and we know the

participating service’s interface details during the design time. Hence, we

excluded modeling of the service broker component.

The services can be atomic or of composite nature. SOA services have

interface(s) that are well defined, discoverable and can be loosely coupled with

other services. Interface definitions are also called as service contract. It consists

of service endpoint definitions which provide information about the network

address, protocol to access, service operation, and input and output message

formats. A service can also be called as a collection of endpoints.

Communication between SOA services essentially happens through a network

medium, and does not happen directly by object or function calls, as found in a

conventional component based system that executes on a single computer. SOA

10

service must have a valid network address for other services to communicate.

There are circumstances where a service could also communicate with itself by

calling one of its operations. In that case, the request is first directed to the

network infrastructure, the address is resolved in the network and then the

request reaches back to the invoked service operation.

2.6 Service Composition types
Services are required to transmit messages with other services to fulfill business

logic. The message exchange with other services is done by following certain

message exchange or service interaction patterns. These patterns are templates

that could be simple messaging patterns like “Request-Response”, “Fire and

Forget”, to a more complex business process. More detailed information on each

of them can be found in [Tho06]. By following these patterns, services can be

combined to form a composite service. In this work we came across

publish/subscribe, co-ordination, orchestration and choreography composition

schemes. We found publish/subscribe composition scheme can possibly involve

all the basic messaging patterns, it is less complex than other composition

schemes by not having the control flow and the co-ordination logic, and a good

starting point for our study in modeling SOA-based systems. Hence

publish/subscribe was chosen to study in detail.

 Publish/subscribe type communication is mainly to address the asynchronous

communication need between distributed software applications. It achieves its

maximum benefits by decoupling the participant applications with respect to

space, time and synchronization [EFGK03]. It has evolved from traditional RPC

style communication to current transport independent, web service based

communication. The advantages are transport and platform independence due to

SOAP and XML message use, robust message filtering and quality of service

(QoS) needs like reliability, transactions are now easily defined in the message

specifications itself [Tho06].

There are two major specifications for web services based on publish/subscribe

system. They are WS-Eventing [W306] and WS-Notification [OASIS04]. The WS-

11

Notification has three other subsets of specifications as WS-Base Notification,

WS-Brokered Notification and WS-Topics. [HG06] has done extensive

comparison between WS-Eventing and WS-Notification specifications and has

found that, there are several common features among both specifications at the

component level functionalities; however, they differ by the message formats

they support and are incompatible with each other. This project analyzed the two

specifications, used the component level functional similarities for the publisher

service, subscriber service, and the publish/subscribe broker service to derive a

possible publish/subscribe system architecture. Based on that system

architecture; we developed DEVS-SOA models and a prototype system to

validate the model.

2.7 Modeling SOA and Related Works
Detailed analysis on workflow patterns using Colored Petri-Net (CPN) to derive

evaluation criteria for leading vendor solutions and SOA standards can be found

in [Rus06]. Formal description of the workflows has been given in the form of

CPN models. Activities in a workflow has been modeled as transitions, the before

and after processing state of an activity are modeled as input and output places,

and the control flow of each case in the workflow has been represented through

tokens of different colors. The authors have identified different workflow patterns,

their interrelationships and their supportability by leading vendor solutions and

various SOA standards. [WTT06] presents SOA architecture classification

(SOAC) schemes for SOA-based applications using properties like application

structure, ability to change composition at runtime, fault tolerance and system

engineering support in the application life cycle. [DPM06] finds that π-calculus is

better suited for expressing service interactions in a workflow, than Petri-Net. The

author’s conclusion is based on the aspects of modeling difficulties Petri-Net

pose for connections between many potential interaction partner services for an

interaction, their combinations based on control flow decisions, and its static

nature. Nevertheless, we were able to see earlier works using Petri-Net, and

process algebra; they only address certain aspects of modeling SOA-based

systems. To the best of our knowledge, there is no universally accepted formal

12

specification for SOA systems, based on the three system properties we

discussed earlier, and extend their benefits using M&S tools for analysis.

3. DEVS MODELING OF SOA SYSTEM

A service oriented architecture system consists of services satisfying service

computing principles [Tho06], and composition scheme. The composition can be

either one or combinations of publish/subscribe, coordination, orchestration and

choreography. In this project we discuss in detail the modeling of a SOA system

based on publish/subscribe composition. It contains service components

performing publishing and/or subscribing activities using a publish/subscribe

broker coupled component. The publish/subscribe broker coupled component

contains the notification service for routing publications received from publisher

services to subscriber services, and the subscription service to enable subscriber

services to register their subscriptions. The subscription service also provides the

subscribers list to notification service upon request, for publication delivery

purpose. We model the notification and the subscription services as variants of

the SOA service model. Service communication is enabled by the network

infrastructure to which the services are connected and by the service message

itself. Hence, we have also included service message model and the network

model in our modeling exercise of the SOA system. In this chapter, we describe

DEVS modeling of SOA services that defines their operation by using HTTP

transport layer, and publish/subscribe based composition scheme. Next, we

discuss an implementation of the DEVS-SOA models in the DEVSJAVA

[DEVS04] modeling environment.

3.1 SOA Service Message
Services receive and/or produce service transport messages. Their format

depends on the network transport layer the service endpoint(s) have binding to.

13

However, they encapsulate the same SOAP message format irrespective of the

transport; a service operation’s endpoint binding is based on. For example, a

service operation might belong to an endpoint that could support either one of the

common transport protocols like HTTP(S), TCP, MSMQ, SMTP, FTP etc., but the

structure of the SOAP message is transport independent and their data contents

might vary as defined by the service message. In this project we model a service

transport message as HTTP based, and provide a placeholder to contain the

SOAP message to or from a service.

3.2 Atomic Models For Publish/Subscribe Composition
Structural and behavioral aspects are very important when modeling a system or

a system component. The level of details a modeler would be interested is

another key factor in the modeling exercise. At the level of input / output

conceptual view of a SOA service, we see both the structure and behavioral

aspects of the service are defined by its service operations. The structural

components are the list of service operations, and the pre-defined message

structure they support processing as inputs and/or for producing outputs. The

service behavior mainly corresponds to the logic embedded in an operation and

its messaging type. For example, a service operation could be of either

request/response or solicit request/response or notify request or one-way request

type. Figure 3.1 represents conceptual I/O models of SOA service software

components (S1, S2 and S3), with different service operations O1, O2, O3, and

O4 and their operation types;

14

Figure 3.1 Conceptual models of SOA service software components with different
operation types.

A SOA service is always connected to a network infrastructure and remains idle

until it receives some service requests. The requests can arrive for a service

operation at any discrete time points. The service then becomes busy processing

the received message and may send output in the predefined format as a result

of the service operation to the network it is connected. All messaging routing

tasks are done by the network to the required destination. Any message received

while it is busy, may be lost. However, if the service has ability to process

simultaneous messages concurrently, or can add to a queue for later processing,

the service can ensure processing all the request messages it receives. The

service resumes its “Wait” or idle state after processing all the messages.

Therefore, when analyzing at I/O system level, we find that a SOA service can be

modeled using a Parallel DEVS atomic model [Zeigler, et al., 2000] with input

processor and queue, thus having the ability to accept and process simultaneous

inputs.

3.2.1 SOA Service Model

The model specification for a SOA service using parallel atomic DEVS formalism

is given as below;

DEVS service = (Xin, Yout, S, δext, δint, δcon, λ, ta),

where

Input port set IPorts = {“in”}

Output port set OPorts = {“out”}

Input message set Xrequest = {valid service request messages, invalid message}

= service request message set = {Xi1, Xi2, Xi3, …, Xij}

i ∈ service operation set; j = no of service message received

Output message set Yresponse = {service response messages}

 =service response message set = {Yi1, Yi2, Yi3….Yij}

Input events = Xin = {(p, v) | p∈ IPorts, v∈ Xrequest}

Output events = Yout = {(p, v) | p∈ OPorts, v∈ Yresponse}

15

Phase = {“passive”, “servicing”}

“passive” phase represents the idle state of the service, and “servicing” phase represents
the busy state of the service when it is processing the inputs it received .

σ = service operation processing time set = {σ1, σ2, σ3,…, σi}

Sequential states set S = {“passive”, “servicing”} × σ × Xin

δext = {“servicing”, σi, Xin} if phase = passive

δint = {“servicing”,σi, X′in} if phase = servicing and queue length > 0 and the inputs are

placed in the queue and removed from the queue to process, in the same order they were

originally received and X′in ⊂ Xin

= {“passive”, ∞} if phase = servicing and queue length = 0

δcon = δint is applied first and then the δext

λ = λ(“passive”, ∞) =∅, no output is produced

=λ(“servicing”,σi, (Xij, “in”)) = (Yij, “out”)

 where Xij ≠ invalid request message for operation i

ta = ta(“servicing”,σi, (Xij, “in”)) = σi , and σi > 0

= ta (“passive”, ∞) = ∞

In a publish/subscribe composition, a SOA service can also subscribe for certain

events with the subscription service. Therefore, it has an initial phase called

“subscribing” and we have assumed the corresponding sigma value as zero. The

resulting output function generates a subscribe message to the subscription

service (see Section 3.2.4), and the model then goes into passive state. In our

work, we assumed that the subscribe service has no subscription timeout, and

only subscribes initially. The corresponding model components for a subscriber

service that differ from the SOA service model are given as below;

Output message set Yresponse = {service response messages, subscribe message}

 Service response message set = {Yi1, Yi2, Yi3….Yij}

 Subscribe message = Ys

Phase = {“subscribing”, “passive”, “servicing”}

16

“subscribing” phase is when a subscriber service prepares the subscription message and
sends it to the subscription service.

Sequential states set S = {“subscribing”, “passive”, “servicing”} × σ × Xin

δext = {“subscribing”, 0} at simulation time zero

= {“servicing”, σi, Xin} if phase = passive

δint = {“passive”, ∞} if phase=subscribing

= {“passive”, ∞} if phase = servicing and queue length = 0

= {“servicing”, σi, X′in} if phase = servicing and queue length > 0 and the inputs are

placed in the queue and removed from the queue to process, in the same order they were

originally received and X′in ⊂ Xin

δcon = δint is applied first and then the δext

λ = λ(“subscribing”, 0) = (Ys, “out”) subscribe message

= λ(“passive”, ∞) =∅, no output is produced

= λ(“servicing”,σi, (Xij, “in”)) = (Yij, “out”),

 Where Xij ≠ invalid request message for operation i

ta = ta(“servicing”,σi, (Xij, “in”)) = σI , and σi > 0

= ta (“passive”, ∞) = ∞

= ta (“subscribing”, 0) = 0

3.2.2 Notification Service Model

SOA services may publish messages, which are basically a specific message

type already registered with the notification service as publications. In our work

we assume that all publisher and subscriber services know what publications are

available, and hence we excluded modeling the publication management

functionality within the notification service. Notification service communicates

with subscription service (see Section 3.2.4) to get the list of subscriber services,

only after it receives a notification from any of the publisher service. It waits for

the subscription service to respond with the subscriptions list. Once it is received,

the notification service then notifies all those subscribers in the subscriptions list

with the notification service message. Notification service also adds all the

17

notifications to its input buffer in the order it was received, while it is waiting for

the subscription service to respond with the subscriptions list. All these service

communication happen through the network infrastructure. The notification

service is modeled as a parallel DEVS atomic model, with input processor and

queue; the specification is given as following;

DEVS Notify service = (Xin, Yout, S, δext, δint, δcon, λ, ta),

Input port set IPorts = {“in”}

Output port set OPorts = {“out”}

Input message set Xrequest = {notification messages, subscriptions list messages}

Output message set Yresponse = {notification messages, getSubscriptionList message}

Input events = Xin = {(p, v) | p∈ IPorts, v∈ Xrequest}

Output events = Yout = {(p, v) | p∈ OPorts, v∈ Yresponse}

Phase = {“passive”, “gettingSubscribers”,”waitingForSubscriptions”, “servicing”}

“passive” phase represents the idle state of the service, “gettingSubscribers” phase is
when it sends the request to subscription service for getting the subscriptions list for the
notification it received, “waitingForSubscriptions” phase is when it waits for the
subscriptions list from the subscription service, and “servicing” represents the busy state
of the service when it is processing a received notification and needs to send out
notification for subscriber services present in the subscriptions list.

σ = notify operation processing time

Sequential states set = S

S = {“passive”, “gettingSubscribers”,”waitingForSubscriptions”, “servicing”} × σ × Xin

δext = {“ gettingSubscribers”, 0, Xin}

If phase = passive and v = notification message

= {“servicing”,σ, Xin}

if phase = waitingForSubscriptions and v = subscriptions list message

δint = {“waitingForSubscriptions”, ∞} if phase = gettingSubscribers

= {“passive”, ∞} if phase is servicing and queue length = 0

= {“gettingSubscribers”, 0, X′in}

If phase is servicing and queue length > 0 and v = notification messages added and

removed from the queue in the order they were received and X′in ⊂ Xin

18

δcon = δint is applied first and then the δext

λ = λ(“passive”, ∞) =∅, no output is produced

= λ(“waitingForSubscriptions”, ∞) = ∅

= λ(“gettingSubscribers”, 0, Xi) = Yout = (Ys, “out”)

Ys ≡ getSubscriptionList message

= λ(“servicing”,σ, (Xs, “in”), Xn) = Yout = { (Y1, “out”), (Y2, “out”),…. (Yn, “out”)}

Xs ≡ subscriptions list message with n subscriptions.

Xn is the notification message it originally received, added to the queue in
the order it was received and then removed from the queue for
processing.

Yn ≡ outgoing notification message to the nth subscriber service

ta = ta (“passive”,∞) = ∞

= ta (“gettingSubscribers”, 0, Xin) = 0 where v = notification message

= ta (“waitingForSubscriptions”, ∞) = ∞

= ta (“servicing”, σ, (Xs,”in”)) = σ and σ >0

3.2.3 Network Model

Network infrastructure has an important role in any SOA system. Its primary role

is to route the service messages to the correct destination. As described in

Section 3.1, the service messages are transport based, hence the network

infrastructure shall be able to route service messages of all transports. In this

work, we have assumed the transport is HTTP based. A service communicates

to any other service or to itself, only through a network infrastructure. The routing

is done by inspecting the service message contents for source and destination.

The following Figure 3.2 shows how a service communication is made to another

service in an intra-network type environment. Similarly a service can also

communicate with other services located in different networks. In this case, we

use same the network model as another component called global network, which

we assume to have connection with all other network components, and has the

extra HTTP message routing ability to any network component it has connection

19

with. The following Figure 3.3 shows the inter-network type of service

communication.

Service2

Network
(with address N1)

Outgoing HTTP message with
To address as
N1/service2 Routed HTTP message with

To address as
N1/service2

Service1

Figure 3.2 Intra-network type service communications

20

Service3

Service2

Network
(with address N1)

Outgoing HTTP message with
To address as
N3/service4

Service1

Global Network Network
(with address N3)

Network
(with address N2)

Service4

Routed HTTP message with
To address as
N3/service4

Routed HTTP message
with

To address as
N3/service4

Routed HTTP message with
To address as
N3/service4

Figure 3.3 Inter-network type service communications

We have modeled the network component as parallel DEVS processor model

with input buffer.

DEVS Network = (Xin, Yout, S, δext, δint, δcon, λ, ta),

where

Input port set IPorts = {“in”}

Output port set OPorts = {“out”}

Input message set X = {service messages}

Output message set Y = {service messages}

Input events = Xin = {(p, v) | p∈ IPorts, v∈ X}

Output events = Yout = {(p, v) | p∈ OPorts, v∈ Y}

21

Phase = {“passive”, “servicing”}

σ = 0

Sequential states set S = {“passive”, “servicing”} × σ × Xin

δext = {“servicing”, 0, Xin} if phase = passive and multiple messages arriving at the same
time

δint = {“passive”, ∞} if phase = servicing and queue length = 0

= {“servicing”, σ, X′in} if phase = servicing, and queue length > 0 and v = service

messages added and removed from the queue in the order they were received and X′in ⊂

Xin

δcon = δint is applied first and then the δext

λ = λ(“passive”, ∞) =∅, no output is produced

= λ(“servicing”, 0, Xin) = Yout

ta = ta (“servicing”, 0, Xin) = 0

= ta (“passive”, ∞) = ∞

3.2.4 Subscription Service Model

Subscription service is part of the publish/subscribe broker coupled components.

It keeps track of all subscription details. A subscription consists of the subscriber

service address, and the event it has subscribed. Services subscribe to a

particular event using the subscription service. Notification service (as discussed

earlier in Section 3.2.2) queries the subscription service for subscribers, when it

has an event to notify. Based on the subscriber list provided by the subscription

service, the notification service then notifies the event details to services in the

subscriber list. The model specification for a subscription service is same as that

of a SOA service model, except, that the inputs and outputs are specific to the

subscription. The inputs are of “getSubscriptionList” message from notification

service, and the “subscribe” message from subscribing services. The output

message is of type “subscribers list” message. We have modeled the

subscription service component as parallel DEVS processor model with input

buffer.

22

DEVS Subscription service = (Xin, Yout, S, δext, δint, δcon, λ, ta),

where

Input port set IPorts = {“in”}

Output port set OPorts = {“out”}

Input message set Xrequest = {getSubscriptionList messages, subscribe messages}

getSubscriptionList messages = {XgSL1, XgSL2, XgSL3….XgSLn}

subscribe messages = {Xs1, Xs2, Xs3….Xsn}

n ∈ number of events available to subscribe

Output message set Yresponse = {subscriptions list messages}

 subscriptions list messages = {Y1, Y2, Y3….Yn}

Input events = Xin = {(p, v) | p∈ IPorts, v∈ Xrequest}

Output events = Yout = {(p, v) | p∈ OPorts, v∈ Yresponse}

Phase = {“passive”, “servicing”}

σ = 0

Sequential states set S = {“passive”, “servicing”} × σ × Xin

δext = {“servicing”, 0, Xin} if phase = passive

δint = {“passive”, ∞} if phase = servicing and queue length = 0

= {“servicing”, 0, X′in} if phase = servicing, and queue length > 0 and v = service

messages added and removed from the queue in the order they were received and X′in ⊂

Xin

δcon = δint is applied first and then the δext

λ = λ(“passive”, ∞) =∅, no output is produced

= λ(“servicing”, 0, (XgSLn, “in”)) = (Yn, “out”)

= λ(“servicing”, 0, (Xsn, “in”)) =∅, no output is produced for the subscribe request.

ta = ta (“servicing”, 0, Xin) = 0

= ta (“passive”, ∞) = ∞

23

3.3 Publish/Subscribe Broker Service Coupled Model
A publish/subscribe broker is a composite service by itself, consisting of

notification service, subscription service and both connected to a network

infrastructure. The below Figure 3.4 shows the UML component model of a

publish/subscribe broker service software, having its inner service software

components and its relationship with publisher services and subscriber services

software.

Figure 3.4 UML Component model of a publish/subscribe broker service and its
relationship with publisher and subscriber services.

In the Figure 3.4, the network infrastructure between any two services

communication is not shown as they represent the hardware interface that

actually enables the communication at runtime. Figure 3.5 provides the network

graph of a publish/subscribe broker composite service and outlines the message

types involved, and their flow between notification service, network and

subscription service components.

24

Figure 3.5 Publish/subscribe broker, its components, message types involved and
their flow.

The publish/subscribe broker service is modeled as parallel DEVS coupled

model and its specification is given as following;

DEVS pub/sub = (X, Y, D, {Md | d∈D}, EIC, EOC, IC),

InPorts = {“in”}

OutPorts = {“out”}

Xin = {“notification message”, “subscribe message”}

Yout = {“notification message”}

Input events = X = {(p, v) | p∈ IPorts, v∈ Xin}

Output events = Y = {(p, v) | p∈ OPorts, v∈ Yout}

Component set D = {“Notification Service”, “Network”, “Subscription Service”}

25

M Notify service = Notification Service

M Network = Network

M Subscription service = Subscription Service

EIC = {((“Broker”, “in”), (“Network”, “in”))}

EOC = {((“Network”, “in”), (“Broker”, “in”))}

IC = {((“Network”, “out”), (“Notification Service”, “in”)) ,

((“Notification Service”, “out”), (“Network”, “in)),

((“Network”, “out”), (“Subscription Service”, “in”)),

((“Subscription Service”, “out”), (“Network”, “in”)) }

3.4 Implementing DEVS-SOA Models in DEVSJAVA
DEVSJAVA [DEVS04] is an object oriented, scalable, and flexible DEVS

modeling and simulation environment. It has graphic utilities to visualize the

model execution. DEVS-SOA models were implemented in this environment and

packaged as GenWS API. In this work, we have only considered a HTTP based

service message transport and the service models were developed in the context

of publish/subscribe broker based composition. The models have the

“ServiceClock” property to use the atomic simulator clock time at each atomic

component level for any output analysis purpose. The following class diagrams in

Figures 3.6, 3.7 and 3.8 summarize the DEVS-SOA model components and their

associations.

26

Figure 3.6 Class diagram of the DEVS-SOA Service messages.

Figure 3.7 Class diagram of DEVS-SOA service and Network models

27

WSModel

simView::ViewableDigraph

+NotificationWSModel()
+NotificationWSModel(in Name:String)
+initialize()
+ProcessMessage : ArrayList <HTTPMessage>(in httpmsg:HTTPMessage)
+deltext(in e:Double, in x:genDevs::modeling::message)
+deltint()
+deltcon(in e:double, in x:genDevs::modeling::message)
+out : genDevs::modeling::message()
+GetProcessingTime : double(in Operation : String)
+PreprocessInCommingHTTPRequest : Boolean()

#InNotifyQ : GenCol::Queue
#InSubscriptionQ: GenCol::Queue
#ServiceClock: double
#HTTPMsg2Process: HTTPMessage
#OutHTTPMsgList: ArrayList<HTTPMessage>

NotificationWSModel

+PubSubBrokerModel()
+PubSubBrokerModel(in Name:String)
-make()

PubSubBrokerWSModel

+SubscriptionWSModel()
+initialize()
+GetProcessingTime : double(in Operation:String)
+ProcessMessage : ArrayList <HTTPMessage>(in httpmsg:HTTPMessage)

#SubscriptionList: ArrayList<Subscription>
SubscriptionWSModel

SimView::ViewableAtomic

Network

1

1

1

1..*

1

1

A PubSubBrokerWSModel is assumed to be composed of one
SubscriptionWSModel and one or more NotificationWSModel(s).
This assumption is made to support the performance scaling needs
of PubSubBrokerWSModel with addtional notification service
components.

Figure 3.8 Class diagram of DEVS-SOA publish/subscribe models with their
associations

4. MODELING AND SIMULTATION OF A
PUBLISH/SUBSCRIBE SOA SYSTEM IN DEVSJAVA

4.1 Order Processing System
For our modeling purpose, we considered a typical order processing system with

minimum required functionality as an example system. To process incoming

orders, a publish/subscribe composition was developed at a prototype scale

using Microsoft .Net 3.5 WCF framework. The requirements for the prototype

system development were;

28

a) The system shall be composed of multiple SOA services.

b) The services in the system shall interact using a publish/subscribe broker.

c) The system composition shall represent the three system characteristics

listed below;

i. Hierarchical and flattened service topology.

ii. Sequential or parallel processing.

iii. Feed forward or feedback message flow.

The system developed met all the above stated requirements with sequential

message processing capability. Figure 4.1 shows a conceptual view of the

system components and the communication between them.

A Publish/subscribe Order Processing System

Order management System

Publish/subscribe Broker

Order Payment Service Order Shipment Service

Order Receive
Service Order Processing

Service

Notification
Service

Subscription
Service

Order Process

Order
Customer

NewOrder

Customer Notifications

Publish

Publish
 (P

aym
en

t R
eques

t &
 Shipment

Request)

Get
Subscriptions Subscribers

List

Notify(Payment & Shipment Status)

Notify (Payment Request)

Notify (Shipment Requests)

Publish
(Shipment Status)Publish

(Payment Status)

Notification

Notify Customer

Connection pointPublish (Event name) Notify (Event name)

Figure 4.1 Conceptual view of a publish/subscribe order processing system

Each service in the system has the ability to record the processing time for every

message it receives. The sequence of service interactions to complete

processing one order transaction is provided as in the following Figure 4.2;

29

Customer OrderReceive OrderProcessService NotificationService SubscriptionService OrderShipmentServiceOrderPaymentService

Subscribe(PaymentStatus)

Subscribe(ShipmentStatus)

Subscribe(PaymentRequest)

Subscribe(ShipmentRequest)

PlaceOrder(Order)

ProcessOrder(Order)Notify(OrderACK)

Publish(PaymentRequest)

GetSubscriptions(PaymentRequest)

GetSubscriptionsResponse(Subscribers)

Notify(PaymentRequest)

Publish(PaymentStatus)

GetSubscriptions(PaymentStatus)

GetSubscriptionsResponse(Subscribers)

Notify(PaymentStatus)

Notify(OrderConfirmation) Publish(ShipmentRequest)

GetSubscriptions(ShipmentRequest)

GetSubscriptionsResponse(Subscribers)

Notify(ShipmentRequest)

Publish(ShipmentStatus)

GetSubscriptions(ShipmentStatus)

GetSubscriptionsResponse(Subscribers)

Notify(ShipmentStatus)

Notify(OrderShipped)

Figure 4.2 Order processing sequence

4.2 Modeling Purpose
The modeling exercise purposes were to represent the system components at

the I/O system level and the whole system at hierarchical coupled component

level, simulate the system for different transaction arrival rates, observe the

effects of the three system properties in the performance of individual services

and at the prototype system level and finally derive inputs for service

configuration, and make topology changes to scale up system performance.

30

4.3 Model
The system model was developed in the DEVSJAVA environment using the

DEVS-SOA models described in Chapter 3. The component services were

modeled at the I/O system level with ability to select the processing time as

sigma values, from the underlying Input model (see Section 4.4) for each input

message processing. The input messages were actually HTTP message,

encapsulating the SOAP message, which in turn had the Order object serialized

in the SOAP message’s Body (See SOAP message class in Figure 3.6)

property. Figure 4.3 shows the class diagram of the Order class.

GenCol::entity

#OrderId : int
#OrderStatus : String
#OrderOperation : String
#OrderCreatedTime : double
#OrderReceivedTime : double
#OrderSent2ProcessTime : double
#OrderReceived2ProcessTime : double
#OrderSent4PaymentTime : double
#OrderReceivedFromPSTime : double
#OrderSent4ShipmentTime : double
#OrderProcessConfirmTime : double
#PubReceivedForPaymtProcessing : double
#NotificationSent2PaymtProcessing : double
#PubReceivedFromPaymtProcessing : double
#PaidNotificationSent2OrderProcessing : double
#PubReceivedForShpmtProcessing : double
#NotificationSent2ShpmtProcessing : double
#PubReceivedFromShpmtProcessing : double
#ShippedNotificationSent2OrderProcessing : double
#OrderPaymentRequestTime : double
#OrderPaymentConfirmedTime : double
#OrderShipRequestTime : double
#OrderShippedConfirmTime : double
-OrderReceivedFromSSTime : double

Order

Figure 4.3 Order class diagram

Each service process the Order objects and update the operation type, status,

simulation time at which it received the message, and the simulation time at

which it completes processing. The model had similar components services, and

31

topology setup as the prototype system we originally developed (see Section

4.1). The below Figures 4.4 shows the graphical view of the publish/subscribe

coupled model in DEVSJAVA environment.

Figure 4.4 Graphical view of publish/subscribe broker coupled model in DEVSJAVA
simulation environment

To meet our modeling objectives (see Section 4.2) we developed an

experimental frame [ZPK00], which can produce “Order messages” as model

inputs at varying inter-arrival time, and receive model outputs to analyze the

processing time of each service for those input “Order messages”. The

experimental frame is called as “Customers” and is connected to the “APS

system model” as shown in the Figure 4.5.

32

Figure 4.5 Graphical view of the prototype system model and the experimental frame in DEVSJAVA environment

33

4.4 Model Inputs
Model Inputs are the most important driving force for a discrete event model

simulation. They can be input event data, input event inter-arrival time,

processing time for model phase(s), and output event data to be generated.

Selection of the model inputs actually depends on a modeler’s need in

representing appropriate detail of the system, the simulation requirements, and

the simulation execution environment’s ability to support. For example, a

stochastic simulation may be required to model inputs from an underlying

distribution derived from the system of interest to introduce randomness, or

provide constant inputs to simply observe the system dynamics, or reuse the

observed data from the system itself. Selection of appropriate input modeling

exercise is very important to obtain reliable and accurate model outputs.

4.4.1 Input Variables

Based on the Order Processing System of our interest outlined in Section 4.1,

and the modeling objectives as outlined in Section 4.2, we considered to model

the service processing time for each operation type and order inter-arrival time.

The following Table 4.1 has Service processing time input variables at each

service level.

Service Operation Input variables based on the type of
message being processed

Order Receive Service OrderReceive OrderReceive

Order Process Service Notify PayRequest

ShipRequest

SendOutFinalConfirmation

OrderPayment Service Notify PayRequest

OrderShipment Service Notify ShipRequest

Notification Service Publish NotifyPayRequest

NotifyPaid

NotifyShipRequest

NotifyShipped

Table 4.1 Input variables summary for participating services in composition

34

The order inter arrival time for simulation in steady state was considered as 0.5

transactions per second, and variable input inter-arrival cases with 1, 2, 3, 4 and

5 transactions per second.

From the system, the processing time variables as in Table 4.1 were sampled

and found to have dependency among each individual variable values. That is,

as order id increases the processing time variable value also increases. This is

due to the fact that we executed the prototype system in a single computer, and

all the services were sharing the same database for processing time updates.

Hence, the stochastic input modeling was not performed, and we decided to use

the raw data sampled [BN02] out of the 8000 order processed, as model inputs

for the ten service processing time variables (see Table 4.1).

4.4.2 Inputs Constants and Other Assumptions

The prototype system of our interest was run on a single computer, and the

subscription service was defined as simple database lookup operations, which

we were not interested in initial system observations. Hence, we assumed the

processing time for all network components and the subscription service to

provide the subscription list, as zero processing time (see Section 3.2.4).

The inputs are assumed to be stationary, hence the arrival rates as discussed in

Section 4.4.1 are to be constant in our simulation experiments. We noted that, by

assuming a constant arrival rate we induce a discrete time simulation rather than

a discrete event simulation. The system model is capable of processing non

stationary inputs, however considering the prototype system analysis nature and

the resource constraints in this study, for this initial simulation runs, we decided

to have this constant model input rate.

4.5 Model Verification
Initial base case scenarios were executed to verify model correctness from the

model outputs. The base case scenarios were assumed with a known constant

value of 1, and known probable values in between 2 and 4 simulation time steps

for each service processing time. The following Figures 4.6 and 4.7 show the

35

timing diagram plot for these two base cases and how the model verification was

done.

Figure 4.6 Timing diagram for base case verification with known constant processing
time value

In the base case verification with known processing time, each processing time

input variable was assigned with value of one simulation time unit and the

expected and observed total processing time were compared and found to have

36

the same value of 10 simulation time steps. By this we ensured that our model’s

processing logic (APS System Model shown in Figure 4.5) is correct for known

discrete processing time values.

O
rder

R
eceive

O
rder

P
rocess

-P
aym

nt

N
otify –

Process
P

ay
P

rocess
Paym

nt
N

otify
paid

O
rder

P
rocess -
Ship

N
otify

S
hip

P
rocess -

Shipm
nt

N
otify -

S
hipped

O
rder

Process -
C

onfirm

N
ew

O

rd
er

P
rocessed
O

rder

Figure 4.7 Timing diagram for base case verification using known probable values

In the base case verification with known probable processing time values, each

processing time input variable was assigned with probability value between one

and two simulation time steps. The expected and observed processing time for

each input processing time value were compared and found to have the value

between one and two simulation time steps. The total processing time calculation

was also found to be correct, based on the observed individual service

37

processing time. By this we ensured our model’s processing logic is correct for

stochastic input processing time values.

4.6 Model Validation
As discussed in Section 4.4.1, we provided the model with processing time

values observed for 8000 transactions, and executed the simulation under steady

state condition. The model and the system outputs were exactly same for all

8000 transactions. The below plot in Figure 4.8 shows the system and the model

transactions time are same for each order in the first 100 transactions

Figure 4.8 Comparison of system and model total transaction time processing per
order

38

4.7 Simulation and Output Analysis
The input arrival rate was varied from 1 to 5 transactions per simulation time step

and the service performance time output variable values were collected during

separate simulation runs. We were able to calculate metrics as listed in the below

table;

Metrics Calculation
Service Throughput
(Transactions/
Simulation time steps)

= Number of Transactions processed / Total elapsed simulation time units

Response Time
(simulation time
steps)

= Average processing simulation time units of the service model

Queue Length (or
average no. of
transactions in the
system and waiting to
be processed)

 Based on the discrete time simulation we had
Queue length = Input arrival rate * Average response time

Service Utilization (%) =Total service simulation time units / Total system observation simulation time

Service Demand
(simulation time
steps)

= No of visits at that service by the same transaction * Average service time
per visit

Table 4.2 Performance metrics for DEVS-SOA models.

From the analysis, we see the effect of the feedback message flow in both the

order processing and notification service, and eventually affecting the system

response time as well as the system queue length. We assumed the network

components have zero processing time. There will be significant effect in the

system’s overall performance if we would have taken any value greater than

zero. The model had parallel processing capability during the simulation run,

however to achieve increased performance, we still need to add with multiple

processors model for the services like order receive, order process and the

notification services. See Appendix A, for the throughput, response time, system

model queue length, service utilization, and service demand analysis results.

39

5. Conclusion and Future Work
This work has attempted in modeling a SOA-based system, based on the three

system characteristics and created DEVS-SOA models for a publish/subscribe

service composition. We were able to model an example prototype system

having all of the three system properties. We see that publish/subscribe

composition is suitable for systems with sequential or parallel processing,

hierarchical and/or flattened topology, feed forward or feedback control flow

characteristics. Additionally, we have analyzed the example prototype system

performance using our DEVS-SOA models in DEVSJAVA simulation

environment.

The DEVS-SOA models we developed is suitable for any type of service

operation, however they can be further customized for a specific operation type,

for example, notify request only. The notification service can be extended to

handle the registration of publication types . Similarly the subscription service can

also be extended to handle subscription timeouts, and content based

subscription. During our literature review, we came across dynamic DEVS or

DSDEVS [Barros95] formalism that supports changes in the model structure, and

by preserving the model’s closure property. We believe an extension of our

DEVS-SOA in DSDEVS formalism can support change in the model structure

during simulation. Addition of service instances as processors, based on a

coupled component’s queue length can increase the processing capability for

that coupled component. We believe after analyzing other composition schemes

like co-ordination, orchestration, and choreography, our DEVS-SOA service

models can be extended to support them.

40

REFERENCES

[CZ94] Alex ChengHen Chow, Bernard P. Zeigler, “Parallel DEVS: A

Parallel, Hierachical, Modular Modeling Formalism”, Proceedings of

1994 Winter Simulation Conference, 1994.

 [Barros95] Fernando J. Barros, “Dynamic Structure Discrete Event System

Specification: A New Formalism For Dynamic Structure Modeling

And Simulation”, Proceedings of the 1995 Winter Simulation

Conference, 1995.

[BN02] B Biller, BL Nelson, “Answers To The Top Ten Input Modeling

Questions”, Proceedings of the 2002 Winter Simulation

Conference, 2002

 [DEVS04] ACIMS,DEVSJAVASoftware,

http://www.acims.arizona.edu/SOFTWARE/software.shtml#DEVSJ

AVA, January 2004, accessed date 04/30/2008.

[DPM06] Decker, G., Puhlmann, F., Weske, M.,"Formalizing Service

Interactions.", Proceedings of the 4th International Conference on

Business Process Management (BPM 2006), http://bpt.hpi.uni-

potsdam.de/pub/Public/MathiasWeske/bpm2006-interaction-

short.pdf , accessed date 05/10/2008.

[EFGK03] “The Many Faces of Publish/ Subscribe”, Patrick TH. Eugster,

Pascal A. Felber, Rachid Guerraoui, Anne-Marie Kermarrec. ACM

Computing Surveys, Vol 35, No 2, 2003 June.

[HG06] “A Comparative Study of Web Services-based Event Notification

Specifications”, Yi Huang and Dennis Gannon, 2006, Proc. of the

Int. Conference on Parallel Processing Workshop, IEEE.

41

[Oasis04] WS-Base Notification V1.3 & WS-BrokeredNotification V1.3

specification, http://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=wsn, 10/1/2004, Accessed Dt 02/16/2008.

[Rus06] N. Russell, Arthur.H.M. ter Hofstede, W.M.P. van der Aalst, and N.

Mulyar. Workflow Control-Flow Patterns: A Revised View., 2006,

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-

22.pdf, Accessed Dt 05/25/2008

 [SSG04] Ranjit K Singh, Hessam S. Sarjoughian, Gary W. Godding, “Design

of Scalable Simulation Models for Semiconductor Manufacturing

Processes”, http://www.modelingandsimulationorg/issue12

/Singh.html, accessed date 02/03/2008.

[Tho06] Thomas Erl, “Service-Oriented Architecture Concepts, Technology

and Design”, Prentice Hall, June 2006.

[W306] http://www.w3.org/Submission/WS-Eventing/, 03/15/2006, WS-

Eventing.

[WTT06] W.T.Tsai, Chun Fan, Y. Chen, Ramond Paul, Jen-Yao Chung,

“Architecture Classification for SOA-Based Applications”,

Proceedings of IEEE International Symposium on Object and

Component Oriented Real-time Distributed Computing, 2006.

[Wym93] Wymore, A. W., Model-Based Systems Engineering: An

Introduction to the Mathematical Theory of Discrete Systems and to

the Tricotyledon Theory of System Design, CRC Press, 1993

[ZD63] Zadeh, L.A., and Desoer C. A., Linear System Theory, McGraw-

Hill, New York, 1963.

 [ZPK00] Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim. “Theory of

Modeling and Simulation”, 2000, Academic Press.

42

Appendix A
In all graphs, the STU = simulation time units.

Throughput analysis

The throughput analysis shows publish/subscribe broker service, order process

service and the order receive service requires more processing capability for

increased throughput need. The publish/subscribe broker service is having the

least throughput capacity because of the effect of more feedbacks it receives in

the transaction flow, than the order process service.

43

Response time analysis

The response time for publish/subscribe, order process, and order receive need

to be reduced by increasing the processing capability. However, the graph shows

that any increase in both publish/subscribe service and order process service will

not show benefits, unless the order receive service has sufficient processing

power by not increasing its queue and cause bottleneck.

44

System model queue length analysis

The queue length analysis shows the average number of transactions still in the

model system and waiting to be processed. The queue length increases

considerably even with a slight change in the transaction arrival rate.

Service utilization and service demand analysis

Service utilization % graph shows that, the order receive service should process

more number of orders, in order to increase the utilization % of any other service

45

in the system. The service demand analysis shows that, the number of feedback

to a service and the amount of time an order is waiting in a service queue

increases the service demand. Here, the publish/subscribe, order process and

the order receive needs more processing capacity to reduce the service demand.

