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Abstract. We present a concise, generic, and configurable new partitioning approach for de-
composable, modular, and multi-scale constructive models. A Generic Model Partitioning (GMP)
algorithm decomposes a given multi-scale model to a set of partition blocks based on a cost mod-
eling and analysis method in polynomial time. It minimizes model decompositions and constructs
monotonically improved partitioning outcomes during the partitioning process. The cost model-
ing and analysis method enables translating subjective, domain-specific, and heterogeneous resource
information to objective, domain-independent, and homogeneous cost information. By translating
models to a homogeneous cost space and describing partitioning logics over the space, the proposed
algorithm utilizes domain-specific knowledge to produce the best partitioning results without any
modification of its programming logics. As a consequence of its clean separation between domain
specific partitioning requirements and goals, and generic partitioning logic, the proposed algorithm
can be applied to a variety of partitioning problems in large-scale systems biology research utilizing
distributed and parallel simulation. It is expected that the algorithm improves overall performance
and efficiency of in silico experimentation of complex multi-scale biological system models.
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1. Introduction. Given the challenges faced by the emerging new field of sys-
tems biology [1–3], multi-scale constructive simulation modeling is an attractive ap-
proach for describing large, complex, multi-scale biological systems. It is expected to
enable representing aspects of structural and behavioral characteristics of a multi-scale
system hierarchies of components interacting with each other and their environment.
Heterogeneous and multifaceted system features can also be represented within such
models. Such Aggregations are often infeasible or difficult for the more traditional
equation-based inductive models.

However, efficient execution of complex multi-scale simulation models is challeng-
ing. The models are easily exposed to low degrees of parallelism and are also prone
to non-superlative resource distribution to a set of computational entities (e.g., pro-
cessors) in distributed and parallel computing environments. In order to increase the
degree of parallelism while optimizing resource allocation and managing core M&S
issues, we need to consider computational and resource management issues. Promi-
nent among these issues are model partitioning, model deployment, remote activa-
tion, parameter sweeping and optimization, and experimentation automation [4, 5].
Model partitioning constructs a set of fine-grain component models from a coarse-
grain multi-scale model. Model deployment dispatches the decomposed models to the
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set of computational entities based on a certain heuristic. Remote activation reac-
tively launches a simulator with a model and builds communication channels with
other simulators when the model is available within the simulator’s computational
boundary. Parameter sweeping and optimization minimizes exploration of uninter-
ested parameter spaces. Experimentation automation pipelines a series of distinctive
experimental phases to an automated workflow for the efficient execution of a large-
scale in silico experiment or large numbers of distinctive but repetitive experiments.
Among those issues, this paper focuses on the issue of partitioning.

Multi-scale model partitioning plays a key role in efficient execution of complex
multi-scale simulation models. By decomposing a complex multi-scale model to a set
of component models, it enables building and maintaining optimal model distribu-
tion over computational entities and enhances the degree of parallelism. Design and
implementation of generic partitioning algorithms that can be applied to a variety
of multi-scale models is challenging. We must simultaneously consider two design
aspects, specialization and generalization. It is desirable to use domain-specific or
domain-aware knowledge to produce optimal partitioning results. However, existing
partitioning algorithms use domain-independent or domain-neutral low-level informa-
tion such as execution time, communication time, delay, and memory requirements. In
doing so, it is preferable to maintain generic partitioning logics that can be widely ap-
plied. However, these considerations can conflict. We adopt a cost modeling and anal-
ysis method for our partitioning algorithm in order to reduce conflicts. The method
enables translating domain-specific and heterogeneous resource information into ob-
jective, domain-independent, and homogeneous cost information. The method’s use
leads to a class of algorithms that efficiently partitions a set of decomposable multi-
scale models while preserving important aspects of both the specialization and gen-
eralization paradigms. The concept and related issues of this method are addressed
in section 3.

We propose a Generic Model Partitioning (GMP) algorithm that uses the cost
modeling and analysis method to decompose a modular, multi-scale constructive
model into a set of partition blocks in polynomial time. The algorithm describes
a partitioning programming logic over a domain-independent cost space that is con-
structed by applying selected cost modeling and analysis techniques. The process
allows the GMP algorithm to be concise, generic, and configurable. The algorithm
produces high-quality partitioning outcomes with the minimum model decomposition.
The Quality of Partitioning (QoP) is progressively improved until the best partitioning
result is attained. Furthermore, it enables implementing various partitioning strate-
gies by using different cost measures and functions instead of modifications of the
partitioning logics. The algorithm is described detail in section 4. Complexity and
execution time analysis of the algorithm are presented in the following section.

To present the usability and power of the GMP algorithm, we apply it to multi-
scale, decomposable, modular Discrete Event Systems Specification (DEVS) models.
DEVS is a discrete-event oriented multi-scale, constructive M&S approach [6–8]. It
provides a solid foundation for theoretical or practical M&S driven systems biology
and has been applied to multi-scale biological problems [9–12]. A set of GMP DEVS
partitioners has been successfully developed for large-scale distributed simulation sys-
tems [4, 13, 14]. A collection of qualitative and quantitative experimental results and
their analysis are presented in section 6.

2. Background and Related Work. Model partitioning is the process of ag-
gregating or dividing (decomposable) models into a set of partition blocks. In dis-
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tributed and parallel simulation systems, it plays vital roles in three processes: re-
source allocation and management, load sharing and balancing, and optimization.
Performance, efficiency, and utilization can be significantly improved by optimally
distributing models into active or passive system entities (e.g., simulators and coor-
dinators). Optimal distribution is closely related to how models are partitioned and
deployed. Thus, it is important to develop algorithms that produce optimal or, at
least, acceptable partitioning results with respect to the end points of interest. How-
ever, most model partitioning algorithms focus on non-decomposable models that are
formulated as a graph or a hyper-graph structure [15–18]. Multi-level partitioning al-
gorithms transform the structure into a hierarchical alternative [19–23]. Neither deal
with decomposable models. We can produce better partitioning results [4,24,25]. As
model complexity increases they have naturally evolved into hierarchical and modu-
lar structures. Such evolution escalates the demand for new classes of partitioning
algorithms that efficiently handle those structures.

Partitioning algorithms are mainly divided into three main classes: random par-
titioning, partitioning refinement, and heuristic. The random partitioning algorithms
randomly aggregate or segregate models to a set of partition blocks. The partitioning
refinement algorithms improve partitioning results during the partitioning process.
The heuristic partitioning algorithms utilize domain-specific knowledge or particular
optimization techniques.

The Kernighan-Lin (KL) algorithm is an example of random partitioning com-
bined with partitioning refinement. The KL algorithm initially builds a partitioning
result by randomly assigning models to partition blocks; it then revises the quality
of the results by swapping models between those blocks whenever swapping produces
a better partitioning result [26]. The performance of the KL algorithm has been im-
proved from O(n3) to O(max{E ·log n, E ·degmax}) by Dutt, and to O(E) by Fiduccia
and Mattheyeses, and to O(V + E) by Diekmann, Monien, and Preis [27–29]. V , E,
and degmax are the total number of vertices, the total number of edges, and the max-
imum node degree, respectively. The quality of partitioning is substantially bound
to the initial partitioning result. Thus, it is desirable to incorporate domain specific
heuristics to improve result quality [30].

Multifarious heuristics have been applied to model partitioning algorithms. Struc-
tural and spatial relationships between models are used in recursive bisection algo-
rithms. The algorithms split a graph into two sub-graphs and recursively bisect each
sub-graph based on particular geometric information. Recursive coordinate bisection
(RCB), recursive inertial bisection (RIB), and orthogonal recursive bisection (ORB)
algorithms use the property of spatial orthogonality - a coordinate axis, axis of angular
momentum, and an orthogonal plane to the axis [31–33]. Recursive graph bisection
(RGB) algorithms use the shortest path length between two graph nodes [34]. Recur-
sive Spectral Bisection (RSB) and eigenvector recursive bisection (ERB) algorithms
use an eigen vector representing connectivity and distance between nodes [35–39].
Various optimization techniques including simulated annealing (SA), mean field an-
nealing (MFA), tabu Search (TS), and genetic algorithm (GA) have been also applied
to model partitioning algorithms [40–44].

Hierarchical partitioning works by either decomposing or building hierarchical
structures based on specified decision-making criteria. Hierarchical structure is com-
monly represented by a multi-level, acyclic, directed graph (ADG) or a tree structure.
During the partitioning process, the hierarchical structure is dynamically created and
updated over time and space. A partitioning policy specifies how and when the struc-
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ture is updated. Three widely used policies are flattening, deepening, and heuristic.
Flattening is a structural decomposition technique that transforms the hierarchical
structure into a non-hierarchical structure. Deepening, also known as hierarchical
clustering, is a structural aggregation technique that transforms a non-hierarchical
structure into a hierarchical one. Heuristic is any technique other than flattening and
deepening. In this paper, we refer to partitioning algorithms based on the flatten-
ing and deepening approaches as multi-scale and multi-level partitioning algorithms,
respectively. Multi-level partitioning has been investigated extensively over the past
few decades [19–23]. However, multi-scale partitioning has received less attention.

In this paper, we reduce the scope of multi-scale partitioning algorithms to
random, ratio-cut, and heuristic. For a given hierarchical and decomposable tree
representing the homomorphic structure of a DEVS coupled model, a random algo-
rithm decomposes the tree and randomly assigns nodes or subtrees to a set of partition
blocks. A ratio-cut algorithm cuts a sub tree that has the minimum cost disparity
as compared to the average cost of the tree. The average cost of the tree is com-
puted by dividing the cost of the root node of the tree by the requested number of
partition blocks. Once a sub tree is assigned to a partition block, the average cost
is recomputed with excluding the sub tree. This is repeated until only one partition
block is left. The last partition block is populated with the remaining nodes that are
not assigned to other partition blocks. The HIPART algorithm is an example of the
ratio-cut algorithm [24]. A heuristic algorithm is one that uses any technique other
than random and ratio-cut approaches. The ENCLOSURE algorithm is an example
of the heuristic algorithm [25].

3. Cost Modeling and Analysis Method. The cost modeling and analysis
method provides a means of transforming heterogeneous resource information into
homogeneous cost information whilie conducting analyses over a cost space. A cost
is a homogeneous object representing heterogeneous resource information (e.g., single
value, a set of discrete objects, and a continuous range). A cost measure is a concep-
tual metric that captures heterogeneous resource information in terms of cost (e.g.,
complexity, I/O connectivity, dynamic activity, and latency). Because a cost measure
is a parametric method subject to certain axioms, algorithms based on the method
are generic and applicable to any family of computational tasks (e.g., constructive
simulation models) provided there is a way to manipulate the appropriate cost in-
formation. However, the more general concept potentially includes other important
determiners of a task such as number of messages sent and received. By applying
one or more cost measures, a task is abstracted to a cost regardless of its complex-
ity or heterogeneity. The homogeneity of the cost allows the proposed algorithm to
be applicable to heterogeneous problems by simply switching cost measures, without
any modification of the algorithm itself. This is due to the homogeneous nature of
the method. Thus, the proposed algorithm is highly adaptable and can be applied
within various application domains. A cost function is a mathematical function that
quantifies or qualifies resource information to cost based on a set of cost measures.
Some of the operations considered in cost modeling and analysis are cost extraction,
cost generation, cost aggregation, cost evaluation, and cost analysis [4].
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Table 3.1
An example of cost measures and cost functions

Cost measure Cost function Decision-making criteria

I/O
connectivity

|Xmodel|∗|Ymodel|
The cost of a system is generally proportional to

the number of I/O interfaces if the system is dedi-
cated to serving I/O requests.

System
Complexity

|Γmodel|
The cost of a system is represented by the number
of internal states rather than the number of I/O
access points if system performance relies on its
complexity.

I/O and System
Complexity

|Xmodel| ∗
|Ymodel| ∗ |Γmodel|

The cost of a system can be captured more ap-
propriately by considering both I/O interfaces and
system complexity.

System
Activity

|∆model| The cost of a system can be captured more appro-
priately by considering dynamic system behaviors.

Xmodel: a set of input interfaces, Ymodel: a set of output interfaces,
Γmodel: a set of internal states, ∆model: a set of internal transitions for a certain period of time
|E| is a counting operator that returns the total number of elements in the given set E

A cost tree is a homomorphic representation of a decomposable, modular, and
multi-scale task from the perspective of cost modeling and analysis. A node in the
tree is classified as either atomic or coupled. An atomic node is a terminal node
containing no child nodes. A coupled node is a non-terminal node holding at least
one child node. A set of decomposable multi-scale tasks are easily translated to a cost
tree by applying cost functions with appropriated cost measures. Each node contains
a cost (or, a task and cost pair). The cost of an atomic node is generally equal to
the cost of the model with which it is associated. However, the cost of a coupled
node is the aggregated cost of that node and all descendants that can be reached
through the tree hierarchy. Thus, the cost of a sub-tree starting from a particular
node is acquired by simply retrieving the cost of the node without further expansion or
exploration of the tree. So doing considerably reduces the amount of time and space
required for parsing all descendants of the node and aggregating their costs during
the cost evaluation process. It enables transforming NP-hard multi-scale partitioning
problems to polynomial alternatives [45–47]. We show the GMP algorithm based on
the method runs in polynomial time in section five.

Let D be a finite discrete set of models, D = {di|i ∈ N} where N is a set of positive
integers and di is a model i. The set D refers to a decomposable set if there exists
a set E such that (i) E ⊆ D ∧ E 6= ∅ and (ii) ∀ei ∈ E, ei is a decomposable model,
ei =

⋃
j=1...n eij . A cost tree T is a tree structure representing di by ai with the

preservation of structural properties of the model, for all di ∈ D as shown in Figure
3.1. If the given D is populated with more than one model, {di, . . . , dn}, we repopulate
D with a new virtual coupled model d0, D = {d0}, where d0 =

⋃
i=1...n di. Every di in

D is translated to a cost node ai by a cost evaluation function, feval : D → A, di ∈ D
and ai ∈ A. A is the set of cost nodes representing T . If di ∈ E, it is also legitimate
to alternatively use a cost aggregation function, faggr : E → A. We can build distinct
collections of cost trees by applying different aggregation methods (e.g., summation,
max, and average) to d0. So doing enables delineating a multi-scale model from various
different perspectives based on aggregated cost. During the tree construction process,
E shrinks when a model ei is removed from E and D grows when ei is expanded and
its components are added to D. The process terminates when E becomes empty.
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Figure 3.1. Cost tree construction with a cost evaluation function and/or a cost aggregation
function: A cost tree T is constructed from a decomposable task D. The cost ai in T is computed
by a cost evaluation function feval : D → A. If di ∈ E, the cost ai also be computed by a cost
aggregation function faggr : E → A, instead of feval.

4. Generic Model Partitioning (GMP). A GMP algorithm decomposes a
given multi-scale model (e.g., a coupled model in DEVS) into a set of partition blocks.
It decomposes a set of models only if model decomposition produces a better parti-
tioning result. With the minimization of model decomposition, the GMP algorithm
becomes less sensitive to the depth or the complexity of the models. Minimization
makes the algorithm more flexible and scalable than are partitioning algorithms based
on full decomposition. A unique feature of the GMP algorithm is its support of in-
cremental QoP improvement during the partitioning process. This property guar-
antees that partitioning outcomes will evolve into better alternatives without any
degradation of QoP until a best partitioning result is attained. Incremental improve-
ment enables the GMP algorithm to produce a high degree of QoP for the given
model. The GMP algorithm divides into two sub-algorithms: Initial Partitioning
and Evaluation-Expansion-Selection(E2S) Partitioning.

4.1. Initial partitioning. The initial partitioning algorithm constructs P par-
tition blocks from a cost tree T . Each partition block contains at least one node. The
algorithm consists of four phases: initialization, expansion, fill, and distribution, as
shown in Algorithm 1. All necessary data structures are created with initial values in
the initialization phase (Lines 3–4). clist is the list containing cost nodes. It grows
and shrinks, respectively, when a node is expanded from T and is assigned to a par-
tition block. Initially, clist is populated with child nodes of a root node and every
partition block is empty. If P > |clist|, at least one node expansion occurs until |clist|
becomes equal to or larger than P (Lines 6–12). Node expansion is a sequence of (i)
identifying and removing nhighest, which is the node having the highest cost in clist,
(ii) expanding it, (iii) and restoring its child nodes back to clist. If P ≤ |clist|, select
nhighest and assign it to an empty partition block until there exist no empty partition
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blocks (Lines 14–16). Finally, remaining nodes in clist are distributed to non-empty
partition blocks until |clist| becomes zero (Lines 18–20). Instead of nhighest, the node
having the lowest cost in clist, nlowest is used in the distribution phase. Initial par-
titioning minimizes cost disparity between partition blocks by assigning a node to
each empty block in a descending order and distributing remaining nodes to partition
blocks in an ascending order. Initial partitioning results of the cost tree in Figure 3.1
over various P are provided in Figure 4.1.

Figure 4.1. Initial partitioning results of the cost tree T over various P: feval(di) = system
activity of di, faggr(di) =

P
j feval(dij), dij ∈ di, and 2 ≤ P ≤ 5.
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Algorithm 1 Initial Partitioning Algorithm (AInit)
Input:

T: a cost tree, P: a number of partition blocks
Return:

parray: partitioning result
Acronym:

PB: a partition block, PBempty: an empty PB, |PB| = 0
PBlowest: a PB having the lowest cost, PBhighest: a PB having the highest cost
Nodelowest: a node having the lowest cost, Nodehighest: a node having the highest cost
Nodecoupled: a coupled node, Nodehighest

coupled : a coupled node having the highest cost
Operators:

removeFrom(node, clist): remove a node from clist; node← removeFrom(node, clist)

addTo(node, PB): add a node to a partition block, PB; PB
′
← addTo(node, PB)

expand(node): expand a node; a set of child nodes of the node ← expand(node)

1: procedure PB[] Initial-Partitioning(CostTree T, int P)
2: // PHASE 1: initialize clist and parray
3: clist := child nodes of a root node in T . |clist| > 0
4: parray := PB[P] // create P empty partition blocks . ∀i, |parray[i]| = 0, 1 ≤ i ≤ P
5: // PHASE 2: expand node(s), if necessary
6: while lengthOf(clist) < numberOf(parray) do
7: if clist contains at least one Nodecoupled then
8: clist := clist + expand(removeFrom(Nodehighest

coupled, clist))
9: else

10: return error(′′cannot expand . . .′′) . (@ Nodecoupled ∈ clist) ∨ |clist| = 0
11: end if
12: end while . |clist| ≥ |parray|
13: // PHASE 3: fill empty partition blocks
14: while parray contains an PBempty do
15: addTo(removeFrom(Nodehighest, clist), PBempty)
16: end while . ∀i, |parray[i]| > 0
17: // PHASE 4: distribute nodes in clist into partition blocks
18: while clist is not empty do
19: addTo(removeFrom(Nodelowest, clist), PBlowest)
20: end while . |clist| = 0
21: return parray
22: end procedure

4.2. Evaluation-Expansion-Selection (E2S) Partitioning. The E2S parti-
tioning improves the quality of partition results until no better result is attained.
The algorithm consists of six phases: initialization, identification, expansion, fill,
distribution, and evaluation as shown in Algorithm 2. All necessary data structures
are created with initial values in the initialization phase (Lines 3–5). parray and
earray are, respectively, a set of partition blocks that contain previous and next par-
titioning outcomes. epartition is the partition block that contains the highest cost
in earray, PBhighest. enode is the coupled node that has the highest cost over all
other nodes in PBhighest. The initial partitioning result is assigned to parray. After
initialization, enode is identified from PBhighest (Lines 7–18). The selected enode
is expanded and epartition is filled with a node if it had only enode (Line 20 and
Lines 22–24). The remaining nodes in clist are distributed to non-empty partition
blocks until |clist| becomes zero (Lines 26–28). Finally, E2S partitioning recursively
performs until a best result is attained (Lines 30–34). If the new partitioning result
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earray is superior to the previous result parray, E2S partitioning continues. Other-
wise, returns parray as the best partitioning result. superiorTo() is a user-provided
function that compares earray to parray. An example of E2S partitioning results is
presented in Figure 4.2. Figure 4.2.b illustrates monotonic QoP improvement of E2S
partitioning result.

Figure 4.2. E2S partitioning results for various P and an example of a partitioning tree:
The left figure presents partitioning results when P ranges from 2 to 5. The right figure presents
a partitioning tree Φ when P is 3 and cost disparity between PBmax and PBmin is used as a
partitioning quality measure, ϕ. ϕ = |faggr(PBmax)−faggr(PBmin)|. faggr(PBi) =

P
j aj , 1 ≤ j ≤

|PBi| and aj ∈ PBi. PBmax and PBmin are PBi that respectively satisfy faggr(PBi) ≥ faggr(PBj)
and faggr(PBi) ≤ faggr(PBj), ∃i∀j((i 6= j) ∧ (1 ≤ i, j ≤ P)). Lower ϕ means better QoP.
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Algorithm 2 Evaluation-Expansion-Selection (E2S) Partitioning Algorithm (AE2S)
Input:

parray: previous partitioning result
Return:

parray: new partitioning result
Operators:

evaluate(PB): evaluate partition blocks; value← evaluate(PB)
superiorTo(PB1, PB2): check PB1 is superior to PB2;

True or False← superiorTo(PB1, PB2)

1: procedure Evaluation-Expansion-Selection Partitioning(PB[] parray)
2: // PHASE 1: initialize earray and epartition
3: earray := parray . ∀i, |earray[i]| > 0
4: epartition := PBhighest in earray . epartition 6= ∅
5: enode := null . enode = ∅
6: // PHASE 2: identify an expandable PB from earray
7: while true do
8: if epartition = null then return parray . ∀i, @Nodecoupled ∈ earray[i]
9: else

10: if epartition contains Nodecoupled then
11: enode := Nodehighest

coupled in epartition
12: break . enode 6= ∅
13: else
14: epartition := select the PBhighest from earray
15: excluding previously selected PBs
16: end if
17: end if
18: end while . ∃i, enode ∈ earray[i]
19: // PHASE 3: expand enode and put them into clist
20: clist := expand(removeFrom(enode, epartition)) . |clist| = |enode|
21: // PHASE 4: fill the epartition with Nodehighest if epartition is empty
22: if epartition is empty then
23: addTo(removeFrom(Nodehighest, clist), epartition)
24: end if . ∀i, |earray[i]| > 0
25: // PHASE 5: distribute nodes to earray
26: while clist is not empty do
27: addTo(removeFrom(Nodelowest, clist), PBlowest)
28: end while . |clist| = 0
29: // PHASE 6: evaluate a new partitioning result
30: if superiorTo(evaluate(earray), evaluate(parray)) then
31: return Evaluation-Expansion-Selection Partitioning(earray) .

ϕ(earray) > ϕ(parray)
32: else
33: retrun parray . ϕ(earray) ≤ ϕ(parray)
34: end if
35: end procedure

5. Algorithm Analysis. To make our analysis simpler, we assume a coupled
model D that is translated to a cost tree T (d, k, n). d is the depth of T (d, k, n), k
is the number of child nodes per coupled node, and n is the total number of atomic
nodes. n is ki, where i ∈ [1, . . . , d]. The total number of nodes in T (d, k, n) ranges
from

∑d−1
i=0 ki + k and

∑d
i=0 ki since there exists

∑d−1
i=0 ki coupled nodes, where d > 1

and k > 1. We also assume both feval(·) and faggr(·) are O(1).
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5.1. Initial Partitioning Algorithm. The length of the clist after i node
expansions li is

li =

{
ξ0, i = 0
li−1 + ξi, i ≥ 1

(5.1)

where,
ξ0 = the number of children of a root node in T
ξi = the number of children of the expanded node after i expansions

By substituting li−1 by the sum of ξ up to i-1th expansion, we can rewrite li as

li = li−1 + ξi = · · · =
i−1∑
j=0

(ξj − 1)− 1 + ξi =
i∑

j=0

ξj − i, i ≥ 1 (5.2)

Assume E node expansions occur to guarantee |clist| ≥ |parray|. Then, by applying
(5.2) to the while loop (Line 6, Algorithm 1), we can rearrange the conditional part
of the loop to (

∑E
j=0 ξi − E) < P. E is the total number of expansions and P is the

the number of partition blocks, |parray|.
To make analysis simple, let ξi be a constant value k (i.e., k-ary tree). For a

given k ∈ N, the conditional part is simplied to E < P−k
k−1 by substituting k for ξi.

Since E ∈ N, the total number of node expansions needed in the initial partitioning
becomes dP−k

k−1 e, 1 < k < P. No expansion occurs when k ≥ P. The length of clist

after the expanding phase, lE , is described by P and k by substituting dP−k
k−1 e for i

and k for ξi in (5.2). lE is k when no expansion occurs because the clist initially
populated with the children of the root node.

lE =

{
(k-1) ·

⌈
P−k
k−1

⌉
+ k, 1 < k < P

k, k ≥ P
(5.3)

P comparisons occur in the filling phase because every empty partition in the parray
is filled with a cost node that is extracted from the clist. (lE - P) comparisons occur
in the distribution phase because the remaining clist nodes are distributed into the
parray.

Definition 5.1. For execution time complexity analysis of Ainitial, we define
ξ(n): expand the node, n
δinit
part: time required for executing Ainitial

δ(clist, nodes, add): time required for adding nodes to the clist
δ(clist, nodes, remove): time required for removing nodes from the clist
δ(parray, size, create): time required for creating the parray with size empty

blocks
δ(PBi, nodes, add): time required for adding nodes to the PBi

Algorithm execution time is the sum of time spent in each phase of the algorithm.
That is, δinit

part = δinit + δexpand + δfill + δdist. We can rewrite it to

δinit
part =

{
δinit +

∑E
i=1 δexpandi +

∑P
i=1 δfilli +

∑lE−P
i=1 δdisti , 1 < k < P

δinit + 1 +
∑P

i=1 δfilli +
∑k−P

i=1 δdisti
, k ≥ P

(5.4)

where,
δinit = δ(clist, ξ(Noderoot), add) + δ(parray, P, create)
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δexpandi
= δ(clist, Nodehighest

coupled, remove) + δ(clist, ξ(Nodehighest
coupled), add)

δfilli = δ(clist, Nodehighest, remove) + δ(PBempty, Nodehighest, add)
δdisti

= δ(clist, Nodelowest, remove) + δ(PBlowest, Nodelowest, add)
By applying E and lE to (5.4), we get

δinit
part =

{
δinit +

∑dP−k
k−1 e

i=1 δexpandi +
∑P

i=1 δfilli +
∑(k−1)dP−k

k−1 e+k−P

i=1 δdisti , 1 < k < P
δinit + 1 +

∑P
i=1 δfilli +

∑k−P
i=1 δdisti

, k ≥ P
(5.5)

To make analysis of the algorithm simple, assume it takes one time unit either
to run an operator or to evaluate a conditional statement. Then, δinit takes 3 units:
1 unit for the expansion of the root node and 2 units for the initialization of clist
and parray. δexpandi takes 5 units: 2 units for the evaluation of conditional parts
of both while and if loops and 3 units for the execution of the remove-expand-add
operation. Both δfilli and δdisti

take 3 units: 1 unit for the evaluation of conditional
part of the while loop and 2 units for the execution of the remove-add operation. By
substituting all δ(·) in (5.5) by appropriate execution time,

δinit
part =

{
3 +

⌈
P−k
k−1

⌉
· 5 + P · 3 +

(
(k − 1)

⌈
P−k
k−1

⌉
+ k − P

)
· 3, 1 < k < P

3 + 1 + P · 3 + (k − P) · 3, k ≥ P
(5.6)

By rearranging (5.6), we get

δinit
part =

{
(3k + 2)

(⌈
P−k
k−1

⌉
+ 1

)
+ 1, 1 < k < P

3k + 4, k ≥ P
(5.7)

(5.7) shows that, for a given partition block size P, the total execution time of the
initial partitioning algorithm is more sensitive to the number of children of a coupled
node rather than the size or the complexity of a given model. It also implies that the
performance of the algorithm is highly bound to the number of expansions, E, rather
than model complexity.

5.2. E2S Partitioning Algorithm. Definition 5.2. For execution time com-
plexity analysis of AE2S , we define

ξenode: the number of child nodes expanded from enode, |ξ(enode)|
γ: the number of recursions until a best partitioning result is attained
δE2S
part: time required for executing AE2S

The E2S partitioning algorithm has six phases as described in Algorithm 2. Thus,
the total execution time of the algorithm is the sum of time spent in those phases:
δE2S
part = δinit +δidentify +δexpand +δfill +δdist +δeval. In the while loop, l comparisons

occur to find the enode in the identification phase, 1 ≤ l ≤ P. At most, ξenode

comparisons occur in the distribution phase to redistribute all nodes of the clist to
the earray. No comparisons occur in other phases.

δE2S
part = δinit +

l∑
i=1

δidentifyi
+ δexpand + ε · δfill +

ξenode−ε∑
i=1

δdisti
+ δeval (5.8)

where,
l: the total number of comparisons occurred in the while loop to find enode,
ε: 1 if epartition is empty after the expansion phase. Otherwise, 0
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Since l comparisons in the identification phase divide into l-1 for partition blocks
having no coupled node and 1 for the partition block having at least one coupled
node, we revise (5.8) to

δinit+
l−1∑
i=1

δidentify,¬enode+δidentify,enode+δexpand+ε·δfill+
ξenode−ε∑

i=1

δdisti +δeval (5.9)

where,
l: the total number of comparisons occurred in the while loop to find enode,
ε: 1 if epartition is empty after the expansion phase. Otherwise, 0
δidentify,¬enode: time need for handling epartition having no coupled node
δidentify,enode: time need for handling epartition having at least one coupled

node
To simplify the analysis, assume it takes one time unit to run an operator or

to evaluate a conditional statement. Then, δinit takes 3 units to initialize earray,
epartition, and enode. δidentify,¬enode takes 4 units to handle epartition having no
coupled node. δidentify,enode takes 5 units to identify enode. δexpand, δfill, and δdisti

take 3 units, respectively. δeval takes 3 + δ
′E2S
part units. δ

′E2S
part is equal to the time

need for running the algorithm recursively until the best result is attained. δ
′E2S
part is

1 if evaluate(earray) is not better than evaluate(parray). By substituting all δ(·) in
(5.9) by appropriate execution time, we get

δE2S
part = 3+(l− 1) · 4+5+3+ ξenode · 3+3+ δ

′E2S
part = 4l +3ξenode +10+ δ

′E2S
part (5.10)

Assume δ
′E2S
part runs γ times recursively to attain a best result. Then, we rewrite

(5.10) to

δE2S
part = 4l + 3ξenode + 10 +

γ∑
i=1

(
4li + 3ξi

enode + 10
)

+ 1 (5.11)

where,
li: l at i-th recursion in δ

′E2S
part

ξi
enode: ξenode at i-th recursion in δ

′E2S
part

In most cases, li is 1. However, it could vary dynamically depending on the content
of the parray. We approximate li by introducing l̄, the average of li as follows

δE2S
part =

γ∑
i=0

(
4l̄ + 3ξi

enode + 10
)

+ 1 (5.12)

where,
l̄: the average of l, 1

γ+1 ·
∑γ

i=0 li

ξi
enode: ξenode at i-th recursion

For a k-ary cost tree, we rewrite (5.12) by substituting ξi
enide by k as follows

δE2S
part =

γ∑
i=0

(
4l̄ + 3k + 10

)
+ 1 (5.13)

(5.13) implies that the total execution time of the E2S partitioning algorithm is
sensitive to the degree of QoP rather than the size or the complexity of the given
hierarchical model.
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5.3. Worst Case Analysis.

5.3.1. Initial Partitioning Algorithm. For a worst case in the initial parti-
tioning, assume the cost tree T (d, k, n) sustains the following constraints.

i. The total number of atomic nodes n is kd,
ii. The number of partition blocks P is kd,
iii. d � k

E is induced to kd−1
k−1 from the constraints i and ii. The constraints imply that

there exist
∑d−1

i=0 k coupled nodes and they are all expanded. lE is computed to
kd + k − 1 by substituting kd−1

k−1 for i and k for ξi (5.2). By substituting all δ(·) in
(5.4) by appropriate execution time and rearranging it, we get

δinit
part = 3kd + 5

kd − 1
k − 1

+ 3k = 3n + 5
n− 1

n1/d − 1
+ 3n1/d (5.14)

Since k is n1/d and n � d, O(δinit
part) is O(n) for T (d, k, n), d � k > 1, n = kd.

5.3.2. E2S Partitioning Algorithm. For the worst case in the E2S partition-
ing, assume an additional constraint

iv. A new partitioning result is always superior to the previous one.
In the case, li is 1 because the PBhighest always contains at least one couple node.
We can compute γ for the given T (d, k, n) by

γ =
d−1∑
i=1

ki =
kd − 1
k − 1

− 1, k > 1 (5.15)

By substituting li and γ with 1 and kd−1
k−1 -1, respectively, in (5.13), we get

δE2S
part =

(
kd − 1
k − 1

− 1 + 1
)
· (4 + 3k + 10) + 1 (5.16)

We rewrite (5.16) in terms of n.

δE2S
part = 3 ·

(
n− 1

n1/d − 1

)
·
(

n1/d +
14
3

)
+ 1 (5.17)

O(δE2S
part) is O(n) for the cost tree T (d, k, n), d � k > 1, n = kd.

5.4. Parameter Optimization.

5.4.1. Optimal Number of Partition Blocks. For a given coupled model,
the optimal number of partition blocks Popt is identified by searching P that produces
minimum execution time from the following equation. δK

p (AInit) is the execution time
of the initial partitioning algorithm for a fixed K and an aribtrary p.

min
1<p≤∞

{δK
p (AInit)} =

{
minK<p≤∞{(3K + 2)

(⌈
p−K
K−1

⌉
+ 1

)
+ 1}, K < p ≤ ∞

3K + 4, p ≤ K

(5.18)
By rearranging (5.18), we get

min{δK
p (AInit)} =

{
minK<p≤∞{ 3K+2

K−1 p + 3K+2
K−1 + 1}, K < p ≤ ∞

3K + 4, p ≤ K
(5.19)
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Popt is K + 1 when K < p ≤ ∞ because δK
p (AInit) grows linearly as p increases.

δK
K+1(AInit) produces minimum execution time. Popt is p when p ≤ K because

δK
p (AInit) is governed by only K independent from p.

Popt =

{
K + 1, K < p ≤ ∞
p, p ≤ K

(5.20)

In AE2S , it is unnecessary to compute Popt. P is set by AInit and is indirectly
referenced by AE2S through the set of partition blocks. P is an implicit and non-
permutable value in AE2S . Also, δE2S

part is mainly bound to γ rather than P.

5.4.2. Optimal Cost Tree for a Particular Number of Partition Blocks.
For a fixed number of partition blocks P, the optimal number of k-ary cost tree kopt

is identified by searching k that produces minimum execution time from the following
equation. δk

P (AInit) is the execution time of the initial partitioning algorithm for a
fixed P and an arbitrary k.

min
1<k≤∞

{δk
P(AInit)} =

{
min1<k<P {(3k + 2)

(⌈
P−k
k−1

⌉
+ 1

)
+ 1}, 1 < k < P

3k + 4, k ≥ P
(5.21)

By rearranging (5.21), we get

min
1<k≤∞

{δk
P(AInit)} =

{
min1<k<P {5(P− 1) 1

k−1 + 3(P− 1) + 1}, 1 < k < P

3k + 4, k ≥ P

(5.22)
kopt is P - 1 when 1 < k < P because δk

P (AInit) decreases linearly as k in-
creases. δP−1

P (AInit) produces minimum execution time. kopt is P when k ≥ P
because δk

P (AInit) increases linearly as k increase.

kopt =

{
P− 1, 1 < k < P

P, k ≥ P
(5.23)

In AE2S , it is not necessary to compute kopt. Once a model is selected by AInit,
AE2S cannot dynamically permutate structural properties of the model.

6. Experimental Results. A series of experiments have been conducted to
evaluate the GMP algorithm and compare it to two multi-scale partitioning algo-
rithms, random and ratio-cut. A set of quality and performance measures has been
applied to the results. All experiments were performed on a small-scale Beowulf clus-
ter system which consists of one root node, seven compute nodes, a Gigabit switch,
and a dedicated Gigabit network. Each node is equipped with a single Intel Pentium
4 3 Ghz CPU, 2GB PC 3200 DDR 400 SDRAM memory, a 80 GB 7200 RPM hard
disk, and a Gigabit Ethernet card. The root node has an extra Gigabit Ethernet card
to access public Internet.

A multi-scale decomposable DEVS coupled model is generated with a particular
cost pattern listed in Table 6.1. Six cost patterns are used to represent a wide range
of computational workload of the model: Cunitstep and Cexp for low workload, Cpareto

and Cinvgau for medium workload, and Cuniform and Clognormal for high workload.
The generated coupled model is partitioned into a set of partition blocks by each
algorithm. The blocks are dispatched to a set of processors and decomposed models
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Table 6.1
Cost patterns for generating various computational workload distributions of a model [48–51]

Pattern PMF Parameters Distribution Load

Cunitstep δ(x) None Unit Step Low

Cexp λe−λx λ = 0.05 Exponential

Cpareto αkαx−α−1 α = 1.245, k = 3 Pareto Medium

Cinvgaus

q
λ

2πx3 e
−λ(x−µ)2

2µ2x µ = 3.86, λ = 9.46 Inverse Gaussian

Cuniform 1 None Uniform High

Clognorm
1

x
√

2πσ2 e
−(lnx−µ)2

2σ2 µ = 5.929, σ = 0.321 Lognormal

PMF: Probability Mass Function , δ(x): a PMF that returns 1 when x = a. otherwise, returns 0.

in the blocks are executed in parallel. Quality and performance of algorithms are
computed by applying qualitative and quantitative measures to the blocks.

A set of measures used in our experiments is listed in Table 6.2. The cost of a
partition block is computed by four cost measures: φnorm, φdiff , φdist, and φvar. The
quality of a set of partition blocks is evaluated by two QoP measures: ϕavg-diff and
ϕavg-diff . QoP evolution is traced by profiling the quality of the set until the best
partitioning result is attained. Execution time of the set is collected by four time
measures: δtotal, δaccum, δavg, and, δsqrt.

Table 6.2
A set of measures for quality and performance evaluation

Measure Mathematical representation Description

φnorm faggr(PBi)/ max{faggr(PBj)}Pj=1 normalized cost

φdiff
PP

j=1 |faggr(PBi)− faggr(PBj)| cost difference

φdist
PP

j=1 |faggr(PBi)− faggr(PBj)| cost distance

φvar

q
|faggr(PBi)−

PP
j=1 faggr(PBj)/P| cost variance

ϕmin-max |max{faggr(PBi)}Pi=1 −min{faggr(PBi)}Pi=1| min-max disparity

ϕavg-diff
PP

i=1

PP
j=1 |faggr(PBi)− faggr(PBj)|/P average difference

δtotal max{τ(PBi)}Pi=1 total execution time

δaccum
PP

i=1 τ(PBi) accumulated execution time

δavg

PP
i=1 τ(PBi)/P average execution time

δsqrt

qPP
i=1 τ(PBi)/P square root execution time

faggr(PBi) =
P

c(tj), where c(tj) is the cost of a model tj ∈ PBi, τ(PBi) = time need to execute
all models in PBi

Figure 6.1 represents QoP experimental results of T (7, 4, 400). Two QoP measures
ϕmin−max and ϕavg−diff are used to evaluate the quality of the partitioning results
produced by each algorithm. For a particular number of partition blocks P, a cost
pattern Cpattern, and a QoP measure, each algorithm is applied to 20 different com-
putational workloads. The average of the 20 experiments is computed and illustrated
as a single point in the figure. We measured QoP of partitioning results by varying
P from 2 to 100. The GMP algorithm produces superior QoP outcomes compared
to other algorithms for both QoP measures. It is mainly because the GMP algo-
rithm minimizes the cost disparities between partition blocks with minimum model
decomposition. However, QoP outcomes of other algorithms were highly sensitive to
P, Cpattern, and QoP measures. The QoP experimental results shown in Figure 6.1.
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a. QoP measure: min-max disparity

b. QoP measure: average difference

Figure 6.1. QoP evaluation of partitioning results over various cost patterns and numbers of
partition blocks: A point in each figure represents the average of 20 different executions with respect
to a set of a cost pattern, a number of partition blocks, and a partitioning algorithm, Cpattern,
P, Apartition. Cpattern ∈ {Cunitstep, Cexp, Cpareto, Cinvgaus, Cuniform, Clognorm}. 2 ≤ P ≤ 100.
Apartition ∈ {Random, Ratio-Cut, GMP}. Two QoP measures, ϕmin−max and ϕavg−diff , are
applied to T (7, 4, 400). The lower value in the Y axis represents the better result.

All experimental results in the figure are summarized in Table 6.3.
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Table 6.3
The summary of QoP experiments of T (7, 4, 400)

ϕmin−max ϕavg−diff

Cost Pattern Random Ratio-Cut GMP Random Ratio-Cut GMP

Cunitstep(x) 33.44 170.28 14.77 198.79 402.94 165.11
Cexp(x) 62.18 218.27 22.57 484.83 559.83 284.50
Cpareto(x) 110.44 292.09 56.84 788.20 929.16 595.32
Cinvgaus(x) 139.83 609.87 53.60 984.37 1520.27 603.98
Cuniform(x) 1799.33 8000.09 689.31 12492.31 19945.52 7521.78
Clognorm(x) 3077.86 15873.68 1303.46 18884.30 37774.36 14240.95

Average 870.51 4194.05 356.76 5638.80 10188.68 3901.94
unit: second

Figure 6.2 represents execution time measurement results of T (7, 4, 50). Two
time measures δaccum and δavg are used to evaluate performance of the partitioning
results produced by each algorithm. Model execution time is measured for the case
of only one partition block allocation per processor. For a particular number of
processors np and Cpattern, and a time measure, each algorithm is applied to 5 different
computational workloads. In most experiments, the GMP algorithm requires the
shortest execution time. The execution time measurement results are shown in Figure
6.2. All experimental results in the figure are summarized in Table 6.4.

Table 6.4
The summary of execution time measurement of T (7, 4, 50)

δaccum δavg

Cost Pattern Random Ratio-Cut GMP Random Ratio-Cut GMP

Cunitstep(x) 30.04 22.71 19.55 7.87 5.95 4.94
Cexp(x) 45.78 37.88 36.21 12.43 9.98 9.15
Cpareto(x) 55.45 42.71 39.04 15.12 11.72 10.29
Cinvgaus(x) 114.21 91.71 75.63 29.79 23.96 18.86
Cuniform(x) 1482.88 1200.13 963.97 384.65 315.87 244.92
Clognorm(x) 2696.38 2108.15 1825.97 682.74 551.43 459.97

Average 737.46 583.88 493.39 188.77 153.15 124.69

unit: second

7. Summary and Conclusions. This paper presents a new GMP algorithm. It
efficiently decomposes a multi-scale model into a set of partition blocks using the cost
modeling and analysis method. It also produces monotonically improved partitioning
results with minimum model decomposition. The method enables abstracting sub-
jective, heterogeneous, domain-dependent information into objective, homogeneous,
domain-independent cost information. With the selection of different methods of cost
measures, cost evaluation, and cost aggregation, the proposed algorithm performs
various partitioning strategies without any modification of the generic partitioning
logics. Because each cost measure is a parametric method, and partitioning logic is
described over the homogeneous cost space, the algorithm is generic and applicable
to any family of models provided there is a way to manipulate the appropriate cost
information.

Algorithm analysis and experimental results show that the GMP algorithm is
efficient and produces high quality partitioning results. The algorithm execution
time is O(n) in the worst case scenario. The experimental results show that the
GMP algorithm produces partitioning results that are superior to those from other
algorithms.
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a. Execution time measure: accumulated execution time

b. Execution time measure: average execution time

Figure 6.2. Model execution time measurement of partitioning results over various cost pat-
terns and numbers of processors: Each mark in the figure is the average of 5 different executions with
respect to a set of a cost pattern, a number of processors, and a partitioning algorithm, Cpattern,
np, Apartition. Cpattern ∈ {Cunitstep, Cexp, Cpareto, Cinvgaus, Cuniform, Clognorm}. 2 ≤ np ≤ 7.
Apartition ∈ {Random, Ratio− Cut, GMP}. Two execution time measures , δaccum and δavg, are
applied to T (7, 4, 50). The lower value in the Y axis represents the better result.

A set of GMP-based multi-scale model partitioners has been implemented over
distributed network middleware to support large-scale discrete-event oriented simu-
lations. Because the algorithm is generic, concise, and reconfigurable, it can easily
evolve to accommodate static and dynamic resource management system components
that efficiently handle multi-scale models in large-scale distributed and parallel sim-
ulation systems.

The pace of M&S driven systems biology research using constructive, multi-scale
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models is expected to increase. However, for efficient execution of these models, we
need generic but domain-aware, multi-scale partitioning algorithms. The GMP algo-
rithm meets the requirement and has been successfully implemented as a part of multi-
scale model partitioners in various large-scale distributed simulation frameworks. A
wide range of distinctive multi-scale, constructive, modular biological system models
can be easily managed by changing or revising cost functions without any modifi-
cation of generic partitioning programming logics. That ability positions the GMP
algorithm to be effective in large-scale M&S driven systems biology research.
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cles in Computer and Information Science, 3 (1998).



PARTITIONING FOR MULTI-SCALE CONSTRUCTIVE MODELS 21

[17] C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, SIAM
Journal on Scientific Computing, 16 (1995), pp. 452–469.

[18] K. Schloegel, G. Karypis, and V. Kumar, Graph partitioning for high performance scientific
simulations, Computing Reviews, 45 (2004).

[19] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392.

[20] S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bisec-
tion for partitioning unstructured problems, Concurrency: Practice & Experience, 6 (1994),
pp. 101–117.

[21] Y. G. Saab, An effective multilevel algorithms for bisecting graphs and hypergraphs, IEEE
Transactions on Computers, 53 (2004), pp. 641–652.
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