
DEVS-Based Dynamic Model
Reconfiguration and Simulation Control
in the Enhanced DoDAF Design Process
Saurabh Mittal
Eddie Mak
Arizona Center of Integrative Modeling
and Simulation (ACIMS)
ECE Department, University of Arizona
Tucson, AZ 85721
[saurabh, emak]@ece.arizona.edu

James J. Nutaro
Oak Ridge National Laboratories
Oak Ridge, TN 38731
nutarojj@ornl.gov

The combination of DoDAF operational views, which capture the requirements of an architecture, and System views,
which provide its technical attributes, forms the basis for semi-automated construction of simulation models. In this
paper, we describe an enhanced Model-View-Controller paradigm that works in tandem with the DEVS M&S framework.
We also employ the recently introduced DoDAF extensions that incorporate new operational views to allow DoDAF
specifications to be written in the Discrete Event System Specification (DEVS) formalism and, in the process, refine
these new extensions. This paper describes a DEVS-based network modeling and simulation environment with dynamic
reconfiguration and simulation control. The DEVS modeling and simulation framework with its separation of model,
experimental frame, and simulator facilitates the development of a simulation framework supporting run-time simulation
tuning. We present a layered simulation architecture that provides the capability to control and reconfigure simulation
on-the-fly and steer it toward the desired performance parameters. The rapid feedback cycle supported by “real-time”
intervention allows experimentation with parameters and structures and results in effective model configuration that is
difficult to achieve when turnaround requires hours or days. We explore the area of system reconfiguration further by
providing enhanced capabilities to control the parameters for system design and performance evaluation with respect to
Net-Ready Key Performance Parameters (NR-KPP) and the way in which the refined DoDAF extensions can expedite the
development of Key Interface Profile (KIP) for any DoDAF architecture. We demonstrate the enhanced capabilities with
an example of the development of a simulation environment for the Systems Capable of Planned Expansion (SCOPE)
command.

Keywords: DEVS, MVC, NR-KPP, KIP, DoDAF, operational view (OV), system view (SV), MoE, SCOPE command

1. Introduction

In an editorial [1], Carstairs asserts an acute need for a
new testing paradigm that could provide answers to
several challenges described in a three-tier structure.
The lowest level, containing the individual systems
or programs, does not present a problem. The second
tier, consisting of systems of systems in which

interoperability is critical, has not been addressed in a
systematic manner. The third tier, the enterprise level,
where joint and coalition operations are conducted,
is even more problematic. Although current test and
evaluation (T&E) systems are approaching adequacy
for tier-two challenges, they are not sufficiently well
integrated with defined architectures focusing on
interoperability to meet those of tier three. To address
mission thread testing at the second and third tiers,
Carstairs advocates a collaborative distributed
environment (CDE), which is a federation of new JDMS, Volume 3, Issue 4, October 2006 Pages 239–267

© 2006 The Society for Modeling and Simulation International

Volume 3, Number 4240 JDMS

Mittal, Mak, and Nutaro

and existing facilities from commercial, military, and
not-for-profit organizations. In such an environment,
modeling and simulation (M&S) technologies can
be exploited to support model-continuity [2] and
model-driven design development [3], making test
and evaluation an integral part of the design and
operations life-cycle.
	 The development of such a distributed testing
environment would have to comply with recent
Department of Defense (DoD) mandates requiring
that the DoD Architectural Framework (DoDAF) be
adopted to express high-level system and operational
requirements and architectures [4–7]. Unfortunately,
DoDAF and DoD net-centric [8] mandates pose
significant challenges to testing and evaluation since
DoDAF specifications must be evaluated to see if
they meet requirements and objectives, yet they are
not expressed in a form that is amenable to such
evaluation.
	 This paper begins by providing an overview of
the current DEVS technology and the way in which
DEVS is positioned to address the need for a new
DoDAF-based and net-centric paradigm for test and
evaluation at the system-of-systems and enterprise
systems levels. Our earlier work [9] enhanced the
DoDAF by proposing a methodology to map DoDAF
descriptions to DEVS specifications, i.e., DoDAF-to-
DEVS mapping. Since DEVS environments such as
DEVS JAVA, DEVS-C++, and others [10] are embedded
in object-oriented implementations, they support the
goal of representing executable model architectures
in an object-oriented representational language.
As a mathematical formalism, DEVS is platform
independent, and its implementations adhere to the
DEVS protocol so that DEVS models easily translate
from one form (e.g., C++) to another (e.g., Java) [11].
Moreover, DEVS environments, such as DEVS JAVA,
execute on commercial, off-the-shelf desktops or
workstations and employ state-of-the-art libraries to
produce graphical output that complies with industry
and international standards. DEVS environments
are typically open architectures that have been
extended to execute on various middleware such as
the DoD’s HLA standard, CORBA, SOAP, and others
and can be readily interfaced to other engineering
and simulation and modeling tools [10, 12–17].
Furthermore, DEVS operation over web middleware
(SOAP) enables it to fully participate in the net-
centric environment of the Global Information
Grid [8]. As a result of recent advances, DEVS can
support model continuity through a simulation-
based development and testing life cycle [2]. This
means that the mapping of high-level DoDAF
specifications into lower-level DEVS formalizations
enables such specifications to be thoroughly tested

in virtual simulation environments before being
easily and consistently transitioned to operate in a
real environment for further testing and fielding.
	 In [18], Mittal proposed extensions to the
DoDAF by introducing two new Operational View
documents, OV-8 and OV-9, which allow modeling
and simulation to be a critical part in the design
process. He demonstrated how DoDAF-DEVS
mapping can actually take place from the existing
DoDAF UML specifications and how standardized
model repositories can be created. The present work
aims to refine these new OV-8 and OV-9 documents by
providing more details throughout the development
process and discussing the use of these documents
with Net-Ready Key Performance Parameters (NR-KPP)
and DoDAF System Views. NR-KPP is instrumental
in setting the baseline performance for DoDAF
architectures [19]. In particular, we will focus on
testing the interoperability of existing architectures
and the way in which different architectures can be
benchmarked using M&S. We propose an enhanced
version of the Model/View/Controller (MVC)
pattern [20] that provides dynamic simulation
reconfiguration and simulation control using
variable structure DEVS-based component modeling
[21, 23]. We illustrate the benefits of the proposed
enhanced MVC through a current project that deals
with development of a simulator for the Systems
Capable of Planned Expansion (SCOPE) command.

1.1 Brief Overview of Capabilities
Provided by DEVS

To provide a brief overview of the current
capabilities provided by DEVS, Table 1 outlines
how it could provide solutions to the challenges in
net-centric design and evaluation.
	 We will show how the DEVS technology provides
an encompassing framework for test and evaluation
(T&E). With its underlying systems theoretical
approach, DEVS has the necessary depth and breadth
to become the preferred T&E platform for net-centric
analysis and design. Section 2 discusses the key
component technologies inherent in DEVS, principles
of model continuity, and the DoDAF itself. Section 3
mentions the DoDAF specifications, both the original
and the extended versions that introduced OV-8,
OV-9, and model repository. Section 4 describes
the problems and limitations of existing simulation
frameworks and their failure to provide any real-time
simulation control and component variation. Section
5 deals with the MVC paradigm and its enhanced
version. Section 6 presents the layered simulation
architecture that is at the core of the introduced
technology and how it can be viewed in a distributed

Volume 3, Number 4	 JDMS 241

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

HLA communication network. It addresses the
basic requirement for a T&E framework—that the
communication network be “always on.” It presents
ideas on how an M&S framework can provide a
means to analyze online networks. It also presents
various other constructs that aid the user to control
the simulation. Section 7 discusses the concept of
dynamic model reconfiguration using DEVS variable
structure methodology. It introduces the concept of
steady-state simulation that is guided by the end
goal in mind. Section 8 discusses the underlying
DEVS simulation protocol and how dynamic control
is accomplished. It also introduces the concept of
hierarchical parameters that find their way in OV-8
and OV-9 documents. Section 9 discusses an example
of a complete distributed HLA modeling framework
that models nodes as HLA federates. This framework
is then used to benchmark different commercial RTIs
and to explain how models are “tuned.” Finally,
Section 10 presents the conclusions.

2. DEVS System Specifications

In this section, we review some of the background
required for discussion of DEVS support of DoDAF.

2.1 Hierarchy of System Specifications

Systems theory deals with a hierarchy of system
specifications that defines levels at which a system
may be known or specified. Table 2 shows this
hierarchy of system specifications (in simplified form;
see [11]).

At level 0 we deal with the input and output
interface of a system.
At level 1 we deal with purely observational
recordings of the behavior of a system. This is an
input/output (I/O) relation that consists of a set
of pairs of input behaviors and associated output
behaviors.
At level 2 we have knowledge of the initial
state when the input is applied. This allows
partitioning the I/O pairs of level 1 into non-
overlapping subsets, with each subset associated
with a different starting state.
At level 3 the system is described by state space
and state transition functions. The transition
function describes the state-to-state transitions
caused by the inputs and the outputs generated
thereupon.
At level 4 a system is specified by a set of
components and a coupling structure. The
components are systems on their own with their
own state set and state transition functions. A
coupling structure defines how those interact.
A property of coupled systems, which is called
“closure under coupling,” guarantees that a
coupled system at level 3 itself specifies a system.
This property allows hierarchical construction of
systems, i.e., that coupled systems can be used as
components in larger coupled systems.

	 As we shall see in a moment, the system specification
hierarchy provides a mathematical underpinning to
define a framework for modeling and simulation. Each

•

•

•

•

•

Table 1. DEVS on addressing M&S issues

Desired M&S Capability Solutions Provided by DEVS Technology

Requirement coherence and prioritization
Control a simulation on the fly [21].
Reconfigure a simulation on the fly [22].
Provide dynamic variable-structure component modeling [22,
23].
Separate a model from the act of simulation itself, which can
be executed on single or multiple distributed platforms [11].
Simulation architecture is layered to accomplish the
technology migration or run different technological scenarios
[16, 24].
With its bifurcated test and development process, automated
test generation is integral to this methodology [25].
Provide dynamic simulation tuning, interoperability testing
and benchmarking [22].
Provide rapid means of deployment using model-continuity
principles and concepts like “simulation becomes the reality”
[2].

1)
2)
3)

4)

5)

6)

7)

8)

MIL-worth analysis (M&S executable architectures)

Enhanced user capabilities

Execution road maps

Source selection

Technology application/transition

Test support including vulnerability analysis

Interoperability and integration assurance

Hierarchical modular construction of models aiding
system-of-systems testing

Provide collaborative distributed environment for M&S

Volume 3, Number 4242 JDMS

Mittal, Mak, and Nutaro

of the entities (e.g., real world, model, simulation, and
experimental frame) will be described as a system
known or specified at some level of specification. The
essence of modeling and simulation lies in establishing
relations between pairs of system descriptions. These
relations pertain to the validity of a system description
at one level of specification relative to another system
description at a different (higher, lower, or equal)
level of specification.
	 Based on the arrangement of system levels as
shown in Table 1, we distinguish between vertical
and horizontal relations. A vertical relation is called
an association mapping and takes a system at one
level of specification and generates its counterpart at
another level of specification. The downward motion
in the structure-to-behavior direction formally
represents the process by which the behavior of a
model is generated. This is relevant in simulation and
testing when the model generates the behavior which
then can be compared with the desired behavior.
	 The opposite upward mapping relates a system
description at a lower level with one at a higher level
of specification. While the downward association
of specifications is straightforward, the upward
association is much less so. This is because in the
upward direction information is introduced while
in the downward direction information is reduced.
Many structures exhibit the same behavior, and
recovering a unique structure from a given behavior
is not possible. The upward direction, however, is
fundamental in the design process where a structure
(system at level 3) has to be found which is capable of
generating the desired behavior (system at level 1).

2.2 Framework for Modeling & Simulation

The framework for M&S as described by Zeigler et
al. [11] establishes entities and their relationships
that are central to the M&S enterprise (see Figure
1). The entities of the framework are source system,
experimental frame, model, and simulator; they are linked
by the modeling and the simulation relationships. Each
entity is formally characterized as a system at an
appropriate level of specification within a generic
dynamic system. See [11] for a detailed discussion.

Figure 1. Framework entities and relationships

2.3 Model Continuity

Model continuity refers to the ability to transition as
much as possible of a model specification through
the stages of a development process. This is the
opposite of the discontinuity problem where artifacts
of different design stages are disjointed and thus
cannot be effectively consumed by each other. This
discontinuity between the artifacts of different design
stages is a common deficiency of most design methods
and results in inherent inconsistency among analysis,
design, test, and implementation artifacts [2]. Model
continuity allows component models of a distributed
real-time system to be tested incrementally, and then
deployed to a distributed environment for execution.
It supports a design and test process having four steps
(see [2]):

Conventional simulation to analyze the system
being tested within a model of the environment
linked by abstract sensor/actuator interfaces;
Real-time simulation, in which simulators are
replaced by a real-time execution engine while
leaving the models unchanged;
Hardware-in-the-loop (HIL) simulation, in which
the environment model is simulated by a DEVS
real-time simulator on one computer while the
model being tested is executed by a DEVS real-
time execution engine on the real hardware;

1)

2)

3)

Table 2. Hierarchy of system specifications

Level Name What We Specify at This Level

4 Coupled
systems

System built up by several
component systems that are
coupled together

3 I/O system System with state-space and state
transitions to generate the behavior

2 I/O function

Collection of I/O pairs constituting
the allowed behavior partitioned
according to the initial state the
system is in when the input is
applied

1 I/O behavior
Collection of I/O pairs constituting
the allowed behavior of the system
from an external black box view

0 I/O frame Input and output variables and
ports together with allowed values

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

Volume 3, Number 4	 JDMS 243

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

Real execution, in which DEVS models interact
with the real environment through the earlier
established sensor/actuator interfaces that have
been appropriately instantiated under DEVS
real-time execution.

	 Model continuity reduces the occurrence of
design discrepancies along the development process,
thus increasing the confidence that the final system
realizes the specification as desired. Furthermore,
it makes the design process easier to manage since
continuity between models of different design stages
is retained.

3. DoDAF Descriptions

3.1 DoDAF Specifications

The Department of Defense Architecture Framework
(DoDAF), Version 1.0 (2003), defines a common
approach for DoD architecture description
development, presentation, and integration. The
framework enables architecture descriptions to
be compared and related across organizational
boundaries, including joint and multinational
boundaries.
	 DoDAF is an architecture description and does not
define a process to obtain or build the description. The
Deskbook [26] provides one method for development
of IT architectures that meet DoDAF requirements,
focusing on gathering information and building
models required to conduct design and evaluation of
an architecture. The DoDAF defines three elements
for any architecture description.

4) 1. Operational Views (OV)
	 The OV is a description of the tasks and activities,
operational elements, and information exchanges
required to accomplish DoD missions. DoD missions
include both war-fighting missions and business
processes. The OV contains graphical and textual
products that comprise an identification of the
operational nodes� and elements, assigned tasks and
activities, and information flows required between
nodes. It defines the types of information exchanged,
the frequency of exchange, which tasks and activities
are supported by the information exchanges, and the
nature of information exchanges.
	 2. System Views (SV)
	 The SV is a set of graphical and textual products that
describes systems and interconnections providing for,
or supporting, DoD functions. DoD functions include
both war-fighting and business functions. The SV
associates systems resources to the OV. These systems
resources support the operational activities and facilitate
the exchange of information among operational nodes.
Within this view, how the functionalities specified in
OV will be met is elaborated.
	 3. Technical Views (TV)
	 The TV is the minimal set of rules governing the
arrangement, interaction, and interdependence of
system parts or elements. Its purpose is to ensure
that a conformant system satisfies a specified set
of requirements. Within this view, the delivery of

�.	Operational node: A node specified in OV that performs one or
more operations; a functional entity that communicates with
other functional entity to implement a collective functionality or
a capability.

Figure 2. Linkages among views

Volume 3, Number 4244 JDMS

Mittal, Mak, and Nutaro

systems and functionalities is ensured along with their
migration strategies toward future standards.
	 These views provide three different perspectives
for looking at architecture. The interrelationships
among these three views can be seen in Figure 2.
The emphasis of the DoDAF lies in establishing the
relationship between these three elements ensuring
entity relationships and supporting analysis. The
DoDAF approach is essentially data centric rather
than product centric. The OV, SV, and TV are further
broken down into specialized views whose brief
description can be seen in column 3 in Table 3 ahead.

3.2 Extended DoDAF Specifications

Information technology–based systems of the future
will be increasingly complex with participants
across the globe communicating through disparate
channels. Interoperability is very much in question.
Scalability and fault-tolerance issues have to be
addressed. Capabilities have to be satisfied and
reliability has to be ensured. Any large system that

DoDAF specification documents intend to build
has to realize these important facets of architecture
design. Modeling and simulation with its model-
continuity principles is fast becoming an accepted
method of evaluating design principles ensuring
accountability to various components within the
system. DoDAF has completely overlooked M&S as
a possible means to evaluate design, capabilities, and
planned expansion of current architectures. There is
no provision for testing the constructed system, either
in OV or in SV. The ability to configure systems for
optimum performance is not allowed in the current
DoDAF specification document.
	 We have introduced two new operational views,
OV-8 and OV-9, that add features to enable M&S of the
system under design. More details can be found in [18].
We have also demonstrated how these new documents
will be created from the existing operational views.
We aim to provide structure to the OV process by
shifting the perspective from describing functionality
as an activity to an Activity-component with definite
interfaces to other Activity components as well as
identified entities within an Operational node. To

Figure 3. SES for enhanced DoDAF with a focus on OV

Volume 3, Number 4	 JDMS 245

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

what extent an Operational node is decomposable is a
subject requiring further research. We have developed
a testing process for defined capabilities (that were
defined during the conceptual design process in OV-
5) and ways in which various rules and doctrines (in
OV-6a) can be evaluated for interoperability with
different capabilities. By purview of the information
contained in OV-9 we have introduced the model
repository as an important aspect of DoDAF system
specification that enhances the DoDAF by making
way for M&S activity. Figure 3 shows the system entity
structure (SES) snapshot of the enhanced DoDAF with
focus toward the operational views. (See appendix for
more information on SES.)

3.3 Refinement of OV-8

In relation to the DoDAF, as M&S is not mandated in
the current handbook; there exists no place to specify
the parameters of any kind, other than in Systems
View document SV-7. In the current DoDAF, OV deals
with functionality; SV deals with system identification,
specification and compliance; and TV provides technical
feasibility considerations. However, taken altogether,
there is no place where the designer can refer to a
“significant parameter set.” It is not considered in the
OV process and not discussed at all until systems that
perform the functionality are identified in SV-4 and SV-
5. The architecture designed as a result of the current
process is deemed to be too rigid to allow for design
exploration (through M&S), let alone any boundary
conditions for technology transition studies.
	 In our earlier work [18] we had proposed two
new operational views, OV-8 and OV-9, dedicated to
M&S. OV-8 deals with the identification of Activity-
components and OV-9 deals with association of these
Activity-components to specific system and entity
components within an operational node. We refine
these two documents here by adding one more column
in both (see Table 3). The additional column relates to

the “significant” parameter that is worthy of the system
designer’s attention during construction of Systems
View. These significant parameters will, in fact, be
admitted in to the experimental frame to control the
simulation study.

3.4 NR-KPP and OV-8

Net-Ready Key Performance Parameters (NR-KPP) are
a key to measuring the readiness for transformation
into a fully interoperable and secure net-centric
warfare environment. As currently stated in the Joint
Staff Guidance,

The NR-KPP assesses information needs, information
timeliness, information assurance (IA), and the net-ready
attributes required for both the technical exchange of
information and the end-to-end operational effectiveness
of that exchange. It consists of verifiable performance
measures and the associated metrics required evaluating
the timely, accurate and complete exchange and use
of information to satisfy information needs of a given
capability. It is composed of the following four pillars:

•	Compliance with the Net-Centric Operations and
Warfare Reference model (NCOW-RM)

•	Compliance with applicable Global Information Grid
(GIG) Key Interface Profiles (KIP)

•	Verification of compliance with DoD IA requirements;
and

•	Supporting integrated architecture products required
to assess information exchange and use for a given
capability.

	 Integrated architectures are the most critical
components of the NR-KPP because they establish
both the operational and systems context for
information exchange. They are developed and
documented using the DoDAF, which provides
templates for the 27 distinct views. Two other critical
components in NR-KPP, namely, the NCOW-RM
and KIPs are in the evolving state. KIP tools help
standardize and manage interfaces to networks,

Table 3. Enhanced OV-8 allowing specification of significant parameters for an activity

S.
No.

Activity ID
Component

Significant
Parameters

Connection
ID

Source
Activity

Input
Interface

Name

Message
Des. Op. Node

Source
Document/

Diagram

1 A6 O1

2 A6.1 CA6.1 A6.11 inSigMovY AMT O1 Figure 12/
OV-6b, c

3 A6.2 CA6.2 A6.11 inSig-
MovN Target O1 Figure 12/

OV-6b, c

4 A6.3 CA6.3 A6.1 inTrkData Data O1 Figure 12/
OV-6b, c

Volume 3, Number 4246 JDMS

Mittal, Mak, and Nutaro

services, and communication pathways. Initial
attempts to manage interfaces required identification
of specific interfaces between each and every system
for which an operational interchange of information
was required. The net-centric vision requires a
paradigm shift from “one-to-one” relationships
to “one-to-many” relationships, and KIPs are the
key profiles enabling that shift. The KIP consists of
refined OVs and SVs, and interface control document/
specification (ICD), an engineering management
plan, a configuration management plan, a TV with
an SV-TV bridge, and procedures for standards
conformance and interoperability testing [27]. The
Joint Staff categorizes the key interfaces in four
broad categories, viz., communications computing,
enterprise services, and network operations (Net-
Ops), and other explicit interfaces (in addition to
seventeen mentioned since first draft). The final
version is referred as in [7], released March 2006. From
an evaluation perspective as has been recognized,
if the KIP is not defined then it clearly cannot be
tested. As a part of overall T&E strategy, the NR-
KPP T&E strategy [27] is twofold: first, identify and
gather sufficient data from developmental events to

verify that the key subcomponents for the NR-KPP
have been satisfied, and verify that the information
and systems data exchanges can be accomplished;
and second, validate these exchanges to achieve the
mission in an operational test (OT) environment.
	 The two steps mentioned in the overall strategy
relate to the SV-6 document that specifies the system
data-exchange matrix. The first step verifies the
data exchange, while the second step validates it in
the operational test environment; see Figure 4. The
OV-8 and OV-9 documents lie in the operational test
domain. As stated earlier, the current DoDAF OVs
do not provide any mechanism to facilitate M&S;
these new OVs, in addition to specifying interfaces,
are refined to identify these operational parameters
for any particular Activity-component. As the KIP
specifies an interface control document (ICD), OV-
8 expedites its development by providing ready
operational interfaces, in relation to a particular
capability, that can be mapped to specific system
interfaces with relation to SV-6 and SV-7. Providing
the mapping for SV-6 and SV-7 is outside the scope
of this paper. The objectives of proposing OV-8 and
OV-9 have been to empower the DoDAF with M&S

Figure 4. Role of OV-8 in construction of Key Interface Profile (KIP)

Volume 3, Number 4	 JDMS 247

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

at the operational development stage and to show
how different capabilities can be composed from
various independent activities. Proving interface
specification and allowing composition using this
interface specification in OV-8 is a key element of this
proposition. The refined OV-8 allows for specification
of parameters, for both an Activity as well as the
composed capability that will be mapped to the
NR-KPP with reference to any particular DoDAF
architecture.

4. Problems Associated with Current
Simulation Frameworks

Although a number of commercial and academic
simulators are available for complex network studies,
none have the capability to tune the simulation while
it is in execution. Due to tight coupling between
the network model and the simulation engine in
such simulators, the capability to introduce changes
in parameter values during execution is limited
or non-existent. The work described here has the
objective of developing a DEVS-based network
modeling and simulation environment with dynamic
simulation control and queue visualization. The
DEVS modeling and simulation framework separates
model, experimental frame, and simulator. This
modularity facilitates the development of a simulation
framework supporting run-time simulation tuning.
The motivation behind providing “real-time”
intervention is to support a rapid feedback cycle that
allows experimentation with network parameters
and structures. This can result in an effective network
configuration that is difficult to achieve when
turnaround requires hours or days. Furthermore,
such instantaneous observation and control enables
important transient situations to be recognized and
considered.

4.1 Real-Time Control and Visualization
Limitations of Existing Network Simulators

Some of the limitations of existing network
simulation packages are as follows:

Everything has to be programmed prior to
simulating the network.
User interfaces are not easily customized; they
provide largely textual interfaces.
There is no support for changing parameters and
component structures during simulation.
Simulation run times tend to be long (a few hours);
more importantly, if a run ends in a crash, there is
no way to intervene and readjust the system.

•

•

•

•

There is little run-time visualization of the system
behavior to aid understanding and to steer the
simulation in a productive direction.
Model and simulation calibration is a new
concept, largely unattended by the legacy and
current simulators.
Model-driven design and development is a
new technology supported by only a handful of
simulation frameworks.
Distributed M&S and concepts like model
repository are not supported in most of the
frameworks.
Treating an M&S T&E framework as an “online”
system by itself is non-existent and unaddressed
by current simulators.
Performance-oriented simulation frameworks are
non-existent. Most are bounded by initial model
configuration.

	 To develop a network modeling and simulation
environment that addresses these limitations,
we extended the existing Discrete Event System
Specification (DEVS) software, DEVS JAVA. We
discuss the layered architecture underlying the
network simulation environment. After describing this
architecture, we discuss some proposed run control
and visualization techniques intended to greatly
improve user understanding of, and ability to control,
the complex structural and behavioral relationships
characteristic of large network behaviors. An example
of the use of the architecture will be given; it concerns
modeling and simulation of network-based distributed
engineering studies performed using the High Level
Architecture (HLA) middleware.

5. Model/View/Controller (MVC) Paradigm
and DEVS Framework

5.1 Earlier Work

Nutaro [28] proposed the Model/Simulator/View/
Controller (MSVC) paradigm, as an extension of
MVC. He promoted the separation of model and
simulator and has listed many advantages that come
about with this idea, most important being the reuse
of simulation software, especially in the context of
distributed simulations. The other problems that are
solved by this paradigm are as follows:

Distributed simulation protocol changes can be
encapsulated within the controller (input and
time management policies) and viewer (output
policies) objects.
By separating the viewer and controller it is
straightforward to add displays, logging tools,

•

•

•

•

•

•

1)

2)

Volume 3, Number 4248 JDMS

Mittal, Mak, and Nutaro

and other output processing devices to the
simulator.
Modeling, simulation, distribution or parallel-
ization, and user interface issues can be addressed
separately.

	 Nutaro demonstrated an application of middle-
ware simulation, wherein the simulator was tuned
to display the behavior of certain middleware by
incorporating effects such as RTI latency (with
reference to distributed simulation HLA framework).
In his methodology, the simulator is a thread derived
from the controller thread that contains the platform
(RTI latency) delay parameter. As the controller
thread generates this event, it is communicated to
the simulator as well as to the viewer using inter-
thread communication. Although Nutaro did not
consider model updating or model control, his work
constitutes a part of our enhanced MVC framework,
where there is full capability in the controller to
modify the model as well as the simulator.
	 Our work is implemented in DEVS JAVA and has
a super-thread that runs at the root-coordinator
level that monitors the experimental frame for
any user-generated activity controls. There exists
no viewer thread as the viewer objects are created
hierarchically as delegated classes of the model as

3)

well as the simulator object. Any modification in
their state is also reflected in the contained viewer
object. The viewer object displays are derived from
the java.awt package. Consequently, they inherently
have independent thread that repaints.

5.2 Enhanced MVC

Figure 5 below provides the graphical represen-
tation of an enhanced MVC paradigm. It has
been represented with respect to the DEVS  M&S
framework components. Model and View take their
usual functions and meanings. The Control in MVC
is explored in more detail and is mapped to the DEVS
Experimental frame. Internally, the Experimental
frame has a modular structure with a basic control
component and controller A and B as derived
components.
	 The basic control component translates the
information contained in OV documents. It extracts
the parameter-set as specified in the refined OV-8, in
section 3.3. It also extracts information from the NR-
KPP set and integrates the information into a unified
controller that the user can refer to. It is specialized
into two components, one dedicated to simulator
middleware control and the other dedicated to model
control. It also assigns different parameters to the

Figure 5. Enhanced MVC paradigm with DEVS M&S framework

Volume 3, Number 4	 JDMS 249

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

appropriate controller. From an earlier work discussed
in section 5.1, controller A provides tools to control the
DEVS simulator, more appropriately the middleware
aspect of simulation. Controller B provides the toolset
to control the model. Details about middleware control
can be seen in Nutaro [28]. Controller B provides
functionality to vary the number of components, in
addition to the parameters in a component, both at
the component and subsystem level. The parameter
set for both the controllers is made available to the
user as a sliding bar in the controller frame in the
View panel that enables the user to tune the active
simulation toward optimum performance.
	 The enhanced MVC has exhaustive control
expressed in the experimental frame domain. The
Experimental frame component in the DEVS M&S
framework is a key construct that enables the user
to drive and maneuver the simulation in the “right”
direction. The concept of experimental frame, i.e.,
a mechanism by which an experimental scenario
is designed for the model architecture, is further
enhanced to enable the user to reconfigure and tune
the simulation itself. Benefits of user intervention
have already been highlighted in section 5.1 and
are explored in more details in section 8. Given that
the user has the capability to control the simulation
parameters, the issue of extraction and identification
of those parameters is taken care by the basic control
component that interfaces with the DoDAF documents
OV-8 and OV-9. Consequently, the Experimental
frame now provides rich control equipment that the
operational test designer can use to his advantage.

6. Dynamic Simulation Reconfiguration

6.1 Variable Structure DEVS

A component is “a nontrivial, nearly independent,
and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture.
It conforms to and provides the physical realization of
a set of interfaces” [29]. A component system is built
by composition of various independent components
and by establishing relationships among them. As
each component has a high degree of autonomy and
has well-defined interfaces, variable structure of
components can be achieved during run time. For
component-based modeling and simulation, variable
structure provides several advantages:

It provides a natural and effective way to model
those complex systems that exhibit structure
and behavior changes to adapt to different
situations. Examples of these systems include
distributed computing systems, reconfigurable
computer architectures [30, 31], fault tolerant

1)

computers [32], and ecological systems [33].
Structure changing and component upgrading
is an essential part of these systems. Without the
variable structure capability it is very hard, if
not impossible, to model and simulate them, let
alone study the transition effect that the system
incurs when new components are added in a real
deployed system.
From the design point of view, variable structure
provides the additional flexibility to design
and analyze a system under development. For
example, it allows one to design and simulate
a system in which the components are added
or removed incrementally and form dynamic
relationships with existing components.
It allows one to load only a subset of a system’s
components during simulation. This is very
useful to simulate very large systems with a
tremendous number of components, as only the
active components need to be loaded dynamically
to conduct the simulation. Otherwise, the entire
system has to be loaded before the simulation
begins.

	 In general, there are six forms of reconfiguration of
component-based systems [34]:

Addition of a component,
Removal of a component,
Addition of a connection between two or more
components,
Removal of a connection between two or more
components,
Migration of a component, and
Update of a component.

	 The first two operations result in an update of
the modeled system where there is a change in the
number of components in the system, the next three
result in a reconfiguration of the existing system,
and the last one results in the modification of the
component itself, either its behavior or its interface
structure. In DEVS these are collectively known as
variable-structure modeling. More details about said
operations can be found in [23].
	 As variable structure changes a component-based
simulation during run time, boundary conditions
and the limits to which a component affects other
components need to be specified with said operation.
With reference to Table 1, the model reconfiguration
can be implemented at any of the specified levels.
These issues are very well addressed in [23].
The variable structure provides the flexibility to
design and analyze a complex hierarchical system
under development, as well as during a running

2)

3)

1)
2)
3)

4)

5)
6)

Volume 3, Number 4250 JDMS

Mittal, Mak, and Nutaro

simulation, as supported by the dynamic structure
SES capability.

6.2 Implementation of Variable Structure in
Extended MVC

Variable structure essentially deals with modification
of the component as well as of the number of
components that specify the modeled system. Its
power lies in its run-time implementation that gives
us the capability to study the transition effects when
the system is presented with a different number of
components and interrelationships. This is entirely
a modeling issue and is independent of how the
system is simulated when presented with such
changes. With the DEVS modeling approach, this
is brought to fruition in its modeling layer. With
the proposed MVC approach, as is quite obvious,
this is implemented in the modeling layer that is in
control of the Experimental frame controller layer.
The modeling layer that holds the system model, its
configuration, and the inter-component relationships
receives commands from the Experimental frame on
modifying the system. The user is in charge of the
Experimental frame. Consequently, if he wishes to
modify the system structure he is given the toolbox
to modify the model from the experimental frame. Of
course, the toolbox is also designed by the modeling
designer who decides if the system is to be analyzed
and the chosen component plays a significant role in
system dynamics and performance. With the closure
under coupling property inherent in DEVS formalism,
an entire subsystem or an individual component in
system can be added as a “component” in the model,
in addition to its relationships with other existing
components. This property aids in adding a complete
system model as a component in a running simulation.
With reference to Figure 5, the Experimental frame
view will contain the controls that the user can
perform to modify the structure of the model.

6.3 Notion of System Steady State

Evolution is a discipline by which one can
understand the growth of a “system” with respect
to time. Modeling growth is a difficult concept, let
aside simulating “growth.” Biological evolution is
studied through looking into the past and seeing how
different species have changed according to their
environment. In computer systems, the Internet is
one such system that has “evolved” over time and
has resulted in a World Wide Web that now sustains
heterogeneous components sustaining together.
Evidently, no one could foresee during its conception
days that it had the potential to become the Internet

of today with over one billion hosts. In order to model
growth, one has to have the capability to modify the
structure of constituent components—its interfaces
on how it changes when the component is placed in
different environments. Biological organisms survive
by a process of adaptation, and transmitting this
information to progeny with encoded information
unlike the computer systems. The computer systems
are characterized by rigid interfaces through which
they communicate with the “environment.” Certainly
we are not focused toward modeling adaptation,
though it can be done with the current DEVS suite,
but trying to understand the response of system
when another component is introduced in the system
is of prime importance. The response time of a
system is defined as the time taken by the system to
display any effect once the model has been modified.
There are legacy systems, and the new technology is
bringing new components that need to be backward
compatible. The situation with respect to IPV4 and
IPV6 is one such example in which the communication
network has a new standard that needs to be deployed.
IPV6 has been around for more than ten years, and
according to various sources, it will take another ten
years for the current Internet to be completely IPV6
compliant. Testing of IPV6 in conjunction with IPV4
is a big limitation [35]. The analysis of these kinds of
situations can be very readily done with the current
capability by introducing links and components to
the existing network model and observing how the
system responds.
	 The steady state of any network system can be
defined as the situation when the computer network
is stable and there is constant throughput, network
latency, and there are no overflowing buffers in
routers. In essence, it boils down to the efficient
utilization of bandwidth across all links such that
there are no blockages. Total data transmitted from
network components is received at the designated
destinations, with allowable errors. Consequently,
capacity planning is onestudy that results in
quantifying the bandwidth in order to make the
system stable with a specified number of components.
Looking at it in inverse perspective, finding the
number of components that can be sustained by any
particular deployed network is of equal interest. The
question arises: How can we model a network system
in which the system can simulate the growth of this
network, arriving at a steady state and providing us
with the result that the network can sustain a particular
number of components? The current variable structure
capability provides us with the needed functionality
in which the Experimental frame is given the control
to “arrive at steady state.” What it actually means is:
once a small model of the network system is simulated

Volume 3, Number 4	 JDMS 251

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

and utilization is reported, the system continues to
keep adding new (preordained) components, along
with their relationships, to the existing system until the
system reaches a specified network throughput. At
what rate the new components are added is a tunable
parameter, made available in the experimental
frame. This whole exercise shows, given a certain
system exhibiting certain behavior, how the system
would perform and evolve if let loose, or what the
maximum number of components is that the system
can be loaded to so that it maintains a steady state! To
determine at what result-set the system would break,
or if it has a “survivable” nature, is worth conducting
analysis. The run-time capability gives us a window
to monitor the effects the system incurs when it is
modified by external effects like the rate of growth of
the system.

7. Dynamic Simulation Control

7.1 DEVS Simulation Engine

DEVS has been erected on a framework that exploits
the hierarchical, modular construction underlying
the high level of system specifications. The basis
specification structure in all the associated DEVS
derived formalisms, e.g., DTSS, DESS, is supported
by a class of atomic models. An atomic model is
an irreducible component in DEVS framework
that implements the behavior of a component. It
executes the state-machine and interacts with other
components using its defined inports and outports.
Each such atomic class has its own simulator class. A
network of these atomic models constitutes a coupled
model that maintains the coupling relationships
between the constituent atomic components. Each

such coupled model class has its own simulator class,
known as a coordinator. Assignment of coordinators
and simulators follows the lines of hierarchical model
structure, with simulators handling the atomic-
level components and coordinators handling the
successive levels until the root of the tree are reached.
These simulators and coordinators form the DEVS
simulation engine, and they exchange messages
by adhering to what is known as DEVS simulation
protocol (see Figure 6). The message exchange is
depicted in the figure below. For more details about
the simulation protocol refer to chapter 8 of [11]. The
figure below shows the mapping of a hierarchical
model to an abstract simulator associated with it.
Atomic simulators are associated with the leaves of
the hierarchical model. Coordinators are assigned to
the coupled models at the inner nodes of the hierarchy.
At the top of hierarchy there is a root-coordinator that
is in charge of initiating the simulation cycles (see
Figure 7).
	 Since the DEVS model is based on DEVS formalism
that is based on mathematical systems theory, the
behavior expressed through DEVS can be translated
to any other formalism, though there exist no other
theoretical M&S frameworks. With the separation of
the model from the simulator, the advantage is that it
supports formalism interoperability. The next subsection
throws light on how an experimental frame intervenes
in the DEVS simulation protocol by causing interrupts,
and how it implements dynamic simulation control.

7.2 Interrupt Handling

The controller frame is built on top of a root coordinator
in DEVS JAVA shown in Figure 7. We developed
interfaces to enable the DEVS engine to take into
account the change of experimental frame parameters
during the simulation run. It generates interrupts,
which are handled by the coordinator in DEVS JAVA.
The event from the controller frame is handled by
the root coordinator that holds the simulation at that

Figure 6. DEVS simulation protocol
Figure 7. Hierarchical simulator assignment for a
hierarchical model

Volume 3, Number 4252 JDMS

Mittal, Mak, and Nutaro

instant, taking care of the simulation state. The event
then is channeled through the hierarchical simulator
network to the intended model. Once the model
has been updated, the root coordinator resumes
the simulation by reinitiating the DEVS simulation
protocol. Consequently, the model is updated in
between the running simulation with other events
still being held in different component simulators.
Only the intended model is updated, which then
participates accordingly as before. How this event
(parameter update inside a model) brings change or
how the system responds to this change can be seen
very well in different visualizers. Examples can be
seen in later sections.

7.3 The Notion of “Simulation Control” Explored

Having laid out the framework to implement the
dynamic simulation control, we also explored
different methodologies in which the simulation can
be controlled. Following are the three ways by which
the simulation can be interjected and brought to
successful execution.

7.3.1 Automated Control

	 In this methodology, we have stored procedures,
basically a predefined event list stored as a file that
is being read actively during the running simulation
and generates events that sends interrupts to the
coordinator. This does not require a controller frame
that is used to provide real-time interrupts. The
experimental frame takes the shape of this file in
which different scenarios are preloaded along with

simulation parameters. Certainly, execution of a
scenario can be considered as one simulation run or
a session, but the introduction of a parameter set in
the experimental frame that is injected dynamically
in the running simulation is of prime interest. This
approach has been implemented by Nutaro. This
methodology is verily extended toward the following
setup shown in Figure 8 where the SES family of test
cases is implemented as an XML file. The sequence of
test is executed in a sequential manner and reported.

7.3.2 Manual Reactive Control

	 In this methodology, the experimental frame is
operated through a controller frame that is designed by
the system test designers. The significant parameters
and models are identified with reference to the OV-8
document or NR-KPP set and made available in the
controller frame. This methodology provides us with
a mechanism to manually interject in the running
simulation to introduce modifications. It also provides
us with the capability to steer the simulation if the
simulation is moving toward a “crash” or if the user
wants to see the temporal effects of any parameter
update. The capability to steer and study the effects
of any single parameter is a powerful capability and
is almost nonexistent in current simulators, both
in the academic and commercial arenas. There is,
however, some software available in the business
finance domain that provides this capability. The
concept of analyzing parameters in a reactive manner
has not been applied to any M&S framework to date.
The examples in later sections display this approach.

Figure 8. Automated test suite execution

Volume 3, Number 4	 JDMS 253

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

7.3.3 Hybrid Control

	 As the name suggests, this methodology takes the
best of the above two approaches. This methodology
has an automated scenario generation/modification
capability as well as reactive control through the
controller frame. The main purpose of the controller
frame in this approach is to study the temporal
effects and steer the simulation toward optimum
performance.

7.4 Parameter Control

This subsection presents some ideas on the selection
and categorization of parameters. Two classes of
parameters that were identified for any system are the
tunable parameter set and the result parameter set.

7.4.1 Tunable Parameter Set

	 This set is comprised of the parameters that are
to be included in the Experimental frame. This set
is termed “tunable” for obvious reasons, as the
simulation analysis is conducted to study their
effects on the system performance when their values
are modified. These parameters are called tunable
parameters because these parameters are implemented
as a “slider” component in the controller frame with
definite bounds. The user can control this slider to
tune the system for optimum performance. In the
network system terminology, link capacity, router
buffer, etc., can be classified as tunable parameters.
With reference to the DoDAF and NR-KPP, this makes
more sense, as we need to understand the impact of
the identified “significant” parameter on the overall
system performance.

7.4.2 Result Parameter Set

	 This set is comprised of the aggregated result
values that provide the overall system performance
estimates. SV-7 provides a place where these
documents could be found on a per subsystem basis.
However, the holistic result parameters still need to
find an appropriate place. There should be a dedicated
place in the systems view with respect to the overall
system performance. The aggregated parameters in a
network system can be thought of as latency, network
throughput. This parameter takes leverage from the
NR-KPP set that is needed to satisfy the baseline
system performance. Its mapping with SV-7 is beyond
the scope of the current work.

7.5 Synopsis

The above discussion has illustrated how the DEVS
simulation framework provides new capabilities in
the Experimental frame and how these capabilities
are implemented. It also shows that an experimental
frame is the place where the user can modify the model
and can modulate the simulation according to need.
From the basic capability of creating an experimental
scenario for the modeled system, we have enhanced
it by providing more features like simulation control
and parameter tuning. We have also explored various
ways simulation control could be performed and
how parameters are categorized to find their way in
the Experimental frame. Together with the variable
structure capability described in section 6, the
experimental frame becomes an all-encompassing
user interface to a complex hierarchical system model
under simulation. It gives the user more power to
observe and visualize the simulation by isolation at
the parameter level and the component level as well
as on the subsystem level.

8. Example to Illustrate the Current DEVS
Technology

8.1 Systems Capable of Planned Expansion
(SCOPE) Command�

SCOPE command is a highly automated, high-
frequency (HF) communication system that links
U.S. Air Force (USAF) command and control (C2)
functions with globally deployed strategic and
tactical airborne platforms. SCOPE command
replaces existing USAF high-power HF stations
with a communication system featuring operational
ease of use, dependability, and seamless end-to-end
connectivity comparable to commercial telephone
services. The network consists of fifteen worldwide
HF stations (see Figure 9) interconnected through
various military and commercial telecommunications
media (see Figure 10). It increases overall operational
and mission capabilities while reducing operation
and maintenance costs.
	 The HF radio equipment includes the Collin’s
Spectrum DSP Receiver/Exciter, Model RT-2200.
The radios feature Automatic Link Establishment
(ALE) and Link Quality Analysis (LQA) capability
and are adaptable to future ECCM waveforms
FSK, MIL-STD-188-110B, and STANAG 5066. The
transmit subsystem includes 4-kW solid-state power
amplifiers, a high-power transmit matrix, and a
combination receive/multicoupler antenna matrix. A

�. SCOPE Command description taken from Rockwell
Collins website.

Volume 3, Number 4254 JDMS

Mittal, Mak, and Nutaro

typical SCOPE command station includes operator
consoles (HFNC), circuit switching equipment (DES,
DSN, LCO), HF radios (ALEs), RF matrixes (RTs),
and antennas (RXs, TXs). A non-blocking digital
electronic switch (DES) connects the station to the
local military and/or commercial telecommunication
services. The switch features unlimited conferencing,

Figure 9. Geographic locations of fixed stations

Figure 10. Communication flow diagram for SCOPE command

modular sizing, a digital switch network, a precedence
function, and capacity for up to 2,016 user lines.
	 SCOPE command uses a modular, open-system
design to automatically manage and control all
network operations, including those at split-site
stations. To achieve maximum flexibility, the system
uses commercially available standards-based

Volume 3, Number 4	 JDMS 255

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

software and a multitasking operating system. This
approach permits fourteen out of fifteen network
stations to operate “lights out” (unmanned) and to be
economically controlled from a central location. The
control system also includes LAN software, servers,
and routers to support unlimited LAN/WAN.
	 The program includes a Systems Integration
Lab (SIL) and test-bed facility located in Rockwell
Collins’s Texas facility. The SIL is used to predict the
impact and risk that any changes or upgrades will
have on system performance, integrity, or costs before
actual implementation begins. The SIL includes
a fully functional SCOPE command station for
performing baseline design verification, and interface
compatibility and functional verification tests.
	 Joint Interoperability Test Command (JITC) is the
only government agency that is assigned the task
to validate and authorize IT systems for military
operations [7]. The HF SCOPE command system
has also been evaluated by JITC. In collaboration
with Dr. Eric Johnson, a simulator was developed in
the C language around 1997 that was validated and
eventually used by both the government and the
industry to conduct experiments and run scenarios.
The simulator was an exhaustive and comprehensive
effort with respect to the details it implemented
and served its purpose well. However, in today’s
circumstances, the same simulator is obsolete due to
the heterogeneous nature of today’s network traffic,
in which e-mail occupies a considerable percentage
of traffic. The simulator is now being upgraded at the
ACIMS lab in order to make it more useful for current
demands. These demands stem from the possibility of
expansion of the current infrastructure of the SCOPE

command. Questions arise such as how many stations
need be added to service a required workload. Also
needing to be investigated are trade-offs such as
whether it is more economical to add more stations
or increase the number of internal radio levels
within stations to meet the anticipated demands.
Air traffic has increased manifold since 1997, along
with the computing technology. Consequently, the
transition effects need to be monitored more closely,
and the overall system response time� needs to be
documented. The significant parameters that have
the most impact on system performance have to be
identified. To more easily address such questions,
an effort is being made to modularize Johnson’s
15K lines of code into a component-based structure
depicted in Figure 11. Once “componentized,” the
components are made DEVS compliant resulting
in a DEVS-based simulation package to support
the systems engineering needs of the SCOPE
command.�

	 To study the effect of changes/upgrades introduced
to the existing SCOPE command system we built
the Experimental frame, based on DEVS principles
for our modular DEVS-NETSIM simulation model,
named GENETSCOPE [38]. Figure 12 shows the block
architecture of the simulation model. The right-hand
box is the system phenomenon that contains the
Automatic Link Establishment (ALE), STANAG 5066
protocols used for establishing links and exchanging

�.	Response time of a system is defined as the time taken by the
system to display significant effect caused by any update in the
configuration parameters.

�.	A methodology using intermediate XML processing to automate
much of the process of “componentizing” legacy simulation
code will be reported soon.

Figure 11. System entity structure for SCOPE command system showing the fixed and mobile (aircraft) stations

Volume 3, Number 4256 JDMS

Mittal, Mak, and Nutaro

data messages between mobile stations and fixed
stations. The left-hand box is the experimental frame
that generates various scenarios and parameters under
study. The scenarios and parameters are fed into the
model and performance characteristics are obtained
from it, which are then visualized and analyzed in real
time as per the extended MVC architecture described
in section 5.

8.2 SCOPE Command and DoDAF

Certainly, a system like SCOPE command qualifies
to be represented as a DoDAF specification.
Though not provided in this paper, all three views,
viz., Operational, System, and Technical, can
be developed. The documents are fairly easy to
construct as the system is not in the design phase
but is a live system with working standards and
people managing the system for as long as twenty
years. The physics of the HF communication is still
the same, and the radio equipment has set standards
that have not been revised that often. What is new in
the system is the incorporation of new standards, for
example, the STANAG 5066 data-exchange protocol
that modulates the modem rates and reliable data
delivery across the HF messaging system. This is
being added to provide the capability to send e-mail
messages through the HF system. The other major
thing that has changed is the increased intensity of
traffic, demanding upgrades to the existing system.
For illustration purposes, suppose that we had the
DoDAF description of SCOPE as well as all the details
on how the system would be constructed and its

functionality implemented. Remaining solely within
the DoDAF, there still would not be any means to
analyze or experiment with the projected system. As
stressed earlier, the DoDAF does not provide for any
M&S capability to support the system design process.
It only provides a means to build a system on the
presumption that analysis has already been done, a
“design” is available, and the system is ready to be
deployed. The purpose of the DoDAF in this case is
nothing more than a documenting procedure.
	 The methodology presented in this paper takes
the DoDAF as a front-end documentation procedure
that aids M&S and design objectives. With respect to
Figure 5, the central theme of the paper, we present
sample OV-8 and OV-9 documents to illustrate how
the experimental frame is developed from the DoDAF
terminology.
	 Although the current DoDAF views are
insufficient to provide the M&S for the purpose
of enhancing and recommending upgrades to the
existing SCOPE system, the DEVS approach readily
provides the needed tools. Going back to the basic
DEVS M&S components (see Figure 1), the legacy
SCOPE simulation model was transformed by the
base high resolution model. The Experimental frame
is constructed over this existing system along with
various other additions that would control and direct
the possible upgrades. This component is responsible
to provide environmental conditions, workload
generation, performance analysis, system evolution
and control, and achievement of steady state. The
other advantage of this separation is the construction
of a DEVS lumped model in which various details of

Figure 12. GENETSCOPE simulation architecture for SCOPE command

Volume 3, Number 4	 JDMS 257

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

the base model are abstracted and lumped together.
Whereas the base model is oriented to technical
components, the lumped model directly addresses
system level issues and supports faster simulation runs
to answer these questions. As always, the question
arises as to how close these results match with the
detailed model. The lumped model is preferred if it is
able to perform to the same level of accuracy and helps
answer the questions raised by the SCOPE command
designers. The comparison of a lumped model with
a base model is only possible if the underlying M&S
formalism supports modular construction of the three
components, viz., model, simulator, and Experimental
frame [11].

8.2.1 Sample OV-8 and OV-9 Documents

	 Let’s consider two activities out of many activities
that are a part of any HF radio communication, i.e.,
sounding and listening. Sounding is defined as the
process by which different stations (refer to Figure
11) periodically send broadcast messages at different
frequencies so that other stations know who else is
available on the HF radio sky. Listening is defined as
the process by which these stations identify and hear
RF tones and go through a demodulation process to
decode and decipher the incoming transmission.
	 Table 4 describes the initial process that is done to
populate the OV-8 document. It assigns various IDs
to different Activities and sub-activities that are then
used as reference tokens and automation processes,
as described in [18]. Figure 14 depicts the OV-5 for
activity sounding. Activity listening will have a similar
Operational View depiction. Table 5 presents a sample
OV-8 document with refined structure (see Table 3)

showing the significant parameter set for sounding
and listening activities. It should be well stressed here
that documention and aggregation of this information
with the corresponding activity helps find faults in
testing the “feasibility” of the system [18] when M&S
is employed.

Table 4. Activity ID mapping for OV-8 and OV-9

S.
No. Activity Sub-activity Internal

Activity ID

1 Sounding A1
2 Prepare Call A1.1
3 Send Call A1.2
4 Send

Transmission
A1.3

5 Listening A2
6 Receive

Transmission
A2.1

7 Evaluate Signal A2.2
8 Decode Signal A2.3
9 Report Message A2.4

Figure 13. DEVS M&S and the existing SCOPE command system

Figure 14. OV-5 for activity sounding

Sounding A1

A1.1 A1.3
Prepare	Call	

A1.2
Send	Call	

Send Send SendSound Frame Transmission
Add
Transmission

Volume 3, Number 4258 JDMS

Mittal, Mak, and Nutaro

	 Having constructed the OV-8 document, let us
construct the OV-9 documents according to the
proposed structure in [18]. Table 6 presents the
components that lie within the Operational Node
station and their assigned IDs for automation purposes.
For more details, refer to [18]. It is worth stressing
here that this information comes readily from the SES
of the existing SCOPE command system, as shown in
Figure 11. The inner components within the station
Operational Node are clearly defined in Figure 11.
	 Hence, during the creation of OV-8 and OV-9 we
have populated the model repository with Activity
models (MA6.1–MA6.18) and Operational node’s
inner components models (ME1, ME1.1–ME1.6) and
have created an interface between these two aspects
of DoDAF design. In the subsequent sections, we shall
see how these enhanced OV-8 and OV-9 documents
prove to be advantageous in defining the DEVS
Experimental frame parameters and hierarchical GUI
developments or code development of the simulation
model.

8.3 SCOPE Architecture Implementation Using
Enhanced MVC

Figure 15 shows the simulation architecture for
GENETSCOPE [38] using the concepts laid out in the
paper. With reference to Figure 12, the ionosphere

Table 5. Sample OV-8 document

S.
No. Activity ID

Signify-
cant

Para-meter

Source
Activity

Input
Interface

Name

Message
Descript-

ion

Container
Op. Node

Source
Document/

Diagram
1 A1 Station
2 A1.1 Sounding-

interval,
duration

CA1.1 Ax inSta Send sound Station Figure 14/ OV-5

3 A1.2 Message
size,
frame count

CA1.2 A1.1 inAle Send
frame (s)

Station Figure 14/ OV-5

4 A1.3 Duration CA1.3 A1.2 inRt Add
transmission

Station Figure 14/ OV-5

5 A2
6 A2.1 Duration CA2.1 Ay inRt Receive

transmission
Station Figure x

7 A2.2 Station to-
station SNR

CA2.2 A2.1 inAle SNR Station Figure x

8 A2.3 Received
frames,
valid
frames,
duration

CA2.3 A2.2 inAle Incoming
sound

Station Figure x

9 A2.4 None CA2.4 A2.3 inHfnc Heard
station X

Station Figure x

model used in the architecture is ICEPAC data. It is
worth stressing that the initial NETSIM model written
in C language has this database tightly coupled with
the model. In our present implementation, we made
it modular so that it can be replaced by any other
database that could provide the channel propagation
values through the ionosphere, e.g., VOACAP. In
the current implementation, there is no ICEPAC
database included but the complete ICEPAC software
that is executed at run time. This is one of the biggest
advantages in separating ICEPAC from the model
itself. The ICEPAC software is configured through the
Experimental frame parameters and is made available
for real-time execution as an independent thread
for different stations that are active in the running
DEVS model. The real-time execution of ICEPAC
software involves creation of a dynamic ICEPAC
configuration file that contains information about the
two stations, their geographical locations in latitude
and longitude, the Sun Spot Number (SSN), and the
time of year, month, and day. This implementation
allows us to get the ionospheric SNR values for any
location at any time of the year (for SSN) unlike the
earlier implementation (NETSIM-SC) where we
were limited to only a handful SSN values (10, 70,
100, and 130) with locations specified in five-degree
increments. This has the added benefit of using the
exact location of any mobile station rather than using

Volume 3, Number 4	 JDMS 259

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

Table 6. Inner components within operational nodes and their mapping with “standardized” DEVS models

S. No. Operational
Node

Inner Component
Entities

Component
Name

Associated
Models Added
to Repository

Hierarchical
Parent/

Container

DEVS Model
Type

1 O1 OCE1 Station ME1 - Digraph

2 OCE1.1 HFNC ME1.1 ME1 Atomic

3 OCE1.2 ALE ME1.2 ME1 Atomic

4 OCE1.3 RT ME1.3 ME1 Atomic

5 OCE1.4 TX ME1.4 ME1 Atomic

6 OCE1.5 RX ME1.5 ME1 Atomic

7 OCE1.6 PA ME1.6 ME1 Atomic

Table 7. Sample OV-9 document

S.
No.

Operational
Node

Inner Component
Entities

Component
Name

Activity
Component

Activity Component
Name

Interface
Description

1 O1 OCE1 TCT
OCE1.1 HFNC Ax Time To Sound tts

A2.4 Report Message repMsg
OCE1.2 ALE A1.1 Prepare Call prepCall

A1.2 Send Call sendCall
A2.2 Evaluate Signal evalSig
A2.3 Decode Signal decSig

OCE1.3 RT A1.3 Send Transmission sendTransm
A2.1 Receive

Transmission
recvTransm

OCE1.4 TX A1.3 Send Transmission putTransm
OCE1.5 RX A2.1 Receive

Transmission
getTransm

OCE1.6 PA None None None

Figure 15. Simulation architecture for the SCOPE command network

Volume 3, Number 4260 JDMS

Mittal, Mak, and Nutaro

projections within the implemented grid as in the
earlier NETSIM-SC. The DEVS layer comprises both
models as well as the DEVS simulation environment.
The Experimental frame layer also contains the
controls required to modify/update the model as well
as a simulator as per enhanced MVC. The simulation
visualization is modular in construction and reflects
the updates in the Experimental frame layer and the
DEVS layer. See Figure 15.
	 The above architecture is shown below in various
screen shots taken from the developed GENETSCOPE
(beta version). Figure 16 shows the Experimental
frame and various parameters (along with their
default values) used in scenario configuration. The
parameters shown in bold below are the parameters
that have been identified as significant parameters
in OV-8 (see Table 5, in shaded cells). Similarly,
other parameters too come from an elaborate OV-8
document of the SCOPE command. These significant
parameters find their way in various configurable
parameters all through the model configuration
settings as shown in Figures 16, 17, 18, 20, and 21, and
the simulation model finds its design through the SES
(see Figure 11) or the corresponding OV-9 document
(see Table 6). The total parameter set is comprised of:

Number of fixed stations,
Number of levels inside a fixed station,

1)
2)

Number of mobile stations (aircrafts),
Messages per hour,
Data message size,
Voice call duration,
Ground stations sounding interval, and
SNR threshold for a received signal.

	 Once the experimental frame parameters are
configured, these parameters are channeled down
to the individual components. The top-level
design parameters then bound the other internal
component parametric settings. For example, Figure
17 shows a typical configuration of the ground
station Sigonella. The left column in Figure 17 shows
all the fourteen ground stations, and the individual
details about each station can be seen by pressing
the Lookup button. Figure 17 also shows the message
traffic that is transmitted by this station. Notice that
the Experimental frame settings are shown as the
traffic stream originated from this station. Similarly,
a mobile station configuration panel is shown in
Figure 18. The user can select any specific mobile
aircrafts bounded by the number of mobile stations
specified in the Experimental frame. The next
figure, 19, basically lets the user enter call-signs to
these mobile stations and invites the user to enter
aircraft-specific details like message traffic, flight

3)
4)
5)
6)
7)
8)

Figure 16. Experimental frame for GENETSCOPE

Volume 3, Number 4	 JDMS 261

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

Figure 17. Ground station configuration screen for Naval Air Station Sigonella

Figure 18. Mobile station configuration screen where the total count is bounded by the Experimental frame

Volume 3, Number 4262 JDMS

Mittal, Mak, and Nutaro

path (see Figure 20), radio parameters, and channel
frequencies being used. Other internal details of
station configuration can be seen in the GENETSCOPE
software user’s manual [38]. The purpose of showing
GUI snapshots in Figures 17–20 is to illustrate how
top-down design parameters (from OV-8) can be taken
down to the component level (through both OV-8 and
OV-9). The other important aspect of this process is
that during simulation run-time, if the Experimental
frame parameters are changed to study any particular
parameter, that change is channeled across the whole
system model configuration using “interrupts,”
thereby exploiting the discrete event simulation
methodology. The update of any Experimental frame
parameter is taken by the simulation model as an
“external” event.
	 The last piece of information being fed through the
Experimental frame is the ICEPAC setting, based on
the Sun Spot Number (SSN). Once the system model is
configured through the Experimental frame settings,
the user is directed toward the simulation setup.
Figure 21 shows the final setup screen after which the
user then moves on to the run-time simulation screen
(see Figure 22) to execute the simulation. When the
user clicks the Write Files button in Figure 20, it
results in writing up of the detailed configuration file
for repository purposes.
	 Figure 22 shows the simulation clock as it happens
in real time and the obtained statistics. The above
snapshots complete the architectural components
specified in Figure 15. Figure 22 has the functionalities
that are described earlier in the paper: e.g., run-time
configuration updating and simulation control. It has
four buttons at the top of the screen, viz.:

Run Abstract Model (using lumped parameters),
Run Detailed Model (using detailed parametric
settings),

1)
2)

Pause (to interrupt the simulation),
Terminate (to end the simulation).

	 The Pause button is of special interest here, as the
user can interrupt the running simulation (manual
reactive control described in section 7.3.2) and change
the Experimental frame or system configuration
settings while the simulation is in action. Once the
parameters have been updated, the user can resume
the simulation and can see the impact of that update
on the above “active” simulation visualization screen.
One such example may be the two obtained values
of total transmissions and total sounds heard. If
the number of sounds heard is not up to the mark
(with respect to a validated real-world scenario),
the user may change sound-interval time or any
other parameter that would impact this number, or
may conclude that the model is not “performing”
correctly. The rapid impact of any such parameter can
be studied by pausing the simulation and changing
it and then observing the effects in the simulation
pane.
	 The DEVS layer in Figure 15 is implemented in the
following manner. The simulation engine running
behind uses the following code.
NetsimSC net = new NetsimSC
(createdConfigFile, debugOption);

tCoord = new TunableCoordinator(net);

tCoord.initialize();

tCoord.setTimeScale(0.0001);

tCoord.simulate(Integer.MAX_VALUE);

The model configuration is written into a configuration
file that is used to create the DEVS digraph model,
with automated coupling using the system SES
shown in Figure 11. The DEVS model is then passed
on to the TunableCoordinator derived from DEVS
RTcoordinator class. The TunableCoordinator is

3)
4)

Figure 19. Callsign entry for a mobile station Figure 20. Flight path of mobile aircraft and other details

Volume 3, Number 4	 JDMS 263

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

Figure 21. Experimental frame and ICEPAC data configuration through selection of SSN

Figure 22. Run-time simulation visualization screen for rapid feedback

Volume 3, Number 4264 JDMS

Mittal, Mak, and Nutaro

initialized and is then directed to simulate for a
maximum number of iterations, which means that
simulation will proceed indefinitely (in logical sense).
The Pause button executes the following line.
	 tCoord.interrupt();

After the simulation is paused and updates are made,
the simulation is restarted by simply calling the
coordinator to “simulate.”
	 tCoord.simulate(Integer.MAX_VALUE);

The simulation core functionality provided by the
DEVS simulation protocol facilitates interrupting
the coordinator and makes real-time parametric and
component structures at run time as described in
sections 6 and 7 earlier.
	 Figure 22 contains a very limited set of aggregated
information. However, run-time graphs and
projections can be very well aligned with this
visualization to see patterns and the direction in which
the simulation is proceeding. Logs are generated for
each simulation run. This visualization pane shows
the important information of the Experimental
frame (in red) and the run-time information from
the system model (in blue), which, needless to say,
is according to the enhanced MVC (through the
development of appropriate interfaces between these
layers). The View layer (see Figure 5) in the current
example shows only the model and the Experimental
frame control visualization. The Experimental frame
control is controller B in Figure 5, i.e., parameters that
“control” the model. The lowest layer, i.e., controller
A in the enhanced MVC process, is not the focus of
the GENETSCOPE project and consequently not
illustrated here. Its implementation is illustrated in
our earlier work [28].

8.4 Implications of the Example Above
and NR-KPP

Having laid out the framework to conduct and
design the experiments, the next item on the agenda
is to identify the measures of effectiveness (MoEs)
that eventually will be considered in making
recommendations for any update or modification
needed in the current SCOPE command infrastructure.
Since the SCOPE command is a deployed system, we
were given various statistical reports by JITC [36]
in order to determine these MoEs. The point of this
exercise is to provide sufficient analysis through
simulation of the modeled system so that the impact
of any particular infrastructural change intended in
the system can be observed on these MoEs. Some of
the MoEs that were identified are as follows:

Longest time taken by any e-mail on HF
network,

1)

Number of e-mails sent and number of e-mails
actually delivered,
Average message transmission time at any station
per hour,
Messages attempted versus messages received
per hour,
Bandwidth usage at Central Network Command
Station (CNCS�),
Number of planes in “good” signal to noise ratio
(SNR) range per hour.

	 The parameters that are to be set in order to
recommend any upgrades in the current infrastructure
can be listed as follows:

Average number of daily flights,
Minimum number of messages attempted by any
station,
Number of fixed stations participating in any
mission scenario,
Number of active levels within a fixed station,
Minimum and maximum message size in KB,
Minimum and maximum duration of a phone
call (VOICE message),
Minimum data rate by any ALE radio-modem.

	 As can been seen clearly, there is not a one-to-
one mapping between MoEs and experimentation
parameters. The MoEs tell us about the effectiveness of
any mission that would be executed. They are holistic
measures that tell about the fitness, capacities, and
limitations of the system. M&S is the preferred means
for assessing the impact of parameters on MoEs, with
the goal of determining the most significant parameters.
A simulation execution environment can help this
investigation through a rapid feedback cycle where
the analyst can change parameter values on the fly and
quickly assess their impact on holistic measures. These
MoEs impact evaluations very well and become part
of the result set as mentioned in section 7.4.2, while the
parameters identified become part of the Experimental
frame layer as shown in Figure 15.
	 Similarly, for any DoDAF architecture, the MoEs
are also specialized for that particular architecture.
Considering the breadth of the SCOPE command
system, some of the MoEs mentioned above also
apply to any net-centric architecture. Within the
DoD, JITC has the sole responsibility of certifying the
Information Technology (IT) and National Security
Systems (NSS) for interoperability purposes [37]. The
major T&E problem identified today by JITC is how

�.	CNCS is the gateway for any land-based network
(SIPRNET or NIPRNET) to be connected to the SCOPE
command HF network. All e-mails are routed through
CNCS.

2)

3)

4)

5)

6)

1)
2)

3)

4)
5)
6)

7)

Volume 3, Number 4	 JDMS 265

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

to verify that a solution provided by any architecture
is data integrated and net centric in operation. The
traditional T&E approaches are optimized to verify
performance and effectiveness of point solutions,
but new criteria are needed to reflect the realities of
systems operating within networked systems. Such
criteria are just beginning to emerge and are not yet
matured for immediate and widespread use of T&E
[37].
	 The NR-KPP assesses net-readiness information
assurance (IA) requirements, and end-to-end
operational effectiveness of that exchange with
respect to the COIs mentioned earlier. Description
of Key Interface Profile (KIP) with relation to this
scenario is beyond the scope of this paper. The major
object underlying NR-KPPs is to identify verifiable
performance parameters and associated metrics
required to evaluate timely, accurate, and complete
exchange and use of information to satisfy the
information needs for a given capability [37].

9. Conclusions

This paper has provided a contribution in proposing
an enhanced MVC framework that aids the DEVS
modeling and simulation framework. The enhanced
MVC complements the basic DEVS framework
components, viz., the Experimental frame, the
model, and the simulator. The integration of these
two frameworks results in a well constructed control
panel that provides a more comprehensive feature set
and controls to calibrate the model and configure the
simulation. The recent advances in DEVS technology,
like variable structure modeling, real-time simulation
tuning with rapid feedback, and model/simulator
calibration, have been described; they help in
the analysis and study of fast-changing network
scenarios. The first major advantage of incorporating
these technologies is the study and visualization of
the “transition” effects when the model configuration
is modified in a running simulation. Various methods
of controlling simulation execution were explored as
well as ways in which they can be used in different
scenarios. The second major advantage of this enhanced
MVC framework is the capability to reach the desired
mission effectiveness or performance benchmarks
in an active simulation. With variable structure
capability, along with setting the bounds of any result
parameter, the system can be observed to arrive at the
corresponding “steady state.” This methodology also
aids in determining the most significant parameters
for any complex system for which theoretical analysis
is not feasible. This integrated framework is applied
to the enhanced DoDAF document that comprises
two new operational views, OV-8 and OV-9, which are

dedicated to the M&S areas. These two documents are
refined to incorporate the control parameter set for the
control panel, specified as a significant parameter set in
OV-8 and OV-9. These parameters are discussed with
respect to the Net-Ready Key Performance Parameter
(NR-KPP) set, and the advantages of identification of
these parameters during the operational view design
phase are emphasized. Finally, a working example for
the Systems Capable of Planned Expansion (SCOPE)
command system is provided to illustrate the concepts
and DEVS capabilities.

10. References

[1] Carstairs, D. J. “Wanted: A New Test Approach for Military
Net-Centric Operations,” Guest Editorial. ITEA Journal 26(3,
Oct 2005).

[2] Hu, X, and B. P. Zeigler. “Model Continuity in the Design
of Dynamic Distributed Real-Time Systems.” In IEEE
Transactions on Systems, Man and Cybernetics— Part A: Systems
and Humans, 2006.

[3] Wegmann, A. “Strengthening MDA by Drawing from the
Living Systems Theory.” Workshop in Software Model
Engineering, 2002.

[4] DoD Architecture Framework. Software Productivity Consortium.
(cited January 9, 2005). Available from: http://www.software.
org/pub/architecture/dodaf.asp

[5] DoD Instruction 5000.2. Operation of the Defense Acquisition
System. May 12, 2003.

[6] Chairman, JCS Instruction 3170.01D. Joint Capabilities Integration
and Development System. March 12, 2004.

[7] Chairman, JCS Instruction 6212.01D. Interoperability and
Supportability of Information Technology and National Security
Systems. March 6, 2006. Avaible from: http://jitc.fhu.disa.mil/
jitc_dri/pdfs/6212_01.pdf

[8] Atkinson, K. “Modeling and Simulation Foundation for
Capabilities Based Planning.” Simulation Interoperability
Workshop, Spring 2004.

[9] Zeigler, B. P., and S. Mittal. “Enhancing DoDAF with DEVS-
Based System Life-Cycle Process.” IEEE International
Conference on Systems, Man and Cybernetics, Hawaii,
October 2005.

[10] ACIMS Software Development Website. [cited September
2006]. Available from: http://www.acims.arizona.edu/
SOFWARE/software.shtml

[11] Zeigler, B. P., H. Praehofer, and T. G. Kim. Theory of Modeling
and Simulation. Academic Press, 2000.

[12] Buss, A., and L. Jackson. “Distributed Simulation Modeling: A
Comparison of CORBA, HLA, and RMI.” In Proceedings of the
1998 Winter Simulation Conference, 1998.

[13] Sarjoughian, H. S., and F. E. Cellier, eds. Discrete Event Modeling
and Simulation Technologies: A Tapestry of Systems and AI-Based
Theories and Methodologies. New York: Spring-Verlag, 2001.

[14] Tolk, A., and S. Solick. “Using the C4ISR Architecture
Framework as a Tool to Facilitate V&V for Simulation
Systems Within the Military Application Domain.”
Simulation Interoperability Workshop, Spring 2003.

[15] Zeigler, B. P. “DEVS Today: Recent Advances in Discrete Event-
Based Information Technology.” MASCOTS Conference,
2003.

[16] Sarjoughian, H., B. Zeigler, and S. Hall. “A Layered Modeling
and Simulation Architecture for Agent-Based System
Development.” In Proceedings of the IEEE. 89(2, 2001): 201–213.

Volume 3, Number 4266 JDMS

Mittal, Mak, and Nutaro

[17] Cho, Y., B. P. Zeigler, and H. S. Sarjoughian. “Design and
Implementation of Distributed Real-Time DEVS/CORBA.”
IEEE Sys. Man. Cyber. Conference, Tucson, AZ, October
2001.

[18] Mittal, S. “Extending DoDAF to Allow Integrated DEVS-Based
Modeling and Simulation.” Special Issue on DoDAF, Journal
of Defense Modeling and Simulation 3(2, April 2006).

[19] Gaetjen, T. “Net-Ready Key Performance Parameters Testing”
(cited October 2005). Available from: www.opengroup.org/
gesforum/uploads/40/4548/NR_KPP_Testing_v1.pdf

[20] Krasner, G., and S. A. Pope. “A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80
System.” Journal of Object Oriented Programming 1(3, 1988):
26–49.

[21] Mittal, S., and B. P. Zeigler. “Dynamic Simulation Control
with Queue Visualization.” SCSC’05: Summer Computer
Simulation Conference, Philadelphia, PA, July 2005.

[22] Mittal, S., B. P. Zeigler, P. Hammonds, and M. Veena. “Network
Simulation Environment for Evaluating and Benchmarking
HLA/RTI Experiments.” JITC Report, Fort Huachuca,
December 2004.

[23] Hu, X., B. P. Zeigler, and S. Mittal. “Dynamic Configuration
in DEVS Component-Based Modeling and Simulation.”
SIMULATION (November 2003).

[24] Mittal, S., and B. P. Zeigler. “Modeling/Simulation
Architectures for Autonomous Computing.” Autonomic
Computing Workshop: The Next Era of Computing, January
2003.

[25] Zeigler, B. P., D. Fulton, P. Hammonds, and J. Nutaro.
“Framework for M&S-Based System Development and
Testing in Net-Centric Environment.” ITEA Journal 26(3,
2005).

[26] DoDAF Working Group. DoD Architecture Framework Version
1.0, Vol III: Deskbook. DoD, August 2003.

[27] Barr, B., R. D. Aaron, D. T. Hill, and P. H. Christensen. “Net
Ready Key Performance Parameter (NR-KPP) Test and
Evaluation Strategy.” ITEA Journal 26(3, 2005).

[28] Nutaro, J., and P. Hammonds. “Combining the Model/View/
Control Design Pattern with the DEVS Formalism to Achieve
Rigor and Reusability in Distributed Simulation.” Journal of
Defense Modeling and Simulation 2(May 2005).

[29] Brown, A. W., and K. C. Wallnau. “The Current State of CBSE.”
IEEE Software 15(5, 1998): 37–46.

[30] Zeigler, B. P., and Reynolds, R. G. “Towards a theory of
adaptive computer architectures.” In Proceedings of the 5th
International Conference on Distributed Computing Systems,
1985, 468–475.

[31] Zeigler, B. P., and A. Louri. “A Simulation Environment for
Intelligent Machine Architecture.” Journal of Parallel and
Distributed Computing 18 (1993): 77–88.

[32] Chean, M., and L. A. B. Fortes. “A Taxonomy of Reconfigurable
Techniques for Fault-Tolerant Processor Arrays.” IEEE
Computer 23(1, 1990): 55–69.

[33] Uhrmacher, A. M. “Variable Structure Models: Autonomy
and Control—Answers from Two Different Modeling
Approaches.” In Proceedings on AI, Simulation, and Planning in
High Autonomy Systems, 1993, 133–139.

[34] Chen, X. “Dependence Management for Dynamic
Reconfiguration of Component-Based Distributed Systems.”
In Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, 2002, 279–84.

[35] Department of Defense. Department of Defense Interoperability
Communications Exercise (DICE). 2005. (cited October 2005).
Available from: jitc.fhu.disa.mil/dice_conf/2005/initial/
downloads.

[36] JITC. JITC Reports for SCOPE Command for Year 2005. (latest
data as of October 2005).

[37] Buchheister, J. B. “Net-Centric Test & Evaluation. Command
and Control Research and Technology Symposium: The
Power of Information Age Concepts and Technologies,”
2004. (cited October 2005). Available from: www.dodccrp.
org/events/2004/CCRTS_San_Diego/CD/papers/2008.pdf

[38] GENETSCOPE (Beta Version) Software User’s Manual.
Available from: ACIMS Center, University of Arizona.

[39] Kim, T. G., C. Lee, E. R. Christensen, and B. P. Zeigler. “System
Entity Structuring and Model Base Management.” IEEE
Transactions on Systems, Man and Cybernetics 20(5, 1990).

Appendix: System Entity Structure (SES)

The SES formalism is a structural knowledge
representation scheme that systematically organizes
a family of possible structures of a system. Such a
family characterizes decomposition, coupling, and
taxonomic relationships among entities. An entity
represents a real-world object. The decomposition
of any entity concerns how it may be broken down
into subentities. Coupling specifications tell us how
different subentities can be coupled together to
reconstitute an entity. The taxonomic relationship
concerns admissible variants of an entity. It also
provides a formal framework for representing the
family of possible structures. From a design point of
view, SES represents the design space with various
possible design configurations. Thus, the process of
design/analysis is to prune SES—in other words, to
search the best design configuration. For complex
systems, the number of the combination of different
configurations is very large. Thus, it is desirable to
be able to emulate SES and automatically search the
best design configuration. For a detailed description
on SES see [11] and [39].

Volume 3, Number 4	 JDMS 267

DEVS-Based Dynamic Model Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process

Author Biographies

Saurabh Mittal is a research engineer at Arizona Center of
Modeling & Simulation (ACIMS) at University of Arizona.
He is also a Ph.D. candidate in Electrical & Computer
Engineering (ECE) at the University of Arizona. He is a
recipient of JITC’s highest civilian contractor award ‘Golden
Eagle’ for the project GENETSCOPE. He holds an M.S in
ECE from the University of Arizona. His research interests
include DEVS based integrated design methodologies,
DoDAF, modeling languages, automated testing and design
of software systems. He can be reached at saumitt@gmail.
com.

Eddie Mak is the lead software developer of ATC-Gen
at Joint Interoperability Test Command (JITC). He is
a principal system programmer at Arizona Center for
Integrative Modeling and Simulation (ACIMS) in Tucson,
Arizona. Eddie holds an M.S. in Electrical and Computer
Engineering from the University of Arizona. He can be
reached at eddie.mak@gmail.com

James Nutaro received his PhD from the University
of Arizona in 2003. He is currently a part of the research
staff at Oak Ridge National Laboratory in the Computation
Sciences and Engineering Division. His research interests
include formal methods for discrete event systems and
discrete event simulation, hybrid system modeling, and
model based system design. He can be reached at nutarojj@
ornl.gov

