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The combination of DoDAF operational views, which capture the requirements of an architecture, and System views, 
which provide its technical attributes, forms the basis for semi-automated construction of simulation models. In this 
paper, we describe an enhanced Model-View-Controller paradigm that works in tandem with the DEVS M&S framework. 
We also employ the recently introduced DoDAF extensions that incorporate new operational views to allow DoDAF 
specifications to be written in the Discrete Event System Specification (DEVS) formalism and, in the process, refine 
these new extensions. This paper describes a DEVS-based network modeling and simulation environment with dynamic 
reconfiguration and simulation control. The DEVS modeling and simulation framework with its separation of model, 
experimental frame, and simulator facilitates the development of a simulation framework supporting run-time simulation 
tuning. We present a layered simulation architecture that provides the capability to control and reconfigure simulation 
on-the-fly and steer it toward the desired performance parameters. The rapid feedback cycle supported by “real-time” 
intervention allows experimentation with parameters and structures and results in effective model configuration that is 
difficult to achieve when turnaround requires hours or days. We explore the area of system reconfiguration further by 
providing enhanced capabilities to control the parameters for system design and performance evaluation with respect to 
Net-Ready Key Performance Parameters (NR-KPP) and the way in which the refined DoDAF extensions can expedite the 
development of Key Interface Profile (KIP) for any DoDAF architecture. We demonstrate the enhanced capabilities with 
an example of the development of a simulation environment for the Systems Capable of Planned Expansion (SCOPE) 
command.
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1. Introduction

In an editorial [1], Carstairs asserts an acute need for a 
new testing paradigm that could provide answers to 
several challenges described in a three-tier structure. 
The lowest level, containing the individual systems 
or programs, does not present a problem. The second 
tier, consisting of systems of systems in which 

interoperability is critical, has not been addressed in a 
systematic manner. The third tier, the enterprise level, 
where joint and coalition operations are conducted, 
is even more problematic. Although current test and 
evaluation (T&E) systems are approaching adequacy 
for tier-two challenges, they are not sufficiently well 
integrated with defined architectures focusing on 
interoperability to meet those of tier three. To address 
mission thread testing at the second and third tiers, 
Carstairs advocates a collaborative distributed 
environment (CDE), which is a federation of new JDMS, Volume 3, Issue 4, October 2006   Pages 239–267
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and existing facilities from commercial, military, and 
not-for-profit organizations. In such an environment, 
modeling and simulation (M&S) technologies can 
be exploited to support model-continuity [2] and 
model-driven design development [3], making test 
and evaluation an integral part of the design and 
operations life-cycle. 
	 The development of such a distributed testing 
environment would have to comply with recent 
Department of Defense (DoD) mandates requiring 
that the DoD Architectural Framework (DoDAF) be 
adopted to express high-level system and operational 
requirements and architectures [4–7]. Unfortunately, 
DoDAF and DoD net-centric [8] mandates pose 
significant challenges to testing and evaluation since 
DoDAF specifications must be evaluated to see if 
they meet requirements and objectives, yet they are 
not expressed in a form that is amenable to such 
evaluation.
	 This paper begins by providing an overview of 
the current DEVS technology and the way in which 
DEVS is positioned to address the need for a new 
DoDAF-based and net-centric paradigm for test and 
evaluation at the system-of-systems and enterprise 
systems levels. Our earlier work [9] enhanced the 
DoDAF by proposing a methodology to map DoDAF 
descriptions to DEVS specifications, i.e., DoDAF-to-
DEVS mapping. Since DEVS environments such as 
DEVS JAVA, DEVS-C++, and others [10] are embedded 
in object-oriented implementations, they support the 
goal of representing executable model architectures 
in an object-oriented representational language. 
As a mathematical formalism, DEVS is platform 
independent, and its implementations adhere to the 
DEVS protocol so that DEVS models easily translate 
from one form (e.g., C++) to another (e.g., Java) [11]. 
Moreover, DEVS environments, such as DEVS JAVA, 
execute on commercial, off-the-shelf desktops or 
workstations and employ state-of-the-art libraries to 
produce graphical output that complies with industry 
and international standards. DEVS environments 
are typically open architectures that have been 
extended to execute on various middleware such as 
the DoD’s HLA standard, CORBA, SOAP, and others 
and can be readily interfaced to other engineering 
and simulation and modeling tools [10, 12–17]. 
Furthermore, DEVS operation over web middleware 
(SOAP) enables it to fully participate in the net-
centric environment of the Global Information 
Grid [8]. As a result of recent advances, DEVS can 
support model continuity through a simulation-
based development and testing life cycle [2]. This 
means that the mapping of high-level DoDAF 
specifications into lower-level DEVS formalizations 
enables such specifications to be thoroughly tested 

in virtual simulation environments before being 
easily and consistently transitioned to operate in a 
real environment for further testing and fielding.
	 In [18], Mittal proposed extensions to the 
DoDAF by introducing two new Operational View 
documents, OV-8 and OV-9, which allow modeling 
and simulation to be a critical part in the design 
process. He demonstrated how DoDAF-DEVS 
mapping can actually take place from the existing 
DoDAF UML specifications and how standardized 
model repositories can be created. The present work 
aims to refine these new OV-8 and OV-9 documents by 
providing more details throughout the development 
process and discussing the use of these documents 
with Net-Ready Key Performance Parameters (NR-KPP) 
and DoDAF System Views. NR-KPP is instrumental 
in setting the baseline performance for DoDAF 
architectures [19]. In particular, we will focus on 
testing the interoperability of existing architectures 
and the way in which different architectures can be 
benchmarked using M&S. We propose an enhanced 
version of the Model/View/Controller (MVC) 
pattern [20] that provides dynamic simulation 
reconfiguration and simulation control using 
variable structure DEVS-based component modeling 
[21, 23]. We illustrate the benefits of the proposed 
enhanced MVC through a current project that deals 
with development of a simulator for the Systems 
Capable of Planned Expansion (SCOPE) command. 

1.1 Brief Overview of Capabilities 
Provided by DEVS

To provide a brief overview of the current 
capabilities provided by DEVS, Table 1 outlines 
how it could provide solutions to the challenges in 
net-centric design and evaluation.
	 We will show how the DEVS technology provides 
an encompassing framework for test and evaluation 
(T&E). With its underlying systems theoretical 
approach, DEVS has the necessary depth and breadth 
to become the preferred T&E platform for net-centric 
analysis and design. Section 2 discusses the key 
component technologies inherent in DEVS, principles 
of model continuity, and the DoDAF itself. Section 3 
mentions the DoDAF specifications, both the original 
and the extended versions that introduced OV-8, 
OV-9, and model repository. Section 4 describes 
the problems and limitations of existing simulation 
frameworks and their failure to provide any real-time 
simulation control and component variation. Section 
5 deals with the MVC paradigm and its enhanced 
version. Section 6 presents the layered simulation 
architecture that is at the core of the introduced 
technology and how it can be viewed in a distributed 
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HLA communication network. It addresses the 
basic requirement for a T&E framework—that the 
communication network be “always on.” It presents 
ideas on how an M&S framework can provide a 
means to analyze online networks. It also presents 
various other constructs that aid the user to control 
the simulation. Section 7 discusses the concept of 
dynamic model reconfiguration using DEVS variable 
structure methodology. It introduces the concept of 
steady-state simulation that is guided by the end 
goal in mind. Section 8 discusses the underlying 
DEVS simulation protocol and how dynamic control 
is accomplished. It also introduces the concept of 
hierarchical parameters that find their way in OV-8 
and OV-9 documents. Section 9 discusses an example 
of a complete distributed HLA modeling framework 
that models nodes as HLA federates. This framework 
is then used to benchmark different commercial RTIs 
and to explain how models are “tuned.” Finally, 
Section 10 presents the conclusions.

2. DEVS System Specifications 

In this section, we review some of the background 
required for discussion of DEVS support of DoDAF.

2.1 Hierarchy of System Specifications

Systems theory deals with a hierarchy of system 
specifications that defines levels at which a system 
may be known or specified. Table 2 shows this 
hierarchy of system specifications (in simplified form; 
see [11]).

At level 0 we deal with the input and output 
interface of a system. 
At level 1 we deal with purely observational 
recordings of the behavior of a system. This is an 
input/output (I/O) relation that consists of a set 
of pairs of input behaviors and associated output 
behaviors. 
At level 2 we have knowledge of the initial 
state when the input is applied. This allows 
partitioning the I/O pairs of level 1 into non-
overlapping subsets, with each subset associated 
with a different starting state.
At level 3 the system is described by state space 
and state transition functions. The transition 
function describes the state-to-state transitions 
caused by the inputs and the outputs generated 
thereupon. 
At level 4 a system is specified by a set of 
components and a coupling structure. The 
components are systems on their own with their 
own state set and state transition functions. A 
coupling structure defines how those interact. 
A property of coupled systems, which is called 
“closure under coupling,” guarantees that a 
coupled system at level 3 itself specifies a system. 
This property allows hierarchical construction of 
systems, i.e., that coupled systems can be used as 
components in larger coupled systems. 

	 As we shall see in a moment, the system specification 
hierarchy provides a mathematical underpinning to 
define a framework for modeling and simulation. Each 

•

•

•

•

•

Table 1. DEVS on addressing M&S issues

Desired M&S Capability Solutions Provided by DEVS Technology

Requirement coherence and prioritization
Control a simulation on the fly [21].
Reconfigure a simulation on the fly [22].
Provide dynamic variable-structure component modeling [22, 
23].
Separate a model from the act of simulation itself, which can 
be executed on single or multiple distributed platforms [11].
Simulation architecture is layered to accomplish the 
technology migration or run different technological scenarios 
[16, 24].
With its bifurcated test and development process, automated 
test generation is integral to this methodology [25].
Provide dynamic simulation tuning, interoperability testing 
and benchmarking [22].
Provide rapid means of deployment using model-continuity 
principles and concepts like “simulation becomes the reality” 
[2].

1)
2)
3)

4)

5)

6)

7)

8)

MIL-worth analysis (M&S executable architectures)

Enhanced user capabilities

Execution road maps

Source selection

Technology application/transition

Test support including vulnerability analysis

Interoperability and integration assurance

Hierarchical modular construction of models aiding 
system-of-systems testing

Provide collaborative distributed environment for M&S
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of the entities (e.g., real world, model, simulation, and 
experimental frame) will be described as a system 
known or specified at some level of specification. The 
essence of modeling and simulation lies in establishing 
relations between pairs of system descriptions. These 
relations pertain to the validity of a system description 
at one level of specification relative to another system 
description at a different (higher, lower, or equal) 
level of specification. 
	 Based on the arrangement of system levels as 
shown in Table 1, we distinguish between vertical 
and horizontal relations. A vertical relation is called 
an association mapping and takes a system at one 
level of specification and generates its counterpart at 
another level of specification. The downward motion 
in the structure-to-behavior direction formally 
represents the process by which the behavior of a 
model is generated. This is relevant in simulation and 
testing when the model generates the behavior which 
then can be compared with the desired behavior. 
	 The opposite upward mapping relates a system 
description at a lower level with one at a higher level 
of specification. While the downward association 
of specifications is straightforward, the upward 
association is much less so. This is because in the 
upward direction information is introduced while 
in the downward direction information is reduced. 
Many structures exhibit the same behavior, and 
recovering a unique structure from a given behavior 
is not possible. The upward direction, however, is 
fundamental in the design process where a structure 
(system at level 3) has to be found which is capable of 
generating the desired behavior (system at level 1).

2.2 Framework for Modeling & Simulation

The framework for M&S as described by Zeigler et 
al. [11] establishes entities and their relationships 
that are central to the M&S enterprise (see Figure 
1). The entities of the framework are source system, 
experimental frame, model, and simulator; they are linked 
by the modeling and the simulation relationships. Each 
entity is formally characterized as a system at an 
appropriate level of specification within a generic 
dynamic system. See [11] for a detailed discussion.

Figure 1. Framework entities and relationships

2.3 Model Continuity

Model continuity refers to the ability to transition as 
much as possible of a model specification through 
the stages of a development process. This is the 
opposite of the discontinuity problem where artifacts 
of different design stages are disjointed and thus 
cannot be effectively consumed by each other. This 
discontinuity between the artifacts of different design 
stages is a common deficiency of most design methods 
and results in inherent inconsistency among analysis, 
design, test, and implementation artifacts [2]. Model 
continuity allows component models of a distributed 
real-time system to be tested incrementally, and then 
deployed to a distributed environment for execution. 
It supports a design and test process having four steps 
(see [2]):

Conventional simulation to analyze the system 
being tested within a model of the environment 
linked by abstract sensor/actuator interfaces; 
Real-time simulation, in which simulators are 
replaced by a real-time execution engine while 
leaving the models unchanged; 
Hardware-in-the-loop (HIL) simulation, in which 
the environment model is simulated by a DEVS 
real-time simulator on one computer while the 
model being tested is executed by a DEVS real-
time execution engine on the real hardware; 

1)

2)

3)

Table 2. Hierarchy of system specifications

Level Name What We Specify at This Level

4 Coupled 
systems

System built up by several 
component systems that are 
coupled together

3 I/O system System with state-space and state 
transitions to generate the behavior

2 I/O function

Collection of I/O pairs constituting 
the allowed behavior partitioned 
according to the initial state the 
system is in when the input is 
applied

1 I/O behavior
Collection of I/O pairs constituting 
the allowed behavior of the system 
from an external black box view

0 I/O frame Input and output variables and 
ports together with allowed values

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation
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Real execution, in which DEVS models interact 
with the real environment through the earlier 
established sensor/actuator interfaces that have 
been appropriately instantiated under DEVS 
real-time execution.

	 Model continuity reduces the occurrence of 
design discrepancies along the development process, 
thus increasing the confidence that the final system 
realizes the specification as desired. Furthermore, 
it makes the design process easier to manage since 
continuity between models of different design stages 
is retained.

3. DoDAF Descriptions

3.1 DoDAF Specifications

The Department of Defense Architecture Framework 
(DoDAF), Version 1.0 (2003), defines a common 
approach for DoD architecture description 
development, presentation, and integration. The 
framework enables architecture descriptions to 
be compared and related across organizational 
boundaries, including joint and multinational 
boundaries. 
	 DoDAF is an architecture description and does not 
define a process to obtain or build the description. The 
Deskbook [26] provides one method for development 
of IT architectures that meet DoDAF requirements, 
focusing on gathering information and building 
models required to conduct design and evaluation of 
an architecture. The DoDAF defines three elements 
for any architecture description.

4) 1. Operational Views (OV)
	 The OV is a description of the tasks and activities, 
operational elements, and information exchanges 
required to accomplish DoD missions. DoD missions 
include both war-fighting missions and business 
processes. The OV contains graphical and textual 
products that comprise an identification of the 
operational nodes� and elements, assigned tasks and 
activities, and information flows required between 
nodes. It defines the types of information exchanged, 
the frequency of exchange, which tasks and activities 
are supported by the information exchanges, and the 
nature of information exchanges.
	 2. System Views (SV)
	 The SV is a set of graphical and textual products that 
describes systems and interconnections providing for, 
or supporting, DoD functions. DoD functions include 
both war-fighting and business functions. The SV 
associates systems resources to the OV. These systems 
resources support the operational activities and facilitate 
the exchange of information among operational nodes. 
Within this view, how the functionalities specified in 
OV will be met is elaborated.
	 3. Technical Views (TV)
	 The TV is the minimal set of rules governing the 
arrangement, interaction, and interdependence of 
system parts or elements. Its purpose is to ensure 
that a conformant system satisfies a specified set 
of requirements. Within this view, the delivery of 

�.	Operational node: A node specified in OV that performs one or 
more operations; a functional entity that communicates with 
other functional entity to implement a collective functionality or 
a capability.

Figure 2. Linkages among views
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systems and functionalities is ensured along with their 
migration strategies toward future standards.
	 These views provide three different perspectives 
for looking at architecture. The interrelationships 
among these three views can be seen in Figure 2. 
The emphasis of the DoDAF lies in establishing the 
relationship between these three elements ensuring 
entity relationships and supporting analysis. The 
DoDAF approach is essentially data centric rather 
than product centric. The OV, SV, and TV are further 
broken down into specialized views whose brief 
description can be seen in column 3 in Table 3 ahead.

3.2 Extended DoDAF Specifications

Information technology–based systems of the future 
will be increasingly complex with participants 
across the globe communicating through disparate 
channels. Interoperability is very much in question. 
Scalability and fault-tolerance issues have to be 
addressed. Capabilities have to be satisfied and 
reliability has to be ensured. Any large system that 

DoDAF specification documents intend to build 
has to realize these important facets of architecture 
design. Modeling and simulation with its model-
continuity principles is fast becoming an accepted 
method of evaluating design principles ensuring 
accountability to various components within the 
system. DoDAF has completely overlooked M&S as 
a possible means to evaluate design, capabilities, and 
planned expansion of current architectures. There is 
no provision for testing the constructed system, either 
in OV or in SV. The ability to configure systems for 
optimum performance is not allowed in the current 
DoDAF specification document.
	 We have introduced two new operational views, 
OV-8 and OV-9, that add features to enable M&S of the 
system under design. More details can be found in [18]. 
We have also demonstrated how these new documents 
will be created from the existing operational views. 
We aim to provide structure to the OV process by 
shifting the perspective from describing functionality 
as an activity to an Activity-component with definite 
interfaces to other Activity components as well as 
identified entities within an Operational node. To 

Figure 3. SES for enhanced DoDAF with a focus on OV
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what extent an Operational node is decomposable is a 
subject requiring further research. We have developed 
a testing process for defined capabilities (that were 
defined during the conceptual design process in OV-
5) and ways in which various rules and doctrines (in 
OV-6a) can be evaluated for interoperability with 
different capabilities. By purview of the information 
contained in OV-9 we have introduced the model 
repository as an important aspect of DoDAF system 
specification that enhances the DoDAF by making 
way for M&S activity. Figure 3 shows the system entity 
structure (SES) snapshot of the enhanced DoDAF with 
focus toward the operational views. (See appendix for 
more information on SES.)

3.3 Refinement of OV-8

In relation to the DoDAF, as M&S is not mandated in 
the current handbook; there exists no place to specify 
the parameters of any kind, other than in Systems 
View document SV-7. In the current DoDAF, OV deals 
with functionality; SV deals with system identification, 
specification and compliance; and TV provides technical 
feasibility considerations. However, taken altogether, 
there is no place where the designer can refer to a 
“significant parameter set.” It is not considered in the 
OV process and not discussed at all until systems that 
perform the functionality are identified in SV-4 and SV-
5. The architecture designed as a result of the current 
process is deemed to be too rigid to allow for design 
exploration (through M&S), let alone any boundary 
conditions for technology transition studies. 
	 In our earlier work [18] we had proposed two 
new operational views, OV-8 and OV-9, dedicated to 
M&S. OV-8 deals with the identification of Activity-
components and OV-9 deals with association of these 
Activity-components to specific system and entity 
components within an operational node. We refine 
these two documents here by adding one more column 
in both (see Table 3). The additional column relates to 

the “significant” parameter that is worthy of the system 
designer’s attention during construction of Systems 
View. These significant parameters will, in fact, be 
admitted in to the experimental frame to control the 
simulation study. 

3.4 NR-KPP and OV-8

Net-Ready Key Performance Parameters (NR-KPP) are 
a key to measuring the readiness for transformation 
into a fully interoperable and secure net-centric 
warfare environment. As currently stated in the Joint 
Staff Guidance, 

The NR-KPP assesses information needs, information 
timeliness, information assurance (IA), and the net-ready 
attributes required for both the technical exchange of 
information and the end-to-end operational effectiveness 
of that exchange. It consists of verifiable performance 
measures and the associated metrics required evaluating 
the timely, accurate and complete exchange and use 
of information to satisfy information needs of a given 
capability. It is composed of the following four pillars:

•	Compliance with the Net-Centric Operations and  
Warfare Reference model (NCOW-RM)

•	Compliance with applicable Global Information Grid 
(GIG) Key Interface Profiles (KIP)

•	Verification of compliance with DoD IA requirements; 
and

•	Supporting integrated architecture products required 
to assess information exchange and use for a given 
capability.

	 Integrated architectures are the most critical 
components of the NR-KPP because they establish 
both the operational and systems context for 
information exchange. They are developed and 
documented using the DoDAF, which provides 
templates for the 27 distinct views. Two other critical 
components in NR-KPP, namely, the NCOW-RM 
and KIPs are in the evolving state. KIP tools help 
standardize and manage interfaces to networks, 

Table 3. Enhanced OV-8 allowing specification of significant parameters for an activity

S. 
No.

Activity ID 
Component

Significant
Parameters

Connection 
ID

Source 
Activity

Input 
Interface

Name

Message
Des. Op. Node

Source  
Document/

Diagram

1 A6 O1

2 A6.1 CA6.1 A6.11 inSigMovY AMT O1 Figure 12/ 
OV-6b, c

3 A6.2 CA6.2 A6.11 inSig-
MovN Target O1 Figure 12/

OV-6b, c

4 A6.3 CA6.3 A6.1 inTrkData Data O1 Figure 12/
OV-6b, c
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services, and communication pathways. Initial 
attempts to manage interfaces required identification 
of specific interfaces between each and every system 
for which an operational interchange of information 
was required. The net-centric vision requires a 
paradigm shift from “one-to-one” relationships 
to “one-to-many” relationships, and KIPs are the 
key profiles enabling that shift. The KIP consists of 
refined OVs and SVs, and interface control document/
specification (ICD), an engineering management 
plan, a configuration management plan, a TV with 
an SV-TV bridge, and procedures for standards 
conformance and interoperability testing [27]. The 
Joint Staff categorizes the key interfaces in four 
broad categories, viz., communications computing, 
enterprise services, and network operations (Net-
Ops), and other explicit interfaces (in addition to 
seventeen mentioned since first draft). The final 
version is referred as in [7], released March 2006. From 
an evaluation perspective as has been recognized, 
if the KIP is not defined then it clearly cannot be 
tested. As a part of overall T&E strategy, the NR-
KPP T&E strategy [27] is twofold: first, identify and 
gather sufficient data from developmental events to 

verify that the key subcomponents for the NR-KPP 
have been satisfied, and verify that the information 
and systems data exchanges can be accomplished; 
and second, validate these exchanges to achieve the 
mission in an operational test (OT) environment. 
	 The two steps mentioned in the overall strategy 
relate to the SV-6 document that specifies the system 
data-exchange matrix. The first step verifies the 
data exchange, while the second step validates it in 
the operational test environment; see Figure 4. The 
OV-8 and OV-9 documents lie in the operational test 
domain. As stated earlier, the current DoDAF OVs 
do not provide any mechanism to facilitate M&S; 
these new OVs, in addition to specifying interfaces, 
are refined to identify these operational parameters 
for any particular Activity-component. As the KIP 
specifies an interface control document (ICD), OV-
8 expedites its development by providing ready 
operational interfaces, in relation to a particular 
capability, that can be mapped to specific system 
interfaces with relation to SV-6 and SV-7. Providing 
the mapping for SV-6 and SV-7 is outside the scope 
of this paper. The objectives of proposing OV-8 and 
OV-9 have been to empower the DoDAF with M&S 

Figure 4. Role of OV-8 in construction of Key Interface Profile (KIP)
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at the operational development stage and to show 
how different capabilities can be composed from 
various independent activities. Proving interface 
specification and allowing composition using this 
interface specification in OV-8 is a key element of this 
proposition. The refined OV-8 allows for specification 
of parameters, for both an Activity as well as the 
composed capability that will be mapped to the 
NR-KPP with reference to any particular DoDAF 
architecture. 

4. Problems Associated with Current 
Simulation Frameworks

Although a number of commercial and academic 
simulators are available for complex network studies, 
none have the capability to tune the simulation while 
it is in execution. Due to tight coupling between 
the network model and the simulation engine in 
such simulators, the capability to introduce changes 
in parameter values during execution is limited 
or non-existent. The work described here has the 
objective of developing a DEVS-based network 
modeling and simulation environment with dynamic 
simulation control and queue visualization. The 
DEVS modeling and simulation framework separates 
model, experimental frame, and simulator. This 
modularity facilitates the development of a simulation 
framework supporting run-time simulation tuning. 
The motivation behind providing “real-time” 
intervention is to support a rapid feedback cycle that 
allows experimentation with network parameters 
and structures. This can result in an effective network 
configuration that is difficult to achieve when 
turnaround requires hours or days. Furthermore, 
such instantaneous observation and control enables 
important transient situations to be recognized and 
considered.

4.1 Real-Time Control and Visualization 
Limitations of Existing Network Simulators

Some of the limitations of existing network 
simulation packages are as follows:

Everything has to be programmed prior to 
simulating the network.
User interfaces are not easily customized; they 
provide largely textual interfaces. 
There is no support for changing parameters and 
component structures during simulation.
Simulation run times tend to be long (a few hours); 
more importantly, if a run ends in a crash, there is 
no way to intervene and readjust the system.

•

•

•

•

There is little run-time visualization of the system 
behavior to aid understanding and to steer the 
simulation in a productive direction.
Model and simulation calibration is a new 
concept, largely unattended by the legacy and 
current simulators.
Model-driven design and development is a 
new technology supported by only a handful of 
simulation frameworks.
Distributed M&S and concepts like model 
repository are not supported in most of the 
frameworks.
Treating an M&S T&E framework as an “online” 
system by itself is non-existent and unaddressed 
by current simulators.
Performance-oriented simulation frameworks are 
non-existent. Most are bounded by initial model 
configuration.

	 To develop a network modeling and simulation 
environment that addresses these limitations, 
we extended the existing Discrete Event System 
Specification (DEVS) software, DEVS JAVA. We 
discuss the layered architecture underlying the 
network simulation environment. After describing this 
architecture, we discuss some proposed run control 
and visualization techniques intended to greatly 
improve user understanding of, and ability to control, 
the complex structural and behavioral relationships 
characteristic of large network behaviors. An example 
of the use of the architecture will be given; it concerns 
modeling and simulation of network-based distributed 
engineering studies performed using the High Level 
Architecture (HLA) middleware. 

5. Model/View/Controller (MVC) Paradigm 
and DEVS Framework

5.1 Earlier Work

Nutaro [28] proposed the Model/Simulator/View/
Controller (MSVC) paradigm, as an extension of 
MVC. He promoted the separation of model and 
simulator and has listed many advantages that come 
about with this idea, most important being the reuse 
of simulation software, especially in the context of 
distributed simulations. The other problems that are 
solved by this paradigm are as follows:

Distributed simulation protocol changes can be 
encapsulated within the controller (input and 
time management policies) and viewer (output 
policies) objects.
By separating the viewer and controller it is 
straightforward to add displays, logging tools, 

•

•

•

•

•

•

1)

2)
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and other output processing devices to the 
simulator. 
Modeling, simulation, distribution or parallel-
ization, and user interface issues can be addressed 
separately.

	 Nutaro demonstrated an application of middle-
ware simulation, wherein the simulator was tuned 
to display the behavior of certain middleware by 
incorporating effects such as RTI latency (with 
reference to distributed simulation HLA framework). 
In his methodology, the simulator is a thread derived 
from the controller thread that contains the platform 
(RTI latency) delay parameter. As the controller 
thread generates this event, it is communicated to 
the simulator as well as to the viewer using inter-
thread communication. Although Nutaro did not 
consider model updating or model control, his work 
constitutes a part of our enhanced MVC framework, 
where there is full capability in the controller to 
modify the model as well as the simulator. 
	 Our work is implemented in DEVS JAVA and has 
a super-thread that runs at the root-coordinator 
level that monitors the experimental frame for 
any user-generated activity controls. There exists 
no viewer thread as the viewer objects are created 
hierarchically as delegated classes of the model as 

3)

well as the simulator object. Any modification in 
their state is also reflected in the contained viewer 
object. The viewer object displays are derived from 
the java.awt package. Consequently, they inherently 
have independent thread that repaints.

5.2 Enhanced MVC 

Figure 5 below provides the graphical represen-
tation of an enhanced MVC paradigm. It has 
been represented with respect to the DEVS  M&S 
framework components. Model and View take their 
usual functions and meanings. The Control in MVC 
is explored in more detail and is mapped to the DEVS 
Experimental frame. Internally, the Experimental 
frame has a modular structure with a basic control 
component and controller A and B as derived 
components. 
	 The basic control component translates the 
information contained in OV documents. It extracts 
the parameter-set as specified in the refined OV-8, in 
section 3.3. It also extracts information from the NR-
KPP set and integrates the information into a unified 
controller that the user can refer to. It is specialized 
into two components, one dedicated to simulator 
middleware control and the other dedicated to model 
control. It also assigns different parameters to the 

Figure 5. Enhanced MVC paradigm with DEVS M&S framework
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appropriate controller. From an earlier work discussed 
in section 5.1, controller A provides tools to control the 
DEVS simulator, more appropriately the middleware 
aspect of simulation. Controller B provides the toolset 
to control the model. Details about middleware control 
can be seen in Nutaro [28]. Controller B provides 
functionality to vary the number of components, in 
addition to the parameters in a component, both at 
the component and subsystem level. The parameter 
set for both the controllers is made available to the 
user as a sliding bar in the controller frame in the 
View panel that enables the user to tune the active 
simulation toward optimum performance. 
	 The enhanced MVC has exhaustive control 
expressed in the experimental frame domain. The 
Experimental frame component in the DEVS M&S 
framework is a key construct that enables the user 
to drive and maneuver the simulation in the “right” 
direction. The concept of experimental frame, i.e., 
a mechanism by which an experimental scenario 
is designed for the model architecture, is further 
enhanced to enable the user to reconfigure and tune 
the simulation itself. Benefits of user intervention 
have already been highlighted in section 5.1 and 
are explored in more details in section 8. Given that 
the user has the capability to control the simulation 
parameters, the issue of extraction and identification 
of those parameters is taken care by the basic control 
component that interfaces with the DoDAF documents 
OV-8 and OV-9. Consequently, the Experimental 
frame now provides rich control equipment that the 
operational test designer can use to his advantage.

6. Dynamic Simulation Reconfiguration

6.1 Variable Structure DEVS

A component is “a nontrivial, nearly independent, 
and replaceable part of a system that fulfills a clear 
function in the context of a well-defined architecture. 
It conforms to and provides the physical realization of 
a set of interfaces” [29]. A component system is built 
by composition of various independent components 
and by establishing relationships among them. As 
each component has a high degree of autonomy and 
has well-defined interfaces, variable structure of 
components can be achieved during run time. For 
component-based modeling and simulation, variable 
structure provides several advantages:

It provides a natural and effective way to model 
those complex systems that exhibit structure 
and behavior changes to adapt to different 
situations. Examples of these systems include 
distributed computing systems, reconfigurable 
computer architectures [30, 31], fault tolerant 

1)

computers [32], and ecological systems [33]. 
Structure changing and component upgrading 
is an essential part of these systems. Without the 
variable structure capability it is very hard, if 
not impossible, to model and simulate them, let 
alone study the transition effect that the system 
incurs when new components are added in a real 
deployed system. 
From the design point of view, variable structure 
provides the additional flexibility to design 
and analyze a system under development. For 
example, it allows one to design and simulate 
a system in which the components are added 
or removed incrementally and form dynamic 
relationships with existing components.
It allows one to load only a subset of a system’s 
components during simulation. This is very 
useful to simulate very large systems with a 
tremendous number of components, as only the 
active components need to be loaded dynamically 
to conduct the simulation. Otherwise, the entire 
system has to be loaded before the simulation 
begins.

	 In general, there are six forms of reconfiguration of 
component-based systems [34]:

Addition of a component,
Removal of a component,
Addition of a connection between two or more 
components,
Removal of a connection between two or more 
components,
Migration of a component, and
Update of a component.

	 The first two operations result in an update of 
the modeled system where there is a change in the 
number of components in the system, the next three 
result in a reconfiguration of the existing system, 
and the last one results in the modification of the 
component itself, either its behavior or its interface 
structure. In DEVS these are collectively known as 
variable-structure modeling. More details about said 
operations can be found in [23].
	 As variable structure changes a component-based 
simulation during run time, boundary conditions 
and the limits to which a component affects other 
components need to be specified with said operation. 
With reference to Table 1, the model reconfiguration 
can be implemented at any of the specified levels. 
These issues are very well addressed in [23]. 
The variable structure provides the flexibility to 
design and analyze a complex hierarchical system 
under development, as well as during a running 
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3)

1)
2)
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5)
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simulation, as supported by the dynamic structure 
SES capability.

6.2 Implementation of Variable Structure in 
Extended MVC

Variable structure essentially deals with modification 
of the component as well as of the number of 
components that specify the modeled system. Its 
power lies in its run-time implementation that gives 
us the capability to study the transition effects when 
the system is presented with a different number of 
components and interrelationships. This is entirely 
a modeling issue and is independent of how the 
system is simulated when presented with such 
changes. With the DEVS modeling approach, this 
is brought to fruition in its modeling layer. With 
the proposed MVC approach, as is quite obvious, 
this is implemented in the modeling layer that is in 
control of the Experimental frame controller layer. 
The modeling layer that holds the system model, its 
configuration, and the inter-component relationships 
receives commands from the Experimental frame on 
modifying the system. The user is in charge of the 
Experimental frame. Consequently, if he wishes to 
modify the system structure he is given the toolbox 
to modify the model from the experimental frame. Of 
course, the toolbox is also designed by the modeling 
designer who decides if the system is to be analyzed 
and the chosen component plays a significant role in 
system dynamics and performance. With the closure 
under coupling property inherent in DEVS formalism, 
an entire subsystem or an individual component in 
system can be added as a “component” in the model, 
in addition to its relationships with other existing 
components. This property aids in adding a complete 
system model as a component in a running simulation. 
With reference to Figure 5, the Experimental frame 
view will contain the controls that the user can 
perform to modify the structure of the model.

6.3 Notion of System Steady State

Evolution is a discipline by which one can 
understand the growth of a “system” with respect 
to time. Modeling growth is a difficult concept, let 
aside simulating “growth.” Biological evolution is 
studied through looking into the past and seeing how 
different species have changed according to their 
environment. In computer systems, the Internet is 
one such system that has “evolved” over time and 
has resulted in a World Wide Web that now sustains 
heterogeneous components sustaining together. 
Evidently, no one could foresee during its conception 
days that it had the potential to become the Internet 

of today with over one billion hosts. In order to model 
growth, one has to have the capability to modify the 
structure of constituent components—its interfaces 
on how it changes when the component is placed in 
different environments. Biological organisms survive 
by a process of adaptation, and transmitting this 
information to progeny with encoded information 
unlike the computer systems. The computer systems 
are characterized by rigid interfaces through which 
they communicate with the “environment.” Certainly 
we are not focused toward modeling adaptation, 
though it can be done with the current DEVS suite, 
but trying to understand the response of system 
when another component is introduced in the system 
is of prime importance. The response time of a 
system is defined as the time taken by the system to 
display any effect once the model has been modified. 
There are legacy systems, and the new technology is 
bringing new components that need to be backward 
compatible. The situation with respect to IPV4 and 
IPV6 is one such example in which the communication 
network has a new standard that needs to be deployed. 
IPV6 has been around for more than ten years, and 
according to various sources, it will take another ten 
years for the current Internet to be completely IPV6 
compliant. Testing of IPV6 in conjunction with IPV4 
is a big limitation [35]. The analysis of these kinds of 
situations can be very readily done with the current 
capability by introducing links and components to 
the existing network model and observing how the 
system responds. 
	 The steady state of any network system can be 
defined as the situation when the computer network 
is stable and there is constant throughput, network 
latency, and there are no overflowing buffers in 
routers. In essence, it boils down to the efficient 
utilization of bandwidth across all links such that 
there are no blockages. Total data transmitted from 
network components is received at the designated 
destinations, with allowable errors. Consequently, 
capacity planning is onestudy that results in 
quantifying the bandwidth in order to make the 
system stable with a specified number of components. 
Looking at it in inverse perspective, finding the 
number of components that can be sustained by any 
particular deployed network is of equal interest. The 
question arises: How can we model a network system 
in which the system can simulate the growth of this 
network, arriving at a steady state and providing us 
with the result that the network can sustain a particular 
number of components? The current variable structure 
capability provides us with the needed functionality 
in which the Experimental frame is given the control 
to “arrive at steady state.” What it actually means is: 
once a small model of the network system is simulated 
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and utilization is reported, the system continues to 
keep adding new (preordained) components, along 
with their relationships, to the existing system until the 
system reaches a specified network throughput. At 
what rate the new components are added is a tunable 
parameter, made available in the experimental 
frame. This whole exercise shows, given a certain 
system exhibiting certain behavior, how the system 
would perform and evolve if let loose, or what the 
maximum number of components is that the system 
can be loaded to so that it maintains a steady state! To 
determine at what result-set the system would break, 
or if it has a “survivable” nature, is worth conducting 
analysis. The run-time capability gives us a window 
to monitor the effects the system incurs when it is 
modified by external effects like the rate of growth of 
the system. 

7. Dynamic Simulation Control

7.1 DEVS Simulation Engine

DEVS has been erected on a framework that exploits 
the hierarchical, modular construction underlying 
the high level of system specifications. The basis 
specification structure in all the associated DEVS 
derived formalisms, e.g., DTSS, DESS, is supported 
by a class of atomic models. An atomic model is 
an irreducible component in DEVS framework 
that implements the behavior of a component. It 
executes the state-machine and interacts with other 
components using its defined inports and outports. 
Each such atomic class has its own simulator class. A 
network of these atomic models constitutes a coupled 
model that maintains the coupling relationships 
between the constituent atomic components. Each 

such coupled model class has its own simulator class, 
known as a coordinator. Assignment of coordinators 
and simulators follows the lines of hierarchical model 
structure, with simulators handling the atomic-
level components and coordinators handling the 
successive levels until the root of the tree are reached. 
These simulators and coordinators form the DEVS 
simulation engine, and they exchange messages 
by adhering to what is known as DEVS simulation 
protocol (see Figure 6). The message exchange is 
depicted in the figure below. For more details about 
the simulation protocol refer to chapter 8 of [11]. The 
figure below shows the mapping of a hierarchical 
model to an abstract simulator associated with it. 
Atomic simulators are associated with the leaves of 
the hierarchical model. Coordinators are assigned to 
the coupled models at the inner nodes of the hierarchy. 
At the top of hierarchy there is a root-coordinator that 
is in charge of initiating the simulation cycles (see 
Figure 7).
	 Since the DEVS model is based on DEVS formalism 
that is based on mathematical systems theory, the 
behavior expressed through DEVS can be translated 
to any other formalism, though there exist no other 
theoretical M&S frameworks. With the separation of 
the model from the simulator, the advantage is that it 
supports formalism interoperability. The next subsection 
throws light on how an experimental frame intervenes 
in the DEVS simulation protocol by causing interrupts, 
and how it implements dynamic simulation control.

7.2 Interrupt Handling 

The controller frame is built on top of a root coordinator 
in DEVS JAVA shown in Figure 7. We developed 
interfaces to enable the DEVS engine to take into 
account the change of experimental frame parameters 
during the simulation run. It generates interrupts, 
which are handled by the coordinator in DEVS JAVA. 
The event from the controller frame is handled by 
the root coordinator that holds the simulation at that 

Figure 6. DEVS simulation protocol
Figure 7. Hierarchical simulator assignment for a 
hierarchical model 
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instant, taking care of the simulation state. The event 
then is channeled through the hierarchical simulator 
network to the intended model. Once the model 
has been updated, the root coordinator resumes 
the simulation by reinitiating the DEVS simulation 
protocol. Consequently, the model is updated in 
between the running simulation with other events 
still being held in different component simulators. 
Only the intended model is updated, which then 
participates accordingly as before. How this event 
(parameter update inside a model) brings change or 
how the system responds to this change can be seen 
very well in different visualizers. Examples can be 
seen in later sections.

7.3 The Notion of “Simulation Control” Explored

Having laid out the framework to implement the 
dynamic simulation control, we also explored 
different methodologies in which the simulation can 
be controlled. Following are the three ways by which 
the simulation can be interjected and brought to 
successful execution.

7.3.1 Automated Control

	 In this methodology, we have stored procedures, 
basically a predefined event list stored as a file that 
is being read actively during the running simulation 
and generates events that sends interrupts to the 
coordinator. This does not require a controller frame 
that is used to provide real-time interrupts. The 
experimental frame takes the shape of this file in 
which different scenarios are preloaded along with 

simulation parameters. Certainly, execution of a 
scenario can be considered as one simulation run or 
a session, but the introduction of a parameter set in 
the experimental frame that is injected dynamically 
in the running simulation is of prime interest. This 
approach has been implemented by Nutaro. This 
methodology is verily extended toward the following 
setup shown in Figure 8 where the SES family of test 
cases is implemented as an XML file. The sequence of 
test is executed in a sequential manner and reported.

7.3.2 Manual Reactive Control

	 In this methodology, the experimental frame is 
operated through a controller frame that is designed by 
the system test designers. The significant parameters 
and models are identified with reference to the OV-8 
document or NR-KPP set and made available in the 
controller frame. This methodology provides us with 
a mechanism to manually interject in the running 
simulation to introduce modifications. It also provides 
us with the capability to steer the simulation if the 
simulation is moving toward a “crash” or if the user 
wants to see the temporal effects of any parameter 
update. The capability to steer and study the effects 
of any single parameter is a powerful capability and 
is almost nonexistent in current simulators, both 
in the academic and commercial arenas. There is, 
however, some software available in the business 
finance domain that provides this capability. The 
concept of analyzing parameters in a reactive manner 
has not been applied to any M&S framework to date. 
The examples in later sections display this approach.

Figure 8. Automated test suite execution
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7.3.3 Hybrid Control

	 As the name suggests, this methodology takes the 
best of the above two approaches. This methodology 
has an automated scenario generation/modification 
capability as well as reactive control through the 
controller frame. The main purpose of the controller 
frame in this approach is to study the temporal 
effects and steer the simulation toward optimum 
performance. 

7.4 Parameter Control

This subsection presents some ideas on the selection 
and categorization of parameters. Two classes of 
parameters that were identified for any system are the 
tunable parameter set and the result parameter set.

7.4.1 Tunable Parameter Set

	 This set is comprised of the parameters that are 
to be included in the Experimental frame. This set 
is termed “tunable” for obvious reasons, as the 
simulation analysis is conducted to study their 
effects on the system performance when their values 
are modified. These parameters are called tunable 
parameters because these parameters are implemented 
as a “slider” component in the controller frame with 
definite bounds. The user can control this slider to 
tune the system for optimum performance. In the 
network system terminology, link capacity, router 
buffer, etc., can be classified as tunable parameters. 
With reference to the DoDAF and NR-KPP, this makes 
more sense, as we need to understand the impact of 
the identified “significant” parameter on the overall 
system performance. 

7.4.2 Result Parameter Set

	 This set is comprised of the aggregated result 
values that provide the overall system performance 
estimates. SV-7 provides a place where these 
documents could be found on a per subsystem basis. 
However, the holistic result parameters still need to 
find an appropriate place. There should be a dedicated 
place in the systems view with respect to the overall 
system performance. The aggregated parameters in a 
network system can be thought of as latency, network 
throughput. This parameter takes leverage from the 
NR-KPP set that is needed to satisfy the baseline 
system performance. Its mapping with SV-7 is beyond 
the scope of the current work.

7.5 Synopsis

The above discussion has illustrated how the DEVS 
simulation framework provides new capabilities in 
the Experimental frame and how these capabilities 
are implemented. It also shows that an experimental 
frame is the place where the user can modify the model 
and can modulate the simulation according to need. 
From the basic capability of creating an experimental 
scenario for the modeled system, we have enhanced 
it by providing more features like simulation control 
and parameter tuning. We have also explored various 
ways simulation control could be performed and 
how parameters are categorized to find their way in 
the Experimental frame. Together with the variable 
structure capability described in section 6, the 
experimental frame becomes an all-encompassing 
user interface to a complex hierarchical system model 
under simulation. It gives the user more power to 
observe and visualize the simulation by isolation at 
the parameter level and the component level as well 
as on the subsystem level. 

8. Example to Illustrate the Current DEVS 
Technology

8.1 Systems Capable of Planned Expansion 
(SCOPE) Command�

SCOPE command is a highly automated, high-
frequency (HF) communication system that links 
U.S. Air Force (USAF) command and control (C2) 
functions with globally deployed strategic and 
tactical airborne platforms. SCOPE command 
replaces existing USAF high-power HF stations 
with a communication system featuring operational 
ease of use, dependability, and seamless end-to-end 
connectivity comparable to commercial telephone 
services. The network consists of fifteen worldwide 
HF stations (see Figure 9) interconnected through 
various military and commercial telecommunications 
media (see Figure 10). It increases overall operational 
and mission capabilities while reducing operation 
and maintenance costs.
	 The HF radio equipment includes the Collin’s 
Spectrum DSP Receiver/Exciter, Model RT-2200. 
The radios feature Automatic Link Establishment 
(ALE) and Link Quality Analysis (LQA) capability 
and are adaptable to future ECCM waveforms 
FSK, MIL-STD-188-110B, and STANAG 5066. The 
transmit subsystem includes 4-kW solid-state power 
amplifiers, a high-power transmit matrix, and a 
combination receive/multicoupler antenna matrix. A 

�. SCOPE Command description taken from Rockwell 
Collins website.
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typical SCOPE command station includes operator 
consoles (HFNC), circuit switching equipment (DES, 
DSN, LCO), HF radios (ALEs), RF matrixes (RTs), 
and antennas (RXs, TXs). A non-blocking digital 
electronic switch (DES) connects the station to the 
local military and/or commercial telecommunication 
services. The switch features unlimited conferencing, 

Figure 9. Geographic locations of fixed stations

Figure 10. Communication flow diagram for SCOPE command

modular sizing, a digital switch network, a precedence 
function, and capacity for up to 2,016 user lines.
	 SCOPE command uses a modular, open-system 
design to automatically manage and control all 
network operations, including those at split-site 
stations. To achieve maximum flexibility, the system 
uses commercially available standards-based 
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software and a multitasking operating system. This 
approach permits fourteen out of fifteen network 
stations to operate “lights out” (unmanned) and to be 
economically controlled from a central location. The 
control system also includes LAN software, servers, 
and routers to support unlimited LAN/WAN.
	 The program includes a Systems Integration 
Lab (SIL) and test-bed facility located in Rockwell 
Collins’s Texas facility. The SIL is used to predict the 
impact and risk that any changes or upgrades will 
have on system performance, integrity, or costs before 
actual implementation begins. The SIL includes 
a fully functional SCOPE command station for 
performing baseline design verification, and interface 
compatibility and functional verification tests.
	 Joint Interoperability Test Command (JITC) is the 
only government agency that is assigned the task 
to validate and authorize IT systems for military 
operations [7]. The HF SCOPE command system 
has also been evaluated by JITC. In collaboration 
with Dr. Eric Johnson, a simulator was developed in 
the C language around 1997 that was validated and 
eventually used by both the government and the 
industry to conduct experiments and run scenarios. 
The simulator was an exhaustive and comprehensive 
effort with respect to the details it implemented 
and served its purpose well. However, in today’s 
circumstances, the same simulator is obsolete due to 
the heterogeneous nature of today’s network traffic, 
in which e-mail occupies a considerable percentage 
of traffic. The simulator is now being upgraded at the 
ACIMS lab in order to make it more useful for current 
demands. These demands stem from the possibility of 
expansion of the current infrastructure of the SCOPE 

command. Questions arise such as how many stations 
need be added to service a required workload. Also 
needing to be investigated are trade-offs such as 
whether it is more economical to add more stations 
or increase the number of internal radio levels 
within stations to meet the anticipated demands. 
Air traffic has increased manifold since 1997, along 
with the computing technology. Consequently, the 
transition effects need to be monitored more closely, 
and the overall system response time� needs to be 
documented. The significant parameters that have 
the most impact on system performance have to be 
identified. To more easily address such questions, 
an effort is being made to modularize Johnson’s 
15K lines of code into a component-based structure 
depicted in Figure 11. Once “componentized,” the 
components are made DEVS compliant resulting 
in a DEVS-based simulation package to support 
the systems engineering needs of the SCOPE 
command.�

	 To study the effect of changes/upgrades introduced 
to the existing SCOPE command system we built 
the Experimental frame, based on DEVS principles 
for our modular DEVS-NETSIM simulation model, 
named GENETSCOPE [38]. Figure 12 shows the block 
architecture of the simulation model. The right-hand 
box is the system phenomenon that contains the 
Automatic Link Establishment (ALE), STANAG 5066 
protocols used for establishing links and exchanging 

�.	Response time of a system is defined as the time taken by the 
system to display significant effect caused by any update in the 
configuration parameters. 

�.	A methodology using intermediate XML processing to automate 
much of the process of “componentizing” legacy simulation 
code will be reported soon. 

Figure 11. System entity structure for SCOPE command system showing the fixed and mobile (aircraft) stations
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data messages between mobile stations and fixed 
stations. The left-hand box is the experimental frame 
that generates various scenarios and parameters under 
study. The scenarios and parameters are fed into the 
model and performance characteristics are obtained 
from it, which are then visualized and analyzed in real 
time as per the extended MVC architecture described 
in section 5. 

8.2 SCOPE Command and DoDAF

Certainly, a system like SCOPE command qualifies 
to be represented as a DoDAF specification. 
Though not provided in this paper, all three views, 
viz., Operational, System, and Technical, can 
be developed. The documents are fairly easy to 
construct as the system is not in the design phase 
but is a live system with working standards and 
people managing the system for as long as twenty 
years. The physics of the HF communication is still 
the same, and the radio equipment has set standards 
that have not been revised that often. What is new in 
the system is the incorporation of new standards, for 
example, the STANAG 5066 data-exchange protocol 
that modulates the modem rates and reliable data 
delivery across the HF messaging system. This is 
being added to provide the capability to send e-mail 
messages through the HF system. The other major 
thing that has changed is the increased intensity of 
traffic, demanding upgrades to the existing system. 
For illustration purposes, suppose that we had the 
DoDAF description of SCOPE as well as all the details 
on how the system would be constructed and its 

functionality implemented. Remaining solely within 
the DoDAF, there still would not be any means to 
analyze or experiment with the projected system. As 
stressed earlier, the DoDAF does not provide for any 
M&S capability to support the system design process. 
It only provides a means to build a system on the 
presumption that analysis has already been done, a 
“design” is available, and the system is ready to be 
deployed. The purpose of the DoDAF in this case is 
nothing more than a documenting procedure. 
	 The methodology presented in this paper takes 
the DoDAF as a front-end documentation procedure 
that aids M&S and design objectives. With respect to 
Figure 5, the central theme of the paper, we present 
sample OV-8 and OV-9 documents to illustrate how 
the experimental frame is developed from the DoDAF 
terminology. 
	 Although the current DoDAF views are 
insufficient to provide the M&S for the purpose 
of enhancing and recommending upgrades to the 
existing SCOPE system, the DEVS approach readily 
provides the needed tools. Going back to the basic 
DEVS M&S components (see Figure 1), the legacy 
SCOPE simulation model was transformed by the 
base high resolution model. The Experimental frame 
is constructed over this existing system along with 
various other additions that would control and direct 
the possible upgrades. This component is responsible 
to provide environmental conditions, workload 
generation, performance analysis, system evolution 
and control, and achievement of steady state. The 
other advantage of this separation is the construction 
of a DEVS lumped model in which various details of 

Figure 12. GENETSCOPE simulation architecture for SCOPE command
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the base model are abstracted and lumped together. 
Whereas the base model is oriented to technical 
components, the lumped model directly addresses 
system level issues and supports faster simulation runs 
to answer these questions. As always, the question 
arises as to how close these results match with the 
detailed model. The lumped model is preferred if it is 
able to perform to the same level of accuracy and helps 
answer the questions raised by the SCOPE command 
designers. The comparison of a lumped model with 
a base model is only possible if the underlying M&S 
formalism supports modular construction of the three 
components, viz., model, simulator, and Experimental 
frame [11].

8.2.1 Sample OV-8 and OV-9 Documents

	 Let’s consider two activities out of many activities 
that are a part of any HF radio communication, i.e., 
sounding and listening. Sounding is defined as the 
process by which different stations (refer to Figure 
11) periodically send broadcast messages at different 
frequencies so that other stations know who else is 
available on the HF radio sky. Listening is defined as 
the process by which these stations identify and hear 
RF tones and go through a demodulation process to 
decode and decipher the incoming transmission. 
	 Table 4 describes the initial process that is done to 
populate the OV-8 document. It assigns various IDs 
to different Activities and sub-activities that are then 
used as reference tokens and automation processes, 
as described in [18]. Figure 14 depicts the OV-5 for 
activity sounding. Activity listening will have a similar 
Operational View depiction. Table 5 presents a sample 
OV-8 document with refined structure (see Table 3) 

showing the significant parameter set for sounding 
and listening activities. It should be well stressed here 
that documention and aggregation of this information 
with the corresponding activity helps find faults in 
testing the “feasibility” of the system [18] when M&S 
is employed.

Table 4. Activity ID mapping for OV-8 and OV-9

S. 
No. Activity Sub-activity Internal 

Activity ID

1 Sounding A1
2 Prepare Call A1.1
3 Send Call A1.2
4 Send 

Transmission
A1.3

5 Listening A2
6 Receive 

Transmission 
A2.1

7 Evaluate Signal A2.2
8 Decode Signal A2.3
9 Report Message A2.4

Figure 13. DEVS M&S and the existing SCOPE command system

Figure 14. OV-5 for activity sounding

Sounding A1

A1.1 A1.3
Prepare	Call	

A1.2
Send	Call	

Send Send SendSound Frame Transmission
Add
Transmission
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	 Having constructed the OV-8 document, let us 
construct the OV-9 documents according to the 
proposed structure in [18]. Table 6 presents the 
components that lie within the Operational Node 
station and their assigned IDs for automation purposes. 
For more details, refer to [18]. It is worth stressing 
here that this information comes readily from the SES 
of the existing SCOPE command system, as shown in 
Figure 11. The inner components within the station 
Operational Node are clearly defined in Figure 11. 
	 Hence, during the creation of OV-8 and OV-9 we 
have populated the model repository with  Activity 
models (MA6.1–MA6.18) and Operational node’s 
inner components models (ME1, ME1.1–ME1.6) and 
have created an interface between these two aspects 
of DoDAF design. In the subsequent sections, we shall 
see how these enhanced OV-8 and OV-9 documents 
prove to be advantageous in defining the DEVS 
Experimental frame parameters and hierarchical GUI 
developments or code development of the simulation 
model.

8.3 SCOPE Architecture Implementation Using 
Enhanced MVC

Figure 15 shows the simulation architecture for 
GENETSCOPE [38] using the concepts laid out in the 
paper. With reference to Figure 12, the ionosphere 

Table 5. Sample OV-8 document

S. 
No. Activity ID 

Signify-
cant

Para-meter

Source 
Activity

Input 
Interface

Name

Message
Descript-

ion

Container 
Op. Node

Source 
Document/

Diagram
1 A1 Station
2 A1.1 Sounding- 

interval, 
duration

CA1.1 Ax inSta Send sound Station Figure 14/ OV-5

3 A1.2 Message 
size,
frame count

CA1.2 A1.1 inAle Send 
frame (s)

Station Figure 14/ OV-5

4 A1.3 Duration CA1.3 A1.2 inRt Add 
transmission

Station Figure 14/ OV-5

5 A2
6 A2.1 Duration CA2.1 Ay inRt Receive 

transmission
Station Figure x

7 A2.2 Station to-
station SNR

CA2.2 A2.1 inAle SNR Station Figure x

8 A2.3 Received 
frames, 
valid 
frames,
duration

CA2.3 A2.2 inAle Incoming 
sound

Station Figure x

9 A2.4 None CA2.4 A2.3 inHfnc Heard 
station X

Station Figure x

model used in the architecture is ICEPAC data. It is 
worth stressing that the initial NETSIM model written 
in C language has this database tightly coupled with 
the model. In our present implementation, we made 
it modular so that it can be replaced by any other 
database that could provide the channel propagation 
values through the ionosphere, e.g., VOACAP. In 
the current implementation, there is no ICEPAC 
database included but the complete ICEPAC software 
that is executed at run time. This is one of the biggest 
advantages in separating ICEPAC from the model 
itself. The ICEPAC software is configured through the 
Experimental frame parameters and is made available 
for real-time execution as an independent thread 
for different stations that are active in the running 
DEVS model. The real-time execution of ICEPAC 
software involves creation of a dynamic ICEPAC 
configuration file that contains information about the 
two stations, their geographical locations in latitude 
and longitude, the Sun Spot Number (SSN), and the 
time of year, month, and day. This implementation 
allows us to get the ionospheric SNR values for any 
location at any time of the year (for SSN) unlike the 
earlier implementation (NETSIM-SC) where we 
were limited to only a handful SSN values (10, 70, 
100, and 130) with locations specified in five-degree 
increments. This has the added benefit of using the 
exact location of any mobile station rather than using 
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Table 6. Inner components within operational nodes and their mapping with “standardized” DEVS models

S. No. Operational
Node

Inner Component 
Entities

Component 
Name

Associated 
Models Added 
to Repository

Hierarchical 
Parent/

Container

DEVS Model 
Type

1 O1 OCE1 Station ME1 - Digraph

2 OCE1.1 HFNC ME1.1 ME1 Atomic

3 OCE1.2 ALE ME1.2 ME1 Atomic

4 OCE1.3 RT ME1.3 ME1 Atomic

5 OCE1.4 TX ME1.4 ME1 Atomic

6 OCE1.5 RX ME1.5 ME1 Atomic

7 OCE1.6 PA ME1.6 ME1 Atomic

Table 7. Sample OV-9 document

S. 
No.

Operational
Node

Inner Component 
Entities

Component 
Name

Activity 
Component

Activity Component 
Name

Interface 
Description

1 O1 OCE1 TCT
OCE1.1 HFNC Ax Time To Sound tts

A2.4 Report Message repMsg
OCE1.2 ALE A1.1 Prepare Call prepCall

A1.2 Send Call sendCall
A2.2 Evaluate Signal evalSig
A2.3 Decode Signal decSig

OCE1.3 RT A1.3 Send Transmission sendTransm
A2.1 Receive 

Transmission
recvTransm

OCE1.4 TX A1.3 Send Transmission putTransm
OCE1.5 RX A2.1 Receive 

Transmission
getTransm

OCE1.6 PA None None None

Figure 15. Simulation architecture for the SCOPE command network
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projections within the implemented grid as in the 
earlier NETSIM-SC. The DEVS layer comprises both 
models as well as the DEVS simulation environment. 
The Experimental frame layer also contains the 
controls required to modify/update the model as well 
as a simulator as per enhanced MVC. The simulation 
visualization is modular in construction and reflects 
the updates in the Experimental frame layer and the 
DEVS layer. See Figure 15.
	 The above architecture is shown below in various 
screen shots taken from the developed GENETSCOPE 
(beta version). Figure 16 shows the Experimental 
frame and various parameters (along with their 
default values) used in scenario configuration. The 
parameters shown in bold below are the parameters 
that have been identified as significant parameters 
in OV-8 (see Table 5, in shaded cells). Similarly, 
other parameters too come from an elaborate OV-8 
document of the SCOPE command. These significant 
parameters find their way in various configurable 
parameters all through the model configuration 
settings as shown in Figures 16, 17, 18, 20, and 21, and 
the simulation model finds its design through the SES 
(see Figure 11) or the corresponding OV-9 document 
(see Table 6). The total parameter set is comprised of:

Number of fixed stations,
Number of levels inside a fixed station,

1)
2)

Number of mobile stations (aircrafts),
Messages per hour,
Data message size,
Voice call duration,
Ground stations sounding interval, and
SNR threshold for a received signal.

	 Once the experimental frame parameters are 
configured, these parameters are channeled down 
to the individual components. The top-level 
design parameters then bound the other internal 
component parametric settings. For example, Figure 
17 shows a typical configuration of the ground 
station Sigonella. The left column in Figure 17 shows 
all the fourteen ground stations, and the individual 
details about each station can be seen by pressing 
the Lookup button. Figure 17 also shows the message 
traffic that is transmitted by this station. Notice that 
the Experimental frame settings are shown as the 
traffic stream originated from this station. Similarly, 
a mobile station configuration panel is shown in 
Figure 18. The user can select any specific mobile 
aircrafts bounded by the number of mobile stations 
specified in the Experimental frame. The next 
figure, 19, basically lets the user enter call-signs to 
these mobile stations and invites the user to enter 
aircraft-specific details like message traffic, flight 

3)
4)
5)
6)
7)
8)

Figure 16. Experimental frame for GENETSCOPE
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Figure 17. Ground station configuration screen for Naval Air Station Sigonella

Figure 18. Mobile station configuration screen where the total count is bounded by the Experimental frame
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path (see Figure 20), radio parameters, and channel 
frequencies being used. Other internal details of 
station configuration can be seen in the GENETSCOPE 
software user’s manual [38]. The purpose of showing 
GUI snapshots in Figures 17–20 is to illustrate how 
top-down design parameters (from OV-8) can be taken 
down to the component level (through both OV-8 and 
OV-9). The other important aspect of this process is 
that during simulation run-time, if the Experimental 
frame parameters are changed to study any particular 
parameter, that change is channeled across the whole 
system model configuration using “interrupts,” 
thereby exploiting the discrete event simulation 
methodology. The update of any Experimental frame 
parameter is taken by the simulation model as an 
“external” event.
	 The last piece of information being fed through the 
Experimental frame is the ICEPAC setting, based on 
the Sun Spot Number (SSN). Once the system model is 
configured through the Experimental frame settings, 
the user is directed toward the simulation setup. 
Figure 21 shows the final setup screen after which the 
user then moves on to the run-time simulation screen 
(see Figure 22) to execute the simulation. When the 
user clicks the Write Files button in Figure 20, it 
results in writing up of the detailed configuration file 
for repository purposes. 
	 Figure 22 shows the simulation clock as it happens 
in real time and the obtained statistics. The above 
snapshots complete the architectural components 
specified in Figure 15. Figure 22 has the functionalities 
that are described earlier in the paper: e.g., run-time 
configuration updating and simulation control. It has 
four buttons at the top of the screen, viz.:

Run Abstract Model (using lumped parameters),
Run Detailed Model (using detailed parametric 
settings),

1)
2)

Pause (to interrupt the simulation),
Terminate (to end the simulation).

	 The Pause button is of special interest here, as the 
user can interrupt the running simulation (manual 
reactive control described in section 7.3.2) and change 
the Experimental frame or system configuration 
settings while the simulation is in action. Once the 
parameters have been updated, the user can resume 
the simulation and can see the impact of that update 
on the above “active” simulation visualization screen. 
One such example may be the two obtained values 
of total transmissions and total sounds heard. If 
the number of sounds heard is not up to the mark 
(with respect to a validated real-world scenario), 
the user may change sound-interval time or any 
other parameter that would impact this number, or 
may conclude that the model is not “performing” 
correctly. The rapid impact of any such parameter can 
be studied by pausing the simulation and changing 
it and then observing the effects in the simulation 
pane. 
	 The DEVS layer in Figure 15 is implemented in the 
following manner. The simulation engine running 
behind uses the following code.
NetsimSC net = new NetsimSC
(createdConfigFile, debugOption);

tCoord = new TunableCoordinator(net);

tCoord.initialize();

tCoord.setTimeScale(0.0001);

tCoord.simulate(Integer.MAX_VALUE);

The model configuration is written into a configuration 
file that is used to create the DEVS digraph model, 
with automated coupling using the system SES 
shown in Figure 11. The DEVS model is then passed 
on to the TunableCoordinator derived from DEVS 
RTcoordinator class. The TunableCoordinator is 

3)
4)

Figure 19. Callsign entry for a mobile station Figure 20. Flight path of mobile aircraft and other details
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Figure 21. Experimental frame and ICEPAC data configuration through selection of SSN

Figure 22. Run-time simulation visualization screen for rapid feedback
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initialized and is then directed to simulate for a 
maximum number of iterations, which means that 
simulation will proceed indefinitely (in logical sense). 
The Pause button executes the following line. 
	 tCoord.interrupt();

After the simulation is paused and updates are made, 
the simulation is restarted by simply calling the 
coordinator to “simulate.” 
	 tCoord.simulate(Integer.MAX_VALUE);

The simulation core functionality provided by the 
DEVS simulation protocol facilitates interrupting 
the coordinator and makes real-time parametric and 
component structures at run time as described in 
sections 6 and 7 earlier.
	 Figure 22 contains a very limited set of aggregated 
information. However, run-time graphs and 
projections can be very well aligned with this 
visualization to see patterns and the direction in which 
the simulation is proceeding. Logs are generated for 
each simulation run. This visualization pane shows 
the important information of the Experimental 
frame (in red) and the run-time information from 
the system model (in blue), which, needless to say, 
is according to the enhanced MVC (through the 
development of appropriate interfaces between these 
layers). The View layer (see Figure 5) in the current 
example shows only the model and the Experimental 
frame control visualization. The Experimental frame 
control is controller B in Figure 5, i.e., parameters that 
“control” the model. The lowest layer, i.e., controller 
A in the enhanced MVC process, is not the focus of 
the GENETSCOPE project and consequently not 
illustrated here. Its implementation is illustrated in 
our earlier work [28]. 

8.4 Implications of the Example Above 
and NR-KPP

Having laid out the framework to conduct and 
design the experiments, the next item on the agenda 
is to identify the measures of effectiveness (MoEs) 
that eventually will be considered in making 
recommendations for any update or modification 
needed in the current SCOPE command infrastructure. 
Since the SCOPE command is a deployed system, we 
were given various statistical reports by JITC [36] 
in order to determine these MoEs. The point of this 
exercise is to provide sufficient analysis through 
simulation of the modeled system so that the impact 
of any particular infrastructural change intended in 
the system can be observed on these MoEs. Some of 
the MoEs that were identified are as follows:

Longest time taken by any e-mail on HF 
network,

1)

Number of e-mails sent and number of e-mails 
actually delivered,
Average message transmission time at any station 
per hour,
Messages attempted versus messages received 
per hour,
Bandwidth usage at Central Network Command 
Station (CNCS�), 
Number of planes in “good” signal to noise ratio 
(SNR) range per hour.

	 The parameters that are to be set in order to 
recommend any upgrades in the current infrastructure 
can be listed as follows:

Average number of daily flights,
Minimum number of messages attempted by any 
station,
Number of fixed stations participating in any 
mission scenario,
Number of active levels within a fixed station, 
Minimum and maximum message size in KB,
Minimum and maximum duration of a phone 
call (VOICE message),
Minimum data rate by any ALE radio-modem.

	 As can been seen clearly, there is not a one-to-
one mapping between MoEs and experimentation 
parameters. The MoEs tell us about the effectiveness of 
any mission that would be executed. They are holistic 
measures that tell about the fitness, capacities, and 
limitations of the system. M&S is the preferred means 
for assessing the impact of parameters on MoEs, with 
the goal of determining the most significant parameters. 
A simulation execution environment can help this 
investigation through a rapid feedback cycle where 
the analyst can change parameter values on the fly and 
quickly assess their impact on holistic measures. These 
MoEs impact evaluations very well and become part 
of the result set as mentioned in section 7.4.2, while the 
parameters identified become part of the Experimental 
frame layer as shown in Figure 15.
	 Similarly, for any DoDAF architecture, the MoEs 
are also specialized for that particular architecture. 
Considering the breadth of the SCOPE command 
system, some of the MoEs mentioned above also 
apply to any net-centric architecture. Within the 
DoD, JITC has the sole responsibility of certifying the 
Information Technology (IT) and National Security 
Systems (NSS) for interoperability purposes [37]. The 
major T&E problem identified today by JITC is how 

�.	CNCS is the gateway for any land-based network 
(SIPRNET or NIPRNET) to be connected to the SCOPE 
command HF network. All e-mails are routed through 
CNCS.

2)

3)

4)

5)

6)

1)
2)

3)

4)
5)
6)

7)
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to verify that a solution provided by any architecture 
is data integrated and net centric in operation. The 
traditional T&E approaches are optimized to verify 
performance and effectiveness of point solutions, 
but new criteria are needed to reflect the realities of 
systems operating within networked systems. Such 
criteria are just beginning to emerge and are not yet 
matured for immediate and widespread use of T&E 
[37].
	 The NR-KPP assesses net-readiness information 
assurance (IA) requirements, and end-to-end 
operational effectiveness of that exchange with 
respect to the COIs mentioned earlier. Description 
of Key Interface Profile (KIP) with relation to this 
scenario is beyond the scope of this paper. The major 
object underlying NR-KPPs is to identify verifiable 
performance parameters and associated metrics 
required to evaluate timely, accurate, and complete 
exchange and use of information to satisfy the 
information needs for a given capability [37].

9. Conclusions

This paper has provided a contribution in proposing 
an enhanced MVC framework that aids the DEVS 
modeling and simulation framework. The enhanced 
MVC complements the basic DEVS framework 
components, viz., the Experimental frame, the 
model, and the simulator. The integration of these 
two frameworks results in a well constructed control 
panel that provides a more comprehensive feature set 
and controls to calibrate the model and configure the 
simulation. The recent advances in DEVS technology, 
like variable structure modeling, real-time simulation 
tuning with rapid feedback, and model/simulator 
calibration, have been described; they help in 
the analysis and study of fast-changing network 
scenarios. The first major advantage of incorporating 
these technologies is the study and visualization of 
the “transition” effects when the model configuration 
is modified in a running simulation. Various methods 
of controlling simulation execution were explored as 
well as ways in which they can be used in different 
scenarios. The second major advantage of this enhanced 
MVC framework is the capability to reach the desired 
mission effectiveness or performance benchmarks 
in an active simulation. With variable structure 
capability, along with setting the bounds of any result 
parameter, the system can be observed to arrive at the 
corresponding “steady state.” This methodology also 
aids in determining the most significant parameters 
for any complex system for which theoretical analysis 
is not feasible. This integrated framework is applied 
to the enhanced DoDAF document that comprises 
two new operational views, OV-8 and OV-9, which are 

dedicated to the M&S areas. These two documents are 
refined to incorporate the control parameter set for the 
control panel, specified as a significant parameter set in 
OV-8 and OV-9. These parameters are discussed with 
respect to the Net-Ready Key Performance Parameter 
(NR-KPP) set, and the advantages of identification of 
these parameters during the operational view design 
phase are emphasized. Finally, a working example for 
the Systems Capable of Planned Expansion (SCOPE) 
command system is provided to illustrate the concepts 
and DEVS capabilities.
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Appendix: System Entity Structure (SES)

The SES formalism is a structural knowledge 
representation scheme that systematically organizes 
a family of possible structures of a system. Such a 
family characterizes decomposition, coupling, and 
taxonomic relationships among entities. An entity 
represents a real-world object. The decomposition 
of any entity concerns how it may be broken down 
into subentities. Coupling specifications tell us how 
different subentities can be coupled together to 
reconstitute an entity. The taxonomic relationship 
concerns admissible variants of an entity. It also 
provides a formal framework for representing the 
family of possible structures. From a design point of 
view, SES represents the design space with various 
possible design configurations. Thus, the process of 
design/analysis is to prune SES—in other words, to 
search the best design configuration. For complex 
systems, the number of the combination of different 
configurations is very large. Thus, it is desirable to 
be able to emulate SES and automatically search the 
best design configuration. For a detailed description 
on SES see [11] and [39].
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