
 1

DEVSML: Automating DEVS Execution Over SOA Towards Transparent Simulators

Saurabh Mittal*, José Luis Risco-Martín, Bernard P. Zeigler*
{saurabh, zeigler} @ece.arizona.edu, jlrisco@dacya.ucm.es

*Arizona Center for Integrative M&S

ECE Department, University of Arizona
Tucson, AZ 85721

Departamento de Arquitectura de Computadores y
Automática

Universidad Complutense de Madrid
28040 Madrid, Spain

Keywords:
DEVSML, SOA, Web services, JavaML

Abstract
Discrete Event Specification (DEVS) formalism has been
used to study dynamics of discrete event systems. DEVS
environments are typically open architectures that have
been extended to execute on various middleware such as
CORBA, Grid computing, P2P networks, RMI and
others. The present work aims to provide another
development environment using the Service Oriented
Architecture (SOA) framework. The proposed DEVS
Modeling Language (DEVSML) is built on XML and
provides model interoperability among DEVS models
located at remote locations. The DEVSML environment
is built on client-sever paradigm and the simulation is
executed at the server’s end. The proposed DEVS atomic
and coupled DTDs are open to standardization from the
community for successful model sharing and
collaboration. The DEVSML framework provides the
needed feature of run-time composability of coupled
systems using the SOA framework. DEVSML also
provides the capability to translate model to and from
XML and JAVA programming language leading to
model composability and validation. This paper will
demonstrate the client application as well as the server
architecture underlying the DEVSML framework.

1. Introduction
DEVS formalism [1] exists in many implementations,
primarily in DEVS/C++ and DEVSJAVA [2].
Extensions of these implementations are available as
DEVS/HLA [3], DEVS/CORBA [4], cell-DEVS [5], and
DEVS/RMI [6]. Since DEVS is inherently based on
object oriented methodology, C++ and Java are the
chosen programming languages. Almost all of the
extensions capitalize on the underlying object orientation
provide by these two programming languages. The
models are coded either in C++ or Java. DEVS
formalism categorically separates the model, the
Simulator and the Experimental frame. However, one of
the major problems in this kind of mutually exclusively
system is that the formalism implementation is itself
limited by the underlying programming language. In
other words, the model and the simulator exist in the
same programming language. Consequently, legacy
models as well as models that are available in one
implementation are hard to translate from one language
to another even though both the implementations are

object oriented. Other constraints like libraries inherent
in C++ and Java are another source of bottleneck that
prevents such interoperability.

The motivation for this work stems from this need of
model interoperability between the disparate simulator
implementations and provides a means to make the
simulator transparent to model execution. We propose
DEVS Modeling Language (DEVSML) that is built on
eXtensible Markup Language (XML) [7] as the
preferred means to provide such transparent simulator
implementation. The present work has been done with
Java and efforts are ongoing in the direction to provide
C++ implementation of the concept. This work is built
on the JAVAML research done by Vladimir for DEVS
Meta Language [8]. While his work aims to provide a
stand-alone XML schema for DEVS formalism that can
be used by any of programming implementations,
research is still ongoing to specify the logic behavior in
atomic models. The present work aims to extend his
approach and provide complete behavioral support in
DEVSML by implementing the proposed universal
Atomic and Coupled DTDs. We look forward toward
standardization of these DTDs so that models across the
web can participate in Dynamic Modeling &
Simulation over Net-centric web services.

We have implemented our proposed DTDs in web
service architecture; specifically a Service Oriented
Architecture (SOA) [9] and paper will illustrate the
Server as well as Client designs. We also propose
modifications in the DEVS formalism as well that will
make a DEVS model to be a DEVS Service model that
can be readily deployed using Model-continuity
principles [10].

The paper is organized as follows. The next section
provides information about the related work. Section 3
provides basic information about the underlying
technologies for the development of DEVSML SOA
framework. Section 4 provides an overview of
DEVSML layered architecture. Section 5 provides
detailed DEVS DTDs. Section 6 presents the Web
Service Architecture with both Server and Client
designs. Section 7 demonstrates how a client can use
the DEVSML transparent simulator implementation
and compose models with existing remote models.
Section 8 provides conclusion and the recommended
future work.

 2

2. Related Work
There have been a lot of efforts in the area of distributed
simulation using parallelized DEVS formalism. Issues
like ‘causal dependency’ [1] and ‘synchronization
problem’ [11] have been adequately dealt with solutions
like: 1. restriction of global simulation clock until all the
models are in sync, or 2. rolling back the simulation of
the model that has resulted in the causality error. Our
chosen method of web centric simulation does not
address these problems as they fall in a different domain.
In our proposed work, the simulation engine rests solely
on the Server. Consequently, the coordinator and the
model simulators are always in sync.

Most of the existing web-centric simulation efforts
consist of the following components:

1. the Application: the top level coupled model
with (optional) integrated visualization.

2. Model partitioner: Element that partitions the
model into various smaller coupled models to
be executed at a different remote location

3. Model deployer: Element that deployed the
smaller partitioned models to different locations

4. Model initializer: Element that initializes the
partitioned model and make it ready for
simulation

5. Model Simulator: Element that coordinate with
root coordinator about the execution of
partitioned model execution.

The Model Simulator design is almost same in all of the
implementation and is derived directly from parallel
DEVS formalism [1]. There are however, different
methods to implement the former four elements.
DEVS/Grid [12] uses all the components above.
DEVS/P2P [13] implements step 2 using hierarchical
model partitioning based on cost-based metric.
DEVS/RMI [6] has a configuring engine that integrates
the functionality of step 1, 2 and 3 above. DEVS/Cluster
[14] is a multi-threaded distributed DEVS simulator built
on CORBA, which again, is focused towards
development of simulation engine.

As stated earlier, the efforts have been in the area of
using the parallel DEVS and implementing the simulator
engine in the same language as that of the model. Our
present work is not focused in this area. It is focused
towards interoperability at the application level,
specifically, at the model level and hiding the simulator
engine as a whole.

The research of DEVS Standardization group [15] can be
divided into four basic areas [8]:
1. Standardization of DEVS formalism
2. Standardization of DEVS models
3. Standardization of the interface of DEVS Simulator
4. Standardization of libraries of DEVS models

Members of Standardization group have worked
concerning area 2 where the model’s structure is based

on XML [16, 17]. However, their general modeling tool
ATOM3 [17] is based on meta-meta-modeling. It is
based on graph grammars and allows transformation of
model to different formalism. Vladimir’s [8] work is
concerning areas 2 and 4. His implementation of DEVS
meta model is based on underlying JAVA Modeling
Language (JAVAML) [18]. Vladimir presents a
prototype of a modeling tool that aims towards model
interoperability but the paper lacks sufficient details
and any working example. Our earlier work presents
the detailed W3C Schema for DEVS atomic and
coupled models [19] as intended by Vladimir. Other
research effort using XML description is done by [20]
called as DEVSW fits areas 2 and 4 but the code for
transition functions is provided by means of pseudo
code.

These efforts are in no means similar to what we are
proposing in our paper, except some of ideas presented
by Vladimir. The mentioned efforts are aimed towards
development of an independent meta-language that
would aid the user to write models effectively and
easily and then the process of model generation and
simulation is automated using XML. We are focused
towards taking XML just as a communication
middleware, as used in SOAP, for existing DEVS
models. We would like the user or designer to code the
behavior in any of the programming languages and let
the DEVSML SOA architecture be responsible to create
a coupled model, integrating code in either of the
languages and delivering us with an executable model
that can be simulated. The user need not learn any new
syntax, any new language; however, what he must use
is the standardized version of DEVS implementation
such as DEVSJAVA Version 3.0 [2] (maintained at
www.acims.arizona.edu).

This kind of capability where the user can integrate his
model from models stored in any web repository,
whether it contained public models of legacy systems or
proprietary standardized models will provide more
benefit to the industry as well as to the user, thereby
truly realizing the model-reuse paradigm.

Our work spans areas 2, 3, and 4. In further sections we
will provide details about DEVS atomic and coupled
DTDs, design of DEVS Simulator interface and
standardized libraries used in our implementation.

3. Underlying Technologies

3.1 DEVS
DEVS formalism consists of models, the simulator and
the Experimental Frame. We will focus our attention to
the two types of models i.e. atomic and coupled models.
The atomic model is the irreducible model definitions
that specify the behavior for any modeled entity. The
coupled model is the aggregation/composition of two or
more atomic models connected by explicit couplings.
The coupled model N can itself be a part of component

 3

in a larger coupled model system giving rise to a
hierarchical DEVS model construction. Detailed
descriptions about DEVS Simulator, Experimental
Frame and of both atomic and coupled models can be
found in [1].

3.2 Web Services and Interoperability using XML
Service oriented Architecture (SOA) framework is a
framework consisting of various W3C standards, in
which various computational components are made
available as ‘services’ interacting in an automated
manner towards achieving machine-to-machine
interoperable interaction over the network. The interface
is specified using Web Service Description language
(WSDL) [21] that contains information about ports,
message types, port types, and other relating information
for binding two interactions. It is essentially a client
server framework, wherein client request a ‘service’
using SOAP message that is transmitted via HTTP in
XML format. A Web service is published by any
commercial vendor at a specific URL to be
consumed/requested by another commercial application
on the Internet. It is designed specifically for machine-
to-machine interaction. Both the client and the server
encapsulate their message in a SOAP wrapper.

3.3 JavaML
JavaML [18] is an XML-Based source code
representation for Java programs. The JAVAML
Document Type Definition (DTD) specifies various
elements of a valid JavaML document. It is well-suited
to be used as canonical representation of Java source
code for tools. It comes with an XSLT-based back-
converter that translates a JavaML document back into
java source code. More details about JavaML can be
found at [18].

4. Overview of DEVSML
DEVSML is a novel way of writing DEVS models in
XML language. This DEVSML is built on JAVAML,
which is infact, XML implementation of JAVA. The
current development effort of DEVSML takes its power
from the underlying JAVAML that is needed to specify
the ‘behavior’ logic of atomic and coupled models. The
DEVSML models are transformable back'n forth to java
and to DEVSML. It is an attempt to provide
interoperability between various models and create
dynamic scenarios. The key concept is shown in the
Figure 1.

The layered architecture of the said capability is shown
in Figure 1. At the top is the application layer that
contains model in DEVS/JAVA or DEVSML. The
second layer is the DEVSML layer itself that provides
seamless integration, composition and dynamic scenario
construction resulting in portable models in DEVSML
that are complete in every respect. These DEVSML
models can be ported to any remote location using the

net-centric infrastructure and be executed at any remote
location. Another major advantage of such capability is
total simulator ‘transparency’. The simulation engine is
totally transparent to model execution over the net-
centric infrastructure. The DEVSML model description
files in XML contains meta-data information about its
compliance with various simulation ‘builds’ or versions
to provide true interoperability between various
simulator engine implementations. This has been
achieved for at least two independent simulation
engines as they have an underlying DEVS protocol to
adhere to. This has been made possible with the
implementation of a single atomic DTD and a single
coupled DTD that validates the DEVSML descriptions
generated from these two implementations. Such run-
time interoperability provides great advantage when
models from different repositories are used to compose
bigger coupled models using DEVSML seamless
integration capabilities.

Figure 1: DEVS Transparency and Net-centric model
interoperability using DEVSML

Figure 2 provides a basic flow chart of operations that
can be done with DEVSML framework. The designer
can start with either the JAVA code for atomic/coupled
model or the DEVSML code for atomic/coupled model.
In either of the case, the process has to lead to
DEVSML representation of the model. The DEVSML
description that is essentially XML is then validated by
the standardized DTDs (shown in next section), can
now participate in model composition (blue box). The
composed coupled model as well as DEVSML atomic
model can verily be stored in the Library for reuse. The
composed integrated model, that is complete in every
respect, as it contains behavior as well, as ready for
simulation. The DEVSML model is then sent to various
remote locations or specifically Server, wrapped in
SOAP message to the destination host (Server in our
case). Based on the information contained in the
DEVSML model description, corresponding simulator
is called for to instantiate the model and executes the
simulation with the designated simulator.

 4

Figure 2: Flow chart of basic operations leading to model composability using DEVSML

5. DEVS DTDs and their Standardization
This section provides details about the modified DEVS
formalism for the atomic model to make it ‘service
enabled’ in the process of software engineering. The
motivation comes from the fact that testing of Web
Services as in ‘system test suite’ is still in infancy and
DEVS based testing is still in progress. With a slight
modification in the DEVS formalism for atomic model
we plan to achieve the following:

1. Transform any existing DEVS atomic as a
container that is capable of publishing services

2. Promote testing of web service components by
making them DEVS enable so that a DEVS
wrapper would encapsulate a Service as a
‘component’

3. Transition from a DEVS Service component
directly to a web service component after
removal of wrapper and deploy it using model-
continuity principles.

Figure 3 provides a graphical view of an abstract
component that inherits the basic functionality of DEVS
atomic model. The extended DEVS formalism is
specified as below:

SM = <X, S, Y, δint, δext, δconf , λ, ta, V>
where,

V is the set of Service methods that are
represented by this atomic model.

The other symbols have their usual meaning as described
in standard notations in [1]. As can be seen in Figure 4,
we express the DEVS atomic model in XML format. We
have structured the atomic component’s behavior on the

line of Service component. Any Service component
provides ‘services’, which means that, it is
implemented as a method in the underlying OOP
language. We express the new proposed atomic SM
formalism with a collection set of these services as V.
We collect these methods and store their names in the
collection V with the intent of producing a WSDL that
makes these operational methods ‘visible’. This manner
of making methods available through WSDL provides
two advantages:

1. The DEVS model could become the actual
Service using model-continuity concepts

2. Each Service, assuming there is only one
method that is made visible, is provided a
state-machine for its behavior testing in off-
line mode.

The approach is under research and will be reported in
near future.

The XML representation of this abstract component is
shown in Figure 4. The idea here is that a DEVS atomic
model contains the behavior of a component that has
defined interfaces. The devsObject is the wrapper that
takes care of δint, δext, δconf interactions, while the
serviceObject presents the services, or methods that are
either used individually or in nested manner to
implement a published service. Making this change in
the DEVS formalism does not change DEVS original
formalism. It just introduces a container that contains
the name of the methods that could be published as a
service. In complex models, it is a common practice to
break the use-case into smaller manageable use-cases

 5

for implementation purposes. Similarly, implementing
complex behaviors and complicated state machines [26]
require the functionality to be organized into methods
that are called in the DEVS δint, δext, δconf functions. The
set V keeps an account of such methods that can be
made available for service publications.

Figure 3: an SOA object capable of DEVS modeling

As shown in Figure 4 below, the XML structure of a
serviceObject is implemented based on the UML
diagram in Figure 3. What is required here is the
addition of code for ‘services’ tag. Once implemented on
SOA, the code with respect to the ‘services’ tag can be
exchanged through a SOAP message and a DEVS model
is made ready for simulation.

Figure 5 shows the DEVSML DTD for extended DEVS
formalism that contains the ‘services’ container.
Similarly, Figure 6 contains the DTD for DEVS coupled
(digraph) model. The coupled model is a hierarchical
model that takes into account of the contained atomic or
coupled models. Also notice the attribute ‘simulator
(devsjava|xdevs)’ in the ATTLIST tag for atomic as
well as coupled element. This is the meta-data that is
stored with every model that is used by server to assign
the appropriate simulator for this model. Components
within a coupled model could be managed by different
simulators. The attribute simulator in the nodes
coupledRef and atomicRef (see Figure 6) defines the
simulator to use. This attribute is generated when de
whole model is integrated in one DEVSML file. Of
course, the simulator must comply with the DEVS
simulation protocol. The authors call for standardization
of both of these DTDs.

<?xml version="1.0" encoding="UTF-8"?>
<xml-body>
<model>
 <atomic>
 <name>Hello</name>
 <params> </params>
 <construct>

 <args> </args>
 <ports>
 <inports>
 <inport>in</inport>
 </inports>
 <outports>
 <outport>out</outport>
 </outports>
 </ports>
 </construct>

 <initialize>
 </initialize>
 . .

 <services>
 <function>
 <access> public </access>
 <return> int </return>
 <inport> in </inport>
 <outport> out </outport>
 <fname> decrement() </fname>
 <logic> </logic>
 </function>

 </services>
 </atomic>
</model>
</xml-body>

Figure 4: Automated XML snippet for a DEVS atomic
model.

<!-- DEVS ATOMIC MODEL -->
<!ENTITY % variable-info
 "name CDATA #REQUIRED
 type CDATA #REQUIRED">
<!ELEMENT atomic
(inputs,outputs,states,ta,deltint,deltext,delt
con,lambda,services?,java-specific?)>
<!ATTLIST atomic
 name ID #REQUIRED
 simulator (devsjava|xdevs) #REQUIRED
 host CDATA #REQUIRED>
<!ELEMENT inputs (port*)>
<!ELEMENT port EMPTY>
<!ATTLIST port
 name CDATA #REQUIRED>
<!ELEMENT states (state*)>
<!ELEMENT state EMPTY>
<!ATTLIST state
 %variable-info;>
<!ELEMENT outputs (port*)>
<!ELEMENT ta (block?)>
<!ELEMENT deltint (block?)>
<!ELEMENT deltext (block?)>
<!ELEMENT deltcon (block?)>
<!ELEMENT lambda (block?)>
<!ELEMENT services (service*)>
<!ELEMENT service (method)>
<!ATTLIST service
 name ID #REQUIRED
 port CDATA #REQUIRED>
<!ELEMENT java-specific (package-
decl,import*,constructor*,method*)>
<!ELEMENT import EMPTY>

Figure 5: DEVS atomic DTD

<!—-DEVS COUPLED MODEL-->
<!ENTITY % connection-info
 "component_from CDATA #REQUIRED
 port_from CDATA #REQUIRED
 component_to CDATA #REQUIRED
 port_to CDATA #REQUIRED">
<!ELEMENT devs (scenario,models)>
<!ELEMENT scenario (coupled)>

 6

<!ELEMENT coupled
(inputs,outputs,components,internal_connections
,external_input_connections,external_output_con
nections,java-source-program)>
<!ATTLIST coupled
 name ID #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #REQUIRED
 host CDATA #REQUIRED>
<!ELEMENT inputs (port*)>
<!ELEMENT port EMPTY>
<!ATTLIST port
 name CDATA #REQUIRED>
<!ELEMENT outputs (port*)>
<!ELEMENT components (coupledRef|atomicRef)*>
<!ELEMENT coupledRef (components?)>
<!ATTLIST coupledRef
 name CDATA #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #IMPLIED
 host CDATA #REQUIRED>
<!ELEMENT atomicRef EMPTY>
<!ATTLIST atomicRef
 name CDATA #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #IMPLIED
 host CDATA #REQUIRED>
<!ELEMENT internal_connections (connection*)>
<!ELEMENT external_input_connections
(connection*)>
<!ELEMENT external_output_connections
(connection*)>
<!ELEMENT connection EMPTY>
<!ATTLIST connection
 %connection-info;>

<!ELEMENT models (model*)>
<!ELEMENT model (java-source-program)>
<!ATTLIST model
 name ID #REQUIRED>

Figure 6: DEVS coupled DTD

6. Web Services Architecture for DEVSML
Figure 7 shows the designed Web Architecture. At
server’s end, there are N simulators registered, the
WSDL files containing the Web services offered and an
Applet for generation and simulation of DEVSML
models that uses these Web services. At the client’s
end, it is possible to use the Applet or an own client
program [22], which makes use of the Web services (in
Figure 7: CLAPP, Client Application).

Registering a simulator means to enable it so that it can
be used according to the defined DEVSML DTDs. This
involves the definition of two additional classes that
implement the interfaces InterfaceXmlAtomic and
InterfaceXmlCoupled (see Figure 7). These classes
must generate XML elements that define the structure
of the specific simulator models according to the atomic
and coupled DTDs, These elements are inputs, outputs,
etc. Efforts are ongoing to develop a template for the
user community to register their simulators via a new
process in order to make the registration process easier.

Once the simulator is registered, the Web services are
available for this simulator. The registry is
recommended, since the clients can use any simulator
registered at the server.

The most important Web services offered in our current
architecture are:

• Convert Java models to DEVSML.
• Convert DEVSML models to Java.
• Integrate coupled and atomic DEVSML

models towards a portable ‘Composite’
Coupled DEVSML file that can be simulated
at any server.

• Validate an existing DEVSML model.
• Simulate a Composite Coupled file at the

server.

Figure 7: Web service Architecture for DEVSML Implementation

 7

Figure 8 shows part of the UML diagram of the Applet
developed. xdevs and devsjava classes are directly
generated from the Web services since we have these
two simulators registered. The rest of the diagram
provides the functionality of the Applet. Providing
complete details is outside the scope of this article and
will be report in our forthcoming publication dedicated
to Server and Client designs. Demonstration of these
web services is available at [22] that is hosted at ACIMS
www.acims.arizona.edu.

Systems M&S based on DEVS theory [1] and web-based
collaborative modeling leading to composite coupled
models based on DEVSML has been attempted for the
Java programming language. In order to solve the same
problem for other programming languages such as C++,
C#, ADA, etc., we can choose among different
alternatives:

• Using JNI. In this case, it is necessary to adapt
each simulator to JNI. Therefore, the models
must be rewritten into Java. The reason behind
this conversion is due to the fact that we need
behavior representation in XML. We do have
cppML, that is C++ Modeling Language in
XML but we want only one behavioral
representation in XML. Our preferred way of
doing it is through JavaML as Java is better
positioned to address the Web Services domain.

• Using another XML representation more
versatile for the behavior of the model. In this
case it is possible to use XML definitions
defined to represent any object oriented
programming language, such as o:XML [23]
or OOPML [24]. This is again a work in
progress.

The disadvantage of using one solution or other resides
in the interoperability between different simulators
executing the same model. Proving interoperability
between simulators is what true transparency is. If all
the simulators are running under JNI, then adapters
must been made in order to change information among
them. The current DEVSML architecture with only one
universal underlying atomic DTD and coupled DTD is
the first step towards interoperable simulators. Defining
a distributed coordinator between these simulators is
the second step. If o:XML or OOPML are used, then it
is not necessary to define JNI simulators or rewrite
models in Java, but what is needed a mechanism to
interoperate between different DEVS simulators. How
to communicate a simulator written in C++ with a
simulator written in Java? Perhaps the solution resides
in the definition of standards for the format of the data
at the syntactic level.

Figure 8: Client side implementation using interfaces.

 8

7. DEVSML Application Development
This section provides information about the client
application that communicates with the server resting at
both ACIMS center and at Spain (redundancy
purposes). The application is made available as an
applet [22] or as a .exe application that is capable of
communicating to the server at client’s end.

The following snapshot shows the java application Ver.
2.0 that demonstrates the following:
1. Contains two simulator operability i.e xDEVS
(Spain) [25] and GenDEVS (ACIMS-USA) [2]
demonstrating validation of DEVSML atomic and
coupled models with same Atomic and Coupled DTD
2. Converts any atomic/coupled model from their
JAVA implementation to DEVSML transformation and
vice-versa
3. Validates any DEVSML model description
4. Integrates any coupled DEVSML description into a
composite DEVSML coupled model ready to be
simulated with corresponding simulator

5. Generation of JAVA code library from a composite
DEVSML coupled model.
6. Out of ten web services in operation, five Web
Services that are publicly offered are:
 a. Convert Java model to DEVSML
 b. Convert DEVSML to java code
 c. Validate the existing DEVSML model
 d. Integrate coupled and atomic DEVSML models
towards a portable 'Composite' Coupled DEVSML file
that is Simulatable at any remote server
 e. Simulates the Composite Coupled file and sends
console messages at Server to Client window giving
evidence of simulation running.
7. Server rests at ACIMS lab that provides these
Services
8. User can select his own Source and Target directories
9. User can choose his chosen implementation i.e. java
code and Simulator compatibility. The Server
application checks for compatibility as well.

Figure 10: Client application snapshot implemented as an applet.

8. Conclusions and Future Work
We have addressed the problem of model
interoperability with a novel approach of developing
DEVSML as the transformation medium towards

composability and dynamic scenario construction. The
composed coupled models are then validated using the
proposed universal atomic and coupled DTDs. The
simulators validated at the server’s end are maintained

 9

centrally such that the efforts of the community can be
brought together through the standardized processes.
Other advantage of using DEVSML as the
communication medium gives the coder the
independence to concentrate on the behavior of the
component in their native languages (C++ and Java). In
addition, it gives them the capability to share and
integrate their models with that of other remote models
and get that integrated validated model back in their
own language. It also gives models the capability to get
simulated with various simulator implementations that
are stored at Server. This information is stored in meta-
data that is contained in every model. Currently, this
capability is meant only for Java but efforts are in
progress to develop the corresponding methodology in
C++ and will be reported in future. The paper also
proposes modification in DEVS formalism towards
making them Service capable such that model
continuity can be exploited towards deploying any
DEVS component as a Service. Related efforts in
distributed simulation that employed concepts like
model-partitioning and automated model-deployment
are other areas that needs some work under DEVSML
implementation. The idea is to have multiple servers
running as a cluster and model being simulated without
any knowledge of simulator coupling at its own end.

References:

[1] Zeigler, B., Kim, T., Praehofer, H., Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press, 2000
[2] ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.shtml Last
accessed Nov 2006
[3] Sarjoughian, H.S., B.P. Zeigler, "DEVS and HLA:
Complimentary Paradigms for M&S?" Transactions of the SCS, (17),
4, pp. 187-197, 2000
[4] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and
Implementation of Distributed Real-Time DEVS/CORBA, IEEE Sys.
Man. Cyber. Conf., Tucson, Oct. 2001.
[5] Wainer, G., Giambiasi, N., Timed Cell-DEVS: modeling and
simulation of cell-spaces”. Invited paper for the book Discrete Event
Modeling & Simulation: Enabling Future Technologies, Springer-
Verlag 2001
[6] Zhang, M., Zeigler, B.P., Hammonds, P., DEVS/RMI-An Auto-
Adaptive and Reconfigurable Distributed Simulation Environment for
Engineering Studies, ITEA Journal, July 2005
[7] XML: http://www.w3.org/XML/
[8] Janousek, V., Polasek, P., Slavicek, P., Towards DEVS Meta
Language, In ISC Proceedings, Zwinjnaarde, BE 2006, p 69-73
ISBN-90-77381-26-0
[9] http://java.sun.com/developer/technicalArticles/WebServices/soa/
[10] Hu X., A Simulation Based Software Development Methodology
for Distributed Real-time Systems, PhD Dissertation, Fall 2003
[11] Fujimoto, R.M., Parallel and Distribution Simulation Systems,
Wiley, 1999
[12] Seo, C., Park, S., Kim, B., Cheon, S., Zeigler, B.P.,
Implementation of Distributed High-performance DEVS Simulation
Framework in the Grid Computing Environment, Advanced
Simulation Technologies conference (ASTC), Arlington, VA, 2004
[13] Cheon, S., Seo, C., Park, S., Zeigler, B.P., Design and
Implementation of Distributed DEVS Simulation in a Peer to Peer
Networked System, Advanced Simulation Technologies Conference,
Arlington, VA, 2004
[14] Kim, K., Kang, W., CORBA-Based, Multi-threaded Distributed
Simulation of Hierarchical DEVS Models: Transforming Model

Structure into a Non-hierarchical One, International Conference on
Computational Science and Its Applications, ICCSA, Italy 2004
[15] Vangheluwe, H., Bolduc, L., Posse, E. DEVS Standardization:
some thoughts, Winter Simulation Conference 2001
[16] Fishwick, P., XML Based Modeling and Simulation Using XML
for Simulation Modeling, Proceedings of the 34th conference on
Winter Simulation; exploring new frontiers, pg. 616-622, 2002
[17] Lara, J., Vangheluwe, H., AToM3 as a Meta-CASE environment
(DFD to SC), 4th International Conference on Enterprise Information
Systems 2002
[18] Badros, G. JavaML: a Markup Language for Java Source Code,
Proceedings of the 9th International World Wide Web Conference on
Computer Networks: the international journal of computer and
telecommunication networking, pages 159-177
[19] Martin, JLR, Mittal, S., Pena, MAL, Cruz, JM., A W3C XML
Schema for DEVS Scenarios, submitted to DEVS Symposium 2006
[20] Yung-Hsim, W., Yao-Chung, L., A Modeling and Simulation
Example Using DEVSW, 2002
[21] WSDL http://www.w3.org/TR/wsdl
[22] DEVSML – A Web Service Demonstration
http://150.135.218.205:8080/devsml/
[23] o:XML: www.o-xml.org
[24] OOPML: http://xml.coverpages.org/oopml.html
[25] XDEVS web page:
http://itis.cesfelipesegundo.com/~jlrisco/xdevs.html
[26] Mittal, S., Mak E., Nutaro, J.J., "DEVS-Based Dynamic Model
Reconfiguration and Simulation Control in the Enhanced DoDAF
Design Process", Journal of Defense Modeling and Simulation
(JDMS), Vol. 3, No. 4

