

Accepted for Publication

Keywords: Behavior Specification, Graphical Modeling,
Model Persistence, Simulation Model Generation.

ABSTRACT

The analysis and design of many contemporary large-scale
and complex systems such as agent based systems can bene-
fit from an environment which can support component-
based hierarchical modeling. To examine these systems via
simulation and in particular in terms of model validation, it
is important to use model repositories. This supports de-
signers to systematically study alternative system structures
and behaviors. The Scalable System Entity Structure Mod-
eler with Complexity Measures (SESM/CM) offers a basis
for modeling modular simulatable and non-simulatable
models with complexity metrics. This SESM/CM is ex-
tended to allow modelers capture and store some aspects of
a system’s behavior. This extended environment allows
transformation of models to partial DEVSJAVA models
which need to be extended for execution in the DEVSJAVA
simulation environment.

1 INTRODUCTION

Architecture of a system is mainly influenced by its re-
quirements and in particular its quality attributes [Bass98].
The quality attributes of a system and software are catego-
rized as runtime (e.g., performance and communication pat-
terns) and non-runtime (e.g., maintainability, availability
and reusability). Generally, it is easier to achieve desired
quality attributes in smaller systems by means of traditional
software or system engineering processes such as design,
coding and testing. But as these systems grow in size and
complexity, many existing modeling approaches in support
of analysis and design become inadequate or impractical.
The structures of such systems can be defined using compo-
sition and specialization techniques. In particular, a system
can be described as a set of atomic and composite compo-

1 Corresponding author.

nents which can be combined using ports and couplings to
form increasingly larger models. To aid the modeling of
large-scale systems, it is important to employ repositories
like Relational Database Management Systems (RDBMS),
since they provide systematic, scalable and efficient me-
dium for storing and accessing models [Sar02, Fu02]. One
of the most important benefits of using a database repository
is its support for reusability. Having a scalable, reusable
model repository further supports simulation and conse-
quently model validation, which is the key in the system de-
velopment life-cycle.

Simulation is an imitation of the operation of a real-
world or imaginary system over time. Simulation modeling
can be used both as an analysis tool for predicting the effect
of the changes to existing systems and/or as a design tool to
predict the performance of a new system under varying cir-
cumstances. In order to validate a system, the modeler needs
to simulate and compare a model and its behavior against a
system under different experimental conditions (subjecting
the model to input scenarios and observing output scenarios
under specific initial conditions). Input and output scenarios
are mainly characterized by the input and output variables,
their data types and their values while model initialization
includes the specification of state of the model, which is
characterized by the initial values of the state variables of
the model. Large-scale hierarchical models can be built by
reusing persistent models. This in turn requires the storage
of structural and behavioral aspects of models in a perma-
nent repository such as database. This storage helps the
modeler to conduct simulation and take steps toward model
validation.

The goal of this paper is to capture the behavioral as-
pects of atomic models and to support generation of their
simulatable counterparts toward simulation validation. This
involves the design and techniques to capture dynamic char-
acteristics of atomic models. This includes representation
and manipulation of input, output and state variables in the
relational databases. To aid the modelers, it is also necessary
to develop an interface to support the capturing of these be-

Discrete-Event Behavioral Modeling in SESM: Software Design and Implementation

Shridhar Bendre & Hessam S. Sarjoughian1
Arizona Center for Integrative Modeling & Simulation

Computer Science and Engineering Department
Fulton School of Engineering

Arizona State University, Tempe, Arizona
{shridhar.bendre | sarjoughian}@asu.edu

havioral aspects of atomic models. Since a model may have
parts that themselves do not qualify as “simulatable mod-
els”, it is important to support representation and storage of
non-simulatable models (NSM) [Sar05, Ben04]. List, bag or
set are examples of non-simulatable model and can be used
as components of simulatable atomic models.

2 BACKGROUND

We use the Scalable Entity Structure Modeler with Com-
plexity Measures (SESM/CM) [Sar02, Fu02, Smo03] as the
underlying modeling environment. SESM/CM is suitable
for developing component-based hierarchical models. It of-
fers a basis for modeling behavioral aspect of atomic models
by providing the structural specification and storage of the
model. This environment shares some basic concepts from
component-based model specification [Boo99], systems
theory [Wym93], and System Entity Structure (SES) [Zei84,
Roz93]. These offer different schemes to organize alterna-
tive model or system structures. The fundamental object of
the SES formalism is an entity (model) which can represent
an object having identification, attached variables and a
range set. This range set is an enumeration of values that the
variable can assume. This entity can be of two types, atomic
entity and composite entity. Atomic entities cannot be bro-
ken down into sub entities, while composite entities are de-
composed into other entities, either atomic or composite.
SES provides three types of relationships among the enti-
ties, namely aspect (alternative representation of the system
or model), decomposition (Part-Whole relationship) and
specialization (Parent-Child relationship).

2.1 System Entity Structure Modeler with Complexity
Metrics

SESM/CM is based on a new approach to modeling large-
scale systems [Sar02]. The approach supports modeling of a
system using three complementary types of models called
Template Model, Instance Template Model, and Instance
Model. The basic approach is component-based modeling
where a system is viewed as a collection of components
which are composed using input and output ports and cou-
plings. A template model specifies atomic and composite
models as components with input and output ports and val-
ues. An atomic template model specification contains state
variables and a name. The components of each of these
three model types are restricted to have the same type – a
template model can have other template models and not
models of instance template or instance models. A compos-
ite template model specification has couplings and a name.
Composite template models are restricted to have atomic
and/or composite template models as children. Furthermore,
the name assigned to atomic and composite models must be
unique such that any composite model can be uniquely iden-
tified within its hierarchical decomposition. A composite

template model is defined to have a hierarchy of length two.
An instance template model is the same as a template
model. This type of model is defined to have a finite hierar-
chy of length greater than two. Furthermore, this model does
not specify multiplicity of a model component within any
composite model – a model can have one to a finite number
of copies of the same instance template model. An instance
model is an instantiation of an instance template model
where the multiplicity of model instances is specified.

A Template Model can be specialized into one or more
specialized components. The ability to specialize comple-
ments composition. Composition and specialization together
support different types of models depending on the intent of
the modeler. These types of models need to be constructed
in three stages - template model, instance template model,
and instance model developments - as described above. A
modeler first creates Template Models, Instance Template
Models, and then Instance Model in a sequential manner. In
the stage of instance model generation, a modeler decides
which specialized model component is to be used. Of
course, it is possible to iterate among these stages. As noted
above, one essential advantage of this modeling approach is
the ability to create alternative models depending on desired
alternative resolutions and aspects.

It has a hybrid client-server type of architecture, which
combines the features of different flavors of client-server
architectures [Fu02]. It is composed of four main
constituents – Client (user interface), Network Environment
(communication medium), Server (modeling engine) and
Database Management System (DBMS).

Figure 1. SESM/CM Client-Server Architecture

DBMS stores the model data in hierarchical manner,

Server initializes and manipulates the model database as per
the users request, Client allows users to display and modify
the models in the database while the Network Environment
acts as a channel between client, server and database.

Client and Server independently initialize and maintain
their connectivity with the database. Client has “Read-only”

access which means it can independently read the model
data from the database while for writing to the database, it
has to communicate with the server which writes the data to
the database. The server has both “Read and write” access
which means it can read and write data from and to the da-
tabase. In this way, SESM/CM allows multiple readers but
only single writer of the data. In this architecture, client and
server are loosely coupled and hence result in better design
and implementation.

3 RELATED WORK

Large scale systems are increasingly developed by using
model-based analysis and design techniques. As these
systems grow in size and complexity, a methodical approach
is required to have a repository, which can provide the
capabilities like usability, scalability, modifiability and
storage of models. Relational database is an appropriate
option for these repositories as it provides functionalities
like creation, modification, storage and most importantly
reuse of the stored models. It offers modular hierarchical
representation of the models in the database by providing
the relationships like composition (Part-Of relationship) and
specialization (IS-A relationship). It allows user to enforce
the constraints on the models stored in the relations set. It
also provides scalability and flexibility by providing the
data independence where data is decoupled from the
application development. And finally, it uses Structured
Query Language (SQL) as an interaction medium, a
standard language for the relational databases; which is
important for application portability.

An approach for modeling a system founded on the
principles of object-orientation and system theory is the
Unified Modeling Language Real-Time (UML-RT) which
extends UML [Boo99, Dou04]. The modeling approach is
appropriate for modeling systems ranging from enterprise
information systems to distributed web-applications to real-
time embedded systems. UML-RT and SESM/CM are
similar in how they represent a system’s structure (i.e.,
component and relationships) as both of them support is-a
and part-of relationships. But they are different as UML-RT
is intended for software specification [Fow99] while
SESM/CM is targeted for representing simulation models. A
major difference that is relevant to this work is how UML
tools and SESM/CM store models. Tools such as Rational
Rose store models as flat files whereas SESM/CM stores
models in a relational database. This allows SESM/CM to
offer better scalability and reusability.

4 MODELING BEHAVIORAL SPECIFICATION
AND SIMULATION

The modeling approach shown in Figure 2 supports model-
ing of a system using SECM/CM template instance tem-
plate, and instance model types [Ben04,Sar05].

Figure 2. Modeling Framework

Model specification defines a system in terms of its
structure and behavior. Structure of the system is defined in
terms of name, ports and couplings while the behavior of the
system is defined in terms of the behavior of atomic models.
Hence, to specify the behavior of the system, it is necessary
to specify the behaviors of all the atomic models inside the
system. The behavior of an atomic model is defined in terms
of dynamic characteristics of the model such as input vari-
ables, output variables, state variables and state transition
functions as shown in Figure 3.

Model Behavior Storage

Databse
Modeler

Command/
Query

SESM Modeling Engine

Inputs Outputs

States

Figure 3. Behavioral features of SESM/CM

Behavior of the model is defined as the change in the state
of the model. Discrete Event System Specification defines
the change in the state of the model as a consequence of
some event occurred to the system or occurred within the
system. These events are mainly categorized into inputs
arrived at the system, outputs sent out from the system and
change in the internal state of the system. Every model
defined in DEVS formalism [Zei03] is provided with input
as well as output ports for the communication with the other
atomic and/or coupled models which are connected to each
other by means of couplings. The inputs and outputs are in
the form of variables which has defined name, data type and
value(s). Every input/output port is associated with zero or
more variables while every input/output variable must be
associated with either input or output port.

State of the system at a particular point of time is
defined in terms of all of the state variables associated to its
atomic models. State variables are associated directly to
atomic model unlike port variables, which are associated to
the model through ports. Similar to port variables, state
variable are also defined in terms of name, data type and

value(s). As coupled model doesn’t have a defined state,
there are no state variables associated with it, while each
atomic model is associated with one or more state variables.
Values of all the state variables collectively define the state
of the model.

In addition to these models, it is also important to
represent non-simulatable models which may be used as
part of atomic models. These models are distinct compared
with the template models since they do not have
input/output ports. Such non-atomic models are referred to
as non-simulatable since their behavior is not time-
dependent. Examples of these models are object-based user
defined complex data structures such as a list or a queue,
which are useful to hold multiple values. As stated above,
input-output-state variables are defined in terms of name,
data type and value(s). The data type of these variables is an
important aspect. This data type can be divided two types;
either primitive data type (supported by the programming
language such as integer, character, string, etc) or non-
simulatable (NSM) models.

4.1 Database Schema for Atomic Model Dynamics

Models developed in SESM/CM are primarily structural.
They are described and stored in a relational database in
terms of structural features of the model components such as
identity (i.e., model name), hierarchy (i.e., decomposition),
input/output interface (i.e., port names) and their creation
time. In order to execute (simulate) these models to observe
their behavior in response to input stimulus, they need to be
extended in terms of behavioral aspects of the model. In par-
ticular, it is important for an atomic model specification to
support modeling of input and output variables, state vari-
ables, and functions. Reusability of structural and behavioral
aspect of these models can be achieved by storing them in a
database [Sar05]. These extensions, in terms of new entities,
relationships and constraints, to support the behavioral as-
pects are shown in Entity-Relationship diagram in Figure 4
[Ben04].

5 GENERATION OF SIMULATION MODELS

Once the model is specified in terms of variables, the speci-
fication of a model needs to be transformed into simulation

code for execution by one or more simulation engines. This
is a two step process as shown in Figure 5.

5.1 Database to XML Transformation

There are various choices for the storage type of the trans-
formed models, but we choose to convert and store them as
a well-formed XML document as XML is considered as the
best option to handle structured or semi-structured
data/documents. The XML document contains the informa-
tion about the structure of the model such as model name,
input port number and names, output port number and
names, information about the sub-components and the cou-
plings between them and behavior of the models in terms of
inputs, outputs, state variables and non-simulatable models.
This will facilitate the component based approach for model
validation.

Figure 4. Partial SESM/CM E-R Diagram

Figure 5: Transformation from SESM/CM to XML to DEVSJAVA

Accepted for Publication

5.2 XML to Java Model Transformation

Once created, these XML models with structural and behav-
ioral capabilities need to be simulated to test their complete-
ness and correctness. To demonstrate these capabilities, we
employed DEVSJAVA [ACIMS04, Sar03, Zei03] which
support execution of models written in the Java Program-
ming language. Therefore, in order to simulate models
stored in SESM, they need to be transformed into Java syn-
tax which can be compiled and executed in DEVSJAVA.
Hence, it is necessary to develop a modeling-to-simulation
mapping to transform atomic, coupled, and non-simulatable
models into forms that can be compiled using the Java com-
piler and executed using the DEVSJAVA simulation engine.

6 SESM/CM DESIGN OVERVIEW

As discussed earlier, SESM/CM uses hybrid architecture as
shown in Figure 1. By design, the SESM/CM system in-
cludes the SESM package, the Network Environment pack-
age, SESM client, and SESM server as shown in Figure 6.

SESM

 Client

send request()
send reply()
receive notification()
receive reply()

 Server

Broadcast()
Request for Reply()
Receive()
Send()

SESM
Query

SESM
Modifier

DBMS Connectivity

Network
Environment

Client

Server

Figure 6. SESM/CM System Components

 The SESM package should serve as an API used to ac-
cess the SESM representation model data stored on the
DBMS. There are three main components in the SESM
package; Connectivity, SESM Query, and SESM Modifier.
The Connectivity component is used to connect to the
DBMS. It handles all the communication between the
SESM system and the DBMS. The SESM Query component
retrieves data from the DBMS using SQL and maps the data
into object-oriented SESM models. The SESM Modifier
component modifies the SESM representation models on
the DBMS. The component translates the requested modifi-
cation into appropriate SQL statements. The SESM Server
extends the Server provided by the Network environment
package. Messages received by the SESM Server are proc-
essed, and modifications are performed accordingly. The
SESM Client utilizes the SESM Query component to re-
trieve and display the SESM representation model visually
on its graphical user interface (GUI). The user also modifies
the model through the SESM clients GUI. The network En-
vironment package manages the communication between

the SESM Client and the SESM Server by providing the
components that can be extended by the SESM Client and
SESM Server.

6.1 USER INTERFACE DESIGN

Graphical User Interface of SESM/CM is also extended to
support the modeler with features to specify the behavioral
aspects of atomic model and to transform the models to
achieve simulation. These extensions involve extensions to
support Non-Simulatable Model Tree (NSM) as shown on
the left-hand side in Figure 7. Also, simulatable model trees
and non-simulatable model tree are separated from each
other. It also supports the creation of new NSM models. A
new pop-up menu is provided for NSM trees non-leaf node,
which allows a user to add new NSM models on a server.
On server, NSM model name is stored in the database along
with the creation time, while the model source code is stored
on the server as a flat file at a specified location.

 Visual model command menu is restructured from the
previous version of modeling environment i.e., SESM/CM.
The rationale for changing this is to keep the consistency
between the System View (i.e., mathematical representation
of model), SESM/CM views/GUI (i.e., graphical or logical
representation of model) and Database (i.e., structural and
relational representation of the model). User interfaces are
provided to capture behavioral aspects. A sample is shown
in figure 7 for “Add Port Variable”. Menu items are added
to support the exporting SESM/CM models to XML and
Java models and to show the structural metrics and behav-
ioral information of the model.

7 CONCLUSION

Modeling and Simulation approach is useful for analysis,
design and development of many types of systems including
agent-based systems. Since there is increasing need for
agent-based systems and their inherent representations as a
collection of objects, the extended SESM/CM environment
supports their analysis and design. Simulation model of a
system can be developed in a systematic fashion to study the
structural and behavioral aspects of the system over time.
For this, modeler needs to specify the model in terms of its
structure and behavior and to make them persistent to
achieve model reusability. This paper has concentrated on
specifying the behavioral aspects of atomic models in terms
of their input, output and state variables and their storage in
the relational database to achieve the reusability and further
transformation of these models into simulation compatible
format. This approach can help with validation of simulation
models.

Accepted for Publication

Figure 7: SESM/CM User Interface Diagram

REFERENCES

[ACIMS04] ACIMS, http://www.acims.arizona.edu/.
[Bass98] Bass, L., Clemens P., Kazman R., Software
Architecture in Practice, The SEI series in Software
Engineering, 1998, Addison-Wesley.
[Ben04] Bendre, S., “Behavioral Model Specification To-
wards Simulation Validation Using Relational Databases,”
Master Thesis, 2004, Computer Science and Engineering
Department, Arizona State University, Tempe, Arizona.
[Boo99] Booch G., Rumbaugh J., Jacobson I., The Unified
Modeling Language Use Guide, 1st Edition, Pearson
Education, 1999.
[Dou04] Douglass, B.P., Real Time UML: Advances in the
UML for Real-Time Systems, 3rd Ed., 2004.
[Fu02] Fu, T. S., “Hierarchical Modeling of Large-Scale
Systems using Relational Databases”, 2002, Electrical and
Computer Engineering Department, University of Arizona,
Tucson, Arizona.
[Roz93] Rozenblit, J.R. and B.P. Zeigler. Representing and
Construction System Specifications Using the System Entity
Structure Concepts, Winter Simulation Conference, 1993,
Los Angeles, CA.
[Sar02] Sarjoughian, H.S., “A Model for Design of Scalable
Modeling of Modular, Hierarchical Systems,” Internal
Report, 2002, Computer Science & Engineering
Deptartment, Arizona State University, Tempe, Arizona.

[Sar03] Sarjoughian, H.S., Singh, R.K, “Building
Simulation Modeling Environments Using Systems Theory
and Software Architecture Principles,” Advanced
Simulation Technology Conference, p. 99-104, April,
Washington DC.
[Sar05] Sarjoughian, H.S., “A Methodology for
Component-based Modeling of Large-scale and Complex
Systems,” 2005, in preparation.
[Smo03] Mohan S., “Measuring Structural Complexities of
Modular Hierarchical Large Scale Models,” 2003,
Computer Science and Engineering Department, Arizona
State University, Tempe, Arizona.
[Wym93] Wymore, W.A., Model-based Systems
Engineering: An Introduction to the Mathematical Theory
of Discrete Systems and to the Tricotyledon Theory of
System Design, 1993, Boca Raton, CRC.
[Zei84] Zeigler, B.P., Multifacetted Modelling And Discrete
Event Simulation, 1984, Academic Press.
[Zei03] Zeigler, B.P. and Sarjoughian H. S., Introduction to
DEVS Modeling and Simulation with JAVA: Developing
Component-based Simulation Models, 2003,
http://acims.eas.asu.edu/PUBLICATIONS/publications.sht
ml.

