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Abstract: A modeling and simulation environment 
supporting scalable network system analysis and design is 
described. The environment, called DEVS/DOC, enables 
simulation modeling of network systems where hardware 
and software layers of the system are modeled separately 
and combined based on the concept of quantum Distributed 
Object Computing. The key benefit of this reengineered 
simulation environment is support for scalability. Of 
particular interest is the ability to evaluate alternative 
network configurations where many software and hardware 
components of a system can be accounted for and analyzed 
simultaneously. A series of simulations are developed to 
show the capabilities of distributed object computing 
modeling and its realization using the DEVSJAVA 
modeling and simulation environment.  
 
Keywords: computer networks, discrete-event system 
specification, distributed object computing, HW/SW, 
performance analysis, scaleable simulation, quantum 
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1 INTRODUCTION 
Numerous simulation modeling frameworks, 

methodologies, and techniques have been proposed for 
designing software or hardware aspects of network systems. 
Some of these simply provide add-on capabilities to handle 
simulation modeling since each generally is devised for 
modeling hardware or software layers of a networked 
system [1][2][3]. In contrast to using ad-hoc means to 
support combined software and hardware simulation 
modeling of networked system, it is important to have a 
methodology that inherently supports hardware/software co-
design. Such a methodology, similar to co-design for 
embedded systems, can have overcome inherent challenges 
in accounting for tradeoffs in network system design. 

Distributed object computing (DOC) [4] provides an 
approach to modeling and simulating distributed object 
computing systems as a set of software components mapped 
onto a set of networked processing nodes. Distributed object 
computing was extended and implemented using the 

discrete event system specification [5] and DEVSJAVA 
environment [6]. It is intended for co-design of networked 
systems. Distributed object computing provides three 
abstractions to model and simulate a system’s software and 
hardware layers and their interactions [7][8][9]. The 
software layer is captured as a distributed cooperative object 
(DCO) model to present interacting software objects, both 
local, to a hardware node or a set of distributed hardware 
nodes. The hardware layer represents a loosely coupled 
network (LCN) model of processing nodes, network gates, 
and interconnecting communications. The distributed DCO 
software assigned to LCN hardware forms an object system 
mapping (OSM). The simulation models of DCO, LCN, and 
OSM component structures and behavior dynamics were 
formally characterized using the DEVS formalism [8][9].  

As a modeling and simulation framework DEVS/DOC, 
and in particular DOC 1.0, was built on top of DEVSJAVA 
2.63. DOC 1.0 supports modeling of distributed network 
systems such as information systems and supply chain 
networks (e.g., see [10][11]). It provides important features 
which can help users build their own simulation models 
using the principle of component-based modeling. It also 
offers a user friendly environment for simulation 
experiments. The visualization and controlled manipulation 
features of simulation execution provide a variety of simple 
to powerful features (e.g., concurrent event handling and 
processing) for extensive simulation studies.  

Recent advances in software design, programming 
languages, and development environments led to 
DEVSJAVA 2.7, a redesign of DEVSJAVA 2.63. The new 
DEVSJAVA environment offers capabilities such as real-
time simulation and powerful data structures, which are key 
for modeling complex structural and behavioral aspects of 
software and hardware network components [6]. These 
capabilities in turn offer important features to be 
incorporated into DOC. For example, one of the main 
differences between DEVSJAVA 2.63 and DEVSJAVA 2.7 
is the use of the Java Collection API. The use of 
DEVSJAVA 2.7, therefore, necessitated redeveloping DOC 
1.0. 



In the remainder of the paper, we will describe DOC 
and its application to analysis of a client/server network 
system. In Section 2, we review the basic distributed object 
computing concepts and some aspects of the DEVSJAVA 
2.7 modeling and simulation environment. In Section 3 we 
highlight the core elements of the DOC 2.0 simulation 
model components. To demonstrate DEVS/DOC 2.0 
capability in terms of scalability, we present an example of a 
simple network consisting of a few to several hundred 
software and hardware components in Section 4. In Section 
5, we discuss future work and present some future research 
directions. 

2 BACKGROUND 

2.1 Distributed Object Computing Approach 
Distributed Object Computing (DOC) is a conceptual 

framework for modeling hardware and software components 
of networked systems. DEVS/DOC is a realization of DOC 
using the DEVSJAVA modeling and simulation 
environment. This environment supports simulation of 
combined software and hardware for structural and 
behavioral networked systems. A DOC model consists of a 
Loosely Coupled Network (LCN), Distributed Cooperative 
Object (DCO), and Object System Mapping (OSM) models. 
An LCN model represents the hardware structure (topology) 
and behavior (interaction) of interconnecting hardware 
entities. A DCO model specifies software components and 
structures. It defines how the DCO software components 
interact both internally and externally (i.e., when executed 
on the distributed LCN hardware components). An OSM 
model specifies precisely how DCO components are to be 
mapped onto LCN hardware components. The separation 
and integration of DCO and LCN are important in enabling 
modelers (analysts and designers) to study (i) alternative 
software designs given some hardware architecture, (ii) 
alternative hardware designs given a collection of 
interacting software components, (iii) or combinations 
thereof. Figure 1 presents an abstract view of the distributed 
object computing framework [8][9]. 

The DOC modeling approach called DEVS/DOC 1.0 
was first developed using the DEVS framework and finally 
realized using the Java technology. The DEVS framework 
enables modular, parallel model execution and thus it offers 
a systematic basis for handling multiple, concurrent events 
as well as capabilities to organize a collection of entities and 
their manipulations [6]. The capabilities offered by 
DEVS/DOC 1.0 template simulation models extend the 
general purpose (core) DEVS atomic and coupled models. 
As shown in Figure 1, software and hardware objects 
belonging to the DCO and LCN layers are synthesized via 
OSM. For example, the swObject model supports handling 
input/output ports and messages offered by atomic models 

(partial class hierarchy of DEVS/DOC 1.0 is shown in 
Figure 2). Similarly, a processor model is defined as a 
coupled model consisting of transport, router, and cpu atomic 
models. Atomic and digraph are elementary DEVS models. 

 

 
 

Figure 1. Distributed Object Computing Approach 
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Figure 2. DEVS/DOC 1.0 Partial Class Hierarchy 

2.2 DEVSJAVA 2.7 Simulation Environment 
Many implementations of the DEVS framework have 

been developed in popular programming languages 
including Java.  The DEVSJAVA 2.7 environment is a new 
generation of DEVS-based modeling and simulation 
environments that separates the modeling and simulation 
engines and the user interface.  This environment offers new 
capabilities not found in DEVSJAVA 2.63 such as model 
type discovery and run-time execution using logical clock or 
wallclock (see [12]). DEVSJAVA 2.7 offers strong 
separation between modeling and simulation engines, which 
is important for supporting distributed simulation using 



alternative technologies such as CORBA [13] and HLA 
[14]. 

One of the key DEVSJAVA APIs is GenCol [15]. Based 
on SDK 1.4 [16], it consists of a set of containers and utility 
classes necessary for all other modules. This API contains 
the base class entity, which serves as the root class for the 
modeling (genDevs.modeling), simulation 
(genDevs.simulation), and visualization (simView) modules 
[15]. In DEVSJAVA 2.7, the modeling module provides 
basic modeling elements including atomic and coupled 
models such as devs and atomic. The devs class extends class 
entity with methods to add input and output ports so that a 
model can send and receive messages—i.e., it supports 
distributed communication. Extending from devs, the atomic 
class provides state assignment and functions to process 
external and internal events. With DEVSJAVA 2.7, all 
atomic models can run as a separate component with 
viewableAtomic and all coupled models can be executed as a 
separate system with viewableDigraph (see Figure 3). The 
other basic modeling elements in the modeling module are 
ports and coupled, which allow coupling of atomic and 
coupled models. 

entity

devsdigraph atomic

viewableAtomicviewableDigraph

 
Figure 3. viewableAtomic and viewableDigraph Classes in 

DEVSJAVA 2.7 
 

Similar to the modeling package, the simulation 
package contains classes that execute the atomic and 
coupled models and thus transmit messages. The classes in 
the simulation package are realizations of the DEVS parallel 
abstract simulator [6]. The atomicSimulator and 
coupledSimulator are two of the key classes for handling the 
timing of atomic and coupled models and their exchange of 
output and input events. The other main package is the 
SimView, which provides GUI services for visualizing 
atomic and coupled models (viewableAtomic and 
viewableCoupled), configuring simulation models, and 
executing and viewing the simulation dynamics.  

An example of an atomic LCN model is called hub. The 
execution speed of the hub can be controlled via the “real 
time factor.” A model component can receive input 
messages on one or all of its input ports (e.g., inLink1) and 

concurrently produce output messages on its output ports 
(e.g., outLink2). The states of the hub atomic model (e.g., 
execution phase (passive) and the duration in which the hub 
stays in phase passive (∞)) can be viewed at run time. 

3 DISTRIBUTED OBJECT COMPUING 
ENVIRONMENT 

In this section, we describe the new DEVS/DOC 
modeling and simulation environment with particular 
emphasis on the details of atomic and coupled DEVSJAVA 
model specifications for software and hardware. We show 
the new DOC model components and their role in 
supporting simulation of relatively large-scale network 
systems (a few thousand hardware and software model 
components) using DEVSJAVA 2.7. 

3.1 DOC 2.0 Software and Hardware Layers 
and Their Mapping 

The Distributed Object Computing part of DOC 2.0 is 
designated for modeling software objects and interaction 
arcs. These software objects form a computational domain. 
A software object contains both attributes (data members) 
and methods (function). The size of a software object is 
defined by the collective memory requirements of these 
attributes and methods. When a software object is invoked, 
the size parameter loads the supporting LCN processor 
memory. Message arcs and invocation arcs are defined as 
software-object interactions. A message arc represents peer-
to-peer exchanges between objects, while the invocation arc 
represents client-server type interactions between two 
software objects. The LCN components model the hardware 
aspect of a network. 

As mentioned above, Object System Mapping plays a 
key role in modeling the behavior or performance of 
distributed object computing systems. It maps the DCO 
software objects onto the LCN nodes so that the abstract 
behavior dynamics of the software architecture are 
constrained by the capacity of resources such as processor 
speed, memory size, and bandwidth. This distributed 
architecture glued by OSM provides flexibility and enables 
users to analyze and design different software on the same 
hardware or different hardware for the same software.  

3.2 New DOC Specification 
The packages of DEVSJAVA 2.7 provide the basic 

capabilities that are used in DOC 2.0. As mentioned earlier, 
since DEVSJAVA 2.7 was completely redesigned, a new 
design for DOC 2.0 became necessary. The atomic models 
in DOC 2.0 are extended from viewableAtomic, which 
supports greater GUI and execution capabilities compared to 
DOC 1.0. Similar to atomic models, coupled models are 
extended from digraphDOC. Coupled models in DOC 2.0 



extend viewableDigraph, which supports system level 
visualization of the simulation models. Also unlike DOC 
1.0, when users apply DOC 2.0 to set up their own modeling 
and simulation system, there is no need to resort to low-
level (customized) programming to visualize simulation 
executions. That is, as long as the application model extends 
from the digraphDOC class, the simulation engine simView 
handles the entire execution of the simulation. 

 
 
Figure 4. Application Domain Modeling Using DEVS/DOC 
 

The LCN and DCO atomic models in DOC 2.0 extend 
from viewableAtomic. These models therefore allow 
visualization of hardware and software models. DOC 2.0 
supports coupled models at the hardware and software 
levels, and their mapping at the OSM level. A simple 
example of a coupled model in DOC 2.0 is the processor 
model. It contains cpu, router, and transport atomic model 
components. 

3.3 Application Layer 
DOC 2.0 provides users with flexible facilities and 

methods to set up their own modeling and simulation 
applications. Figure 4 shows the relationships between DOC 
2.0, DEVSJAVA 2.7 and user defined applications. In the 
application layer, hardware or software components can be 
defined as descendents of viewableAtomic (vA) and coupled 
models can be defined as descendents of viewableDigraph 
(vD). A system which contains several coupled models can 
be defined as digraphDOC (see Table 1).  

As a modeling and simulation system, DOC 2.0 
provides a mechanism to control and monitor the simulation 
process and to collect and analyze output data from the 
simulation process using the concept of experimental frame 
[4]. Traditionally, an experimental frame includes three 
components: generator, acceptor, and transducer. The 
generator stimulates the system under investigation, the 
acceptor monitors an experiment to see the desired 
conditions are met, and the transducer observes and analyzes 
the system outputs. 

With the help of viewableAtomic in DEVSJAVA 2.7, 
DOC 2.0 sets up the experimental frame with two classes, 

acceptor and transducer. The acceptor can also stimulate the 
system by sending fire messages.  

For an atomic or a simple coupled model, one can 
define a transducer to observe simulations. However, for 
large simulation models, multiple transducers are needed to 
handle different parts of simulations separately. DOC 2.0 
provides the transd_tuples class to collect and analyze the 
data from other transducers (see Table 1).  

4 A NETWORK SYSTEM EXAMPLE 
As a layered, distributed framework, DOC 2.0 supports 

study of hardware/software co-design. As alluded to earlier, 
this environment is particularly useful for analysis and 
design of concurrent hardware and software behaviors. 
DOC 2.0 extends the concept of co-design system 
development from the execution of one or more processes 
on a single device (embedded system) to the interdependent 
execution of many processes running on multiple, 
distributed, and networked heterogeneous devices (system 
of systems). The LCN, DCO, and OSM building blocks 
equip the DOC 2.0 environment with important flexibility 
when used as a toolkit for studying distributed systems. 
Next, we illustrate the key role of separation of software and 
hardware layer modeling using two client/server system 
configurations. 

4.1 Simulation Experiment Set-up 
As we discussed above, this paper's goal is to show the 

scalability of DEVS/DOC 2.0. This environment supports 
development of large-scale simulation experiments for 
studying client/server network protocols. A client/server 
application executing over a network requires a server 
software component receiving requests from one or many 
client software components for processing executions over a 
set of hardware components. 

A model of a single-client/server network consists of 
three hardware components (two processors and one link) 
and two software components. A two-client/server network 
model has an additional pair of processor and software 
simulation model components (see Table 1 and Figure 5).  

An N-client/server model can be generalized—a model 
needs to have additional processors, software objects, and 
links (see Table 2 for the LCN, DCO, and OSM simulation 
model components). Each client executes its methods, sends 
requests (messages) to the server, and receives processed 
requests (messages) after some time period. Partial 
specifications for the hub ethernet, processor, software, and 
acceptor simulation models are given in Table 3.  

  



Table 1. Two-Client/Server Network Components 
 

 
Table 2. DOC Simulation Model Components in the N-Client/Server Network System 
 

LCN Layer DCO Layer OSM 
N processors (Proc-1, …, 

Proc-n) 
1 link (Link) N-client (Client-1,…, Client-n) 1 server (server) each software object is 

assigned to a processor 
 

 
 

Figure 5. System Decomposition of a Two-Client/Server Network 
  

It should be noted that for a given network topology, 
multiple links between the clients and server may be used. 
However, given our choice of the MAC (media access 
control) protocol and the purpose of these experiments, we 
have used one link as an abstraction of multiple links. 

To study behavior of a network system via simulation, 
it is important to design experiments. For example, as 
shown in Figure 5, there are two transducers where one 
monitors a link and another monitors a processor. Similarly, 
there are transducers to monitor the software objects and 
their message exchanges (see Figure 5). To control the 

execution of the model, an acceptor is defined which in part 
defines the start and termination of a simulation scenario. 

The simulation scenario considers each client to have 
three tasks to perform, two of which can be processed by the 
client itself (i.e., using its own designated processor) and 
one sent to the server (i.e., processor assigned to the server) 
via the link. Once the server receives a task from a client, 
the server processor begins to process the task and sends the 
completed task back to the requesting client through the 
link. 

Application objects 1 server 2 clients 1 link 3 network 
interfaces 

3 processors 9 transducers 1 acceptor 

class swObject link_ethernet hub_link processor transducer acceptor DOC 
package DCO LCN Experiment Components 

class vA vD vA DEVS 
package simview 



 

4.2 Performance Analysis 
The model and interaction described above are 

straightforward for a simple network (i.e., one that has a 
small number of hardware and software components and 
interactions). However, as the number of components 
increases, the dynamics of the model quickly become 
difficult to predict via direct extrapolation from small-scale 
simulation models. 

The client/server models briefly described above can be 
studied in terms of their components. For example, we can 
collect data (e.g., collision number, successful 
transmissions, and bandwidth utilization) for the link. Each 
experiment has an observation time during which data can 
be collected. Using the DEVS/DOC interface, users can 
change the execution speed via the simulator’s real-time 
factor—the simulation ‘speed up’ or ‘slow down’ rate can 
be adjusted in terms of the simulator’s real-time clock. The 
observation time needs to be carefully selected. The 
simulation observation time needs to be greater than the 
time required for the simulation models to satisfy some 
criteria. For example, a suitable criterion is to have the 
observation time be greater than the time it takes for all the 
software objects (clients and the server) to complete their 
activities. 

Table 3. Selected Hardware, Software, and 
Experimentation Components 

Attribute Value Unit 
ethernet speed 106 bit/sec 
processor  
internal  
bandwidth 

infinity bit/sec 

H
ub

 E
th

er
ne

t 

buffer size infinity bit 

Attribute Value Unit 
cpu speed 108 operations/sec 
cpu memory size 64*106 bytes/sec 
maximum packet size 31*103 bit 
processor internal 
bandwidth 

infinity bits/sec 

processor network 
interface speed 

2*109 bits/sec 

buffer size infinity bit 

P
ro

ce
ss

or
 

packet header size 20 byte 

Attribute Value Unit 
size 2*106 byte 
self-starting duty  
cycle 

infinity sec 

S
of

tw
ar

e 

thread mode none/method  

Attribute Value Unit 
time for discovering 
LCN topology 

1 sec 

A
cc

ep
to

r 

number of times to 
invoke task 

1 NA 

 

The performance of the network system is affected by 
many factors. In this paper, the transmission “back off time” 
is selected to demonstrate the role of DOC and performance 
analysis of network systems. As discussed above, both 
clients and server need to send packets (messages) into link 
through the hub ethernet model. These clients and server 
can be viewed as nodes in the network system. The number 
of the (client and server) nodes is always greater than one in 
order to study different “back off” schemes in the presence 
of packet collisions in the link (e.g., one client and the 
server simultaneously send messages to the link). Usually, 
after the first collision, each node waits either 0 or 1 time 
units before trying again. If two nodes collide and each node 
picks the same random wait time, they will collide again. 
After the second collision, each node picks 0, 1, 2, or 3 at 
random and waits that number of time units before sending 
its packet to the link.  If a third collision occurs with 0.25 
probability, then the number of time units for a node to wait 
is chosen at random from the interval 0 to 23 - 1. In general, 
after m collisions, a random number between 0 and 2m - 1 is 
selected. Figure 6(a) shows the growth in number of 
collisions given the “random back off” scheme [17] for 2 to 
1000 nodes. This is expected since with more and more 
nodes, the chance of collision increases exponentially. The 
results shown in Figure 6 are average values from 10 
simulations runs. 

Given the flexibility to manipulate software and 
hardware layers of a network system, we use a different hub 
ethernet model, which can be easily composed with the 
software components from the previous experiment. One of 
the important attributes of the hub ethernet model is the 
“back off time,” which can be calculated using the 
traditional scheme discussed above, or can be fixed to a 
series of constants. For example, if there are four nodes in 
the network, after the first collision, their back off time can 
be 1, 2, 3, or 4 time units where each of the client and server 
nodes selects one of them to reschedule its packet 
retransmission. We call this “one by one back off” scheme. 

It is natural to suppose this one by one back off scheme 
will reduce the number of collisions or eliminate them 
altogether. However, as shown in Figure 6(a), the one by 
one back off scheme leads to more collisions. The important 
point here is the relationship between the Server Processing 
Time (SPT) and one back off time unit (BTU). BTU is the 
difference between retransmission times of two clients. The 
reason the one by one back off time seems counterintuitive 
is that the SPT is bigger than BTU so the server’s input to 
the link interrupts the clients’ scheduled back off sequences 
which results in more collisions.  

Before we discuss the details of analysis, we define two 
types of one by one back off schemes, one called A and the 
other B. Type A assumes SPT is less than BTU and Type B 
assumes the inverse. 



Referring to Figure 7, at time ti, 5 clients are 
transmitting their packets to the link—that is, five events are 
generated concurrently at time ti (see Figure 7(d)). Because 
all of these packets go to the link, this results in collisions at 
the link. After the collision at time ti, the retransmission of 
clients number 1, 2, 3, 4, and 5 are scheduled at ti+1, ti+2, ti+3, 
ti+4, ti+5 times as shown in Figure 7(a). The server needs Δt 
time (one SPT) to process and send the processed packet 
back. Here, we define Δt = 1.5 * (ti+1 - ti) such that SPT is 
bigger than BTU (Figure 7 (b))—this is Type B given 
above. Figure 7(c) shows that after ti+2, two packets are 
transmitted via the link, which results in invoking two tasks 
in the server.  

 
(a). scale and no. of collisions 

 

 
(b). scale and bandwidth utilization 

 

 
         (c). scale and simulation execution time  
 

    Figure 6. Performance Analysis for Back Off Schemes 
 

At time ti+1+ Δt, the first task in the server is completed 
and is sent to the link. Then, client 3 sends its packet to the 
server and there are two tasks in the server again, (see 
Figure 7(c)). Since Δt is defined as 1.5 BTU, the task for 
client 2 in the server is completed and sent back at time ti+4. 
At the same time, client 4 is also retransmitting its packet 
followed by the second collision at ti+4. This forces both the 
server and client 4 to back off. The server will back off one-
third of Δt, and client 4 still needs to back off 4 BTU. This 
results in client 4 scheduling retransmission at time ti+8. We 
define the server’s back off time to be fixed—i.e., one-third 
of the server processing time, Δt/3. So, at time of ti+4+ Δt/3, 
the server makes its retransmission and the packet for client 
2 is sent back. At ti+5, client 5 makes its retransmission and 
again there are two tasks in the server. These two tasks will 
be completed and sent back at times ti+6, and ti+7. 

As stated above, client 4 will try retransmission at time 
ti+8. At this time, there are no tasks in the server so the task 
for client 4 will be completed and sent back at ti+8 + Δt. In 
the above scenario, there are two collisions including one 
caused by the interruption from the server to the clients that 
occurred at ti+4. However, this does not mean that constant 
back off time will always lead to more collisions. The 
relationship between SPT and BTU determines whether or 
not the constant back off sequence will be interrupted or not. 
As shown in Figure 8, if the Δt (SPT) is smaller than BTU, 
then before the next retransmission happens, the server has 
already sent the packet back to the client—i.e., there will be 
no collision due to interruption from server to the client.  



 

 
Figure 7. Type A One by One Back Off Scheme 

 
In our experiments, the SPT is set to 4*10-4 seconds. In 

the one by one back off scheme A, the BTU is set to 1*10-4 
seconds, and in the one by one back off scheme B, BTU is 
1*10-2 seconds. In our implementation of the random back 
off, the continuous collision number (the number of 
collisions that happen between two successful 
transmissions) is less than 10 and the BTU is chosen by the 
algorithm described above, usually with some constant 
adjustment (i.e., between 1*10-6 seconds and 1*10-5 

seconds). That is, before the server is able to complete and 
send the first task it has received, more tasks are sent to the 
server. Also, after the first collision happens, the interval for 
the retransmission is smaller. Therefore, the chance for the 
collision becomes smaller and also raises the bandwidth 
utilization (the bandwidth usage in the unit time) as shown 
in Figure 6(b).  

However, in order to control exponential growth of the 
random back off scheme waiting time, the adjustment period 
will be kept constant (i.e., the waiting time remains between 
1*10-4 and 9*10-4 seconds) once the number of continuous 
collisions is greater than 10 [7]. This technique makes the 
random back off BTU close to the SPT. The result is 
increased number of collisions which is also similar to the 
one by one back off scheme A (see Figure 6(a)).  

One additional observation to be made is on the 
relationship between the number of collisions and 
bandwidth utilization. With the number of collisions in the 
random back off greater than 10, the total waiting time 
between two successful transmissions is still shorter than in 

the one by one back off scheme A. This explains why the 
random back off bandwidth utilization is always the best 
among the three back off schemes (see Figure 6(b)). 
Similarly, the simulation time for random back off is always 
the shortest (see Figure 6(c)). 

 
Figure 8. Type B One by One Back Off Scheme (See 

Legend in Figure 7) 
 

Waiting times between two successful transmissions 
can be described in terms of RTWT (random back off total 
waiting time), ATWT (one by one back off scheme A 
waiting time), rwt (random back off single collision back off 
waiting time), and awt (one by one back off scheme A 
single collision back off waiting time). Given n as the 
number of collisions, we can derive the following 
relationships which state that the waiting time for random 
back off is less than the waiting time for the one by one 
back off scheme A. Given: 
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We chose six model configurations based on the 

number of nodes (i.e., 3, 200, 400, 600, 800, and 1000 node 
network models). These configurations allow us to study 
how software and hardware aspects of a network system 
affect one another. For example, for a configuration with 3 
nodes, the one by one back off scheme A has only one 
collision. More generally, the key properties (collisions, 
bandwidth utilization, total simulation time) of one by one 
back off schemes A and B and the random back off can be 
studies systematically under different hardware and 
software settings as described above. In particular, we can 
determine that the one by one back off scheme B has a 
smaller number of collisions because SPT is less than BTU. 
Similarly, we can examine why the Ethernet busy time and 
simulation time are always longer for random back off time 
scheme B as compared with random back off time scheme 
A and random back off. 

5 RELATED WORK 
There are a variety of simulation environments that 

support modeling of computer networks. Well-known 
environments for simulation—specialized for computer 
networks—include NS-2 (Network Simulator [2][18]), 
GloMoSim (Global Mobile Information Systems Simulation 
[19]), and TeD (Telecommunications Description Language 
[20]). An early modeling environment that preceded these is 
called REAL [2]. This was a popular computer network 
simulator providing around 30 modules (written in C) 
capturing details of several well-known flow control 
protocols (e.g., TCP) and other scheduling disciplines (e.g., 
Fair Queuing and Hierarchical Round Robin). Since REAL 
was developed solely for traditional wired networks, the 
Defense Advanced Research Projects Agency sponsored 
development of NS-2 to handle more complex network 
systems [2].  

With support for customizing existing models (e.g., 
unicast routing, multicast routing, mobile networking, and 
satellite networking), NS-2 has become popular and to some 
extent is being used for defining customized network 
models. However, since there is strong dependency among 
some of the NS modules, it can be challenging to model 
new protocols or to make changes to existing protocol 
models. That is, given its complexity and low-level detailed 
models, it is necessary to have in-depth knowledge of NS-2 
for serious simulation [2]. Furthermore, NS-2 is not 
intended for disciplined integration of software and 
hardware simulation modeling. It primarily supports 
simulating software communication protocols for network 

devices instead of simulating a set of software applications 
distributed across processors and network devices.   

DEVS/DOC is similar to other environments such as 
NS-2 and provides modelers with ready to use hardware 
modules such as cpu, router, and link. However, unlike NS-
2 and others such as OpNet, it provides greater flexibility 
and simplicity for creating customized hardware modules as 
well as software modules and composing them within a 
well-defined simulation modeling framework. That is, 
unlike DEVS/DOC, the NS-2 environment does not support 
distinct software and hardware modeling as layers or their 
composition. Instead, NS-2 supports very detailed, fine 
grain modeling of protocols rather than quantum level 
modeling.  

From a usability aspect, NS-2, which is a Unix-based 
environment, does not offer a user friendly simulation 
environment. Consequently, the use of NS-2 can require 
additional time and effort for developing models that are not 
already available. For example, direct run-time control of 
simulation offers important aid to modelers in conducting 
detailed analysis of simulation execution rather than relying 
solely on data (simulation logs). The comparison of NS-2 
and DEVS/DOC indicates the latter to be more suitable for 
system-level network simulations and experimentations 
with user friendly interfaces and popular integrated object-
oriented development environments. 

6 FUTURE WORK 
The distributed object computing approach is important 

for characterizing network systems separately in terms of 
software and hardware layers. The new DEVS/DOC is an 
environment that supports experimenting with system 
specifications where alternative software and hardware 
designs can be varied and integrated in a well-defined 
fashion.  Given the generic distributed object computing 
framework and discrete-event system specification, 
DEVS/DOC offers a basis for modeling network-based 
systems where it is important to analyze and design a 
system’s conceptual architecture not separately from 
software or hardware points of view, but instead by 
accounting for total software and hardware simultaneously. 
Therefore, DEVS/DOC offers a sound framework for 
important domains including sensor networks, mission 
training systems, and supply-chain networks. Applications 
of interest might include enterprise systems where it is 
necessary to develop architectural designs across many 
hundreds of (hardware and software) computational nodes.  

Another area of interest is to use DEVS/DOC 
simulation models with physical systems. This can lead to 
important capabilities where a portion of a network system 
executing on a physical computer network can be embedded 
inside a large-scale simulation model. That is, the 



 

environment can support physical hardware with simulated 
software or vice versa where software tools are executed on 
simulated hardware. This capability enables mixed logical 
and real-time execution of simulated and physical software 
and hardware components. For example, the conceptual and 
system-level design of a network of many satellites orbiting 
the earth can be simulated with a few actual satellites, with 
the remaining ones being simulated. Finally, large-scale, 
complex application of DEVS/DOC requires execution of 
DEVS/DOC in a distributed setting such as a service-
oriented architecture. 
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