
* To whom all correspondences should be directed to.

Discrete-Event Simulation of Network Systems Using Distributed Object Computing

Weilong Hu

Arizona Center for Integrative M&S
Computer Science & Engineering Dept.

Fulton School of Engineering
Arizona State University, Tempe, Arizona, 85281-8809

Email: weilong.hu@asu.edu
http://www.acims.arizona.edu

Hessam S. Sarjoughian*

Arizona Center for Integrative M&S
Computer Science & Engineering Dept.

Fulton School of Engineering
Arizona State University, Tempe, Arizona, 85281-8809

Email: sarjoughian@asu.edu
http://www.acims.arizona.edu

Abstract: A modeling and simulation environment
supporting scalable network system analysis and design is
described. The environment, called DEVS/DOC, enables
simulation modeling of network systems where hardware
and software layers of the system are modeled separately
and combined based on the concept of quantum Distributed
Object Computing. The key benefit of this reengineered
simulation environment is support for scalability. Of
particular interest is the ability to evaluate alternative
network configurations where many software and hardware
components of a system can be accounted for and analyzed
simultaneously. A series of simulations are developed to
show the capabilities of distributed object computing
modeling and its realization using the DEVSJAVA
modeling and simulation environment.

Keywords: computer networks, discrete-event system
specification, distributed object computing, HW/SW,
performance analysis, scaleable simulation, quantum
modeling.

1 INTRODUCTION
Numerous simulation modeling frameworks,

methodologies, and techniques have been proposed for
designing software or hardware aspects of network systems.
Some of these simply provide add-on capabilities to handle
simulation modeling since each generally is devised for
modeling hardware or software layers of a networked
system [1][2][3]. In contrast to using ad-hoc means to
support combined software and hardware simulation
modeling of networked system, it is important to have a
methodology that inherently supports hardware/software co-
design. Such a methodology, similar to co-design for
embedded systems, can have overcome inherent challenges
in accounting for tradeoffs in network system design.

Distributed object computing (DOC) [4] provides an
approach to modeling and simulating distributed object
computing systems as a set of software components mapped
onto a set of networked processing nodes. Distributed object
computing was extended and implemented using the

discrete event system specification [5] and DEVSJAVA
environment [6]. It is intended for co-design of networked
systems. Distributed object computing provides three
abstractions to model and simulate a system’s software and
hardware layers and their interactions [7][8][9]. The
software layer is captured as a distributed cooperative object
(DCO) model to present interacting software objects, both
local, to a hardware node or a set of distributed hardware
nodes. The hardware layer represents a loosely coupled
network (LCN) model of processing nodes, network gates,
and interconnecting communications. The distributed DCO
software assigned to LCN hardware forms an object system
mapping (OSM). The simulation models of DCO, LCN, and
OSM component structures and behavior dynamics were
formally characterized using the DEVS formalism [8][9].

As a modeling and simulation framework DEVS/DOC,
and in particular DOC 1.0, was built on top of DEVSJAVA
2.63. DOC 1.0 supports modeling of distributed network
systems such as information systems and supply chain
networks (e.g., see [10][11]). It provides important features
which can help users build their own simulation models
using the principle of component-based modeling. It also
offers a user friendly environment for simulation
experiments. The visualization and controlled manipulation
features of simulation execution provide a variety of simple
to powerful features (e.g., concurrent event handling and
processing) for extensive simulation studies.

Recent advances in software design, programming
languages, and development environments led to
DEVSJAVA 2.7, a redesign of DEVSJAVA 2.63. The new
DEVSJAVA environment offers capabilities such as real-
time simulation and powerful data structures, which are key
for modeling complex structural and behavioral aspects of
software and hardware network components [6]. These
capabilities in turn offer important features to be
incorporated into DOC. For example, one of the main
differences between DEVSJAVA 2.63 and DEVSJAVA 2.7
is the use of the Java Collection API. The use of
DEVSJAVA 2.7, therefore, necessitated redeveloping DOC
1.0.

In the remainder of the paper, we will describe DOC
and its application to analysis of a client/server network
system. In Section 2, we review the basic distributed object
computing concepts and some aspects of the DEVSJAVA
2.7 modeling and simulation environment. In Section 3 we
highlight the core elements of the DOC 2.0 simulation
model components. To demonstrate DEVS/DOC 2.0
capability in terms of scalability, we present an example of a
simple network consisting of a few to several hundred
software and hardware components in Section 4. In Section
5, we discuss future work and present some future research
directions.

2 BACKGROUND

2.1 Distributed Object Computing Approach
Distributed Object Computing (DOC) is a conceptual

framework for modeling hardware and software components
of networked systems. DEVS/DOC is a realization of DOC
using the DEVSJAVA modeling and simulation
environment. This environment supports simulation of
combined software and hardware for structural and
behavioral networked systems. A DOC model consists of a
Loosely Coupled Network (LCN), Distributed Cooperative
Object (DCO), and Object System Mapping (OSM) models.
An LCN model represents the hardware structure (topology)
and behavior (interaction) of interconnecting hardware
entities. A DCO model specifies software components and
structures. It defines how the DCO software components
interact both internally and externally (i.e., when executed
on the distributed LCN hardware components). An OSM
model specifies precisely how DCO components are to be
mapped onto LCN hardware components. The separation
and integration of DCO and LCN are important in enabling
modelers (analysts and designers) to study (i) alternative
software designs given some hardware architecture, (ii)
alternative hardware designs given a collection of
interacting software components, (iii) or combinations
thereof. Figure 1 presents an abstract view of the distributed
object computing framework [8][9].

The DOC modeling approach called DEVS/DOC 1.0
was first developed using the DEVS framework and finally
realized using the Java technology. The DEVS framework
enables modular, parallel model execution and thus it offers
a systematic basis for handling multiple, concurrent events
as well as capabilities to organize a collection of entities and
their manipulations [6]. The capabilities offered by
DEVS/DOC 1.0 template simulation models extend the
general purpose (core) DEVS atomic and coupled models.
As shown in Figure 1, software and hardware objects
belonging to the DCO and LCN layers are synthesized via
OSM. For example, the swObject model supports handling
input/output ports and messages offered by atomic models

(partial class hierarchy of DEVS/DOC 1.0 is shown in
Figure 2). Similarly, a processor model is defined as a
coupled model consisting of transport, router, and cpu atomic
models. Atomic and digraph are elementary DEVS models.

Figure 1. Distributed Object Computing Approach

atomic digraph

digraphDOCprocessor

swObject

transport

devs

entity
 DEVSJAVA 2.63

Figure 2. DEVS/DOC 1.0 Partial Class Hierarchy

2.2 DEVSJAVA 2.7 Simulation Environment
Many implementations of the DEVS framework have

been developed in popular programming languages
including Java. The DEVSJAVA 2.7 environment is a new
generation of DEVS-based modeling and simulation
environments that separates the modeling and simulation
engines and the user interface. This environment offers new
capabilities not found in DEVSJAVA 2.63 such as model
type discovery and run-time execution using logical clock or
wallclock (see [12]). DEVSJAVA 2.7 offers strong
separation between modeling and simulation engines, which
is important for supporting distributed simulation using

alternative technologies such as CORBA [13] and HLA
[14].

One of the key DEVSJAVA APIs is GenCol [15]. Based
on SDK 1.4 [16], it consists of a set of containers and utility
classes necessary for all other modules. This API contains
the base class entity, which serves as the root class for the
modeling (genDevs.modeling), simulation
(genDevs.simulation), and visualization (simView) modules
[15]. In DEVSJAVA 2.7, the modeling module provides
basic modeling elements including atomic and coupled
models such as devs and atomic. The devs class extends class
entity with methods to add input and output ports so that a
model can send and receive messages—i.e., it supports
distributed communication. Extending from devs, the atomic
class provides state assignment and functions to process
external and internal events. With DEVSJAVA 2.7, all
atomic models can run as a separate component with
viewableAtomic and all coupled models can be executed as a
separate system with viewableDigraph (see Figure 3). The
other basic modeling elements in the modeling module are
ports and coupled, which allow coupling of atomic and
coupled models.

entity

devsdigraph atomic

viewableAtomicviewableDigraph

Figure 3. viewableAtomic and viewableDigraph Classes in

DEVSJAVA 2.7

Similar to the modeling package, the simulation
package contains classes that execute the atomic and
coupled models and thus transmit messages. The classes in
the simulation package are realizations of the DEVS parallel
abstract simulator [6]. The atomicSimulator and
coupledSimulator are two of the key classes for handling the
timing of atomic and coupled models and their exchange of
output and input events. The other main package is the
SimView, which provides GUI services for visualizing
atomic and coupled models (viewableAtomic and
viewableCoupled), configuring simulation models, and
executing and viewing the simulation dynamics.

An example of an atomic LCN model is called hub. The
execution speed of the hub can be controlled via the “real
time factor.” A model component can receive input
messages on one or all of its input ports (e.g., inLink1) and

concurrently produce output messages on its output ports
(e.g., outLink2). The states of the hub atomic model (e.g.,
execution phase (passive) and the duration in which the hub
stays in phase passive (∞)) can be viewed at run time.

3 DISTRIBUTED OBJECT COMPUING
ENVIRONMENT

In this section, we describe the new DEVS/DOC
modeling and simulation environment with particular
emphasis on the details of atomic and coupled DEVSJAVA
model specifications for software and hardware. We show
the new DOC model components and their role in
supporting simulation of relatively large-scale network
systems (a few thousand hardware and software model
components) using DEVSJAVA 2.7.

3.1 DOC 2.0 Software and Hardware Layers
and Their Mapping

The Distributed Object Computing part of DOC 2.0 is
designated for modeling software objects and interaction
arcs. These software objects form a computational domain.
A software object contains both attributes (data members)
and methods (function). The size of a software object is
defined by the collective memory requirements of these
attributes and methods. When a software object is invoked,
the size parameter loads the supporting LCN processor
memory. Message arcs and invocation arcs are defined as
software-object interactions. A message arc represents peer-
to-peer exchanges between objects, while the invocation arc
represents client-server type interactions between two
software objects. The LCN components model the hardware
aspect of a network.

As mentioned above, Object System Mapping plays a
key role in modeling the behavior or performance of
distributed object computing systems. It maps the DCO
software objects onto the LCN nodes so that the abstract
behavior dynamics of the software architecture are
constrained by the capacity of resources such as processor
speed, memory size, and bandwidth. This distributed
architecture glued by OSM provides flexibility and enables
users to analyze and design different software on the same
hardware or different hardware for the same software.

3.2 New DOC Specification
The packages of DEVSJAVA 2.7 provide the basic

capabilities that are used in DOC 2.0. As mentioned earlier,
since DEVSJAVA 2.7 was completely redesigned, a new
design for DOC 2.0 became necessary. The atomic models
in DOC 2.0 are extended from viewableAtomic, which
supports greater GUI and execution capabilities compared to
DOC 1.0. Similar to atomic models, coupled models are
extended from digraphDOC. Coupled models in DOC 2.0

extend viewableDigraph, which supports system level
visualization of the simulation models. Also unlike DOC
1.0, when users apply DOC 2.0 to set up their own modeling
and simulation system, there is no need to resort to low-
level (customized) programming to visualize simulation
executions. That is, as long as the application model extends
from the digraphDOC class, the simulation engine simView
handles the entire execution of the simulation.

Figure 4. Application Domain Modeling Using DEVS/DOC

The LCN and DCO atomic models in DOC 2.0 extend
from viewableAtomic. These models therefore allow
visualization of hardware and software models. DOC 2.0
supports coupled models at the hardware and software
levels, and their mapping at the OSM level. A simple
example of a coupled model in DOC 2.0 is the processor
model. It contains cpu, router, and transport atomic model
components.

3.3 Application Layer
DOC 2.0 provides users with flexible facilities and

methods to set up their own modeling and simulation
applications. Figure 4 shows the relationships between DOC
2.0, DEVSJAVA 2.7 and user defined applications. In the
application layer, hardware or software components can be
defined as descendents of viewableAtomic (vA) and coupled
models can be defined as descendents of viewableDigraph
(vD). A system which contains several coupled models can
be defined as digraphDOC (see Table 1).

As a modeling and simulation system, DOC 2.0
provides a mechanism to control and monitor the simulation
process and to collect and analyze output data from the
simulation process using the concept of experimental frame
[4]. Traditionally, an experimental frame includes three
components: generator, acceptor, and transducer. The
generator stimulates the system under investigation, the
acceptor monitors an experiment to see the desired
conditions are met, and the transducer observes and analyzes
the system outputs.

With the help of viewableAtomic in DEVSJAVA 2.7,
DOC 2.0 sets up the experimental frame with two classes,

acceptor and transducer. The acceptor can also stimulate the
system by sending fire messages.

For an atomic or a simple coupled model, one can
define a transducer to observe simulations. However, for
large simulation models, multiple transducers are needed to
handle different parts of simulations separately. DOC 2.0
provides the transd_tuples class to collect and analyze the
data from other transducers (see Table 1).

4 A NETWORK SYSTEM EXAMPLE
As a layered, distributed framework, DOC 2.0 supports

study of hardware/software co-design. As alluded to earlier,
this environment is particularly useful for analysis and
design of concurrent hardware and software behaviors.
DOC 2.0 extends the concept of co-design system
development from the execution of one or more processes
on a single device (embedded system) to the interdependent
execution of many processes running on multiple,
distributed, and networked heterogeneous devices (system
of systems). The LCN, DCO, and OSM building blocks
equip the DOC 2.0 environment with important flexibility
when used as a toolkit for studying distributed systems.
Next, we illustrate the key role of separation of software and
hardware layer modeling using two client/server system
configurations.

4.1 Simulation Experiment Set-up
As we discussed above, this paper's goal is to show the

scalability of DEVS/DOC 2.0. This environment supports
development of large-scale simulation experiments for
studying client/server network protocols. A client/server
application executing over a network requires a server
software component receiving requests from one or many
client software components for processing executions over a
set of hardware components.

A model of a single-client/server network consists of
three hardware components (two processors and one link)
and two software components. A two-client/server network
model has an additional pair of processor and software
simulation model components (see Table 1 and Figure 5).

An N-client/server model can be generalized—a model
needs to have additional processors, software objects, and
links (see Table 2 for the LCN, DCO, and OSM simulation
model components). Each client executes its methods, sends
requests (messages) to the server, and receives processed
requests (messages) after some time period. Partial
specifications for the hub ethernet, processor, software, and
acceptor simulation models are given in Table 3.

Table 1. Two-Client/Server Network Components

Table 2. DOC Simulation Model Components in the N-Client/Server Network System

LCN Layer DCO Layer OSM
N processors (Proc-1, …,

Proc-n)
1 link (Link) N-client (Client-1,…, Client-n) 1 server (server) each software object is

assigned to a processor

Figure 5. System Decomposition of a Two-Client/Server Network

It should be noted that for a given network topology,
multiple links between the clients and server may be used.
However, given our choice of the MAC (media access
control) protocol and the purpose of these experiments, we
have used one link as an abstraction of multiple links.

To study behavior of a network system via simulation,
it is important to design experiments. For example, as
shown in Figure 5, there are two transducers where one
monitors a link and another monitors a processor. Similarly,
there are transducers to monitor the software objects and
their message exchanges (see Figure 5). To control the

execution of the model, an acceptor is defined which in part
defines the start and termination of a simulation scenario.

The simulation scenario considers each client to have
three tasks to perform, two of which can be processed by the
client itself (i.e., using its own designated processor) and
one sent to the server (i.e., processor assigned to the server)
via the link. Once the server receives a task from a client,
the server processor begins to process the task and sends the
completed task back to the requesting client through the
link.

Application objects 1 server 2 clients 1 link 3 network
interfaces

3 processors 9 transducers 1 acceptor

class swObject link_ethernet hub_link processor transducer acceptor DOC
package DCO LCN Experiment Components

class vA vD vA DEVS
package simview

4.2 Performance Analysis
The model and interaction described above are

straightforward for a simple network (i.e., one that has a
small number of hardware and software components and
interactions). However, as the number of components
increases, the dynamics of the model quickly become
difficult to predict via direct extrapolation from small-scale
simulation models.

The client/server models briefly described above can be
studied in terms of their components. For example, we can
collect data (e.g., collision number, successful
transmissions, and bandwidth utilization) for the link. Each
experiment has an observation time during which data can
be collected. Using the DEVS/DOC interface, users can
change the execution speed via the simulator’s real-time
factor—the simulation ‘speed up’ or ‘slow down’ rate can
be adjusted in terms of the simulator’s real-time clock. The
observation time needs to be carefully selected. The
simulation observation time needs to be greater than the
time required for the simulation models to satisfy some
criteria. For example, a suitable criterion is to have the
observation time be greater than the time it takes for all the
software objects (clients and the server) to complete their
activities.

Table 3. Selected Hardware, Software, and
Experimentation Components

Attribute Value Unit
ethernet speed 106 bit/sec
processor
internal
bandwidth

infinity bit/sec

H
ub

 E
th

er
ne

t

buffer size infinity bit

Attribute Value Unit
cpu speed 108 operations/sec
cpu memory size 64*106 bytes/sec
maximum packet size 31*103 bit
processor internal
bandwidth

infinity bits/sec

processor network
interface speed

2*109 bits/sec

buffer size infinity bit

P
ro

ce
ss

or

packet header size 20 byte

Attribute Value Unit
size 2*106 byte
self-starting duty
cycle

infinity sec

S
of

tw
ar

e

thread mode none/method

Attribute Value Unit
time for discovering
LCN topology

1 sec

A
cc

ep
to

r

number of times to
invoke task

1 NA

The performance of the network system is affected by
many factors. In this paper, the transmission “back off time”
is selected to demonstrate the role of DOC and performance
analysis of network systems. As discussed above, both
clients and server need to send packets (messages) into link
through the hub ethernet model. These clients and server
can be viewed as nodes in the network system. The number
of the (client and server) nodes is always greater than one in
order to study different “back off” schemes in the presence
of packet collisions in the link (e.g., one client and the
server simultaneously send messages to the link). Usually,
after the first collision, each node waits either 0 or 1 time
units before trying again. If two nodes collide and each node
picks the same random wait time, they will collide again.
After the second collision, each node picks 0, 1, 2, or 3 at
random and waits that number of time units before sending
its packet to the link. If a third collision occurs with 0.25
probability, then the number of time units for a node to wait
is chosen at random from the interval 0 to 23 - 1. In general,
after m collisions, a random number between 0 and 2m - 1 is
selected. Figure 6(a) shows the growth in number of
collisions given the “random back off” scheme [17] for 2 to
1000 nodes. This is expected since with more and more
nodes, the chance of collision increases exponentially. The
results shown in Figure 6 are average values from 10
simulations runs.

Given the flexibility to manipulate software and
hardware layers of a network system, we use a different hub
ethernet model, which can be easily composed with the
software components from the previous experiment. One of
the important attributes of the hub ethernet model is the
“back off time,” which can be calculated using the
traditional scheme discussed above, or can be fixed to a
series of constants. For example, if there are four nodes in
the network, after the first collision, their back off time can
be 1, 2, 3, or 4 time units where each of the client and server
nodes selects one of them to reschedule its packet
retransmission. We call this “one by one back off” scheme.

It is natural to suppose this one by one back off scheme
will reduce the number of collisions or eliminate them
altogether. However, as shown in Figure 6(a), the one by
one back off scheme leads to more collisions. The important
point here is the relationship between the Server Processing
Time (SPT) and one back off time unit (BTU). BTU is the
difference between retransmission times of two clients. The
reason the one by one back off time seems counterintuitive
is that the SPT is bigger than BTU so the server’s input to
the link interrupts the clients’ scheduled back off sequences
which results in more collisions.

Before we discuss the details of analysis, we define two
types of one by one back off schemes, one called A and the
other B. Type A assumes SPT is less than BTU and Type B
assumes the inverse.

Referring to Figure 7, at time ti, 5 clients are
transmitting their packets to the link—that is, five events are
generated concurrently at time ti (see Figure 7(d)). Because
all of these packets go to the link, this results in collisions at
the link. After the collision at time ti, the retransmission of
clients number 1, 2, 3, 4, and 5 are scheduled at ti+1, ti+2, ti+3,
ti+4, ti+5 times as shown in Figure 7(a). The server needs Δt
time (one SPT) to process and send the processed packet
back. Here, we define Δt = 1.5 * (ti+1 - ti) such that SPT is
bigger than BTU (Figure 7 (b))—this is Type B given
above. Figure 7(c) shows that after ti+2, two packets are
transmitted via the link, which results in invoking two tasks
in the server.

(a). scale and no. of collisions

(b). scale and bandwidth utilization

 (c). scale and simulation execution time

 Figure 6. Performance Analysis for Back Off Schemes

At time ti+1+ Δt, the first task in the server is completed
and is sent to the link. Then, client 3 sends its packet to the
server and there are two tasks in the server again, (see
Figure 7(c)). Since Δt is defined as 1.5 BTU, the task for
client 2 in the server is completed and sent back at time ti+4.
At the same time, client 4 is also retransmitting its packet
followed by the second collision at ti+4. This forces both the
server and client 4 to back off. The server will back off one-
third of Δt, and client 4 still needs to back off 4 BTU. This
results in client 4 scheduling retransmission at time ti+8. We
define the server’s back off time to be fixed—i.e., one-third
of the server processing time, Δt/3. So, at time of ti+4+ Δt/3,
the server makes its retransmission and the packet for client
2 is sent back. At ti+5, client 5 makes its retransmission and
again there are two tasks in the server. These two tasks will
be completed and sent back at times ti+6, and ti+7.

As stated above, client 4 will try retransmission at time
ti+8. At this time, there are no tasks in the server so the task
for client 4 will be completed and sent back at ti+8 + Δt. In
the above scenario, there are two collisions including one
caused by the interruption from the server to the clients that
occurred at ti+4. However, this does not mean that constant
back off time will always lead to more collisions. The
relationship between SPT and BTU determines whether or
not the constant back off sequence will be interrupted or not.
As shown in Figure 8, if the Δt (SPT) is smaller than BTU,
then before the next retransmission happens, the server has
already sent the packet back to the client—i.e., there will be
no collision due to interruption from server to the client.

Figure 7. Type A One by One Back Off Scheme

In our experiments, the SPT is set to 4*10-4 seconds. In

the one by one back off scheme A, the BTU is set to 1*10-4
seconds, and in the one by one back off scheme B, BTU is
1*10-2 seconds. In our implementation of the random back
off, the continuous collision number (the number of
collisions that happen between two successful
transmissions) is less than 10 and the BTU is chosen by the
algorithm described above, usually with some constant
adjustment (i.e., between 1*10-6 seconds and 1*10-5

seconds). That is, before the server is able to complete and
send the first task it has received, more tasks are sent to the
server. Also, after the first collision happens, the interval for
the retransmission is smaller. Therefore, the chance for the
collision becomes smaller and also raises the bandwidth
utilization (the bandwidth usage in the unit time) as shown
in Figure 6(b).

However, in order to control exponential growth of the
random back off scheme waiting time, the adjustment period
will be kept constant (i.e., the waiting time remains between
1*10-4 and 9*10-4 seconds) once the number of continuous
collisions is greater than 10 [7]. This technique makes the
random back off BTU close to the SPT. The result is
increased number of collisions which is also similar to the
one by one back off scheme A (see Figure 6(a)).

One additional observation to be made is on the
relationship between the number of collisions and
bandwidth utilization. With the number of collisions in the
random back off greater than 10, the total waiting time
between two successful transmissions is still shorter than in

the one by one back off scheme A. This explains why the
random back off bandwidth utilization is always the best
among the three back off schemes (see Figure 6(b)).
Similarly, the simulation time for random back off is always
the shortest (see Figure 6(c)).

Figure 8. Type B One by One Back Off Scheme (See

Legend in Figure 7)

Waiting times between two successful transmissions
can be described in terms of RTWT (random back off total
waiting time), ATWT (one by one back off scheme A
waiting time), rwt (random back off single collision back off
waiting time), and awt (one by one back off scheme A
single collision back off waiting time). Given n as the
number of collisions, we can derive the following
relationships which state that the waiting time for random
back off is less than the waiting time for the one by one
back off scheme A. Given:

0

n

i
i

RTWT rwt
=

= ∑ = ∑
=

9

0i
irwt +

10

n

i
i

rwt
=
∑

0

n

i
i

ATWT awt
=

= ∑ = ∑
=

9

0i
iawt +

10

n

i
i

awt
=
∑

10 10

n n

i i
i i

rwt awt
= =

≈∑ ∑

9 9

0 0
i i

i i
rwt awt

= =

<∑ ∑ , we have RTWT ATWT< .

We chose six model configurations based on the

number of nodes (i.e., 3, 200, 400, 600, 800, and 1000 node
network models). These configurations allow us to study
how software and hardware aspects of a network system
affect one another. For example, for a configuration with 3
nodes, the one by one back off scheme A has only one
collision. More generally, the key properties (collisions,
bandwidth utilization, total simulation time) of one by one
back off schemes A and B and the random back off can be
studies systematically under different hardware and
software settings as described above. In particular, we can
determine that the one by one back off scheme B has a
smaller number of collisions because SPT is less than BTU.
Similarly, we can examine why the Ethernet busy time and
simulation time are always longer for random back off time
scheme B as compared with random back off time scheme
A and random back off.

5 RELATED WORK
There are a variety of simulation environments that

support modeling of computer networks. Well-known
environments for simulation—specialized for computer
networks—include NS-2 (Network Simulator [2][18]),
GloMoSim (Global Mobile Information Systems Simulation
[19]), and TeD (Telecommunications Description Language
[20]). An early modeling environment that preceded these is
called REAL [2]. This was a popular computer network
simulator providing around 30 modules (written in C)
capturing details of several well-known flow control
protocols (e.g., TCP) and other scheduling disciplines (e.g.,
Fair Queuing and Hierarchical Round Robin). Since REAL
was developed solely for traditional wired networks, the
Defense Advanced Research Projects Agency sponsored
development of NS-2 to handle more complex network
systems [2].

With support for customizing existing models (e.g.,
unicast routing, multicast routing, mobile networking, and
satellite networking), NS-2 has become popular and to some
extent is being used for defining customized network
models. However, since there is strong dependency among
some of the NS modules, it can be challenging to model
new protocols or to make changes to existing protocol
models. That is, given its complexity and low-level detailed
models, it is necessary to have in-depth knowledge of NS-2
for serious simulation [2]. Furthermore, NS-2 is not
intended for disciplined integration of software and
hardware simulation modeling. It primarily supports
simulating software communication protocols for network

devices instead of simulating a set of software applications
distributed across processors and network devices.

DEVS/DOC is similar to other environments such as
NS-2 and provides modelers with ready to use hardware
modules such as cpu, router, and link. However, unlike NS-
2 and others such as OpNet, it provides greater flexibility
and simplicity for creating customized hardware modules as
well as software modules and composing them within a
well-defined simulation modeling framework. That is,
unlike DEVS/DOC, the NS-2 environment does not support
distinct software and hardware modeling as layers or their
composition. Instead, NS-2 supports very detailed, fine
grain modeling of protocols rather than quantum level
modeling.

From a usability aspect, NS-2, which is a Unix-based
environment, does not offer a user friendly simulation
environment. Consequently, the use of NS-2 can require
additional time and effort for developing models that are not
already available. For example, direct run-time control of
simulation offers important aid to modelers in conducting
detailed analysis of simulation execution rather than relying
solely on data (simulation logs). The comparison of NS-2
and DEVS/DOC indicates the latter to be more suitable for
system-level network simulations and experimentations
with user friendly interfaces and popular integrated object-
oriented development environments.

6 FUTURE WORK
The distributed object computing approach is important

for characterizing network systems separately in terms of
software and hardware layers. The new DEVS/DOC is an
environment that supports experimenting with system
specifications where alternative software and hardware
designs can be varied and integrated in a well-defined
fashion. Given the generic distributed object computing
framework and discrete-event system specification,
DEVS/DOC offers a basis for modeling network-based
systems where it is important to analyze and design a
system’s conceptual architecture not separately from
software or hardware points of view, but instead by
accounting for total software and hardware simultaneously.
Therefore, DEVS/DOC offers a sound framework for
important domains including sensor networks, mission
training systems, and supply-chain networks. Applications
of interest might include enterprise systems where it is
necessary to develop architectural designs across many
hundreds of (hardware and software) computational nodes.

Another area of interest is to use DEVS/DOC
simulation models with physical systems. This can lead to
important capabilities where a portion of a network system
executing on a physical computer network can be embedded
inside a large-scale simulation model. That is, the

environment can support physical hardware with simulated
software or vice versa where software tools are executed on
simulated hardware. This capability enables mixed logical
and real-time execution of simulated and physical software
and hardware components. For example, the conceptual and
system-level design of a network of many satellites orbiting
the earth can be simulated with a few actual satellites, with
the remaining ones being simulated. Finally, large-scale,
complex application of DEVS/DOC requires execution of
DEVS/DOC in a distributed setting such as a service-
oriented architecture.

Acknowledgment

This research was partially supported by NSF DMI-
0075557 grant.

REFERENCES

[1] Keshav, S., REAL 5.0 Overview, Cornell University,

http://www.cs.cornell.edu/skeshav/real/overview.html.
1997.

[2] Information Sciences Institute (ISI), The Network
Simulator - ns-2, University of Southern California,
http://www.isi.edu/nsnam/ns/, 2004.

[3] OpNet Modeler, http://opnet.com, 2004.
[4] Butler, J. M. 1995, “Quantum Modeling of Distributed

Object Computing”, Simulation Digest, Vol. 24, No. 2,
pp. 20-39.

[5] Zeigler, B. P., T. G. Kim, and H. Praehofer, 2000,
Theory of Modeling and Simulation, 2nd Ed., New
York: Academic.

[6] DEVSJAVA, ACIMS, http://www.acims.arizona.edu
/SOFTWARE/software.shtml, 2004.

[7] Hild, D. R., “Discrete Event System Specification
(DEVS)/Distributed Object Computing (DOC)
Modeling and Simulation”, Ph.D Dissertation, March
2000, Electrical and Computer Engineering Dept.,
University of Arizona, Tucson, Arizona.

[8] Sarjoughian, H. S., D. R. Hild, and B. P. Zeigler, 2000
“Engineering Distributed Systems: Simulation-Based
Co-Design”, IEEE Computer, Vol. 33, No. 3, pp. 110-
113.

[9] Hild, D. R., H. S. Sarjoughian, B. P. Zeigler, January
2002, “DEVS-DOC: A Modeling and Simulation
Environment Enabling Distributed Codesign”, IEEE
SMC Transactions, Vol. 32, No. 1, pp. 78-92.

[10] Godding, G., H. S. Sarjoughian, K. E. Kempf, Dec.,
2003, “Semiconductor Supply Network Simulation,
Winter Simulation Conference”, pp. 1593-1601, New
Orleans.

[11] Sarjoughian, H. S., X. Hu, B. Strini, D. Hild, 2001,
“Simulation-based HW/SW Architectural Design

Configurations for Distributed Mission Training
Systems”, Simulation, Vol. 77, No. 1-2, pp. 23-38.

[12] Cho, Y., B. P. Zeigler, H. Cho, H. S. Sarjoughian, and
S. Sen, March 2000, “Design Considerations for
Distributed Real-Time DEVS”, AIS 2000, pp. 290-294,
Tucson, AZ.

[13] CORBA Basics, Object Management Group,
http://www.omg.org/gettingstarted /corbafaq.htm, 2005.

[14] IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Framework and rules,
IEEE Std 1516-2000, 2000.

[15] Park, S., B. P. Zeigler, H. S. Sarjoughian, Oct. 2001,
“Interface for Scalable DEVS and Distributed
Container Object Specifications”, IEEE Sys. Man.
Cyber. Conf., Tucson, pp. 93-98.

[16] JavaTM 2 Platform, Standard Edition, v 1.4.2 API
Specification, http://java.sun.com/j2se/1.4.2/docs/api/
index.html, 2004.

[17] Tanenbaum, A. S., 1988, Computer Networks, 2nd
Edition, Prentice Hall, pp. 145-146.

[18] Fall, K., V. Kannan, The ns Manual, March, 13,
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf, 2005.

[19] Gerla, M., R. Bagrodia, L. Zhang, K. Tang, and L.
Wang, 1999, TCP over Wireless Multihop Protocols:
Simulation and Experiments, Proceedings of IEEE ICC.

[20] Perumalla, K. S., R. M. Fujimoto, 1998, “Efficient
Large-scale Process-oriented Parallel Simulations”,
Winter Simulation Conference, pp. 459-466,
Washington D.C..

