

AN AUTOMATED METHODOLOGY FOR NEGOTIATION

BEHAVIORS IN MULTI-AGENT ENGINEERING APPLICATIONS

by

Moath Jarrah

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2008

 2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Moath Jarrah

entitled An Automated Model for Negotiation Behaviors in Multi-Agent Engineering

Applications

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy in Electrical and Computer Engineering.

__Date: 06/26/08

Bernard P. Zeigler

__Date: 06/26/08

Roman Lysecky

__Date: 06/26/08

Jonathan Sprinkle

Final approval and acceptance of this dissertation is contingent upon the candidate's

submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it be accepted as fulfilling the dissertation requirement.

__Date: 06/26/08

Dissertation Director: Bernard P. Zeigler

 3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at the University of Arizona and is deposited in the University Library

to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgment of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the copyright holder.

 SIGNED: Moath Jarrah

 4

ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor Dr. Bernard P. Zeigler,
who guided me through this research work and introduced me to many exciting areas in
discrete event simulation and its application. His help and support are endless. He made
me gain new knowledge and insights in my career, without him I would never reach to
this point. I am very grateful for his dedication and advising.

I would like to thank Dr. Roman Lysecky and Dr. Jonathan Sprinkle for serving in my
defense committee.

I would like to thank all the members of ACIMS Lab, especially Chungman Seo, Taekyu
Kim and Ho Jun Lee for the useful discussion and advice.

Special thanks go to my mother and father who never let me down.

 Finally, I would like to express my appreciation to my wife, Pi-Tsung and my son, Malik
who never stopped supporting me and encouraging me in all aspects of my life. They
never made me give up on anything. This achievement is dedicated for them.

 5

TABLE OF CONTENTS

LIST OF FIGURES ……………………………………………………… 9

LIST OF TABLES …………………………………………………...…. 12

ABSTRACT …………..…………………………………………………. 13

CHAPTER 1. INTRODUCTION ……………………………………… 15

1.1 Goals ………………………………………………………………………… 15

1.2 Motivation ………………………………………………………………..…. 15

1.3 Our Approach ………………………………………………………………. 18

1.4 Organization of the Dissertation ……………………………..……………. 19

CHAPTER 2. BACKGROUND: NEGOTIATION PROCESS, FD-

DEVS and SES …………………………………………………………... 21

2.1 Research in Negotiation Systems …...……………………………………... 21

2.2 Negotiation in Multi-Agent Environments …………………………….…. 25

2.3 Finite Deterministic-DEVS ………………………………………………… 32

2.3.1 Coupling in DEVS Environment …………………………...…………….. 39

 6

TABLE OF CONTENTS - Continued

2.3.2 DEVS Simulator ……………………………………..……….……………. 41

2.4 The System Entity Structure (SES) ……………………………………….. 44

CHAPTER 3. BACKGROUND: ONTOLOGY DESIGN LANGUAGES

AND THE SEMANTIC WEB ………………………………………….. 48

3.1 Ontology Design Motivation ……………………………………………….. 48

3.2 Ontology Design Languages and Standards ……………………………… 50

3.2.1 XML and XML Schema ………………………………………...………… 51

3.2.2 RDF and RDF Schema .…………………………………………...………. 54

3.2.3 Web Ontology Language (OWL) …………………………………...……. 58

CHAPTER 4. NEGOTIATION PROCESS AND PROTOCOLS …… 60

4.1 One-to-One Negotiation Protocol …... 61

4.2 Service Discovery Negotiation Protocol …………………………………... 64

4.3 Domain-Dependent Language of Encounter ……………………………... 68

4.3.1 Language of Encounter Taxonomy and Structure …………….…..……. 68

4.4 Domain-Independent Marketplace Architecture ……………………..….. 72

CHAPTER 5. SYSTEM IMPLEMENTATIONS …………………….. 75

 7

TABLE OF CONTENTS - Continued

5.1 FD-DEVS and the Marketplace Architecture ………………………….… 75

5.2 SES and the Messages Structure Ontology ……………………………….. 83

5.3 Negotiation System Model Process Flow ………………………………….. 89

CHAPTER 6. AUTOMATIC MARKETPLACE GENERATION FOR

A SPECIFIC DOMAIN OF INTEREST ……………………………… 92

6.1 Steps in the Marketplace Generation …………………………………...… 92

6.2 Automatic Generation and Integration of the Negotiation Marketplace .. 96

CHAPTER 7. EXPERIMENTS AND RESULTS …………………… 106

7.1 Oceanography in Surveillance domain ………………………………….. 106

7.1.1 Language of Encounter Structure …………………………..….…….… 108

7.1.2 Observer Model …………………………………………………...……... 110

7.1.3 Marketplace Model ………………………………………………....……. 113

7.1.4 Sensor Model ………………………………………………….…….…… 115

7.1.5 Coupled Model and Simulation ……………………………………...….. 117

7.2 Distributed Services Environment ……………………………………….. 121

7.2.1 Language of Encounter Structure ………………………..…………..… 122

 8

TABLE OF CONTENTS - Continued

7.2.2 User/Customer Model …………………………...………………………. 126

7.2.3 Marketplace Model ………………………………..………….………….. 130

7.2.4 Service Provider Model ……………………………..……….…………... 133

7.2.5 Coupled Model and the Simulation …………………...………………… 136

CHAPTER 8. PROOF OF CONCEPT (DEVS/SOA) ……………..… 146

8.1 DEVS/SOA Environment ………………………………………………… 146

8.2 Printing Jobs Models Deployment in DEVS/SOA Environment …….… 148

CHAPTER 9. CONCLUSION AND FUTURE WORK …………..… 157

REFERENCES ………………………………………………………… 162

 9

LIST OF FIGURES

Figure 2.2.1: Alpha-Beta pruning algorithm…………………….……………………… 27

Figure 2.3.1: Different components and relations in modeling and simulation
systems………………………………………………………….………………………. 33

Figure 2.3.2: Internal design of the basic model………………..………………………. 37

Figure 2.3.1.1: Hierarchical feature in DEVS models………………………………….. 39

Figure 2.3.1.2: Coupled model in DEVS……………………………………………….. 41

Figure 2.3.2.1: The DEVS simulation protocol……………….………………………... 42

Figure 2.4.1: Example, book SES structure………………….…………………………. 46

Figure 2.4.2: SES & PES relation-ontology level and the implementation level………. 47

Figure 3.1.1: Ontology structure…………….………………………………………….. 50

Figure 3.2.1.1: XML document for the ontology structure in figure 3.1.1……...……… 51

Figure 3.2.2.1: Nested RDF graph………………………….…………………………... 55

Figure 4.1.1: Simple sequence of negotiation activities……………...………………… 62

Figure 4.3.1.1: Ontology design for MessageX type……….…………………………... 71

Figure 4.4.1: Marketplace state machine diagram……………………………………… 73

Figure 5.1.1: One-to-One negotiation protocol…………………………………………. 78

Figure 5.1.2: Service discovery negotiation protocol…………………………………... 80

Figure 5.1.3: Marketplace model (states table)…………………………………………. 81

Figure 5.1.4: Marketplace model (internal transition function)………………………… 82

Figure 5.1.5: Marketplace model (external transition function)………………………... 82

Figure 5.2.1: ContractQuery ontology tree…………………..…………………………. 84

Figure 5.2.2: Natural language input for ContractQuery message…………..…………. 87

Figure 5.2.3: System negotiation modeling approach……..…………………………… 89

 10

LIST OF FIGURES - Continued

Figure 5.3.1: Negotiation model process flow…...……..………………………………. 90

Figure 5.3.2: Unmarshalling and marshalling process between service providers and the
service requestors……..……………………..………………………………………….. 91

Figure 6.1.1: Manual steps in generating the negotiation system for a specific
domain……………………….………………………………………………………….. 96

Figure 6.2.1: SES ontology creation GUI………………..……………………………... 97

Figure 6.2.2: Accept message structure for Oceanography and
OnlineStore……………………………………………….…………………………….. 98

Figure 6.2.3: Accept message structure after adding PrintingJobs……………..………. 99

Figure 6.2.4: Class ExecJAXBSchemaCompiler to execute the compilation
commands…….…………………………………………………………………..…… 101

Figure 6.2.5: Local messages declaration variables for the marketplace model…….... 103

Figure 6.2.6: Class CreateFDDEVSModelFor for the domain of interest….…………. 104

Figure 6.2.7: Marketplace generation flow…..………………………………………... 105

Figure 7.1.2.1: Oceanography best provider changes over time………………………. 111

Figure 7.1.2.2: Observer atomic model……….………………………………………. 112

Figure 7.1.2.3: Observer state transition diagram………...…………………………… 112

Figure 7.1.3.1: Marketplace atomic model……….…………………………………… 114

Figure 7.1.3.2: Marketplace main state transitions…..………………………………... 114

Figure 7.1.4.1: Pruned XML file for active sensor 1 –ContractQuery…..……………. 116

Figure 7.1.4.2: Sensor atomic model…….……………………………………………. 116

Figure 7.1.4.3: Sensor state transition diagram………………...……………………… 117

Figure 7.1.5.1: The coupled model……………………….…………………………… 118

Figure 7.1.5.2: Routing ContractQuery to the active sensors……..…………………... 119

Figure 7.1.5.3: Active sensor 1 is the best provider and the data source……..………. 120

Figure 7.2.2.1: User/Customer atomic model……………..…………………………... 127

 11

LIST OF FIGURES - Continued

Figure 7.2.2.2: State diagram for User/Customer model……………………………… 130

Figure 7.2.3.1: Marketplace atomic model…….……………………………………… 132

Figure 7.2.3.2: Business Cards.XML file……………………………………………... 132

Figure 7.2.4.1: Print server atomic model………………...…………………………… 135

Figure 7.2.4.2: Print server state diagram……………..………………………………. 135

Figure 7.2.5.1: PrintingJobs coupled model………………..…………………………. 138

Figure 7.2.5.2: Dynamic coupling of ContractQuery exchange……….……………… 139

Figure 7.2.5.3: Negotiation through exchanging Offer messages…...………………... 140

Figure 7.2.5.4: Negotiation through exchanging CounterOffer messages…………….. 141

Figure 7.2.5.5: Link establishment messages…………………………………………. 142

Figure 7.2.5.6: PrintingJob processing is finished………….…………………………. 143

Figure 8.1.1: ContractQuery class implementation for DEVS/SOA………………….. 148

Figure 8.1.2: DEVS/SOA IP assignment……………………………………………… 150

Figure 8.1.3: Models uploading process……………………….……………………… 151

Figure 8.1.4: The output of the customer machine…………..………………………... 152

Figure 8.1.5: Print server 1 and print server 3 outputs side by side……………..……. 153

Figure 8.1.6: Print server 6 output, showing providing service…………………...…... 154

Figure 8.1.8: The output of the SOAMarketplace machine………………………..….. 155

 12

LIST OF TABLES

Table 2.2.1: Prisoner Dilemma (PD) game……………………….…………………….. 31

Table 4.3.1.1: Classification of the language of encounter………………………….….. 70

Table 4.4.1: Marketplace states and their description………………………………...… 74

Table 7.1.1: Language of encounter structure for Oceanography domain……….....… 109

Table 7.2.1: Language of encounter structure for PrintingJobs domain…………….… 125

Table 8.1.1: Models assignment to the machines…………………………………...… 149

 13

ABSTRACT

The ability to manage and exploit geographically distributed systems of service

providers is rather limited in today engineering solutions. Existing techniques suffer from

three main problems: first, current techniques cannot provide brokering in managing

loosely coupled service providers. Second, the engineering design of existing

management tools does not provide enough expressive capabilities for varying user

behaviors or when different domains are encountered. Third, lack of interaction between

different requestors and providers yields inefficient and very costly agreements. In this

dissertation, we will present an automated Domain-Independent Marketplace architecture

that allows user agents to interact with provider agents using two simple and yet powerful

negotiation protocols which define the rules of interactions in multi-agent environments.

Having a trusted third party marketplace supports privacy and transparency among

collaborative agents and service providers. Service providers have different capabilities

depending on the domain of interest. Such providers can be radar sensors as in

oceanography surveillance systems, print servers in distributed printing jobs community,

or they can be online stores providing products on the web in the E-commerce domain. In

order to provide negotiation in different domains, a dynamic message structuring

capability is needed. A key role to support such an expressive power is to design an

ontology that contains specialization relations between the different domains of interest.

The automation of integrating the Domain-Dependent message structure Ontology with

the Domain-Independent marketplace architecture gives the designer a powerful tool in

which systems can be tailored based on the operational purposes and objectives.

 14

The System Entity Structure (SES) methodology, which is a formalism to define

hierarchical relations among entities, is used to build the required message structures

Ontology automatically through the creation of SES natural language. The architecture

design of the Marketplace suggests different phases and functionalities which are mapped

and implemented using the Discrete Event System Specifications (DEVS). DEVS/Service

Oriented Architecture (DEVS/SOA) is used to validate our system and show a proof of

the concept by deploying models of printing jobs in a web-services multi-server

environment for printing server domain.

 15

CHAPTER 1. INTRODUCTION

 1.1 Goals

Our goals of this dissertation consist of:

� To develop and automate a modeling methodology that supports negotiation

capabilities and services to capture different user interaction behaviors in different

application domains. The emphasis is on automating domain-specific tailoring of

messages so as to provide a framework for detailed specification of negotiation

protocols.

� To provide proof of concept implementation of this methodology in a web

services environment.

� Note: the goals do not include providing analytical proofs of behavioral

properties of the negotiation process. In particular, although termination is a

critical issue, the framework developed must relegate its resolution to the designer

who supplies the necessary behavioral specifications.

1.2 Motivation

 The ability to reserve and utilize software and/or hardware services in current

complex geographically distributed system has become increasingly difficult. The

 16

complexity results from the fact that there are many aspects and factors that represent the

characteristics of these systems, such as a node bandwidth, job processing deadline, the

execution time, etc. The user’s decision of whether to use a computing service or not is

based on these factors. Many researchers and other parties have tried to provide solutions

to exploit these resources efficiently [76] [77]. However, until now the development of

methods to exploit geographically distributed information storages and computing

resources has been very limited. Existing techniques [21] suffer from three main issues:

first, current techniques cannot provide brokering in managing loosely coupled service

providers. Second, the engineering design of existing management tools does not provide

enough expressive capabilities for varying user behaviors or when different domains are

encountered. Third, lack of interaction between different requestors and providers yields

inefficient and very costly agreements. Also one main issue in collaborative distributed

multi-agent environments is providing privacy and transparency to their agents. More on

multi-agent design issues and challenges can be found in [47].

 Distributed environments are seldom static. Everyday more and more service

providers are added to the system in order to provide more capabilities as the users grow

in numbers and needs. This leads to the diversity in resources and data availability which

adds new challenges to the management techniques that systems use. Hence, a manual

management is not feasible in such a community because of the number of service

providers and the heterogeneity in their information management. All of the above issues

make discovering the “Best Match” for satisfying user requirements a tedious task.

 17

 Web Services developments are growing dramatically nowadays and millions of

resources are being added every day to the World Wide Web. The success in e-

commerce, e-learning, online auctions, online marketplaces, information discovery and

retrieval has encouraged more and more companies to provide Web Services either to

satisfy customer requirements or to manage their distributed computing resources. In

order to reach to a successful framework design, the following issues must be supported:

• The system should provide brokering and negotiation services to its users.

• The system should provide transparency to its users.

• New service providers should be able to join the community in a simple and

efficient way.

• The system should provide decision making capabilities on behalf of the agents

whenever the user agents need it.

• The system should provide varying negotiation capabilities under different

domains.

• The system must provide rich expressive negotiation primitives to its users to

provide them with the capabilities to express their requirements and to able to use

the system under different domains.

• The design of the system must be simple and automated to shorten the

development time on the system designer under a specific domain of interest.

 18

 1.3 Our Approach

In this dissertation, we will develop an automated negotiation model that can be

utilized by different engineering domains. The model defines different concepts and

principles in the negotiation process. Our method consists of an automated Domain-

Independent Marketplace architecture that allows user agents to interact with provider

agents using two simple and yet powerful negotiation protocols which define the rules of

interactions in multi-agent environments. Having a trusted third party marketplace

supports privacy and transparency among collaborative agents and service providers.

Service providers have different capabilities depending on the domain of interest. Such

providers can be Radar sensors as in oceanography surveillance systems, print servers in

distributed printing jobs community, or they can be online stores providing products on

the Web in the E-commerce domain. In order to provide negotiation in different domains,

a dynamic message structuring capability is needed. A key role to support such an

expressive power is to design an Ontology that contains specialization relations between

the different domains of interest. The automation of integrating the Domain-Dependent

message structure Ontology with the Domain-Independent marketplace architecture gives

the designer a powerful tool where systems can be tailored based on the operational

purposes and objectives.

The System Entity Structure (SES) methodology, which is a formalism to define

hierarchical relations between entities, is used to build the required message structures

Ontology automatically through creating SES natural language. The architecture design

 19

of the Marketplace suggests different phases and functionalities which are mapped and

implemented using the Discrete Event System Specifications (DEVS). DEVS/Service

Oriented Architecture (DEVS/SOA) is used to validate our system and show a proof of

the concept by deploying models of printing jobs in a web-services multi-server

environment for printing server domain.

 1.4 Organization of the Dissertation

 Chapter 2 gives a background on current negotiation systems and research and the

development of autonomous agents for decision making process. Also it provides a

discussion on discrete event modeling and simulation inside DEVS formalism. System

Entity Structure is introduced as an ontological framework for data engineering purposes.

Chapter 3 discusses the ontology design motivation in the Semantic Web and the

different capabilities of ontology languages in the W3C recommendations. Chapter 4

details the negotiation protocols and the language of encounter of our system with a

description of the Marketplace characteristics and the automation of how to select a

primitive structure based on the domain of interest.

 The implementation of the negotiation model in DEVS environments and

ontology design in SES formalism will be given in chapter 5. In chapter 6 we automate

the process of model generation to produce a tailored marketplace model for a given

domain, which results in a code generation tool that shorten the development time on

behalf of systems designers. Then we apply our system to different engineering

 20

applications and show two experiments along with distributed web services deployment

of the model to provide a proof of the concept in chapter 7 and chapter 8 respectively.

Finally, we conclude the dissertation and mention future work that might improve the

systems characteristics to support more choices and capabilities.

 21

CHAPTER 2. BACKGROUND: NEGOTIATION PROCESS, FD-

DEVS and SES

 This chapter gives a review of the research areas that are relevant to our work.

The first section introduces the research in negotiation systems. Section 2.2 discusses

technologies in automated user agents in multi-agent environments and the decision

making process. Sections 2.3 gives an overview on discrete event modeling and

simulation formalism DEVS and the derived Finite Deterministic DEVS specifications.

The last section ends the background discussion by introducing the System Entity

Structure formalism SES.

 2.1 Research in Negotiation Systems

The negotiation process is an interaction between two or more parties in an

attempt to reach some agreement on a specific aspect. This aspect could be an idea as in

e-learning, or a price of some goods as in e-commerce, or information availability and

data provision. Hence, a multi-criterion negotiation system is needed that supports

dynamic structures based on the domain of interest [64]. During the negotiation process,

web-based agents exchange their capabilities, such as the services they provide, offers,

counter offers, speed, bandwidth, goods, ideas, topics or computation power. The result

can be an agreement or disagreement. In either case, the result depends on the interest of

the agents and their achievement of profit. A negotiation agent needs to be flexible

 22

enough to act under different kinds of situations because negotiation is a dynamic activity

by nature. The process is dynamic in the sense that it involves: asking for an item or

service, discovering item/service providers, negotiating with sellers/service providers,

proposing counter offers, decision making upon the receiving of some offers, and then

acceptance or rejection of an offer. The agent needs also to make sure that he does not go

into an infinite cycle of negotiation.

Negotiation activity in multi-agent environments is an iterative behavior in which

agents negotiate by exchanging Offer-CounterOffer messages. G. O’Hare and N.

Jennings in their book on Distributed Artificial Intelligence [8] classified the research in

negotiation into three main categories: negotiation language, negotiation decision and

negotiation process. Our research interests fall into the first category. The negotiation

language category consists of negotiation protocols, negotiation primitives, semantics and

object structure. Protocols refer to polices or rules that agents must follow during their

interactions with other agents. Primitives refer to the messages that are exchanged

between the agents. Negotiation primitives (messages) can be placed into three groups:

initiators such as “request”, reactors such as “respond”, and completers such as “accept”.

The semantics give more explanation and meaning to the language of encounter

(primitives) that is being used in negotiation protocols. The semantics capabilities are

usually achieved by building an ontology which classifies primitives based on

measurements of similarity. So, for example, one can consider the two primitives

“Request” and “Query” to be equivalent. Some tools are used in order to help in

computing measurements of similarities such as WordNet [67], which gives synonyms

 23

and acronyms of a given term based on the semantic meaning. This problem is well

known in the natural language processing area. The most difficult challenge is the

ambiguity in using sentences of a sequence of terms. In this work, the semantics are not

part of our work because it is not a necessary factor for system completeness and

methodology.

The object structure refers to the structure of each of the primitives during the

interaction between different agents, which defines what type of information a message

can carry. The negotiation decision is concerned with algorithms and mathematical

models to represent how user agents evaluate their objective functions. The next section

will give some insights on game theory application to this area. The last category which

is the negotiation process formulates general models and global behavior of the

negotiation participants.

The application of the negotiation process in current systems is very limited. One

reason is that current systems lack the infrastructure that can support negotiation among

parties. Also, current nodes are loosely coupled and no brokering activities are available.

Current bidding and auction systems do not provide the flexibility to negotiate on

parameters chosen by the users. They consider the price as the only parameter that in

which users are interested. For example, eBay [39] and Amazon Auctions [46] require

from the bidders that they locate an exact item and bid on it based only on its price. The

bidding is a committed action, which means that if a bidder wins, he has to buy it. This

 24

discourages users of the system to bid on more than one item because they do not want to

end up buying many items when they only need one [41].

Priceline.com [43] is an airline booking auction where a user selects his flight

information (source, destination, traveling date, and returning date). And then the user

bids by entering a specific price. Priceline searches its database to find a ticket price that

is lower than the bidder price. If a ticket is found, then the bidder will get the ticket. This

scenario of negotiation has drawbacks which are summarized as in follows:

1. If bidding is accepted, then the bidder is required to purchase the ticket.

2. The bidder cannot control other information on the flights such as waiting time in

the airport, and number of stops on the way.

3. The system takes advantage of users who do not have the knowledge and

experience about ticket prices. A bidder might enter a high bidding price for a

cheap ticket.

4. It prevents the user from paying a little more money for a more comfortable

flight.

Our objective in this research is to support negotiation capabilities over more than

one dimension. We can have as many constraints as it needs. A user can choose different

criteria to be considered in addition to the price; for instance, how many stops, Airline

Company, period of the negotiation, and so on. The dynamic structure of the language of

 25

encounter makes this possible and we will demonstrate later in chapter 5 and 6 how to

implement that.

 2.2 Negotiation in Multi-Agent Environments

In most of business and engineering distributed systems, managing the resources

and services manually is impossible and autonomous agents are needed to act on behalf

of the system users. Negotiation process is methodology that was applied to these

systems to provide bargaining and brokering capabilities between different agents in

multi-agent environments. Such agents are not just capable of making decisions in

predictable situations, but also they need to be intelligent enough to act in any dynamic

unpredictable interaction. The agents need to communicate with each other, share data

and ontologies and negotiate with other agents to reach some agreements. Many

researchers have addressed these issues and many autonomous agents were developed

recently. For instance, a user can use search agents over the Web to search for a specific

data or information and once the appropriate data provider is found, the data will be sent

to the user.

Game theory is a branch of economics that is concerned with interactions between

agents [36] [30] [44]. It imposes mathematical models (functions) that describe each

agent utility function in multi-agent systems, and strategically try to maximize each

individual preference. Under some domains, the mathematical function of an agent is

formatted to take into account other opponents and coordinators utility functions.

 26

However, the game theory is limited by the assumption of having the knowledge about

other players (agents) preferences. Negotiation probably is one of the most frequent

domains in which game theory principles have been applied. Negotiation environments

use game theory in order to model the decision making process in the negotiating agents;

which can give insights into the computation of the search space in order to analyze

different interaction strategies.

Game theory mathematically models the interaction techniques between players

along with their outcome results. It was first started with the work of von Neumann and

Morgenstern [40] in 1944. Studies in game theory assume that individuals (agents) are

rational and have well defined preferences over all relevant playing strategies. Hence,

when an individual has to choose from alternative techniques, he will choose the most

preferred strategy that maximizes his utility. This imposes difficulties in multi-agent

environments where each agent tries to achieve his own interest which leads to conflicts

with other individual preferences. Predictions about the resolution of conflict are derived

from game-theoretic solutions that use some variants of Nash equilibrium.

 Algorithms that have been developed in game theory were mostly proposed to

solve or help an agent to play specific games intelligently based on the opponent choices.

The agent needs to make choices that maximize or optimize his revenue in a strategic

way. In other words, it must decide on his playing strategy based on the decisions that the

other opponents make during playing. For example, alpha-beta pruning [68] as depicted

in figure 2.2.1 uses a min-max strategy to maximize player 1 utility against his opponent.

It is clear in this algorithm that the third issue with game theory (the knowledge of the

end nodes outcomes) is hard to compute precisely ahead of time. However, it is still a

helpful algorithm when approximati

Also some calculations can be made in advance.

Figure 2.2.1: Alpha

 Martin J. Osborne and Ariel Rubinstein in [34] discussed variant sequential

models in applying game theory to

the sense that each player makes decisions sequentially in a pre

order reflects the rules or policies of the negotiation (negotiation protocol and rules of

encounter). At all times, the negotiators care about time to protect themselves from going

into an infinite cycle of offers and counter offers. So the speed at which an agreement is

established is one factor that plays in

function. No agreement is forced on any agent. This means that if all agents who are

involved in a specific negotiation cycle chose to accept the terms in that negotiation

It is clear in this algorithm that the third issue with game theory (the knowledge of the

end nodes outcomes) is hard to compute precisely ahead of time. However, it is still a

helpful algorithm when approximations are assigned to the outcomes of the end nodes.

Also some calculations can be made in advance.

Figure 2.2.1: Alpha-Beta pruning algorithm

Martin J. Osborne and Ariel Rubinstein in [34] discussed variant sequential

models in applying game theory to bargaining. The models have a sequential structure in

the sense that each player makes decisions sequentially in a pre-specified order. The

order reflects the rules or policies of the negotiation (negotiation protocol and rules of

the negotiators care about time to protect themselves from going

into an infinite cycle of offers and counter offers. So the speed at which an agreement is

established is one factor that plays into defining the agent revenue or preference objective

on. No agreement is forced on any agent. This means that if all agents who are

involved in a specific negotiation cycle chose to accept the terms in that negotiation

27

It is clear in this algorithm that the third issue with game theory (the knowledge of the

end nodes outcomes) is hard to compute precisely ahead of time. However, it is still a

ons are assigned to the outcomes of the end nodes.

Martin J. Osborne and Ariel Rubinstein in [34] discussed variant sequential

bargaining. The models have a sequential structure in

specified order. The

order reflects the rules or policies of the negotiation (negotiation protocol and rules of

the negotiators care about time to protect themselves from going

into an infinite cycle of offers and counter offers. So the speed at which an agreement is

defining the agent revenue or preference objective

on. No agreement is forced on any agent. This means that if all agents who are

involved in a specific negotiation cycle chose to accept the terms in that negotiation

 28

cycle, then the agreement will take place, otherwise the agreement fails. Two important

considerations to be taken care of in applying game theory to negotiation when it comes

to computer systems are:

1. Game theory studies in multi-agent computer systems assume that agents search

for the optimal solution (or strategy). This involves the computations of all search

space which can grow exponentially as the number of variables increases.

2. The recent growth in the Internet and Web services raises the interest and the need

for more sophisticated developments in computational negotiation techniques and

autonomous web agents.

K. Binmore and N. Vulkan [37] used a simple mathematical formula to describe

the decision making process. They modeled the agreement by using two real numbers 1a

and 2a . Player 1 (or buyer) and player 2 (or seller) keeps some reserved value for the

item they are bargaining about [)1(r and)2(r respectively]. These values are kept

hidden from each other (player 1 does not inform player 2 about his reserved value and

visa versa). If player 1 proposes a price m (the amount of money) for the item, then =1a

mr −)1(and =2a).2(rm − The agreement succeeds if both 1a and 2a are positive

numbers (0≥). As mentioned previously in chapter 2, both agents should approve the

acceptance of the agreement terms and this model guarantees that.

 29

V. Krishna and VC. Ramesh in their work on market games and their applications

used a negotiation model based on coalition partners [30] [38]. The player agent chooses

a set of agents to form a coalition. Then it uses probability profiles of the chosen agents

to compute the payoffs resulting from using different strategies by simulating the actual

bargaining. Next, it computes the probability distribution among the whole set of agent

strategies (normalized based on probability measures). Using the payoff metrics, it

arranges the strategies (solutions) on a priority basis where the solution that gives the

maximum payoff has the highest priority. After that, it chooses a new set of agents and

repeats the same computations until the agent finds the best coalition community and

chooses the best strategy for that coalition.

 Negotiation also enables coordination among agents to enhance performance in

multi-agent systems where all agents aim to improve the overall system performance. In

this context, Mahajan, Rodrig, Wetherall and Zahorjan [35] attempted to resolve

selfishness routing in multi-hop networks, where Internet Service Providers try to lower

the traffic they forward (route) by either dropping packets or sending them through the

closest link which results in longer paths. The system sends anonymous messages in

which the sender ID is hidden. If the recipient node cheated by not forwarding the

messages correctly, all the neighbors isolate the cheating node from the network. The

cost here for a cheating node is that it will be punished by disconnecting it so neighbors

will not forward or receive message to or from it.

 30

In competitive negotiation, each agent tries to maximize his own utility function

(maximize his satisfaction) regardless of the other agents. However, in cooperative

negotiation, an agent is concerned about other agents and he needs to compromise his

own preferences for the good of community satisfaction. Archibald, Hill, Johnson and

Stirling [31] used a strategic-form game by evaluating the utilities of all players to reach

a negotiation solution that is mutually acceptable. It does not have to be the maximum for

each agent but good enough that all players are satisfied. The authors of the paper on

satisfying negotiation used the Prisoner Dilemma (PD) as an illustrated example as

shown in table 2.2.1. The numbers represent the payoff matrix of the players utility with

4 = best, 3 = next best, 2 = next worst and 1 = worst. In PD game, two players P1 and P2

either choose to compete (defect) or cooperate with the other player. If P1 cooperates and

P2 competes, then the result is that P1 gets 1 (worse utility) and P2 gets 4 (best utility)

and vice versa. If P1 chooses to compete and P2 also chooses to compete, then both get 2

(next to worst) which is the Nash equilibrium. However, if both players choose to

cooperate then both get 3 (next to best) and they call this solution a “good enough”

solution. Hence, in many negotiation scenarios, cooperation, compromise and even

altruism brings more benefit to the players rather than using competition and defect.

 31

PD Game P2

P1

Coordination

Competition

Coordination Competition

(3,3) (1,4)

(4,1) (2,2)

Table 2.2.1: Prisoner Dilemma (PD) game

Hence, in multi-agent systems, the players (negotiators) can adopt a bottom-up

approach where each player maximizes his own utility. This approach usually results in a

non-optimal overall solution (group performance). Alternatively, the agents in the

negotiation group can adopt a top-down approach, where the objective is to optimize the

overall utility function of all players. This leads to better results in the coordination

community, where agents need to compromise their utility for the group utility. In many

situations, agents might refuse to announce their utility function to the public. In this

regard, having a trusted third party that can manage and coordinate the cooperation

between the agents is useful (marketplace). The paper [31] by Archibald to which we are

referring proposes a mathematical model for the good enough solution. The approach

supports cooperation, compromise and negotiation in multi-agent systems. It uses a

different criterion than individual optimization and led to well-defined solutions.

 32

 2.3 Finite Deterministic-DEVS

Discrete Event systems specifications formalism (DEVS) and its concepts were

introduces firstly by Professor Bernard Zeigler in 1976. Since then, the DEVS formalism

has been regarded as a powerful tool in many engineering applications areas such as

manufacturing [16], ecological disasters [17], computer [18], traffic [19] and command

and control (SoS) [69]. Finite Deterministic-DEVS was first introduced as Schedule-

Controllable DEVS in 2005 [23]. FD-DEVS motivation was to overcome the problem of

ODNR (once it dies, it never returns) from which Schedule-Preserved SP-DEVS [20]

was suffering. The ODNR refers to the situation when the next schedule is infinite time

which prevents the simulation from returning to any of the states that have a finite time.

Since FD-DEVS is based on the classical DEVS formalism concepts and relations and

since we used DEVS simulation after generating the template Marketplace model using

FD-DEVS tool, we will give a brief description on the modeling and simulation

environment in DEVS and the hierarchical construction of atomic models.

The Discrete Event System Specifications (DEVS) formalism provides a rich

environment in which any phenomena could be modeled by producing a mathematical

model which in turn can be simulated under the DEVS simulation environment [4].

DEVS can model discrete event systems as well as continuous systems. Any real system

(or proposed one) goes through different states or phases, receive inputs from users or

from other running entities, output messages to the interconnected properties, and has

 33

functions or algorithms that decide the transition from one state to another either

concurrently with receiving inputs or after some phase period of time. Hence, a given

system could be modeled as a discrete event system with some specific parameters that

need to be computed by observing the system under consideration of its behaviors. Once

we decided on the different parameters of the system, we can model it using DEVS

formalism and then execute the simulation for performance evaluation and/or exploring

possible setups of the system until we find an acceptable system behavior. Figure 2.3.1

shows a scenario of modeling and simulation of some given system A. The experimental

frame refers to the conditions under which the system is being observed for its behaviors

and set of outputs.

Figure 2.3.1: Different components and relations in modeling and simulation systems

 34

The definitions of the components in the figure are as follows:

The Given System: is the system under interest which we would like to model and

simulate in an attempt to monitor and alter its behavior to follow some accepted

specifications.

Model: mathematical relations and instructions that produce similar properties as the real

system under consideration. The behavior of a model is the set of all possible

input/output combinations that can be generated [1].

Simulator: it executes the model in order to emulate the real system and do comparisons,

evaluations and analysis.

Experimental frame: defines the constraints and conditions under which the system was

observed to collect its output behavior. For example, a system could be running under

specific temperature and pressure conditions.

These three objects in the Figure are related by two types of relations:

Modeling relations: relations to define whether the model is a valid model for the real

system by comparing the behavior of the model with the behavior of the observed

system. How well the model represents the system.

Simulator relations: relations to link the developed model and the simulator. The

simulator carries out the instructions and specifications of the model.

The system needs to be modeled first; the model structure could be expressed in a

mathematical language called formalism. The discrete event formalism focuses on the

 35

changes of the variable values and generates time segments that are piecewise constant.

Thus an event is a change in a variable value which occurs instantaneously. Hence, the

model formalism specifies how to generate the changes in the variables values and the

time at which this should occur.

Based on the research by Bernard P. Zeigler [4], a basic model from which larger

ones could be built must be specified first. Basic models are connected into a hierarchal

scenario. The basic model consists of the following features as illustrated in Figure 2.3.2.

� The set of input ports through which external events (messages) are received.

� The set of output ports through which external events are sent and interact with

other properties.

� Two distinct parameters for each state exist which are called “phase” and

“sigma”. The phase represents the current state. Sigma defines the time period

during which the model stays in the corresponding phase. For example, in ON-

OFF model, for the active phase, sigma = ON T and for inactive phase, sigma =

OFF T.

� The time advance function which keeps the time management of the model by

monitoring the clock cycles and the sigma values of all models.

� The internal transition function specifies the next state to which a model has to

transit after some specified time.

 36

� The external transition function specifies how the model should alter its behavior

by changing the state given some inputs have been received that affect the current

model state.

� The confluent transition function specifies the next state a model has to transit if a

transition to a state occurs at the same time when an input event is received.

These three functions: internal transition function, external transition function,

and the confluent transition function provides a comprehensive tools to model thoroughly

all system interactions that could be possible between the components in a specific

model. More about these three functions are given in the next section. The output

function generates and wraps a message (packet) just before an internal transition occurs

and sends it through the interconnection links between the different models.

 37

Figure 2.3.2: Internal design of the basic model

DEVS formalism also provides a mathematical model based on the set theory.

The Model (M) structure of the above eight features is defined as follows:

M = < X , S , Y , intδ , extδ , conδ , λ , ta >

Where

 X is the set of input values

S is the set of states

 38

Y is the set of output values

intδ : S � S is the internal function

extδ : Q × bX � S is the external transition function, where

Q is the total state set

bX is a collection of bags over the input set X

conδ : Q × bX � S is the confluent transition function

λ : S � bY is the output function

ta : S � R is the time advance function.

At any time the system must be in some state, s. If no external event occurs, the

system will stay in state s for time given by ta (s). The advanced function ta (s) can take

any value between 0 and ∞. For example, if an atomic model is idle (passive state), its ta

(passive) = ∞. When the resting time expires, elapsed time, e= ta (s), the system outputs

the value λ (s) and changes to state given by intδ (s). The output is only possible before

an internal state transition. If an external even x in bX happens to occur before this

expiration time, the system changes to state given by extδ (s,e,x). Thus the internal

transition function will be in charge of the system states transition when no external

events occur. The external transition function takes over the states transitions when an

event occurs on the model input ports. The confluent transition function will be triggered

if an internal transition and an external event occur simultaneously.

 39

2.3.1 Coupling in DEVS Environment

This set of mathematical variables and states defines the behavior of a specific

model M. Such a basic model is also called an Atomic model. Different atomic models

can be connected to produce a Coupled model. Coupled models can in turn be connected

to other atomic models or coupled models resulting in a hierarchical structure as depicted

in figure 2.3.1.1

Figure 2.3.1.1: Hierarchical feature in DEVS models

A coupled model consists of the following information:

• The set of components.

• The set of input ports through which a component receives external events

(messages).

 40

• The set of output ports through which a message or event is sent.

The coupling specifications specify the routing of events between different

models (or components). These specifications consist of:

• External input coupling connects input ports of a coupled model to one or more of

the input ports of other components.

• External output coupling connects the output ports of a coupled model to the

output ports of other components.

• Internal coupling connects output ports of components to input ports of other

components. Hence, when an event is generated by a component it may be sent to

the input ports of other designated components.

As illustrated in figure 2.3.1.2, when outputs (messages) are generated by

component A, they are transmitted at the same time instant to the input ports of

component B due to the coupling between outputs of A and inputs of B.

 41

Figure 2.3.1.2: Coupled model in DEVS

2.3.2 DEVS Simulator

DEVS formalism has a well-defined concept of simulation engine to execute

models and generates their behavior. The simulator has been implemented in JAVA

resulting in DEVS/JAVA implementation. Afterward an implementation in C++ was

needed in order to achieve an efficient runtime execution; this resulted in DEVS/C++

implementation. Figure 2.3.2.1 below shows the simulator for a coupled model which

consists of:

 42

1. Coordinator which assures and maintains the coupled model specifications.

2. Simulators associated with each one of the model components (basic models).

The coordinator performs the time management and controls the messaging

exchange among the simulators consistently with the coupled specifications. Simulators

respond to commands and queries from the coordinator by referencing to their assigned

models specifications.

Figure 2.3.2.1: The DEVS simulation protocol

 43

In DEVS/C++, atomic models have the following models to represent their DEVS

mathematical formalism:

� Delta-internal: represents the internal transition function.

� Delta-external: represents the external transition function.

� Delta-confluent: represents the confluent transition function.

� Output: represents the output function.

� Time advance: represents the time advance function.

A model is said to be imminent when a certain sleep phase has been completed;

such a phase is determined by the model time advance function. DEVS/C++ maintains a

general-purpose template priority queue for sorting models by various keys, which could

be a name, next event time or others. A tree structure is used to order the models by their

next event times. The simulation cycle in DEVS/C++ simulator is as follows:

1. Advance the clock to the smallest next event time in the priority queue.

2. Put all models that have the smallest next event time in a set called I representing

the imminent models.

3. Execute the output functions of those in the set I and propagate the messages to

the in ports of the models that are connected directly to the output ports of the

models in set I. These messages will be collected into an input bags for the

models receiving them.

4. Put all models that have non empty input bags on their input ports into a set M.

 44

5. The elements in I ∩ M, represent the models who have inputs on their input ports

and have also internal transition occurring at the same time. So for those

elements, execute the associated delta-confluent function.

6. The remaining elements in set I represent those who only have internal transition.

Hence, execute the associated delta-internal function.

7. The remaining elements in M represent those who have external transition.

Hence, execute the associated delta-external function.

After steps 5, 6 and 7, the models will be reinserted in the priority queue with

their next even time updated. The simulation cycles are repeated until no models are

imminent or a termination condition encounters such as exceeding simulation time. This

ends our background discussion on the Discrete Event System Specifications (DEVS)

formalism environment. The next section will discuss the System Entity Structure (SES)

formalism.

 2.4 The System Entity Structure (SES)

 The System Entity Structure formalism provides a formal ontological framework

for specifying real system composition with information about decomposition,

specialization and taxonomy. The SES formalism has been applied to many engineering

applications and proved its usefulness such as in data engineering [28] and Network

systems [22]. In real systems, objects are represented by entities in system entity structure

 45

framework. The SES represents the design space with various possible design

configurations. To search for the best configuration, pruned SESs are constructed to

reduce the search space into valid instances of the SES. For example, SES can have many

specializations and multi-aspects relations; with pruned SES, a decision will be made on

which of the entities and specialization should be chosen. The basic components of SES

are:

• Entity: entities are representation of some real world objects, which in turn can be

made of many other children entities.

• Aspect: represents the decomposition relation. An entity is composed of other

entities. The relationship between the parent and the children is “aspect”.

• Specialization: represents alternative choices that a system entity can take. Each

of the alternatives is also of type entity.

• Multi-Aspect: is a relation that expresses an all of one kind.

• Variables: are slots attached to some entities in the system. The slots can take

values in a specific range. The slots define different contents of the associated

entity.

To clarify the use of these components we give the “Book” example which is

explained in [5]. A book is an entity; it consists of front cover pages, and back cover

(Aspect relation). The front cover is an entity. Also we can say that the front cover can

have the color Red, Green or Blue; this shows the specialization relation. A multi-aspect

 46

relation exists between the entity “pages”, which is a child of the parent book, and the

entity page means that the book is made of many instances of the entity “page”. Figure

2.4.1 shows the SES structure.

Figure 2.4.1: Example, book SES structure

The process of pruning an SES is to construct a desired structure to meet a

particular domain specifications. The pruning process chooses one entity out of many in

specialization relations, which results in a completely pruned entity structure PES and

variables take values in their ranges [28][5]. The figure below shows the relation between

the general SES and the pruned PES. At the implementation level, they are represented

by XML schema or DTD and XML instances respectively. We are using SES to construct

 47

ontology for the domain of interest. When we have more than one domain, specialization

components exist.

Figure 2.4.2: SES & PES relation-ontology level and the implementation level

 48

CHAPTER 3. BACKGROUND: ONTOLOGY DESIGN LANGUAGES

AND THE SEMANTIC WEB

 Knowledge representation using ontology structures is a relatively new research

topic that emerged with the new requirements of the web. Semantic as well as lexical data

availability is intended from the next generation of the web. Which makes the

information not only intended for humans, but also to be processable and understandable

by machines.

Tim Berners Lee [60] who invented the World Wide Web predicted in the late

1990s that the web will be changing to support data, information and knowledge

exchange. In addition to that, he reasoned that the knowledge contained in web pages will

be understandable by the machines. Since then, semantic web has become a hot research

area in which many parties are cooperating to develop standards and rules to govern the

interaction over the net. Semantic web requires interoperability between different

services on the web which in turn requires standards not only on the syntactic level, but

also on the semantic level.

3.1 Ontology Design Motivation

The success of semantic web is highly depending on the success of ontology

design and development. An ontology is an information model that describes concepts

and relations in some specific domain. Ontologies enable the processing and sharing of

knowledge among different computing sites on the web [29]. Hence, ontologies are

 49

known to be the representation of a shared conceptualization of a specific domain. They

provide a common understanding of a domain that can be communicated across people

and applications. They have been also developed in Artificial Intelligence to facilitate

knowledge representations and sharing. Ontologies will change the way search engines

search the web. Currently, search engines use keyword-based approaches to search the

web for relevant pages. By using ontologies, search engines can find pages that contain

syntactically different, but semantically similar words. An ontology has a hierarchical

structure of classes and concepts in the domain of interest and it describes different

relations between concepts. Also, it provides a description of concepts through the use of

an attribute-value mechanism. Many domains have started to develop and build their

ontologies like VnHIES [72] and geographic applications [73].

A typical example of ontology structure and design is shown in figure 3.1.1.

Concepts, objects or classes are defined by using classdef or slot-def, a class consists of a

type, subclass-off and/or slot-constraint. A slot-constraint consists of a name, hasvalue

and/or value-type. OWL standards are the most promising language for the future of

ontology design for the semantic Web.

3.2 Ontology Design

The interest in defining ontology design languages has

dramatically since couple of years ago.

well formatted language specifications

next generation of the Web

most popular web standards that are being used to build ontology structures which are:

XML and XML Schema, RDF and RDF Schema, and OWL.

Figure 3.1.1: Ontology structure

Ontology Design Languages and Standards

The interest in defining ontology design languages has been increas

dramatically since couple of years ago. Different research parties are trying to

well formatted language specifications that can be meet the different requirements of the

Web [57]. In this section we will give a brief introdu

most popular web standards that are being used to build ontology structures which are:

XML and XML Schema, RDF and RDF Schema, and OWL.

50

increasing

are trying to propose

meet the different requirements of the

In this section we will give a brief introduction to the

most popular web standards that are being used to build ontology structures which are:

 51

 3.2.1 XML and XML Schema

XML differs from HTML in that XML is intended as a markup language for any

arbitrary document structure. However, HTML is a markup-language for a specific

hypertext documents. This also means, that the tags in HTML are static and standard, but

in XML the tags are user defined and the user has the flexibility to have even the same

word to have different meanings by pointing to different namespaces. The vocabulary of

the tags and their allowed combinations is not fixed. So, an XML document consists of

nested set of open and closed tags, where each tag can have a number of attribute-value

pairs. Despite of the language limitations, the XML documents have been used widely for

different purposes such as in database and information representation and extraction. M.

Kim addressed how to extract information from database that is stored as XML files [66].

The ontology structure in figure 3.1.1 can be represented by an XML document as in

figure 3.2.1.1.

Figure 3.2.1.1: XML document for the ontology structure in figure 3.1.1

 52

It should be mentioned here is that there is no one way of representing

information in XML document. Different XML documents might be resulting in the same

information which depends on the developer approach. This gave XML the flexibility

that attracted people on the Web. However, it is possible to enforce a grammar on tags

and their allowed nesting usage. For example, in XML 1.0 a DTD (Document Type

Definition) specifies the allowed combinations and nesting of tag-names, attribute-names

and other components. XML schema is replacing DTD under W3C recommendations

since XML schema offers many advantages and has essentially the same rule as DTD.

Any XML document whose nested tags form a balanced tree is a well-formed XML

document. XML provides a markup language and a uniform data exchange format for

parties over the Web. However, it is important to understand that in both cases, XML

enforces only a syntactical structure without any semantic meaning.

Anything that can be represented by a grammar can be encoded into XML

documents because XML is for defining data grammars. Many XML parsers have been

developed and they exist on the Web where applications and different parties can access

them and use them. The major limitation of XML comes in the semantic interoperability,

since XML aims at the structure of the documents and does not impose any common

interpretation of the data contained in the pages. Hence, in XML there is no way of

recognizing semantic units from a particular domain of interest.

The advantage of reusability of XML parsers is useful to the parties who have

reached an agreement on their document structures. However this neglects the fact that

 53

partners are often changing dynamically on the Web, which means the documents

structures might change. New partners always have to be added to the existing

relationship as new information sources become available. Since the scenario of adding

new partners is a frequent operation, it is important to reduce the cost of adding the new

communication partners as much as possible. Using XML and DTDs or XML schema

requires much more effort because the task is not to map one grammar to another

grammar, but to map objects and relations from one domain to another domain.

Subsequently, we need to define the mapping between DTDs (or grammars). The

following would be the steps that need to be executed:

1. Reengineering of the original domain model from the DTD or XML schema. This

is a very difficult task to be performed given that the mapping is not a one-to-one

relation. One DTD can result in many different domain models if agreement was

not achieved in advance between parties.

2. Establishing mapping between the components of the domain model which

involves concepts and relations.

3. Defining translation procedures for XML documents. This is also a hard task to be

performed since it depends on the particular encoding chosen to construct the

initial DTDs (or XML Schema).

From what has been mentioned previously, using a more suitable formalism for data

transfer and information exchange than XML can save a lot of work. XML would be an

 54

elegant tool to be used for data exchange between applications that both know what the

data are, but not in situations where we need to add new partners frequently.

3.2.2 RDF and RDF Schema

Resource Description Framework is a recent technology recommendation by the

World Wide Web Consortium (W3C). RDF aims to standardize metadata descriptions

about recourses on the Web. Since RDF is capable to describe data about web resources,

it is also capable of representing data. The basic component or structure in RDF is called

a triple; triples are relations that connect objects to their values. For example, a relation A

that exists between object O and the Value V is represented by triple A(O,V). RDF triple

can be represented as a graph with two nodes and an edge that connects them, referred by

labeled graphs [75]. The nodes represent the object and the value, while the edge

represents the type of the relations that exists between the two nodes. RDF allows objects

and values to be mixed. Hence, this leads to chaining in graphs. For example, Figure

3.2.2.1 represents the following three triples:

hasName('http://www.w3.org/employee/id1321', "Jim Lerners")

authorOf('http://www.w3.org/employee/id1321','http://www.books.org/ISBN001251586')

hasPrice('http://www.books.org/ISBN006251586 1, "$62")

Reification in RDF allows an RDF statement to be the object or the value of another triple

which leads to nesting or recursive definitions of semantic objects. Also an object B can

 55

be given to designate a certain type such as ‘ISBN03547X’ is of type ‘book’. RDF

vocabulary has no restrictions on the property names that can be used, same as in XML.

The main intended rule of RDF is to provide object-attribute-value triples data models for

metadata.

Figure 3.2.2.1: Nested RDF graph

As the XML schema provides a vocabulary definitions facility for XML, RDF

schema provides a similar facility for RDF which provides a basic type system for RDF

models. This basic system uses predefined terminology such as Class and subClassOf.

RDF schema expressions are also valid RDF expressions, the only difference is that the

RDF schema predefines a particular vocabulary that should be used for RDF attributes

(e.g.autherOf) and specifies the types of objects that these attributes may be applied to.

RDF objects may be instances of one or more classes depending on the type

property. Two important RDF constructions are subClassOf and subPropertyOf. The

subClassOf property allows the specification of hierarchical organization of such classes.

subPropertyOf does the same for properties. Constraints on properties can be specified

using domain and range constructs. Using these constructions, RDF schema can extend

 56

the vocabulary and the intended semantic interpretation of RDF expressions which puts it

on top of RDF.

By using nested object-attribute-value triples, the universal expressive power

holds for RDF. Also different RDF parsers have been developed and can be used by

different parties on the Web, hence the reusability requirement holds for RDF.

Semantics structures and units are given by nature through the RDF triples where

all objects are independent entities. This gives RDF an advantage over XML as being the

suitable technique for semantic web where no need for translation steps. In describing

some specific domain, representing the objects and relations in that domain are what

matter, which is what RDF triples do. We can apply techniques from knowledge and

representation to find the mapping between RDF descriptions. The usage of RDF for data

interchange raises the level of reusability beyond the parser to the domain model itself,

which cannot be achieved from using plain XML. RDF technique provides us with the

capabilities for knowledge representation which can be shared over the Web. RDF

Schema gives more power on top of RDF by freeing us from the limited primitives of

RDF. Since our concern is to have a semantic meaning of web pages content, we should

consider two main approaches in computer science which are: declarative and procedural

semantics.

In the declarative semantics, the meaning of an expression E can be found from

the conclusions or properties that follow from expression E; the conclusions or properties

are well understood formalism where machines can process and understand. However, in

 57

the procedural semantics, the meaning can only be found by executing some program

(computational procedure) on the expression E and analyze the resulted behavior. This

difference between declarative and procedural semantics is very close to the semantic

interoperability difference between XML and RDF.

An expression written in XML and DTDs (or XML Schema) has no inherited

semantics, and the meaning of it depends on the application that is executing it. Two

different applications running the same expression will have two different meanings for

it. Although for specifying structural models, XML seems better than RDF. On the other

hand, an expression in RDF or RDF Schema will have the same declarative semantics.

This follows naturally from it is being independently of any program or application

running it. Hence, any RDF processor must conform to this intended semantics.

Communities in computer science, AI and W3C all agree that the declarative semantic

technique leads to a more shareable and reusable knowledge representation sources than

what could be achieved from using procedural semantics [29]. Hence, we can conclude

that RDF and RDF Schema is a better technique for information and data representation

in the semantic web than XML and DTDs (or XML Schema).

As we mentioned earlier, ontologies are the basic units that build the sharable

knowledge in the semantic web. Defining an ontology in RDF means defining RDF

Schema (RDF Schema is an extension of RDF), which means defining all concepts, terms

and relationships in a specific domain. This imposes some more requirements on RDF

and RDF Schema which resulted in W3C recommendation of adapting OWL as the

 58

language for developing ontologies. The next section discusses OWL standards,

advantages and disadvantages.

3.2.3 Web Ontology Language (OWL)

The World Wide Web Consortium has approved two key technologies for

semantic web development: the Recourse Description Framework (RDF) and the Web

Ontology Language (OWL). These two semantic web standards provide the power for

integration, sharing and reusing data and knowledge on the web. Users will be able to

share the same information regardless of the applications. We have discussed RDF in the

previous section; this section aims to introduce OWL as the required technology for

designing semantic web ontologies. OWL is used to give machines the ability to process

and understand information on the web. OWL can be used to explicitly represent the

meaning of concepts and vocabularies and the relationships between them. OWL has

more capabilities than XML, XML Schema, RDF and RDF Schema which promotes it as

the semantic language for knowledge and data representation on the web.

OWL is a revision of DAML+OIL [78] web ontology language incorporating

lessons that have been learned from the design and application of DAML+OIL. OWL-DL

(Description Logic) is a sublanguage of OWL.

L. Rector and his co researchers in their paper [50] on using OWL to represent

pizza Ontology described how to use OWL-DL to design ontology. Then they discussed

the errors and pitfalls that users made in writing information representations, paraphrases

and their role in clarifying meanings. Ontology to represent the pizza concept was chosen

as an example because it is concrete, physical and rich enough to illustrate key issues in

 59

the design. However, the authors showed that constructing the correct definitions of

pizzas from a menu turns out to be a challenging exercise. For more details on the

example, please refer to the number [50] in the references.

Since OWL is derived from Description Logic, OWL has model-theoretic

semantics that provide the official meaning for OWL documents [61]. Since OWL was

produced by the W3C Web Ontology Working Group, it does suffer from their vision of

the future of the semantic web [53] because their vision does not allow different semantic

web languages to have different syntax. The OWL provides more capabilities than RDF

Schema, however there are few tools available that can process OWL documents because

it is relatively a new ontology language.

 Summary

 In this chapter we showed that the ontology design and processing are widely

used and being researched by the Semantic Web community. That is because the design

of the ontology gives them the document structures capability to express the web page

contents based on their semantic meanings rather than their lexical formats. Different

research techniques have been addressed to automatic ontology creation, merging,

integration, ontology reasoning and collaboration such as in [71].

 60

CHAPTER 4. NEGOTIATION PROCESS AND PROTOCOLS

Negotiation process is an interaction between two or more parties in an attempt to

reach some agreement on a specific aspect. The aspect for which the negotiation takes

place upon takes a wide range of topics based on the application. For example, it might

be a price of some goods as in e-commerce, or information availability and data

provision. During the negotiation process, agents exchange their capabilities and what

services they can provide. Many researchers have proposed solutions to the process of

negotiation but their solutions have always been for limited cases under specific domain

of applications. We aim in this work to provide a generic-automated negotiation model

that can be utilized under different engineering applications. Our research interest falls

into the negotiation language area which discusses the design of the negotiation

protocols, the negotiation primitives, the semantics and object structure. Protocols refer to

rules that agents must follow during their interactions with other agents [8]. Section 4.1

and 4.2 will explain our design of the negotiation protocols. Section 4.3 describes our

approach for designing the negotiation primitives and the object structure. The semantics

are not addressed in our work because they are not necessary for the completeness of our

objectives and goals. Section 4.4 will show how the marketplace architecture can help the

negotiation parties in reaching agreements efficiently.

 61

4.1 One-to-One Negotiation Protocol

 Many system designers have applied the negotiation process to different domains.

Based on the objectives of the systems, different types of negotiation are developed such

as: collaborative environments, buyer and seller negotiation, negotiations for resources

and data reservations and so on. Murugesan [11] discussed different issues concerning

automated negotiation for electronic commerce. Some researchers are trying to apply

collaborative negotiation activity for e-commerce where different threads (parties) are

independent from each other [7]. Feng and Lei used a constraint network to measure

conflict costs for collaborative negotiation and a state diagram to model the negotiation

protocol. In all negotiation systems, agents must follow some rules of interaction known

as “Negotiation Protocols”. These protocols define how parties can interact with each

other which in turn affects their decision and expressiveness capabilities. In most current

e-commerce solutions, the conflict is related to the price of the items between the sellers

and the buyers [65].

 One important property of the negotiation process is a One-to-One protocol. In

this protocol, negotiating parties can communicate (negotiate) with each other via offers

and counter offers cycles. The process starts when the requestor sends a Request, then the

provider replies with either, Accept where an agreement is established, Reject where no

agreement has been reached or Offer where requestor needs to make evaluation upon

receiving it whether to accept it or reject. If the requestor response on the Offer was

Accept, then an agreement has been reached; if he replies with Reject there is no

 62

agreement. The third choice is to reply with a Counter-Offer message. The cycles can go

on forever. However, in real life and software developments, a predefined time is allowed

before the termination of the process as we discussed in section 1.1.

In papers [6], [14] and [70] a simple negotiation protocol is used. It occurs

between two agents to support a shared semantic ontology of the terms and primitives

that can be used in the negotiation process. Figure 4.1.1 shows the One-to-One protocol

nature.

Figure 4.1.1: Simple sequence of negotiation activities

Figure 4.1.1 shows some primitives along with a sequence of negotiation protocol

(rules). However, it does not reveal details on the syntax involved in using these

primitives nor does it show semantic specifications. Such a simple scenario is limited to

the situation where the interacted agents know each other IDs. For example, it is valid if

the buyer knows the seller, and if both have sufficient ability to control their items and

 63

services. In many cases, however, more sophisticated protocols are needed to support

dynamic behaviors during the negotiation process. For instance, the buyer might not

know what services or products are available for him or if the buyer wants to complain

about a transaction. Hence, a more flexible and comprehensive negotiation model is

required. Transparency and privacy are other requirements that negotiation models need

to support.

The objective of Bailin and Truszkowski’s research [2] on scientific archives was

to find relevant information on a specific topic. Again the One-to-One negotiation

protocol has been used as one rule between agent A and agent B (two parties trying to

negotiate on scientific archives information). Masvoula, Kontolemakis, Kanellis, and

Martakos [12] discuss the issue on how a negotiation model should be as close as

possible to the real interactions in auctions and the bargaining behaviors in the stores.

The protocol design is assumed to be One-to-One with offers, evaluation of offers and

counter-offers. Research in e-learning needs different expressive requirements than other

domains like the e-commerce. In a collaborative e-learning domain, the negotiators will

ask questions, answer questions, confirm information, etc. [9]. The objective here is to

reach an agreement and one understanding on topics or ideas. Although the negotiation

primitives are different, they used a One-to-One negotiation protocol.

The work by M.Addis, P.Allen and M.Surridge on negotiation for software

services used the One-to-One Negotiation protocol to support on-demand software and

hardware resources sharing environments [21]. V. Krishna and VC Ramesh proposed a

 64

model for competitive decision making agents where they used the One-to-One protocol

to support the bargaining process when agent “a” calls agent “b” [10].

Because of the nature of the One-to-One negotiation model which models real life

bargaining and negotiation behaviors, we are adopting this protocol for its simplicity and

advantages. However, some modifications are needed concerning its definition to fit into

our generic automated framework. Section 4.4 on marketplace architecture and design

gives our definition of the One-to-One protocol.

4.2 Service Discovery Negotiation Protocol

Most of the current negotiation systems and distributed services management

tools do not support brokering between agents. Distributed services environments do not

interact with their users on different specifications. For example, if a user would like to

use a service that is deployed on a distributed environment and that service is already

being used, he will get usually a response that it is not available at this time. Then the

user needs to request that service maybe every 1 minute. On the other hand and in some

other extreme cases he might receive a decline that he cannot use this environment

because of a simple error he made or because the service does not provide one of the job

specifications he asked for in his request. In some case it might be that the user can

ignore one of specifics because the execution of his job will satisfy his needs. In such

case brokering and negotiation is very essential to reach agreements in multi-agent

environments.

 65

 Yilmaz and Paspuleti [25] used a Broker agent to support transparency, a

Matchmaker to bring different views using relevance metrics that are independent of

keyword matching, and a Mediator agent to convert contents to some common reference

model (constructed as ontology) that negotiators understand. The Mediator agent resolves

four types of conflicts: semantic, descriptive, heterogeneous and structural. Tamma,

Phelps, Dickinson and Wooldridge [24] used a shared ontology to model the protocols

that could be encountered or needed in supporting agent negotiation in e-commerce

environment. They call such enforcement of rules “rules of encounter”. According to this

paper, the agents do not go into different states or decision making phases. However

agents query the shared ontology for the next step in response of an event occurrence.

Such an implementation is slow and lacks a scalability requirement. Also, it is a single

point of failure implementation with unmanageable size of ontology when the ontology

grows up to handle more space of dynamic behaviors. Bailin and Truszkowski [2] on

scientific archives, the system designers used marketplace architecture to resolve

semantic mismatches in real time without human intervention. The protocol they used is a

One-to-One protocol between for example agent A and agent B. However, the definition

and functionality is different because they exchange different types of primitives that

need different ways of handling.

 In order to support flexible generic negotiation protocols that can capture different

user behaviors, we determined the following requirements that we believe any

negotiation system should support them:

 66

1. The ability to ask a service provider (might be a computing node) for a

service or an offer.

2. The ability to negotiate with the service provider over jobs/products

specifications (e.g. execution time for a job, bandwidth of data

transformation after the job is finished).

3. The customer ability to respond with a counter offer that represents its

interests.

4. The ability to complain to a third party that controls web services. This is

important in order to support customer satisfaction over the web to build a

trustable environment between services requesters and services providers.

5. The service provider ability to advertise their capabilities to be found later

when customers search for services. This provides transparency and

privacy between users and providers. For example a user might request a

book with a specific ISBN number; the result will be all bookstores that

have that specific book available. As a result, the user will negotiate with

the best book provider that meets his/her interests.

6. Supporting decision making capabilities for customers to choose the best

among different service providers.

7. Monitoring agreements which were achieved between customers/users and

the service providers. For example, a situation that appears in the domain

 67

of information discovery and retrieval, a third party is needed to monitor

the transfer of data from the data provider to the requester according to the

agreement guidelines that both agreed upon during their negotiation.

8. The ability to reformat or add/remove some parameters to the messages

being exchanged between customers and service providers to avoid

misunderstanding or confusion and for future purposes.

Supporting these requirements is not an easy task because of the dynamic nature

in multi-agent environments. However, the choice of using marketplace architecture (a

third party such as a controller or mediator agent) is useful in this regard, in addition to

the choice of a new negotiation protocol namely “Service Discovery”. The marketplace

can act as a broker, a mediator, a controller and/or a database for service providers to

advertise their products/services.

The service discovery protocol is needed when a customer is searching for a

specific service or product. Customers then query the marketplace to find the best

providers. The marketplace responds to the customers with a group of service providers

who fulfill their requests. After the customers get the results back from the marketplace,

they will have a list of the available service providers and their capabilities. Then the

customers can decide on whether to proceed with the negotiation process or not. If the

customers choose to proceed, they send a contract query to the marketplace, and then the

marketplace will forward that to the appropriate providers and wait for responses from

 68

them. Next chapter on implementation explains the two negotiation protocols enforced by

the marketplace in more details.

4.3 Domain-Dependent Language of Encounter

In this section we discuss the second part of the language which is the negotiation

primitives. The primitives give us insights into the language of using them which

indicates different phases and functionalities. We call such messaging language

“Language of Encounter”. So whenever we say language of encounter then we refer to

the negotiation primitives or the negotiation messaging system.

4.3.1 Language of Encounter Taxonomy and Structure

In our design of the negotiation model, we specified the language of encounter

that web agents or our system users need to use for their interactions. O’Hare and

Jennings [8] suggest three groups for language of encounter. However, such a

classification is not enough to truly enable the negotiation process over the web and in

multi-agent environments. More types are needed to support customer satisfaction and

the dynamic in user behaviors. We have defined two new necessary classes for the

messages to increase the expressiveness power and the negotiation capabilities.

Table 4.3.1.1 shows the language of encounter (messages) to which agents refer

in order to express their needs. The difference between “Decline” and “Reject” is when

the marketplace is too busy and cannot handle more requests. It might not choose to start

 69

(“Decline”) the negotiation process. Note that the negotiation did not take place in this

situation, which allows the requester to try to start the same negotiation later. However,

“Reject” means that the negotiation process already took place and the result is no

agreement, so there will be no point of trying again later to establish the same negotiation

process under the same parameters. On the other hand, “NotMet” refers to situations

where the two negotiation parties have come to an agreement and they started the

transaction. However, one of the two parties has violated the agreement terms that both

established before. In such a situation, the marketplace needs to stop or terminate the

transaction. For example: if an information agent negotiates with a service provider to

transfer some audio traffic with a minimum speed of 200kB and the service provider

agrees on that, and subsequently, after establishing the link between them, the service

provider was transferring the traffic with speed less than 200kB, then the information

agent can ask the marketplace to terminate this contract by sending “NotMet”.

“Terminate” message means that the negotiation process has started but is not finished

(still in progress and the result is not known yet). Then the requester has the right to stop

the negotiation.

 70

Abort Initiators Reactors Completers Informative

Terminate ContractQuery Offer Reject Busy

NotMet CapabilityQuery CounterOffer Accept LinkEstablished

 ItemRequest Decline Item

 CapabilityStatement ItemCheckResult

 BestProvider

 ProvidersChosen

Table 4.3.1.1: Classification of the language of encounter

The usage of these primitives will be clear when we discuss the marketplace

architecture along with its phases and transitions. The last point to address in our research

design of the negotiation language is the object structure, which refers to the language of

encounter structures in our context. The structure of each message type depends on the

domain under which it is being used. Hence, in order for our system to support

negotiation services under different domains, a dynamic message structure is the key role

to the success. In this implementation we used a shared Ontology that defines each

message and its usage under different domains. Each domain would be a specialization in

the message structure. Each Message type has a separate structural ontology defining its

variables/fields. System Entity Structure (SES) formalisms is a useful tool to define the

 71

language of encounter structure. For example, Oceanography is a sub domain of the

domain surveillance and has specific structure. Online store is a sub domain of the

domain e-commerce and has a specific structure. Figure 4.3.1.1 shows the purpose of

designing ontology for a specific primitive, “MessageX”.

Figure 4.3.1.1: Ontology design for MessageX type

The alternatives here are that if there are two domains defined for MessageX

ontology, then two cases might occur:

 72

1. Given the input is “MessageX the sub domain Oceanography”, then the system

should automatically select the message structure to be sub SES 1 represented in

the variables (Location, Altitude, Speed and Roughness).

2. Given the input is “MessageX and the sub domain Online Store”, then the system

should automatically select the message structure to be sub SES 2 represented in

(SellerID, BuyerID, Price, S&H and Return).

4.4 Domain-Independent Marketplace Architecture

We have specified the language of encounter that user agents need to use when

interacting with the marketplace and/or with each other. The Marketplace controls the

behavior of the interacting agents by enforcing our model rules and policies (negotiation

protocols). Here we show the marketplace architecture design which is based on finite

state model. The section describes the different phases of the marketplace agent and ends

with diagram showing the sequence of phases that the marketplace goes though. Table

4.4.1 shows the different states of the marketplace along with their descriptions.

Figure 4.4.1 shows the transitions between phases of the marketplace agent. This

model of the marketplace can be translated easily into an FD-DEVS implementation.

However, because of the specifications of FD-DEVS, some phases need to be reformatted

according to the messages that cause the transition to these states. The next chapter on

FD-DEVS implementations explains how to split some states according to the language

of encounter.

 73

The marketplace enforces two negotiation protocols (rules and policies) in its

multi-agent negotiation environment. These are:

1. One-to-One negotiation when entities know each other’s ID.

2. Service Discovery: When a customer is searching for a specific service or

product, it usually looks for the best provider among the participants. The

marketplace plays a role here on behalf of the requestors.

Figure 4.4.1: Marketplace state machine diagram

 74

Phase Description

Active Means that the marketplace is ready to receive different types of
messages (language of encounter)

Routing The marketplace acts as a router, its task is to forward the
received messages to the appropriate receivers, this scenario

occurs frequently when the two parties know each other (buyer
and seller know each other their Id).

InterpretQuery Upon receiving a contract query, the marketplace goes into this
state to interpret the query based on messages structures, lexical

and/or semantic meaning to be understood.

DeclineQuery If the marketplace is too busy and it cannot handle new
requests, the marketplace goes into this state to send a “Decline”

message to the customer.

DecisionMaking After performing interpretation task on a received query and
choose to serve it, the marketplace goes into this state to decide
on the appropriate receivers, make some modifications on the
query (such as reformatting it), accessing the database to find

information about the service providers, and so on.

WaitAndSelect After forwarding a request to service providers, the marketplace
wait for responses from the specified providers to select the best

that meets the requirements of the customer.

TaskCompleted After finishing serving a query, the marketplace transit to this
state to report that the request was completed successfully by

reporting some information about the transaction that might be
needed in the future.

Monitoring While the marketplace in this state, it monitors the process of
data transferring for the specified period of time.

TransactionReview After a transaction is completed between a seller and a buyer
and if the buyer complains about the item description, the

marketplace transits to this state to resolve the issue.

Termination This means that the transaction was terminated for some
abnormal reasons.

Table 4.4.1: Marketplace states and their description

 75

CHAPTER 5. SYSTEM IMPLEMENTATIONS

In this section we will show our implementation work of the negotiation protocols

represented by the domains independent Marketplace architecture. Also we will discuss

the dynamic message structure implementation. We used FD-DEVS formalisms to

implement the marketplace model and we used SES formalisms to build the messages

structure ontology. The following sections explain both implementations.

5.1 FD-DEVS and the Marketplace Architecture

We have implemented the above negotiation protocols in FD-DEVS. Finite &

Deterministic Discrete Event System Specification) is a formalism for modeling and

analyzing discrete event systems in both simulation and verification ways. FD-DEVS is

based on DEVS formalism [1] [3][4] . However, to implement it in FD-DEVS, we

needed to do extra work by splitting some phases into multiple copies based on the

message that causes the transition. For example: when receiving message “Request” that

needs to be forwarded to a specific seller, the marketplace transits into phase

“RoutingRequest”, where it routes the message to the seller. When receiving an “Offer”

message from a seller that needs to be forwarded to a specific buyer, the marketplace

transits into phase “RoutingOffer”. Note here that the task to be performed by the

marketplace is forwarding a message from a specific customer (e.g. buyer) to a specific

service provider (e.g. seller). This scenario occurs when both negotiating entities know

each other. The work to be done by the marketplace is basically the same in both phases

 76

(forward a message), but the difference is in the message type. To implement this in FD-

DEVS, we needed to differentiate between the two states to convey two different

messages. Our negotiation protocol consists of two scenarios:

1- One-to-One negotiation when entities know each other ID. In this protocol,

the customer agent sends messages (such as request, contract query, counter

offer, accept, reject) to the marketplace including the service provider ID. The

marketplace reveals the service provider ID from the received message and

forwards it to the specific service provider (receiver). On the other hand, the

service provider responds with replies (such as offer, accept, reject) with the

customer ID included in the contents of the messages. The marketplace

receives the messages, unmarshal them to find the customer ID, and then it

forwards them to the specific customer. If the customer did not receive the

correct item, it can choose to complain by sending “Item” message to the

marketplace along with the transaction number. Then the marketplace

searches its log files to find the transaction information in order to resolve the

issue with the service provider. Figure 5.1.1 shows the protocol flow.

2- Service Discovery: When a customer is searching for a specific service or

product, it usually looks for the best provider among the participants.

Customers then query the marketplace to find the best providers, and since

service providers advertise their services, information and products to the

 77

marketplace, the marketplace will have an updated database of the members

of the service providers and their capabilities. The marketplace responds to the

customers with a group of service providers who can fulfill their requests.

After the customers get the results back from the marketplace, they will have a

list of the available service providers and their capabilities. Then the

customers will decide on how to proceed with the negotiation process. The

customers might choose to proceed with the negotiation by sending a contract

query to the marketplace; then the marketplace will forward that to the

selected providers that were chosen in the previous step, then it will wait in

phase “Wait” to receive responses from the providers one by one. Once it

finishes waiting in that phase, it will select the best offer from the list of

responds. The best provider will be sent back to the customer. The customer

now can choose whether to accept the offer, reject the offer or go to the one-

to-one protocol and negotiate with the chosen provider. Once an agreement is

reached. The customer establishes a link with the appropriate service provider

to transfer data, information or products and then it informs the marketplace

of the link establishment. The marketplace now enters a “Monitoring” phase

to make sure that the agreement is fulfilled. Figure 5.1.2 shows the scenario

 78

Figure 5.1.1: One-to-One negotiation protocol

Notice from the figure above that when agent A receives an “Offer” from agent B,

then he can send back to agent B either “Accept”, “Reject” or “CounterOffer” messages.

Marketplace
Agent B

(ID:23101)

Agent A

(ID: 35)

RoutingItemRequest
ItemRequest

ItemRequest

Offer

RoutingOffer Offer

RoutingAccept
Accept Reject

Accept

RoutingReject Reject CounterOffer

RoutingCounterOffer CounterOffer

Accept

RoutingAccept Accept
Reject

RoutingReject Reject

Item

ItemCheckResult Log

files

TransactionReview

 79

When agent B receives “CounterOffer”, then he can send back to agent A either

“Accept”, “Reject” or a modified “Offer” on the same product/service. In any case, one of

the agents has to send “Accept” or “Reject” sometime to end the negotiation process,

otherwise they might go into an infinite loop. This is easy to resolve when designing

customers and providers agents. One way to solve this problem is by having a timing

counter, once it expires, the agent sends a “Terminate” message rather than wasting the

time with an endless negotiation.

When the marketplace receives complaints regarding a transaction (“Item”), it

interacts with the item provider to resolve the issue (the two ways dotted arrow in the

figure above). Such an interaction depends on the regulations of companies. In e-

commerce, usually the product provider (seller) refunds the buyer the item price and the

buyer returns the item. Some companies provide products exchange option.

In figure 5.1.2, when the marketplace processes the “ContractQuery” message, it

needs to decide on the appropriate receivers of the query (service providers who have the

requested service available). Then it forwards the contract query to the chosen providers

and waits for responses from them. After receiving the responses it selects the best that

meets the requirements in the contract query and sends its ID back to the customer. At

that time, the customer will choose whether to establish a link with that provider or

maybe negotiate with the selected provider for a better deal using the One-to-One

protocol (since the customer agent knows the service provider ID).

 80

Figure 5.1.2: Service discovery negotiation protocol

We used the Finite Deterministic GUI tool version 0.6.0 to define the marketplace

model. In using the tool, we need to specify three main categories which are shown in the

Agent A

(ID:44)
Agents Marketplace

Advertise DB

ProcessingCapabilityQuery

InterpretQuery Busy

DecisionMaking Routing

Wait & Select
Accept

Reject

Offer

Offer

Task Completed

Monitoring

CapabilityQuery

CapabilityStatement

ContractQuery

Decline

ContractQuery

BestProvider BestProvider

One-To-One

LinkEstablished

 81

figures below. Figures 5.1.3, 5.1.4 and 5.1.5 show the states table, internal transition

function and the external transition function respectively.

Figure 5.1.3: Marketplace model (states table)

 82

Figure 5.1.4: Marketplace model (internal transition function)

Figure 5.1.5: Marketplace model (external transition function)

 83

The FD-DEVS tool generates an XML representation of the model. This XML

file is very important since it can be used directly to into our automated version of the

system as will see in the next chapter on automatic code generation of the marketplace

model given a domain name. The in ports and out ports names are generated based on the

name of the messages; for example, the message “Accept” will be received on in port

“inAccept” and will be sent on out port “outAccept”.

5.2 SES and the Messages Structure Ontology

 We discussed in the previous chapter in section 4.3 about the messages structure

that it should be dynamic based on the domain of interest. This is because the information

that needs to be sent through messages is different. For example in E-commerce domain,

the agents consider parameters such price, shipping and handling, return policy for their

products and services. However, agents in Oceanography or software services will have

different parameters that they care about such as execution time, bandwidth, latency. In

some cases, even under the same domain, the designer can construct the structure of a

message to have more than one meaning. Mathieu and Verrons [74] in their attempt to

provide a flexible negotiation protocol, they had to add more stages on the One-to-One

negotiation protocol to provide “modification request” and “propose modification”. In

order for our negotiation primitives to accommodate for varying capabilities under

different domains, the messages structures must be dynamic and based on the domain

under consideration. Hence, in our design we use an ontology structure for each type of

 84

messages. The design of the ontology is shown in Figure 5.2.1 for message

ContractQuery as an example. The message type (entity) has specialization relations to

each of the domains defined (SubdomainOfIntrestSpec). Each domain entity has a

decomposition relation with its “domainMsgStructure” which refers to the message

structure. Each domainMsgStructure has variable slots (fields) that contain the different

parameters of the message structure such as (Price, SellerID, Location, Roughness).

Figure 5.2.1: ContractQuery ontology tree

 In the figure above, the message structure under PrintJobs domain consists of:

PrintJob, TechnologyType, NoCopies, Deadline, Customer, PaperQuality, Duplex,

PrintJobID, and Color. The message structure for Oceanography consists of: Speed,

Roughness, Location, and Altitude. And for the OnlineStore we chose the structure to

 85

have: SandH, BuyerID, Price, Return, and SellerID. In order to implement the dynamic

message structure ontology, we used System Entity Structure formalism. SES is a useful

ontological framework to define data engineering ontologies. In SES, Entities represent

things that exist in the real world or in the imagined world. Aspects represent ways of

decomposing things into more fine-grained ones [5]. In our ontology tree, the message

type is an entity as well as the domain. SES has been applied to many different areas as a

classification tool such as in [13]. More on XML and SES are discussed previously in

chapter 4. Below is the XML document representation of the ontology in Figure 5.2.1.

---XML Document --------------------------------

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE entity SYSTEM "ses.dtd" []>

<entity name = "ContractQuery">

<specialization name = "ContractQuery-SubdomainOfIntrestSpec">

 <entity name = "PrintingJobs">

 <aspect name = "PrintingJobs-StructuralDec">

 <entity name = "PrintingJobsMsgStructure">

 <var name = "Duplex">

 </var>

 <var name = "Customer">

 </var>

 <var name = "NoCopies">

 </var>

 <var name = "PrintJobID">

 </var>

 <var name = "PaperQuality">

 </var>

 <var name = "Deadline">

 </var>

 86

 <var name = "PrintJob">

 </var>

 <var name = "Color">

 </var>

 <var name = "TechnologyType">

 </var>

 </entity>

 </aspect>

 </entity>

 <entity name = "Oceanography">

 <aspect name = "Oceanography-StructuralDec">

 <entity name = "OceanographyMsgStructure">

 <var name = "Altitude">

 </var>

 <var name = "Speed">

 </var>

 <var name = "Roughness">

 </var>

 <var name = "Location">

 </var>

 </entity>

 </aspect>

 </entity>

 <entity name = "OnlineStore">

 <aspect name = "OnlineStore-StructuralDec">

 <entity name = "OnlineStoreMsgStructure">

 <var name = "BuyerID">

 </var>

 <var name = "SellerID">

 </var>

 <var name = "Price">

 </var>

 87

 <var name = "Return">

 </var>

 <var name = "SandH">

 </var>

 </entity>

 </aspect>

 </entity>

</specialization>

</entity>

--

 We used SES builder to design the message ontologies. The SES builder is an

easy to use tool and provides many features. The input is a restricted natural language

designed for the system entity structure framework purposes. More on the natural

language forms and syntax can be found in [5] and on the website www.devsworld.org

[42]. The natural language input that resulted in the above ontology for ContratcQuery

message is as in the following figure.

Figure 5.2.2: Natural language input for ContractQuery message

ContractQuery can be PrintingJobs, Oceanography, or OnlineStore in SubdomainOfIntrest!

From the Structural perspective, the PrintingJobs is made of PrintingJobsMsgStructure!

From the Structural perspective, the Oceanography is made of OceanographyMsgStructure!

From the Structural perspective, the OnlineStore is made of OnlineStoreMsgStructure!

The PrintingJobsMsgStructure has PrintJob, TechnologyType, NoCopies, Deadline, Customer,

PaperQuality, Duplex, PrintJobID, and Color!

The OceanographyMsgStructure has Speed, Roughness, Location, and Altitude!

The OnlineStoreMsgStructure has SandH, BuyerID, Price, Return, and SellerID!

 88

 For each of the messages types in the language of encounter, we have a text file

similar to that in Figure 5.2.2 that represents the message structure. It is obvious that the

natural language interface gives very satisfactory options to the humans to express their

ontological specifications. The book by B.Zeigler and P. Hammonds on simulation-based

data engineering gives more insights into the natural languages and its usages [5]. For

more on SES and ontology design refers to [45].

 As we have seen in section 5.1, the marketplace architecture is a domain-

independent design, where the language of encounter ontology is a domain-dependent

structure. Combining both methodology results in an automated powerful negotiation

model that provides enough expressiveness power while enforcing negotiation protocols

to capture different user agents behaviors. Figure 5.2.3 shows the big picture of the two

methodologies.

 89

Figure 5.2.3: System negotiation modeling approach

5.3 Negotiation System Model Process Flow

 In the previous two sections we explained the implementation of our approach

using FD-DEVS and SES formalisms. In this section we will explain the negotiation

system design process. Figure 5.3.1 shows the process flow of the negotiation model.

 The system designer started the process by defining the domain-dependent

message structure using a GUI tool that we implemented. The output of the GUI is a

natural language for SES ontology structure where SES can be used to create the

ontology representation in XML schema. The schema will be the input to the JAXB

compiler which in turn results in Java classes defined for the domain of interest. Those

 90

Java packages are ready to use but carry no information or data yet. The second pipeline

in bottom starts by implementing our negotiation protocols (rules and requirements) in

FD-DEVS specifications, which results in a generic domain-independent marketplace

model. The tailored marketplace is a result of the designer choice of the domain of

interest, more on that in the next chapter. The marketplace receives messages, interpret

them by unwrapping them (unmarshal) and it might need to marshal them with data and

send them. On the service provider side, the same scenario occurs.

Figure 5.3.1: Negotiation model process flow

The process of unmarshalling and marshalling the language of encounter

messages represented in Java classes between the requestors and the service providers is

shown in Figure 5.3.2. On the service provider side, his data collections or services are

represented in a pruned entity structures and XML instances. The pruned entity structures

(PESs) are product descriptions such as (PrintJob = “Newspapers”,

 91

TechnologyType=”Digital”, NoCopies=”1”, Deadline=”20”,

Customer”RequestorName”, PaperQuality=”High”, Duplex”yes”, PrintJobID=”15382”,

and Color=”BlackandWhite”). These variables are encoded in XML instances in the same

formats of the XML schema for ContractQuery message. When the service provider uses

JAXB data binding “unmarshaller” of the PESs on an empty ContractQuery message

class, the returned message will be a ContractQuery with the above data inserted in the

corresponding slots of the domainMsgStructure entity; after that, the message can be

exchanged between agents

Figure 5.3.2: Unmarshalling and marshalling process between service providers

and the service requestors.

 92

CHAPTER 6. AUTOMATIC MARKETPLACE GENERATION FOR

A SPECIFIC DOMAIN OF INTEREST

6.1 Steps in the Marketplace Generation

 Designing the negotiation system is a very time consuming task which consists of

many steps. We divided the steps here into two groups. The first group is regarding

defining the dynamic message structure ontology. The second group is for designing the

Marketplace phases, transitions and output in FD-DEVS formalisms. To design the

language of encounter ontology for a specific domain, the system designer needs to

follow the following steps:

1. Writing an SES natural language that describes the language of encounter’

ontologies. This requires from the designer to write each message structure for

each specific domain.

2. Using SES builder tool which was developed in our LAB (ACIMS LAB) [51], to

create the ontology structure in SES XML schemas. The SES builder is an

efficient tool for Knowledge Representation and data engineering and ontology

design [26]. SES builder is also useful to prune SES XML files. For more

information on pruning SES refer to [5].

3. The result of the second step associates each negotiation primitive with a SES

schema. Java Architecture for XML Binding (JAXB) allows users to map Java

 93

classes into XML representations and vice versa [32]. JAXB compiler takes XML

schemas as inputs and produces Java classes and interfaces [33]. The negotiation

system designer can use the JAXB compiler to create negotiation messages

packages that can be plugged directly into Java files (our objective is to use them

in the Marketplace implementation).

4. The output packages of the JAXB compiler can be used now in the Marketplace

Java file.

To create the Marketplace negotiation protocols in FD-DEVS, the designer can use

the FD-DEVS GUI tool, which is a useful tool to generate Java templates [27], to create

the Marketplace states and transition specifications. The following steps are to be

performed by the designer:

1. Use FD-DEVS GUI to define the Marketplace phases, the internal function and

the external function tables. The tool will result in two files. One is an XML

representation of the model and the second is a Java file.

2. Take the Java file which is a domain-independent generic marketplace template

for the negotiation protocols.

In order to integrate the language of encounter Java packages with the domain-

independent marketplace, the following steps must be carried out:

 94

1. Importing the specific domain message classes into the marketplace model. For

example, if the designer is developing an Oceanography domain negotiation

system, then he must import the specific messages for the Oceanography domain.

If another designer wants to develop online store negotiation system, then he

much import the negotiation messages for OnlineStore domain. As a result, based

on the domain of interest, the designer must manually import the same domain

messages packages.

2. Remove the messages definitions of the generic marketplace model and define

new messages classes based on step 1.

3. Unwrap messages classes and wrap them in the deltext method and the out

method in order to provide the capabilities of sending data or receiving data (to be

able to use using Setvariable and Getvariable methods).

4. The phase ProcessingCapability suggests that the marketplace receives a

CapabilityQuery to find the appropriate providers for a specific job. Hence, the

marketplace needs to access its database (in the form of pruned XML files) to

unmarshal data in order to send them back to the requestor via a

CapabilityStatement message. The designer must handle this process by adding

the correct JAXB Unmarshalling code.

Figure 6.1.1 shows the flow of the manual steps that the negotiation system designer

needs to follow. The figure shows five time consuming and tedious human interaction

 95

tasks that each designer needs to go through before he starts tuning up dynamic coupling

and decoupling in the hierarchical model. Writing SES natural language needs a lot of

careful from doing syntax errors, in addition that each message in the language of

encounter needs a separate SES natural language, which results in 17 different text files.

The second step needs to import each of the 17 SES text files into the SES builder and

create the SES XML schema. The third step will need a 17 system commands for each of

the SES schemas to convert them into Java packages using JAXB compiler. In order to

import a domain specific message structure, we need to write in the header file of the

Marketplace Java file many lines of codes to import the correct messages. In the last step,

a lot of work needs to be done. Unwrapping each of the messages in the deltext method

and wrapping each message in the out method consumes a lot of time and effort.

The following section will show how we automate all these tedious and time

consuming steps by developing a code generation tool that does most of the work on

behalf of the designer. The tool reduces the human interactions into two very simple

inputs from the designer. The designer then can do little of work tuning on the

Marketplace model.

 96

Figure 6.1.1: Manual steps in generating the negotiation system for a specific domain

6.2 Automatic Generation and Integration of the Negotiation Marketplace

 In order to help the designer in defining the message structures, we have

developed a simple, easy to use Graphical User Interface shown in Figure 6.2.1. The user

of the GUI can add any subdomain he is interested in (for example PrintgJobs is a sub

domain of domain Services). Then the tool asks the user to enter information about each

message of the language of encounter. For example, it will ask how many fields does

message “Accept” has, what are the names of each of them. The user or the designer

might select two fields: CustomerName and PrintServerName. Then it will ask about the

next message in the language of encounter and so on until all of the messages are defined.

 97

Figure 6.2.1: SES ontology creation GUI

The output of the SES ontology generation GUI tool is a collection of SES natural

language text files, one for each message type. An example was given before. With the

help of the source code of the SES builder we automatically generate an XML

representation of the SES natural language by running the code:

sesinxml = NatToXml.getXML(SESnaturallanguagetext);

where SESnaturallanguagetext is the SES natural language and the

NatToXxml.getXML is a method in the class NatToXml that generate an XML

representation of a natural language input.

 98

Then we convert the XML representation (String sesinxml) into an XML schema

by running the line of code:

String schema = XmlToSes.getSchema(sesinxml);

The returned value of the above code is a schema stored in as a String variable.

Then the tool writes each of the schemas of the messages into files with the extension

“.xsd” to prepare them for the JAXB compiler to create the target Java packages. The

SES schema is the representation of a master Ontology that contains all domains defined

so far and pruned with their structures. An example is given in figure 6.2.2. If we add a

new domain (say PrintingJobs) to the ontology it will be added automatically as a new

specialization of the sub domains as in Figure 6.2.3.

Figure 6.2.2: Accept message structure for Oceanography and OnlineStore

 99

Figure 6.2.3: Accept message structure after adding PrintingJobs

Translation into Java Classes

The system syntax command for JAXB compiler is:

xjc schema.xsd –d dirName –p PackageName

xjc is the JAXB compiler.

schema.xsd is the SES structure representation in XML schema.

-d dirName is the name of the directory where to output the Java classes.

-p PackageName is the name of the Java files package name.

 100

The method ExecJAXBSchemaCompiler as shown in Figure 6.2.4, executes the

appropriate system command on each of the elements in the Set schemas (where each

elements in the Set represents a message representation). The schemas files (“*.xsd”) are

saved under “currentPath/Messages/” and the output package name is

NegotiationMessages. At the end of the method, a call to the method

PostProcessingJavaClasses is needed. This method makes extends (derived class) each of the

messages of class “entity” which is the base class for message exchanging in DEVS

JAVA. Also it imports the package (“import GenCol.*;”). At this point, the Java

packages are complete and can be used by the Marketplace Java model to declare the

appropriate messages for the specific domain of interest.

Tailor of FD-DEVS for a Specific Domain

The second step that needs human interaction is very simple and all what it needs

is to call a Java method (namely CreateFDDEVSModelFor) with the domain of interest as a

String input such as “Oceanography or PrintingJobs”. Since our Marketplace architecture

is standard and implements the negotiation protocols we defined early, one time

definition of the states, deltint table and deltext table in the FDDEVS GUI tool is enough.

The XML model representation is very important can be stored somewhere for the tool to

access. The in ports and out ports of the Marketplace model are also defined in the XML

file. So the XML model file is an input also to the Java method CreateFDDEVSModelFor.

Hence the standard calling of the Java method is as follows:

CreateFDDEVSModelFor("PrintingJobs");

 101

where the MarketPlace.xml is the standardized design of the Marketplace model.

Executing the line of the code above generates a tailored Marketplace Java model for

PrintingJobs domain. The model has PrintingJobs language of encounter structure classes

and ready to be used. Similarly for Oceanography domain:

CreateFDDEVSModelFor("Oceanography");

Figure 6.2.4: Class ExecJAXBSchemaCompiler to execute the compilation commands

public void ExecJAXBSchemaCompiler(Set schemas){

 Iterator itrschema = schemas.iterator();

 while(itrschema.hasNext()){

 String schema = (String)itrschema.next();

 String[] command = new String[6];

 command[0] = "xjc";

 command[1] = "./Messages/" + schema + ".xsd";

 command[2] = "-d";

 command[3] = "./src/";

 command[4] = "-p";

 command[5] = "NegotiationMessages." + schema;

 try{

 Runtime.getRuntime().exec(command);

 }

 catch (Throwable t)

 {

 t.printStackTrace();

 } }

 PostProcessingJavaClasses(schemas);

 }

 102

Figure 6.2.6 shows the implementation of method CreateFDDEVSModelFor. The

method is using class AtomicFDD, which is a class used in FDDEVS GUI that was

developed in our Lab. The class is modified to create the following code generation steps

for any negotiation Marketplace model:

1. Import the required Java classes for the negotiation process to take place, and the

appropriate message package for the domain of interest.

2. Declare an instance of each of the negotiation primitives (language of encounter

message) as shown in Figure 6.2.5.

3. In the deltext method, get message X when received on the corresponding in port

“inX” that was designed to receive messages of type X. After receiving a

message, store it in the corresponding local variable produced in step 2 and then

generate the appropriate code to unwrap the message to get DomainMsgStructure

class that has the get and set methods to allow the designers to access the data

received or set variables to be sent into a message. The objective of storing the

messages into local variables provides the capabilities for future data accesses and

processing.

4. Create the JAXB Unmarshaller code to provide the Marketplace to access its

database during the phase ProcessingCapability.

5. Prepare DomainMsgStructure classes and wrapping them into the corresponding

language of encounter primitive; and then send it through the appropriate out port.

This step simplifies the designer job into adding setV methods to marshal the

messages with data that he would like to send.

 103

Figure 6.2.5: Local messages declaration variables for the marketplace model

private Accept accept;

private BestProvider bestprovider;

private Busy busy;

private CapabilityQuery capabilityquery

private CapabilityStatement capabilitystatement

private ContractQuery contractquery;

private CounterOffer counteroffer;

private Decline decline;

private Item item

private ItemCheckResult itemcheckresult;

private ItemRequest itemrequest;

private LinkEstablished linkestablished;

private NotMet notmet;

private Offer offer;

private ProvidersChosen providerschosen;

private Reject reject;

private Terminate terminate;

 104

Figure 6.2.6: Class CreateFDDEVSModelFor for the domain of interest

 Summary

In this chapter we showed how we automated the process of generating the

Marketplace model given a message type of the language of encounter and the domain of

interest. For example, if the message is “ContractQuery” and the domain is

“Oceanography”, the tool will select the pruned sub SES of the ContractQuery ontology

that defines the message structure under the domain Oceanography. The overall

 public void CreateFDDEVSModelFor(String thesubdomain, String atomicXMLFile){

 String filename = atomicXMLFile;

 AtomicFDD atomicFDD;

 try { AtomicJAXB atJaxb = new AtomicJAXB();

 atJaxb.initializeModel(filename);

 atomicFDD = atJaxb.atomicFDD;

 }

 finally {

 }

 if(atomicFDD != null){

 GenerateLanguageofEncounter();

 atomicFDD.generateDEVSModel("", LanguageofEncounter, thesubdomain);

 atomicFDD.writeDevsjavaModel("./models/java/");

 } }

 105

automated pipeline of the Marketplace generation is shown in the figure below (Figure

6.2.7).

Figure 6.2.7: Marketplace generation flow

 106

CHAPTER 7. EXPERIMENTS AND RESULTS

 The application of the negotiation activity can be applied into many multi-agent

disciplines where a user or an agent initiates the process by asking a query or a request to

be fulfilled. The user seeks to find either the best provider for his request or a provider

that can meet his requirements. In this chapter we will show two scenarios of interactions

where the negotiation model is an essential to the success of requirements fulfillment.

The first experiment is concerning surveillance systems in which observers negotiate

with active or passive sensors to find the right sensor that can provide the right data and

measurements over a specific region. The marketplace intermediates the interactions to

find out the best data provider on behalf of the observer. The second experiment occurs

very frequently in distributed engineering applications. A user or an engineer tries to find

computing resources, where he can deploy his jobs and gets responses from the service

provider within a specific deadline. The marketplace helps all negotiating party to reach

an agreement. These examples show that the service provider can change dynamically

and also how dynamic coupling and decoupling can be added in DEVS environment with

the appropriate provider.

7.1 Oceanography in Surveillance domain

 The problem of finding the best data source has been widely studied in the

research. The objective is to find either the shortest path or the most efficient solution

which takes into account Link Bandwidth, how fast does the source process data, etc. In

 107

this section, we will focus on how a requestor of data can find the right data provider for

his specifications and how the data providers can be selected dynamically over time. The

marketplace permits requestors to communicate with the appropriate data providers based

on its database records. Also, the marketplace can decide on behalf of the requestor on

who is the best provider. Such a situation occurs if the designer of the domain

implements some decision making to compare different offers from the service providers

to pick the best out of them. On the other hand, in most of the situations, the decision

making is made by the user. However, in this example, the marketplace receives Reject

and/or Accept messages, and then it chooses the best of them. In the next section on

distributed services environments, we will show how the marketplace receives Offers

messages and routes them to the correct destination (requestor). No decision making will

be made by the marketplace except in finding the appropriate service providers.

 We applied our system to the Oceanography field in surveillance systems in

which experts observe different kinds of nature phenomena that might occur in the ocean.

Monitoring the sea level is critical in order to be prepared for any of destruction

phenomenon that could affect our cities and maybe causing a terrible impact on our life

such as in Tsunami effects. Many authorities and governments have radars and sensors

collecting data above the oceans all day time trying to detect any Oil slicks, Tsunami,

earthquakes, volcanoes activities, etc. Sensors are divided into two types: namely active

sensors and passive sensors [55] [62]. Passive sensors depend on the solar radiation; they

can detect different object properties such as reflections, roughness of the surface, speed.

However, passive sensors cannot measure the distance to the objects or the sea level. On

 108

the other hand, active sensors are independent of the solar radiation; they operate by

sending different wavelengths and detect how much of the waves are reflected from the

object. This feature gives them the ability to measure the distances to objects [59]. Active

sensors are capable of measuring sea level and can be used to detect the changes that

Tsunami can cause on the ocean level. For more details on Radar sensors and their

operational specifications refer to the European Southern Observatory (ESO) site [63].

 In this experiment we will show that our negotiation model can provide observers

the required capabilities to discover, locate and establish data links with the appropriate

sensors. After that, data and information can be exchanged.

 7.1.1 Language of Encounter Structure

 We have defined the message structure in the language of encounter ontology as

shown in table 7.1.1. We compiled the schemas of each of the message types into a Java

package and we named it OceanographyMessages. The table below shows that some of

the messages carry no information other than its type, which is all what it is needed for

the marketplace to transit from one phase to another. Some messages carry information as

needed by the experiment.

 109

Message Type Contents

Accept

SensorName, and RequestorName

BestProvider

SensorName

Busy

-

CapabilityQuery

AltitudeThreshold

CapabilityStatement

Sensors

ContractQuery

Speed, Roughness, Location, and Altitude

CounterOffer

-

Decline

-

Item

-

ItemCheckResult

 -

ItemRequest

-

LinkEstablished

SensorName, and RequestorName

NotMet

-

Offer

-

ProvidersChosen

SensorsNames

Reject

-

Terminate

SensorName, and ObserverName

Table 7.1.1: Language of encounter structure for Oceanography domain

 110

 7.1.2 Observer Model

 The Observer model starts the negotiation process in ServiceDiscovery phase

causing the transmission of a CapabilityQuery message to the Marketplace asking if any

of the sensors can provide a sea level altitude greater than a pre-defined threshold. The

marketplace replies by sending the names of the sensors who can provide such data (need

to be an active sensor type). After receiving the CapabilityStatement with the names of

the sensor from the marketplace, the Observer model transits into IssueContract and

marshals his specifications in a ContractQuery message and sends it to the marketplace.

The ContractQuery will contain the different types of data that the Observer is interested

in (namely Speed, Roughness, Location and Altitude). The marketplace then informs the

Observer of the best provider sensor by sending a BestProvider message to it. After

knowing the best provider, the Observer issues a LinkEstablished message asking the

marketplace to setup a communication channel with the chosen data sensor. Then the

sensor starts sending data periodically to the Observer until the collected data does not

meet the specifications (this occurs when the altitude is less than the threshold). Once the

dedicated sensor announces that he does not have the appropriate data. The Sensor will

ask the marketplace to terminate the channel to the Observer, after that the Observer

starts a new cycle looking for the next best provider. Figure 7.1.2.1 shows the scenario.

 111

Figure 7.1.2.1: Oceanography best provider changes over time

In this example, we assumed that there are three regions on the ocean, region A,

region B and region C. in region A, the sea level is above the threshold, at that time,

Sensor 1 is the best provider of the data and he can provide it for while because he is

covering a large region (A). In region B, Sensor 2 is the best provider. Since the waves

move forward leaving the angle view of Sensor 2 at region C, then Sensor 3 becomes the

next best provider. Figure 7.1.2.2 shows the atomic model of the Observer along with its

input ports and output ports. Figure 7.1.2.3 shows the state transition diagram.

 112

Figure 7.1.2.2: Observer atomic model

Figure 7.1.2.3: Observer state transition diagram

 113

7.1.3 Marketplace Model

 The Marketplace receives a CapabilityQuery from the Observer to find out the

sensors who are capable of measuring the sea level altitude. The Marketplace replies with

the active sensors names since all of them can provide altitude measurements. Then it

forwards the ContractQuery message to the same chosen sensors in the

CapabilityStatement which is the output of ProcessingCapability phase. After that it

waits to receive from the Sensors either: Accept, Reject or Offer messages. In this

experiment we have three active sensors, Active Sensor 1, Active Sensor 2 and Active

Sensor 3. If it receives two Rejects and one Accept, then it will choose the one who

responded with Accept as the best provider and sends its name in a BestProvider message

to the Observer. If it receives all Reject, it will send an empty BestProvider. If it receives

more than one Accept, then it will send the last one who replied with Accept as the best

provider. Once the Observer receives a best provider the Marketplace will establish a link

between them. When one of the two communicated parties sends a Terminate, the

Marketplace handles that by removing the communication link between them. Figure

7.1.3.1 shows the atomic model of the Marketplace along with its input ports and output

ports. Figure 7.1.3.2 shows the main state transitions for the Marketplace model for this

experiment.

 114

Figure 7.1.3.1: Marketplace atomic model

Figure 7.1.3.2: Marketplace main state transitions

 115

7.1.4 Sensor Model

 The Sensor model has database in the form of pruned SES files of the

ContractQuery, which has fours variable as mentioned above (Speed, Roughness,

Location, and Altitude). These data are a proposed data and not real, because of the lack

of having real Radar sensors. However, the model gives useful insights on how collected

datasets can be used; and no matter how the data is stored in the real sensors, it easily can

be mapped into pruned SES files. The proposed XML files have time stamps based on the

simulator clock. So, if the simulator clock is 55, then the sensors will access file

“data55.0.xml” which is stored under the corresponding directory (Active Sensor 1 has

directory “AS1”). When the sensors receive the ContractQuery message, they unmarshal

their corresponding pruned XML files and check whether the variable “altitude >=

Threshold”. If the statement is true, the sensor will send Accept, otherwise it will send

Reject.

 If one of the sensors who responded with Accept is chosen as the best provider,

the communication link will be established to it. After which it keeps retrieving the data

from its own pruned XML files every 2 simulation clock and sending the data to the

Observer model. The process proceeds as long as the data he is collecting is greater than

the Threshold. Once the Altitude is less than the Threshold, the sensor will send

Terminate. Figure 7.1.4.1 shows a pruned XML sample file for Active Sensor 1. Figure

7.1.4.2 shows the atomic model of the Sensor model and Figure 7.1.4.3 shows the state

transition diagram.

 116

Figure 7.1.4.1: Pruned XML file for active sensor 1 -ContractQuery

Figure 7.1.4.2: Sensor atomic model

 117

Figure 7.1.4.3: Sensor state transition diagram

7.1.5 Coupled Model and Simulation

Figure 7.1.5.1 shows the coupled model of the simulation. The system consists of:

Observer model, Marketplace model, Passive Sensor 1, Passive Sensor 2, Active Sensor

1, Active Sensor 2 and Active Sensor 3. The simulation of the negotiation process results

in the same behavior as we expected. From simulation time 22 until 70, Active Sensor 1

is the best provider and is chosen to be the data source for the Observer. From simulation

time 94 until 116, Active Sensor 2 is the best provider and is chosen as the data source

for the Observer. And finally, from simulation time 142 until 172, Active Sensor 3 is the

best provider and the appropriate data source. The Figures 7.1.5.2 and 7.1.5.3 show

snapshots of the simulation at running.

 118

Figure 7.1.5.1: The coupled model

 119

Figure 7.1.5.2: Routing ContractQuery to the active sensors

 120

Figure 7.1.5.3: Active sensor 1 is the best provider and the data source

 121

7.2 Distributed Services Environment

Exploiting service providers in a distributed services environment has been a

tedious task to achieve. That is because of the fact that service providers are

geographically distributed and loosely coupled [21]. Users or engineers have been always

try to share computing resources because many of distributed systems are costly and

expensive to design and maintain. Hence, whenever it is possible, different companies

and other parties prefer to have software services that are optimally utilized where they

can deploy their models and jobs on the grid on demand. In these environments, the users

concern about different parameters such as the execution time, deadline until they get

responses, the quality of the data they need, the solution efficiency.

 Having the services distributed brings the following challenges into systems

management techniques. First, users will need help from a third party to locate and find

out the appropriate providers among many of them. Second, privacy and transparency

where users do not like to publish their interests to every provider registered in a multi

agent environment. Third, users do not want to waste time and money to discover their

candidates. For example, in [15] an investment banking system based on web services

have been discussed where semantic ontologies were developed to represent services in

an attempt to close the gap and match between requesters and providers. The point here is

that you have many distributed and loosely coupled investment systems and the users

cannot locate the provider who can meet their requirements. As a result, a service model

based on the semantics is used to make the users understand and choose their best match.

 122

In this section, we will show printing jobs scenarios in which users sends different kinds

of printing jobs and negotiate on different aspects of the job specifications until they

reach an acceptable agreement within their range. The problem is very close into its

definition to the problem of deploying computing jobs (or programs) into distributed

computing grid. This scenario captures most of the issues that could be found in such

engineering service environments.

 7.2.1 Language of Encounter Structure

 We used the GUI that we developed to define the structure of each of the

messages in the language of encounter. The result of the automation tool is a Java

package that we gave it the name PrintingJobsMessages. In designing the message

structures for this domain, we chose some selections of the types and technologies in

current printing servers. The following is a list of the printing technology along with their

applications.

Digital Printing

• Brochures

• Journals

• Booklets

 123

Embossing Printing

• Greeting Cards

• Metals

• Garments

Flexography Printing

• Milk and Beverage Cartons

• Disposable Cups

• Containers

• Adhesive Tapes

• Envelopes

• Newspapers

• Food and Candy Wrappers

Letterpress Printing

• Business Cards

• Company Letterhead

• Proofs

• Billheads

• Forms

• Posters

• Embossing

 124

• Hot-leaf Stamping

Engraving Printing

• Stationery

• Wedding Cards

• Business Cards

• Letterhead

Gravure Printing

• Label

• Flexible Packaging

• Cartoning

Thermography Printing

• Fax Printers

• Business Cards

• Letter Head

• Invitation

For instance, if a customer is concerning with printing business cards, he might

choose thermography, Engraving or Letterpress technology. Also, we defined different

aspects for paper quality, deadline, color and duplex. The table below shows each

message type and the contents/information that it carries.

 125

Message Type Contents

Accept

Customer, PrintServer, and PrintJobID

BestProvider

-

Busy

-

CapabilityQuery

PrintJob, and Customer

CapabilityStatement

PrintJob, and PrintServer

ContractQuery

PrintJob, TechnologyType, NoCopies,

Deadline, Customer, PaperQuality, Duplex,
PrintJobID, and Color

CounterOffer

PrintJob, TechnologyType, NoCopies,

Deadline, Customer, PaperQuality,
PrintServer, Duplex, PrintJobID, and Color

Decline

-

Item

-

ItemCheckResult

 -

ItemRequest

-

LinkEstablished

Customer, and PrintServer

NotMet

-

Offer

PrintJob, TechnologyType, NoCopies,

Deadline, Customer, PaperQuality,
PrintServer, Duplex, PrintJobID, and Color

ProvidersChosen

-

Reject

Customer, PrintServer, and PrintJobID

Terminate

-

Table 7.2.1: Language of encounter structure for PrintingJobs domain

 126

 We assumed also that if a new printing server would like to join the printing

services community, he should send a “MyCapability” message to the Marketplace to

register himself. MyCapability message should contain at least the provider ID and name

along with what printing capabilities he can provide such as: Business Cards, Wedding

Cards.

 7.2.2 User/Customer Model

 The user of the printing services system starts the negotiation process by sending

a service discovery request to the marketplace asking whether his job can be serviced by

any of the printing servers. The marketplace replies with whoever can provide the service

for that specific job, for instance, print server 3 provides Business Cards printing. After

discovering the appropriate service providers, the user starts to negotiate with the selected

providers by exchanging offers and counter offers on different printing attributes such as

paper quality, color, the deadline to finish printing. Once an agreement is reached, the

user will be satisfied with that specific job specification and sends Accept. In modeling

such an interaction behavior, A DEVS Java model is developed with the following

decision making rules.

• The User model is searching for a provider who has the Business Cards printing

capability.

• The user would accept an offer if one of the following conditions is satisfied:

 127

1. If the paper quality is medium or high, the color is full HD and the

deadline is less than 80.

2. If the paper quality is medium or high, the color is RGB and deadline is

less than 30.

3. If the paper quality is medium or high, the color is grayscale and the

deadline is less than 20.

• If the offer does not match any of its acceptable ranges, the user sends back a

counter offer asking either his first preference or a modified one based on the

history of the offers he was receiving. In our model, we chose that the user sends

his first preference.

Figure 7.2.2.1 shows the User/Customer atomic model along with its input ports and

output ports.

Figure 7.2.2.1: User/Customer atomic model

 128

Figure 7.2.2.2 shows the state transitions. At the beginning a start message is

injected into the User model causing it to transit into ServiceDiscover phase. In this

phase, the User puts its printing job type and its name into a CapabilityQuery message

and sends it to the Marketplace model at the end of the phase (internal transition). Then

the User waits for a CapabilityStatement in phase Wait. After receiving the

CapabilityStatement, it gets the selected providers for his job and transits to state

IssueContract, where a ContractQuery message is prepared with different printing job

specifications and attributes to be sent to the selected providers. Note here that if

CapabilityStatement that the user has just received from the Marketplace does not contain

any providers, then even if the User sends a ContractQuery message to the Marketplace it

will not be routed to any of the providers since none of them supports the User

requirements. The internal transition from IssueContract outputs ContractQuery to the

Marketplace and the User goes into state Agreement waiting for an agreement with any of

the appropriate providers. While the User in the Agreement phase, he will be receiving

different Offers from the selected providers. It will wait in the Agreement state for a

specific time (we selected it to be enough until all the providers complete sending their

offers). The internal transition function causes the User to transit into DecisionMaking

phase, in which it starts pulling each Offer he received and decide whether it meets his

acceptable range or not. In this state, the User unmarshals the data he needs from the

Offer message to help him decide on that offer, this include the different fields in the

message such as: PaperQuality, Color, Deadline, TechnologyType. If the Offer does not

meet his interests, the User goes into IssueCounterOffer state where the internal function

 129

cause a CounterOffer message to be sent at the end of that phase to the source of that

specific Offer. After sending all CounterOffers to the providers involved in the

negotiation process, the User waits in state Wait. The internal transition function takes the

User from Wait into Agreement again and the same cycles of Offers –CounterOffers

proceeds until an acceptable Offer is detected. If the User receives an Offer that is

acceptable to him, then during the DecisionMaking state the User will decide to transit to

phase Acceptance. The internal transition from Acceptance causes a message Accept to be

sent to the Marketplace and then to the provider who owns that Offer. Immediately after

that, a transition to phase LinkEstablishment occurs. The internal transition from

LinkEstablishment causes an output of message LinkEstablished to be sent to the

Marketplace and the appropriate provider in order to inform them that the user is ready to

receive the service. The User transits into Receiving Data until the provider processes his

job and send him back an acknowledgment (DataOut) that he finished processing his job.

Once the User is informed that his job is finished, he goes into Termination state causing

message Terminate to be transmitted to the Marketplace.

 130

Figure 7.2.2.2: State diagram for User/Customer model

 7.2.3 Marketplace Model

The generic automated Marketplace model is used here. However, we added two

more functionalities to permit the Marketplace to intermediate the negotiation to enhance

the performance and efficiency. The two functionalities are:

1- Dynamic coupling and decoupling to setup channels between the User

model and the service providers based on the message source and

destination. For example, if a CounterOffer is aimed to be delivered to

Print Server 6, then a channel should exist between the User and the Print

Server 6 to enable them of exchanging the messages. At the same time,

 131

there is no need to have a coupling between Print Server 4 and the User

since no CounterOffer with his name as a destination.

2- When receiving a ContractQuery message from the User to be forwarded

to the appropriate providers. The Marketplace unmarshals it and adds a

unique PrintingJobID field. The purpose of this field is to enable the

Marketplace to keep track of all the jobs that goes between users and

providers, and to differentiate between all of the jobs, it will be helpful to

have the Marketplace adding a unique ID for each job in order for future

purposes such as resolving an a agreement. For example, when a User

complains about an agreement violation, the Marketplace can access its

own database and find out the job that needs to be resolved.

The rest of the Marketplace behaviors follow the same rules and specifications as

mentioned previously when we discussed the Marketplace architecture and its

functionalities. We will point out here that when the Marketplace receives a

ContractQuery from users, it will forward it to the appropriate providers based on their

capabilities that were published in the past. After which the Marketplace waits for

responses from the providers. When it receives offers from the providers, it routes them

back to the destination of the Offer messages. Figure 7.2.3.1 shows the Marketplace

atomic model along with its input ports and output ports.

The Marketplace database consists of XML files in the project path under

directory “MarketplacePrunedDB”. These XML files contain the printing job type name

 132

and the names of the providers who can provide that printing type. For example, Figure

7.2.3.2 shows a sample XML file for Business Cards printing types and the provider

names which are: Print Server 1, Print Server 3 and Print Server 6.

Figure 7.2.3.1: Marketplace atomic model

Figure 7.2.3.2: Business Cards.xml file

 133

 7.2.4 Service Provider Model

The Print Server model or Service Provider accesses its own XML files database

in the same way the Marketplace accesses its database. Each of the Print servers has

different printing capabilities that are stored in the XML files, which are pruned SES

files. For example, Print Server 1 has the capability to print Business Cards, Brochures,

Newspapers and Posters. The specifications of each of these printing capabilities will be

stored under the corresponding PES file for that printing capability; for example,

“Business Cards.xml”. We assume that each of the print servers can update or change on

these specifications such as Deadline in order to match user requirements. The

modifications process of the aspects follows some rules which were defined for each of

the Print Servers models. The scope of this research is not on how the decision making

occurs on the Print Server side or the user side. It could be a manual user interaction, or

an automated mathematical model that captures the user objective function. Hence, in our

implementation we have assumed some random updates on different printing jobs

specifications, for instance, we used that CurrentDeadline = PreviousDeadline – Update.

If a new Print Server would like to join the printing services community, he sends

a “MyCapability” message including his name and the printing capabilities he provides.

Then the Marketplace will add him to its database along with his printing capabilities.

When the Print Server model receives a ContractQuery message, he transits into

DecisionMaking state, where a decision will be made on whether he can meet the

requirements of the printing job in the ContractQuery message or not. If he can, then he

will send Accept and an agreement will be reached. However, if he cannot meet the

 134

customer specifications, he will send an Offer message to the Marketplace including his

current offer and his name. The Marketplace receives the message, find out the customer

name by unmarshalling the message, and then routes it to the appropriate receiver. The

way we designed the decision making rules in this experiment is to show how negotiation

cycles of Offer-CounterOffer occur. On the other hand, in the previous experiment as we

explained, the decision making was direct with best provider chosen.

The internal transition function causes the transition from DecisionMaking to

Offering phase, the output of Offering phase is an Offer message. After that, the Print

Server model holds in WaitonOffer phase; in which the Print Server waits to receive

Accept, Reject or CounterOffer. If he receives a CounterOffer, he goes into the same

cycle of DecisionMaking->Offering->WaitonOffer, or he can accept and goes into

Acceptance state which results into sending Accept message. In this implementation, we

assumed that if a Print Server sends an Offer to a Customer and the customer accepts the

offer, then an agreement is reached. No need to go back to the Print Server and asking

him whether he accepts or no.

If the Print Server receives Accept, he will hold in state ProvideService for the

time defined in the Offer Deadline. Internal transition causes the model to transits from

ProvideService to Passive and an output of DataOut will be sent to the Customer

informing him that the processing of his job has finished. Figure 7.2.4.1 shows the atomic

model of the Print Server model (or Service Provider model) along with its input ports

and output ports.

 135

Figure 7.2.4.1: Print server atomic model

The state transition diagram of the Print Server is shown in Figure 7.2.4.2.

Figure 7.2.4.2: Print server state diagram

 136

 7.2.5 Coupled Model and the Simulation

Figure 7.2.5.1 shows the coupled model which is a higher hierarchical level of the

atomic models. The output ports of the User model is connected to the input ports of the

Marketplace. None of the output ports of the Marketplace model is connected to any of

the input ports of the service providers. Where we aim to add the coupling or remove it

dynamically based on the destination of the messages or the capabilities of the providers.

For example, when a ContractQuery is received from the User model, the Marketplace

add coupling with those of the providers who provides that printing service defined in the

ContractQuery (Figure 7.2.5.2). Since we have in our simulation only one customer, we

connected the output port “outCapabilityStatement" of the Marketplace to the User input

port “inCapabilityStatement".

addCoupling(M,"outCapabilityStatement",U,"inCapabilityStatement");

We have seven Print Servers each of which has its own printing capabilities

which are defined in his own PESs database. When the Marketplace needs to send a

message to Print Server X, it adds coupling to it, sends him that message and removes the

coupling unless its needed in the next step of the simulation. The Print Servers can easily

send their messages to the Marketplace because their output ports are connected to the

input ports of the Marketplace model. Print Servers models and the User models

exchange their Offers-CounterOffers through the Marketplace model (Figure 7.2.5.3 and

Figure 7.2.5.4).

 137

If a Print Server model and the User model needs to communicate, they inform

the Marketplace and then the Marketplace add the required coupling permitting them to

negotiate. This situation occurs when they reach an agreement, the customer will ask for

a link to be established resulting in the Marketplace adding a link between the two parties

of the agreement. The link will be removed once the job processing is done (Figure

7.2.5.5 and Figure 7.2.5.6).

 138

Figure 7.2.5.1: PrintingJobs coupled model

 139

Figure 7.2.5.2: Dynamic coupling of ContractQuery exchange

 140

Figure 7.2.5.3: Negotiation through exchanging Offer messages

 141

Figure 7.2.5.4: Negotiation through exchanging CounterOffer messages

 142

Figure 7.2.5.5: Link establishment messages

 143

Figure 7.2.5.6: PrintingJob processing is finished

 144

 The output of the negotiation activity is an agreement as shown below. When we

started the simulation, we did not know the result ahead of time. After the simulation is

done, we compared the negotiation result with the Customer decision making options

mentioned above in section 7.2.2. The terms of the agreement match the first condition

of the User model decision making:

1. If the paper quality is medium or high, the color is full HD and the

deadline is less than 80.

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Agreement Offer information is:

Customer : Customer

Job Type : Business Cards

Print Server : Print Server 6

Color : FullHDColor

Paper Quality : High

Deadline : 78

Duplex : Yes

Number of Copies : 1

Technology Type : Thermography

>>>

 145

Summary:

In this experiment we showed how the negotiation activity can be applied to the

domain of distributed services environments. The marketplace agent plays a key role into

discovering services providers and supervising the interaction between user agents and

service providers. Having a trusted third party (Marketplace) gives the collaborative

agents the confidence to deploy their jobs. A designer might want to use the same system

to deploy programs or jobs into some computing resources to improve utilization. In such

a situation, the designer might need to include Bandwidth, Execution Time, I/O tasks, etc.

After that, the application of our system is straightforward and automated to generate the

correct code that the designer will need. Hence, our approach is valid to be used under

any of software and hardware multi-agent environments.

 146

CHAPTER 8. PROOF OF CONCEPT (DEVS/SOA)

8.1 DEVS/SOA Environment

 DEVS Service Oriented Architecture is a web services multi-server environment

to support DEVS simulator. The system consists of two services, namely MainService

and Simulation Service. Our concern in this section is the MainService and how can we

deploy our models in the system. The MainService has four functionalities, Upload

DEVS models, Compile DEVS models, Simulate DEVS models and Get results of the

simulation. In order for our models to upload, compile and simulate correctly under the

DEVS simulator, some minor modifications are needed to be done, which are:

• Atomic models need to inherit “atomic” class rather than “ViewableAtomic”, and

the coupled model needs to inherit “digraph” class rather than “ViewableDigraph”

class.

• DEVS Service Oriented Architecture was designed to support interoperability

between different platforms and for heterogynous servers. In order to support that,

the system nodes exchange messages among each other as strings in XML

formats. For us to use such capability, we created a new class type of each of the

language of encounter that has a String local variable where we send the pruned

 147

XML structure of a specific message as a string. Figure 8.1.1 shows the

ContractQuery primitive class.

The DEVS/SOA system we used is a centralized distributed simulation, which

means, a coordinator controls the time for the next event Nt . The coordinator asks each

node in the distributed environment for their local next time event Nt and collects them

all. Then the coordinator calculates the minimum Nt , and informs each of the servers to

change their next time event to the minimum Nt that was just computed. The following

section shows the steps in deploying our models in DEVS/SOA and the output results of

the distributed simulation. For more details on DEVS/Service Oriented Architecture

system specifications and services, refer to [22][48][49]

 148

Figure 8.1.1: ContractQuery class implementation for DEVS/SOA

8.2 Printing Jobs Models Deployment in DEVS/SOA Environment

 After preparing the Print Jobs experiment to run on DEVS/SOA environment, we

chose five different machine servers to deploy the models. The first step of the models

deployment is the IP assignments of each of the models Figure 8.1.2. The assignment

does not need to be one-to-one as shown in table 8.1.1. The second step is to upload the

models to the servers, where a copy of each of the models (client) will be sent to the

 149

appropriate machine that has the IP address assigned to Figure 8.1.3. The third step is to

compile the models and then the last step is to run the simulation.

IP Model

150.135.218.200 Customer, Print Server 2, Print Server 4, Print

Server 5 and Print Server 7

150.135.218.201 Print Server 1

150.135.218.203 Print Server 3

150.135.218.204 SOAMarketPlace and the Coupled model

(ServicesSOAEnv)

150.135.218.206 Print Server 6

Table 8.1.1: Models assignment to the machines

We assigned Print Server 1, Print Server 3 and Print Server 6 to different

machines dedicated to run their models because we knew from the beginning that those

three print servers are the only ones capable to provide the customer request. Hence, in

order to show that the negotiation occurs between separate machines, we chose this

assignment.

 150

Figure 8.1.2: DEVS/SOA IP assignment

 151

Figure 8.1.3: Models uploading process

 After the simulation is over, we got the results as we expected. In the following

figures, we will explain each of the server machines outputs. Figure 8.1.4 is the Customer

model on machine 150.135.218.200. The output shows that the Customer sent a

ContractQuery message to the SOAMarketplace asking for Business Cards Printing Job.

Then he starts getting Offers which transits him to DecisionMaking->IssueCounterOffer-

>DecisionMaking-> IssueCounterOffer …and so on, until he receives an Offer that is

acceptable to his decision making rules. After that, he establishes a link with the provider.

 152

Also, we implement the Customer to print out any Offer he accepts. The output that says

“Offer information …” is the terms and Offer specifications that the Customer agreed

upon. Notice here, that although the rest of the other Print Servers (2, 4, 5, 7) are

deployed and running on this machine, none of them produced output that is because they

are not part of the negotiation since they do not provide Business Cards printing

capability.

Figure 8.1.4: The output of the customer machine

 153

 Print Server 1 and Print Server 3 outputs are almost the same except that each one

of them outputs whatever Offers they are sending to the Customer. The offers information

is for Business Cards printing. Notice here also that the Deadline does change from time

to time since we designed them to update their Deadline such as:

CurrentDeadline = PreviousDeadline – Update

 Print Server 6 is the winner provider of the negotiation process since he replied to

the customer with an Offer that is acceptable to the Customer satisfaction. Hence, we can

see in the output of the Print Server 6 that it goes into phase ProvideService. Print Server

1 and Print Server 3 outputs do not show that they provided any service to the Customer.

Figure 8.1.5 shows a snapshot of the outputs of Print Server 1 and Print Server 3. Figure

8.1.6 shows the output of Print Server 6.

Figure 8.1.5: Print server 1 and print server 3 outputs side by side

 154

Figure 8.1.6: Print server 6 output, showing providing service

Figure 8.1.7 shows a snapshot of the SOAMarketplace output on machine

150.135.218.204. the output shows that after the marketplace received a CapabilityQuery

for Buisness Cards job, it accessed it’s XML files database and found that Print Server 1,

Print Server 3 and Print Server 6 are the only providers for Business Cards. Then it

received a ContractQuery and transits to InterpretQuery to interpret the message. Then

the market place went through RoutingOffer-> RoutingCounterOffer-> and so on, until it

 155

received an Accept message, it forwarded it to the appropriate provider (Print Server 6)

and then it transited into Monitoring after receiving LinkEstablished message. After Print

Server 6 finished processing the Customer printing job, the Customer sends Terminate to

the Marketplace causing its transition from Monitoring phase into Active phase.

Figure 8.1.8: The output of the SOAMarketplace machine

 156

 This section ends our objective of the DEVS/SOA implementation which is a

proof of the concept that our system can be used in different distributed engineering

applications. Whether the distributed nodes are sensors who collect data and information,

computing resources who provides an environment for software and hardware resources,

print servers who provides different printing capabilities or online stores who provide

products; all these and other domains can use the system to support different interaction

behaviors. This can be done by using flexible negotiation protocols that are enforced by

the trusted third party marketplace architecture we developed. The language of encounter,

which was designed to be dynamic in structure, gives the domains enough expressive

tools and capabilities to define their own messaging system so that users of the domain

under consideration can simply understand and use them in the correct manner.

Negotiation with service providers can take couple of minutes at the beginning to find the

best (or an appropriate) provider; but once it is found, it could save hours and even days

of data transformations or jobs processing.

 157

CHAPTER 9. CONCLUSION AND FUTURE WORK

 We believe that the negotiation process is an essential activity that needs to be

used widely and correctly in today complex distributed systems. The complexity comes

in having many parameters that manage computing resources in geographically

distributed systems. Such systems need to provide negotiation capabilities on these

parameters in order to reach agreements and behaviors that are efficient and intelligent.

For example, a programmer that needs to deploy a task on a busy computing resource

might keep on rechecking the resource availability every 1 minute. However, if we let the

programmer negotiates with the computing resource; he might find out that the resource

will be available until after 1 hour. As a result, he will wait and come back to deploy his

task after 1 hour which is less costly and more efficient for both parties.

We have constructed an agent-based negotiation system that supports brokering

between service providers and requestors. Two powerful and yet flexible negotiation

protocols are used to enforce the rules of interactions. The rules are implemented in a

trusted third party marketplace model which supervises the whole negotiation process

while preserving privacy and transparency among the system users. Discrete event

modeling and simulation environment (DEVS formalism) is used to implement the

generic marketplace model. In order to accompany the negotiation protocols with

flexible expressive primitives to handle negotiation behaviors in complex distributed

systems, a dynamic structure of the language of encounter is implemented in SES

 158

ontological framework. Each negotiation message has a separate ontology that defines its

structure under different domain specialization entities.

 The domain-independent marketplace design integrated with the domain-

dependent language of encounter ontology gives system designers a very powerful tool to

benefit from. With the automated code generation tool, given the language of encounter

structures under a specific domain of interest and the domain name (both as inputs)

produces a tailored negotiation marketplace model that is ready to be used. System

designers usually need to add specific decision and behavioral criterions such as dynamic

coupling to realize their wishes about the system they are interested in. This automated

marketplace code generation results in a huge reduction amount in the software

development time.

 The negotiation system is evaluated by showing two different experiments for two

different domains (applying it to other domains will have similar scenarios). The first one

shows how brokering can lead to a data transformation contract from a data collector

(such as a sensor) to a data requestor. Also we showed how the data collector can be

changed dynamically through the use of the negotiation protocols. In the second

experiment, we applied our system to the domain of distributed software services

environment in which, services providers can do different job capabilities. In this context,

we used print servers as our services providers. Since some print servers provide similar

capabilities as others, and some provide services that none of the other can provide,

negotiation over the capabilities is necessary. In order to have a proof of the concept in

 159

distributed computing systems, we deployed our negotiation framework in Web Services

environment (DEVS/SOA). Each one of the nodes has its own data (PESs) and running

one of the print server capabilities. The system behaviors confined with our objectives

and expectations. Our system provides the infrastructure that supports different domain

with different negotiation requirements.

 For the future work, we aim to add more functionality on the Ontology design

GUI. The GUI right now is very basic and supports adding and deleting a domain along

with its language of encounter structure. It will be useful for the designers to edit and

modify on the structure of a domain. For example, if the designer makes a mistake in

entering one or more of the slots names and he need to go back to fix it, currently he

needs to redo the whole process. We aim to provide an “Edit” capability where the user

can keep whatever he needs, delete whatever he does not need and modify errors in the

names and the number of slots in the structure.

 In some situations, providing manual interactions with Offers-CounterOffer

message with the information that they are carried would be useful for systems users to

understand what is happening. Another goal in our future work is to develop a decision

making user interface under the DEVS/SOA environment where Web Services providers

can manually modify and understand what the agreements terms are. The interface on the

service provider side needs to support reading a received CounterOffer or a

ContractQuery, unmarshal the data carried by the message and display it to the service

provider. Then the provider can enter an offer information manually through the

 160

interface, and then the interface will marshal it into an Offer message and sends it back to

the requestor. In this case, the interface needs to be connected to the service providers

XML data files (PESs) where it can read them, parse them and display them in a friendly

way. Also it needs to be able to write and modify on these PESs. The interface on the

requestor side needs to do the opposite. It need to marshals a ContractQuery from

manually entered data and starts the negotiation, and then receive Offers messages,

unmarshal them and display them to the requestor to decide whether to accept the offer or

start a CounterOffer. Either case the requestor enter manually data to be marshaled in the

corresponding message, and then sends it to the service provider. The objective here is to

support more features that some users can benefit from depending on their needs and

convenient.

 The framework provided here focused on the language of encounter as a support

for the designer to implement more detailed negotiation protocols. Future work could

extend the automation modeling to include such protocols and their properties. As stated

earlier, the termination of the negotiation process is an important consideration. Future

work might provide tools to support methods to guarantee termination of the negotiation

so that it does not go forever. One approach can be implemented by including a timing

counter in the marketplace structure which is decremented after each negotiation cycle of

offers and counter offers. Once the timer hits zero, the agent can send a terminate

message. Another approach that users might consider is to associate a timer each time the

user start a negotiation process and compare the timer with the current DEVS simulation

 161

clock. Once the clock reaches the timer value, the user terminates the corresponding

negotiation process by sending a Terminate message.

 Currently, researchers are concerned in developing techniques to process

ontologies under different domains. One useful step into this research is to have a tool

that can take an ontology under a specific domain and map it into language of encounter

structure for that domain. In this regard, some messages structure are more sensitive than

others. For example, ContractQuery and Offer are more sensitive than Terminate or

Accept because they carry information on the agreement terms such as deadline, job type.

In order to commercialize this methodology, a designer can setup marketplace

services for different domains. For example, for an airline tickets booking system, a

designer can have a marketplace web service along with the language of encounter

structure defined for that domain. Then, the designer can have another marketplace web

service for printing photos for example, where the service users can upload their photos

and print them and go pick them up. For this printing domain, the language of encounter

will differ from the airline booking system.

Having a Web Services Description Language (WSDL) interface for the services

that the marketplace provide us enable the development of this methodology as web

services. For example, a service provider can have WSDL interface information about its

name, location, IP address, port number, services that it provides. The marketplace as

well needs to provide WSDL interface so that users know how to locate it and query it.

 162

REFERENCES

[1] Bernard P. Zeigler, Herbert Praehofer and Tag Gon Kim, “Theory of Modeling

and Simulation”, 2nd Ed, Academic Press, 2000.

[2] Bailin, S. and Truszkowski, W. “Ontology negotiation between scientific

archives”, Proceedings of the Thirteenth International Conference on Scientific and

Statistical Database Management (SSDBM 2001), IEEE Press, July 2001.

[3] M.H. Hwang and B.P. Zeigler, ``Reachability Graph of Finite & Deterministic

DEVS``, IEEE Transactions on Automation Science and Engineering.

[4] Bernard P. Zeigler, "DEVS Today: Recent Advances in Discrete Event-Based

Information Technology", 11th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), pp.148-161, 2003.

[5] Bernard P. Zeigler and Phillip E. Hammonds, “Modeling and Simulation-Based

Data Engineering. Introducing Pragmatics into Ontologies for Net-Centric

Information Exchange”, Academic Press, 2007.

[6] J. Kim and A. Segev, “A web services-enabled marketplace architecture for

negotiation process management”. Decision Support Systems, Vol. 40, pp.71-87, July

2005.

[7] Y. Feng, Y. Lei, Y. Li and R. Cao, “Research on Collaborative Negotiation for E-

Commerce"”. Proceeding of the 2
nd

 international conference on Machine Learning

and Cybernetics, Nov. 2003.

[8] Greg O’Hare and Nick Jennings, “Foundations of Distributed Artificial

Intelligence”, Sixth-Generation Computer Technology Series, John Wiley & Sons,

Inc. 1996.

[9] Inaba and T. Okamoto, “Negotiation Process Model to Support Collaborative

Learning”. Systems and Computers in Japan, Vol.28, No. 14, 1997.

[10] Krishna, V.; Ramesh, V.C., “Intelligent agents for negotiations in market games.

I. Model”, IEEE Transactions on Power Systems, Vol. 13, Issue 3, Aug 1998.

 163

[11] Murugesan, S., “Negotiation by software agents in electronic marketplace”,

TENCON Proceedings, Vol.2, 2000.

[12] Masvoula, M.; Kontolemakis, G.; Kanellis, P.; Martakos, D., “Design and

development of an anthropocentric negotiation model”, Seventh IEEE International

Conference on E-Commerce Technology, 2005.

[13] Park, H.C. and Kim, T.G., “Relational algebraic system entity structure for

models management”, IEE Preceedings on Computers and Digital Techniques,

Vol.143, Iss.1, pp.49-54, 1996.

[14] M. Contreras and J. Hernández, “Ontology Solution for Communicating

Heterogeneous Negotiation Agents in a Web-based Environment”. Proceedings of the

Fourth Latin American Web Congress (LA-WEB’06) IEEE, pp.59-66, 2006.

[15] D. Bell, S. A. Ludwig, M. Lycett, “Enterprise Application Reuse: Semantic

Discovery of Business Grid Services”, Journal of Information Technology and

Management, vol. 8, no. 3, pp. 223-239, 2007.

[16] Choi, B. Park, and J. Park, “A formal model conversion approach to developing a

DEVS-based factory simulator,” Simulation, vol. 79, no. 8,pp. 440–461, Feb 2003.

[17] L. Ntaimo, B. Zeigler, M. Vasconcelos, and B. Khargharia, “Forest Fire Spread

and Suppression in DEVS,” Simulation, vol. 80, no.10, pp. 479–500, Oct 2004.

[18] Concepcion and B. Zeigler, “DEVS Formalism: A Framework for Hierarchical

Model Development,” IEEE Transactions on Software Engineering, vol. 14, no. 2,

pp. 228–241, Feb 1988.

[19] J. Lee, Y. Lim, and S. Chi, “Hierarchical Modeling and Simulation Environment

for Intelligent Transportation Systems,” Simulation, vol. 80, no. 2, pp. 61–76, Feb

2004.

[20] M. Hwang and S. Cho, “Timed Analysis of Schedule Preserved DEVS,” in 2004

Summer Computer Simulation Conference, A. Bruzzone and E. Williams, Eds. San

Jose, CA: SCS, pp. 173–178, 2004.

[21] Addis, M. J., Allen, P. J. and Surridge, M., “Negotiating for Software Services”.

Eleventh International Workshop on Database and Expert Systems Applications

(DEXA2000), September 2000.

 164

[22] Taekyu Kim, “Ontology/Data Engineering Based Distributed Simulation over

Service Oriented Architecture for Network Behavior Analysis”, Ph. D. Dissertation,

Electrical and Computer Engineering Dept., University of Arizona, Spring 2008.

[23] M.H. Hwang, ``Generating Finite-State Global Behavior of Reconfigurable

Automation Systems: DEVS Approach``, Proceedings of 2005 IEEE-CASE,

Edmonton, Canada, Aug. 1-2, 2005.

[24] V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge, “Ontologies for

supporting negotiation in e-commerce”. Engineering Applications of Artificial

Intelligence, 18:223–236, 2005.

[25] L. Yilmaz and S. Paspuleti, “Toward a Meta-Level Framework for Agent-

Supported Interoperation of Defense Simulations”. The Society for Modeling and

Simulation International, JDMS, vol.2, pp.161-175, July 2005.

[26] SESBuilder, “An Integrated tool to utilize System Entity Structure”. 2007,

http://www.sesbuilder.com/

[27] W3C XML Schema for Finite Deterministic (FD) DEVS Models, 2007.

http://saurabh-mittal.com/fddevs/

[28] Saehoon Cheon, Doohwan Kim, Bernard P Zeigler, “System Entity Structure For

XML Meta Data Modeling; Application to the US Climate Normals”, IEEE

International Conference on Information Reuse and Integration, Las Vegas, NV, July

2008.

[29] S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M.

Klein, and S. Melnik. “The Semantic Web – on the respective roles of XML and

RDF”. IEEE Internet Computing, September-October 2000.

[30] Krishna V. and Ramesh VC., “Intelligent Agents for Negotiations and Market

Games, Part 1: Model”. IEEE transaction on Power Systems, Vol.13, pp.1103-1108,

1998.

[31] Archibald J. K., Hill J. C., Johnson F. R. and Stirling W. C., "Satisfying

Negotiations". IEEE Transaction on Systems, Man and Cybernetics, Part C, Vol. 36,

Issue 1, pp.4-18, Jan. 2006.

[32] Oracle Technology Network, Tutorial on JAXB “Unmarshaling and Marshaling

Data: JAXB Insurance Profile System”,

http://www.oracle.com/technology/sample_code/tutorials/index.html

 165

[33] Ed Ort and Bhakti Mehta, Java Architecture for XML Binding (JAXB), March

2003. http://java.sun.com/developer/technicalArticles/WebServices/jaxb/

[34] Osborne M. J., and Rubinstein A., “Bargaining and Markets”. Academic Press,

San Diego, 1990.

[35] Mahajan R., Rodrig M., Wetherall D. and Zahorjan J., “Experiences Applying

Game Theory to System Design”, proc. SIGCOMM PINS Workshop, 2004.

[36] Persons S. and Wooldridge M., “Game Theory and Decisions Theory in Multi-

Agent Systems”. Autonomous Agents and Multi-agent Systems Vol.5, No.3, pp.243-

254, 2002.

[37] Binmore K., and Vulkan N., “Applying Game Theory to Automated Negotiation”,

Netnomics, Vol.1, No.1, pp.1-10, 1999.

[38] Krishna V. and Ramesh VC., “Intelligent Agents for Negotiations and Market

Games, Part 2: Application”. IEEE transaction on Power Systems, Vol.13, pp.1109-

1113, 1998.

[39] eBay. http://www.ebay.com

[40] Von Neumann J. and Morgenstern O., “The Theory of Games and Economic

Behavior”, Princeton Univ. Press, Princeton, NJ, 1944.

[41] Morris, J. and P. Maes. "Negotiating Beyond the Bid Price.", Workshop

Proceedings of the Conference on Human Factors in Computing Systems (CHI 2000),

April, 2000.

[42] “Modeling and Simulation-Based Data Engineering” Online Site.

http://www.devsworld.org/

[43] Priceline. http://www.priceline.com/

[44] Mahajan R., Rodrig M., Wetherall D. and Zahorjan J., “Experiences Applying

Game Theory to System Design”, proc. SIGCOMM PINS Workshop, 2004.

[45] RTSync Tutorials. http://www.sesbuilder.com/ses_tutorial.html

[46] Amazon Auctions. http://www.amazon.com/auctions

[47] Susan E. Lander, “Issues in Multi agent Design Systems”, IEEE Expert:

Intelligent Systems and Their Applications, v.12 n.2, p.18-26, March 1997.

 166

[48] Mittal, S., Risco-Martin, J.L., Zeigler, B.P., "DEVS-Based Simulation Web

Services for Net-centric T&E", Summer Computer Simulation Conference SCSC'07,

July 2007.

[49] Cheon, S., and B.P. Zeigler., “Web Service Oriented Architecture for DEVS

Model Retrieval by System Entity Structure and Segment Decomposition.” Paper

presented at the DEVS Integrative M&S Symposium, Huntsville, AL 2006.

[50] L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H.

Wang, and C. Wroe. "OWL Pizzas: Practical Experience of Teaching OWL-DL:

Common Errors & Common Patterns”, IEEE 14th International Conference on

Knowledge Engineering and Knowledge Management (EKAW), pp. 63-81, 2004.

[51] Arizona Center for Integrative Modeling and Simulation (ACIS).

http://www.acims.arizona.edu/

[52] P.F. Patel-Schneider., “Building the Semantic Web Tower from RDF Straw.”,

Proc. 19th Int'l Joint Conf. Artificial Intelligence (IJCAI), pp.546-551-2005.

[53] P.F. Patel-Schneider., “what is OWL (and why should I care)?.”, Principles of

Knowledge Representation and Reasoning, 2004.

[54] H. Peter Alesso and Craig F. Smith, “Developing Semantic Web Services.”, A K

Peters, Ltd. 2005.

[55] S. Rodriguez, S. Le Mouëlic, J. P. Combe, C. Sotin, “Complementarity of Radar

and Infrared Remote Sensing for the Study of Titan Surface”, Workshop on Radar

Investigations of Planetary and Terrestrial Environments, 2005.

[56] Fensel et al., “Enabling Semantic Web Services: The Web Service Modeling

Ontology”, Springer, 2007.

[57] Asuncion Gomez-Perez, Oscar Corcho, "Ontology Specification Languages for

the Semantic Web," IEEE Intelligent Systems, vol. 17, no. 1, pp. 54-60, Jan/Feb,

2002.

[58] Shadbolt, N. Hall, W. Berners-Lee, T., “The semantic Web revisited.”, IEEE

Intelligent Systems, Vol. 21, Issue.3, 2006.

[59] Nancy Gordon, Cliff Ogleby, Remote Sensing Centre for Environmental Applied

Hydrology, Department of Civil and Agriculture Engineering, University of

Melbourne.

 167

[60] Tim Berners-Lee, Senior Researcher at MIT's CSAIL,

http://www.w3.org/People/Berners-Lee/

[61] Horrocks and P. F. Patel-Schneider., “A proposal for an owl rules language.” In

Proc. of the Thirteenth International World Wide Web Conference (WWW 2004).

ACM, 2004.

[62] Henderson F. M. and Lewis A. J. Manual of Remote Sensing, vol. 2, 1999

[63] The European Southern Observatory (EOS) - http://www.eso.org/public/

[64] Hoh In, Olson, D. and Rodgers, T., “A Requirements Negotiation Model Based

on Multi-Criteria Analysis Source”, Proceedings of the 5th IEEE International

Symposium on Requirements Engineering, 2001.

[65] N. Lung, N. cheng, L. Lian-chen and WU Cheng, “An Auction-based

Negotiation Procedure to resolve Price related Conflicts for Online Marketplaces”,

Proceedings of the Third International Conference on Semantics, Knowledge and

Grid, pp. 86-91, 2007.

[66] H.M. Kim and A.Sengupta, “Extracting knowledge from XML document

repository: a semantic Web-based approach Source”, Information Technology and

Management, Vol. 8, Iss. 3, September 2007, pp. 205 – 221, 2007.

[67] WordNet A lexical database for the English Language.

http://wordnet.princeton.edu/

[68] John McCarthy, “Human Level AI Is Harder Than It Seemed”, 1955.

[69] P. Zeigler, S. Mittal and X. Hu, “Towards a Formal Standard for Interoperability

in M&S/System of Systems Integration”, GMU-AFCEA Symposium on Critical

Issues in C4I, May 2008.

[70] Bravo, M.C. Perez, J. Sosa, V.J. Montes, A. Reyes, G., “Ontology support

for communicating agents in negotiation processes”, Proceedings of the Fifth

International Conference on Hybrid Intelligent Systems, Nov. 2005.

[71] Farquhar, A.; Fikes, R.; & Rice, J., “The Ontolingua Server: A Tool for

Collaborative Ontology Construction.” Knowledge Systems Laboratory, September,

1996.

 168

[72] Dung, Tran Quoc; Kameyama, Wataru, “A Proposal of Ontology-based Health

Care Information Extraction System: VnHIES”, IEEE International Conference on

Innovation and Vision for the Future, March 2007.

[73] Tomai & M. Spanaki, "From ontology design to ontology implementation: A web

tool for building geographic ontologies", In Proceedings of the 8th 8th AGILE

Conference on Geographic Information Science, Estoril, Portugal, May 2005.

[74] Mathieu, P. and Verrons, M.H., “A generic model for contract negotiation.”, In

AISB'02 Symposium on Intelligent Agents in Virtual Markets, April 2002.

[75] RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/rdf-schema/

[76] DISTAL – Distributed Software On-Demand For Large Scale Engineering

Applications. EC project EP26386.

[77] Cooper, T.P., “Case studies of four industrial meta-applications”. High

Performance Computing and Networking, Springer Lecture Notes in Computer

Science, 1999.

[78] Zuo Z. and Zhou M., “Web Ontology Language OWL and its description logic

foundation”, Proceedings of the fourth International Conference on Parallel and

Distributed Computing, Application and Technologies, Aug. 2003.

