AN AUTOMATED METHODOLOGY FOR NEGOTIATION

BEHAVIORS IN MULTI-AGENT ENGINEERING APPLICATIONS

by

Moath Jarrah

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

2008

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Moath Jarrah

entitled An Automated Model for Negotiation Behaviors in Multi-Agent Engineering
Applications

and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy in Electrical and Computer Engineering.

Date: 06/26/08

Bernard P. Zeigler
Date: 06/26/08

Roman Lysecky
Date: 06/26/08

Jonathan Sprinkle

Final approval and acceptance of this dissertation is contingent upon the candidate's
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: 06/26/08

Dissertation Director: Bernard P. Zeigler

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the copyright holder.

SIGNED: Moath Jarrah

ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor Dr. Bernard P. Zeigler,
who guided me through this research work and introduced me to many exciting areas in
discrete event simulation and its application. His help and support are endless. He made
me gain new knowledge and insights in my career, without him I would never reach to
this point. I am very grateful for his dedication and advising.

I would like to thank Dr. Roman Lysecky and Dr. Jonathan Sprinkle for serving in my
defense committee.

I would like to thank all the members of ACIMS Lab, especially Chungman Seo, Taekyu
Kim and Ho Jun Lee for the useful discussion and advice.

Special thanks go to my mother and father who never let me down.
Finally, I would like to express my appreciation to my wife, Pi-Tsung and my son, Malik

who never stopped supporting me and encouraging me in all aspects of my life. They
never made me give up on anything. This achievement is dedicated for them.

TABLE OF CONTENTS
LIST OF FIGURESccuueiiiiiittiiiiteetennnccnccscscccccccsssssssssssssssces 9
LIST OF TABLEScuuuuiiiitiiiiiietsencceeccssccccccccscssssssssssssssscnns 12
ABSTRACT ..cuiiiiiiiiieeiittttteeeeessssnnssssssssscccccccsssssssssssssssces 13
CHAPTER 1. INTRODUCTION ...ccciieeeeeetiiceceeeessnnsssssssscccccnns 15
LI GOAIS «.eveenvereeeeenreeseeeeeseenreeseessesesseesseseeseensenseessensesssensesenses 15
1.2 MOIVALON «vvvveveeerereessenseeseeseeseeseessenseeseessensesssesensesssensenmsens 15
1.3 OUR APPIOACK «..vveveveeneenreeseenreeseeseeseeseeseesseeseeseenseessensenseeneons 18
1.4 Organization of the DiSSErtationceveeveeeerreereereernmseersesseeseenes 19

CHAPTER 2. BACKGROUND: NEGOTIATION PROCESS, FD-

D) DAYASTE 11 T B D St 21
2.1 Research in Negotiation SyStems ...c.cc.ceveviiieiiineiiieicenecsietcsascsnsscnnne 21
2.2 Negotiation in Multi-Agent Environmentscccccoeeiiiniiiieicinrccnneens 25
2.3 Finite Deterministic-DEVSc.cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees 32

2.3.1 Coupling in DEVS Environmentc.ccocceeiieiiniiniieiincecerceesencene 39

TABLE OF CONTENTS - Continued

2.3.2 DEVS SIMUIALOT «.uuuuniiiiiiiiiiiiiiieietteteeetsecceccssssesssssssssscnnns 41

2.4 The System Entity Structure (SES) ...ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiinnn 44

CHAPTER 3. BACKGROUND: ONTOLOGY DESIGN LANGUAGES

AND THE SEMANTIC WEBcccetiiiiiiiiiiniiiinniinineccsnstcosssscones 48
3.1 Ontology Design Motivationc.ccceeiiieiiieiiineiiiercenecsssscssscsnssonasonns 48

3.2 Ontology Design Languages and Standardscccoeeeiieiiinniiinncnnnnns 50

3.2.1 XML and XML Schemacccceveiieiinieiinriiinisisecersnssessnsssssssonss 51

3.2.2 RDF and RDF Schemacccccivieiieiniriiniiiniccnrcenrcearssssosmsnscsnsons 54

3.2.3 Web Ontology Language (OWL)cciuiiiniiiniiieisenionecsnessnscsssscnssnse 58
CHAPTER 4. NEGOTIATION PROCESS AND PROTOCOLS 60
4.1 One-to-One Negotiation Protocolcccvveiccsnicssnicssnnicsssnessssnessasesssnnes 61

4.2 Service Discovery Negotiation Protocolcccceiveiiiiiiiiiiiiiiininnn 64

4.3 Domain-Dependent Language of Encountercccceveiueiiieicinecnnnnen 68

4.3.1 Language of Encounter Taxonomy and Structurecceeuveeeennee. 68

4.4 Domain-Independent Marketplace Architecturecccevviiniinnnnen. 72

CHAPTER 5. SYSTEM IMPLEMENTATIONSccoccviiiiiiniinnnnen 75

TABLE OF CONTENTS - Continued

5.1 FD-DEVS and the Marketplace Architectureccceevveiiinieinicnnnns 75
5.2 SES and the Messages Structure Ontologyccceeeveeieiarcineieiarcnnccnnes 83
5.3 Negotiation System Model Process FIOWcccccoveiiieiiiniiiiniiinicinncnne 89

CHAPTER 6. AUTOMATIC MARKETPLACE GENERATION FOR

A SPECIFIC DOMAIN OF INTEREST ...ccccviiiiiiiiiiiiiiineinniennnens 92

6.1 Steps in the Marketplace Generationccccceviiiiiiiniiiiiiiiiniinnnn. 92

6.2 Automatic Generation and Integration of the Negotiation Marketplace .. 96

CHAPTER 7. EXPERIMENTS AND RESULTS ..cccceviviiiniiinnennns 106
7.1 Oceanography in Surveillance domainc.cccccveiieiiiiiiniiiiiiiiinnnn. 106

7.1.1 Language of Encounter Structurec.ccccveienieiercenrcencannscenscseseses 108

7.1.2 Observer Modelcceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeenn 110

7.1.3 Marketplace Modelceivreiiiniiniiinriinrsrisnecsnscssscssscssssnassonse 113

7.1.4 Sensor Modelccvuvniiuiniiiiiiiiiiiiiiiiiiiiiiiiieiiiitiieticenieteeneanes 115

7.1.5 Coupled Model and SImulationcccccveiiieiineiiieiiecinscinsceassnnanon 117
7.2 Distributed Services Environmentccccceiiiiiiiiiiiiiiiiiiiiieiinnnn 121

7.2.1 Language of Encounter Structureccceveienieiercenrcnmecenscsnscossnses 122

TABLE OF CONTENTS - Continued

7.2.2 USer/CUSLOMET MOMel «.......vcvevrvererereresssimesessssssesesesesesesessnns 126
7.2.3 Marketplace MOMelcevevererererereressemmssesssssnssesesesssens 130

7.2.4 Service Provider MOdelovveuesererereresesemmesesesesesssssesesesesmn 133

7.2.5 Coupled Model and the SIMUIAtioNoveeerrereeeresererereserenens 136
CHAPTER 8. PROOF OF CONCEPT (DEVS/SOA) ..cccvtiiiiennnnnen. 146
8.1 DEVS/SOA ENVIFONIMENLeveveenrereerreeseeseenseeseesesseessessesseenns 146

8.2 Printing Jobs Models Deployment in DEVS/SOA Environment 148
CHAPTER 9. CONCLUSION AND FUTURE WORKc.cccceueee. 157

REFERENCESccutiiiiiiiiiiiiiiiiiiiiiiitiiiiiiitietieciecccnccnccncenes 162

LIST OF FIGURES
Figure 2.2.1: Alpha-Beta pruning algorithm..................cooiiiiiiiiii i 27
Figure 2.3.1: Different components and relations in modeling and simulation
1) 10 33
Figure 2.3.2: Internal design of the basic model.................cooiiiiiiiiiiiiiiii, 37
Figure 2.3.1.1: Hierarchical feature in DEVS models..................cooo 39
Figure 2.3.1.2: Coupled model in DEVS..... ..., 41
Figure 2.3.2.1: The DEVS simulation protocol..............c.ocoiiiiiiiiiiiiiiiiiinn, 42
Figure 2.4.1: Example, book SES structure................coiiiiiiiiiiiiiiiiiiiiiiieieen, 46
Figure 2.4.2: SES & PES relation-ontology level and the implementation level.......... 47
Figure 3.1.1: Ontology StIUCIUIE. vuett ettt e e e e e e e et e eaeenaeenaas 50
Figure 3.2.1.1: XML document for the ontology structure in figure 3.1.1.................. 51
Figure 3.2.2.1: Nested RDF graph..........ccooiiiiiiii e, 55
Figure 4.1.1: Simple sequence of negotiation aCtiVIties.cvuvveerenuerneeneinnennnnnn. 62
Figure 4.3.1.1: Ontology design for MessageX type........coevueiviiiiiiiiiiiniiiinienninne 71
Figure 4.4.1: Marketplace state machine diagram...............c..cooiiiiiiiiiiiiiin. 73
Figure 5.1.1: One-to-One negotiation protocol...........c.eviiiiiiiiiiiiiiiiiii e, 78
Figure 5.1.2: Service discovery negotiation protocol............cccoevviiiiiiiiininineennnnnn. 80
Figure 5.1.3: Marketplace model (states table)............c.ooviiiiiiiiiiiiiii e, 81
Figure 5.1.4: Marketplace model (internal transition function).................c..cooeennen. 82
Figure 5.1.5: Marketplace model (external transition function).................c.ocoueenee 82
Figure 5.2.1: ContractQuery ontology tree.ovvuiiiiiiiit i, 84
Figure 5.2.2: Natural language input for ContractQuery message...........coeevvenveennnn. 87

Figure 5.2.3: System negotiation modeling approach...................ccooiiiiiiiiii.. 89

10

LIST OF FIGURES - Continued

Figure 5.3.1: Negotiation model process flow.............ccooiiiiiiiiiiiiiii i, 90

Figure 5.3.2: Unmarshalling and marshalling process between service providers and the
SEIVICE TEQUESTOTS .« . euttte et ente ettt et e e e et e et e et e et e et et e et e et e eaeeeaeenaas 91

Figure 6.1.1: Manual steps in generating the negotiation system for a specific

JOMMAIN. ..o e e 96
Figure 6.2.1: SES ontology creation GUIL....... ..., 97
Figure 6.2.2: Accept message structure for Oceanography and
ONINESTOTE. . . ettt e e e e e ettt 98
Figure 6.2.3: Accept message structure after adding PrintingJobs........................... 99

Figure 6.2.4: Class ExecJAXBSchemaCompiler to execute the compilation
COMIMANAS .+ .1ttt ettt et ettt et et e e et et et et et e e e e aeneaens 101

Figure 6.2.5: Local messages declaration variables for the marketplace model.......... 103

Figure 6.2.6: Class CreateFDDEVSModelFor for the domain of interest................. 104
Figure 6.2.7: Marketplace generation flow..............coiiiiiiiiiiiiiiiiii e, 105
Figure 7.1.2.1: Oceanography best provider changes over time............................ 111
Figure 7.1.2.2: Observer atomic model.............cooiiiiiiiiiiiiiiiiiiieeee, 112
Figure 7.1.2.3: Observer state transition diagram..........cccco.eevuiiiiiiniieinieennennnn.. 112
Figure 7.1.3.1: Marketplace atomic model..............oviiiiiiiiiiiiiiiiiiiie e 114
Figure 7.1.3.2: Marketplace main state transitionsS.c.eeeueerneerineerneenneennnennn 114
Figure 7.1.4.1: Pruned XML file for active sensor 1 —ContractQuery..................... 116
Figure 7.1.4.2: Sensor atomic model............ooeiiiiiiiiiiiiiiiiii e 116
Figure 7.1.4.3: Sensor state transition diagram.................oociiiiiiiiiiiniiiiiiinnann. 117
Figure 7.1.5.1: The coupled model............coooiiiiiiiii e 118
Figure 7.1.5.2: Routing ContractQuery to the active Sensors.............covevvevuveennennnn. 119
Figure 7.1.5.3: Active sensor 1 is the best provider and the data source.................. 120

Figure 7.2.2.1: User/Customer atomic model.............cooiiuiiiiiiiiiiiiiiiiiieneennnn 127

11

LIST OF FIGURES - Continued

Figure 7.2.2.2: State diagram for User/Customer model......................coooiiiean. 130
Figure 7.2.3.1: Marketplace atomic model.............coviiiiiiiiiiiiiiiiiii e 132
Figure 7.2.3.2: Business Cards. XML file...........coooiiiiiiiiiiiiiiiiiee e, 132
Figure 7.2.4.1: Print server atomic model..............ooiiiiiiiiiiiiiiiiiiiiei i 135
Figure 7.2.4.2: Print server state diagram............c.ooovueiiiiiiiiiiiiiii i, 135
Figure 7.2.5.1: PrintingJobs coupled model..............cooiiiiiiiiiiiiiiien, 138
Figure 7.2.5.2: Dynamic coupling of ContractQuery exchange............................ 139
Figure 7.2.5.3: Negotiation through exchanging Offer messages....................oovu. 140
Figure 7.2.5.4: Negotiation through exchanging CounterOffer messages................. 141
Figure 7.2.5.5: Link establishment messages.........covvvviiiiiiiiiiiiiniiiiieieeannennn. 142
Figure 7.2.5.6: PrintingJob processing is finished....................co, 143
Figure 8.1.1: ContractQuery class implementation for DEVS/SOA....................... 148
Figure 8.1.2: DEVS/SOA IP asSIZNMENT.ouueiueitiitiitiiteneiieieeeeiienieeaaens 150
Figure 8.1.3: Models uploading PrOCESS......outenrtirtieeiteiiee et eaeeeieeeineennaenn, 151
Figure 8.1.4: The output of the customer machine...................coviiiiiiiiiiii i, 152
Figure 8.1.5: Print server 1 and print server 3 outputs side by side........................ 153
Figure 8.1.6: Print server 6 output, showing providing SErvice...............oeevuvneennne 154

Figure 8.1.8: The output of the SOAMarketplace machine........................c.ee 155

12

LIST OF TABLES
Table 2.2.1: Prisoner Dilemma (PD) game............c.ccooiiiiiiiiiiiiiiiiiiii e 31
Table 4.3.1.1: Classification of the language of encounter.................c.ooeiiiiine.... 70
Table 4.4.1: Marketplace states and their description...............coooeviiiiiiiiinnnenninnn.. 74
Table 7.1.1: Language of encounter structure for Oceanography domain................. 109
Table 7.2.1: Language of encounter structure for PrintingJlobs domain................... 125

Table 8.1.1: Models assignment to the machines.....................cooi ., 149

13

ABSTRACT

The ability to manage and exploit geographically distributed systems of service
providers is rather limited in today engineering solutions. Existing techniques suffer from
three main problems: first, current techniques cannot provide brokering in managing
loosely coupled service providers. Second, the engineering design of existing
management tools does not provide enough expressive capabilities for varying user
behaviors or when different domains are encountered. Third, lack of interaction between
different requestors and providers yields inefficient and very costly agreements. In this
dissertation, we will present an automated Domain-Independent Marketplace architecture
that allows user agents to interact with provider agents using two simple and yet powerful
negotiation protocols which define the rules of interactions in multi-agent environments.
Having a trusted third party marketplace supports privacy and transparency among
collaborative agents and service providers. Service providers have different capabilities
depending on the domain of interest. Such providers can be radar sensors as in
oceanography surveillance systems, print servers in distributed printing jobs community,
or they can be online stores providing products on the web in the E-commerce domain. In
order to provide negotiation in different domains, a dynamic message structuring
capability is needed. A key role to support such an expressive power is to design an
ontology that contains specialization relations between the different domains of interest.
The automation of integrating the Domain-Dependent message structure Ontology with
the Domain-Independent marketplace architecture gives the designer a powerful tool in

which systems can be tailored based on the operational purposes and objectives.

14

The System Entity Structure (SES) methodology, which is a formalism to define
hierarchical relations among entities, is used to build the required message structures
Ontology automatically through the creation of SES natural language. The architecture
design of the Marketplace suggests different phases and functionalities which are mapped
and implemented using the Discrete Event System Specifications (DEVS). DEVS/Service
Oriented Architecture (DEVS/SOA) is used to validate our system and show a proof of
the concept by deploying models of printing jobs in a web-services multi-server

environment for printing server domain.

15

CHAPTER 1. INTRODUCTION

1.1 Goals

Our goals of this dissertation consist of:

To develop and automate a modeling methodology that supports negotiation
capabilities and services to capture different user interaction behaviors in different
application domains. The emphasis is on automating domain-specific tailoring of
messages so as to provide a framework for detailed specification of negotiation
protocols.

To provide proof of concept implementation of this methodology in a web
services environment.

Note: the goals do not include providing analytical proofs of behavioral
properties of the negotiation process. In particular, although termination is a
critical issue, the framework developed must relegate its resolution to the designer

who supplies the necessary behavioral specifications.

1.2 Motivation

The ability to reserve and utilize software and/or hardware services in current

complex geographically distributed system has become increasingly difficult. The

16

complexity results from the fact that there are many aspects and factors that represent the
characteristics of these systems, such as a node bandwidth, job processing deadline, the
execution time, etc. The user’s decision of whether to use a computing service or not is
based on these factors. Many researchers and other parties have tried to provide solutions
to exploit these resources efficiently [76] [77]. However, until now the development of
methods to exploit geographically distributed information storages and computing
resources has been very limited. Existing techniques [21] suffer from three main issues:
first, current techniques cannot provide brokering in managing loosely coupled service
providers. Second, the engineering design of existing management tools does not provide
enough expressive capabilities for varying user behaviors or when different domains are
encountered. Third, lack of interaction between different requestors and providers yields
inefficient and very costly agreements. Also one main issue in collaborative distributed
multi-agent environments is providing privacy and transparency to their agents. More on

multi-agent design issues and challenges can be found in [47].

Distributed environments are seldom static. Everyday more and more service
providers are added to the system in order to provide more capabilities as the users grow
in numbers and needs. This leads to the diversity in resources and data availability which
adds new challenges to the management techniques that systems use. Hence, a manual
management is not feasible in such a community because of the number of service
providers and the heterogeneity in their information management. All of the above issues

make discovering the “Best Match” for satisfying user requirements a tedious task.

17

Web Services developments are growing dramatically nowadays and millions of
resources are being added every day to the World Wide Web. The success in e-
commerce, e-learning, online auctions, online marketplaces, information discovery and
retrieval has encouraged more and more companies to provide Web Services either to
satisfy customer requirements or to manage their distributed computing resources. In

order to reach to a successful framework design, the following issues must be supported:

¢ The system should provide brokering and negotiation services to its users.

¢ The system should provide transparency to its users.

e New service providers should be able to join the community in a simple and
efficient way.

¢ The system should provide decision making capabilities on behalf of the agents
whenever the user agents need it.

¢ The system should provide varying negotiation capabilities under different
domains.

¢ The system must provide rich expressive negotiation primitives to its users to
provide them with the capabilities to express their requirements and to able to use
the system under different domains.

e The design of the system must be simple and automated to shorten the

development time on the system designer under a specific domain of interest.

18

1.3 Our Approach

In this dissertation, we will develop an automated negotiation model that can be
utilized by different engineering domains. The model defines different concepts and
principles in the negotiation process. Our method consists of an automated Domain-
Independent Marketplace architecture that allows user agents to interact with provider
agents using two simple and yet powerful negotiation protocols which define the rules of
interactions in multi-agent environments. Having a trusted third party marketplace
supports privacy and transparency among collaborative agents and service providers.
Service providers have different capabilities depending on the domain of interest. Such
providers can be Radar sensors as in oceanography surveillance systems, print servers in
distributed printing jobs community, or they can be online stores providing products on
the Web in the E-commerce domain. In order to provide negotiation in different domains,
a dynamic message structuring capability is needed. A key role to support such an
expressive power is to design an Ontology that contains specialization relations between
the different domains of interest. The automation of integrating the Domain-Dependent
message structure Ontology with the Domain-Independent marketplace architecture gives
the designer a powerful tool where systems can be tailored based on the operational

purposes and objectives.

The System Entity Structure (SES) methodology, which is a formalism to define
hierarchical relations between entities, is used to build the required message structures

Ontology automatically through creating SES natural language. The architecture design

19

of the Marketplace suggests different phases and functionalities which are mapped and
implemented using the Discrete Event System Specifications (DEVS). DEVS/Service
Oriented Architecture (DEVS/SOA) is used to validate our system and show a proof of
the concept by deploying models of printing jobs in a web-services multi-server

environment for printing server domain.

1.4 Organization of the Dissertation

Chapter 2 gives a background on current negotiation systems and research and the
development of autonomous agents for decision making process. Also it provides a
discussion on discrete event modeling and simulation inside DEVS formalism. System
Entity Structure is introduced as an ontological framework for data engineering purposes.
Chapter 3 discusses the ontology design motivation in the Semantic Web and the
different capabilities of ontology languages in the W3C recommendations. Chapter 4
details the negotiation protocols and the language of encounter of our system with a
description of the Marketplace characteristics and the automation of how to select a

primitive structure based on the domain of interest.

The implementation of the negotiation model in DEVS environments and
ontology design in SES formalism will be given in chapter 5. In chapter 6 we automate
the process of model generation to produce a tailored marketplace model for a given
domain, which results in a code generation tool that shorten the development time on

behalf of systems designers. Then we apply our system to different engineering

20

applications and show two experiments along with distributed web services deployment
of the model to provide a proof of the concept in chapter 7 and chapter 8 respectively.
Finally, we conclude the dissertation and mention future work that might improve the

systems characteristics to support more choices and capabilities.

21

CHAPTER 2. BACKGROUND: NEGOTIATION PROCESS, FD-

DEVS and SES

This chapter gives a review of the research areas that are relevant to our work.
The first section introduces the research in negotiation systems. Section 2.2 discusses
technologies in automated user agents in multi-agent environments and the decision
making process. Sections 2.3 gives an overview on discrete event modeling and
simulation formalism DEVS and the derived Finite Deterministic DEVS specifications.
The last section ends the background discussion by introducing the System Entity

Structure formalism SES.

2.1 Research in Negotiation Systems

The negotiation process is an interaction between two or more parties in an
attempt to reach some agreement on a specific aspect. This aspect could be an idea as in
e-learning, or a price of some goods as in e-commerce, or information availability and
data provision. Hence, a multi-criterion negotiation system is needed that supports
dynamic structures based on the domain of interest [64]. During the negotiation process,
web-based agents exchange their capabilities, such as the services they provide, offers,
counter offers, speed, bandwidth, goods, ideas, topics or computation power. The result
can be an agreement or disagreement. In either case, the result depends on the interest of

the agents and their achievement of profit. A negotiation agent needs to be flexible

22

enough to act under different kinds of situations because negotiation is a dynamic activity
by nature. The process is dynamic in the sense that it involves: asking for an item or
service, discovering item/service providers, negotiating with sellers/service providers,
proposing counter offers, decision making upon the receiving of some offers, and then
acceptance or rejection of an offer. The agent needs also to make sure that he does not go

into an infinite cycle of negotiation.

Negotiation activity in multi-agent environments is an iterative behavior in which
agents negotiate by exchanging Offer-CounterOffer messages. G. O’Hare and N.
Jennings in their book on Distributed Artificial Intelligence [8] classified the research in
negotiation into three main categories: negotiation language, negotiation decision and
negotiation process. Our research interests fall into the first category. The negotiation
language category consists of negotiation protocols, negotiation primitives, semantics and
object structure. Protocols refer to polices or rules that agents must follow during their
interactions with other agents. Primitives refer to the messages that are exchanged
between the agents. Negotiation primitives (messages) can be placed into three groups:
initiators such as “request”, reactors such as “respond”, and completers such as “accept’.
The semantics give more explanation and meaning to the language of encounter
(primitives) that is being used in negotiation protocols. The semantics capabilities are
usually achieved by building an ontology which classifies primitives based on
measurements of similarity. So, for example, one can consider the two primitives
“Request” and “Query” to be equivalent. Some tools are used in order to help in

computing measurements of similarities such as WordNet [67], which gives synonyms

23

and acronyms of a given term based on the semantic meaning. This problem is well
known in the natural language processing area. The most difficult challenge is the
ambiguity in using sentences of a sequence of terms. In this work, the semantics are not
part of our work because it is not a necessary factor for system completeness and

methodology.

The object structure refers to the structure of each of the primitives during the
interaction between different agents, which defines what type of information a message
can carry. The negotiation decision is concerned with algorithms and mathematical
models to represent how user agents evaluate their objective functions. The next section
will give some insights on game theory application to this area. The last category which
is the negotiation process formulates general models and global behavior of the

negotiation participants.

The application of the negotiation process in current systems is very limited. One
reason is that current systems lack the infrastructure that can support negotiation among

parties. Also, current nodes are loosely coupled and no brokering activities are available.

Current bidding and auction systems do not provide the flexibility to negotiate on
parameters chosen by the users. They consider the price as the only parameter that in
which users are interested. For example, eBay [39] and Amazon Auctions [46] require
from the bidders that they locate an exact item and bid on it based only on its price. The

bidding is a committed action, which means that if a bidder wins, he has to buy it. This

24

discourages users of the system to bid on more than one item because they do not want to

end up buying many items when they only need one [41].

Priceline.com [43] is an airline booking auction where a user selects his flight
information (source, destination, traveling date, and returning date). And then the user
bids by entering a specific price. Priceline searches its database to find a ticket price that
is lower than the bidder price. If a ticket is found, then the bidder will get the ticket. This

scenario of negotiation has drawbacks which are summarized as in follows:

1. If bidding is accepted, then the bidder is required to purchase the ticket.

2. The bidder cannot control other information on the flights such as waiting time in
the airport, and number of stops on the way.

3. The system takes advantage of users who do not have the knowledge and
experience about ticket prices. A bidder might enter a high bidding price for a
cheap ticket.

4. It prevents the user from paying a little more money for a more comfortable

flight.

Our objective in this research is to support negotiation capabilities over more than
one dimension. We can have as many constraints as it needs. A user can choose different
criteria to be considered in addition to the price; for instance, how many stops, Airline

Company, period of the negotiation, and so on. The dynamic structure of the language of

25

encounter makes this possible and we will demonstrate later in chapter 5 and 6 how to

implement that.

2.2 Negotiation in Multi-Agent Environments

In most of business and engineering distributed systems, managing the resources
and services manually is impossible and autonomous agents are needed to act on behalf
of the system users. Negotiation process is methodology that was applied to these
systems to provide bargaining and brokering capabilities between different agents in
multi-agent environments. Such agents are not just capable of making decisions in
predictable situations, but also they need to be intelligent enough to act in any dynamic
unpredictable interaction. The agents need to communicate with each other, share data
and ontologies and negotiate with other agents to reach some agreements. Many
researchers have addressed these issues and many autonomous agents were developed
recently. For instance, a user can use search agents over the Web to search for a specific
data or information and once the appropriate data provider is found, the data will be sent

to the user.

Game theory is a branch of economics that is concerned with interactions between
agents [36] [30] [44]. It imposes mathematical models (functions) that describe each
agent utility function in multi-agent systems, and strategically try to maximize each
individual preference. Under some domains, the mathematical function of an agent is

formatted to take into account other opponents and coordinators utility functions.

26

However, the game theory is limited by the assumption of having the knowledge about
other players (agents) preferences. Negotiation probably is one of the most frequent
domains in which game theory principles have been applied. Negotiation environments
use game theory in order to model the decision making process in the negotiating agents;
which can give insights into the computation of the search space in order to analyze

different interaction strategies.

Game theory mathematically models the interaction techniques between players
along with their outcome results. It was first started with the work of von Neumann and
Morgenstern [40] in 1944. Studies in game theory assume that individuals (agents) are
rational and have well defined preferences over all relevant playing strategies. Hence,
when an individual has to choose from alternative techniques, he will choose the most
preferred strategy that maximizes his utility. This imposes difficulties in multi-agent
environments where each agent tries to achieve his own interest which leads to conflicts
with other individual preferences. Predictions about the resolution of conflict are derived

from game-theoretic solutions that use some variants of Nash equilibrium.

Algorithms that have been developed in game theory were mostly proposed to
solve or help an agent to play specific games intelligently based on the opponent choices.
The agent needs to make choices that maximize or optimize his revenue in a strategic
way. In other words, it must decide on his playing strategy based on the decisions that the
other opponents make during playing. For example, alpha-beta pruning [68] as depicted

in figure 2.2.1 uses a min-max strategy to maximize player I utility against his opponent.

27

It is clear in this algorithm that the third issue with game theory (the knowledge of the
end nodes outcomes) is hard to compute precisely ahead of time. However, it is still a
helpful algorithm when approximations are assigned to the outcomes of the end nodes.

Also some calculations can be made in advance.

6 MAX
(3) (6) (5 MIN

G B B BlE s
5 @ 0 OO0 O®® i
Gl FIEE BRI E REE

Figure 2.2.1: Alpha-Beta pruning algorithm

Martin J. Osborne and Ariel Rubinstein in [34] discussed variant sequential
models in applying game theory to bargaining. The models have a sequential structure in
the sense that each player makes decisions sequentially in a pre-specified order. The
order reflects the rules or policies of the negotiation (negotiation protocol and rules of
encounter). At all times, the negotiators care about time to protect themselves from going
into an infinite cycle of offers and counter offers. So the speed at which an agreement is
established is one factor that plays into defining the agent revenue or preference objective
function. No agreement is forced on any agent. This means that if all agents who are

involved in a specific negotiation cycle chose to accept the terms in that negotiation

28

cycle, then the agreement will take place, otherwise the agreement fails. Two important
considerations to be taken care of in applying game theory to negotiation when it comes

to computer systems are:

1. Game theory studies in multi-agent computer systems assume that agents search
for the optimal solution (or strategy). This involves the computations of all search

space which can grow exponentially as the number of variables increases.

2. The recent growth in the Internet and Web services raises the interest and the need
for more sophisticated developments in computational negotiation techniques and

autonomous web agents.

K. Binmore and N. Vulkan [37] used a simple mathematical formula to describe

the decision making process. They modeled the agreement by using two real numbers g,
and a, . Player 1 (or buyer) and player 2 (or seller) keeps some reserved value for the
item they are bargaining about [(1) and r(2) respectively]. These values are kept
hidden from each other (player 1 does not inform player 2 about his reserved value and
visa versa). If player 1 proposes a price m (the amount of money) for the item, then a, =
r(1)=m and a, = m—r(2). The agreement succeeds if both g, and a, are positive

numbers (=0). As mentioned previously in chapter 2, both agents should approve the

acceptance of the agreement terms and this model guarantees that.

29

V. Krishna and VC. Ramesh in their work on market games and their applications
used a negotiation model based on coalition partners [30] [38]. The player agent chooses
a set of agents to form a coalition. Then it uses probability profiles of the chosen agents
to compute the payoffs resulting from using different strategies by simulating the actual
bargaining. Next, it computes the probability distribution among the whole set of agent
strategies (normalized based on probability measures). Using the payoff metrics, it
arranges the strategies (solutions) on a priority basis where the solution that gives the
maximum payoff has the highest priority. After that, it chooses a new set of agents and
repeats the same computations until the agent finds the best coalition community and

chooses the best strategy for that coalition.

Negotiation also enables coordination among agents to enhance performance in
multi-agent systems where all agents aim to improve the overall system performance. In
this context, Mahajan, Rodrig, Wetherall and Zahorjan [35] attempted to resolve
selfishness routing in multi-hop networks, where Internet Service Providers try to lower
the traffic they forward (route) by either dropping packets or sending them through the
closest link which results in longer paths. The system sends anonymous messages in
which the sender ID is hidden. If the recipient node cheated by not forwarding the
messages correctly, all the neighbors isolate the cheating node from the network. The
cost here for a cheating node is that it will be punished by disconnecting it so neighbors

will not forward or receive message to or from it.

30

In competitive negotiation, each agent tries to maximize his own utility function
(maximize his satisfaction) regardless of the other agents. However, in cooperative
negotiation, an agent is concerned about other agents and he needs to compromise his
own preferences for the good of community satisfaction. Archibald, Hill, Johnson and
Stirling [31] used a strategic-form game by evaluating the utilities of all players to reach
a negotiation solution that is mutually acceptable. It does not have to be the maximum for
each agent but good enough that all players are satisfied. The authors of the paper on
satisfying negotiation used the Prisoner Dilemma (PD) as an illustrated example as
shown in table 2.2.1. The numbers represent the payoff matrix of the players utility with
4 = best, 3 = next best, 2 = next worst and 1 = worst. In PD game, two players P/ and P2
either choose to compete (defect) or cooperate with the other player. If P/ cooperates and
P2 competes, then the result is that P/ gets 1 (worse utility) and P2 gets 4 (best utility)
and vice versa. If PI chooses to compete and P2 also chooses to compete, then both get 2
(next to worst) which is the Nash equilibrium. However, if both players choose to
cooperate then both get 3 (next to best) and they call this solution a “good enough”
solution. Hence, in many negotiation scenarios, cooperation, compromise and even

altruism brings more benefit to the players rather than using competition and defect.

31

PD Game P2

Pl Coordination Competition
Coordination (3.3) (1,4)
Competition 4,1) 2,2)

Table 2.2.1: Prisoner Dilemma (PD) game

Hence, in multi-agent systems, the players (negotiators) can adopt a bottom-up
approach where each player maximizes his own utility. This approach usually results in a
non-optimal overall solution (group performance). Alternatively, the agents in the
negotiation group can adopt a top-down approach, where the objective is to optimize the
overall utility function of all players. This leads to better results in the coordination
community, where agents need to compromise their utility for the group utility. In many
situations, agents might refuse to announce their utility function to the public. In this
regard, having a trusted third party that can manage and coordinate the cooperation
between the agents is useful (marketplace). The paper [31] by Archibald to which we are
referring proposes a mathematical model for the good enough solution. The approach
supports cooperation, compromise and negotiation in multi-agent systems. It uses a

different criterion than individual optimization and led to well-defined solutions.

32

2.3 Finite Deterministic-DEVS

Discrete Event systems specifications formalism (DEVS) and its concepts were
introduces firstly by Professor Bernard Zeigler in 1976. Since then, the DEVS formalism
has been regarded as a powerful tool in many engineering applications areas such as
manufacturing [16], ecological disasters [17], computer [18], traffic [19] and command
and control (SoS) [69]. Finite Deterministic-DEVS was first introduced as Schedule-
Controllable DEVS in 2005 [23]. FD-DEVS motivation was to overcome the problem of
ODNR (once it dies, it never returns) from which Schedule-Preserved SP-DEVS [20]
was suffering. The ODNR refers to the situation when the next schedule is infinite time
which prevents the simulation from returning to any of the states that have a finite time.
Since FD-DEVS is based on the classical DEVS formalism concepts and relations and
since we used DEVS simulation after generating the template Marketplace model using
FD-DEVS tool, we will give a brief description on the modeling and simulation

environment in DEVS and the hierarchical construction of atomic models.

The Discrete Event System Specifications (DEVS) formalism provides a rich
environment in which any phenomena could be modeled by producing a mathematical
model which in turn can be simulated under the DEVS simulation environment [4].
DEVS can model discrete event systems as well as continuous systems. Any real system
(or proposed one) goes through different states or phases, receive inputs from users or

from other running entities, output messages to the interconnected properties, and has

33

functions or algorithms that decide the transition from one state to another either
concurrently with receiving inputs or after some phase period of time. Hence, a given
system could be modeled as a discrete event system with some specific parameters that
need to be computed by observing the system under consideration of its behaviors. Once
we decided on the different parameters of the system, we can model it using DEVS
formalism and then execute the simulation for performance evaluation and/or exploring
possible setups of the system until we find an acceptable system behavior. Figure 2.3.1
shows a scenario of modeling and simulation of some given system A. The experimental
frame refers to the conditions under which the system is being observed for its behaviors

and set of outputs.

Experimental Frame

Behavior databas

Modeling relations Simulatigh relations

Figure 2.3.1: Different components and relations in modeling and simulation systems

34

The definitions of the components in the figure are as follows:

The Given System: is the system under interest which we would like to model and

simulate in an attempt to monitor and alter its behavior to follow some accepted
specifications.

Model: mathematical relations and instructions that produce similar properties as the real
system under consideration. The behavior of a model is the set of all possible
input/output combinations that can be generated [1].

Simulator: it executes the model in order to emulate the real system and do comparisons,
evaluations and analysis.

Experimental frame: defines the constraints and conditions under which the system was

observed to collect its output behavior. For example, a system could be running under

specific temperature and pressure conditions.

These three objects in the Figure are related by two types of relations:

Modeling relations: relations to define whether the model is a valid model for the real

system by comparing the behavior of the model with the behavior of the observed
system. How well the model represents the system.

Simulator relations: relations to link the developed model and the simulator. The

simulator carries out the instructions and specifications of the model.

The system needs to be modeled first; the model structure could be expressed in a

mathematical language called formalism. The discrete event formalism focuses on the

35

changes of the variable values and generates time segments that are piecewise constant.
Thus an event is a change in a variable value which occurs instantaneously. Hence, the
model formalism specifies how to generate the changes in the variables values and the
time at which this should occur.

Based on the research by Bernard P. Zeigler [4], a basic model from which larger
ones could be built must be specified first. Basic models are connected into a hierarchal

scenario. The basic model consists of the following features as illustrated in Figure 2.3.2.

= The set of input ports through which external events (messages) are received.

= The set of output ports through which external events are sent and interact with
other properties.

= Two distinct parameters for each state exist which are called “phase” and
“sigma”. The phase represents the current state. Sigma defines the time period
during which the model stays in the corresponding phase. For example, in ON-
OFF model, for the active phase, sigma = ON T and for inactive phase, sigma =
OFFT.

= The time advance function which keeps the time management of the model by
monitoring the clock cycles and the sigma values of all models.

= The internal transition function specifies the next state to which a model has to

transit after some specified time.

36

= The external transition function specifies how the model should alter its behavior
by changing the state given some inputs have been received that affect the current
model state.

= The confluent transition function specifies the next state a model has to transit if a

transition to a state occurs at the same time when an input event is received.

These three functions: internal transition function, external transition function,
and the confluent transition function provides a comprehensive tools to model thoroughly
all system interactions that could be possible between the components in a specific
model. More about these three functions are given in the next section. The output
function generates and wraps a message (packet) just before an internal transition occurs

and sends it through the interconnection links between the different models.

Make a
et
(internal)

Make a
transition
(external)

Send an
output

Held for
some
time

Legend

“* inputte function
* rasult of funchion

"""""" * trizger function

Figure 2.3.2: Internal design of the basic model

DEVS formalism also provides a mathematical model based on the set theory.
The Model (M) structure of the above eight features is defined as follows:

2)

ext’

2)

con’

M =<X,S,Y, 0

int ?

A, ta >

Where
X is the set of input values

S 1is the set of states

38

Y is the set of output values

S,

int

: S =25 is the internal function

0. Ox X" >S§ is the external transition function, where

ext *

O is the total state set

X" is a collection of bags over the input set X

0, : Ox X" 2§ is the confluent transition function

A : S 2 Y?” is the output function

ta: S 2 Ris the time advance function.

At any time the system must be in some state, s. If no external event occurs, the
system will stay in state s for time given by ta(s). The advanced function ta(s) can take
any value between 0 and co. For example, if an atomic model is idle (passive state), its fa
(passive) = co. When the resting time expires, elapsed time, e=ta(s), the system outputs

the value A (s) and changes to state given by 9, (s). The output is only possible before

an internal state transition. If an external even x in X”happens to occur before this

expiration time, the system changes to state given by 9, (s,ex). Thus the internal

transition function will be in charge of the system states transition when no external
events occur. The external transition function takes over the states transitions when an
event occurs on the model input ports. The confluent transition function will be triggered

if an internal transition and an external event occur simultaneously.

39
2.3.1 Coupling in DEVS Environment

This set of mathematical variables and states defines the behavior of a specific
model M. Such a basic model is also called an Atomic model. Different atomic models
can be connected to produce a Coupled model. Coupled models can in turn be connected

to other atomic models or coupled models resulting in a hierarchical structure as depicted

in figure 2.3.1.1

J— — C
. —— o
5 AT%FTIC > / | Atomic |
= q /
. L 1],
"C-Q,f A I/ | .
S - {??' ' |
P, = —= —
= AWDMIC | _ | Atomic .
B B
/ 5
hierarchical / e

construction &%

Figure 2.3.1.1: Hierarchical feature in DEVS models

A coupled model consists of the following information:

¢ The set of components.

e The set of input ports through which a component receives external events

(messages).

40

e The set of output ports through which a message or event is sent.

The coupling specifications specify the routing of events between different

models (or components). These specifications consist of:

e External input coupling connects input ports of a coupled model to one or more of
the input ports of other components.

e External output coupling connects the output ports of a coupled model to the
output ports of other components.

¢ Internal coupling connects output ports of components to input ports of other
components. Hence, when an event is generated by a component it may be sent to

the input ports of other designated components.

As illustrated in figure 2.3.1.2, when outputs (messages) are generated by
component A, they are transmitted at the same time instant to the input ports of

component B due to the coupling between outputs of A and inputs of B.

Coupling
(internal)
L -+

AB

7
Wi

T A S

Figure 2.3.1.2: Coupled model in DEVS

2.3.2 DEVS Simulator

DEVS formalism has a well-defined concept of simulation engine to execute

models and generates their behavior. The simulator has been implemented in JAVA

resulting in DEVS/JAV A implementation. Afterward an implementation in C++ was

needed in order to achieve an efficient runtime execution; this resulted in DEVS/C++

implementation. Figure 2.3.2.1 below shows the simulator for a coupled model which

consists of:

42

1. Coordinator which assures and maintains the coupled model specifications.

2. Simulators associated with each one of the model components (basic models).

The coordinator performs the time management and controls the messaging
exchange among the simulators consistently with the coupled specifications. Simulators
respond to commands and queries from the coordinator by referencing to their assigned

models specifications.

Coupled N
Model coordina [(]5

/ N\

SN N T
(sim ulator mt r.'|J- (R]ttlLlJﬂ%’l‘

S N S
M odel Model Model
("ompaonent Component Component

Figure 2.3.2.1: The DEVS simulation protocol

43

In DEVS/C++, atomic models have the following models to represent their DEVS
mathematical formalism:
= Delta-internal: represents the internal transition function.
= Delta-external: represents the external transition function.
= Delta-confluent: represents the confluent transition function.
= Qutput: represents the output function.
= Time advance: represents the time advance function.
A model is said to be imminent when a certain sleep phase has been completed;
such a phase is determined by the model time advance function. DEVS/C++ maintains a
general-purpose template priority queue for sorting models by various keys, which could
be a name, next event time or others. A tree structure is used to order the models by their

next event times. The simulation cycle in DEVS/C++ simulator is as follows:

1. Advance the clock to the smallest next event time in the priority queue.

2. Put all models that have the smallest next event time in a set called I representing
the imminent models.

3. Execute the output functions of those in the set I and propagate the messages to
the in ports of the models that are connected directly to the output ports of the
models in set I. These messages will be collected into an input bags for the
models receiving them.

4. Put all models that have non empty input bags on their input ports into a set M.

44

5. The elements in I N M, represent the models who have inputs on their input ports
and have also internal transition occurring at the same time. So for those
elements, execute the associated delta-confluent function.

6. The remaining elements in set I represent those who only have internal transition.
Hence, execute the associated delta-internal function.

7. The remaining elements in M represent those who have external transition.

Hence, execute the associated delta-external function.

After steps 5, 6 and 7, the models will be reinserted in the priority queue with
their next even time updated. The simulation cycles are repeated until no models are
imminent or a termination condition encounters such as exceeding simulation time. This
ends our background discussion on the Discrete Event System Specifications (DEVS)
formalism environment. The next section will discuss the System Entity Structure (SES)

formalism.

2.4 The System Entity Structure (SES)

The System Entity Structure formalism provides a formal ontological framework
for specifying real system composition with information about decomposition,
specialization and taxonomy. The SES formalism has been applied to many engineering
applications and proved its usefulness such as in data engineering [28] and Network

systems [22]. In real systems, objects are represented by entities in system entity structure

45

framework. The SES represents the design space with various possible design
configurations. To search for the best configuration, pruned SESs are constructed to
reduce the search space into valid instances of the SES. For example, SES can have many
specializations and multi-aspects relations; with pruned SES, a decision will be made on
which of the entities and specialization should be chosen. The basic components of SES

are:

e Entity: entities are representation of some real world objects, which in turn can be
made of many other children entities.

® Aspect: represents the decomposition relation. An entity is composed of other
entities. The relationship between the parent and the children is “aspect”.

e Specialization: represents alternative choices that a system entity can take. Each
of the alternatives is also of type entity.

e Multi-Aspect: is a relation that expresses an all of one kind.

e Variables: are slots attached to some entities in the system. The slots can take
values in a specific range. The slots define different contents of the associated

entity.

To clarify the use of these components we give the “Book’ example which is
explained in [5]. A book is an entity; it consists of front cover pages, and back cover
(Aspect relation). The front cover is an entity. Also we can say that the front cover can

have the color Red, Green or Blue; this shows the specialization relation. A multi-aspect

46

relation exists between the entity “pages”, which is a child of the parent book, and the
entity page means that the book is made of many instances of the entity “page”. Figure

2.4.1 shows the SES structure.

boogk

book-physicalDec

hackCover pages frontCoyer

pages-physicalMuttitsp frontCover-colorSpec

page red blue green

Figure 2.4.1: Example, book SES structure

The process of pruning an SES is to construct a desired structure to meet a
particular domain specifications. The pruning process chooses one entity out of many in
specialization relations, which results in a completely pruned entity structure PES and
variables take values in their ranges [28][5]. The figure below shows the relation between
the general SES and the pruned PES. At the implementation level, they are represented

by XML schema or DTD and XML instances respectively. We are using SES to construct

47

ontology for the domain of interest. When we have more than one domain, specialization

components exist.

Ontology Level

System Entity Structure Pruned Entity Structure

pruning

' ®:: :; --------------- _ -\.
e

[]
‘JH_L Implementation Level

XML Schema or DTD XML Instances

Figure 2.4.2: SES & PES relation-ontology level and the implementation level

48

CHAPTER 3. BACKGROUND: ONTOLOGY DESIGN LANGUAGES

AND THE SEMANTIC WEB

Knowledge representation using ontology structures is a relatively new research
topic that emerged with the new requirements of the web. Semantic as well as lexical data
availability is intended from the next generation of the web. Which makes the
information not only intended for humans, but also to be processable and understandable
by machines.

Tim Berners Lee [60] who invented the World Wide Web predicted in the late
1990s that the web will be changing to support data, information and knowledge
exchange. In addition to that, he reasoned that the knowledge contained in web pages will
be understandable by the machines. Since then, semantic web has become a hot research
area in which many parties are cooperating to develop standards and rules to govern the
interaction over the net. Semantic web requires interoperability between different
services on the web which in turn requires standards not only on the syntactic level, but

also on the semantic level.

3.1 Ontology Design Motivation

The success of semantic web is highly depending on the success of ontology
design and development. An ontology is an information model that describes concepts
and relations in some specific domain. Ontologies enable the processing and sharing of

knowledge among different computing sites on the web [29]. Hence, ontologies are

49

known to be the representation of a shared conceptualization of a specific domain. They
provide a common understanding of a domain that can be communicated across people
and applications. They have been also developed in Artificial Intelligence to facilitate
knowledge representations and sharing. Ontologies will change the way search engines
search the web. Currently, search engines use keyword-based approaches to search the
web for relevant pages. By using ontologies, search engines can find pages that contain
syntactically different, but semantically similar words. An ontology has a hierarchical
structure of classes and concepts in the domain of interest and it describes different
relations between concepts. Also, it provides a description of concepts through the use of
an attribute-value mechanism. Many domains have started to develop and build their
ontologies like VnHIES [72] and geographic applications [73].

A typical example of ontology structure and design is shown in figure 3.1.1.
Concepts, objects or classes are defined by using classdef or slot-def, a class consists of a
type, subclass-off and/or slot-constraint. A slot-constraint consists of a name, hasvalue
and/or value-type. OWL standards are the most promising language for the future of

ontology design for the semantic Web.

50

class-def animal % animals are a class
class-def plant % planis are a class

subclass-of NOT animal % that is disjoint from animals
class-def tree

subclass-of plant % irees are a type of planis
class-def branch

slot-constraint /s-part-of % branches are paris of trees

has-value tree
class-def leaf

slot-constraint i/s-pari-of % leafs are parts of branches
has-value branch
class-def defined carnivore % camivores are amnimals
subclass-of animal
slot-constraint eais % that eat only other ammals
value-type animal
class-def defined herbivore % herbivores are amimals
subclass-of animal
slot-constraint eais % that eat only plants or parts of plants
value-type plant OR (slot-constraint /s-parf-of has-value plant)
class-def giraffe % giraffes are animals
subclass-of animal
slot-constraint eais % and they sat leafs

value-type leaf
class-def lion

subclass-of animal % lions are also animals
slot-constraint eals % bult they eal herbivores
value-type herbivore
class-def tasty-plant % tasty planis are plants that are eaten by
subclass-of plant % both herbivores and camivores

slot-constraint eatern-by
has-value herbivore, camivore

Figure 3.1.1: Ontology structure

3.2 Ontology Design Languages and Standards

The interest in defining ontology design languages has been increasing
dramatically since couple of years ago. Different research parties are trying to propose
well formatted language specifications that can be meet the different requirements of the
next generation of the Web [57]. In this section we will give a brief introduction to the
most popular web standards that are being used to build ontology structures which are:

XML and XML Schema, RDF and RDF Schema, and OWL.

51

3.2.1 XML and XML Schema

XML differs from HTML in that XML is intended as a markup language for any
arbitrary document structure. However, HTML is a markup-language for a specific
hypertext documents. This also means, that the tags in HTML are static and standard, but
in XML the tags are user defined and the user has the flexibility to have even the same
word to have different meanings by pointing to different namespaces. The vocabulary of
the tags and their allowed combinations is not fixed. So, an XML document consists of
nested set of open and closed tags, where each tag can have a number of attribute-value
pairs. Despite of the language limitations, the XML documents have been used widely for
different purposes such as in database and information representation and extraction. M.
Kim addressed how to extract information from database that is stored as XML files [66].
The ontology structure in figure 3.1.1 can be represented by an XML document as in

figure 3.2.1.1.

Figure 3.2.1.1: XML document for the ontology structure in figure 3.1.1

52

It should be mentioned here is that there is no one way of representing
information in XML document. Different XML documents might be resulting in the same
information which depends on the developer approach. This gave XML the flexibility
that attracted people on the Web. However, it is possible to enforce a grammar on tags
and their allowed nesting usage. For example, in XML 1.0 a DTD (Document Type
Definition) specifies the allowed combinations and nesting of tag-names, attribute-names
and other components. XML schema is replacing DTD under W3C recommendations
since XML schema offers many advantages and has essentially the same rule as DTD.
Any XML document whose nested tags form a balanced tree is a well-formed XML
document. XML provides a markup language and a uniform data exchange format for
parties over the Web. However, it is important to understand that in both cases, XML
enforces only a syntactical structure without any semantic meaning.

Anything that can be represented by a grammar can be encoded into XML
documents because XML is for defining data grammars. Many XML parsers have been
developed and they exist on the Web where applications and different parties can access
them and use them. The major limitation of XML comes in the semantic interoperability,
since XML aims at the structure of the documents and does not impose any common
interpretation of the data contained in the pages. Hence, in XML there is no way of

recognizing semantic units from a particular domain of interest.

The advantage of reusability of XML parsers is useful to the parties who have

reached an agreement on their document structures. However this neglects the fact that

53

partners are often changing dynamically on the Web, which means the documents
structures might change. New partners always have to be added to the existing
relationship as new information sources become available. Since the scenario of adding
new partners is a frequent operation, it is important to reduce the cost of adding the new
communication partners as much as possible. Using XML and DTDs or XML schema
requires much more effort because the task is not to map one grammar to another
grammar, but to map objects and relations from one domain to another domain.
Subsequently, we need to define the mapping between DTDs (or grammars). The

following would be the steps that need to be executed:

1. Reengineering of the original domain model from the DTD or XML schema. This
is a very difficult task to be performed given that the mapping is not a one-to-one
relation. One DTD can result in many different domain models if agreement was
not achieved in advance between parties.

2. Establishing mapping between the components of the domain model which
involves concepts and relations.

3. Defining translation procedures for XML documents. This is also a hard task to be
performed since it depends on the particular encoding chosen to construct the

initial DTDs (or XML Schema).

From what has been mentioned previously, using a more suitable formalism for data

transfer and information exchange than XML can save a lot of work. XML would be an

54

elegant tool to be used for data exchange between applications that both know what the

data are, but not in situations where we need to add new partners frequently.

3.2.2 RDF and RDF Schema

Resource Description Framework is a recent technology recommendation by the
World Wide Web Consortium (W3C). RDF aims to standardize metadata descriptions
about recourses on the Web. Since RDF is capable to describe data about web resources,
it is also capable of representing data. The basic component or structure in RDF is called
a triple; triples are relations that connect objects to their values. For example, a relation A
that exists between object O and the Value V is represented by triple A(O,V). RDF triple
can be represented as a graph with two nodes and an edge that connects them, referred by
labeled graphs [75]. The nodes represent the object and the value, while the edge
represents the type of the relations that exists between the two nodes. RDF allows objects
and values to be mixed. Hence, this leads to chaining in graphs. For example, Figure

3.2.2.1 represents the following three triples:

hasName('http://www.w3.org/employee/id1321", "Jim Lerners")
authorOf('http://www.w3.org/employee/id1321",'http://www.books.org/ISBN0O01251586")

hasPrice(‘http://www.books.org/ISBN006251586 1, "$62")

Reification in RDF allows an RDF statement to be the object or the value of another triple

which leads to nesting or recursive definitions of semantic objects. Also an object B can

55

be given to designate a certain type such as ‘ISBN03547X’ is of type ‘book’. RDF
vocabulary has no restrictions on the property names that can be used, same as in XML.
The main intended rule of RDF is to provide object-attribute-value triples data models for

metadata.

Figure 3.2.2.1: Nested RDF graph

As the XML schema provides a vocabulary definitions facility for XML, RDF
schema provides a similar facility for RDF which provides a basic type system for RDF
models. This basic system uses predefined terminology such as Class and subClassOf.
RDF schema expressions are also valid RDF expressions, the only difference is that the
RDF schema predefines a particular vocabulary that should be used for RDF attributes
(e.g.autherOf) and specifies the types of objects that these attributes may be applied to.

RDF objects may be instances of one or more classes depending on the fype
property. Two important RDF constructions are subClassOf and subPropertyOf. The
subClassOf property allows the specification of hierarchical organization of such classes.
subPropertyOf does the same for properties. Constraints on properties can be specified

using domain and range constructs. Using these constructions, RDF schema can extend

56

the vocabulary and the intended semantic interpretation of RDF expressions which puts it

on top of RDF.

By using nested object-attribute-value triples, the universal expressive power
holds for RDF. Also different RDF parsers have been developed and can be used by
different parties on the Web, hence the reusability requirement holds for RDF.

Semantics structures and units are given by nature through the RDF triples where
all objects are independent entities. This gives RDF an advantage over XML as being the
suitable technique for semantic web where no need for translation steps. In describing
some specific domain, representing the objects and relations in that domain are what
matter, which is what RDF triples do. We can apply techniques from knowledge and
representation to find the mapping between RDF descriptions. The usage of RDF for data
interchange raises the level of reusability beyond the parser to the domain model itself,
which cannot be achieved from using plain XML. RDF technique provides us with the
capabilities for knowledge representation which can be shared over the Web. RDF
Schema gives more power on top of RDF by freeing us from the limited primitives of
RDF. Since our concern is to have a semantic meaning of web pages content, we should
consider two main approaches in computer science which are: declarative and procedural
semantics.

In the declarative semantics, the meaning of an expression E can be found from
the conclusions or properties that follow from expression E; the conclusions or properties

are well understood formalism where machines can process and understand. However, in

57

the procedural semantics, the meaning can only be found by executing some program
(computational procedure) on the expression E and analyze the resulted behavior. This
difference between declarative and procedural semantics is very close to the semantic
interoperability difference between XML and RDF.

An expression written in XML and DTDs (or XML Schema) has no inherited
semantics, and the meaning of it depends on the application that is executing it. Two
different applications running the same expression will have two different meanings for
it. Although for specifying structural models, XML seems better than RDF. On the other
hand, an expression in RDF or RDF Schema will have the same declarative semantics.
This follows naturally from it is being independently of any program or application
running it. Hence, any RDF processor must conform to this intended semantics.
Communities in computer science, Al and W3C all agree that the declarative semantic
technique leads to a more shareable and reusable knowledge representation sources than
what could be achieved from using procedural semantics [29]. Hence, we can conclude
that RDF and RDF Schema is a better technique for information and data representation
in the semantic web than XML and DTDs (or XML Schema).

As we mentioned earlier, ontologies are the basic units that build the sharable
knowledge in the semantic web. Defining an ontology in RDF means defining RDF
Schema (RDF Schema is an extension of RDF), which means defining all concepts, terms
and relationships in a specific domain. This imposes some more requirements on RDF

and RDF Schema which resulted in W3C recommendation of adapting OWL as the

58

language for developing ontologies. The next section discusses OWL standards,
advantages and disadvantages.

3.2.3 Web Ontology Language (OWL)

The World Wide Web Consortium has approved two key technologies for
semantic web development: the Recourse Description Framework (RDF) and the Web
Ontology Language (OWL). These two semantic web standards provide the power for
integration, sharing and reusing data and knowledge on the web. Users will be able to
share the same information regardless of the applications. We have discussed RDF in the
previous section; this section aims to introduce OWL as the required technology for
designing semantic web ontologies. OWL is used to give machines the ability to process
and understand information on the web. OWL can be used to explicitly represent the
meaning of concepts and vocabularies and the relationships between them. OWL has
more capabilities than XML, XML Schema, RDF and RDF Schema which promotes it as
the semantic language for knowledge and data representation on the web.

OWL is a revision of DAMLA+OIL [78] web ontology language incorporating
lessons that have been learned from the design and application of DAML+OIL. OWL-DL
(Description Logic) is a sublanguage of OWL.

L. Rector and his co researchers in their paper [50] on using OWL to represent
pizza Ontology described how to use OWL-DL to design ontology. Then they discussed
the errors and pitfalls that users made in writing information representations, paraphrases
and their role in clarifying meanings. Ontology to represent the pizza concept was chosen

as an example because it is concrete, physical and rich enough to illustrate key issues in

59

the design. However, the authors showed that constructing the correct definitions of
pizzas from a menu turns out to be a challenging exercise. For more details on the
example, please refer to the number [50] in the references.

Since OWL is derived from Description Logic, OWL has model-theoretic
semantics that provide the official meaning for OWL documents [61]. Since OWL was
produced by the W3C Web Ontology Working Group, it does suffer from their vision of
the future of the semantic web [53] because their vision does not allow different semantic
web languages to have different syntax. The OWL provides more capabilities than RDF
Schema, however there are few tools available that can process OWL documents because

it is relatively a new ontology language.

Summary

In this chapter we showed that the ontology design and processing are widely
used and being researched by the Semantic Web community. That is because the design
of the ontology gives them the document structures capability to express the web page
contents based on their semantic meanings rather than their lexical formats. Different
research techniques have been addressed to automatic ontology creation, merging,

integration, ontology reasoning and collaboration such as in [71].

60

CHAPTER 4. NEGOTIATION PROCESS AND PROTOCOLS

Negotiation process is an interaction between two or more parties in an attempt to
reach some agreement on a specific aspect. The aspect for which the negotiation takes
place upon takes a wide range of topics based on the application. For example, it might
be a price of some goods as in e-commerce, or information availability and data
provision. During the negotiation process, agents exchange their capabilities and what
services they can provide. Many researchers have proposed solutions to the process of
negotiation but their solutions have always been for limited cases under specific domain
of applications. We aim in this work to provide a generic-automated negotiation model
that can be utilized under different engineering applications. Our research interest falls
into the negotiation language area which discusses the design of the negotiation
protocols, the negotiation primitives, the semantics and object structure. Protocols refer to
rules that agents must follow during their interactions with other agents [8]. Section 4.1
and 4.2 will explain our design of the negotiation protocols. Section 4.3 describes our
approach for designing the negotiation primitives and the object structure. The semantics
are not addressed in our work because they are not necessary for the completeness of our
objectives and goals. Section 4.4 will show how the marketplace architecture can help the

negotiation parties in reaching agreements efficiently.

61

4.1 One-to-One Negotiation Protocol

Many system designers have applied the negotiation process to different domains.
Based on the objectives of the systems, different types of negotiation are developed such
as: collaborative environments, buyer and seller negotiation, negotiations for resources
and data reservations and so on. Murugesan [11] discussed different issues concerning
automated negotiation for electronic commerce. Some researchers are trying to apply
collaborative negotiation activity for e-commerce where different threads (parties) are
independent from each other [7]. Feng and Lei used a constraint network to measure
conflict costs for collaborative negotiation and a state diagram to model the negotiation
protocol. In all negotiation systems, agents must follow some rules of interaction known
as “Negotiation Protocols”. These protocols define how parties can interact with each
other which in turn affects their decision and expressiveness capabilities. In most current
e-commerce solutions, the conflict is related to the price of the items between the sellers

and the buyers [65].

One important property of the negotiation process is a One-to-One protocol. In
this protocol, negotiating parties can communicate (negotiate) with each other via offers
and counter offers cycles. The process starts when the requestor sends a Request, then the
provider replies with either, Accept where an agreement is established, Reject where no
agreement has been reached or Offer where requestor needs to make evaluation upon
receiving it whether to accept it or reject. If the requestor response on the Offer was

Accept, then an agreement has been reached; if he replies with Reject there is no

62

agreement. The third choice is to reply with a Counter-Offer message. The cycles can go
on forever. However, in real life and software developments, a predefined time is allowed

before the termination of the process as we discussed in section 1.1.

In papers [6], [14] and [70] a simple negotiation protocol is used. It occurs
between two agents to support a shared semantic ontology of the terms and primitives
that can be used in the negotiation process. Figure 4.1.1 shows the One-to-One protocol

nature.

Couerte r Oifffimr

Figure 4.1.1: Simple sequence of negotiation activities

Figure 4.1.1 shows some primitives along with a sequence of negotiation protocol
(rules). However, it does not reveal details on the syntax involved in using these
primitives nor does it show semantic specifications. Such a simple scenario is limited to
the situation where the interacted agents know each other IDs. For example, it is valid if

the buyer knows the seller, and if both have sufficient ability to control their items and

63

services. In many cases, however, more sophisticated protocols are needed to support
dynamic behaviors during the negotiation process. For instance, the buyer might not
know what services or products are available for him or if the buyer wants to complain
about a transaction. Hence, a more flexible and comprehensive negotiation model is
required. Transparency and privacy are other requirements that negotiation models need

to support.

The objective of Bailin and Truszkowski’s research [2] on scientific archives was
to find relevant information on a specific topic. Again the One-to-One negotiation
protocol has been used as one rule between agent A and agent B (two parties trying to
negotiate on scientific archives information). Masvoula, Kontolemakis, Kanellis, and
Martakos [12] discuss the issue on how a negotiation model should be as close as
possible to the real interactions in auctions and the bargaining behaviors in the stores.
The protocol design is assumed to be One-to-One with offers, evaluation of offers and
counter-offers. Research in e-learning needs different expressive requirements than other
domains like the e-commerce. In a collaborative e-learning domain, the negotiators will
ask questions, answer questions, confirm information, etc. [9]. The objective here is to
reach an agreement and one understanding on topics or ideas. Although the negotiation

primitives are different, they used a One-to-One negotiation protocol.

The work by M.Addis, P.Allen and M.Surridge on negotiation for software
services used the One-to-One Negotiation protocol to support on-demand software and

hardware resources sharing environments [21]. V. Krishna and VC Ramesh proposed a

64

model for competitive decision making agents where they used the One-to-One protocol

to support the bargaining process when agent “a” calls agent “b” [10].

Because of the nature of the One-to-One negotiation model which models real life
bargaining and negotiation behaviors, we are adopting this protocol for its simplicity and
advantages. However, some modifications are needed concerning its definition to fit into
our generic automated framework. Section 4.4 on marketplace architecture and design

gives our definition of the One-to-One protocol.

4.2 Service Discovery Negotiation Protocol

Most of the current negotiation systems and distributed services management
tools do not support brokering between agents. Distributed services environments do not
interact with their users on different specifications. For example, if a user would like to
use a service that is deployed on a distributed environment and that service is already
being used, he will get usually a response that it is not available at this time. Then the
user needs to request that service maybe every 1 minute. On the other hand and in some
other extreme cases he might receive a decline that he cannot use this environment
because of a simple error he made or because the service does not provide one of the job
specifications he asked for in his request. In some case it might be that the user can
ignore one of specifics because the execution of his job will satisfy his needs. In such
case brokering and negotiation is very essential to reach agreements in multi-agent

environments.

65

Yilmaz and Paspuleti [25] used a Broker agent to support transparency, a
Matchmaker to bring different views using relevance metrics that are independent of
keyword matching, and a Mediator agent to convert contents to some common reference
model (constructed as ontology) that negotiators understand. The Mediator agent resolves
four types of conflicts: semantic, descriptive, heterogeneous and structural. Tamma,
Phelps, Dickinson and Wooldridge [24] used a shared ontology to model the protocols
that could be encountered or needed in supporting agent negotiation in e-commerce
environment. They call such enforcement of rules “rules of encounter”. According to this
paper, the agents do not go into different states or decision making phases. However
agents query the shared ontology for the next step in response of an event occurrence.
Such an implementation is slow and lacks a scalability requirement. Also, it is a single
point of failure implementation with unmanageable size of ontology when the ontology
grows up to handle more space of dynamic behaviors. Bailin and Truszkowski [2] on
scientific archives, the system designers used marketplace architecture to resolve
semantic mismatches in real time without human intervention. The protocol they used is a
One-to-One protocol between for example agent A and agent B. However, the definition
and functionality is different because they exchange different types of primitives that

need different ways of handling.

In order to support flexible generic negotiation protocols that can capture different
user behaviors, we determined the following requirements that we believe any

negotiation system should support them:

66

The ability to ask a service provider (might be a computing node) for a

service or an offer.

The ability to negotiate with the service provider over jobs/products
specifications (e.g. execution time for a job, bandwidth of data

transformation after the job is finished).

The customer ability to respond with a counter offer that represents its

interests.

The ability to complain to a third party that controls web services. This is
important in order to support customer satisfaction over the web to build a

trustable environment between services requesters and services providers.

The service provider ability to advertise their capabilities to be found later
when customers search for services. This provides transparency and
privacy between users and providers. For example a user might request a
book with a specific ISBN number; the result will be all bookstores that
have that specific book available. As a result, the user will negotiate with

the best book provider that meets his/her interests.

Supporting decision making capabilities for customers to choose the best

among different service providers.

Monitoring agreements which were achieved between customers/users and

the service providers. For example, a situation that appears in the domain

67

of information discovery and retrieval, a third party is needed to monitor
the transfer of data from the data provider to the requester according to the

agreement guidelines that both agreed upon during their negotiation.

8. The ability to reformat or add/remove some parameters to the messages
being exchanged between customers and service providers to avoid

misunderstanding or confusion and for future purposes.

Supporting these requirements is not an easy task because of the dynamic nature
in multi-agent environments. However, the choice of using marketplace architecture (a
third party such as a controller or mediator agent) is useful in this regard, in addition to
the choice of a new negotiation protocol namely “Service Discovery”. The marketplace
can act as a broker, a mediator, a controller and/or a database for service providers to

advertise their products/services.

The service discovery protocol is needed when a customer is searching for a
specific service or product. Customers then query the marketplace to find the best
providers. The marketplace responds to the customers with a group of service providers
who fulfill their requests. After the customers get the results back from the marketplace,
they will have a list of the available service providers and their capabilities. Then the
customers can decide on whether to proceed with the negotiation process or not. If the
customers choose to proceed, they send a contract query to the marketplace, and then the

marketplace will forward that to the appropriate providers and wait for responses from

68

them. Next chapter on implementation explains the two negotiation protocols enforced by

the marketplace in more details.

4.3 Domain-Dependent Language of Encounter

In this section we discuss the second part of the language which is the negotiation
primitives. The primitives give us insights into the language of using them which
indicates different phases and functionalities. We call such messaging language
“Language of Encounter”. So whenever we say language of encounter then we refer to

the negotiation primitives or the negotiation messaging system.

4.3.1 Language of Encounter Taxonomy and Structure

In our design of the negotiation model, we specified the language of encounter
that web agents or our system users need to use for their interactions. O’Hare and
Jennings [8] suggest three groups for language of encounter. However, such a
classification is not enough to truly enable the negotiation process over the web and in
multi-agent environments. More types are needed to support customer satisfaction and
the dynamic in user behaviors. We have defined two new necessary classes for the

messages to increase the expressiveness power and the negotiation capabilities.

Table 4.3.1.1 shows the language of encounter (messages) to which agents refer
in order to express their needs. The difference between “Decline” and “Reject” is when

the marketplace is too busy and cannot handle more requests. It might not choose to start

69

(“Decline”) the negotiation process. Note that the negotiation did not take place in this
situation, which allows the requester to try to start the same negotiation later. However,
“Reject” means that the negotiation process already took place and the result is no
agreement, so there will be no point of trying again later to establish the same negotiation
process under the same parameters. On the other hand, “NotMer” refers to situations
where the two negotiation parties have come to an agreement and they started the
transaction. However, one of the two parties has violated the agreement terms that both
established before. In such a situation, the marketplace needs to stop or terminate the
transaction. For example: if an information agent negotiates with a service provider to
transfer some audio traffic with a minimum speed of 200kB and the service provider
agrees on that, and subsequently, after establishing the link between them, the service
provider was transferring the traffic with speed less than 200kB, then the information
agent can ask the marketplace to terminate this contract by sending “NotMet”.
“Terminate” message means that the negotiation process has started but is not finished
(still in progress and the result is not known yet). Then the requester has the right to stop

the negotiation.

70

Abort Initiators Reactors Completers || Informative
Terminate ContractQuery Offer Reject Busy
NotMet CapabilityQuery CounterOffer Accept LinkEstablished
ItemRequest Decline Item
CapabilityStatement ItemCheckResult
BestProvider
ProvidersChosen

Table 4.3.1.1: Classification of the language of encounter

The usage of these primitives will be clear when we discuss the marketplace

architecture along with its phases and transitions. The last point to address in our research

design of the negotiation language is the object structure, which refers to the language of

encounter structures in our context. The structure of each message type depends on the

domain under which it is being used. Hence, in order for our system to support

negotiation services under different domains, a dynamic message structure is the key role

to the success. In this implementation we used a shared Ontology that defines each

message and its usage under different domains. Each domain would be a specialization in

the message structure. Each Message type has a separate structural ontology defining its

variables/fields. System Entity Structure (SES) formalisms is a useful tool to define the

71

language of encounter structure. For example, Oceanography is a sub domain of the
domain surveillance and has specific structure. Online store is a sub domain of the
domain e-commerce and has a specific structure. Figure 4.3.1.1 shows the purpose of

designing ontology for a specific primitive, “MessageX”.

MEssaged
Sub SES 1 Sub SES 2
Oceanography Online Store
Surveillance § tructure E-commerce Stmcture
_-";11. Al
domains .
domains
Location || Alumde Speed Foughness
SellerD Buy=ID Price S&H Return

Figure 4.3.1.1: Ontology design for MessageX type

The alternatives here are that if there are two domains defined for MessageX

ontology, then two cases might occur:

72

1. Given the input is “MessageX the sub domain Oceanography”, then the system
should automatically select the message structure to be sub SES 1 represented in
the variables (Location, Altitude, Speed and Roughness).

2. Given the input is “MessageX and the sub domain Online Store”, then the system
should automatically select the message structure to be sub SES 2 represented in

(SellerID, BuyerID, Price, S&H and Return).

4.4 Domain-Independent Marketplace Architecture

We have specified the language of encounter that user agents need to use when
interacting with the marketplace and/or with each other. The Marketplace controls the
behavior of the interacting agents by enforcing our model rules and policies (negotiation
protocols). Here we show the marketplace architecture design which is based on finite
state model. The section describes the different phases of the marketplace agent and ends
with diagram showing the sequence of phases that the marketplace goes though. Table

4.4.1 shows the different states of the marketplace along with their descriptions.

Figure 4.4.1 shows the transitions between phases of the marketplace agent. This
model of the marketplace can be translated easily into an FD-DEVS implementation.
However, because of the specifications of FD-DEVS, some phases need to be reformatted
according to the messages that cause the transition to these states. The next chapter on
FD-DEVS implementations explains how to split some states according to the language

of encounter.

73

The marketplace enforces two negotiation protocols (rules and policies) in its

multi-agent negotiation environment. These are:

1. One-to-One negotiation when entities know each other’s ID.
2. Service Discovery: When a customer is searching for a specific service or
product, it usually looks for the best provider among the participants. The

marketplace plays a role here on behalf of the requestors.

Active
Monitoring
Decline Interpret
Query Query
Termination
Decision Making v .
Routing Wait and Select | |
Task Completed

Figure 4.4.1: Marketplace state machine diagram

74

Phase

Description

Active

Means that the marketplace is ready to receive different types of
messages (language of encounter)

Routing

The marketplace acts as a router, its task is to forward the
received messages to the appropriate receivers, this scenario
occurs frequently when the two parties know each other (buyer
and seller know each other their 1d).

InterpretQuery

Upon receiving a contract query, the marketplace goes into this
state to interpret the query based on messages structures, lexical
and/or semantic meaning to be understood.

DeclineQuery

If the marketplace is too busy and it cannot handle new
requests, the marketplace goes into this state to send a “Decline”
message to the customer.

DecisionMaking

After performing interpretation task on a received query and
choose to serve it, the marketplace goes into this state to decide
on the appropriate receivers, make some modifications on the
query (such as reformatting it), accessing the database to find
information about the service providers, and so on.

WaitAndSelect

After forwarding a request to service providers, the marketplace
wait for responses from the specified providers to select the best
that meets the requirements of the customer.

TaskCompleted

After finishing serving a query, the marketplace transit to this
state to report that the request was completed successfully by
reporting some information about the transaction that might be

needed in the future.

Monitoring

While the marketplace in this state, it monitors the process of
data transferring for the specified period of time.

TransactionReview

After a transaction is completed between a seller and a buyer
and if the buyer complains about the item description, the
marketplace transits to this state to resolve the issue.

Termination

This means that the transaction was terminated for some
abnormal reasons.

Table 4.4.1: Marketplace states and their description

75

CHAPTER 5. SYSTEM IMPLEMENTATIONS

In this section we will show our implementation work of the negotiation protocols
represented by the domains independent Marketplace architecture. Also we will discuss
the dynamic message structure implementation. We used FD-DEVS formalisms to
implement the marketplace model and we used SES formalisms to build the messages

structure ontology. The following sections explain both implementations.

5.1 FD-DEVS and the Marketplace Architecture

We have implemented the above negotiation protocols in FD-DEVS. Finite &
Deterministic Discrete Event System Specification) is a formalism for modeling and
analyzing discrete event systems in both simulation and verification ways. FD-DEVS is
based on DEVS formalism [1] [3][4] . However, to implement it in FD-DEVS, we
needed to do extra work by splitting some phases into multiple copies based on the
message that causes the transition. For example: when receiving message “Request” that
needs to be forwarded to a specific seller, the marketplace transits into phase
“RoutingRequest’, where it routes the message to the seller. When receiving an “Offer”
message from a seller that needs to be forwarded to a specific buyer, the marketplace
transits into phase “RoutingOffer”. Note here that the task to be performed by the
marketplace is forwarding a message from a specific customer (e.g. buyer) to a specific
service provider (e.g. seller). This scenario occurs when both negotiating entities know

each other. The work to be done by the marketplace is basically the same in both phases

76

(forward a message), but the difference is in the message type. To implement this in FD-

DEVS, we needed to differentiate between the two states to convey two different

messages. Our negotiation protocol consists of two scenarios:

1-

One-to-One negotiation when entities know each other ID. In this protocol,
the customer agent sends messages (such as request, contract query, counter
offer, accept, reject) to the marketplace including the service provider ID. The
marketplace reveals the service provider ID from the received message and
forwards it to the specific service provider (receiver). On the other hand, the
service provider responds with replies (such as offer, accept, reject) with the
customer ID included in the contents of the messages. The marketplace
receives the messages, unmarshal them to find the customer 1D, and then it
forwards them to the specific customer. If the customer did not receive the
correct item, it can choose to complain by sending “Item” message to the
marketplace along with the transaction number. Then the marketplace
searches its log files to find the transaction information in order to resolve the

issue with the service provider. Figure 5.1.1 shows the protocol flow.

Service Discovery: When a customer is searching for a specific service or
product, it usually looks for the best provider among the participants.
Customers then query the marketplace to find the best providers, and since

service providers advertise their services, information and products to the

77

marketplace, the marketplace will have an updated database of the members
of the service providers and their capabilities. The marketplace responds to the
customers with a group of service providers who can fulfill their requests.
After the customers get the results back from the marketplace, they will have a
list of the available service providers and their capabilities. Then the
customers will decide on how to proceed with the negotiation process. The
customers might choose to proceed with the negotiation by sending a contract
query to the marketplace; then the marketplace will forward that to the
selected providers that were chosen in the previous step, then it will wait in
phase “Wait” to receive responses from the providers one by one. Once it
finishes waiting in that phase, it will select the best offer from the list of
responds. The best provider will be sent back to the customer. The customer
now can choose whether to accept the offer, reject the offer or go to the one-
to-one protocol and negotiate with the chosen provider. Once an agreement is
reached. The customer establishes a link with the appropriate service provider
to transfer data, information or products and then it informs the marketplace
of the link establishment. The marketplace now enters a “Monitoring” phase

to make sure that the agreement is fulfilled. Figure 5.1.2 shows the scenario

78

Agent A Agent B
(ID: 35) Marketplace (ID:23101)
ItemRequest
ItemRequest
Offer /1
Offer i) «
B e C
\ Accept
\Rau.ti\nwn
Reject Accept
} CounterOffer | RoutingReject Reject T
/ QOW\ CounterOffer
Accept
Accept Routin;Ac;Q/
Reject
Reject —RoutingReject | \
Item [TransactionReview
L ‘ EEEEEEEEN l>
»
ItemCheckResult Log

files

Figure 5.1.1: One-to-One negotiation protocol

Notice from the figure above that when agent A receives an “Offer” from agent B,

then he can send back to agent B either “Accepr”, “Reject” or “CounterOffer’ messages.

79

When agent B receives “CounterOffer”, then he can send back to agent A either
“Accept”, “Reject” or a modified “Offer” on the same product/service. In any case, one of
the agents has to send “Accept” or “Reject” sometime to end the negotiation process,
otherwise they might go into an infinite loop. This is easy to resolve when designing
customers and providers agents. One way to solve this problem is by having a timing
counter, once it expires, the agent sends a “Terminate” message rather than wasting the

time with an endless negotiation.

When the marketplace receives complaints regarding a transaction (“Item”), it
interacts with the item provider to resolve the issue (the two ways dotted arrow in the
figure above). Such an interaction depends on the regulations of companies. In e-
commerce, usually the product provider (seller) refunds the buyer the item price and the

buyer returns the item. Some companies provide products exchange option.

In figure 5.1.2, when the marketplace processes the “ContractQuery” message, it
needs to decide on the appropriate receivers of the query (service providers who have the
requested service available). Then it forwards the contract query to the chosen providers
and waits for responses from them. After receiving the responses it selects the best that
meets the requirements in the contract query and sends its ID back to the customer. At
that time, the customer will choose whether to establish a link with that provider or
maybe negotiate with the selected provider for a better deal using the One-to-One

protocol (since the customer agent knows the service provider ID).

80

Agent A Marketpl Agent
arketplace ents
(ID:44) P g
CapabilityQuer
p yQ y - * o000 00OCS >
* o000 00OCS >
Advertise
[ProcessingCapabilityQuer;]
JCapabilityStatement]
ContractQuery
Decline j y y
l Busy InterpretQuery
—[Routing < ecisionMakina
ContractQuery
ﬂ\«\«‘;l"t
g Wait & Select K Reject
BestProvider BestProvider Offer
Offer
Task Completed]
One-To-One
LinkEstablished
l Monitoring l

Figure 5.1.2: Service discovery negotiation protocol

We used the Finite Deterministic GUI tool version 0.6.0 to define the marketplace

model. In using the tool, we need to specify three main categories which are shown in the

figures below. Figures 5.1.3, 5.1.4 and 5.1.5 show the states table, internal transition

function and the external transition function respectively.

| %] Finite Deterministic (FD) DEVS Workbench (0.6.0) . l | [=E] =

Template based DEVS Model Generation

Develop FD-DEVS Atomic Model W3C XML FD-DEVS l DEVSJAWA FD-DEVS
Model Name: | MarketPlace | Create <StarcStaverdctives/StavcScater |
<HextState>RoutingReject</NextState|
- - - </transiciens
[Finite State - Time Advance Functions] | <scheduleIndicator>true</schedulelndical
[Default Internal State Machine Specifications] Mode! MarketPlace: State-Timeout relations]
[External Input State Machine Specifications State Timeout
[H |
[Generate FD-DEVS I i e
—— . State Timeout
Package containing all FD-DEVS models RoutingltemRequest L0 A
DecisionMaking 5.0
genrxml |3 Show Model RoutingCounterOffer 1.0
e [omivoad] e 5 I
Load Model
MarketPlace.xml RoutingAccept 1.0
MarketplaceBrokerxml| Delete Maodel RoutingOffer Lo
procaml Fi Rautlng(}ontract 10 f
Requestorxml — TransactionRewiew 5.0
9 & ~ Make as Componentin Coufll| \WaitandSelect 10.0 i
Develop Coupled Model from FD-DEVS Atomic Models Done
Coupled Model Na... | I Reset ey
= </transition=
Compenent FD-DEVS models <schedulsIndicator>true</schedulelndical
</ExternalTransition> |
Generate Coupled Model <ExternalTransition extTransitionID="1">
<IncomingMessage-Capabilityduery</Incon|
Kl <transicienr
<StartStaterActive</StartState>
<NexuStatesProcessingCapabilivy=/Ne
</transicion= 1
= <scheduleIndicatorstrue</schedulsIndica
b </ExternalTransition>
</deltexts
Simulate Coupled Model </atomicType> L ¥
v
(©) 2007 Saurabh Minal <] 12]

Figure 5.1.3: Marketplace model (states table)

Finite Deterministic (FD) DEVS Workbench (0.6.0) =ElEr =]
Template based DEVS Model Generation
Develop FD-DEVS Atomic Model | W3C XML FD-DEVS [DEVSJAVA FD-DEVS
Medel Name: | MarketPlace | Create carcStatesActives/StartScas E |
<NextState-RoutingReject</NextStatel
</transitions
| [Finite State - Time Advance Functions] «scheduleTndicator>crues/schedul aIndica)
- - </ExternalTransition>
[Defautt Internal State Machine Specifications | o .
— ngMes|
[(2] Model MarketPlace: ‘Tnternal Behavior (deling] Specifications ==
SMo, Start State IHext State Timaout Qutgoing Message :::’
e
[| IMoritoring [monitoring ™~ !_m.n 1T] Add Delste] [l
ical
3 SNo. Start State Next State Timeout Qutgoing Msg
geq [|13 TransactionReview Active Infinity ItemCheckResult E
apf | |12 RoutingOffer Active Infinity Offer ncom)
e | 1L Routingfccept Active Tnfinity Accept
M 10 RoutingCounterQffer Active Infinity CounterOffer E.
9 RoutingftemRequest Active Infinity TtemRequest
& NRE] RoutingReject Active Infinity Reject -
Redi| |7 Manitoring Active Infinity
[] ProcessingCapability Active Infinity CapabilityStatement 3
Dewl| 5 Termination Active Infinity Terminate ominf
4 WaitandSelect Active Infinity BestProvider
c E) RoutingContract WaitandSelect 10.0 ContractQuery
ol Stat]
2 DecisionMaking RoutingCantract 10 b
Conl| 1 InterpretQuery DecisionMaking 5.0 -
-

Mote: State with sequence id=1 will be initial state ncom|
T i ey e
<NextStaterProcessingCapability</Ne

</transition> (7]
— <scheduleIndicator~true</schedulelndica
b </ExternalTransitions
</deltext>
I Simulate Coupled Model l </atomicType>]
v
(<) 2007 Saurabh Mittal <] | 2]

Figure 5.1.4: Marketplace mode

|£| Finite Deterministic (FD) DEVS Workbench (0.6.0)

I (internal transition function)

== =]

Template based DEVS Model Generation

Develop FD-DEVS Atomic Model

W3C XML FD-DEVS [DEVSIAVA FD-DEVS

Model Name: | MarketPlace

| Create

]
]
]

Finite State - Time Advance Functions

Default Internal State Machine Specifications

External Input State Machine Specifications

[]

Generate FD-DEVS

<StartStaterActive</StartStates
<NextStaterRoutingReject</NextState
</transition>
<scheduleIndicator>true</schedulslndical
</ExternalTransition=
<ExternalTransition extTransitionID="4">
< T te</Incomingll
<transition=
<StartState-Monitoring</StarcStaces
<NextStaterTermination</NextStates

|§| Model MarketPlace: External Induced Behavior (deltext) Specifications

Siho. Incoming Msg Start State Mest State Reschedule Timeout Outgoing Msg

] | [Moritoring [*] [monitaring W [wo I [aad —]
SNo Incoming Msg Start State Nest State Rechedule Timeout Outgoing Msg

12 Item Active TransactionReview true 2 TternCheckResult

1 Reject WaitandSelect ‘WaitandSelect false 10.0 BestProvider

10 Accept WaitandSelect ‘WaitandSelect false 10.0 BestProvider

9 TtemRequest Active RoutingltemRequest true 1.0 TtemRequest

8 CounterOffer Active RoutingCounterOf.. true 10 CounterOffer

i, Offer Active RoutingOffer true 10 Offer

6§ Accept Active Routingfccept true 10 Accept

5 Reject Active RoutingReject true 1.0 Reject

4 Terminate Monitaring Termination true 10 Terminate

3 LinkEstablished Active Monitoring true 10.0

2 ContractQuery Active InterpretQuery true 5.0

1 CapabilityQuery Active ProcessingCapability true 5.0 CapabilityStatement

Figure 5.1.5: Marketplace model (external transition function)

83

The FD-DEVS tool generates an XML representation of the model. This XML
file is very important since it can be used directly to into our automated version of the
system as will see in the next chapter on automatic code generation of the marketplace
model given a domain name. The in ports and out ports names are generated based on the
name of the messages; for example, the message “Accept” will be received on in port

“inAccept” and will be sent on out port “outAccept’.

5.2 SES and the Messages Structure Ontology

We discussed in the previous chapter in section 4.3 about the messages structure
that it should be dynamic based on the domain of interest. This is because the information
that needs to be sent through messages is different. For example in E-commerce domain,
the agents consider parameters such price, shipping and handling, return policy for their
products and services. However, agents in Oceanography or software services will have
different parameters that they care about such as execution time, bandwidth, latency. In
some cases, even under the same domain, the designer can construct the structure of a
message to have more than one meaning. Mathieu and Verrons [74] in their attempt to
provide a flexible negotiation protocol, they had to add more stages on the One-to-One
negotiation protocol to provide “modification request” and “propose modification”. In
order for our negotiation primitives to accommodate for varying capabilities under
different domains, the messages structures must be dynamic and based on the domain

under consideration. Hence, in our design we use an ontology structure for each type of

84

messages. The design of the ontology is shown in Figure 5.2.1 for message
ContractQuery as an example. The message type (entity) has specialization relations to
each of the domains defined (SubdomainOfintrestSpec). Each domain entity has a
decomposition relation with its “domainMsgStructure” which refers to the message
structure. Each domainMsgStructure has variable slots (fields) that contain the different

parameters of the message structure such as (Price, SellerID, Location, Roughness).

ContractQ uery

Contractl uery-SubdomainOfl ntrestSpec

PrirtingJohbs Cceanography OnlineStore
PrintingJobs-StructuralDec Cceanography-StructuralDec OnlineStore-StructuralDac
PrirtingJobsiM sgStructure Ceceanography M sgStructure OnlineStoreM sgStructure

Figure 5.2.1: ContractQuery ontology tree

In the figure above, the message structure under PrintJobs domain consists of:
PrintJob, TechnologyType, NoCopies, Deadline, Customer, PaperQuality, Duplex,
PrintJobID, and Color. The message structure for Oceanography consists of: Speed,

Roughness, Location, and Altitude. And for the OnlineStore we chose the structure to

85

have: SandH, BuyerID, Price, Return, and SellerID. In order to implement the dynamic
message structure ontology, we used System Entity Structure formalism. SES is a useful
ontological framework to define data engineering ontologies. In SES, Entities represent
things that exist in the real world or in the imagined world. Aspects represent ways of
decomposing things into more fine-grained ones [5]. In our ontology tree, the message
type is an entity as well as the domain. SES has been applied to many different areas as a
classification tool such as in [13]. More on XML and SES are discussed previously in

chapter 4. Below is the XML document representation of the ontology in Figure 5.2.1.

————————————— XML Document —mmme
<?xml version='1.0' encoding='UTF-8"'?>
<!DOCTYPE entity SYSTEM "ses.dtd" []>
<entity name = "ContractQuery">
<specialization name = "ContractQuery-SubdomainOfIntrestSpec">
<entity name = "PrintingJobs">
<aspect name = "PrintingJobs-StructuralDec">
<entity name = "PrintingJobsMsgStructure">
<var name = "Duplex">
</var>
<var name = "Customer">
</var>
<var name = "NoCopies">
</var>
<var name = "PrintJobID">
</var>
<var name = "PaperQuality">
</var>
<var name = "Deadline">

</var>

86

<var name = "PrintJob">
</var>

<var name = "Color">
</var>

<var name "TechnologyType">

</var>
</entity>
</aspect>
</entity>
<entity name = "Oceanography">
<aspect name = "Oceanography-StructuralDec">
<entity name = "OceanographyMsgStructure">
<var name = "Altitude">
</var>
<var name = "Speed">
</var>
<var name = "Roughness">
</var>
<var name = "Location">
</var>
</entity>
</aspect>
</entity>
<entity name = "OnlineStore">
<aspect name = "OnlineStore-StructuralDec">
<entity name = "OnlineStoreMsgStructure">
<var name = "BuyerID">
</var>
<var name = "SellerID">
</var>
<var name = "Price">

</var>

<var name = "Return">
</var>
<var name = "SandH">
</var>
</entity>
</aspect>
</entity>

</specialization>

</entity>

87

We used SES builder to design the message ontologies. The SES builder is an
easy to use tool and provides many features. The input is a restricted natural language
designed for the system entity structure framework purposes. More on the natural

language forms and syntax can be found in [5] and on the website www.devsworld.org

[42]. The natural language input that resulted in the above ontology for ContratcQuery

message is as in the following figure.

ContractQuery can be PrintingJobs, Oceanography, or OnlineStore in SubdomainOfIntrest!
From the Structural perspective, the PrintingJobs is made of PrintingJobsMsgStructure!
From the Structural perspective, the Oceanography is made of OceanographyMsgStructure!
From the Structural perspective, the OnlineStore is made of OnlineStoreMsgStructure!

The PrintingJobsMsgStructure has PrintJob, TechnologyType, NoCopies, Deadline, Customer,
PaperQuality, Duplex, PrintJobID, and Color!

The OceanographyMsgStructure has Speed, Roughness, Location, and Altitude!

The OnlineStoreMsgStructure has SandH, BuyerID, Price, Return, and SellerID!

Figure 5.2.2: Natural language input for ContractQuery message

88

For each of the messages types in the language of encounter, we have a text file
similar to that in Figure 5.2.2 that represents the message structure. It is obvious that the
natural language interface gives very satisfactory options to the humans to express their
ontological specifications. The book by B.Zeigler and P. Hammonds on simulation-based
data engineering gives more insights into the natural languages and its usages [5]. For

more on SES and ontology design refers to [45].

As we have seen in section 5.1, the marketplace architecture is a domain-
independent design, where the language of encounter ontology is a domain-dependent
structure. Combining both methodology results in an automated powerful negotiation
model that provides enough expressiveness power while enforcing negotiation protocols
to capture different user agents behaviors. Figure 5.2.3 shows the big picture of the two

methodologies.

89

Dgmain-ind=pendent |::>. FO-DEVS fratenSiace

- — R
b= haviar = phases :
~ messane types i . I|.

Diomain-d=pend=nt |:> SES Receive
structurs messaze specializations Massage
Interpret
message

Send
meassags

Figure 5.2.3: System negotiation modeling approach

5.3 Negotiation System Model Process Flow

In the previous two sections we explained the implementation of our approach
using FD-DEVS and SES formalisms. In this section we will explain the negotiation

system design process. Figure 5.3.1 shows the process flow of the negotiation model.

The system designer started the process by defining the domain-dependent
message structure using a GUI tool that we implemented. The output of the GUI is a
natural language for SES ontology structure where SES can be used to create the
ontology representation in XML schema. The schema will be the input to the JAXB

compiler which in turn results in Java classes defined for the domain of interest. Those

90

Java packages are ready to use but carry no information or data yet. The second pipeline
in bottom starts by implementing our negotiation protocols (rules and requirements) in
FD-DEVS specifications, which results in a generic domain-independent marketplace
model. The tailored marketplace is a result of the designer choice of the domain of
interest, more on that in the next chapter. The marketplace receives messages, interpret
them by unwrapping them (unmarshal) and it might need to marshal them with data and

send them. On the service provider side, the same scenario occurs.

JAVA Classes &
SES NL] XML Schema e ares

|
§:> v SESBuider [[N \yp | | (Message Tvpes)

: Messages (SES Ontology) Specialized PESs
Domain-dependent | ¢ o0 message specializations

specifications

Receive Message
Tailored Interpret Message
Market Place Wrap Message
Send Message
b in-ind dent Rule & Requirements Automated @
omain-independen FD-DEVS N Comprehensive
negotiation protocols . I—;)
Specifications Market Place

~ Phases
~ Message types
~ Internal & external interactions

Figure 5.3.1: Negotiation model process flow

The process of unmarshalling and marshalling the language of encounter
messages represented in Java classes between the requestors and the service providers is
shown in Figure 5.3.2. On the service provider side, his data collections or services are
represented in a pruned entity structures and XML instances. The pruned entity structures

(PESs) are product descriptions such as (PrintJob = “Newspapers”,

91

TechnologyType="Digital”, NoCopies="1", Deadline="20",

Customer”’RequestorName”, PaperQuality="High”, Duplex”yes”, PrintJobID="15382",
and Color="BlackandWhite”). These variables are encoded in XML instances in the same
formats of the XML schema for ContractQuery message. When the service provider uses
JAXB data binding “unmarshaller” of the PESs on an empty ContractQuery message
class, the returned message will be a ContractQuery with the above data inserted in the
corresponding slots of the domainMsgStructure entity; after that, the message can be

exchanged between agents

" Requestor
AL

ﬂ Data Unmarshall

Processing

Provider

L — |

Messages
Loaded with
Data

T

JAVA Classes &

Interfaces
(Message Types)

Specialized PESs

Data MarshallAR
"~ Product |

Description
L__database _J

|

1]
— BT
Domain omain Master
Specialization SES __PES

Figure 5.3.2: Unmarshalling and marshalling process between service providers

and the service requestors.

92

CHAPTER 6. AUTOMATIC MARKETPLACE GENERATION FOR

A SPECIFIC DOMAIN OF INTEREST

6.1 Steps in the Marketplace Generation

Designing the negotiation system is a very time consuming task which consists of
many steps. We divided the steps here into two groups. The first group is regarding
defining the dynamic message structure ontology. The second group is for designing the
Marketplace phases, transitions and output in FD-DEVS formalisms. To design the
language of encounter ontology for a specific domain, the system designer needs to

follow the following steps:

1. Writing an SES natural language that describes the language of encounter’
ontologies. This requires from the designer to write each message structure for
each specific domain.

2. Using SES builder tool which was developed in our LAB (ACIMS LAB) [51], to
create the ontology structure in SES XML schemas. The SES builder is an
efficient tool for Knowledge Representation and data engineering and ontology
design [26]. SES builder is also useful to prune SES XML files. For more
information on pruning SES refer to [5].

3. The result of the second step associates each negotiation primitive with a SES

schema. Java Architecture for XML Binding (JAXB) allows users to map Java

93

classes into XML representations and vice versa [32]. JAXB compiler takes XML
schemas as inputs and produces Java classes and interfaces [33]. The negotiation
system designer can use the JAXB compiler to create negotiation messages
packages that can be plugged directly into Java files (our objective is to use them
in the Marketplace implementation).

The output packages of the JAXB compiler can be used now in the Marketplace

Java file.

To create the Marketplace negotiation protocols in FD-DEVS, the designer can use

the FD-DEVS GUI tool, which is a useful tool to generate Java templates [27], to create

the Marketplace states and transition specifications. The following steps are to be

performed by the designer:

1.

Use FD-DEVS GUI to define the Marketplace phases, the internal function and
the external function tables. The tool will result in two files. One is an XML
representation of the model and the second is a Java file.

Take the Java file which is a domain-independent generic marketplace template

for the negotiation protocols.

In order to integrate the language of encounter Java packages with the domain-

independent marketplace, the following steps must be carried out:

94

1. Importing the specific domain message classes into the marketplace model. For
example, if the designer is developing an Oceanography domain negotiation
system, then he must import the specific messages for the Oceanography domain.
If another designer wants to develop online store negotiation system, then he
much import the negotiation messages for OnlineStore domain. As a result, based
on the domain of interest, the designer must manually import the same domain
messages packages.

2. Remove the messages definitions of the generic marketplace model and define
new messages classes based on step 1.

3. Unwrap messages classes and wrap them in the deltext method and the out
method in order to provide the capabilities of sending data or receiving data (to be
able to use using Setvariable and Getvariable methods).

4. The phase ProcessingCapability suggests that the marketplace receives a
CapabilityQuery to find the appropriate providers for a specific job. Hence, the
marketplace needs to access its database (in the form of pruned XML files) to
unmarshal data in order to send them back to the requestor via a
CapabilityStatement message. The designer must handle this process by adding

the correct JAXB Unmarshalling code.

Figure 6.1.1 shows the flow of the manual steps that the negotiation system designer

needs to follow. The figure shows five time consuming and tedious human interaction

95

tasks that each designer needs to go through before he starts tuning up dynamic coupling
and decoupling in the hierarchical model. Writing SES natural language needs a lot of
careful from doing syntax errors, in addition that each message in the language of
encounter needs a separate SES natural language, which results in 17 different text files.
The second step needs to import each of the 17 SES text files into the SES builder and
create the SES XML schema. The third step will need a 17 system commands for each of
the SES schemas to convert them into Java packages using JAXB compiler. In order to
import a domain specific message structure, we need to write in the header file of the
Marketplace Java file many lines of codes to import the correct messages. In the last step,
a lot of work needs to be done. Unwrapping each of the messages in the deltext method

and wrapping each message in the out method consumes a lot of time and effort.

The following section will show how we automate all these tedious and time
consuming steps by developing a code generation tool that does most of the work on
behalf of the designer. The tool reduces the human interactions into two very simple
inputs from the designer. The designer then can do little of work tuning on the

Marketplace model.

Oceanography:
ObserverMame,
SensorName,
etc

Designer

Input —

SESNL

r—‘ P Time consuming
and involves syntax
@ checkup

impoert *
add:

private B oupling
-Specific decision rules

Deltint

deltext

Message
out{)

Time consuming and
involves executing
system commands

(SES Ontology)

y4

] SES

Designer Builder
Input —

73
€

XML Schema

Tailored Marketplace
for the domain of
interest
import *

private

Deltint

deltext

Message out()

Designer Input
Domain Integration

JAXB

Compiler

Designer
Input

»3

Generic FDDEVS
Marketplacein
JAVA

Time consumingand
involvesalot of coding
for marshallingand
unmarshalling

JAVA Classes &
Interfaces
Packages

(Message Types)

—Specialized PESs |

Designer
Input
Time consuming and

9
&

involves a manual

importing of the

domain messages
(coding)

96

Figure 6.1.1: Manual steps in generating the negotiation system for a specific domain

6.2 Automatic Generation and Integration of the Negotiation Marketplace

In order to help the designer in defining the message structures, we have

developed a simple, easy to use Graphical User Interface shown in Figure 6.2.1. The user

of the GUI can add any subdomain he is interested in (for example PrintgJobs is a sub

domain of domain Services). Then the tool asks the user to enter information about each

message of the language of encounter. For example, it will ask how many fields does

message “Accept” has, what are the names of each of them. The user or the designer

might select two fields: CustomerName and PrintServerName. Then it will ask about the

next message in the language of encounter and so on until all of the messages are defined.

97

| %[SES Ontology Generator | Main... Elﬂlﬂ_hj

Add Domain Services

Surveillance
E-Commerce

Add Subdomain | PrintingJobs

Oceanography
Online Store
| Edit Domain | | Edit Subdomain ‘
| Delete Domain ‘ | Delete Subdomain ‘

Figure 6.2.1: SES ontology creation GUI

The output of the SES ontology generation GUI tool is a collection of SES natural
language text files, one for each message type. An example was given before. With the
help of the source code of the SES builder we automatically generate an XML

representation of the SES natural language by running the code:
sesinxml = NatToXml.getXML(SESnaturallanguagetext);

where SESnaturallanguagetext is the SES natural language and the
NatToXxml.getXML is a method in the class NatToXml that generate an XML

representation of a natural language input.

98

Then we convert the XML representation (String sesinxml) into an XML schema

by running the line of code:

String schema = XmlIToSes.getSchema(sesinxml);

The returned value of the above code is a schema stored in as a String variable.
Then the tool writes each of the schemas of the messages into files with the extension
“xsd” to prepare them for the JAXB compiler to create the target Java packages. The
SES schema is the representation of a master Ontology that contains all domains defined
so far and pruned with their structures. An example is given in figure 6.2.2. If we add a
new domain (say PrintingJobs) to the ontology it will be added automatically as a new

specialization of the sub domains as in Figure 6.2.3.

Accept

Aucem":l\bclumHmOﬂml estSpec

Qceanogfaphy O]w:EI[e

Oceanography-StructuralDec OnlineStore-StructuralDec

COceanographyMsaStructure OnlineStoreM sgStructure

| 4| Accept Accept-Subdomair 0 o =l [| ([2] AcceptAccept-SubdomainGfintrestSpecOnlineStore.OnlineStore-Struc. . = | B | %]

Name | Value Name I Value
Requestorame | Buyer |
Sensoriame | Seller |

Figure 6.2.2: Accept message structure for Oceanography and OnlineStore

99

Acce

Accer\t-SubdomﬂinOﬂmrestSpec

PrintingJohs

PrintingJobs-StructuralDec

FrintingJobsh sgStructure

|£| AcceptAcc.. |Ml

Oceanography

Oceanography-StructuralDec

Oceanography M sgStructure

Mame

Value

|| Accept.Acce... |ﬂ|

PrintJoblD

OnlineStore

OnlineStore-StructuralDec

OnlineStoreM sgStructure

|£]| Accept... E@ﬁ

PrintServer

Customer

Name Value Name Value
Reguestoriame Buyer
SensorMame Seller

Figure 6.2.3: Accept message structure after adding PrintingJobs

Translation into Java Classes

The system syntax command for JAXB compiler is:

xjc schema.xsd -d dirName -p PackageName

xjc is the JAXB compiler.

schema.xsd is the SES structure representation in XML schema.

-d dirName is the name of the directory where to output the Java classes.

-p PackageName is the name of the Java files package name.

100

The method ExecJAXBSchemaCompiler as shown in Figure 6.2.4, executes the
appropriate system command on each of the elements in the Set schemas (where each
elements in the Set represents a message representation). The schemas files (“*.xsd”) are
saved under “currentPath/Messages/” and the output package name is
NegotiationMessages. At the end of the method, a call to the method
PostProcessingJavaClasses is needed. This method makes extends (derived class) each of the
messages of class “entity” which is the base class for message exchanging in DEVS
JAVA. Also it imports the package (“import GenCol.*,”). At this point, the Java
packages are complete and can be used by the Marketplace Java model to declare the

appropriate messages for the specific domain of interest.

Tailor of FD-DEVS for a Specific Domain

The second step that needs human interaction is very simple and all what it needs
is to call a Java method (namely CreateFDDEVSModelFor) with the domain of interest as a
String input such as “Oceanography or PrintingJobs”. Since our Marketplace architecture
is standard and implements the negotiation protocols we defined early, one time
definition of the states, deltint table and deltext table in the FDDEVS GUI tool is enough.
The XML model representation is very important can be stored somewhere for the tool to
access. The in ports and out ports of the Marketplace model are also defined in the XML
file. So the XML model file is an input also to the Java method Create FDDEV SModelFor.

Hence the standard calling of the Java method is as follows:

CreateFDDEVSModelFor("PrintingJobs");

101

where the MarketPlace.xml is the standardized design of the Marketplace model.
Executing the line of the code above generates a tailored Marketplace Java model for
PrintingJobs domain. The model has PrintingJobs language of encounter structure classes

and ready to be used. Similarly for Oceanography domain:

CreateFDDEVSModelFor("Oceanography");

public void ExecJAXBSchemaCompiler(Set schemas){
Iterator itrschema = schemas.iterator();
while(itrschema.hasNext()){
String schema = (String)itrschema.next();
String[] command = new String[6];
command[0] = "xjc";
command[1] ="./Messages/" + schema + ".xsd";
command[2] = "-d";
command[3] ="./src/";
command[4] ="-p";
command[5] = "NegotiationMessages." + schema;
try{

Runtime.getRuntime().exec(command);
}
catch (Throwable t)
{
t.printStackTrace();
} }

PostProcessingJavaClasses(schemas);

}

Figure 6.2.4: Class ExecJAXBSchemaCompiler to execute the compilation commands

102

Figure 6.2.6 shows the implementation of method CreateFDDEVSModelFor. The
method is using class AtomicFDD, which is a class used in FDDEVS GUI that was
developed in our Lab. The class is modified to create the following code generation steps

for any negotiation Marketplace model:

1. Import the required Java classes for the negotiation process to take place, and the
appropriate message package for the domain of interest.

2. Declare an instance of each of the negotiation primitives (language of encounter
message) as shown in Figure 6.2.5.

3. In the deltext method, get message X when received on the corresponding in port
“inX” that was designed to receive messages of type X. After receiving a
message, store it in the corresponding local variable produced in step 2 and then
generate the appropriate code to unwrap the message to get DomainMsgStructure
class that has the get and set methods to allow the designers to access the data
received or set variables to be sent into a message. The objective of storing the
messages into local variables provides the capabilities for future data accesses and
processing.

4. Create the JAXB Unmarshaller code to provide the Marketplace to access its
database during the phase ProcessingCapability.

5. Prepare DomainMsgStructure classes and wrapping them into the corresponding
language of encounter primitive; and then send it through the appropriate out port.
This step simplifies the designer job into adding setV methods to marshal the

messages with data that he would like to send.

103

private Accept accept;

private BestProvider bestprovider;

private Busy busy;

private CapabilityQuery capabilityquery
private CapabilityStatement capabilitystatement
private ContractQuery contractquery;
private CounterOffer counteroffer;
private Decline decline;

private Item item

private ItemCheckResult itemcheckresult;
private ItemRequest itemrequest;

private LinkEstablished linkestablished;
private NotMet notmet;

private Offer offer;

private ProvidersChosen providerschosen;
private Reject reject;

private Terminate terminate;

Figure 6.2.5: Local messages declaration variables for the marketplace model

104

public void CreateFDDEV SModelFor(String thesubdomain, String atomicXMLFile){
String filename = atomicXMLFile;
AtomicFDD atomicFDD;
try { AtomicJAXB atJaxb = new AtomicJAXB();
atJaxb.initializeModel(filename);
atomicFDD = atJaxb.atomicFDD;
}
finally {
}
if(atomicFDD != null){
GenerateLanguageofEncounter();
atomicFDD.generate DEVSModel("", LanguageofEncounter, thesubdomain);

atomicFDD.writeDevsjavaModel("./models/java/");

b

Figure 6.2.6: Class CreateFDDEV SModelFor for the domain of interest

Summary

In this chapter we showed how we automated the process of generating the
Marketplace model given a message type of the language of encounter and the domain of
interest. For example, if the message is “ContractQuery” and the domain is
“Oceanography”, the tool will select the pruned sub SES of the ContractQuery ontology

that defines the message structure under the domain Oceanography. The overall

105

automated pipeline of the Marketplace generation is shown in the figure below (Figure

6.2.7).

Oceanography:
ObserverName,
SensorName,

etc

GUI

Designer -
Input
Messages
Structur

i
@

import *
Designer can add:
private -Dynamic coupling
-Specific decision rules
Deltint
deltext

Message
out()

(SES Ontology)

4EE——

SES NL) XML Schema
Tailored Marketplace
for the domain of Generic FODEVS
interest N
Marketplacein

BTEe 4 XML
private N
Ei Designer Input
deltext Domain of Interest
Message out()

®©

JAXB
Compiler

Forinstance,
-Oceanography

JAVA Classes &
Interfaces
Packages

(Message Types)

|_Specialized PESs |

Figure 6.2.7: Marketplace generation flow

106

CHAPTER 7. EXPERIMENTS AND RESULTS

The application of the negotiation activity can be applied into many multi-agent
disciplines where a user or an agent initiates the process by asking a query or a request to
be fulfilled. The user seeks to find either the best provider for his request or a provider
that can meet his requirements. In this chapter we will show two scenarios of interactions
where the negotiation model is an essential to the success of requirements fulfillment.
The first experiment is concerning surveillance systems in which observers negotiate
with active or passive sensors to find the right sensor that can provide the right data and
measurements over a specific region. The marketplace intermediates the interactions to
find out the best data provider on behalf of the observer. The second experiment occurs
very frequently in distributed engineering applications. A user or an engineer tries to find
computing resources, where he can deploy his jobs and gets responses from the service
provider within a specific deadline. The marketplace helps all negotiating party to reach
an agreement. These examples show that the service provider can change dynamically
and also how dynamic coupling and decoupling can be added in DEVS environment with

the appropriate provider.

7.1 Oceanography in Surveillance domain

The problem of finding the best data source has been widely studied in the
research. The objective is to find either the shortest path or the most efficient solution

which takes into account Link Bandwidth, how fast does the source process data, etc. In

107

this section, we will focus on how a requestor of data can find the right data provider for
his specifications and how the data providers can be selected dynamically over time. The
marketplace permits requestors to communicate with the appropriate data providers based
on its database records. Also, the marketplace can decide on behalf of the requestor on
who is the best provider. Such a situation occurs if the designer of the domain
implements some decision making to compare different offers from the service providers
to pick the best out of them. On the other hand, in most of the situations, the decision
making is made by the user. However, in this example, the marketplace receives Reject
and/or Accept messages, and then it chooses the best of them. In the next section on
distributed services environments, we will show how the marketplace receives Offers
messages and routes them to the correct destination (requestor). No decision making will

be made by the marketplace except in finding the appropriate service providers.

We applied our system to the Oceanography field in surveillance systems in
which experts observe different kinds of nature phenomena that might occur in the ocean.
Monitoring the sea level is critical in order to be prepared for any of destruction
phenomenon that could affect our cities and maybe causing a terrible impact on our life
such as in Tsunami effects. Many authorities and governments have radars and sensors
collecting data above the oceans all day time trying to detect any Oil slicks, Tsunami,
earthquakes, volcanoes activities, etc. Sensors are divided into two types: namely active
sensors and passive sensors [55] [62]. Passive sensors depend on the solar radiation; they
can detect different object properties such as reflections, roughness of the surface, speed.

However, passive sensors cannot measure the distance to the objects or the sea level. On

108

the other hand, active sensors are independent of the solar radiation; they operate by
sending different wavelengths and detect how much of the waves are reflected from the
object. This feature gives them the ability to measure the distances to objects [59]. Active
sensors are capable of measuring sea level and can be used to detect the changes that
Tsunami can cause on the ocean level. For more details on Radar sensors and their

operational specifications refer to the European Southern Observatory (ESO) site [63].

In this experiment we will show that our negotiation model can provide observers
the required capabilities to discover, locate and establish data links with the appropriate

sensors. After that, data and information can be exchanged.

7.1.1 Language of Encounter Structure

We have defined the message structure in the language of encounter ontology as
shown in table 7.1.1. We compiled the schemas of each of the message types into a Java
package and we named it OceanographyMessages. The table below shows that some of
the messages carry no information other than its type, which is all what it is needed for
the marketplace to transit from one phase to another. Some messages carry information as

needed by the experiment.

109

Message Type Contents

Accept SensorName, and RequestorName
BestProvider SensorName
Busy -
CapabilityQuery AltitudeThreshold
CapabilityStatement Sensors
ContractQuery Speed, Roughness, Location, and Altitude
CounterOffer -
Decline -
Item -
ItemCheckResult -
ItemRequest -
LinkEstablished SensorName, and RequestorName
NotMet -
Offer -
ProvidersChosen SensorsNames
Reject -
Terminate SensorName, and ObserverName

Table 7.1.1: Language of encounter structure for Oceanography domain

110

7.1.2 Observer Model

The Observer model starts the negotiation process in ServiceDiscovery phase
causing the transmission of a CapabilityQuery message to the Marketplace asking if any
of the sensors can provide a sea level altitude greater than a pre-defined threshold. The
marketplace replies by sending the names of the sensors who can provide such data (need
to be an active sensor type). After receiving the CapabilityStatement with the names of
the sensor from the marketplace, the Observer model transits into IssueContract and
marshals his specifications in a ContractQuery message and sends it to the marketplace.
The ContractQuery will contain the different types of data that the Observer is interested
in (namely Speed, Roughness, Location and Altitude). The marketplace then informs the
Observer of the best provider sensor by sending a BestProvider message to it. After
knowing the best provider, the Observer issues a LinkEstablished message asking the
marketplace to setup a communication channel with the chosen data sensor. Then the
sensor starts sending data periodically to the Observer until the collected data does not
meet the specifications (this occurs when the altitude is less than the threshold). Once the
dedicated sensor announces that he does not have the appropriate data. The Sensor will
ask the marketplace to terminate the channel to the Observer, after that the Observer

starts a new cycle looking for the next best provider. Figure 7.1.2.1 shows the scenario.

111

PS

i—\ Best Provider
‘_.—7 as

AS

/& il
g S
/4 7]
A

Figure 7.1.2.1: Oceanography best provider changes over time

In this example, we assumed that there are three regions on the ocean, region A,

region B and region C. in region A, the sea level is above the threshold, at that time,

Sensor 1 is the best provider of the data and he can provide it for while because he is

covering a large region (A). In region B, Sensor 2 is the best provider. Since the waves

move forward leaving the angle view of Sensor 2 at region C, then Sensor 3 becomes the

next best provider. Figure 7.1.2.2 shows the atomic model of the Observer along with its

input ports and output ports. Figure 7.1.2.3 shows the state transition diagram.

112

inAccept @ Observer @ outiccept
inBezProvider 4
inCapabilityStatement 4
inkatalnput &

inMothet @ Passnime —8 outCounterOffer

— outCapabilityQueny
— outContractQueny

inOffer @ —& outLinkEstablished
inReject M-
inStatt @ —& outReject

inTerminate @+ 5 = irfinity — outTerminate

Figure 7.1.2.2: Observer atomic model

¥ H
= mar = il Sy = Tomira
—_— ""m_]_. senuice |______..[-]
E E TR R

L

S romicr|

Tl T

: [Finish & Passiite]

Figure 7.1.2.3: Observer state transition diagram

113

7.1.3 Marketplace Model

The Marketplace receives a CapabilityQuery from the Observer to find out the
sensors who are capable of measuring the sea level altitude. The Marketplace replies with
the active sensors names since all of them can provide altitude measurements. Then it
forwards the ContractQuery message to the same chosen sensors in the
CapabilityStatement which is the output of ProcessingCapability phase. After that it
waits to receive from the Sensors either: Accept, Reject or Offer messages. In this
experiment we have three active sensors, Active Sensor 1, Active Sensor 2 and Active
Sensor 3. If it receives two Rejects and one Accept, then it will choose the one who
responded with Accept as the best provider and sends its name in a BestProvider message
to the Observer. If it receives all Reject, it will send an empty BestProvider. If it receives
more than one Accept, then it will send the last one who replied with Accept as the best
provider. Once the Observer receives a best provider the Marketplace will establish a link
between them. When one of the two communicated parties sends a Terminate, the
Marketplace handles that by removing the communication link between them. Figure
7.1.3.1 shows the atomic model of the Marketplace along with its input ports and output
ports. Figure 7.1.3.2 shows the main state transitions for the Marketplace model for this

experiment.

inAccept outfccept
outBestProvider
autCapabilityStatement

autContractQueny

inAdvertise
inCapabilityQueny
inContractQueny
inCounterOffer outContractQuenyToP 5
inltemn outCounte rOffer
inltemRequest

inLinkEstablished

autltemCheckResult
autltemRequest

inOffer autOffer
inReject autReject
inTerminate autTerminate

Figure 7.1.3.1: Marketplace atomic model

114

® In any phase, receiving a Terminate message will
cause @ transition to phase Termination

Figure 7.1.3.2: Marketplace main state transitions

115

7.1.4 Sensor Model

The Sensor model has database in the form of pruned SES files of the
ContractQuery, which has fours variable as mentioned above (Speed, Roughness,
Location, and Altitude). These data are a proposed data and not real, because of the lack
of having real Radar sensors. However, the model gives useful insights on how collected
datasets can be used; and no matter how the data is stored in the real sensors, it easily can
be mapped into pruned SES files. The proposed XML files have time stamps based on the
simulator clock. So, if the simulator clock is 55, then the sensors will access file
“data55.0.xml” which is stored under the corresponding directory (Active Sensor 1 has
directory “AS1”’). When the sensors receive the ContractQuery message, they unmarshal
their corresponding pruned XML files and check whether the variable “altitude >=
Threshold”. If the statement is true, the sensor will send Accept, otherwise it will send

Reject.

If one of the sensors who responded with Accept is chosen as the best provider,
the communication link will be established to it. After which it keeps retrieving the data
from its own pruned XML files every 2 simulation clock and sending the data to the
Observer model. The process proceeds as long as the data he is collecting is greater than
the Threshold. Once the Altitude is less than the Threshold, the sensor will send
Terminate. Figure 7.1.4.1 shows a pruned XML sample file for Active Sensor 1. Figure
7.1.4.2 shows the atomic model of the Sensor model and Figure 7.1.4.3 shows the state

transition diagram.

116

<?Eml wersion="1.0" encoding="UTF-8"7:

<ContractQuery =mnln=:=x=si = "http: swww. vl org-2001-EHlSchema—instance" ==i:noNamespaceSchemalocation="=mlinSCH. ==d":»
<Contractfuery—Subdomnain0f IntrestSpecs
<Oceanography »

<a=pect=0fOceanography >
{Ozeanography-Structurallec coupling = ¥
<Oceanographyd=gStructure Altitude = "8" Location = "20" Roughness = "30" Speed = "40":
< Oceanographyi=gStructure:
< Oceanography-Structurallec:
< aszpect=0f0ceanography »
<~ Qoceanography >
<sContractOuery—SubdomainOf IntrestSpec:
</Contractluery:>

Figure 7.1.4.1: Pruned XML file for active sensor 1 -ContractQuery

infccept @ Active Sensor 2

— cuttccept
inContractQueny 4H
inCounterOffar - — outlataOut
inLinkEstablizshed &
inReject M Passive @ outDffer
inTerminate 4 @ outReject
inavailable &4
inmodify & —@ cutTerminate

o = irfinity

Figure 7.1.4.2: Sensor atomic model

117

Figure 7.1.4.3: Sensor state transition diagram

7.1.5 Coupled Model and Simulation

Figure 7.1.5.1 shows the coupled model of the simulation. The system consists of:
Observer model, Marketplace model, Passive Sensor 1, Passive Sensor 2, Active Sensor
1, Active Sensor 2 and Active Sensor 3. The simulation of the negotiation process results
in the same behavior as we expected. From simulation time 22 until 70, Active Sensor 1
is the best provider and is chosen to be the data source for the Observer. From simulation
time 94 until 116, Active Sensor 2 is the best provider and is chosen as the data source
for the Observer. And finally, from simulation time 142 until 172, Active Sensor 3 is the
best provider and the appropriate data source. The Figures 7.1.5.2 and 7.1.5.3 show

snapshots of the simulation at running.

118

B DEVSIAVA Simulation Viewer

_ configure _ TSE_SEEEE:_%

‘

inkcoept outccept

inBestProvider G R

inDatalnput o outContractQuery

inNothlet outCounterOffer
inOiffer

inReject
S outRejest

et ablished

inTeminate outTerminate

Ohsemer-Controller-Sensors

inAcoept

authooept infceept
inContractQuery inContractQuery
inCounteiOffer & outb alsOu; inCounterdfrer outbatadut

outhccept

inLinkEstablished @ inLinkEstablished

outffer aulDffer

inReject inRejest

inTerminate outReject

inTerminate outReject
inavailable

inmodiy outTerminate

inmodity outTerminate

inAccept €
inkdve disa

aniir ey
iontractOuenToPS
G ounitardfier

inltemRequest outitemCheekResult
inLinkEsta

outReject
outTeminate

infeoept

inContractQusry @

inCounterilffer @ outbatalut
inLinkEstablished
nReject

outiceept

g outOffer

nTemminate 8 outReject

outTerminate

inAcoept

inCantractQuery 4

inCounterDifer 4 outbataDut
inLinkEstablisiizg

inReject

outhecept

outdtfer
inTeminate outhejest
inavailable
outTeminate

inmndity

TR 2 outhccept
inContractt

inCounterliffer outbatadut
inLinkEstablished
inReject

inTeminats 3 outReject

@ outffer

inmadity 2 oulTeminate

0.1

ready clock:().000 real time factor: G

ENEN

The coupled model

Figure 7.1.5.1

Simulation Viewer

7 configure

| [oceanographyExampie [»| ocs

Ohszerver-Controller-Sensars

infcrept
inContractRueny
inCounterOfter & outbatadut

suthcoept inAcoept authecept

inContractQuery
inCounteritfer

inLinkEstablished 4@-
outQffer inLinkEstal

outDataOut

inRejest outdter

inTerminate outReject

outRieject

outTerminate inmadity outTerminate

inAzoept outhecept

BestProvider £
i p outiapabilityQuery
inC apabilityStatement

inDatalnput outContractQuery ContractQuery|

inNothtet outCounterOffer
inOffar

lished

inReject @
inStart

inTerminate outTerminate

[CorfrecCue)]

bl 8 outhesept
inCantractQusry
outbataOut
8 outOffer
L outReject
inawaitable “
inmadity outTeminate

sutAcoept
outDataOut

autDffer

3 outfejest

& outTerminate

ot o RS
i 2 outhecept

etz ; a
inAdweris: ContractQuery|
inCapabilityDueny »

inlteinRequest
inLinkEstalished @

inTerminate & outTerminate

inCounterlffar outh ataOut

inLinkEstablished
@ outOffer

2 outReject

inmodify 2 outTerminate

ready clock: 20 000 real time factor: GD._

1VE SENSors

ContractQuery to the act

Routing

Figure 7.1.5.2

120

B DEVSIAVA Simulation Viewer

7 configure 7 Tomm:oaie__«mxm;v_m

=] [ocs

inCapabilitys
inDatalnput

inNothlet

inOffer

Reject

inStart

inTerminate &

outhceept

@ outTerminate

pabilityQuery

AContractuery

inAccept
inContractQueny

Ohszerver-Contraller-Sensors

outhceept

inCounterQitfer g- outDataOut

inLinkEstabl

inlteinRequest
inLinkEstailished @

inTerminate &

outDffer

outReject

outTerminate

inAsoept
inContractQueny
inCounterOffer
inLinkEstablished

outhooept
outD ataOut
outffer
outReject

inmodity outTerminate

inAccept
inContractQuery g

8 outAcsept
8 outDataOut
outOffer

@ outfeject

8 cutTerminate

infcoept 3 —
inCantractCuery 4
inCounterCfier @ outhataOut
inLinkEstablisied
-3 outDffer
& outReject

3 outTerminate

t o JREVEEEESN o 10 0cpt

inCounterCiter sutDataOut
inLinkEstablished
3 outDifer
infeject

a sutfejest

inmodify 2 outTeminate

ready

clock: 34 000 real time factor: G . [¥] aiways show couplings

0.1

1 is the best provider and the data source

1ve sensor

Act

Figure 7.1.5.3

121

7.2 Distributed Services Environment

Exploiting service providers in a distributed services environment has been a
tedious task to achieve. That is because of the fact that service providers are
geographically distributed and loosely coupled [21]. Users or engineers have been always
try to share computing resources because many of distributed systems are costly and
expensive to design and maintain. Hence, whenever it is possible, different companies
and other parties prefer to have software services that are optimally utilized where they
can deploy their models and jobs on the grid on demand. In these environments, the users
concern about different parameters such as the execution time, deadline until they get

responses, the quality of the data they need, the solution efficiency.

Having the services distributed brings the following challenges into systems
management techniques. First, users will need help from a third party to locate and find
out the appropriate providers among many of them. Second, privacy and transparency
where users do not like to publish their interests to every provider registered in a multi
agent environment. Third, users do not want to waste time and money to discover their
candidates. For example, in [15] an investment banking system based on web services
have been discussed where semantic ontologies were developed to represent services in
an attempt to close the gap and match between requesters and providers. The point here is
that you have many distributed and loosely coupled investment systems and the users
cannot locate the provider who can meet their requirements. As a result, a service model

based on the semantics is used to make the users understand and choose their best match.

122

In this section, we will show printing jobs scenarios in which users sends different kinds
of printing jobs and negotiate on different aspects of the job specifications until they
reach an acceptable agreement within their range. The problem is very close into its
definition to the problem of deploying computing jobs (or programs) into distributed
computing grid. This scenario captures most of the issues that could be found in such

engineering service environments.

7.2.1 Language of Encounter Structure

We used the GUI that we developed to define the structure of each of the
messages in the language of encounter. The result of the automation tool is a Java
package that we gave it the name PrintingJobsMessages. In designing the message
structures for this domain, we chose some selections of the types and technologies in
current printing servers. The following is a list of the printing technology along with their

applications.

Digital Printing

e Brochures
e Journals

e Booklets

Embossing Printing

Greeting Cards
Metals

Garments

Flexography Printing

Milk and Beverage Cartons
Disposable Cups
Containers

Adhesive Tapes

Envelopes

Newspapers

Food and Candy Wrappers

Letterpress Printing

Business Cards
Company Letterhead
Proofs

Billheads

Forms

Posters

Embossing

123

124

e Hot-leaf Stamping

Engraving Printing

e Stationery
¢ Wedding Cards
e Business Cards

e Letterhead

Gravure Printing

e Label
e Flexible Packaging

e Cartoning

Thermography Printing

e Fax Printers
e Business Cards
e Letter Head

e Invitation

For instance, if a customer is concerning with printing business cards, he might
choose thermography, Engraving or Letterpress technology. Also, we defined different
aspects for paper quality, deadline, color and duplex. The table below shows each

message type and the contents/information that it carries.

125

Message Type Contents

Accept Customer, PrintServer, and PrintJobID
BestProvider -
Busy -
CapabilityQuery PrintJob, and Customer
CapabilityStatement PrintJob, and PrintServer
ContractQuery PrintJob, TechnologyType, NoCopies,
Deadline, Customer, PaperQuality, Duplex,
PrintJobID, and Color
CounterOffer PrintJob, TechnologyType, NoCopies,
Deadline, Customer, PaperQuality,
PrintServer, Duplex, PrintJobID, and Color
Decline -
Item -
ItemCheckResult -
ItemRequest -
LinkEstablished Customer, and PrintServer
NotMet -
Offer PrintJob, TechnologyType, NoCopies,
Deadline, Customer, PaperQuality,
PrintServer, Duplex, PrintJobID, and Color
ProvidersChosen -
Reject Customer, PrintServer, and PrintJobID
Terminate -

Table 7.2.1: Language of encounter structure for PrintingJobs domain

126

We assumed also that if a new printing server would like to join the printing
services community, he should send a “MyCapability” message to the Marketplace to
register himself. MyCapability message should contain at least the provider ID and name
along with what printing capabilities he can provide such as: Business Cards, Wedding

Cards.

7.2.2 User/Customer Model

The user of the printing services system starts the negotiation process by sending
a service discovery request to the marketplace asking whether his job can be serviced by
any of the printing servers. The marketplace replies with whoever can provide the service
for that specific job, for instance, print server 3 provides Business Cards printing. After
discovering the appropriate service providers, the user starts to negotiate with the selected
providers by exchanging offers and counter offers on different printing attributes such as
paper quality, color, the deadline to finish printing. Once an agreement is reached, the
user will be satisfied with that specific job specification and sends Accept. In modeling
such an interaction behavior, A DEVS Java model is developed with the following

decision making rules.

¢ The User model is searching for a provider who has the Business Cards printing
capability.

¢ The user would accept an offer if one of the following conditions is satisfied:

127

1. If the paper quality is medium or high, the color is full HD and the
deadline is less than 80.
2. 1If the paper quality is medium or high, the color is RGB and deadline is
less than 30.
3. If the paper quality is medium or high, the color is grayscale and the
deadline is less than 20.
e If the offer does not match any of its acceptable ranges, the user sends back a
counter offer asking either his first preference or a modified one based on the
history of the offers he was receiving. In our model, we chose that the user sends

his first preference.

Figure 7.2.2.1 shows the User/Customer atomic model along with its input ports and

output ports.

infccept @ Customer —@ outfcoept
inBestFrovider 4

— outCapabilityQueny
inCapabilityStatement &

inDatalnput - — outContractQueny
inNothiet 8- Passpre —8 outCounterOffer
inCffer & @ sutlinkEstablished
inFeject -
inStart m- — outReject

inTerminate 4 - — outTerminate

= irfinity

Figure 7.2.2.1: User/Customer atomic model

128

Figure 7.2.2.2 shows the state transitions. At the beginning a start message is
injected into the User model causing it to transit into ServiceDiscover phase. In this
phase, the User puts its printing job type and its name into a CapabilityQuery message
and sends it to the Marketplace model at the end of the phase (internal transition). Then
the User waits for a CapabilityStatement in phase Wait. After receiving the
CapabilityStatement, it gets the selected providers for his job and transits to state
IssueContract, where a ContractQuery message is prepared with different printing job
specifications and attributes to be sent to the selected providers. Note here that if
CapabilityStatement that the user has just received from the Marketplace does not contain
any providers, then even if the User sends a ContractQuery message to the Marketplace it
will not be routed to any of the providers since none of them supports the User
requirements. The internal transition from IssueContract outputs ContractQuery to the
Marketplace and the User goes into state Agreement waiting for an agreement with any of
the appropriate providers. While the User in the Agreement phase, he will be receiving
different Offers from the selected providers. It will wait in the Agreement state for a
specific time (we selected it to be enough until all the providers complete sending their
offers). The internal transition function causes the User to transit into DecisionMaking
phase, in which it starts pulling each Offer he received and decide whether it meets his
acceptable range or not. In this state, the User unmarshals the data he needs from the
Offer message to help him decide on that offer, this include the different fields in the
message such as: PaperQuality, Color, Deadline, TechnologyType. If the Offer does not

meet his interests, the User goes into IssueCounterOffer state where the internal function

129

cause a CounterOffer message to be sent at the end of that phase to the source of that
specific Offer. After sending all CounterOffers to the providers involved in the
negotiation process, the User waits in state Wait. The internal transition function takes the
User from Wait into Agreement again and the same cycles of Offers —CounterOffers
proceeds until an acceptable Offer is detected. If the User receives an Offer that is
acceptable to him, then during the DecisionMaking state the User will decide to transit to
phase Acceptance. The internal transition from Acceptance causes a message Accept to be
sent to the Marketplace and then to the provider who owns that Offer. Immediately after
that, a transition to phase LinkEstablishment occurs. The internal transition from
LinkEstablishment causes an output of message LinkEstablished to be sent to the
Marketplace and the appropriate provider in order to inform them that the user is ready to
receive the service. The User transits into Receiving Data until the provider processes his
job and send him back an acknowledgment (DataOut) that he finished processing his job.
Once the User is informed that his job is finished, he goes into Termination state causing

message Terminate to be transmitted to the Marketplace.

130

Figure 7.2.2.2: State diagram for User/Customer model

7.2.3 Marketplace Model

The generic automated Marketplace model is used here. However, we added two
more functionalities to permit the Marketplace to intermediate the negotiation to enhance

the performance and efficiency. The two functionalities are:

1- Dynamic coupling and decoupling to setup channels between the User
model and the service providers based on the message source and
destination. For example, if a CounterOffer is aimed to be delivered to
Print Server 6, then a channel should exist between the User and the Print

Server 6 to enable them of exchanging the messages. At the same time,

131

there is no need to have a coupling between Print Server 4 and the User
since no CounterOffer with his name as a destination.

2- When receiving a ContractQuery message from the User to be forwarded
to the appropriate providers. The Marketplace unmarshals it and adds a
unique PrintingJobID field. The purpose of this field is to enable the
Marketplace to keep track of all the jobs that goes between users and
providers, and to differentiate between all of the jobs, it will be helpful to
have the Marketplace adding a unique ID for each job in order for future
purposes such as resolving an a agreement. For example, when a User
complains about an agreement violation, the Marketplace can access its

own database and find out the job that needs to be resolved.

The rest of the Marketplace behaviors follow the same rules and specifications as
mentioned previously when we discussed the Marketplace architecture and its
functionalities. We will point out here that when the Marketplace receives a
ContractQuery from users, it will forward it to the appropriate providers based on their
capabilities that were published in the past. After which the Marketplace waits for
responses from the providers. When it receives offers from the providers, it routes them
back to the destination of the Offer messages. Figure 7.2.3.1 shows the Marketplace

atomic model along with its input ports and output ports.

The Marketplace database consists of XML files in the project path under

directory ‘“MarketplacePrunedDB”. These XML files contain the printing job type name

132

and the names of the providers who can provide that printing type. For example, Figure
7.2.3.2 shows a sample XML file for Business Cards printing types and the provider

names which are: Print Server 1, Print Server 3 and Print Server 6.

inAccept @ Services-MarketFlace —@ outfccept
inAdvertise @ @ outBestProvidar
inCapabilityQuerny 4
inContractQuen @

—@ outCapabilitvStatement
—@ outContractQuens
—@ outCounterOffer

inCounterOffer @

inltem 4 Active
inltamRaquest @ —@ outltemCheckResult
inLinkEstablizhed & —@ outltemRequest
inOffer @ —@ outOffer
inReject M- — outReject

inTerminate @ @ = infinity —8 outTerminate

Figure 7.2.3.1: Marketplace atomic model

Tl version="1.0" encoding="UTF-8"7)
(apabilityStatenent anlns sl = “http//wow vd.org/ 2001/ THlSchens-instance” xel:nolanespaceSchenalocat ion="mlindCH xad")
(apabulity5tatenent-SubdomainOf Intrest Specy
Printinglohs:
<azpects0iPrintinglohe
(Printinglobs-Structurallec coupling = ')
(PrintinglohelsgStructure Printlob = "Business Cards" PrintServer = 'Print Server 1:Print Server 3: Print Server 6"
(/PrintinglohslagStructure)
¢/Printinglohs-5tructurallec)
¢/gspecta0iFrint inglobs)
«/Printinglobe)
(Ooeanographyy
<azpects0f (ceanoqeaphy
¢Oeeanography-Stracturallec coupling = '
¢OceanngraphylisgStructure/y
¢/leeanoqeaphy-Structurallec)
¢/aspecta0i (ceanograghy)
«/Oceanoqraphy)
(OnlineStore)
¢azpecta0iMnlineStore)
(OnlingStore-Structurallec coupling = '
¢OnlingStorelegStructure/)
¢/l ineStore-Stractural Decy
</agpectadi(nlingStore)
(/OnlingStores
«/Capahi 1ity5tatenent-Subdonaindf IntrestSpec)
«/CapabilityStatenent

Figure 7.2.3.2: Business Cards.xml file

133

7.2.4 Service Provider Model

The Print Server model or Service Provider accesses its own XML files database
in the same way the Marketplace accesses its database. Each of the Print servers has
different printing capabilities that are stored in the XML files, which are pruned SES
files. For example, Print Server 1 has the capability to print Business Cards, Brochures,
Newspapers and Posters. The specifications of each of these printing capabilities will be
stored under the corresponding PES file for that printing capability; for example,
“Business Cards.xml”. We assume that each of the print servers can update or change on
these specifications such as Deadline in order to match user requirements. The
modifications process of the aspects follows some rules which were defined for each of
the Print Servers models. The scope of this research is not on how the decision making
occurs on the Print Server side or the user side. It could be a manual user interaction, or
an automated mathematical model that captures the user objective function. Hence, in our
implementation we have assumed some random updates on different printing jobs

specifications, for instance, we used that CurrentDeadline = PreviousDeadline — Update.

If a new Print Server would like to join the printing services community, he sends
a “MyCapability” message including his name and the printing capabilities he provides.
Then the Marketplace will add him to its database along with his printing capabilities.
When the Print Server model receives a ContractQuery message, he transits into
DecisionMaking state, where a decision will be made on whether he can meet the
requirements of the printing job in the ContractQuery message or not. If he can, then he

will send Accept and an agreement will be reached. However, if he cannot meet the

134

customer specifications, he will send an Offer message to the Marketplace including his
current offer and his name. The Marketplace receives the message, find out the customer
name by unmarshalling the message, and then routes it to the appropriate receiver. The
way we designed the decision making rules in this experiment is to show how negotiation
cycles of Offer-CounterOffer occur. On the other hand, in the previous experiment as we

explained, the decision making was direct with best provider chosen.

The internal transition function causes the transition from DecisionMaking to
Offering phase, the output of Offering phase is an Offer message. After that, the Print
Server model holds in WaitonOffer phase; in which the Print Server waits to receive
Accept, Reject or CounterOffer. If he receives a CounterOffer, he goes into the same
cycle of DecisionMaking->Offering->WaitonOffer, or he can accept and goes into
Acceptance state which results into sending Accept message. In this implementation, we
assumed that if a Print Server sends an Offer to a Customer and the customer accepts the
offer, then an agreement is reached. No need to go back to the Print Server and asking

him whether he accepts or no.

If the Print Server receives Accept, he will hold in state ProvideService for the
time defined in the Offer Deadline. Internal transition causes the model to transits from
ProvideService to Passive and an output of DataOut will be sent to the Customer
informing him that the processing of his job has finished. Figure 7.2.4.1 shows the atomic
model of the Print Server model (or Service Provider model) along with its input ports

and output ports.

infdwertize -
inContractQuern -
inCounterOffer 4
inLinkEstablizhed &
inFeject -
inTerminate &
inavailable &
inmuodify 8-

Passive

o = infimity

inAccept @ Print Server 5 | g outdceept

—& outtdverize
—@ outDataCdut
— outOiffer

—8 outReject

—@ outTerminate

Figure 7.2.4.1: Print server atomic model

The state transition diagram of the Print Server is shown in Figure 7.2.4.2.

Figure 7.2.4.2: Print server state diagram

135

136

7.2.5 Coupled Model and the Simulation

Figure 7.2.5.1 shows the coupled model which is a higher hierarchical level of the
atomic models. The output ports of the User model is connected to the input ports of the
Marketplace. None of the output ports of the Marketplace model is connected to any of
the input ports of the service providers. Where we aim to add the coupling or remove it
dynamically based on the destination of the messages or the capabilities of the providers.
For example, when a ContractQuery is received from the User model, the Marketplace
add coupling with those of the providers who provides that printing service defined in the
ContractQuery (Figure 7.2.5.2). Since we have in our simulation only one customer, we
connected the output port “outCapabilityStatement" of the Marketplace to the User input

port “inCapabilityStatement".

addCoupling(M,"outCapabilityStatement",U,"inCapabilityStatement");

We have seven Print Servers each of which has its own printing capabilities
which are defined in his own PESs database. When the Marketplace needs to send a
message to Print Server X, it adds coupling to it, sends him that message and removes the
coupling unless its needed in the next step of the simulation. The Print Servers can easily
send their messages to the Marketplace because their output ports are connected to the
input ports of the Marketplace model. Print Servers models and the User models
exchange their Offers-CounterOffers through the Marketplace model (Figure 7.2.5.3 and

Figure 7.2.5.4).

137

If a Print Server model and the User model needs to communicate, they inform
the Marketplace and then the Marketplace add the required coupling permitting them to
negotiate. This situation occurs when they reach an agreement, the customer will ask for
a link to be established resulting in the Marketplace adding a link between the two parties
of the agreement. The link will be removed once the job processing is done (Figure

7.2.5.5 and Figure 7.2.5.6).

138

B DEVSIAVA Simulation Viewer

| sonawe | | softwaresenicestxample

|v| [servcestny

inAzcept gutherept
inBestProvider

ContractQuery|

inNothlet i
inDffer sutLinkEstahlished

inReject &
instart

inTeminate #Terminate

outeject

Distributed Software Sewvices Coordination - Joks Deploying

inAcoept

B outscept

indvertise
inContractDuery
inCounterdffer
inLinkEstablished

inReject

outhdvertise
outDataOut
outQffer

inTeminate 8 outReject

A outTerminate

inConnterOffer

ftam
inltemRequest & sutltemCheukiesult
& ollitemRequest
outfter
a outfieject

outTemm

inCantiactDuery
inCounterDifer
inLinkEstablished
inReject

inTerminate

inkecept
infdvertise

suthooept
inContractQuery outAdvertise
inCounterOffer @ . ol st
inLinkEstablished -
inReject outOffer

inTeiminate outfeject

outTerminate

inkeeept
infdvertise
inContractluens

@ authosept

@ suthduertise

inCounteidffer g+ outDatadut

@ outifer

inTerminate

a outReject

inavailable
outTerminate

inkcoept
inAdvertise
inContantQuery

outtccept

outhdvertise

inCaunterfer @ sutbatalut
outiffer
outReject

outTerminate

indsnent @ o —

inAdvertise

inContractQueny @ outhdvertize

inCounteiOffer outbataOut
inLinkEstablished
ink 2 outOtfer
inTerminate a3 outfeject

inavailable
2 outTeminate

infETept outtceept

inAdvertise
inContractQueny outAdwerise
GonnterDffer

inLinkEstablished

outDataOut

infaject outlfer

inTerminate

outReject

inavailable
outTerminate

ready clock: 9000 real time facte

always show cou

Jobs coupled model

Printing

Figure 7.2.5.1

139

I DEVSJAVA Simulation Viewer

7 configure 7 Toniﬂmmmz.ommm::_e_m

[v| [semicestny

inAsoept sutcept
inBestProvider

inDatalnput
inNothiet
inOffer

inReject &
inStart

inTerminate

Distributed Software Services Coordination - Jobs Deploying

inkecept
inAdvertise

inAecept o outhooept

inAdvertise inContractQuery

| outAdverice inCounterOffer
inLinkEstablished -

inContractQuery
inCounterditier
inLinkEstablished

outlataOut
inRejest 0 oulOfier

inTerminate Lo oulReject
inavailable |
-8 outTeminate

[Contractuen)]

[Contacauen]

3 vulfspabilityStatement

sutContractDuay

outCounterGiter

& outitemGheskResult
@ outtemRequast

suthceept
outhduertise
sutbatatiut
sutOffer
sutReject

outTerminate

inAccept 2 outhooept

inAdvertise
inContractQuzn @ outhdvertize
PLyiin. outDataOut
Kistablished

inReject

& outDifer

inTeminate 3 tutReject

inmodify 8 outTerminate

indenept @
inAdvertise
inContractQuery
inCounteritfer
inLinkEstablished

3 outhorept
8 outhdvertise
outhatadut
2 outDffer

3 oulRejert

@ outTerminate

ContractQuery|
infceept outhccept
inAdvertise
inContractQuery outAdvertise
outDatabut
oulDffer
outfigjest
outTeminste
S 9 outdecept N
infdverlise . "
@ outdvetise inAdvertise 4
Mttt inContractTitery 3 oulhdvertise
inCounterOffer | g istiinas oy i
KEstablished)
f O cutDiffer inLinkEstablished
| inRejet e i,
inTerminate - outReject N s
0 outTerminate ——
0.1

ready clock: 19.000 real time factor: G lways show couplings E

f ContractQuery exchange

ing o

Dynamic coupl

Figure 7.2.5.2

| conigus | [sottwaresenicesExample

|v| [seniceseny

inAcoept
inBestP rovider

inCapailityStatement &
inDatalnput

inNothfet
inOffer &
inReject €

Fv autRegest

inTerminate

T erminate

Distribute Software Senices Coordination - Jobs Deploying

inkccept
inAceept inAdvertise
inAdverise inContractQuary 8 outhdvertise
inContractQuery 0 outhdvediss InCountertter Z

inLinkEstablished @
TRt 9 outDtier

8 outhcoept

B outhooept

outbataOut
int ounterDffer
inLinkEstablished
inReject B owiOtfer

outDataOut

inTeminate 8 outReject

inawaiiable
inmadify o 8 autTeminate

inTerminate

B outReject

B outTerminate

inkccept

a outhsoept
inAdvertise

inContrantuzty 3 outddvertise

inCounterDtier &
Established
st 2 outDifer

outDatalut

inTerminate 8 outReject

inavailable
8 outTeminate

indceept £

inAdwertise £ FiastProider inanept @ outhcoept

inCans A S inAdvertise
ot i A wutlspabilif atemen
infantractiusr : inContractiuery 3 outhduertise
“““ vatCantraetQuer :
inCaunt 2 inCounterDifar outbatadut
inltem o o tCoynaET inLinkEstablished
& outttemChesiHesutt ik 2 oullffer

inltemRequest
i o

@ outtemRequest inTeminate

-3 oulfffer inawailable
; 2 outTeminate
~ 3 outReject

8 outRejest

inAsuept

outceept
inAdverise

inContractQuery outAdvertise
inConnterOffer
inLinkEstablished
inRiejeat outOffer

outDataOut

outRejest

outTerminate

inAcoept

inAdwertise
inContractuery 0 outidve tise
inCounterOffer

|
9 outhsoept

inAceept
inifdvertisi
inContractiuzn
inCounteitfer
inLinkEstablished

inReject
0 oulReject inTeminate

a outhesept
2 outhdvertise
inLinkEstablished outbataDut

inReject Bieslitesy 3 outdffer
inTerminate
: @ oulReject
insvailable

inmadify

inawailable
0 outTerminate

inmodify -3 outTeminate

ready clock: 22.000 real time factor: GD._

e e

Offer messages

ing

through exchangi

Negotiation

Figure 7.2.5.3

141

DEVSJAVA Simulation Viewer

| corsgue | |[softwaresenvicesxample

|*| [seniceseny

inAceept cutherept

inBestF rovider
inCapabilityStatement &
inDatalnput
inothlet ou
inOffer
inReject @
intart
inTerminate

pkEstahlished

oulReject

Distributer Sofware Sewices Coordination - Jobs Deploying

infccept
inAduertise
inContractuery

B outhecept

B outhdueise

inCounterQffer
inLinkEstablished

outDataOut

inTeminate
inavailable
inmadity -8 outTeminate

inAceept
inAdvertise
inContractuen
inCounterifer
inLinkEstablished @+
inReject

B outhccept
8 outAdverise
outbatadut

B outDffer

inTaiminate
inavaiiable
inmodity

3 ol spabilitytatement

GutCantractluery

outCounterGfter

inocept P—

indvertise

inContractQuery 0 outAdvertise

inCounteDfar

inLinkEstablished
inRaject
InTeminate
Inauallatle

0 ouiTeminate

CounterOffer|

inkscept
inAdverise

inContractQueny

a outceept
D outtdvertise

inCountaOfar sutbataOut
inLinkEstablished
inReject il
inTeminate a outfelest
inavailable
iy 2 outTeminate

infcvept
inAdvertise

3 outhecept

inCentactQuery RiouLdelE
inCounterOffer & outbatalut
tstablished
inReject $ e
inTeminate 8 outfisjest

8 outTeminate

3 outhccept
inAdvertise

inContractQueny 2 outdvertise
inCounterOffer Suibstaiot
inLinkEstablished
2 outDffer

2 outRiejert

@ outTerminate

inAcuept —
inAdverise

inContractQuery outAdvertise
GonnterDffer

inLinkEstablished

outDataOut

outOffer

outRiject

autTerminate

ready clock: 31.000 real time factor: G

0.1

[o]

CounterOffer messages

ing

through exchangi

Negotiation

Figure 7.2.5.4

142

B8 DEVSIAVA Simulation Viewer

| cortguw= | | softwaresenvicesExample

[+] [serviceseny

inAsoept
inAdvertise
inContractueny

outAcoept
outidverise

inCounterffer outDatadut
inLinkEstablished
infeject outiffer

inTerminate

‘0 outRsject

inavailable
inmodify ' outTeminate

authsicept
Aeeept subheuept
inBestProvider

inNothet suttounterdifer
iniiffer

infizject €
instart
inTerminate

SuikinkEstahlishe d

outRiejeit

inkccept

inAdvertise
inContrastQuery
inCounterDfer
inLinkEstablished
inRejest
inTerminate

inavalable
inmadify

buter Sofware Senvices Coordination - Jobs Deploying

infoept
inAdvertise

outhceept

inContractQuery outdvertise

inCounteOfer outDataOut
ininkEstablished
i 8 outDfter

inTeiminate

outReject

outTerminate

infccept cuthceept
inAdvertise

inContrantRuzny outAdvertise
inCounterDfer & s
iEstablished
inRejeot outOtfer

inTerminate

outRejest

outTeminate

infnnent & 3 outhcoapt

inAdvertize

inContractQuery 2 cuthdvertize

inCounterQifer outbatalut

2 outDiffer
2 outReject

2 outTerminate

infiuept
inkdverise
inCantiactDuery

outéecept
outhdvertise

nGaunterOffer outD atalut

inLinkEstablished
outOffer

outRejest

outTerminate

innggept outhceept
inAdvertise

ContiastQuzy Sutulvenls
InColnteider sutbataOut

inLinkEstablished

inRejeet outoffer

inTeminate & ke

inavailable

inmodity 3 sutTeminate

ready clock: 102.000 real time factor: GD._

[t [oo [[s |

Link establishment messages

Figure 7.2.5.5

143

B8 DEVSIAVA Simulation Viewer

| [servicestny

[contguee | ?:53%25&:5%

Distributed Software Services Coordination - Jobs Deplaving

inecept suthocept
infduertize

inContractQuery

inkscept
inAdvertise
inContractQuen

outhccept outhdvertise

outhdvertize

inCounteOffer outDataOut
inLinkEstablished #:

ink
inTeiminats

inGounterOfer outbataOut
inLinkEstablished

inReject

outOffer

otiaet outReject
inaaiiable

inmadify

inTerminate
- outReject outTerminate

inawailable
inmodify A outTeminate

infeept subheuept

AP e dar
inBestProvider
inCapabilityStatement €
inbatalnput
Nothet
inffer
inReject €
inStart
inTerminate

9 utf.spabilityStatamant
JtConisactuery

outCounte:frer

uRejeit

DataOut]

infigeept A outhsoept

cept @ :
inAdvertise sutAzeept

infdwertise

ContractQueny

0 outfidvertise

inContractQueny outhdvertise

inCountertfar outbatalut inCountsiffer outbatalut
nDnkEzplehed inLinkEstablished
inRejest InRejeet sutOtfar
inTeminate

inTerminate 3 sutRejest
inavailable

inmadify

inavailable

@ outTeminate . .
inmodity 3 outTeminate

infeept PR
Adverise

inContrantZuany outhdvertics
inCounterDtfer & s

iEstablished

inReject outDifer

inTeminate outReject

inmadify @ outTeminate

indineent @
inAdvertise
inContract2uery

2 outhcoept

2 outhdvertise

inCounterQifer outbatalut
inLinkEstablished
inRajact & outOiffer

inTerminate 2 outReject

@ outTerminate

inksuept
inAdvertise
inContractueny

outhecept

outddvertize
neunterOffer outD atalut
inLinkEstablished

inRgjeot oulfiffer

inTeminate —
inawailable
inmodify outTerminate

ready clock: 179.000 real time factor: Go._

3T

finished

ing is

Job process

Printing

Figure 7.2.5.6

144

The output of the negotiation activity is an agreement as shown below. When we
started the simulation, we did not know the result ahead of time. After the simulation is
done, we compared the negotiation result with the Customer decision making options
mentioned above in section 7.2.2. The terms of the agreement match the first condition

of the User model decision making:

1. If the paper quality is medium or high, the color is full HD and the

deadline is less than 80.

SSSSSSOSSSSSSSSSSSSSSSSS>S>SSS>>>>>>>Agreement Offer information is:

Customer : Customer

Job Type : Business Cards

Print Server : Print Server 6

Color : FullHDColor

Paper Quality : High

Deadline : 78

Duplex : Yes

Number of Copies : 1

Technology Type : Thermography

DSOSSSDSDDSSSSDDDDDSSSODDDSSSSODDDDSSSDODDDISSSDODDDSSSODODDDSSSOO>DDS

145

Summary:

In this experiment we showed how the negotiation activity can be applied to the
domain of distributed services environments. The marketplace agent plays a key role into
discovering services providers and supervising the interaction between user agents and
service providers. Having a trusted third party (Marketplace) gives the collaborative
agents the confidence to deploy their jobs. A designer might want to use the same system
to deploy programs or jobs into some computing resources to improve utilization. In such
a situation, the designer might need to include Bandwidth, Execution Time, I/O tasks, etc.
After that, the application of our system is straightforward and automated to generate the
correct code that the designer will need. Hence, our approach is valid to be used under

any of software and hardware multi-agent environments.

146

CHAPTER 8. PROOF OF CONCEPT (DEVS/SOA)

8.1 DEVS/SOA Environment

DEVS Service Oriented Architecture is a web services multi-server environment
to support DEVS simulator. The system consists of two services, namely MainService
and Simulation Service. Our concern in this section is the MainService and how can we
deploy our models in the system. The MainService has four functionalities, Upload
DEVS models, Compile DEVS models, Simulate DEVS models and Get results of the
simulation. In order for our models to upload, compile and simulate correctly under the

DEVS simulator, some minor modifications are needed to be done, which are:

e Atomic models need to inherit “atomic” class rather than “ViewableAtomic”, and
the coupled model needs to inherit “digraph” class rather than “ViewableDigraph”

class.

e DEVS Service Oriented Architecture was designed to support interoperability
between different platforms and for heterogynous servers. In order to support that,
the system nodes exchange messages among each other as strings in XML
formats. For us to use such capability, we created a new class type of each of the

language of encounter that has a String local variable where we send the pruned

147

XML structure of a specific message as a string. Figure 8.1.1 shows the

ContractQuery primitive class.

The DEVS/SOA system we used is a centralized distributed simulation, which

means, a coordinator controls the time for the next event?, . The coordinator asks each
node in the distributed environment for their local next time event ¢, and collects them
all. Then the coordinator calculates the minimum¢,, and informs each of the servers to
change their next time event to the minimum¢, that was just computed. The following

section shows the steps in deploying our models in DEVS/SOA and the output results of
the distributed simulation. For more details on DEVS/Service Oriented Architecture

system specifications and services, refer to [22][48][49]

148

] import GenCol.*;

public clas=s XmlContract{mery extends entitv{

1] puklic XmlContract{mery () {
super ("ContractQuery™);
1] puklic void setXmlContent (String str){
{mlContent = str;
1] puklic String getdmlContent () {

1] public String toString() {
return getMName () ;

Figure 8.1.1: ContractQuery class implementation for DEVS/SOA

8.2 Printing Jobs Models Deployment in DEVS/SOA Environment

After preparing the Print Jobs experiment to run on DEVS/SOA environment, we
chose five different machine servers to deploy the models. The first step of the models
deployment is the IP assignments of each of the models Figure 8.1.2. The assignment
does not need to be one-to-one as shown in table 8.1.1. The second step is to upload the

models to the servers, where a copy of each of the models (client) will be sent to the

149

appropriate machine that has the IP address assigned to Figure 8.1.3. The third step is to

compile the models and then the last step is to run the simulation.

IP

Model

150.135.218.200

Customer, Print Server 2, Print Server 4, Print

Server 5 and Print Server 7

150.135.218.201

Print Server 1

150.135.218.203

Print Server 3

150.135.218.204

SOAMarketPlace and the Coupled model

(ServicesSOAENv)

150.135.218.206

Print Server 6

Table 8.1.1: Models assignment to the machines

We assigned Print Server 1, Print Server 3 and Print Server 6 to different

machines dedicated to run their models because we knew from the beginning that those

three print servers are the only ones capable to provide the customer request. Hence, in

order to show that the negotiation occurs between separate machines, we chose this

assignment.

150

L[E[X)

DEVS Distributed Modeling and Simulation over S0A

® Y Simulation O RT Simulation

| Select Package Folder containing devsjava model fles [Ljawa)l |

ESenﬂcesSOAElw.ia\ra
SOAMarketPlace.java

| ISOAServiceProvider.java
[SOAUser.java
;}(mlnccept.iwa

| (XmIBestProvider.java
[XmiICanabilitvOnen iava_
Select Top-level Couplad Madel frorm list abowve

Select available Servers
| []150.135.218.199:8080 [v] 150.135.218.206:8080
[¢] 150.135.218.200:8080 [v] 150.135.218.203:8080
| [v] 150.135.218.201:8080 [v]| 150.135.218.204:8080
; [| localhost:2080

Assign Servers to Model Components

B Assign P addresses to Models

Components

Print Server 4
Print Serwer 7
Print Serwer 1
Print Serwer &
Print Serwer 2

Customer

Distributed Software ., |150.135.218.204:8080 | w |

IP Address Assigned

[150.135.218.200:8080 | w |

[150.135.218.201:8080 | w |

[150.135.218.200:8080 | |

[150.135.218.203:8080 |+ |

50.135.218.200:8080 |

| Cancel || Done |

Figure 8.1.2: DEVS/SOA IP assignment

DEYS Distributed Modeling and Simulation over SOA

i Simulation O RT Simulation Soloct available Servers

|
Select Package folder containing dewsjawa model fles [javal | = |

=]

S 1

SenvicesSOAENv.java 1=
'SOAMarketPlace java [?
| [soAserviceProvider.java - |

XmlAccept.java
[XmiIBestProvider java
XmiCanahilitvOuersiava =
Select Top-level Coupled Madel from list abowe

fSOAUser.java ‘

Files uploaded.

Figure 8.1.3: Models uploading process

After the simulation is over, we got the results as we expected. In the following
figures, we will explain each of the server machines outputs. Figure 8.1.4 is the Customer
model on machine 150.135.218.200. The output shows that the Customer sent a
ContractQuery message to the SOAMarketplace asking for Business Cards Printing Job.
Then he starts getting Offers which transits him to DecisionMaking->IssueCounterOffer-
>DecisionMaking-> IssueCounterOffer ...and so on, until he receives an Offer that is

acceptable to his decision making rules. After that, he establishes a link with the provider.

152

Also, we implement the Customer to print out any Offer he accepts. The output that says
“Offer information ...” is the terms and Offer specifications that the Customer agreed
upon. Notice here, that although the rest of the other Print Servers (2, 4, 5, 7) are
deployed and running on this machine, none of them produced output that is because they

are not part of the negotiation since they do not provide Business Cards printing

capability.

-L1211769261§72\SOHH&PREEPlace.jaua uzes unchecked or unsafe npe;atiuns.
Mote: Hecompile with —X¥lint:unchecked for details.

0K. Project

TrOCESSs 1ng

>>

compiled.

Simulator function
Simulator function
Simulator function
Simulator function
Simulator function
IzsueContract{>

DecisionMaking (>

IzsueCounterOfferd
DecizionMaking{>

IzzueCounterOffer(d

: DecisionMaking{>

IzsueCounterOfferdd
DecizionMaking{(>
IszsueCounterOffer ()
DeciszionMaking{>
IzzueCounterOffer(d
DeciszionMaking(>
IzsueCounterOfferdd
DecizionMaking{(>
IzzueCounterOffer ()

: DecisionMaking{>

IzsueCounterOffer(l
DecisionMaking{(>
IzsueCounterOfferd
DecizionMaking{>
IzzueCounterOffer(d
DecisionMaking(>
IzsueCounterOfferdd
DecizionMaking{(>
IszsueCounterOffer ()

e X
ustomer : Customer
obh Type : Bu31ness Cards

aper Quality 3

High

Offer information a

Duplex = Yes
Humber of Cnpies
Technology Ty H

e £
Thermngraph

)}>}}>}>}}))}>}}>>>}})>>>}}>>>}})>>>}}>>>}}))}>}}>)>}}))>>}}>>>}})>>>}}>>>}})>>>

Figure 8.1.4: The output of the customer machine

153

Print Server 1 and Print Server 3 outputs are almost the same except that each one

of them outputs whatever Offers they are sending to the Customer. The offers information

is for Business Cards printing. Notice here also that the Deadline does change from time

to time since we designed them to update their Deadline such as:

CurrentDeadline = PreviousDeadline — Update

Print Server 6 is the winner provider of the negotiation process since he replied to

the customer with an Offer that is acceptable to the Customer satisfaction. Hence, we can

see in the output of the Print Server 6 that it goes into phase ProvideService. Print Server

1 and Print Server 3 outputs do not show that they provided any service to the Customer.

Figure 8.1.5 shows a snapshot of the outputs of Print Server 1 and Print Server 3. Figure

8.1.6 shows the output of Print Server 6.

Processing: DecisionMaking(>

olor BlackWhite:; GrayScale

aper Quality iz : Hedium; Low

gadline is: 48

echnology Engraving;: Letterpress
rocessing: DecisionMaking<

lientIp in getConsole = 158.135.218.284

iz =

is

rocessing: DecisionMakingd{d
olopr iz = RGE; BlackWhite
aper Quality is = High; HMedium

E13

Engraving: Thermography

eadline is:

echnology is

rocessing: DecisionMakingd2
lientlp in getConsole :

158.135.218.2084

Figure 8.1.5: Print server 1 and print server 3 outputs side by side

154

K. Project compiled.

if 1

ompiling project at 158.135.218.203:8088...

ote: C:WProgram FilesWipache Software FoundationWTomcat 6. 08tenpWDevsMLErclDevs
L1211769261572W50ANarketPlace . java uses unchecked or unszafe operationsz.

ote: Reconpile with —Hlint:iunchecked for details.

K. Project compiled.

Compiling project at 150.135.218.2P4:888A. ..

Hote: D:WProgram FilesWipache Software FoundationWTomcat 6.8¥tempWlevsMLErcHDavs
HL1211769261572W50ANarketPlace . java uzses unchecked or unsafe operations.

Hote: Reconpile with —Mlint:unchecked for details.

0OK. Project compiled.

Here iz new Simulator Function t1

Color iz 3 RGE; FullHDColor
Paper Quality i= = High; Low
Deadline is: 98

Technology is Thermography
Processing:! DecisionMaking<?
Color is : RGE; FullHDColor
Paper Quality is = High; Low
I_I:l:-nd line is: 8

echnology is Thermography
Processing: DecisionMakingCy

Colow iz : RGEB; FullHDColor
Paper Quality is @ High; Low
Deadline is: 78

Technology is Thermography
Processing: DecisionHaking<)»

Color iz : RGB; FullHDColor
Paper Quality is = High; Low
Deadline is: 78

Technology is Thernography
Processing: DecisionMaking<)

Color iz : RGB; FullHDColor
Paper Quality iz = High;: Low
Deadline isz: 8

Technology is Thermagraphy
Processing: DecizionMaking<)

Frnc::.':;i:rtg: Pmuidcgurui:n{}
clientIp in getConsole : 150.135%.218.2084

Figure 8.1.6: Print server 6 output, showing providing service

Figure 8.1.7 shows a snapshot of the SOAMarketplace output on machine
150.135.218.204. the output shows that after the marketplace received a CapabilityQuery
for Buisness Cards job, it accessed it’s XML files database and found that Print Server 1,
Print Server 3 and Print Server 6 are the only providers for Business Cards. Then it
received a ContractQuery and transits to InterpretQuery to interpret the message. Then

the market place went through RoutingOffer-> Routing CounterOffer-> and so on, until it

155

received an Accept message, it forwarded it to the appropriate provider (Print Server 6)
and then it transited into Monitoring after receiving LinkEstablished message. After Print
Server 6 finished processing the Customer printing job, the Customer sends Terminate to

the Marketplace causing its transition from Monitoring phase into Active phase.

Iminate . java'

DK. Project compiled.
Here is new Simulator function *%
IThe Printing Jobh is:
[The print servers are:

Business Cards
Print Server 1;Print Server 3; Print Server 6

[Processing:

lclientIp in

InterpretQuery(d
RoutingQffer ()
RoutingOQffer ()
RoutingOffer (>

IProcessing: RoutingCounterOfferdd
IProcessing: RoutingCounterOfferdd
IProcessing: RoutingCounterOfferd?
IProcessing: RoutingOfferd)
IProcessing: RoutingOfferd)
IProcessing: RoutingOfferc)

RoutingCounterOffercl
RoutingCounterOfferC)
RoutingCounterOfferdd
RoutingOffer (>
RoutingOffer(
RoutingOffer (>
RoutingCounterOfferid
RoutingCounterOfferil
RoutingCounterOfferc)
RoutingQffer ()
RoutingOQffer ()
RoutingOffer (>
RoutingCounterOfferdd
RoutingCounterOfferdd
RoutingCounterOfferil
RoutingOffer ()
RoutingOffer ()
RoutingQffer ()
RoutingAccept()
Monitoring{)>
Termination(2?

getConsole = 150.135_218.204

Figure 8.1.8: The output of the SOAMarketplace machine

156

This section ends our objective of the DEVS/SOA implementation which is a
proof of the concept that our system can be used in different distributed engineering
applications. Whether the distributed nodes are sensors who collect data and information,
computing resources who provides an environment for software and hardware resources,
print servers who provides different printing capabilities or online stores who provide
products; all these and other domains can use the system to support different interaction
behaviors. This can be done by using flexible negotiation protocols that are enforced by
the trusted third party marketplace architecture we developed. The language of encounter,
which was designed to be dynamic in structure, gives the domains enough expressive
tools and capabilities to define their own messaging system so that users of the domain
under consideration can simply understand and use them in the correct manner.
Negotiation with service providers can take couple of minutes at the beginning to find the
best (or an appropriate) provider; but once it is found, it could save hours and even days

of data transformations or jobs processing.

157

CHAPTER 9. CONCLUSION AND FUTURE WORK

We believe that the negotiation process is an essential activity that needs to be
used widely and correctly in today complex distributed systems. The complexity comes
in having many parameters that manage computing resources in geographically
distributed systems. Such systems need to provide negotiation capabilities on these
parameters in order to reach agreements and behaviors that are efficient and intelligent.
For example, a programmer that needs to deploy a task on a busy computing resource
might keep on rechecking the resource availability every 1 minute. However, if we let the
programmer negotiates with the computing resource; he might find out that the resource
will be available until after 1 hour. As a result, he will wait and come back to deploy his

task after 1 hour which is less costly and more efficient for both parties.

We have constructed an agent-based negotiation system that supports brokering
between service providers and requestors. Two powerful and yet flexible negotiation
protocols are used to enforce the rules of interactions. The rules are implemented in a
trusted third party marketplace model which supervises the whole negotiation process
while preserving privacy and transparency among the system users. Discrete event
modeling and simulation environment (DEVS formalism) is used to implement the
generic marketplace model. In order to accompany the negotiation protocols with
flexible expressive primitives to handle negotiation behaviors in complex distributed

systems, a dynamic structure of the language of encounter is implemented in SES

158

ontological framework. Each negotiation message has a separate ontology that defines its

structure under different domain specialization entities.

The domain-independent marketplace design integrated with the domain-
dependent language of encounter ontology gives system designers a very powerful tool to
benefit from. With the automated code generation tool, given the language of encounter
structures under a specific domain of interest and the domain name (both as inputs)
produces a tailored negotiation marketplace model that is ready to be used. System
designers usually need to add specific decision and behavioral criterions such as dynamic
coupling to realize their wishes about the system they are interested in. This automated
marketplace code generation results in a huge reduction amount in the software

development time.

The negotiation system is evaluated by showing two different experiments for two
different domains (applying it to other domains will have similar scenarios). The first one
shows how brokering can lead to a data transformation contract from a data collector
(such as a sensor) to a data requestor. Also we showed how the data collector can be
changed dynamically through the use of the negotiation protocols. In the second
experiment, we applied our system to the domain of distributed software services
environment in which, services providers can do different job capabilities. In this context,
we used print servers as our services providers. Since some print servers provide similar
capabilities as others, and some provide services that none of the other can provide,

negotiation over the capabilities is necessary. In order to have a proof of the concept in

159

distributed computing systems, we deployed our negotiation framework in Web Services
environment (DEVS/SOA). Each one of the nodes has its own data (PESs) and running
one of the print server capabilities. The system behaviors confined with our objectives
and expectations. Our system provides the infrastructure that supports different domain

with different negotiation requirements.

For the future work, we aim to add more functionality on the Ontology design
GUI. The GUI right now is very basic and supports adding and deleting a domain along
with its language of encounter structure. It will be useful for the designers to edit and
modify on the structure of a domain. For example, if the designer makes a mistake in
entering one or more of the slots names and he need to go back to fix it, currently he
needs to redo the whole process. We aim to provide an “Edit” capability where the user
can keep whatever he needs, delete whatever he does not need and modify errors in the

names and the number of slots in the structure.

In some situations, providing manual interactions with Offers-CounterOffer
message with the information that they are carried would be useful for systems users to
understand what is happening. Another goal in our future work is to develop a decision
making user interface under the DEVS/SOA environment where Web Services providers
can manually modify and understand what the agreements terms are. The interface on the
service provider side needs to support reading a received CounterOffer or a
ContractQuery, unmarshal the data carried by the message and display it to the service

provider. Then the provider can enter an offer information manually through the

160

interface, and then the interface will marshal it into an Offer message and sends it back to
the requestor. In this case, the interface needs to be connected to the service providers
XML data files (PESs) where it can read them, parse them and display them in a friendly
way. Also it needs to be able to write and modify on these PESs. The interface on the
requestor side needs to do the opposite. It need to marshals a ContractQuery from
manually entered data and starts the negotiation, and then receive Offers messages,
unmarshal them and display them to the requestor to decide whether to accept the offer or
start a CounterOlffer. Either case the requestor enter manually data to be marshaled in the
corresponding message, and then sends it to the service provider. The objective here is to
support more features that some users can benefit from depending on their needs and

convenient.

The framework provided here focused on the language of encounter as a support
for the designer to implement more detailed negotiation protocols. Future work could
extend the automation modeling to include such protocols and their properties. As stated
earlier, the termination of the negotiation process is an important consideration. Future
work might provide tools to support methods to guarantee termination of the negotiation
so that it does not go forever. One approach can be implemented by including a timing
counter in the marketplace structure which is decremented after each negotiation cycle of
offers and counter offers. Once the timer hits zero, the agent can send a terminate
message. Another approach that users might consider is to associate a timer each time the

user start a negotiation process and compare the timer with the current DEVS simulation

161

clock. Once the clock reaches the timer value, the user terminates the corresponding

negotiation process by sending a Terminate message.

Currently, researchers are concerned in developing techniques to process
ontologies under different domains. One useful step into this research is to have a tool
that can take an ontology under a specific domain and map it into language of encounter
structure for that domain. In this regard, some messages structure are more sensitive than
others. For example, ContractQuery and Offer are more sensitive than Terminate or

Accept because they carry information on the agreement terms such as deadline, job type.

In order to commercialize this methodology, a designer can setup marketplace
services for different domains. For example, for an airline tickets booking system, a
designer can have a marketplace web service along with the language of encounter
structure defined for that domain. Then, the designer can have another marketplace web
service for printing photos for example, where the service users can upload their photos
and print them and go pick them up. For this printing domain, the language of encounter

will differ from the airline booking system.

Having a Web Services Description Language (WSDL) interface for the services
that the marketplace provide us enable the development of this methodology as web
services. For example, a service provider can have WSDL interface information about its
name, location, IP address, port number, services that it provides. The marketplace as

well needs to provide WSDL interface so that users know how to locate it and query it.

162

REFERENCES

[1] Bernard P. Zeigler, Herbert Prachofer and Tag Gon Kim, “Theory of Modeling
and Simulation”, 2nd Ed, Academic Press, 2000.

[2] Bailin, S. and Truszkowski, W. “Ontology negotiation between scientific
archives”, Proceedings of the Thirteenth International Conference on Scientific and
Statistical Database Management (SSDBM 2001), IEEE Press, July 2001.

[3] M.H. Hwang and B.P. Zeigler, “"Reachability Graph of Finite & Deterministic
DEVS™, IEEE Transactions on Automation Science and Engineering.

[4] Bernard P. Zeigler, "DEVS Today: Recent Advances in Discrete Event-Based
Information Technology", 11th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp.148-161, 2003.

[5] Bernard P. Zeigler and Phillip E. Hammonds, “Modeling and Simulation-Based
Data Engineering. Introducing Pragmatics into Ontologies for Net-Centric
Information Exchange”, Academic Press, 2007.

[6] J. Kim and A. Segev, “A web services-enabled marketplace architecture for
negotiation process management”. Decision Support Systems, Vol. 40, pp.71-87, July
2005.

[7] Y. Feng, Y. Lei, Y. Li and R. Cao, “Research on Collaborative Negotiation for E-
Commerce"”. Proceeding of the 2" international conference on Machine Learning
and Cybernetics, Nov. 2003.

[8] Greg O’Hare and Nick Jennings, “Foundations of Distributed Artificial
Intelligence”, Sixth-Generation Computer Technology Series, John Wiley & Sons,
Inc. 1996.

[9] Inaba and T. Okamoto, “Negotiation Process Model to Support Collaborative
Learning”. Systems and Computers in Japan, Vol.28, No. 14, 1997.

[10] Krishna, V.; Ramesh, V.C., “Intelligent agents for negotiations in market games.
I. Model”, IEEE Transactions on Power Systems, Vol. 13, Issue 3, Aug 1998.

163

[11] Murugesan, S., “Negotiation by software agents in electronic marketplace”,
TENCON Proceedings, Vol.2, 2000.

[12] Masvoula, M.; Kontolemakis, G.; Kanellis, P.; Martakos, D., “Design and
development of an anthropocentric negotiation model”, Seventh IEEE International
Conference on E-Commerce Technology, 2005.

[13] Park, H.C. and Kim, T.G., “Relational algebraic system entity structure for
models management”, IEE Preceedings on Computers and Digital Techniques,
Vol.143, Iss.1, pp.49-54, 1996.

[14] M. Contreras and J. Hernandez, “Ontology Solution for Communicating
Heterogeneous Negotiation Agents in a Web-based Environment”. Proceedings of the
Fourth Latin American Web Congress (LA-WEB’06) IEEE, pp.59-66, 2006.

[15] D.Bell, S. A. Ludwig, M. Lycett, “Enterprise Application Reuse: Semantic
Discovery of Business Grid Services”, Journal of Information Technology and
Management, vol. 8, no. 3, pp. 223-239, 2007.

[16] Choi, B. Park, and J. Park, “A formal model conversion approach to developing a
DEVS-based factory simulator,” Simulation, vol. 79, no. 8,pp. 440-461, Feb 2003.

[17] L. Ntaimo, B. Zeigler, M. Vasconcelos, and B. Khargharia, “Forest Fire Spread
and Suppression in DEVS,” Simulation, vol. 80, no.10, pp. 479-500, Oct 2004.

[18] Concepcion and B. Zeigler, “DEVS Formalism: A Framework for Hierarchical
Model Development,” IEEE Transactions on Software Engineering, vol. 14, no. 2,
pp- 228-241, Feb 1988.

[19] J.Lee, Y. Lim, and S. Chi, “Hierarchical Modeling and Simulation Environment
for Intelligent Transportation Systems,” Simulation, vol. 80, no. 2, pp. 61-76, Feb
2004.

[20] M. Hwang and S. Cho, “Timed Analysis of Schedule Preserved DEVS,” in 2004
Summer Computer Simulation Conference, A. Bruzzone and E. Williams, Eds. San
Jose, CA: SCS, pp. 173-178, 2004.

[21] Addis, M. J., Allen, P. J. and Surridge, M., “Negotiating for Software Services”.
Eleventh International Workshop on Database and Expert Systems Applications
(DEXA2000), September 2000.

164

[22] Taekyu Kim, “Ontology/Data Engineering Based Distributed Simulation over
Service Oriented Architecture for Network Behavior Analysis”, Ph. D. Dissertation,
Electrical and Computer Engineering Dept., University of Arizona, Spring 2008.

[23] M.H. Hwang, “*Generating Finite-State Global Behavior of Reconfigurable
Automation Systems: DEVS Approach™, Proceedings of 2005 IEEE-CASE,
Edmonton, Canada, Aug. 1-2, 2005.

[24] V. Tamma, S. Phelps, 1. Dickinson, and M. Wooldridge, “Ontologies for
supporting negotiation in e-commerce”. Engineering Applications of Artificial
Intelligence, 18:223-236, 2005.

[25] L. Yilmaz and S. Paspuleti, “Toward a Meta-Level Framework for Agent-
Supported Interoperation of Defense Simulations”. The Society for Modeling and
Simulation International, JDMS, vol.2, pp.161-175, July 2005.

[26] SESBuilder, “An Integrated tool to utilize System Entity Structure”. 2007,
http://www.sesbuilder.com/

[27] W3C XML Schema for Finite Deterministic (FD) DEVS Models, 2007.
http://saurabh-mittal.com/fddevs/

[28] Saehoon Cheon, Doohwan Kim, Bernard P Zeigler, “System Entity Structure For
XML Meta Data Modeling; Application to the US Climate Normals”, IEEE
International Conference on Information Reuse and Integration, Las Vegas, NV, July
2008.

[29] S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, 1. Horrocks, M.
Klein, and S. Melnik. “The Semantic Web — on the respective roles of XML and
RDF”. IEEE Internet Computing, September-October 2000.

[30] Krishna V. and Ramesh VC., “Intelligent Agents for Negotiations and Market
Games, Part 1: Model”. IEEE transaction on Power Systems, Vol.13, pp.1103-1108,
1998.

[31] Archibald J. K., Hill J. C., Johnson F. R. and Stirling W. C., "Satisfying
Negotiations". IEEE Transaction on Systems, Man and Cybernetics, Part C, Vol. 36,
Issue 1, pp.4-18, Jan. 2006.

[32] Oracle Technology Network, Tutorial on JAXB “Unmarshaling and Marshaling
Data: JAXB Insurance Profile System”,
http://www.oracle.com/technology/sample code/tutorials/index.html

165

[33] Ed Ort and Bhakti Mehta, Java Architecture for XML Binding (JAXB), March
2003. http://java.sun.com/developer/technical Articles/WebServices/jaxb/

[34] Osborne M. J., and Rubinstein A., “Bargaining and Markets”. Academic Press,
San Diego, 1990.

[35] Mahajan R., Rodrig M., Wetherall D. and Zahorjan J., “Experiences Applying
Game Theory to System Design”, proc. SIGCOMM PINS Workshop, 2004.

[36] Persons S. and Wooldridge M., “Game Theory and Decisions Theory in Multi-
Agent Systems”. Autonomous Agents and Multi-agent Systems Vol.5, No.3, pp.243-
254, 2002.

[37] Binmore K., and Vulkan N., “Applying Game Theory to Automated Negotiation”,
Netnomics, Vol.1, No.1, pp.1-10, 1999.

[38] Krishna V. and Ramesh VC., “Intelligent Agents for Negotiations and Market
Games, Part 2: Application”. IEEE transaction on Power Systems, Vol.13, pp.1109-
1113, 1998.

[39] eBay. http://www.ebay.com

[40] Von Neumann J. and Morgenstern O., “The Theory of Games and Economic
Behavior”, Princeton Univ. Press, Princeton, NJ, 1944.

[41] Morris, J. and P. Maes. "Negotiating Beyond the Bid Price.", Workshop
Proceedings of the Conference on Human Factors in Computing Systems (CHI 2000),
April, 2000.

[42] “Modeling and Simulation-Based Data Engineering” Online Site.
http://www.devsworld.org/

[43] Priceline. http://www.priceline.com/

[44] Mahajan R., Rodrig M., Wetherall D. and Zahorjan J., “Experiences Applying
Game Theory to System Design”, proc. SIGCOMM PINS Workshop, 2004.

[45] RTSync Tutorials. http://www.sesbuilder.com/ses_tutorial.html

[46] Amazon Auctions. http://www.amazon.com/auctions

[47] Susan E. Lander, “Issues in Multi agent Design Systems”, IEEE Expert:
Intelligent Systems and Their Applications, v.12 n.2, p.18-26, March 1997.

166

[48] Mittal, S., Risco-Martin, J.L., Zeigler, B.P., "DEVS-Based Simulation Web
Services for Net-centric T&E", Summer Computer Simulation Conference SCSC'07,
July 2007.

[49] Cheon, S., and B.P. Zeigler., “Web Service Oriented Architecture for DEVS
Model Retrieval by System Entity Structure and Segment Decomposition.” Paper
presented at the DEVS Integrative M &S Symposium, Huntsville, AL 2006.

[50] L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H.
Wang, and C. Wroe. "OWL Pizzas: Practical Experience of Teaching OWL-DL.:
Common Errors & Common Patterns”, IEEE [4th International Conference on
Knowledge Engineering and Knowledge Management (EKAW), pp. 63-81, 2004.

[51] Arizona Center for Integrative Modeling and Simulation (ACIS).
http://www.acims.arizona.edu/

[52] P.F. Patel-Schneider., “Building the Semantic Web Tower from RDF Straw.”,
Proc. 19th Int'l Joint Conf. Artificial Intelligence (IJCAI), pp.546-551-2005.

[53] P.F. Patel-Schneider., “what is OWL (and why should I care)?.”, Principles of
Knowledge Representation and Reasoning, 2004.

[54] H. Peter Alesso and Craig F. Smith, “Developing Semantic Web Services.”, A K
Peters, Ltd. 2005.

[55] S.Rodriguez, S. Le Mouélic, J. P. Combe, C. Sotin, “Complementarity of Radar
and Infrared Remote Sensing for the Study of Titan Surface”, Workshop on Radar
Investigations of Planetary and Terrestrial Environments, 2005.

[56] Fensel et al., “Enabling Semantic Web Services: The Web Service Modeling
Ontology”, Springer, 2007.

[57] Asuncion Gomez-Perez, Oscar Corcho, "Ontology Specification Languages for
the Semantic Web," IEEE Intelligent Systems, vol. 17, no. 1, pp. 54-60, Jan/Feb,
2002.

[58] Shadbolt, N. Hall, W. Berners-Lee, T., “The semantic Web revisited.”, IEEE
Intelligent Systems, Vol. 21, Issue.3, 2006.

[59] Nancy Gordon, Cliff Ogleby, Remote Sensing Centre for Environmental Applied
Hydrology, Department of Civil and Agriculture Engineering, University of
Melbourne.

167

[60] Tim Berners-Lee, Senior Researcher at MIT's CSAIL,
http://www.w3.org/People/Berners-Lee/

[61] Horrocks and P. F. Patel-Schneider., “A proposal for an owl rules language.” In
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004).
ACM, 2004.

[62] Henderson F. M. and Lewis A. J. Manual of Remote Sensing, vol. 2, 1999

[63] The European Southern Observatory (EOS) - http://www.eso.org/public/

[64] Hoh In, Olson, D. and Rodgers, T., “A Requirements Negotiation Model Based
on Multi-Criteria Analysis Source”, Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, 2001.

[65] N. Lung, N. cheng, L. Lian-chen and WU Cheng, “An Auction-based
Negotiation Procedure to resolve Price related Conflicts for Online Marketplaces”,

Proceedings of the Third International Conference on Semantics, Knowledge and
Grid, pp. 86-91, 2007.

[66] H.M. Kim and A.Sengupta, “Extracting knowledge from XML document

repository: a semantic Web-based approach Source”, Information Technology and
Management, Vol. 8, Iss. 3, September 2007, pp. 205 — 221, 2007.

[67] WordNet A lexical database for the English Language.
http://wordnet.princeton.edu/

[68] John McCarthy, “Human Level Al Is Harder Than It Seemed”, 1955.

[69] P. Zeigler, S. Mittal and X. Hu, “Towards a Formal Standard for Interoperability
in M&S/System of Systems Integration”, GMU-AFCEA Symposium on Critical
Issues in C41, May 2008.

[70] Bravo, M.C. Perez,J. Sosa, V.J. Montes, A. Reyes, G., “Ontology support
for communicating agents in negotiation processes”’, Proceedings of the Fifth
International Conference on Hybrid Intelligent Systems, Nov. 2005.

[71] Farquhar, A.; Fikes, R.; & Rice, J., “The Ontolingua Server: A Tool for
Collaborative Ontology Construction.” Knowledge Systems Laboratory, September,
1996.

168

[72] Dung, Tran Quoc; Kameyama, Wataru, “A Proposal of Ontology-based Health
Care Information Extraction System: VnHIES”, IEEE International Conference on
Innovation and Vision for the Future, March 2007.

[73] Tomai & M. Spanaki, "From ontology design to ontology implementation: A web
tool for building geographic ontologies", In Proceedings of the 8th 8th AGILE
Conference on Geographic Information Science, Estoril, Portugal, May 2005.

[74] Mathieu, P. and Verrons, M.H., “A generic model for contract negotiation.”, In
AISB'02 Symposium on Intelligent Agents in Virtual Markets, April 2002.

[75] RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/

[76] DISTAL - Distributed Software On-Demand For Large Scale Engineering
Applications. EC project EP26386.

[77] Cooper, T.P., “Case studies of four industrial meta-applications”. High
Performance Computing and Networking, Springer Lecture Notes in Computer
Science, 1999.

[78] Zuo Z. and Zhou M., “Web Ontology Language OWL and its description logic
foundation”, Proceedings of the fourth International Conference on Parallel and
Distributed Computing, Application and Technologies, Aug. 2003.

