

ONTOLOGY/DATA ENGINEERING BASED DISTRIBUTED
SIMULATION OVER SERVICE ORIENTED ARCHITECTURE FOR

NETWORK BEHAVIOR ANALYSIS

By

Taekyu Kim

Copyright © Taekyu Kim 2008

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2008

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Taekyu Kim
entitled Ontology/Data Engineering based Distributed Simulation Over Service Oriented
Architecture for Network Behavior Analysis
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy in Electrical and Computer Engineering.

___ Date: 04/16/08
Bernard P. Zeigler

___ Date: 04/16/08
Salim Hariri

___ Date: 04/16/08
Roman Lysecky

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.
I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

___ Date: 04/16/08
Dissertation Director: Bernard P. Zeigler

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgement of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the copyright holder

 SIGNED: Taekyu Kim

4

ACKNOWLEDGEMENTS

I would like to express my truthful gratitude to my advisor Professor Bernard P. Zeigler
for his mentoring, guidance, and endless support during the course of this research
period. He also inspires me to expand knowledge in discrete event simulation and
ontology/data engineering fields.

I also express my appreciations to the committee members Professor Salim Hariri and
Professor Roman Lysecky for providing suggestions enhancing the content of this
dissertation.

I would like to express thank to my colleagues at ACIMS lab, Chungman Seo, Hojun Lee,
Saehoon Cheon, Moath Jarrah, Saurabh Mittal, Rajanikanth Jammalamadaka, and Dr.
DH Kim.

I would like to thank to my father and mother. They always support and encourage me. I
appreciate that my wisdom and diligence inherit from my parents.

Special thank goes to my wife, Jiyoung Kim, for her constant support and appreciation. I
am indebted to her for all the encouragement. Finally, my two daughters, Hannah Kim
and Sheena Kim, make me never give up anything in my life.

5

TABLE OF CONTENTS

ABSTRACT ... 14

CHAPTER 1. INTRODUCTION .. 16

1.1. MOTIVATION AND GOALS ... 16

1.2. ORGANIZATION OF THE THESIS .. 19

CHAPTER 2. BACKGROUND KNOWLEDGE 21

2.1 ONTOLOGY/DATA ENGINEERING FOR MODELING AND SIMULATION ... 22

2.1.1 Ontology for Social Relations on an Island ... 25

2.1.2 Definition of Ontology ... 26

2.1.3 Pragmatics: The Information Exchange Framework 27

2.1.4 Ontology/Data Engineering based Modeling and Simulation 31

2.2 SYSTEM ENTITY STRUCTURE (SES) ... 33

2.3 EXTENSIBLE MARKUP LANGUAGE (XML) ... 35

2.4 DISCRETE EVENT SIMULATION ... 35

2.4.1. Fundamentals of Computer Simulation .. 35

2.4.2. Discrete Event System Specification (DEVS) .. 37

2.4.3 Experimental Frame ... 41

2.5 WEB SERVICE .. 45

6

TABLE OF CONTENTS - Continued

CHAPTER 3. STATE OF THE ART .. 48

3.1 THE WEB ONTOLOGY LANGUAGE (OWL) .. 48

3.2 THE UNIFIED MODELING LANGUAGE (UML) 49

3.3 PROTÉGÉ ... 51

3.4 PRACTICAL ONTOLOGY EXAMPLES .. 53

3.4.1 MusicBrainz: A Semantic Web Music Service ... 53

3.4.2 UNSPSC: Coding System to Classify both Products and Services 54

3.4.3 ITTALKS: web-based talk system ... 55

CHAPTER 4. DESIGN ISSUES OF SES/NZER 56

4.1 SES DESIGN FOR NETWORK TRAFFIC ANALYSIS 57

4.2 NETWORK TRAFFIC DATA ... 60

4.3 INSTANTIATION (PES GENERATION) ... 62

4.4 AUTOMATION .. 66

4.4.1 Generating new ontologies .. 66

4.4.2 Mapping ... 68

4.5 AUTOMATED MODELING AND SIMULATION ... 70

7

TABLE OF CONTENTS - Continued

CHAPTER 5. INTRUSION DETECTION SYSTEM 73

CHAPTER 6. MODELING AND SIMULATION FOR

NETWORK TRAFFIC ANALYSIS .. 82

6.1 SELECTOR MODEL ... 82

6.2 EXTRACTOR MODEL .. 84

6.3 ANALYZER MODEL .. 86

6.4 COUPLED MODEL FOR NETWORK TRAFFIC ANALYSIS 87

6.5 EXPERIMENTAL RESULTS FOR NETWORK TRAFFIC ANALYSIS 89

CHAPTER 7. DISCUSSIONS .. 95

7.1 COMPARISONS OF SES/NZER WITH ETHEREAL 95

7.2 PROBLEM STATEMENTS ... 100

CHAPTER 8. WEB-BASED DISTRIBUTED SES/NZER 104

8.1 DESIGN ISSUES .. 104

8.1.1 Pragmatic Frames (Lumped Models) ... 106

8.2 DEVS SERVICE ORIENTED ARCHITECTURE (DEVS/SOA) 112

8

TABLE OF CONTENTS - Continued

8.2.1 Real Time DEVS Simulation on SOA ... 117

8.3 DISTRIBUTED SES/NZER IN DEVS/SOA ... 120

8.3.1 Distributed Simulation ... 120

8.3.2 DEVS Modeling and Simulation ... 125

CHAPTER 9. EXPERIMENTAL RESULTS 132

9.1 NETWORK TRAFFIC ANALYSIS ... 134

9.2 INTRUSION DETECTION SYSTEM .. 143

9.3 DISCUSSION ... 148

CHAPTER 10. CONCLUSIONS AND FUTURE WORKS .. 153

10.1 CONCLUSIONS ... 153

10.2 FUTURE WORKS .. 155

REFERENCES .. 157

9

LIST OF FIGURES

Figure 1. Information exchange framework [5] .. 28

Figure 2. Car purchase example of the information exchange framework [5] 31

Figure 3. Simulation-based data engineering methodology [5] .. 32

Figure 4. Classification of computer simulation ... 36

Figure 5. System representation of atomic model [17] ... 38

Figure 6. An example of coupled model [17] ... 41

Figure 7. Experimental frame and its components ... 43

Figure 8. Web services architecture .. 46

Figure 9. UML diagrams: hierarchically categorized [32] ... 50

Figure 10. Developing process of the network traffic analysis system 57

Figure 11. System Entity Structure (SES) of network traffic behavior 58

Figure 12. Network traffic capture using Ethereal .. 61

Figure 13. Natural language representing the SES for network traffic behavior 63

Figure 14. Transformation from the SES to the XML code ... 64

Figure 15. Multi-aspect for pruning of copies of its entity ... 65

Figure 16. Ontology for protocol analyses in SES ... 67

Figure 17. Ontology for throughput analyses in SES ... 68

Figure 18. Mapping process .. 69

Figure 19. PES for protocol analysis with two events .. 70

10

LIST OF FIGURES - Continued

Figure 20. Automated modeling and simulation... 71

Figure 21. State diagram for Selector model .. 83

Figure 22. Internal processes at a state ... 84

Figure 23. State diagram for Extractor model .. 85

Figure 24. State diagram for Analyzer model ... 86

Figure 25. DEVS coupled model and its components .. 88

Figure 26. DEVSJAVA simulation .. 91

Figure 27. Simulation result for protocol analysis .. 92

Figure 28. Simulation result for throughput analysis .. 93

Figure 29. Data access methods .. 97

Figure 30. Data flow comparisons .. 99

Figure 31. Divide and conquer SES/NZER .. 101

Figure 32. Distributed SES/NZER system hierarchy ... 104

Figure 33. Base/lumped model equivalence in experimental frame 105

Figure 34. KDD’99 dataset ... 107

Figure 35. Pragmatic frames for network traffic analysis ... 108

Figure 36. SES for the LAND attack detection .. 110

Figure 37. SES for the Ping of Death attack detection ... 111

Figure 38. Overall architecture of DEVS simulation on SOA.. 113

11

LIST OF FIGURES - Continued

Figure 39. Example of XML object message handler .. 115

Figure 40. A network behavior analysis using DEVS/SOA ... 116

Figure 41. Overall architecture of real time DEVS simulation system on SOA 118

Figure 42. Real time simulation protocol ... 120

Figure 43. Distributed DEVS simulation .. 121

Figure 44. DEVS modeling: Distributed SimForNTA ... 122

Figure 45. Distributed DEVS simulators and models for SimForNTA 123

Figure 46. Basic DEVS simulation protocol... 126

Figure 47. Closure under coupling for SimForNTA ... 127

Figure 48. DEVS model comparison under the DEVS/SOA environment 129

Figure 49. State diagram in SES/NZER ... 130

Figure 50. State diagram in Distributed SES/NZER .. 131

Figure 51. Testbed for distributed simulation using DEVS/SOA 133

Figure 52. Main GUI of distributed SES/NZER ... 134

Figure 53. User request input system for network traffic analyses 135

Figure 54. Assign models into multiple servers.. 136

Figure 55. Virtual time simulation results of network behavior analyses 140

Figure 56. Real time simulation results of network behavior analyses 143

Figure 57. User request input system for intrusion detection systems 144

12

LIST OF FIGURES - Continued

Figure 58. Virtual time experimental results of IDS analyses .. 146

Figure 59. Real time experimental results of IDS analyses .. 147

Figure 60. Semi multi-distributing and multi-analyzing machines simulation 149

Figure 61. Single-distributing and multi-analyzing machines simulation 150

Figure 62. Multi-distributing and multi-analyzing machines simulation 152

13

LIST OF TABLES

Table 1. The purchase of the car caused a world state change ... 29

Table 2. Components of System Entity Structure (SES) .. 34

Table 3. Intrusion classification [48] .. 81

Table 4. Comparisons between Ethereal and SES/NZER .. 96

Table 5. Memory usages and execution times for protocol analysis 98

Table 6. Memory usages and execution times for throughput analysis 98

Table 7. SES/NZER Vs. Distributed SES/NZER ... 103

Table 8. Data size comparisons for network traffic analyses ... 137

Table 9. Execution times of protocol analyses in virtual time simulation 138

Table 10. Execution times of throughput analyses in virtual time simulation 139

Table 11. Execution times of protocol analyses in real time simulation 142

Table 12. Execution times of throughput analyses in real time simulation 142

Table 13. Data size comparisons for IDS evaluations .. 145

Table 14. Execution times of LAND attack detection in virtual time simulation 145

Table 15. Execution times of POD attack detection in virtual time simulation 146

Table 16. Execution times of LAND attack detection in real time simulation 147

Table 17. Execution times of POD attack detection in real time simulation 147

Table 18. Execution times of 1*3 and 3*3 environmental simulation 151

14

ABSTRACT

 As network uses increase rapidly and high quality-of-service (QoS) is required,

efficient network managing methods become important. Many previous studies and

commercial tools of network management systems already exist. But, these tools such as

tcpdump, Ethereal, and other applications have weaknesses: limited size of files,

command line execution, and large memory and huge computational power requirements.

Researchers struggle to find fast and effective analyzing methods to save maintenance

budgets and recover from systematic problems caused by the rapid increment of network

traffic or intrusions. The main objective of this study is to propose an approach to deal

with a large amount of network behaviors being quickly and efficiently analyzed. We

study an ontology/data engineering methodology based network analysis system. We

design a behavior, which represents network traffic activity and network packet

information such as IP addresses, protocols, and packet length, based on the System

Entity Structure (SES) methodology. A significant characteristic of SES, a hierarchical

tree structure, enables systems to access network packet information quickly and

efficiently. Also, presenting an automated system design is the secondary purpose of this

study. Our approach shows adaptive awareness of pragmatic frames (contexts) and makes

a network traffic analysis system with high throughput and a fast response time that is

ready to respond to user applications. We build models and run simulations to evaluate

specific purposes, i.e., analyzing network protocols use, evaluating network throughput,

and examining intrusion detection algorithms, based on Discrete Event System

15

Specification (DEVS) formalism. To speed up evaluation time, we apply a web-based

distributed simulation methodology. DEVS/Service Oriented Architecture (DEVS/SOA)

facilitates deploying workloads into multi-servers and consequently increasing overall

system performance. In addition to the scalability limitations, both tcpdump and Ethereal

have a security issue. As well as basic network traffic information such as IP addresses,

port numbers, and packet sizes, captured files by these tools contain secure information:

user identification numbers and passwords. Therefore, captured files should not be

allowed to leak out. However, network analyses need to be performed outside target

networks in some cases. The distributed simulation—allocating distributing models

inside networks and assigning analyzing models outside networks—also allows analysis

of network behaviors out of networks while keeping important information secured.

16

CHAPTER 1. INTRODUCTION

1.1. Motivation and Goals

 During past decades, companies and organizations have constantly been

developing computer systems, and as a result, they accumulate huge unorganized,

unshared data; they tend to keep the data as simple and local. Therefore, policy makers in

companies and organizations obtain needed data by manipulating several processes, or,

worst case, they never receive the data that they really want to get. However, decision

makers require fast, accurate, and sufficient data in a rapidly changing social

environment.

 Currently, the network uses, especially the number of internet users, increase

rapidly. Also, high quality of service is required, and this requirement often results in

sudden network traffic increases. As a result, an efficient system for managing large

network traffic datasets becomes an important issue. Network traffic analysis includes the

monitoring of all the network behaviors, controlling networks and hosts, and applying

network traffic behaviors to achieve an effective management. Network administrators

have had difficulties with the lack of consistent traffic analysis or a management system.

Lacking a network traffic analysis system with high throughput and fast response time

requires that, instead, several processes of manipulating metadata be used, and this results

in an insufficiency of useful data for designing network capacity.

17

 There are several network traffic analysis tools such as tcpdump, Ethereal, and

other applications. But, these tools are limited. Tcpdump is a powerful tool that allows us

to sniff network packets and make some statistical analysis out of those dumps. One

major drawback to tcpdump is the size of the flat file containing the text output. The

other weakness is that tcpdump runs under the command line. Ethereal is a tool for

network protocol analysis, software and protocol development, and educational purposes.

Because it is an open source project, many network professionals around the world use

Ethereal, and many researchers support it by adding enhancements. The functionality of

Ethereal is very similar to the functionality of tcpdump, but it runs under a GUI front-

end. Ethereal has been supported by many network professionals, so it has many

functions, such as protocol analysis, throughput analysis, and other statistical analysis.

Ethereal is like a two-sided coin. It is very powerful but also very complicated. Ethereal

requires an initial learning curve but is a complete tool, and it is limited to running on

local machines. In addition, Ethereal uses complete data for every analysis. Accessing a

big data set requires memory overhead and inefficient computational power. Although

Ethereal is easier to use than tcpdump, it still limits the size of target-analyzing files. Our

experiments show that Ethereal cannot analyze more than two-day network activities in

personal computers. To examine more than two-day activities, network managers must

control Ethereal by iterating capturing and analyzing processes periodically to avoid

excessive system memory uses.

 The main objective of this study is to propose an approach to deal with large

amounts of information being easily and efficiently shared among organizations. To

18

achieve this goal, we use the System Entity Structure (SES) for the system design. The

SES is a theory for designing structured information hierarchically and efficiently, and it

is very useful for data engineering. We propose a feasible network traffic analysis

system, System Entity Structure based Network analyZER (SES/NZER). We design a

behavior which represents network traffic activity and network packet information. The

behavior design is based on System Entity Structure (SES) methodology. In addition, we

suggest an automated context awareness system for network behavior analyses such as

protocols evaluation, network throughput analysis, and intrusion detection evaluation.

Every customer may request different analyses. For example, some customers want to

evaluate network protocol uses. Other users want to measure network throughput.

Depending on various requirements (pragmatic frames), systems need to be optimized for

fast and effective analyses. The SES enables systems to be adaptively optimized. This is

fundamental automated context awareness. Presenting the automated system design is the

second objective of this study. Reactions to users’ applications facilitate systems holding

accurate data only. Therefore, we could analyze long-term network activities which

Ethereal cannot evaluate. The hierarchical tree structure of SES facilitates efficient and

fast interpretation of large amounts of data. The two advantages, fast and efficient

information sharing and automation, save network maintaining costs and enable rapid

reactions against problems such as the necessity of bandwidth increase for

protocols/services. To speed up evaluation time, we apply a web-based distributed

simulation methodology. A web-based distributed simulation contains two fundamental

processes: distributing models into multi-servers and simulating among loosely coupled

19

models through message-passing methods. DEVS/SOA (DEVS/Service Oriented

Architecture) facilitates deploying workloads into multi-servers and consequently

increasing overall system performance.

 In addition to the scalability problem (the size limitation of capture-files), both

tcpdump and Ethereal have security issues. Capture-files, which are evaluated by either

tcpdump or Ethereal, include all the information of packets such as IP addresses, protocol

types, packet size, and other fundamental attributes. As well as basic network packet

information, user IDs and passwords are also contained in captured files. Because

captured files hold secure information, Tcpdump and Ethereal are allowed to monitor

network behaviors and to capture raw network traffic inside networks with special

privilege on some platforms. However, network analyses need to be performed outside

target networks in some cases. It means that monitoring and capturing network behaviors

are executed inside target networks, and evaluating network activities are completed out

of the networks. To accomplish this distributed analysis, functionality should be deployed

into multiple machines. At the same time, high priority information must be secured.

Distributed simulation is good solution for analyzing network behaviors remotely while

keeping data secured.

1.2. Organization of the Thesis

This study includes background knowledge in chapter 2. Chapter 2 introduces

ontology/data engineering methodology for modeling and simulation, System Entity

20

Structure (SES) theory for representing data engineering, eXtensible Markup Language

(XML), and Discrete Event System Specification (DEVS) formalism. In chapter 3, we

show relative studies, the Web Ontology Language (OWL), the Unified Modeling

Language (UML), and Protégé, and practical examples, a semantic web music service

(MusicBrainz), a coding system to classify both products and services (UNSPSC), and a

web-based talk system (ITTALKS), with regard to ontology theorem. Chapter 4

illustrates design issues for a network traffic analysis system in details. Intrusion

Detection System (IDS) is introduced in chapter 5. We model and simulate a network

traffic analysis system (protocols/services evaluation and network throughput analysis)

based on DEVS formalism in chapter 6. The experimental results for generic network

behavior analysis are also presented in chapter 6. Comparisons between our system and

Ethereal are discussed, and we state the problems of our approach in chapter 7. In chapter

8, we present a web-based distributed simulation for a network behavior analysis system

and DEVS Service Oriented Architecture (DEVS/SOA). The experimental results of

distributed simulation are presented in chapter 9. Lastly, we conclude our study and

address future works.

21

CHAPTER 2. BACKGROUND KNOWLEDGE

 There exist modeling approaches for designing and simulating complex systems’

specifications. Entity-Relation (ER) [1] is an approach to represent systems’ structures

such as data entities and their relationships. Other approach is Unified Modeling

language (UML), and it is designed to represent objects and their relationships. Even if

ER and UML enable modeling systems’ specifications and describe various kinds of

logical models, each approach is limited in specific modeling. ER is very good for logical

model representations but not good enough for visual modeling. On the other hand, UML

is good for both logical models and visual models but lacks model persistence [2].

 The System Entity Structure (SES) expressed by XML modeling framework is

very useful for multi-level (high level applications and low level data specifications)

modeling and simulation based on ontology and data engineering methodology. The SES

is a hierarchical tree structure with entities and relations. The SES approach shows more

potential better for logical, visual, and persistent modeling than either ER or UML.

 In this chapter, we introduce background theories such as the System Entity

Structure (SES) theory and Discrete Event System Specification (DEVS) formalism.

22

2.1 Ontology/Data Engineering for Modeling and Simulation

The concept of ontology, which has a long history in philosophy, is a study of

reality and the nature of being or existence. In philosophy, ontology (from the Greek,

ontos: of being and logos: science, theory) is the study of being or existence and forms

the basic subject matter of metaphysics. It seeks to describe the basic categories and

relationships of being or existence to define entities and types of entities within its

framework. In computer science, a well known definition of an ontology is:

An ontology is a specification of conceptualization [3]

An ontology is a data model that represents a set of concepts within a domain and

the relationship between those concepts. It is used to reason about the objects within that

domain. Ontologies are used in artificial intelligence, the semantic web, software

engineering, and etc. as a form of knowledge representation with respect to the world or

some part of it. Ontogolies are commonly encoded using ontology languages such as

CycL, KIF (Knowledge Interchange Format), OWL (Web Ontology Language), or any

other representation which can define objects, properties and its relations. Ontology

languages are formal languages used to construct ontologies. They allow the encoding of

knowledge about specific domain and often include reasoning rules that support the

processing of that knowledge. T.Gruber [3] stated that knowledge in ontologies can be

formalized using five kinds of components: concepts, relations, functions, axioms, and

instances.

23

1. Concepts: calls as classes, collections of abstract, or types of objects.

2. Relation: type of interaction between concepts of the domain

3. Function: mappings between a list of input arguments and its output argument

• defined as F: C1 x C2 x… x Cn-1 Cn

4. Axioms: sentences that are always true

5. Instances: elements of a given concept, actual objects of classes

 An Ontology could be clearly conceptualized if these components are well

defined. In computer and information science, an ontology is an essential methodology to

develop a shared conceptualization in a semantic web. Also, ontology enhances

knowledge management methodology by unifying pragmatics of knowledge base system.

The huge advantage of ontology is not in processing, but in sharing meaning, emergence

and discovery of gaps and for improving a tacit knowledge transfer. Ontology may

contain information in a specified declarative language, but it may also include

unstructured or unformalized information expressed in a natural language or a procedural

code. Computer-based ontology provides formal and structured representation of domain

knowledge. It is designed to serve as a raw material for computer reasoning and

computer-based agents. The ontology provides a formally defined specification of the

meaning of those terms, which are used by agents during their interoperation. Because

agents can differ in their understanding of environment, it is important goals capabilities,

but they can still interoperate in order to perform a common task.

24

Data engineering is an aspect of ontology engineering. The Technical Committee

on Data Engineering (TCDE) of the IEEE Computer Society addresses that “Data

Engineering is concerned with the role of data in the design, development, management

and utilization of information systems. Issues of interest include database design;

knowledge of data and its processing; languages to describe data, define access and

manipulate databases; strategies and mechanisms for data access; security and integrity

control; and engineering services and distributed systems.” [4] The contribution of data

engineering is that it enables easy and efficient information sharing among services in

organizations. Also, data engineering makes meaningful information be exchanged, not

just simply bits and byte data. Model and Simulation-based data engineering relies on

rigorous principles to ensure that metadata structures can be designed, represented,

constructed and implemented in such a way that facilitates automated comparison and

analysis, translation, and implementation [5]. In this study, model and simulation-based

data engineering is applied to support flexibly applicable data exchange using data

models.

Recall that ontology describes a state of the world and its changes over time.

Information exchange occurs when a person or information system reports a new state of

the world, or changes in previous states, to another person or information system. The

person or system that generates and reports the information is called a producer while the

user is called a consumer. The principle that this document emphasize is that the

consumer’s use of the information should determine the description mechanism, or

ontology, used by the producer. We’ll formulate a means of characterizing the

25

consumer’s use of the information and call it a pragmatic frame. The developer of the

ontology, also called the data engineer, has the task of tuning the ontology to the

pragmatic frame. Context awareness by ontology/data engineering could be developed in

modeling and simulation approach. For more understanding, an example of social

relations on an island is presented.

2.1.1 Ontology for Social Relations on an Island

There are four people stuck on an island: a, b, c, and d (you are free to associate

your favorite movie or sitcom characters with these letters). Because people in such a

situation frequently change their affection for each other, we want to represent in some

way their daily likes and dislikes of one another. We begin with the following matrices

 Likes Dislikes
 a b c d a b c d
a 1 1 a 1
b 1 b
c 1 1 c 1 1
d 1 d 1

Using this framework, there is a large but easily computable number of possible

states of affection that characterize this small number of people. Indeed, there are 4 × 4 =

16 cells in the Likes matrix, each of which can independently have a 1 or a blank.

Therefore, there are 216 states of the Likes matrix and, again assuming independence, the

same number for the Dislikes matrix, for a total of 232 that is the product of the two

groups. In reality, the number of states is much smaller because the following constraints:

26

1. No one likes or dislikes himself or herself;

2. Affection is mutual and so is disaffection (for example, you like someone who

likes you, and the same applies to disliking someone);

3. Liking and disliking are mutually exclusive — you can’t like and dislike someone

at the same time;

4. To quote an ancient proverb, “The enemy of my enemy is my friend.”

2.1.2 Definition of Ontology

Numerous definitions of the concept of ontology can be found in several

literatures. We’ll employ one that is particularly appropriate to the point of view taken in

this study. The Federation of Intelligence Physical Agents (FIPA) provides a discussion

of ontology that can be found on the web [6]. FIPA’s concept of an ontology is a logical

formalism that tries to express a set of possible world structures through its family of

models. The definition itself tries to make clear that the language with its axioms usually

cannot exactly capture the set of world structures that the definer intends, so it is an

approximation to this intended conceptualization. In our approach, we will not

necessarily restrict the defining mechanism to a logical formalism. For example,

eXtensible Markup Language (XML) [7] might be used to capture a set of possible world

states while itself not being explicitly formulated within the approach of classical logic.

We will explicitly incorporate a concept of pragmatic frame, which delineates a data

engineer’s domain of interest and relates an ontology as being adequate or not to this

27

domain. It will turn out, for example, that without further validity-checking tools, XML

cannot represent the worlds in which enemies of enemies are always friends. Further, we

will also want to explicitly consider how world states can change over time. For example,

it might be that our islanders can’t get along with each other for more than one day at a

time, therefore, if x likes y today, then x will dislike y tomorrow. Further, suppose that it

takes a whole week for people who have a falling out to reconcile. So, if x dislikes y

today, then only this time next week will the corresponding “1” in the Dislike matrix

disappear. Thus, we’ll be interested not only in static data engineering but also in

dynamic data engineering, and this will lead us toward including the full capability of

modeling and simulation.

2.1.3 Pragmatics: The Information Exchange Framework

A producer observes the state of the world at its location and encapsulates it in a

message to a consumer that stores it for later use. As we noted previously, the world state

is a member of a set delineated by an ontology that reflects the designer’s

conceptualization. But what could that conceptualization be? By taking into account the

pragmatics of the situation, we get a way to answer this question. By pragmatics we

mean the aspect of language that has to do with how the information transmitted by a

message will be used. In Figure 1, we can point out how the stored data will be used later.

28

Figure 1. Information exchange framework [5]

Consider two examples

1. Information Sent by a Dealer to Department of Motor Vehicles

Whenever you buy a new car, some information is sent from the dealer to the

Department of Motor Vehicles where you live, which stores it in its database. The

pragmatics of the use here is the subsequent processing of this data — it will be

used when you register the vehicle and pick up your plates, and to compute taxes

and annual renewals.

2. Information Sent by a Dealer to Manufacturer’s Headquarters

Every month a car dealership sends a sales report to the manufacturer’s

headquarters to allow it to assess inventory levels and plan its production schedule

for the next month. Table 1 illustrates the framework.

29

Event causing
world state
change

Producer Consumer
Pragmatics:
Subsequent
use

Message
Contents

New car purchase
car ownership
transferred from
dealer to buyer

Dealer Department of
Motor Vehicles

Register
owner’s vehicle
and give out
plates

Buyer and
vehicle
identification

New car purchase
car ownership
transferred from
dealer to buyer

Dealer Manufacturer
Headquarters

Assess
inventory levels
and production
schedule

Number of cars
of each make
and model that
were sold during
the month

Table 1. The purchase of the car caused a world state change

In our framework, an event occurred when you bought the car. This changed the

world because the car left the dealer’s lot and it is now yours to drive. The producer is the

same — the car dealer — but the pragmatics are different in the examples just given: the

consumers are different (Department of Motor Vehicles and manufacturer) and their

subsequent use of the received information will be different. The point is this: notice how

the pragmatics determines the nature of the data to be sent, namely, the contents of the

message. In the first case, the dealer needs to provide specific information about the

buyer (name, address, etc.) and vehicle (identification number, make, model, etc.). In the

second case, this information is not relevant. Instead, the dealer needs to inform the

manufacturer of how many cars of each make and model he sold during the month.

We’ll say that an ontology supports (or is applicable to) a pragmatic frame if the

world states (or state changes) that it can describe include those that are needed by the

30

frame. In other words, the message contents encode the right information for the intended

use. Notice that an ontology can be designed to describe a set of world states for some

domain. This might be feasible for a limited situation such as the states of affection of

four people on an island. However, in many situations, it would be much more efficient

to describe the change in state caused by an event in contrast to the new state that was

engendered. So we allow for ontologies that describe state changes rather than states. For

example, in the case of an island with one million people, we might explicitly convey the

few pairs of people that started, or ceased, liking each other since the last update. Indeed,

we’ll later discuss such change-based updating in depth. For the moment, we note that the

producer and consumer must have agreed initially that entries in the database remain

valid unless explicitly updated.

An ontology is minimal for a frame if it supports only that frame, not a larger one.

For example, we could have minimal ontologies for the vehicle registration and inventory

update frames, respectively. As illustrated in Figure 2, the first ontology would provide a

means to describe the buyer’s name, address, and Social Security number and the

vehicle’s make, model, and identification number. The second would provide a means to

describe the number of cars of each make and model sold during the last month. On the

other hand, we could have one larger, more general ontology to cover both needs (and

possibly others). The minimalist approach offers conciseness and efficiency, whereas the

generalist approach potentially offers better integration and, if designed with forethought,

potential extensibility to meet future demands. There will always be a tradeoff between

31

these approaches, but the scope of the ontology — the part of the world that it can help to

describe — must ultimately be limited by a deliberate choice of the developer.

Figure 2. Car purchase example of the information exchange framework [5]

2.1.4 Ontology/Data Engineering based Modeling and Simulation

Two levels, those of ontology and implementation, constitute the overall

architecture for our simulation-based ontology engineering methodology. As depicted in

Figure 3, at the ontology level, the modeler creates an ontology to satisfy the pragmatic

frames of interest in a given application domain. The pragmatic frames can be specified

in XML, via restricted natural language, through a GUI which is the SESBuilder [8]. It is

then automatically encoded to an XML schema/document type definition (XSD or DTD)

at the implementation level. Such automation is an important advantage, since other

ontology developments based on UML currently lack the combination of automation and

32

a broad range of tools that the System Entity Structure (SES) framework supports. The

XML instance documents specified by a schema are formally represented by the family

of pruned entity structures (PES) at the ontology level. In the context of dynamic data

engineering, each completely pruned PES specifies a Discrete Event Simulation (DEVS)

simulation model that constitutes a capability to describe world states that evolve in time.

When limited to static data engineering, the family of PES represents a logically possible

set of world states. Each such state is like a snapshot of the world as depicted by the

ontology in service of the application contexts (the pragmatic frames). An XML

document instance is the concrete encoding of the abstract PES. It encodes data in an

information exchange that either directly represents a world state in the static case, or can

be transformed to a simulation model in the dynamic case. Finally, those of ontology can

be modeled and simulated.

Figure 3. Simulation-based data engineering methodology [5]

33

2.2 System Entity Structure (SES)

The basic concept of the System Entity Structure is that a system entity represents

the real system enclosed within a certain choice of system boundary. In a real system,

many system entities and the experimental frames are dealt. Thus it is necessary to

organize the model and experimental frames around the structure. The entity structure is a

template from which the decomposition trees of the existing models can be extracted.

Moreover, the entity structure is a template for constructing models from those already

existing. Professor Zeigler proposed the System Entity Structure (SES) [9, 10] and the

SES is a theory to design systems hierarchically and structurally. The basic idea of the

SES is that a system entity represents the real system enclosed within a certain choice of

system boundary. In real system, many system entities and the experimental frames are

dealt. Thus it is necessary to organize the model and experimental frames around the

structure. The SES includes entities and their relationships. Table 2 presents the key

components consisting of the SES.

Components Descriptions

Entity
A real world object which either can be independently identified or is
postulated as a component in some decomposition or a real world
object. e.g., building

Entity-Aspect (|)
A decomposition, a way to break down an entity into parts or
components (entities). The children of an aspect are entities representing
components in a decomposition of its parents. e.g., door, roof, and etc.

34

Multiple Entity (|||) A multi-decomposition, relationship between multi entities and an
entity. e.g. doors and front door and back door.

Entity-
Specialization (||)

A classification, a way to classify an entity into special cases or
subclasses. The children of a specialization are entities representing
variants of its parent. e.g., home, office, store, or etc.

Table 2. Components of System Entity Structure (SES)

 To construct a desired simulation model to meet the design objective, the pruning

operation is used to reduce the SES to a pruned entity structure, PES [9]. The pruned

entity structure can be transformed into a composition tree and eventually synthesized

into a simulation model. First of all, the SES, which can describe the components in the

source data, is developed. The SES structure produces important information to build the

DTD or Schema. Entity, Aspect, Multi-Aspect, and Specialization build the primary

components in DTD or Schema. At the ontology level, the modeler develops one or more

SESs depending on models, and the SESs are merged to create an ontology in order to

satisfy the pragmatic frames of interest in a given application domain. An SES can be

specified in various ways, and then it is transformed to an XML schema or an XML

document type definition (XSD or DTD) at an implementation level. The pruning

operation of SESs creates pruned entity structures (PESs), and the PESs transform to

simulation models.

In chapter 2.3, we provide an overview of a language, which is eXtensible

Markup Language (XML).

35

2.3 Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a W3C-recommended general-

purpose markup language for creating special-purpose markup languages, capable of

describing many different kinds of data [7]. XML is an extensible language not like

HTML. HTML limits tags within certain syntax. Otherwise, users could define tags

according to contents of documents and let others use the defined tags in XML. XML is a

language for expressing other languages, that is a meta language. As a result, XML will

be widely used due to its characteristics of platform independency. Also, since XML

substitutes all kinds of data structure and supports various data format [11], it extends its

uses to search engines, data engineering, and etc.

2.4 Discrete Event Simulation

2.4.1. Fundamentals of Computer Simulation

 Computer simulation is an activity of representing the temporal behavior of a

physical or a conceptual system for a specific period of time. A simulation model is a

specification representing the system in terms of a set of states, events, and behavior

functions. Simulation time can be slower, faster, or equal to physical time. Also, time

resolution can be arbitrarily defined [12].

 During simulation, the current status of a model is represented by a state. A state

transition occurs just before initiating or after completing a particular behavior. A state

feasibility test may be involved before a state transition happens. An event is a data

36

object that is produced and consumed by simulation components: e.g., logical simulator

and coordinator. If necessary, a set of events is exchanged among those components in

order to complete a simulation task. A behavior function is invoked when events are

received or produced by a model or a specific behavior of the model is to be performed.

 Simulation is classified into continuous simulation and discrete simulation

according to the state transition occurrence interval. During a simulation, if a state

transition occurs continuously in time, the simulation is a continuous simulation. While,

if state transitions happens in discrete time, the simulation is called a discrete simulation.

In a discrete simulation, if state transitions occur in term of discrete time interval (or time

steps), the simulation is referred to as a time driven discrete simulation (or discrete-time

driven simulation). An event-driven discrete simulation (or discrete-event driven

simulation) is defined if state transitions happen based on event activities. Figure 4

depicts the classification of a computer simulation.

Computer Simulation

DEVS

Continuous Time Simulation Discrete Time Simulation

Event Based Simulation Time Based Simulation

Figure 4. Classification of computer simulation

37

 Depending on the simulation time synchronization scheme, a simulation is viewed

as a conservative or an optimistic activity at a specific time. All simulation activities are

completed before advancing time and time must be synchronized in the conservative

scheme [13, 14]. In the optimistic scheme, time does not need to be synchronized

globally and simulation activities at a particular time need not all be completed before

advancing time. Only when a time causality problem occurs, time needs to be

synchronized [15, 16]. Conservative schemes guarantee all activities are performed

without any time causality problems. By loosening the time causality constraint,

optimistic schemes perform better for certain simulation problems that contain a high

degree of parallelism between simulation models. However, it requires additional

memory to keep information in regards to activities that occurred at a previous time.

When time causality problems happen, current simulation time rolls back to a previous

time that did not violate time causality. Generally, the performance of the simulation is

not directly associated with a simulation time synchronization scheme but instead is

related to the nature of the given simulation problem [12].

2.4.2. Discrete Event System Specification (DEVS)

The Discrete Event System Specification (DEVS) is a formalism providing a

means of specifying a mathematical object called a system [17]. It also allows the

building of modular and hierarchical model compositions based on the closure-under-

coupling paradigm. The DEVS modeling approach captures a system’s structure from

both functional and physical points of view. A system is described as a set of input/output

38

events and internal states along with behavior functions regarding event

consumption/production and internal state transitions. Generally, models are considered

as either atomic models or coupled models. The Atomic model can be illustrated as a

black box having a set of inputs(X) and a set of outputs(Y). The Atomic model includes a

description of the interface as well as the data flow between itself and other DEVS

models. The Atomic model also specifies a set of internal states(S) with some operation

functions (i.e., external transition function (δext), internal transition function (δint), output

function (λ), and time advance function (ta())) to describe the dynamic behavior of the

model. Figure 5 illustrates the system representation of an atomic model.

Figure 5. System representation of atomic model [17]

The external transition function (δext) carries the input and changes the system

states. The internal transition function(δint) changes internal variables from the previous

state to the next when no events have occurred since the last transition. The output

function (λ) generates an output event to outside models in the current state. The time

39

advance (ta()) function adjusts simulation time after generating an output event. The

Atomic model is specified as follows:

Atomic model:

M = < X, S, Y, δint, δext, λ, ta >

where,

 X: set of external input events;

 S: set of sequential states;

 Y: set of outputs;

 int : :S Sδ − > internal transition function

 : :b
ext Q X Sδ × − > external transition function

where,

Q = {(s, e)| s∈S, 0 ()e ta s≤ ≤ }; is the set of total states e is the

elapsed time since last state transition

 bX is a set of bags over elements in X,

 : :bS Yλ − > output function generating external events at the output

 0,: :ta S R+
∞− > time advance function;

 Basic models may be joined in the DEVS formalism to form a coupled model. A

coupled model is the major class which embodies the hierarchical model composition

constructs of the DEVS formalism [17]. A coupled model is made up of component

40

models, and the coupling relations which establish the desired communication links. A

coupled model illustrates how to couple (connect) several component models together to

form a new model. Two significant activities involved in coupled models are specifying

its component models and defining the couplings which create the desired

communication networks. A coupled model is defined as follows and a coupled model

can be seen in Figure 6:

Coupled Model:

DN = < X, Y, D, {Mi}, {Ii}, {Zi,j} >

where,

 X: set of external input events;

 Y: a set of outputs;

 D: a set of components names;

 for each i in D,

 Mi is a component model

 Ii is the set of influences for i

 for each j in Ii

 Zi,j is the i-to-j output translation function

A coupled model template contains the following information [18]:

• The set of components

• The set of input ports through which external events are received

41

• The set of output ports through which external events are sent

• The coupling specification consisting of:

o The external input coupling (EIC) connects the input ports of the

coupled model to one or more of the input ports of the components

o The external output coupling (EOC) connects the output ports of

the components to one or more of the output ports of the coupled

model

o Internal coupling (IC) connects output ports of components to

input ports of other components

Figure 6. An example of coupled model [17]

2.4.3 Experimental Frame

An experimental frame is a specification of the conditions under which the system

is observed or experimented with [17]. As such, an experimental frame is the operational

42

formulation of the objectives that motivates a modeling and simulation object. For

example, out of the multitude of variables that relate to a forest, the set {lightning, rain,

wind, smoke} represents one particular choice. Such an experimental frame is motivated

by the interest in modeling the way lightening ignites a forest fire. A more refined

experimental frame would add the moisture content of the vegetation and the amount of

unburned material as variable. Thus, many experimental frames can be formulated for the

same system and the same experimental frame may apply to many systems. Basically an

experimental frame specifies a limited set of circumstances under which a system (real

system or model) is to be observed or subjected to experimentation. The objectives and

experimentation play a role in the modeling enterprise at least equal in significance to

model construction. However, in current modeling and simulation world, the statement of

objective is not formalized and cannot play its proper role in a computer supported

methodology. Experimental Frame demonstrates how the statement of objectives can be

operationalized in a process whose product is the formulation of experimental frames.

Initial objectives lead to asking specific questions about the real system which in turn

require that suitable variables be defined. Such a choice of variables is represented in

experimental frames which also express constraints on the trajectories of these variables.

There are two equally valid news of an experimental frame. One views a frame as

a definition of the type of data elements that will go into the data base. The second views

a frame as a system that interacts with the system of interest to obtain the data of interest

under specified condition. In this view, the frame is characterized by its implementation

as a measurement system or observer. In the implementation, a frame typically has three

43

types of components: generator, acceptor, and transducer. Generator generates input

segments to the system. Acceptor monitors an experiment to see the desired experimental

conditions are met. Transducer observes and analyzes the system output segments. Figure

7 illustrate experimental frame and its components.

SYSTEM

Experimental Frame

generator acceptor transducer

Figure 7. Experimental frame and its components

 Component 1 : Generator

Generator is an active DEVS which is input free and stimulates the system with

input trajectories. Generator is capable of scheduling itself for a state transition,

producing an output as a function of this state, and rescheduling itself for the next such

iteration. The output function is defined in such a way that an output segment produced

by such a generator when started in an initial state satisfies the constraint of a DEVS

segment. Generators may be used to implement arrival processes among other classes of

44

input segment to models. In continuous systems such trajectories take the form of various

kinds of periodic functions such as steps and ramps, or various periodic functions such as

sine waves or square waves. In discrete event systems, arrival of events may be periodic

or stochastic. In the latter case, we need to specify the probability distribution of the inter

arrival times, such as uniform or exponential. The type of processing required is also part

of the generator specification.

 Component 2 : Acceptor

We often make a distinction between the transient and steady state characteristics

of system behavior. The acceptor is the slot in the experimental frame where conditions

limiting the observation of behavior, such as steady state versus transient, can be

specified. An acceptor is a passive DEVS with state set partitioned into two sets, the

accepting and non accepting states. In addition the acceptor designates a state in which

the system is always initialized. An input segment is accepted by such a system, if it

causes the acceptor to reach an accepting state at the end of its application.

 Component 3 : Transducer

 The transducer processes the output trajectories, where such post processing may

range from none at all to very coarse summaries where only certain features of interest

are extracted. In discrete event systems, we might be interested in the turnaround times

required to process jobs or in the throughput, rate of job completion. Utilization of

various resources and of special events such as failure or blocking may be interest.

45

Usually the many numbers produces are summarized into statistical quantities such as the

average, maximum, or minimum. In experimentation, input variables are those variables

that will be treated as influencing the system under study, and output variables are those

capable of direct measurement and mediating the computation of variables of interest for

the modeling objectives. There is no output segment specification since these are

determined by the system during experimentation. When a computation involved in

computing interest variables from mediating variables is moved to the experimental

frame stage, these computations are expressed as the summary mapping of the frame. The

appropriate concrete form of specifying such mapping is the transducer.

2.5 Web Service

 A web service [19] is a software system for communicating between a client and a

server over a network with XML messages called Simple Object Access Protocol

(SOAP) [7, 20]. The web service makes the request of machine-to-machine or

application-to-application communication possible with neutral message passing even

though each machine or application is not same domain. Such interoperability among

heterogeneous applications is realized by web service providing a standard means of

communication and a platform independency.

 Web services technologies architecture [21] is based on exchanging messages,

describing web services, and publishing and discovering web service descriptions. The

messages are exchanged by SOAP messages conveyed by internet protocols. Web

services are described by Web Services Description Language (WSDL) [22] which is

46

XML based language providing required information, such as message types, signatures

of services, and a location of services, for clients to consume the services. Publishing and

discovering web service descriptions is managed by Universal Description Discover and

Integration (UDDI) [23] which is a platform-independent and XML style registry. In

other words, three roles are classified in the architecture that is, a service provider, a

service discovery agency (UDDI), and a service requestor. The interaction of the roles

involves publishing, finding, and binding operations. A service provider defines a service

description for a web service and publishes it to a service discovery agency. This

operation is publishing operation between the service provider and the service discovery

agency. A service requestor uses a finding operation to retrieve a service description

locally or from a discovery agency and uses the service description to bind it with a

service provider and invoke or interact with the web service implementation. Figure 8

illustrates the basic Web services architecture describing three roles and operations with

WSDL and SOAP.

Discovery
Agent

WSDLWSDL

SOAP

UDDI

publishfind

bind
serverclient

Service
Requestor

Service
Provider

Figure 8. Web services architecture

47

 Whereas a web service is an interface described by a service description, its

implementation is the service which is a software module provided by the service

provider (server) on the network accessible environment. It is invoked by or interacts

with a service requestor (client).

 Web services are invoked by many ways but the common use of web services is

categorized to three methods such as Remote Procedure Call (RPC), Service Oriented

Architecture (SOA) [24], and Representational State Transfer (REST) [25]. RPC Web

services was the first web services approach which had a distributed function call

interface described in the WSDL operation. Though it is widely used and upheld, it does

not support loosely coupled concept for reasons of mapping services directly to language-

specific functions calls. A web service is an implementation of Service-Oriented

Architecture (SOA) concepts, which means a message is important unit of

communication regarded as “message-oriented” services. This approach supports a loose

coupling concept focusing on the contents of WSDL. REST Web services focuses on the

existence of resources rather than messages or operations. It considers WSDL as a

description of SOAP messaging over HTTP, or is implemented as an abstraction on top

of SOAP.

48

CHAPTER 3. STATE OF THE ART

 In this chapter, we illustrate relative studies such as the Web Ontology Language

(OWL), the Unified Modeling Language (UML), and Protégé. Also, we introduce

practical ontology engineering examples such as a semantic web music service

(MusicBrainz), a coding system to classify both products and services (UNSPSC), and a

web-based talk system (ITTALKS).

3.1 The Web Ontology Language (OWL)

 The Web Ontology Language (OWL) [26] is a W3C recommended ontology

standard under development to support such intelligent queries. OWL is designed not

only for understanding human-readable presentation of content but also for developing

applications for information processing. OWL’s wide vocabulary and formal semantics

enhance machine-interpretability of web contents comparing to Extensible Markup

Language (XML), Resource Description Framework (RDF) [27], or Resource

Description Framework Schema (RDF-S) [28]. The OWL language provides three

increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The

standard example to explain the goals and capabilities of OWL is the wine agent who

must be is to be capable of searching the web for answers to queries such as what wine

would go with a particular dinner course. The basic ontology framework employs classes,

class hierarchies, and properties, which are standalone binary relations. The primary

49

objective of OWL is to support automated logical reasoners that can derive new

inferences when applied to combined ontologies from multiple web sites. OWL is

intended to operate in the open web environment where ontologies are not developed

under central control. Since information cannot be retracted, reasoners must be prepared

to cope with contradictions that can arise from merging diverse independently developed

ontologies. This represents a departure from earlier applications of formal logic that

employed brief belief revision mechanisms to maintain logical consistency under the

addition of new knowledge. A research project at Stanford University, Protégé, is a free,

open source ontology editor and knowledge-base framework which is implemented for

the Open Knowledge Base Connectivity (OKBC) [29] compatible knowledge model and

OWL.

3.2 The Unified Modeling Language (UML)

 The Unified Modeling Language [30] is the Object Management Group’s [31]

most used specification, and the world models not only application structure, behavior,

and architecture, but also business process and data structure. The Object Management

Group’s (OMG) Unified Modeling Language (UML) helps to specify, visualize, and

document models of software systems, including their structure and design, in a way that

meets all of these requirements. UML can be used for business modeling and modeling of

other non-software systems too. Using any of the large number of UML-based tools on

the market, future application requirements and design of a solution that meets them can

be analyzed, representing the results using UML's standard diagram types. Recently,

50

OMG have improved with a major update, UML 2.0. UML 2.0 defines thirteen types of

diagrams. Figure 8 helps to understand the diagrams by a hierarchically categorized tree

structure.

Figure 9. UML diagrams: hierarchically categorized [32]

1. Structure diagrams: Things what should be in systems

• Class Diagram

• Component Diagram

• Composite Structure Diagram

• Deployment Diagram

• Object Diagram

• Package Diagram

2. Behavior diagrams: Things that happen in systems

51

• Use Case Diagram

• State Machine Diagram

• Activity Diagram

3. Interaction Diagrams: Flows of controls and data in systems

• Sequence Diagram

• Communication Diagram

• Interaction Overview Diagram

• UML Timing Diagram

3.3 Protégé

 Protégé is an open-source development environment for ontologies and

knowledge-based systems. It is a tool supporting the construction of ontologies, and it

also provides an application platform for knowledge-based systems and libraries for

application building. Protégé was developed at Stanford University. It is the best-known

ontology editor with plug-ins that supports OWL and enables the following [33]:

• loading and saving OWL and RDF ontologies,

• editing and visualizing OWL classes and their properties,

• defining logical class characteristics as OWL expressions,

• executing reasons such as description logic classifiers,

52

• editing OWL individuals for Semantic Web markup.

 Protégé has flexible architecture and is easy to configure and extend. Protégé has

an open-source Java API for the development of custom-tailored user interface

components or arbitrary semantic web services. There are several other ontology editors

such as OilEd, OntoEdit or DUET. However, Protégé, with its plug-in architecture, gives

much wider possibilities. Powerful associations, which consist of developers,

universities, governments, and organizations, have supported Protégé, and continuous

updates and revisions are promising strengths of Protégé. Protégé-2000 was first

published in 1999, and Protégé 4.0 alpha is available now, December 2007. Currently,

there are 82,980 registered users. The Protégé platform supports two main ways of

modeling ontologies via the Protégé-Frames editor [34] and Protégé-OWL editor [35].

 The Protégé-Frames editor enables users to build and populate ontologies that are

frame-based, in accordance with the OKBC. In this model, an ontology consists of a set

of classes organized in a subsumption hierarchy to represent a domain's salient concepts,

a set of slots associated with classes to describe their properties and relationships, and a

set of instances of those classes—individual exemplars of the concepts that hold specific

values for their properties. The Protégé-OWL editor enables users to build ontologies for

the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL

ontology may include descriptions of classes, properties and their instances. Given such

an ontology, the OWL formal semantics specifies how to derive its logical consequences,

i.e. facts not literally present in the ontology, but entailed by the semantics. These

53

entailments may be based on a single document or multiple distributed documents that

have been combined with using defined OWL “mechanisms.” In addition, Protégé

ontologies can be exported into a variety of formats including RDF(S), OWL, and XML

Schema.

3.4 Practical Ontology Examples

In this chapter, we introduce three practical examples for ontology engineering.

The first example is MusicBrainz which is a semantic web music service. The second

example is UNSPSC, which stands for United Nations Standard Products and Services

Code, a coding system to classify both products and services. The last one is a web portal

offering access to information about talks, seminars, and colloquia related to information

technology, ITTALKS.

3.4.1 MusicBrainz: A Semantic Web Music Service

 MusicBrainz is a music metadatabase, and its purpose is to create a

comprehensive open-content music database. It systematically manages music metadata,

which is created by various organizations, through an ontology. MusicBrainz includes a

large database of music metadata. It contains information about 349,693 artists, 533,749

albums, and 6,275,935 tracks at Dec, 2007 [36]. The MusicBrainsz metadata provides

data about music, such as artists, album titles, and tracks, but not the music itself.

54

 MusicBrainz is one of the first the Semantic Web Services [37]. It combines the

principles idea of the Semantic Web and web services together. The Semantic Web is a

project to create machine-processable information into human-readable contents on the

web. The web service is very similar to the Semantic Web, but it aims to enable

interaction with machine-interpretable information over a network. It assigns a Uniform

Resource Identifier (URI) about artists, albums, tracks, and other such information to its

database, and it uses RDF to address information. Instances are expressed only by URIs

and can escape metadata redundancy and reduce error rates. In this system, an ontology

facilitates mapping distributed metadata.

3.4.2 UNSPSC: Coding System to Classify both Products and Services

 The United Nations Standard Products and Services Code (UNSPSC) provides an

open, global multi-sector standard for efficient, accurate classification of products and

services [38]. It is a standard to classify hierarchically all the products and services

throughout the global eCommerce marketplace and eBusiness. The UNSPSC services a

single global classification system that can be used for the following:

• Company-wide visibility of spend analysis

• Cost-effective procurement optimization

• Full exploitation of electronic commerce capabilities

55

 An ontology is used for standardizing common vocabulary items about products,

and the ontology links together scattered products found on the web. The common

vocabulary items of the ontology facilitate information exchanges among the products on

the web.

3.4.3 ITTALKS: web-based talk system

 ITTALKS is a web portal offering access to information about talks, seminars,

and colloquia related to information technology [39]. It is a DARPA Agent arkup

Language (DAML) [40, 41] based system that enables both users and agents interaction.

ITTALKS implements ontologies to describe talks and details about the talk, such as

people, locations, and discussion topics. The ontologies are connected in ITTALKS

system, but they are independent. In this independently cooperative environment, each

ontology develops by itself, and individual advances promote the complete ITTALKS

system.

56

CHAPTER 4. DESIGN ISSUES OF SES/NZER

 The goals of a network traffic analyzer are to help network administrators to

manage very complicated network topology and to increase efficiency for secure and

effective data transfer. The network use, especially the number of internet users,

increases rapidly. Also, high quality of service is required, and this requirement results in

sudden network traffic increases. As a result, designing efficient systems for managing

large network traffic data becomes an important issue. Ontology/data engineering

methodology is used to build an effective system for analyzing large amounts of network

traffic data. The primary objective of this study is to develop a system that allows easy

and efficient information sharing among organizations. The SES and XML modeling

approaches allow systems to easily handle huge amounts of data, and the two approaches

facilitate the modeling and simulation study because the architecture of the SES is a

hierarchical tree structure. In addition, the characteristics of XML, such as scalability and

portability, are very good for managing metadata. This study illustrates how to analyze

network behaviors that are requested by customers. Both protocol analysis and network

throughput analysis are provided as pragmatic frames (users’ applications). Therefore, we

design a behavior (SES) reflecting network packet transmissions and packet information.

The SES includes a methodology for interpreting metadata in SES/NZER. This chapter

shows the overview of developing processes, i.e., the way of capturing network traffic

data and analyzing the data, of SES/NZER. Figure 10 shows the developing processes of

57

SES/NZER. We classify three levels: Design, Implement, and Analyze levels. In the

Design level, we design an SES for network traffic behavior and capture network traffic

in a subnet. In the Implement level, the SESBuilder [8] generates an XML schema for an

SES. From an XML schema, XML instance files including data attribute values that are

created through pruning operations at the Analyze level. Also, we run a simulation

(DEVS modeling and simulation) and evaluate results. The simulation framework is

automatically re-structured according to customers’ requirements (pragmatic frames).

Developing an automated system design is the secondary goal in this study.

Network Traffic
Capture using EtherealOntology Design

Writing Natural Language

Ontology XML Schema in SES

XML Instances
By Pruning AnalysisSimulation

SESBuilder

Design Level

Implement Level

Analyze Level

Figure 10. Developing process of the network traffic analysis system

4.1 SES design for network traffic analysis

 In this chapter, we design network behaviors using SES theory. The SES

represents network traffic behaviors for the purpose of a host-based analysis. Nine

58

elements, which are an event time, a source IP address, a source MAC address, a source

port number, a destination IP address, a destination MAC address, a destination port

number, a protocol, and packet length, are examined in a network traffic analysis. These

nine essential elements are included in network packet headers. Categorizing these nine

elements is important for fast and accurate network behavior evaluation and analysis. We

use the SES methodology to classify network packet information in the hierarchical tree

structure. Figure 10 is a hierarchical SES tree structure representing network packet

behaviors.

HostBasedAnalysis NetworkBasedAnalysis

PacketInfoTime Protocols

TCP UDP HTTP FTP

Protocol_spec

Host

DestHostSrcHost

Addresses Ports

MAC
Address

IP
Address Port

{~ event_time} {~ packet_size}{~ protocol_type}

{~ protocol_name}
{~ protocol_name} {~ protocol_name}

{~ protocol_name}

{~ num_hosts = 2}

{~ ip_address} {~ mac_address} {~ port_number}

NetworkTrafficAnalysis_spec

HostBasedAnalysis_dec

Hosts

Host_multAsp

SrcHost_DestHost_dec

channel_dec channel_dec

Addresses_spec Ports_multAsp

NetworkTrafficAnalysis

Addresses Ports

MAC
Address

IP
Address Port

{~ mac_address} {~ port_number}

Addresses_spec Ports_multAsp

{~ ip_address}

Figure 11. System Entity Structure (SES) of network traffic behavior

59

The root entity NetworkTrafficAnalysis is the top-level entity that analyzes

network traffic, and using the NetworkTrafficAnalysis_spec, the NetworkTrafficAnalysis

can be implemented with the HostBaseAnalysis or the NetworkBasedAnalysis. Since the

aim of this example is to analyze network traffic on hosts, we do not branch the

NetworkBasedAnalysis any further. The HostBasedAnalysis is composed of four entities:

the Hosts, the Time, the Protocols, and the PacketInfo. The Hosts is composed of multi-

Host, and the Host has an attribute identifying the number of hosts, and that value is set

as two because the Host is always composed of the SrcHost and the DestHost. The

SrcHost is composed of two entities such as the Addresses and the Ports. The Addresses

can be specialized as the IPAddress or the MACAddress using the Addresses_spec. Both

the IPAddress and the MACAddress have their own attribute of the ip_address and the

mac_address. The Ports is composed of multi-Port, and the Port has an attribute, the

port_number. The DestHost has the same tree structure as the SrcHost. One of the

HostBasedAnalysis’s children is the Time, and the Time has an attribute of the

event_time. Another child entity of the HostBasedAnalysis is the Protocols, and the

Protocols has the protocol_type attribute. The Protocols can be implemented with the

TCP, the UDP, the HTTP, or the FTP using the Protocol_spec. Those four entities have

their own attribute, the protocol_name. We filter and capture network traffic data related

to four very common protocols. The last entity of the HostBasedAnalysis’s children is the

PacketInfo. In this study, we aim to analyze throughputs so that the packet_size is the

only attribute of the PacketInfo entity.

60

Based on this SES, we monitor network activities and capture the fundamental

packet information which is mentioned in this chapter. We also design simulation models

for network traffic analysis, and run simulations to examine how efficient the SES based

data engineering methodology is in the research areas of network protocols/services and

throughput evaluations.

4.2 Network Traffic Data

 To evaluate network traffic behaviors, network traffic data is required. Network

traffic data could be real data, virtual data (simulated experimental results), or existing

dataset such as KDD 1999 Cup dataset [42]. In this study, we use real network traffic

data. To obtain real data, we monitor network behaviors in a subnet of Arizona Center for

Integrative Modeling and Simulation (ACIMS) lab [43] in the department of electrical

and computer engineering at the University of Arizona. We use the Ethereal [44], which

is a well-known network protocol analyzer, for capturing network behaviors. Figure 11

shows a screen shot of the Ethereal.

61

Figure 12. Network traffic capture using Ethereal

 Recall that the fundamental elements in network packet headers—an event time, a

source IP address, a source MAC address, a source port number, a destination IP address,

a destination MAC address, a destination port number, a protocol, and a packet length—

are classified hierarchically based on SES methodology to evaluate network traffic

activities. We set up Ethereal to capture only the packet elements listed above, and to

capture network behaviors of the target network that make up the subnet of ACIMS lab.

We notice that the number of events is very large; for example, the number of packet

transmitted inside the subnet during one second is about fourteen hundred and twenty.

Suppose that we need monthly information or even yearly information. Data captured

62

during those time periods would include a tremendous number of events. It may take a

very long time, or it may be impossible to evaluate that huge network traffic data because

of memory overflows. But, fast and accurate network analysis is required for the network

system manager to save budget and recover their systems from problems such as a

hacker’s intrusion, attacks, or a system down caused by viruses. That is the reason why

we propose a new approach for analyzing network traffic behaviors quickly and

efficiently based on the data engineering theorem. The data engineering methodology

using the SES envisions efficient data management approaches for integrative system

evaluations.

4.3 Instantiation (PES Generation)

This chapter illustrates the Implement Level in Figure 5. We use the SESBuilder

for designing an SES (network traffic behaviors). The SESBuilder is an integrated tool to

utilize the System Entity Structure (SES). The SESBuilder generates ontologies in XML

schema format. The SESBuilder also creates XML instance files followed by SES

pruning rules. The first step of performing the SESBuilder is writing a natural language

formatted script that represents a behavior (ontology). Writing up ontologies by human-

readable natural language is more convenient than writing up scripts by machine-readable

languages. The SESBuilder has its own natural language interpreter, but we must follow

its rules strictly. Figure 13 addresses the natural language which presents the SES shown

in Figure 11.

63

A NetworkTrafficAnalysis can be HostBasedAnalysis or NetworkBasedAnalysis in
analysis!

From the data perspective, a HostBasedAnalysis is made of PacketInfo, Time, Hosts,
and Protocols!

The Time has a event_time!
The range of Time's event_time is string!

The Hosts has a num!
The range of Hosts's num is double with values 2!
From the mult perspective, a Hosts is made of more than one Host!
From the host perspective, a Host is made of a SrcHost, and DestHost!
From the compose perspective, A SrcHost is made of Addresses, and Ports!
From the compose perspective, A DestHost is made of Addresses, and Ports!

Addresses can be IPAddress, or MACAddress in mediaType!
The IPAddress has a ip_address!
The range of IPAddress's ip_address is string!
The MACAddress has a mac_address!
The range of MACAddress's mac_address is string!

From the mult perspective, Ports are made of more than one Port!
The Port has a port_number!
The range of Port's port_number is double!

Protocols can be TCP, UDP, HTTP, or FTP in protocol!
The Protocols has a protocol_type!
The range of Protocols's protocol_type is string!
The TCP has a protocol_name!
The range of TCP's protocol_name is string!
The UDP has a protocol_name!
The range of UDP's protocol_name is string!
The HTTP has a protocol_name!
The range of HTTP's protocol_name is string!
The ARP has a protocol_name!
The range of FTP's protocol_name is string!

The PacketInfo has a packet_size!
The range of PacketInfo's packet_size is double!

Figure 13. Natural language representing the SES for network traffic behavior

64

 The SESBuilder needs a natural language script as its initial input. The internal

natural language interpreter verifies if an input natural language script follows its

syntactic rules. Once a natural language script is verified, the SESBuilder generates an

XML schema. The XML schema, including entities and attributes, represents the

hierarchical SES tree structure. Processes of generating an XML schema from an SES

and a corresponding natural language script in the SESBuilder are as given below:

1. Users write a natural language depicting a behavior

2. The SESBuilder interprets the natural language script

3. The SESBuilder generates an XML schema (SES) which represents the behavior

Figure 14 shows the relationships among the behavior in SES structure, the

natural language, and the XML schema.

Figure 14. Transformation from the SES to the XML code

65

An SES is a method to describe an ontology (behavior) conceptually. SESs

(ontologies) represent real world states. A pruning operation instantiates SESs. The

Pruned Entity Structure (PES) is a composition tree structure instantiated from SES, and

it is used in simulation models and data engineering purposes. SESs are illustrated in

XML DTDs or XML Schemas, but attributes’ values of entities are not included in either

XML DTSs or XML Schemas. The XML schema in Figure 14 shows entity names and

attribute types. However, we need practical, usable objects that include real values. XML

documents (PESs) include data values and information as well as entities. PESs (XML

documents) are used in simulation models and data engineering purposes. Figure 15

illustrates how PESs are produced from an SES.

Figure 15. Multi-aspect for pruning of copies of its entity

66

 Because networks are so active that the number of events, which is the number of

generated packets, are enormous, they are not efficient to handle large amounts of data at

one time. Therefore, we apply segmentation for pruning an SES. Every PES, from the

PES for NetworkTrafficAnalysis_1 to the PES for NetworkTrafficAnalysis_n, is

segmented by time. For instance, if we monitor network behaviors during ten minutes

and we prune by one minute segmentation, the resulting PES are ten XML instance files.

Each of the XML instance files are treated in the modeling and simulation environment.

4.4 Automation

4.4.1 Generating new ontologies

 Target network behavior analyses are defined by customers. We illustrate two

cases: protocols analysis and network throughput measurement. The first analysis,

evaluating the number of packets per protocols, requires two attributes of protocol names

and identification numbers (ID). The second analysis, measuring network throughput,

needs event times and packet sizes. This means that every analysis should have a

different set of information. Keeping unnecessary information decreases computational

power in both time (CPU) and size (memory). For speed and effectiveness, customers’

requirements (pragmatic frames) need to create corresponding SESs which keep right

entities and attributes. Consequently, users’ target analyses must be modeled and

simulated based on the new SES and their XML document instances (PESs). The unified

67

processes, creating new SESs and setting up simulation environments dynamically

according to users’ requests, is our secondary objective in this study.

 Once customers or users request a protocol usage analysis, a new SES is created

automatically as given in Figure 16. The SES, ProtocolAnalyses, has multiple aspect of

ProtocolAnalysis. The entity, ProtocolAnalysis, is composed of two entities, ID and

Protocol. Users’ requirements produce Java class files reflecting SESs. For preparation,

we have a generic network behavior analysis class. New Java class files inherit from the

generic network behavior analysis class. Objects of Java class files are assigned into a

memory space automatically as soon as Java class files are produced. One instance of a

class object file depicts one tuple of the SES for ProtocolAnalyses, a set of required

entities. Multiple instances (tuples) of a class file compose a PES xml instance file for the

practical purpose of modeling and simulation.

Figure 16. Ontology for protocol analyses in SES

 Figure 17 shows an SES for the network throughput evaluation. The SES name is

ThroughputAnalyses. ThroughputAnalyses has multi-aspect of ThroughputAnalysis.

68

ThroughputAnalysis is decomposed by EventTime and PacketSize. EventTime has an

attribute, event_time, and PacketSize has an attribute, packet_size.

Figure 17. Ontology for throughput analyses in SES

4.4.2 Mapping

 Once a new SES is generated to correspond to a customer’s requirements, the next

step is producing new PESs based on the new SES. First, we need to extract correct right

data values from large PESs instances (XML documents) of a source SES. Then, newly

customized PESs are generated with the extracted attribute values from the source PESs.

However, the problem is the case in which structures of two SESs, a source SES and a

target SES, are different. In this case, it is constrained from generating the new PESs by

transforming directly from the source PESs. As a result, we must apply an alternative

operation. Mapping enables the retrieval of required data values from the source PESs

and assigns the correct values to the target PESs.

69

 We design the SES, NetworkTrafficAnalysis, for generic purposes of network

traffic behavior analyses as described in Figure 11. New SESs are generated to

correspond to customers’ requirements. The next step is producing new PESs based on a

customized SES. First, we need to extract accurate data values from large PES instances

(XML documents) of the SES, NetworkTrafficAnalysis. Consequently, new customized

PESs are generated with the extracted attribute values. However, the problem is the case

in which structures of two SESs, a source SES and a target SES, are different. The two

SESs, the NetworkTrafficAnalysis and either the ProtocolAnalyses or the

ThroughputAnalysis, have different structures. So, it is not possible to generate new PESs

by transforming directly from source PESs. Alternatively, we must apply an approach,

mapping operation. Mapping enables the retrieval of required data values from the

NetworkTrafficAnalysis and the assigning of the data values to the other SES. Figure 18

illustrates the mapping process.

Pragmatic
Frame

SES
(Network Traffic Analysis)

SES
(Required Analysis)

PES

Mapping

PES

Ontology

Instance 1
Instance 2

Instance n

<Target Analyses>

</Target Analyses>

targetAnalysis.xml

Figure 18. Mapping process

70

 Outputs of mapping operations are PES xml instance files. Resulting PESs are

composed of multiple instances of customers’ required SES. One tuple includes attribute

data of one packet transmission event in networks. For instance, there are two packet

transmissions during monitoring time and a customer wants a protocol evaluation. Then,

a resulting PES looks like the tree structure in Figure 19. Also the PES could be

expressed by a XML instance file as shown in the right of Figure 19. Tuples have two

attributes and their values. The XML instance file is used as a role of input source data

for modeling and simulation purposes. Simulation models extract one tuple at a time and

evaluate all the retrieved tuples at last for statistical or dynamic results. Processing one

mass of a tuple instance at one time has advantages of speed and effectiveness against

processing every small piece of the attributes.

Figure 19. PES for protocol analysis with two events

4.5 Automated Modeling and Simulation

71

 Two processes, which are creating new ontologies and generating PESs through

mapping operations, facilitate automated modeling and simulation. Figure 20 shows an

overall architecture of these automated modeling and simulation processes. We could

separate this overall process into the following four steps:

1. Capturing network behaviors, and generating PES instance files

2. Creating new ontologies according to users’ requests

3. Mapping from the PESs of captured data to newly generated SES, and resulting

PESs out

4. Modeling and simulation using PESs generated in the third step

Figure 20. Automated modeling and simulation

72

 We need modeling and simulation to evaluate users’ requested network behaviors.

In this study, we build models and run simulation under the DEVSJAVA environment.

DEVS atomic models and a DEVS coupled model are introduced in the next chapter.

73

CHAPTER 5. INTRUSION DETECTION SYSTEM

 In this chapter, we discuss an advanced concept, intrusion detection evaluation.

Widespread use of networked computers has made computer security a serious issue.

Every networked computer, to varying degrees, is vulnerable to malicious computer

attacks that can result in a range of security violations, such as, unauthorized user access

to a system or the disruption of system services. Traditionally, computer security

approaches have focused on preventing such attacks from occurring through the use of

firewalls and security policies. However, for most systems, complete attack prevention is

not realistically attainable due to system complexity, configuration and administration

errors, and abuse by authorized users. For this reason, attack detection has been an

important aspect of recent computer security efforts [45, 46].

 Intrusion Detection Systems are systems designed to detect computer attacks.

They monitor activities of computers and networks for attacks that are inevitable, despite

security precautions. If attacks are discovered, intrusion detection systems can alert

administrators, defend against the attacks, or provide information that may help prevent

future attacks. Intrusion detection systems are not all equal in capabilities or reliability. A

particular system may only detect a specific subset of possible attacks. In addition, it may

have a different level of detection accuracy or a different false alarm rate than other

systems. Results from intrusion detection system evaluations allow users to make

informed decisions on what system to use and are extremely important for guiding

research. Intrusion detection systems have become an essential component of computer

74

security to detect these attacks before they inflict widespread damage. A review of

current approaches to intrusion detection is available in Bishop’s article [47]. Some

approaches detect attacks in real time and can stop an attack in progress. Others provide

after-the-fact information about attacks and can help repair damage, understand the attack

mechanism, and reduce the possibility of future attacks of the same type. More advanced

intrusion detection systems detect never-before-seen attacks, while the more typical

systems detect previously seen, known attacks.

 While advances in network IDS development have led to more stable network

security, fast and effective analysis methods are needed to save maintenance budgets and

recover from problems caused by attacks and anomalous behavior errors. These critical

issues are yet to be addressed due to the lack of appropriate frameworks. Indeed, IDS

researchers have difficulty in testing their algorithms before applying them to real

systems. In IDS testing, the main problems are:

1. Problem 1. Limitation of data storage

a. There are multitudes of events in networks and hosts

b. Each event includes many attributes of packet information

2. Problem 2. Lack of analysis methods

a. Difficulty of generating attacks

b. Difficulty of implementing complete intrusion detection systems

3. Problem 3. Excessive resource consumption

75

a. Existing systems require huge computational resources in time (CPU) and

space (memory).

 A data engineering based modeling and simulation framework is intended to

support testing and evaluation of network IDS. Data engineering, supported by network

ontology modeling enables our approach to be efficient in managing and processing huge

amounts of network traffic data. As an example, the KDD’99 dataset [42] was generated

by MIT’s Lincoln Lab for the purpose of testing network intrusion detection systems. The

dataset includes various attack packet events as well as normal transmissions. From this

dataset, network traffic generators are produced automatically in response to customers’

(IDS developers and testers) requirements. Different customers may need different

attributes for their particular IDSs (pragmatic frames). Including unnecessary data in

packet information consumes computational power and memory. This is the reason why

we employ data engineering based simulation framework for IDS. Our goal is to support

a simulation framework for testing and evaluating network intrusion detection systems

(IDS). Ontology/Data engineering methodology empowers our design to be efficient for

managing and using large size data.

 In this study, we build two IDS agent models, the LAND attack agent and the

POD attack agent, and evaluate the two models. One advantage of SES/NZER is that it

provides a simulation framework for testing IDSs. SES/NZER is available for IDS

researchers to test their algorithms. IDS researchers build only their models

corresponding to their IDS algorithms, and they request necessary attributes to evaluate

76

their models. Other required models for simulations are provided. In addition to this

scalability, SES/NZER should include more pre-defined models which are agents to

detect various intrusions. Intrusions are classified into five kinds: Denial of Service

attacks, User to Root attacks, Remote to Local attacks, Probes attacks, and Data attacks.

If SES/NZER were capable of more functions, SES/NZER could give more convenience

to users as a concrete tool. Intrusions are classified and described in Table 3. Intrusion

detection algorithms should reserve specific policies. Each attack signature (attack

detection policy) needs a different set of information to detect a corresponding attack. If

IDS developers want to examine if their IDS algorithms work well, necessary attribute

values in network packet headers must be provided. According to researchers’ target IDS

algorithms, new SESs, which represent required attributes, have to be generated, and,

subsequently, the new SESs are used for pruning entities and mapping to the generic

network behavior SES, which is described in Figure 11. Table 3 lists many attacks, and

every attack in this table has different attack signatures. For example, detecting Apache2

attack needs to scrutinize in packet headers if http GET requests with the header “User-

Agent: sioux\r\n” are over a certain number. A typical http request contains twenty or

fewer headers in most systems. Therefore, a corresponding SES must hold three entities:

protocol type, source IP address, and packet header information. Similar to this Apache2

attack example, new SESs are generated when researchers ask to analyze the other

intrusions. In addition to these specific IDS cases, general cases must be covered, too,

because new intrusions are being created constantly. To achieve accurate results for both

non-specified general analyses and totally new attacks, we need to expand the generic

77

network behavior SES, which is shown in Figure 11, by including more entities such as

Internet Header Length (IHL), Type of Service (TOS), Time to Live (TTL), header

checksum, and other obtainable attributes from packet headers, into the SES. As a result,

IDS developers may have better opportunities to evaluate precisely their algorithms.

Type Name Description

Denial
of

Service
(DoS)

Apache2 Apache2 is an attack against an apache web server
where a client sends a request with many http headers.

ARPPoison
The goal of ARP Poison attack is to trick hosts on the
same Ethernet by giving wrong MAC address for
known IP address.

Back
Back is an attack against an apache web server in
which attackers submit requests with URLs containing
many frontslashes(/).

CrashIIS
Crash is an attack again an NT IIS web server.
Attackers send malformed GET requests which crash
the web server because GETs are part of IIS.

DoSNuke DoSNuke sends out of band data to port
139(NetBIOS), and crashs NT vitims.

Land
Land is effective against older TCP/IP implementation.
It sends spoofed SYN packet with the same source and
destination IP address.

Mailbomb Mailbomb sends many messages to a server and
overflows the server’s mail queue.

SYN Flood
(Neptune)

TCP/IP implementation has a data structure to store
pending connection, and the data structure is of finite
size. SYN Flood fills the servers and the victims are not
able to new coming connections.

Ping of Death
(POD)

Ping of Death attack affects older operating systems by
sending oversized IP packets (Ping messages).

Process Table

Process Table attack is against network services which
fork or allocate new processes for incoming TCP/IP
connections. So, it is possible to completely fill a target
machine’s process table and makes the machine be
crashed.

78

Selfping Selfping is an attack in which normal users can
remotely reboot systems with a single Ping command.

Smurf
Smurf uses ICMP echo request packets to broadcast
addresses from remote location. Machines that hear
them respond packets. Finally, a victim is crashed.

SSHProcesstable SSHProcesstable lets victims fork so many children
that the victim cannot spawn more processes.

Syslogd Syslogd attacks to remotely kill a syslogd services on
Solaris servers.

TCPreset
TCPreset listens for TCP connections to a victim and
sends a spoofed TCP RESET packet to the victim. The
victim terminates the TCP connection.

Teardrop
Teardrop exploits a flow of old TCP/IP
implementations, which do not properly handle
overlapping IP fragments.

Udpstorm Udpstorm causes network congestions and slow down
packet transmission time.

User
to

Root
(U2R)

Anypw Anypw attack allows an attacker to log in to a system
without a password.

CaseSen

CaseSen exploits the case sensitivity of the NT object
directory. The attacker ftps three attack files to the
victim: soundedt.exe, editwavs.exe, psxss.exe, and
activate Trojan attack file.

Eject
Eject exploits a buffer overflow of the 'eject' binary
distributed with Solaris 2.5. It overwrites internal stack
space of an eject program.

Ffbconfig
Ffbconfig configures the Creator Fast Frame Buffer
(FFB) Graphics Accelerator. It is possible to overwrite
the internal stack space of the ffbconfig attack

Fdformat Fdformat attack formats diskettes and PCMCIA
memory cards.

Loadmodule

Loadmodule attack is used in SunOS 4.1 system to load
two dynamically loadable kernel drivers into the
currently running system. So, unauthorized users can
gain root access on the local machine.

Ntfsdos Ntfsdos attack reboots the system from a floppy disk
containing NTFSDOS.EXE.

Perl
Perl attack exploits a bug in some Perl
implementations, so that anyone with access to an
account on the system can gain root access.

Ps Ps allows an attacker to execute arbitrary code with
root privilege. Any users logged in to the system can

79

gain unauthorized root privileges.

Sechole
Sechole attack uploads test.exe and testfile.dll. The
attacker runs test.exe. Then, the attacker is added to the
Administrators group.

Xterm Xterm attack allows an attacker to execute arbitrary
instructions with root privilege in Redhat 5.0 systems.

Yaga Yaga attack adds the attacker to the Domain Admins
group by hacking the registry.

Remote
to

Local
(R2L)

Dictionary

Dictionary attack tries to gain access to some machine
by making repeated guesses at possible usernames and
passwords with many services; telnet, ftp, pop, rlogin,
and imap.

FrameSpoofer
FrameSpoofer tricks a victim to believe he is viewing a
trusted web site, but in actuality the page's main body is
spoofed with a frame created by the attacker.

Ftp-write
Ftpwrite takes advantage of a common anonymous ftp
misconfiguration. An attacker will be able to add files
and gain local access to the system.

Guest

Because guest accounts are often left with no password
or with an easy to guess password in most systems,
Guest attack is one of the first and simplest
vulnerabilities an attacker will attempt to exploit.

HttpTunnel

HttpTunnel sets up and configures an http client to
periodically query a web server. An attacker is able to
"tunnel".requests for information through the http
protocol.

Imap
Imap attack exploits a buffer overflow in the Imap
server of Redhat Linux 4.2. It allows remote attackers
to execute arbitrary instructions with root privileges.

Named Named attack crash named server by requesting
improper and malicious query on a TCP stream.

Ncftp
Ncftp is an ascii UI ftp program for linux. Ncftp
exploits the ability to get subdirectories recursively and
creates new directories using the system command.

Netbus

Netbus attack installs a trojan program and runs the
Netbus server. Once Netbus is running, it acts as a
backdoor attack. The attacker can access the machine
using the Netbus client.

Netcat

Netcat attack installs a trojan program and runs the
netcat program on a specific port (53). So, the attacker
can access the machine through the netcat port without
a username or password.

80

Phf
Phf attack abuses an improperly using CGI script to
execute commands with the privilege level of the http
server.

PPmacro
PPmacro attack uses a trojan PowerPoint macro to read
secret files. It saves secret files as ppt files, and posts
them on a web.

Sendmail
Sendmail attack sends a carefully crafted email
message to a system, and attackers force sendmail to
execute arbitrary commands with root privilege.

SSHtrojan

SSHtrojan attack tricks the system administrator into
installing a trojan version of the SSH program. This
program allows an attacker to log in via ssh, with the
login "monkey" and no password.

Xlock
Xlock attack gains local access by fooling a legitimate
user who has left their X console unprotected and
obtains their password.

Xsnoop
Xsnoop monitors keystrokes processed by an
unprotected X server to gain information that can be
used for local access.

Probes

Insidesniffer
Insidesniffer attacks a new machine to an inside
ethernet hub, configured with an ip, and begins sniffing
traffic.

Ipsweep Ipsweep attack monitor activities to determine which
hosts are listening on a network

Is_domain

Is_domain attack uses the "nslookup" command in
interactive mode to "list" all machines in a given DNS
domain. Attackers learn what machines connect to the
DNS domain

Mscan Mscan is a probing tool that uses DNS zone transfers
and scans IP addresses to locate machines.

NTinfoscan
NTInfoScan is a NetBIOS based scanner. It scans and
obtains share information: users, services running, and
other information.

Nmap Nmap is a general-purpose tool for performing network
scans.

QueSO
QueSO is a utility used to determine what kind of
machine and operating system exists at a certain IP
adress.

ResetScan ResetScan sends reset packets to a list of IP addresses
in a subnet to determine which machines are active

SAINT
Security Administrator's Integrated Network
Tool(SAINT) gathers information about remote hosts
and networks by examining such network services as

81

NFS, NIS, ftp, and other services.

SATAN SATAN is a previous version of the SAINT scanning
program

Data Secret Secret attack maliciously transfers data which they
have access to a place where it doesn't belong to

Table 3. Intrusion classification [48]

82

CHAPTER 6. Modeling and Simulation for Network Traffic
Analysis

In this chapter, we illustrate how we build models and run simulations to evaluate

customers’ required network activity analyses. There are three major models: Selector,

Extractor and Analyzer. The Selector model contains three functionalities: obtaining

users’ requests of target analysis, creating the new SES in a Java class format, and

generating a new PES in XML format through mapping operations. The Extractor model

reads events (packet transmissions in networks) from XML instance files (PESs) which

are generated from the Selector model’s process. The Extractor model obtains one packet

event’s information at one time. Packet event information includes attributes which are

chosen by users through the Selector model. The Extractor model sends out messages

which are SES tuple instances. The other model, the Analyzer, receives messages from

the Extractor model and processes the messages. Once the Analyzer model receives all

the messages from the Extractor model, the Analyzer model shows statistic results.

6.1 Selector Model

The Selector model is fundamental for automated context awareness. The

functions of the Selector model are obtaining users’ input requests, creating new SES

tuple class object files, generating PES XML instance files, and notifying the users’

target analyses to the other models that are connected with this Selector model. There are

four states: passive, Get_Req, Genr_PES, and out states. In passive state, the Selector

83

model waits for customers to activate it. Once the Selector model is activated, it becomes

Get_Req state. During Get_Req state, several internal processes are performed. The

Selector model invokes a GUI user input system. Customers could choose target analyses

or select individual attributes for specific analyses. According to customers’ requests,

new SES tuple Java class files are created, and the class objects of the new SES tuples are

consequently generated through the compiling process. After these processes are

completed, the Selector model comes to the Genr_PES state, and new PES instance files

are produced through mapping operations which are illustrated in chapter 4.4.2. At out

state, the Selector model notifies users’ selections to the other linking models to be ready.

Figure 21 shows the state diagram of the Selector model.

Figure 21. State diagram for Selector model

 We address several internal processes that should be performed in the Get_Req

state. The Selector model never advances to the Genr_PES state from the Get_Req state

84

until these processes are completed. Figure 21 illustrates the internal processes at

Get_Req state. We could explain these internal processes just like the Finite

Deterministic DEVS (FD-DEVS) [49, 50] performs. FD-DEVS is aimed towards

development of DEVS models using a template-based design. FD-DEVS is a very

convenient tool for building models in both an XML format and DEVSJAVA format.

FD-DEVS generates models automatically according to users’ requests.

Figure 22. Internal processes at a state

6.2 Extractor Model

The Extractor model reads XML instance files which represent the PESs of

ontologies for a customers’ requested target network behavior analysis. Figure 23 shows

the state diagram of the Extractor model. There are five states: passive, ready, extract,

generate, and end. There exist two input ports (“inAnal” and “in”) and one output port

(“out”) which have the purpose of sending/receiving messages. The Extractor model’s

initial state is passive and it comes to the ready state when it receives messages at the

input port inAnal. The Extractor model is now ready to evaluate the analyses which are

85

illustrated in the input messages. When an input, start extracting data, arrives at the input

port in, the Extractor model comes to the extract state. During the extract state, the

Extractor model retrieves information of one tuple in PES XML instance files at one time

using the Document Object Model (DOM) library [51]. The model assigns a set of the

attributes which are extracted from the PES XML files to an SES tuple class object. Next,

the state changes to generate state. The Extractor model sends out messages which are

the SES tuple class instances produced at the extract state. If there exist no more data to

read in PES XML files at extract state, the model’s state changes to end state, and the

model transmits an “end” message. Consequently, the Extractor model finally turns back

to the passive state.

Figure 23. State diagram for Extractor model

86

6.3 Analyzer Model

The Analyzer model evaluates messages received from an input port and shows

the results statistically. Figure 24 shows the state diagram of the Analyzer model. The

initial state is the passive state, and the time advance is set to infinity in this state. If the

Analyzer model receives a message which addresses a target analysis, at the input port

inAnal, the state changes to ready state. When a message arrives at the input port in, the

model comes to the busy state. During the busy state, the Analyzer model receives

messages which describe SES tuple instances. Consequently, the target evaluation is

being processed, and the Analyzer model waits for input messages at the busy state. Once

the Analyzer model receives an “end” message instead of SES tuple instance messages,

the Analyzer model comes to the end state and sends the results in statistical outputs. The

outputs are shown in graphical user interface chart diagrams. For the GUI chart diagrams,

we use the JFreeChart library [52].

Figure 24. State diagram for Analyzer model

87

6.4 Coupled Model for Network Traffic Analysis

 Recall that basic models may be coupled in the DEVS formalism to form a

coupled model. A coupled model is the major class which embodies the hierarchical

model composition constructs of the DEVS formalism. A coupled model is defined by

specifying its component models, called its components, and the coupling relations which

establish the desired communication links.

In this study, the basic models are the Selector model, the Extractor model, and

the Analyzer model. We make a coupled model, NetworkTrafficAnalysis, by linking the

Extractor model and the Analyzer model. The output port of the Extractor model and the

input port of Analyzer model are connected to each other for sending/receiving messages.

The purpose of this coupled model, NetworkTrafficAnalysis, is evaluation. Then, we

make a coupling between the Selector model and the coupled model,

NetworkTrafficAnalysis. The output port (“out”) of the Selector model links to an input

port of the NetworkTrafficAnalysis model. As soon as the NetworkTrafficAnalysis

receives input messages, the NetworkTrafficAnalysis model delivers the input messages

to its component models, the Extractor model and Analyzer model. Messages from the

Selector model enable the Extractor and the Analyzer to be ready to evaluate network

traffic behaviors. For instance, if an output message of the Selector model represents

protocol analysis, the Extractor model and the Analyzer model are set up for analyzing

protocols. Otherwise, if a user grants throughput analysis input to the Selector model,

then the simulation environment is set up for network throughput analysis. The

automated simulation environment is set up by the following steps:

88

1. The Selector model acquires users’ requests.

2. Internal processes of the Selector model produces PES XML instance files

according to users’ requests.

3. The Selector model sends a message (target analysis) out to the Extractor model

and the Analyzer model.

4. The Extractor model and the Analyzer model are ready for the target analysis.

The Extractor model reads the PES XML instance files including network

behavior information such as event times and protocols, and the Extractor model sends a

message out to the Analyzer model. The Analyzer model receives messages from the

Extractor model, and it evaluates the messages. Finally, the Analyzer model concludes

statistical simulation results to easy-to-read graphical user interfaced charts as soon as all

the data is analyzed. Figure 25 shows the DEVS coupled model and its components.

Figure 25. DEVS coupled model and its components

89

6.5 Experimental Results for Network Traffic Analysis

 Recall that we monitor network behaviors in a subnet of the Arizona Center for

Integrative Modeling and Simulation (ACIMS) lab in the department of electrical and

computer engineering, the University of Arizona for this study. We monitor one-day

network behavior from Jan 16 9:00 AM to Jan 17 9:00 AM. The total number of events is

2,045,699. In other words, there is an average of 1420 packet transmissions per second.

Network administrators of large organizations such as companies, governments, and

universities may have large amounts of data than the amounts of data that could be

captured in the ACIMS lab. This enormous data size leads to memory overflows and

degradation of computational powers. Therefore, automated, efficient, and fast ways of

analyzing network behaviors and detecting system problems become more important as

network activity grows.

 The original captured data size in text file format is 288MB. The size of XML

files which is transformed from the captured data by Ethereal is 5.43GB because of

additional tags that represent the SES (behavior) as a tree structure. XML format is easier

to read and understand than text format, but 5.43GB of XML files is about twenty times

over the size of the 288MB text files. However, we prune the 5.43GB sized XML files

according to the users’ target analysis. In this study, we test two cases: a protocols usage

analysis and a network throughput analysis. For the first case study of protocol analysis,

we gain 323MB XML files which have the two attributes of a packet ID and a protocol

name. For the other case study of throughput analysis, we obtain 385MB XML files

having an event time and packet size. Either 323MB or 385MB is still larger than the

90

original text file size of 288MB. However, the XML files keep only necessary data for

the analyses. Also, the tags in the XML files enable easy and fast access to attribute

values.

 Figure 26 represents the DEVSJAVA simulation environment. We design three

major atomic models: the Selector, the Extractor, and the Analyzer. The coupled model,

NetworkTrafficAnalysis, includes the Extractor and the Analyzer models. The output port

of the Selector model and the input port of the coupled model, NetworkTrafficAnalysis,

are connected for message passing. The coupled model, NetworkTrafficAnalysis,

distributes its input messages to its components, the Extractor and the Analyzer. Also, in

the coupled model, the Extractor and the Analyzer models are connected each other so

that the simulation runs extracting data from PES XML instance files and evaluating the

data. For the protocols/services analysis purpose, the data elements extracted from the

PES XML files are packet IDs and protocols. For the other purpose of network

throughput analysis, event times and packet sizes are retrieved from the database XML

files. The others elements in XML files, such as source IP address, source port number,

destination IP address, and destination port number, are not considered to be extracted as

a result of fast and effective data processing.

91

Figure 26. DEVSJAVA simulation

 The statistical results are shown in GUI reporting windows in forms of both the

charts analysis and the text analysis method. Figure 27 shows the results of the protocol

analyses. When a simulation is done, a GUI window is invoked to represent statistical

results in text. Text results illustrate protocols and the number of events per protocols.

There are 71 kinds of protocols in monitored network activities. The most visible

protocol is Address Resolution Protocol (ARP) with 1,742,107 events. This is about 85

percent of the total packet transmissions. ARP is a protocol for mapping an Internet

Protocol address (IP address) to a physical machine address that is recognized in the local

network. As well as text results, two kinds of charts are shown as given in Figure 27. Bar

92

charts can easily illustrate the number of events per protocols. Pie charts show intuitive

comparisons between protocols.

Figure 27. Simulation result for protocol analysis

 We also evaluate network throughput. To analyze network throughput (bytes per

minutes), we require two attributes: event time and packet size. Figure 28 helps to

understand network throughput variations. The results show that there are no abrupt

changes during one day. The network keeps between 80,000 bytes to 180,000 bytes per

minute. So, a network manager may conclude that the maximum bandwidth of 200,000

bytes per minutes is big enough to maintain this network.

93

Figure 28. Simulation result for throughput analysis

 The advantages of SES/NZER are easy and fast information capturing of large

amounts of data, a fast response time, and a user centric schema. The fact that SES/NZER

is developed based on ontology/data engineering methodology represented by SES theory

facilitates users reading, understanding, and manipulating the network data easily. The

user-friendly graphical chart gives customers, who are network administrators, general

ideas with respect to their requests such as protocols analysis and network throughput

evaluation. In this study, we have illustrated the strength of using the SES to represent a

large data set consisting of elementary units through the concept of multiAspect. As we

have shown, the SES concept of pruning employs aspects, multiAspects and

94

specializations to allow very flexible specification of subsets of a given data set, and

aggregation operations on them. Aggregation is a form of abstraction commonly

employed in modeling in disciplines ranging from physics to economics [17]. The

aggregation restructuring concepts give a better idea of how to select subsets of event

data and how to aggregate the subsets together to integrate various ubiquitous systems in

real-world applications.

95

CHAPTER 7. DISCUSSIONS

7.1 Comparisons of SES/NZER with Ethereal

 Ethereal is a tool for network protocol analysis, software and protocol

development, and educational purposes. Because it is an open source project, many

network professionals around the world use Ethereal, and many researchers support it by

adding enhancements. We use Ethereal to capture network behaviors in this study. The

captured data is evaluated by SES/NZER. Table 4 illustrates comparisons of analyzing

manners between Ethereal and SES/NZER.

 Ethereal SES/NZER

Functionality

Protocol Analysis
Throughput Analysis
Service Analysis
And more

Protocol Analysis
Throughput Analysis
User-selected and combined
Analysis

Analyzing
Methods

Graphical charts
Text Analyses

Graphical charts
Text Analyses

Complexity
Complicated

• Hard to learn
• Hard to evaluate

Simple
• Easy to learn
• Easy to understand

Locality
Local machine only

• Local machine : Monitor,
capture, and analysis

Potentially distributed
Environment

• Local machine: monitor,
capture

• Remote machine: analysis

96

Data Size Big complete data for every
analysis

Specified small data for each
analysis

Modularity One process Several individual processes

Scalability Complete system
Not good for flexibility

Possible to add new analyses
Interoperability with XML-related
systems

Table 4. Comparisons between Ethereal and SES/NZER

 The first comparison is functionality. Ethereal has been supported by many

network professionals, so it has many functions, such as protocol analysis, throughput

analysis, and other statistical analyses. SES/NZER focuses on customers’ specific

requests. In this study, we study two cases: protocol analysis and throughput analysis.

But, SES/NZER is widely open to be developed for further requests. The second aspect to

comparatively analyze is the methods. Both Ethereal and SES/NZER have two kinds of

resulting methods, graphical charts and textual analyses. Ethereal is like a two-sided coin.

Ethereal is very powerful but also very complicated. Ethereal requires an initial learning

curve. SES/NZER is simple and customized for target analyses, so it is easy to learn and

understand. Ethereal is one complete tool, and it is limited to running on local machines.

On the other hand, SES/NZER is a combination of individual processes such as

monitoring and capturing processes and analyzing process. As a result, it has the potential

to extend to a distributed environment. Monitoring and capturing network activities could

be performed in local hosts, and analyzing network behaviors could be evaluated in

remote hosts. SES/NZER is intentionally designed for distributed simulations. The DEVS

modeling shown in Figure 25 has two components: the Selector model and the

97

NetworkTrafficAnalysis model. We could distribute the models into multi-servers. A

distributed simulation could be performed by message-passing methods among servers. A

web service middleware, DEVS Service Oriented Architecture (DEVS/SOA) [53, 54],

facilitates in distributing workloads and scaling to handle multiple customers. The ways

of accessing data are different. Ethereal uses complete data for every analysis. Accessing

a big data set requires memory overhead and inefficient computational power.

SES/NZER needs small sized data for each analysis. It takes time initially to generate

user specific pruned data, but using compact data is a fast and effective approach. This is

the most important advantage of a SES based system. Figure 29 shows these different

data accessing methods.

Figure 29. Data access methods

 We measure system memory (RAM) usages and execution times of both Ethereal

and SES/NZER. We use a half-day, one day, and two days of data to evaluate system

performance variations. Table 5 shows measurements of memory uses and execution

times for network protocol analyses. Table 6 illustrates experimental results for

throughput evaluations.

98

Ethereal SES/NZER

Half day One day Two days Half day One day Two days
Loading
time

1 min
18 sec

2 min
28 sec N/A 5 min

28 sec
10 min
44 sec

20min
59sec

Number
of Events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400

Memory
Usage 706 MB 1323 MB N/A 98 MB 98 MB 98MB

Analyzing
time 25 sec 50 sec N/A 5 min

29 sec
10 min
58 sec

22min
59sec

Table 5. Memory usages and execution times for protocol analysis

Ethereal SES/NZER

Half day One day Two days Half day One day Two days
Loading
time

1 min
18 sec

2 min
28 sec N/A 5 min

32 sec
11 min
27 sec

22min
14min

Number
of Events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400

Memory
Usage 706 MB 1323 MB N/A 104 MB 104 MB 104MB

Analyzing
time 19 sec 55 sec N/A 5 min

17 sec
9 min
56 sec

22min
13min

Table 6. Memory usages and execution times for throughput analysis

 The loading time of Ethereal refers to the time of invoking the captured data file.

The loading time of SES/NZER is a time of generating PES XML document files with

regards to users’ requests. SES/NZER takes a longer time for loading data to evaluate

than Ethereal. Also, Ethereal is faster to analyze data than SES/NZER. We notice that

both loading time and analyzing time increase linearly corresponding to total numbers of

99

events during capturing period. Figure 30 illustrates comparisons between data flow of

Ethereal and data flow of SES/NZER.

Figure 30. Data flow comparisons

 Table 5 and Table 6 indicate that Ethereal is faster than SES/NZER. However,

Ethereal is a complete tool, so it should be run on a single machine only. On the other

hand, SES/NZER is scalable to distributed environments. Web-based distributed

SES/NZER may reduce both loading data time and analyzing time by deploying

workloads. Ideally, run time decreases as an inverse ratio of number of servers.

Ultimately, SES/NZER can be faster than Ethereal under distributed environments. The

important things we must see are the values of memory use measurements. For half-day

100

data, Ethereal requires 706 MB of a system memory (RAM). As data size increases, the

memory requirement of Ethereal increases linearly. However, SES/NZER needs 98MB of

a system memory for half-day data, and the memory requirement of SES/NZER never

increases in correspondence to source data sizes. SES/NZER fragments source data into

multiple numbers of small size datasets. SES/NZER allocates one segmented dataset to

system memory. Once evaluating the dataset is completed, SES/NZER frees the dataset

from system memory, and, consequently, it loads another dataset into system memory.

Therefore, SES/NZER holds only one small-sized dataset during simulation time frame,

and the memory requirement never increases. SES/NZER keeps the system stable. For

two-days captured data, Ethereal cannot load data and consequently cannot analyze the

network activities. Ethereal is shut down due to memory overflow problems. On the other

hand, SES/NZER can evaluate network behaviors although it takes time.

7.2 Problem Statements

 The fact that SES/NZER is more efficient in system memory requirement than

Ethereal facilitates SES/NZER analyzing large amount of data. However, SES/NZER is

weak in evaluation speed. One solution to achieve feasible speed-up and efficiency is

parallel processing. This is the reason why developing a web-based distributed

SES/NZER is a promising research area of network analysis fields. Parallel processing

consists of dividing data into two or more smaller datasets, assigning datasets into

multiple processors, and processing multiple datasets in multiple processors

101

simultaneously. Divide and conquer (D&C) is an important algorithm design paradigm.

Divide and conquer was first introduced by Karatsuba [55] as an algorithm for

multiplying two n-digit numbers with an algorithmic complexity O(n) on 2lo g 3n . But, the

divide and conquer scheme is widely used in parallel processing designs for reducing

complexity of processors. Divide and conquer solves a problem easily by dividing a

problem into two or more smaller problems. Each of these smaller problems is solved,

and the solutions for smaller problems are combined to produce a solution for the original

problem. Figure 31 shows a divide and conquer scheme for SES/NZER.

Figure 31. Divide and conquer SES/NZER

102

 The first step is the dividing process. Large amount of source data are segmented

by n numbers of small datasets. Fragmented individual datasets are assigned to n numbers

of processors. Each processor analyzes its corresponding dataset. The workload of each

processor may be reduced as an inverse ratio of the number of processors. Subsequently,

all the analyzed results of processors are integrated together at last. This integrating of all

the results and concluding with a final output is the conquering process. This divide and

conquer approach requires not only segmentation overheads for dividing data but also

communication overheads for conquering all the results. Even though there are overhead

disadvantages, this method includes two strengths which overcome the disadvantages.

One advantage is that this approach enables applications, which need to process large

amount of data and require high computational power in time (CPU) and in space

(memory), to be run on inexpensive personal computers rather than on high cost server

machines. The other advantage is quick evaluation time. Multiple processors execute

their work simultaneously. Therefore, parallel processing methods reduce processing

time compared to sequential processing methods. In addition, the divide and conquer

approach may be applied to distributed environments. Processors are deployed into

multiple machines which are connected by loosely coupled links. Loosely coupled

systems are harder to implement than tightly coupled systems because systems should be

synchronized for validation issues. However, once it is implemented, each processor is

independent to other processors, and each processor’s activities never affect other

processors’ behaviors. In this study, we use web service schemes over Service Oriented

103

Architecture (SOA) to construct distrusted environments. This web-based distributed

simulation increases independency and decreases complexity in each host. Table 7

illustrates comparisons between SES/NZER and a Web-based distributed SES/NZER.

 SES/NZER Distributed SES/NZER

Locality local host Distributed hosts

Parallelism None high

Process time slow fastest

Overheads No additional overhead Data segment overheads
Communication overheads

Table 7. SES/NZER Vs. Distributed SES/NZER

104

CHAPTER 8. WEB-BASED DISTRIBUTED SES/NZER

8.1 Design Issues

 In this study, we show two kinds of network behavior analyses: generic network

behavior analyses and specialized analyses. For generic purpose network behavior

evaluation, a protocol analysis and throughput analysis are examined. And, intrusion

detection systems are evaluated for specialized cases. Figure 32 represents the

hierarchical system structure.

Analysis_spec

DistributedSES/NZER

SimForIDSSimForNTA

NetworkTrafficEventSets

SimForIDS_dec

Collector

Experimental Frame IDS

NetworkTrafficEventSets_spec

BaseModel LumpedModel

LumpedModel_spec

LAND POD

NetworkTrafficEventSets

SimForNTA_dec

Collector

Experimental Frame NTA

NetworkTrafficEventSets_spec

BaseModel LumpedModel

LumpedModel_spec

Protocol Throughput

Figure 32. Distributed SES/NZER system hierarchy

105

 A Web-based distributed SES/NZER fulfills either analyzing generic network

traffic activities (protocol analysis or throughput analysis) or evaluating an intrusion

detection system (LAND or POD). A complexity constraint is that modeling is severely

limited [17]. The complexity of a model can be measured by the resources required by a

particular simulator to correctly interpret it. That is, complexity is measured relative to a

particular simulator, or class of simulators. Computers continue to become faster and

increase in memory, but they are still not good enough to make our models into reality.

Successful modeling can be seen as valid simplification. Simplifying or reducing the

complexity enables models to be executed in our limited resource (time and size)

simulation environments. However, simplified models must be valid within some

experimental frame of interest. An experimental frame represents a specification of the

conditions under which the system is observed or experimented with. As such, an

experimental frame is the operational formulation of the objectives that motivate a

modeling and simulation project. Figure 33 shows a pair of models involved. They are

base and lumped models in an experimental frame.

Figure 33. Base/lumped model equivalence in experimental frame

106

 The base model requires more resources in time and size for interpretation than

the lumped model. Moreover, the base model is more valid within a larger set of

experimental frames (with respect to a real system) than the lumped model. As such, the

lumped model might be just as valid as the base model within a particular frame of

interest (a particular pragmatic frame). The concept of morphism, a relation that places

elements of system descriptions into correspondences, provides criteria for judging the

equivalence of base and lumped models with respect to an experimental frame. Base

models include many elements, but all the elements in a base model are not always

required in pragmatic frames. Mapping a methodology from a base model to lumped

models reduces the number of elements included so that it increases computational power

in time (CPU) and size (memory).

8.1.1 Pragmatic Frames (Lumped Models)

 We design the SES for illustrating the generic network behaviors in Figure 11.

This SES represents based models of both simulation for network traffic analysis and

simulation for intrusion detection systems (IDS). For the use of generic network traffic

analysis simulation, we monitor network activities and capture the fundamental packet

information in ACIMS lab using the Ethereal. Unlike generic network behavior analyses,

source data for IDS simulation must include attack packet transmissions as well as

normal packet transmissions. But, generating attack packets is strictly prohibited even if

it is for academic research purposes. Therefore, for the purpose of intrusion detection

107

system simulation, we use a KDD’99 dataset [42]. The MIT Lincoln lab supported by the

DARPA project [56] simulated and generated a network traffic dataset, including attacks,

in 1998. This dataset has been widely used in the area of computer network intrusion

detection system research and is now regarded as the standard. Also, it is well-known by

the name, KDD’99 dataset, because Knowledge Discovery and Data Mining [57]

processed the network traffic data generated by MIT Lincoln lab and opened a contest.

Many network researchers and artificial intelligent researchers use this dataset for their

intrusion detection system. The dataset includes two weeks (five days/week) simulation

data. Every day data set is huge, e.g., the first week’s Monday data has 60,000 events.

According to the SES in Figure 11, the KDD’99 dataset is re-structured. Figure 34

represent KDD’99 dataset.

Figure 34. KDD’99 dataset

 Target network behavior analyses are defined by customers. Every analysis

should have a different set of information with regards to users’ requests. These different

108

requests are pragmatic frames. Keeping unnecessary information decreases

computational power in both time (CPU) and size (memory). For speed and effectiveness,

customers’ requirements need to create corresponding SESs which keep accurate entities

and attributes. Consequently, users’ target analyses must be modeled and simulated based

on the new SES and their XML document instances (PESs). Newly created SESs

according to customers’ requirements (pragmatic frames) represent lumped models in a

modeling point of view. The unified processes, creating new SESs and setting up

simulation environments dynamically by assigning a lumped model instead of a base

model that is shown in Figure 33, increase efficiency and automated factors. This study

examines four pragmatic frames: protocol analysis, throughput analysis, LAND attack

detection, and POD attack detection. Figure 35 illustrates an ontology representing

network behaviors and pragmatic frames. It shows that every frame requires different sets

of attributes.

Figure 35. Pragmatic frames for network traffic analysis

109

 We illustrate two cases of generic network behavior analyses: protocols analysis

and network throughput measurement. The first analysis, evaluating the number of

packets per protocols, requires two attributes of protocol names and identification

numbers (ID). The second analysis, measuring network throughput, needs event times

and packet sizes. The two SESs, ProtocolAnalyses and ThroughputAnalyses, are

described in Figure 16 and Figure 17. The third and the fourth pragmatic frames are

regarding evaluating intrusion detection systems. We examine two intrusion detecting

agents for a LAND attack and a Ping of Death (POD) attack. The LAND attack is a

Denial of Service (DoS) attack that consists of sending a special poison spoofed packet to

a computer, causing it to lock up. The LAND attack occurs when an attacker sends a

spoofed SYN packet in which the source address is the same as the destination address

[48]. This is a rather old attack, and current patches should stop them for most systems.

Symptoms of the LAND attack are different by operating systems. The LAND attack

slows down operating speed, crashes and shuts down systems, or denies users access to

services on machines. The LAND attack is recognizable because IP packets with

identical source IP address and destination IP address must never exist on a properly

working network. Therefore, we need two attributes, a source IP address and a

destination IP address, to detect LAND attacks. In addition to the source IP address and

destination IP address, an attribute, event time, is needed for diagnosis purposes. Figure

36 illustrates an SES for the LAND attack detection.

110

Figure 36. SES for the LAND attack detection

 The Ping of Death (POD) attack is a type of Denial of Service (DoS) attack in

which the attacker sends a ping request that is larger than 65,536 bytes, which is the

maximum size that IP allows. While a ping larger than 65,536 bytes is too large to fit in

one packet that can be transmitted, TCP/IP allows a packet to be fragmented, essentially

splitting the packet into smaller segments that are eventually reassembled. The Ping of

Death attack was relatively easy to carry out and very dangerous due to its high

probability of success. Operating system vendors had made patches available to avoid the

Ping of Death. Still, many Web sites continue to block Internet Control Message Protocol

(ICMP) ping messages at their firewalls to avoid similar denial of service attacks. An

attempted Ping of Death can be identified by noting the size of all ICMP packets and

flagging those that are larger than 64000 bytes [48]. However, KDD’99 dataset does not

have the attribute of packet size. ICMP does not have a port abstraction. ICMP (ping,

trace) is a layer 3 protocol suite within the TCP/IP suite, and ICMP does not test any

layer 4 or above functions, therefore, it has no TCP/UDP layer 4 port number. So, we

may detect Ping of Death attacks with three attributes: a source host port number, a

111

destination host port number, and a protocol. Figure 37 presents an SES for the POD

attack detection.

Figure 37. SES for the Ping of Death attack detection

 We discuss mapping operations in Chapter 4.4.2. Mappings could be two kinds of

forms: transformations and restructurings. Transformations are mappings from one

representation to another and referred as general mappings. Restructurings are mappings

whose domain and range are the same. That means that a restructuring changes the

structure of an object without changing the form in which it is expressed. A concept of

equivalence must support such restructurings, i.e., the before and after structures must be

equivalent with respect to some aspect of interest to the modeler. Such restructurings

apply to reducing the size of a tree which enables optimization for finding the best

representation of some given information within a representation domain. This general

restructuring process eliminates labels, including those of aspect, multi-aspect, and

specialization. Eliminating such labels in a Schema for an SES reduces the amount of

overhead in carrying payload information. The resulting SES is equivalent to the original

in the sense that the same family of pruned entity structures is defined. However, this

112

mapping has a limitation. That is “not reversible” because such restructuring removes

information that may be needed in downstream processing of the transmitted data.

 We design the SES, NetworkTrafficAnalysis, for generic purposes of network

traffic behavior analyses. New SESs are generated to correspond to customers’

requirements. But, the problem is that the structures of the two SESs, the

NetworkTrafficAnalysis and one of the ProtocolAnalyses, the ThroughputAnalysis, the

LANDs, or the PODs, have different structures. Performing mapping operations results in

PES outputs, and the outputs are instances in XML Document format. Then, the PES

XML instance files are used as a role of input source data for modeling and simulation

purposes.

8.2 DEVS Service Oriented Architecture (DEVS/SOA)

 DEVS simulation on Service Oriented Architecture (SOA) [50, 53] consists of

three layers such as model distribution, simulation, and simulation result return. To

support these layers, two services, named MainSerivce and Simulation, are implemented.

MainService has four services, Upload DEVS model, Compile DEVS model, Simulate

DEVS model, and Get result of simulation. Simulation service is for covering DEVS

simulation protocols. It has nine services, Initialize simulator, Run transition in

simulator, Run lambda function in simulator, Inject message to simulator, Get time of

next event from simulator, Get time advance from simulator, Get console log from all the

simulators, Finalize simulation service, and Get result of simulation.

113

Figure 38. Overall architecture of DEVS simulation on SOA

 Figure 38 represents the overall sketch of DEVS simulation on SOA. As seen in

Figure 38, this system has two components, such as a client and some servers. Each

server has two services (MainService and Simualtion) and the DEVS Modeling and

Simulation (M&S) environment. The beginning of DEVS simulation on SOA is to upload

DEVS models to each server. A client assigns each model to an available server that has

two services for DEVS simulation. A main server assigned to a top DEVS model

becomes a coordinator during the DEVS simulation. When the main server receives a

request of an upload service from the client, the main server requests an upload service to

the others. If the upload service is completed, the client requests a compile service to be

performed in the main server. The main server does the same procedure as the upload

114

service. After finishing the compile request, the client sends a simulation request to the

main server. These procedures are displayed by solid-line arrows among the components.

This is a top layer of the DEVS simulation on SOA.

 The main server generates and stores proxies of simulation services to which

DEVS models are assigned as soon as the simulation request is received. Each simulation

service holds an atomic model or atomic models on the storage. In the case of a coupled

model, there is a mechanism of coupled model abstraction [50] to an atomic model with

DEVS state machine because there is no support of the coupled simulation on the

simulation service. Each simulation service sends messages to the main server

encapsulating a coordinator according to the DEVS simulation protocols. This is a middle

layer of the DEVS simulation on SOA, which is displayed by dotted-line arrows among

the servers.

 After the completion of the simulation, the client sends a request of the simulation

results to the main server. In the DEVS simulation in this study, a Collector DEVS

atomic model collects simulation results sent from each DEVS model on each server. The

main server sends the request of simulation results to the server possessing the collector

DEVS model, receives the results, and sends the results to the client. This is a third layer

of the DEVS simulation on SOA, which is displayed by dashed-line arrows between the

client and the main server.

 In this version of DEVS simulation on SOA, the client has equipment for

displaying simulation results on graphic charts. The results are stored into a file named

result.txt processed to data format which charts use as an input.

115

Figure 39. Example of XML object message handler

 Models upload is done through serialization and SOA technologies, and message

passing is done through XML style message and SOA technologies. Figure 39 is an

example of a DEVS message to a XML-style message conversion. A DEVS message is a

language specific object class, and Web Service does not have an apparatus to send an

arbitrary object message to another service because Web Service supports only fixed

structured messages defined in WSDL. A DEVS message is too dynamic to define it as

one type of classes in the WSDL. So, XML Object message handler is employed to

transform an object DEVS message to a XML-style message. As seen in Figure 39, the

structure of DEVS message consists of at least more than one contents containing a port

and Entity object. Entity objects can be any type of objects inherited by Entity. This

DEVS message is converted to a XML-style message by the XML Object message

handler.

 The DEVS simulation on SOA is a centralized simulation done through a central

coordinator which is located at the main server. Simulation begins with the coordinator’s

116

requesting nextTN to all simulation services. After receiving all responses from all

simulation services, the coordinator sends minTN to all simulation services. If any

simulation service matches with minTN, the simulation service produces an output

message propagated to the coordinator and sent to a simulation service or simulation

services according to the coupling information. The output message is a XML-style

message produced by XML Object message handler. After the message sending is

finished, simulation time is updated, and the coordinator requests a delta function to all

simulation services. If there are some simulation services receiving a message from the

external models, they execute the external transition function. After that, the coordinator

repeats above procedures until simulation termination condition meets.

Figure 40. A network behavior analysis using DEVS/SOA

117

 Figure 40 illustrates a DEVS simulation on SOA which is applied to a network

behavior analysis example which is the case that a client wants to analyze protocol uses

and evaluate network throughput. There is a data extraction web service server inside a

subnet. The server for a data extraction web service captures network behaviors and

stores the network activities in a database. There are three servers: a server 1 for acting as

a coordinator, a server 2 for analyzing protocol uses, and a server 3 for measuring

network throughput, out of the subnet. The four servers (one in the subnet and three out

of the subnet) are linked under the DEVS/SOA environment. The two servers (the

protocol analysis server and the throughput analysis server) receive customized data for

specific analysis from the data extraction server. The customized data are relatively size

compared to the original data which is stored in the data extraction server. Deploying

workloads into multiple machines (assigning protocol analysis to the server 2 and

throughput analysis to the server 3) reduces the computational burden of servers. Small

size customized data decreases communication overheads among servers. And a small

amount of data is effective in time (CPU) and space (memory). These two factors,

distributed workloads and small size customized data, enable clients to obtain simulation

results fast and efficiently.

8.2.1 Real Time DEVS Simulation on SOA

 Other approach of DEVS Simulation on SOA is real time simulation in which

next time for occurring internal transition passes by real time. Unlike virtual time

simulation, time synchronizes simulation protocol to simulate DEVS models on SOA,

118

and real time DEVS simulation has minimum network activity among simulators because

the simulators only invoke web services at the time of the propagation of out messages.

Also it is decentralized simulation because there is no coordinator to supervise all

RTSimulators. Each RTSsimulator follows a procedure to simulate their DEVS model

without intervention for synchronization.

Client
MainService

Simulation

Server

MainService

Simulation

Server2

MainService

Simulation

Server1

MainService

Simulation

Server3

DEVS Model1

RTSimulator

DEVS Model2

RTSimulator

DEVS Model3

RTSimulator

Figure 41. Overall architecture of real time DEVS simulation system on SOA

 Figure 41 represents overall structure of real time DEVS simulation system on

SOA. As seen in the figure 41, each server participating in simulation has two web

services similar to centralized simulation. But some functions in the simulation service

and classes such as RTCoordinator and RTSimulator, are added to support real time

simulation. RTCoordinator used in the MainService and RTSimulator used in the

Simualtion are made of multi-threads. RTCoordinator generates proxies for Simulation

119

services with DEVS models and coupling information which contains port names and

addresses in which DEVS models are placed, and runs the RTSimulators in the

Simulation services. Real time simulation begins with a client program like centralized

simulation on SOA. Solid-lines on figure 41 represent uploading files, compiling the files

on each server, and executing RTSimulators on Simulation services. Dashed-lines show

out message passing routes.

 Figure 42 depicts real time DEVS simulation protocol. The protocol starts with

the initialization of the DEVS models in the RTSimulators. Each RTSimulator waits for

passing tN after which internal transition occurs. If one of the RTSimulators has wall-

clock time equal to tN, the RTSimulator executes internal transition function consisting of

lamda function which produces an out message, propagation function which sends the

out message to other RTSimulators according to coupling information, and delta function

which handles internal and external events. RTSimulator2 in the figure 42 shows “send

out message” after internal transition and wait again with tN regenerated by delta

function. Meanwhile, RTSimulator1 receives a message from the RTSimulator2, executes

external transition function having delta function, and recalculates tN to wait. The

interaction between RTSimulator2 and RTSimulator1 does not affect RTSimulator3. Only

way to influence to others send a message to others.

120

Figure 42. Real time simulation protocol

 Though real time DEVS simulation has minimum network traffic, in case of

network delay and tiny value of tN, the simulation might fail to get correct results

because of distorted protocol. To filter the problem, it is important to know threshold

value of tN to make real time DEVS simulation done or speed up.

8.3 Distributed SES/NZER in DEVS/SOA

8.3.1 Distributed Simulation

 A distributed SES/NZER is different to classic single machine DEVS simulation.

In this chapter, we illustrate how DEVS models, which are deployed in multiple

machines in networks, can be simulated. Distributed DEVS models have components

121

(DEVS atomic models and DEVS coupled models) of a DEVS coupled model that are

distributed on several host computers. Figure 43 shows distributed DEVS simulation.

Figure 43. Distributed DEVS simulation

 For distributed DEVS simulation, there must be a controller, a coordServer,

which manages a whole simulation cycle and synchronizes all the distributed simulators.

The coordServer is responsible for passing messages among distributed simulators as

well as for advancing DEVS models which are dispersed in networks. The coordServer

could be in a host which also holds a distributed simulator, or the coordServer could stay

on an independent machine. Distributed machines, which include DEVS atomic models

or DEVS coupled models, need simulators, clientSimulators for atomic models or

clientHieSimulator for coupled models, on the machines. The clientSimulator is

responsible for simulating a local DEVS atomic model. The clientHieSimulator is

responsible for simulating a local DEVS coupled model, and there is a coupledSimualtor

122

to take care of a local DEVS atomic model. The coordServer creates simulatorProxys

that facilitate the coordServer communicating with corresponding clientSimulators or

clientHieSimulators. In addition, all the distributed components, the coordServer, the

simulatorProxys, the clientSimulators, and the clientHieSimulators, has its own thread.

Figure 44 shows an example of DEVS modeling for a distributed simulation for network

traffic analysis (SimForNTA).

Figure 44. DEVS modeling: Distributed SimForNTA

 The top level of coupled model is a SimForNTA. The SimForNTA is composed of

two coupled models, a NTA 1 and a NTA 2, and three atomic models, a Distribute 1, a

Distributor 2, and a Collector. Two sub coupled models (the NTA 1 and the NTA 2)

include their own components (a Extractor and a Analyzer). To achieve fast analysis

time, we apply the divide and conquer approach. A whole job is divided by two, and each

divided work is assigned to different processors. The Distributor 1 and the NTA 1

evaluate one half of the whole work, and, at the same time, the Distributor 2 and the NTA

2 examine the other half of the whole job. Subsequently, the Collector model gathers

analyzed results from the two processes. We assign all the models to different computers

123

which are connected in networks. Figure 45 illustrates a hierarchically structured

distributed DEVS simulator and corresponding DEVS models.

Figure 45. Distributed DEVS simulators and models for SimForNTA

 In this example, the top level coupled model, the SimForNTA, two sub coupled

models, the NTA 1 and the NTA 2, and three atomic models, the Distributor 1, the

Distributor 2, and the Collector, are distributed into six computers. The coordServer for

SimForNTA creates five simulatorProxys. Each simulatorProxy helps the coordServer to

communicate with its corresponding clientSimulator or clientHisSimulator. In distributed

DEVS simulation, the top level coupling information is kept by the coordServer. The

coupling information is downloaded to each simulatorProxy, and each clientSimulator or

clientHieSimulator does not know the coupling information. The coordinator controls a

124

whole simulation cycle and helps to pass messages among clientSimulators or

clientHieSimulators. If the Distributor 1 wants to send a message to the NTA 1, the

clientSimulator 1 sends the message to simulatorProxy 1 over networks. Consequently,

the coordServer decides the target host according to the top level coupling information

and puts the message to simulatorProxy 2. Finally, the message is delivered to the NTA 1

in the clientHisSimulator 1. Sending messages among DEVS models in a distributed

computer requires network communication overheads. However, each clientHieSimulator

keeps its local coupling information. As a result, messages are transmitted directly among

coupledSimulators not through simulatorProxys. For example, if the Extractor 1 needs to

send a message to the Analyzer 1, the coupledSimulator 1 puts the message directly to the

coupledSimulator 2. Therefore, there are no network communication overheads in this

case.

 Although a coordServer, simulatorProxys, clientSimulators, and

clientHieSimulator have their own thread, the slowest thread determines the overall

simulation speed in the divide and conquer mechanism because the divide and conquer is

a pipeline with divider, processors (in parallel) and compiler so the slowest one of these

stages determines the overall speed. Therefore, speeding up all the threads is important.

And, reducing communication overhead over networks is also a critical issue in

distributed simulation environments.

125

8.3.2 DEVS Modeling and Simulation

 Although a distributed SES/NZER follows decentralized distributed DEVS

simulation scheme, couplings among components (DEVS atomic models and DEVS

coupled models) keep the function as single machine DEVS. For example, a coupled

model, coupledModel, is composed of three atomic models: atomicModel 1, atomicModel

2, and atomicModel 3, we could assign the atomicModel 1 to a host 1, the atomicModel 2

to a host 2, the atomicModel 3 to a host 3, and the coupledModel to a host 4 or one of the

hosts which hold the atomic models. Therefore, the coupledModel controls

synchronization among the atomic models. There must be message transmissions to

control a whole DEVS simulation cycle.

 The most considerable factor in distributed simulation over the Web is how to

reduce communication overheads. A distributed SES/NZER is performed under loosely

coupled environments over the Web. And, Discrete Event Specification (DEVS) is used

for simulation engine. To advance simulation cycle, basic DEVS simulation protocol

requires five message transmissions, nextTN, outTN, getOut, sendOut, and applyDelt,

among a coordinator and simulators. The DEVS protocol is described below and Figure

46:

1. Coordinator sends a nextTN message to request next event time (tN) from each of

the simulators.

126

2. All the simulators reply with their tNs in an outTN message back to the

coordinator

3. Coordinator sends to each simulator a getOut message containing the global tN

(the minimum of the tNs)

4. Each simulator checks if it is imminent, which means its tN equals to global tN,

and if so, returns an output of its model in a message to the coordinator in a

sendOut message.

5. Coordinator uses the coupling specification to distribute the outputs as

accumulated messages back to the simulators in an applyDelt message to the

simulators. For those simulators not receiving any input, the messages sent are

empty.

1. nextTN

3. getOut

5. applyDelt

2. outTN

4. sendOut

Figure 46. Basic DEVS simulation protocol

 The basic DEVS simulation protocol is illustrated in Figure 46. If a coupled

model and all the atomic models are assigned in different machines which are connected

127

in networks, DEVS protocol overheads may exceed the advantage of distributed

simulation deploying workloads. Diminishing the number of DEVS protocol messages

among computers results in decreasing communication overheads. Therefore, we may

expect overall speed up. In an effort to reduce DEVS protocol overheads, we apply two

approaches: closure under coupling and minimizing the number of states. The closure

under coupling allows us to use networks of systems as components in a larger coupled

system, leading to hierarchical, modular construction [17]. This means that every coupled

model is behaviorally equivalent to a basic atomic model.

Figure 47. Closure under coupling for SimForNTA

 Figure 47 presents the closure under coupling. The coupled model NTA is

composed of two atomic models, the Extractor and the Analyzer. The closure under

coupling makes these three DEVS components to be one component, the NTA atomic

model. We translate the coupling information of coupled model, NTA, into a flat-

structured atomic model, NTA. By this translation, hierarchical structure of the DEVS

model can be flattened. Message exchanges consume a large amount of time if the model

structure is too complex or extremely large in distributed environments. If the model

hierarchy is flattened, communication overheads among models can be minimized.

Therefore, flat-structured modeling approach facilitates to reduce the number of

128

messages, and we can achieve better performance results [58, 59]. In DEVS/SOA

environments, a coorServer creates simulatorProxys as many as the number of total

models. Even though, the coupled model, NTA, and two atomic models, the Extractor

and the Analyzer, are assigned into one computer with single IP address, a coordServer

creates three simulatorProxys. Therefore, the coordServer needs more processing time to

decide a destined simulatorProxy among three simulatorProxy for a message. If the

atomic model NTA replaces the three component DEVS model, only one simulatorProxy

is created by the coorServer. As a result, we could obtain speed up. Figure 48 shows that

the closure under coupling decreases the number of simulatorProxys and simplifies the

DEVS simulation architecture. The left diagram illustrates a simulation environment

before DEVS models are refined, and the right figure presents the refined DEVS model.

129

coordServer

NTA

clientHieSimulator 1

coupledSimulator 1 coupledSimulator 2

Extractor Analyzer

simulatorProxy 2simulatorProxy 1 simulatorProxy 3

coordServer

NTA

clientSimulator 1

simulatorProxy 1

Before Being Refined Closure Under Coupling

Figure 48. DEVS model comparison under the DEVS/SOA environment

 In addition to the effort of reducing the number of DEVS models (atomic models

and coupled models), we decrease the number of state transitions in atomic models. For

each simulation cycle, there are five message transmissions between a coordServer and

clientSimulators or clientHieSimulators. Processing time for these DEVS protocol

messages transmissions should not overwhelm processing time of the processor. An

atomic model of SES/NZER loads PES XML documents and analyzes one tuple

information at one state transition. This approach needs many state transitions according

to the number of tuples in PEX XML files. For example, there are ten PES XML files,

and each PES XML file includes 1,300 tuples information. Then, there must be 13,020

130

state transitions. The 13,020 transitions include 10 state transitions (the extract state to

the analyze state) after loading PES XML documents, 1300*10 iterative transitions (the

analyze state to the analyze state) for evaluating all the tuples in ten PESs, and 10

transitions (the analyze state to the extract state) to load PES files. Figure 49 shows these

state transitions.

Figure 49. State diagram in SES/NZER

 A coordinator sends and receives a total of 65,100 (5*13,020) message

transmissions only for DEVS protocol processing. Although the size of a DEVS protocol

message is trivial, 65,050 message transmissions is a considerable number. For

distributed simulation, if workloads are distributed to five computers, the total number of

DEVS protocol messages is 325,500 (5*65,100). In this case, there is too much

communication overhead for only advancing simulation cycle. So, we fit SES/NZER’s

atomic models to a distributed simulation. An NTA atomic model of the distributed

SES/NZER loads PES XML files and evaluates a complete PES document at one state

transition. Therefore, the total number of state transitions in this example is 20. The 20

transitions include 10 state transitions (the extract state to analyze state) for loading 10

PES files and 10 state transitions (the analyze state to the extract state) after examining

131

all 10 datasets. Figure 50 illustrates an updated state transition diagram for the distributed

SES/NZER.

Figure 50. State diagram in Distributed SES/NZER

 Reducing the number of state transitions results in decreasing communication

overheads which are caused by passing DEVS protocol messages. Respectively, we could

speed up overall simulation time over network environments. The Lee’s Ph.D dissertation

[60] discusses the effect of quantization in distributed DEVS/HLA environments.

Communication latency and overhead reduction technique in distributed interactive

simulation are introduced through an approach of bundling Protocol Data Unit (PDU)

[61].

132

CHAPTER 9. EXPERIMENTAL RESULTS

 We set up a testbed for a distributed simulation environment in the ACIMS lab as

shown in Figure 51. We install Apache Tomcat 6.0 on six computers (four desktop

computers and two laptop computers) with the Windows XP operating system. Apache

Tomcat is a servlet container that is used in the official Reference Implementation for the

Java Servlet and JavaServer Pages technologies [62]. We install an Apache Axis2/Java

Web service engine [63]. Apache Axis2 is the core engine for Web services, and it is an

implementation of the World Wide Web Consortium (W3C) Simple Object Access

Protocol (SOAP). W3C defines SOAP as below:

SOAP is a lightweight protocol for exchange of information in a

decentralized, distributed environment. It is an XML based protocol that

consists of three parts: an envelope that defines a framework for

describing what is in a message and how to process it, a set of encoding

rules for expressing instances of application-defined datatypes, and a

convention for representing remote procedure calls and responses. SOAP

can potentially be used in combination with a variety of other protocols;

however, the only bindings defined in this document describe how to use

SOAP in combination with HTTP and HTTP Extension Framework. [64]

133

150.135.218.199 150.135.218.200 150.135.218.201

150.135.218.202 150.135.218.203 150.135.218.204

Figure 51. Testbed for distributed simulation using DEVS/SOA

 We monitor and capture network activities inside the ACIMS lab subnet, and we

use the captured data for generic network behavior analyses such as protocol evaluation

and throughput measurement. For intrusion detection analyses, the KDD’99 dataset is

used as source data because the KDD’99 dataset was originally generated for the purpose

of intrusion detection system researches, and the dataset includes various attacks as well

as normal packet transmission events. Figure 52 shows the main GUI of the distributed

SES/NZER. There are two functions: network traffic analysis and intrusion detection

system.

134

Figure 52. Main GUI of distributed SES/NZER

9.1 Network Traffic Analysis

 This chapter presents the experimental results for a generic network behavior

analysis. We preset two analyses, protocol and throughput analyses in a user’s request

input system which is shown in Figure 53. According to target analyses, corresponding

required attributes are selected automatically. Or, users could choose attributes if they

want to evaluate their specialized target analyses. Target analyses selections generate new

SESs. The newly generated SESs act like agents, so overall simulations are controlled by

these new SESs. Then, deciding time frames is next. Finally, customers select the degree

of parallelism, which is the number of computers for distributed simulations. Requests

135

which are combinations of target time frames and the number of simulation machines

create new DEVS coupled models. Data is partitioned by the number of hosts, and each

portion of the data is assigned to corresponding computers. A model partitioning

approach in distributed simulation is proposed and implemented in the Zhang’s Ph.D

dissertation [65].

Figure 53. User request input system for network traffic analyses

 The next step is assigning DEVS models into distributed computers. Once a top

level coupled model is selected, this selection holds the top level coupled model’s

following child components. After allocating models into dispersed machines, a

136

simulation starts to examine users’ requests. Figure 54 shows the processes of choosing a

top level coupled model and assigning models into distributed servers.

Figure 54. Assign models into multiple servers

 We measure the data size, and the original data sizes for half-day, one day, and

two days are 2.83 GB, 5.44 GB, and 10.8 GB. Instead of keeping all the attributes, PES

XML documents for protocol analysis holds two attributes: a packet ID and a protocol

type. So, the PES file sizes are 168 MB, 326 MB, and 646 MB. Their sizes are about six

percent of the original data size. PES files for throughput evaluation include two

attributes, an event time and a packet size, and their sizes are 200MB, 387MB, and 770

137

MB. The ratio is about seven percent. Table 8 presents the data size comparisons between

original data and PES data for network traffic analyses.

Data Original PES for Protocol PES for Throughput

Half day 2.83 GB 168 MB 200 MB

One day 5.44 GB 326 MB 387 MB

Two day 10.8 GB 646 MB 770 MB

Table 8. Data size comparisons for network traffic analyses

 In addition to measuring the data size, we examine execution times of half-day,

one day, and two days data of both protocol analysis and throughput measurement by

varying degree of parallelism (numbers of computer for analysis). We experiment four

sorts of server sets: a local machine, two machines (one distributing server and one

analyzing server), four machines (two distributing servers and two analyzing server), and

six machines (three distributing servers and three analyzing servers). The execution time

is composed of three sub-times: time for distributing data to servers, time for evaluating

received data at analyzing servers, and time for collecting and displaying evaluated

results at a client computer. Table 9 shows the execution times of protocol analyses, and

Table 10 presents the simulation times of throughput analyses in virtual time

DEVS/SOA.

Data Execution Times Local 1*1 2*2 3*3

138

Half
day

Distributing
time 8min 23sec 8min 18sec 12min 28sec 10min 5sec

Analyzing time 1min 26sec 1min 12sec 57sec 59sec

Collecting time 1sec 2sec 1sec 1sec

Total 8min 50sec 9min 32 sec 13min 26sec 11min 5sec

One
day

Distributing
time 16min 15sec 15min 23sec 18min 16sec 16min 29sec

Analyzing time 2min 20sec 2min 1sec 1min 47sec 1min 59sec

Collecting time 1sec 1sec 1sec 1sec

Total 18min 35sec 17min 25sec 20min 4sec 18min 29sec

Two
days

Distributing
time 30min 34sec 32min 57sec 35min 47sec 33min 21sec

Analyzing time 4min 43sec 4min 34sec 3min 32sec 3min 56sec

Collecting time 1sec 1sec 1sec 2sec

Total 35min 18sec 37min 32sec 39min 20sec 37min 19sec

Table 9. Execution times of protocol analyses in virtual time simulation

Data Execution Times Local 1*1 2*2 3*3

Half
day

Distributing
time 9min 26sec 10min 13sec 14min 15sec 12min 13sec

Analyzing time 1min 8sec 1min 4sec 57sec 1min 3sec

Collecting time 1sec 1sec 1sec 1sec

Total 10min 35sec 11min 18sec 15min 13sec 13min 27sec

One
day

Distributing
time 18min 13sec 19min 37sec 22min 11sec 21min 46sec

Analyzing time 2min 18sec 2min 2sec 1min 51sec 2min 13sec

139

Collecting time 1sec 1sec 1sec 1sec

Total 20min 32sec 21min 40sec 24min 3sec 24min 0sec

Two
days

Distributing
time 34min 1sec 39min 58sec 39min 37sec 42min 14sec

Analyzing time 4min 0sec 5min 53sec 5min 26sec 3min 58sec

Collecting time 1sec 1sec 1sec 1sec

Total 38min 2sec 45min 52sec 45min 4sec 46min 13sec

Table 10. Execution times of throughput analyses in virtual time simulation

 For three different datasets, we measure three kinds of times: distributing data

time, analyzing data time, and collecting resulting data time. We measure execution times

at four different sets of computers: {a local computer}, {one distributing data computer,

one analyzing data computer}, {two distributing data computers, two analyzing data

computers}, and {three distributing data computers, three analyzing data computers}. We

notice that distributing times increase gradually as the number of distributed computers

increases. Ideally, distributing times must decrease in the counter ratio of the number of

hosts. However, communication overheads (data messages and DEVS protocol

messages) prevent us from achieving optimal results. We see that analyzing data times

are getting smaller as the number of computers is getting larger. Against distributing

times, analyzing times are not affected by network communication overheads. Because

collecting resulting data times are one second or two seconds in most cases, we could

forgo collecting times for comparing execution times. Figure 55 illustrates virtual time

simulation results of network behavior analyses.

140

Virtual Time Protocol Analysis Virtual Time Throughput Analysis

Figure 55. Virtual time simulation results of network behavior analyses

 In virtual time DEVS/SOA simulation, all the simulation servers are controlled by

a top level coordination server for advancing discrete events and passing messages

among simulation servers even though each simulation server runs by itself and does not

affect the other simulation servers. This is a centralized approach, and this simulation

141

causes time delay. The overall simulation speed fits to the slowest server’s evaluating

time. In addition, there must be many sets of message transmissions, nextTN, outTN,

getOut, sendOut, and applyDelt, between a top level coordinating server and model

simulating servers for the DEVS protocol. These DEVS protocol messages are another

cause of degrading simulation speed. To overcome these limitations of virtual time

simulation, real time DEVS/SOA simulation is applied, and, finally, we accomplish a

goal of distributed simulation, speed up execution times, through real time simulation.

Because each simulator in different machine has own simulation time, and overall

execution time is not affected by communication overheads which are caused by DEVS

protocol messages and data messages between a centralized coordinator and distributed

simulators, we achieve speed up comparing to virtual time simulation. Table 11 shows

the execution times of protocol analyses, and Table 12 presents the simulation times of

throughput analyses in real time DEVS/SOA. Figure 56 illustrates real time simulation

results for both protocol and throughput analyses.

Data Execution Times Local 1*1 2*2 3*3

Half
day

Distributing time 6min 10sec 6min 53sec 6min 1sec 2min 20sec

Analyzing time 1min 9sec 30sec 15sec 9sec

Collecting time 1sec 1sec 1sec 1sec

Total 7min 20sec 7min 24sec 6min 17sec 2min 30sec

One
day

Distributing time 11min 55sec 12min 24sec 7min 0sec 3min 40sec

Analyzing time 2min 16sec 53sec 21sec 16sec

142

Collecting time 1sec 1sec 1Sec 1sec

Total 14min 12sec 13min 18sec 7min 22sec 3min 57sec

Two
days

Distributing time 26min 36sec 27min 18sec 12min 2sec 7min 37sec

Analyzing time 3min 47sec 3min 44sec 54sec 36sec

Collecting time 1sec 1sec 1sec 1sec

Total 30min 24sec 31min 3sec 12min 57sec 8min 14sec

Table 11. Execution times of protocol analyses in real time simulation

Data Execution Times Local 1*1 2*2 3*3

Half
day

Distributing time 7min 29sec 8min 25sec 7min 00sec 3min 24sec

Analyzing time 1min 23sec 29sec 15sec 10sec

Collecting time 1sec 1sec 1sec 1sec

Total 8min 53sec 8min 55sec 7min 16sec 3min 35sec

One
day

Distributing time 15min 15sec 15min 24sec 8min 57sec 4min 54sec

Analyzing time 2min 24sec 1min 35sec 18sec 12sec

Collecting time 1sec 1sec 1sec 1sec

Total 17min 40sec 17min 0sec 9min 16sec 5min 7sec

Two
days

Distributing time 30min 22sec 33min 27sec 16min 7sec 10min 4sec

Analyzing time 3min 58sec 3min 37sec 1min 32sec 37sec

Collecting time 1sec 1sec 1sec 1sec

Total 34min 21sec 37min 5sec 17min 40sec 10min 42sec

Table 12. Execution times of throughput analyses in real time simulation

143

Real Time Protocol Analysis Real Time Throughput Analysis

Figure 56. Real time simulation results of network behavior analyses

9.2 Intrusion Detection System

 Recall that we built two IDS agent models: the LAND agent and the POD agent.

As illustrated in Chapter 8.1., after customers’ requests, which are selecting a target IDS,

time frames (start time and end time) and a degree of parallelism (the number of

distributed computer for analysis) are applied through an input system, users could assign

144

simulation models into multiple servers according to the selected degree of parallelism.

Figure 57 shows the user’s request input system for evaluating intrusion detection

systems. Users’ requests generated both new SESs and new DEVS coupled models for

evaluating IDSs.

Figure 57. User request input system for intrusion detection systems

 First, we measure the data sizes. The original source data size for two weeks (five

days a week) is 4.12 GB. The pruned data size for LAND IDS, which include even times,

source host IP addresses, and destination host IP addresses size, is 368 MB. The data size

for POD IDS is 437 MB. These PES data sizes are about 9 percent (LAND) and 10

145

percent (POD) of the original KDD’99 dataset. Table 13 presents the data size

comparisons for IDS evaluations.

 Original PES for LAND PES for POD

Source Data (2weeks) 4.12 GB 368 MB 437 MB

Table 13. Data size comparisons for IDS evaluations

 Also, we observe IDS evaluating times of both the LAND attack and the POD

attack using the two weeks of the KDD’99 dataset. We differentiate the number of

computers like we experiment for generic network traffic analysis. We achieve similar

execution times to what we gain in Chapter 8.1. We notice that distributing data times

are getting larger as the number of evaluating machines increases due to overheads

(network packet transmission delays and DEVS protocol message overheads). We speed

up analyzing times.

 Local 1*1 2*2 3*3

Distributing time 41min 1sec 41min 43sec 47min 29sec 49min 14sec

Analyzing time 8min 13sec 11min 39sec 9min 55sec 9min 39sec

Collecting time 1sec 1sec 1sec 1sec

Total 49min 15sec 53min 23sec 57min 25sec 58min 54sec

Table 14. Execution times of LAND attack detection in virtual time simulation

146

 Local 1*1 2*2 3*3

Distributing time 32min 36sec 36min 1sec 38min 33sec 39min 24sec

Analyzing time 8min 3sec 12min 1sec 10min 1sec 9min 11sec

Collecting time 1sec 1sec 1sec 1sec

Total 40min 40sec 48min 3sec 48min 35sec 48min 36sec

Table 15. Execution times of POD attack detection in virtual time simulation

Virtual Time IDS LAND Attack Detection Virtual Time IDS POD Attack Detection

Figure 58. Virtual time experimental results of IDS analyses

 Table 14, Table 15, and Figure 58 illustrate that there is no big improvement in

total execution times (adding distributing time, analyzing time, and collecting time) in

virtual time simulation environment. A distributed SES/ZER speeds up analyzing times

by dividing a whole workload into several small jobs and deploying the small works into

multiple machines. Experimental results in real time simulation are presented in table 16,

table 17, and figure 59.

147

 Local 1*1 2*2 3*3

Distributing time 48min 50sec 41min 7sec 22min 58sec 16min 3sec

Analyzing time 11min 57sec 12min 55sec 2min 54sec 2min 8sec

Collecting time 1sec 1sec 1sec 1sec

Total 1hr 0min 48sec 54min 3sec 25min 53sec 18min 14sec

Table 16. Execution times of LAND attack detection in real time simulation

 Local 1*1 2*2 3*3

Distributing time 44min 43sec 35min 58sec 18min 21sec 11min 59sec

Analyzing time 12min 43sec 8min 38sec 5min 39sec 3min 25sec

Collecting time 1sec 1sec 1sec 1sec

Total 57min 27sec 44min 37sec 24min 1sec 15min 25sec

Table 17. Execution times of POD attack detection in real time simulation

Real Time IDS LAND Attack Detection Real Time IDS POD Attack Detection

Figure 59. Real time experimental results of IDS analyses

 We accomplish speed up of total execution times in real time simulation. The

experimental results in this section show that a distributed SES/NZER reduces data sizes

148

in terms of different customers’ requests in both virtual time and real time simulations.

And, a distributed SES/ZER speeds up analyzing times by dividing a whole workload

into several small jobs and deploying the small works into multiple machines. In

addition, we achieve fast execution times in real time simulations since real time

simulations reduce the message transmission delay overheads which are occurred in

virtual time simulations.

9.3 Discussion

 In our experiments, we assume that every machine, in which DEVS Distributor

models are located, keep the same large-sized PES data which depict generic network

behavior SES. However, it takes time to copy the large sized PES data from a host which

monitors and captures network activities to computers which include DEVS Distributor

models. Then, each Distributor deploys partitioned and customized data to Analyzer

models which are assigned to different machines. Data flows are explained in figure 60.

The dotted-line arrows present data flows of copying original PES data from the

Distributor 1 machine to the Distributor 2 and Distributor 3 machines.

149

Figure 60. Semi multi-distributing and multi-analyzing machines simulation

 To remove copying data time, we do experiments another approach. Three

Distributor models are assigned into one single machine and three Analyzer models are

located in three different computers. The data flows are shown in figure 61. This

approach removes time overheads of copying original PES data time from a network

activity capturing machine to the other distributing computer. However, many workloads

are assigned into one distributing machine. Even though three Distributor models run on

own simulator threads, operating systems do not support multi-thread processing.

Therefore, only one Distributor model sends one message out to an analyzing computer

at one time.

150

Figure 61. Single-distributing and multi-analyzing machines simulation

 Execution times are shown in table 18. Two days data is evaluated in a 1*3

environment and 3*3, and, then, execution times are compared with the experimental

results of the 3*3 environment presented in chapter 8.1. Although 3*3 simulation requires

copying data time, total execution times (sum of copying time, distributing time, and

analyzing time) of this approach is faster than total execution times (sum of distributing

time and analyzing time) of 1*3 approach in both protocol analysis and throughput

analysis.

151

Analysis Protocol Analysis Throughput Analysis

Execution Times 1*3 3*3 1*3 3*3

Copying time 0 10min 49sec 0 10min 49sec
Distributing time 37min 00sec 7min 37sec 40min 57sec 10min 4sec
Analyzing time 36sec 36sec 28sec 37sec
Collecting time 1sec 1sec 1sec 1sec

Total 37min 37sec 19min 3sec 41min 26sec 21min 31sec

Table 18. Execution times of 1*3 and 3*3 environmental simulation

 The experimental results illustrated in table 18 provide us feasible approach to

fast overall analysis time. We may speed up by combining these two approaches (1*n and

n*n). Deploying multiple computers inside sub-networks and assigning capturing

network activity roles to the computers facilitate to remove copying PES data times

(because every computer keeps their own captured data) and reduce distributing

customized PES data times (since every Distributor model is distributed into individual

machines). Figure 62 shows this approach. Because every distributing machine captures

different network activities, a Collector model must have intelligent gathering methods to

integrate different analyzed results together.

152

Figure 62. Multi-distributing and multi-analyzing machines simulation

153

CHAPTER 10. CONCLUSIONS AND FUTURE WORKS

10.1 Conclusions

 Recently, network uses have been increasing rapidly. Therefore, the size of data,

which is caused by network activities, is getting larger. Network administrators or

managers need network traffic analysis tools that could produce results quickly and

accurately. There are several network traffic analysis tools such as tcpdump, Ethereal,

and other applications. But, these tools have drawbacks: limited data size and excessive

resource consumptions. These problems cause a slow analyzing time and require big

budgets for maintaining. In addition to these problems, currently existing tools are limited

to be performed inside networks, due to security issues. Dump files which are monitored

and captured by these tools includes secure information such as user ID, passwords, and

other information. These secure attributes must be protected against abnormal accesses,

so observing network activities from out of networks should be prohibited. However,

network behaviors need to be analyzed outside target networks in some cases.

 This study proposes a Web-based distributed simulation for network traffic

analyses over Service Oriented Architecture (SOA). The main objective of this study is to

develop an approach for quick and efficient network behavior analysis. To deal with large

numbers of network behaviors being quickly and efficiently analyzed, the System Entity

Structure (SES) theory is applied. The SES facilitates implementing a system to achieve

our main goal, fast and accurate network traffic evaluation. The SES is a theory for

154

designing structured information hierarchically and efficiently. Specifically, the SES is

very useful for data engineering for a high throughput and a low response time. The SES

data engineering helps SES/NZER to transform captured network traffic data into

practical data expressed by Extensible Markup Language (XML). The advantages of the

SES using a data engineering concept are easy and fast access to information, no

necessary for multi-query, fast response time, and a user-centric schema. Also, the SES

data engineering is a hierarchical tree structure, and the hierarchical tree structure is easy

to read, understand, and manipulate. We design a generic network behavior in SES

format. Also, automated awareness to pragmatic frames (customers’ applications) makes

reactions fast and results in no needs of human interference. We must notice that every

customer has different requests (different applications). For example, some customers

want to evaluate network protocol uses. Other users want to measure network throughput.

Depending on various requirements (pragmatic frames), systems need to be optimized for

the pragmatic frames to speed up analysis time effectively. Two processes for creating a

new SES to correspond to users’ requests by pruning operations and mapping the newly

generated SES with the pre-defined SES which represents a generic network packet

behavior enables systems to be adaptively optimized. Reactions to pragmatic frames

facilitate systems keeping accurate data only, so we are able to reduce overall data size.

Therefore, we could analyze extensive long-term network activities which Ethereal

cannot do. Although we enable large amounts of data to be examined, we still need a long

evaluation time. To speed up evaluation time, we apply a Web-based distributed

simulation approach over Service Oriented Architecture (SOA). Deploying workloads

155

into multiple machines decreases burdens of individual computers, and results in hosts,

which have low computational powers (CPU and memory), to participate in large scale

simulations. As a result, there are no needs for super computers anymore. DEVS/SOA

(DEVS/Service Oriented Architecture) facilitates deploying workloads into multi-servers,

and, consequently, increasing overall system performance.

10.2 Future Works

 We achieve both evaluating large amount of network traffic activity data and

performing a Web-based distributed simulation over SOA. In addition, we accomplish

fast execution times through real time decentralized distributed simulation. However,

there are further research works: developing web services for network traffic analyses

and implementing additional attack detecting functions for intrusion detection systems.

The ultimate goal is to implement network behavior analyses web services. This study

aims for a decentralized distributed DEVS simulation to speed up evaluation times by

deploying workloads into multi-computers. But, customers are still responsible for

building models for simulating their systems. Web services, which are implementations

of integrating automated model constructing process with analyzing corresponding

system process, provide more accommodation to users. Another future work is

implementing web service systems to perform the case that customers hold data which

need to be analyzed. Customers may provide data to multiple web services

156

asynchronously. Subsequently, web services evaluate received data and give evaluated

results back to customers.

157

REFERENCES

1. Teorey, T.J., D. Yang, and J.P. Fry, A logical design methodology for relational

databases using the extended entity-relationship model. ACM Computing
Surveys (CSUR), 1986. 18(2): p. 197-222.

2. Sarjoughian, H. and R. Flasher, System Modeling with Mixed Object and Data

Models, DEVS Symposium, in Spring Simulation Multiconference. 2007: Norfolk,
Virginia. p. 199-206.

3. Gruber, T.R., A Translation Approach to Portable Ontology-Specifications.

Knowledge Acquisition Journal, 1993. 5(2): p. 199-220.

4. IEEE Technical Committee on Data Engineering (TCDE). 2007,

http://tab.computer.org/tcde/

5. Zeigler, B.P. and P.E. Hammonds, Modeling & Simulation-Based Data

Engineering: Introducing Pragmatics into Ontologies for Net-Centric Information
Exchange. 2007.

6. Foundation For Intelligent Physical Agents (FIFA). An Ontology Service

Specification. 2007,
 http://fipa.org/specs/fipa00086/XC00086D.html#_%20Toc505571321

7. W3C. eXtensible Markup Language XML. 2007, http://www.w3.org/XML/

8. SESBuilder. An Integrated Tool to utilize System Entity Structure. 2007,

http://www.sesbuilder.com/

9. Zeigler, B.P., Multi-Facetted Modeling and Discrete Event Simulation. 1984,

New York: Academic Press.

10. Zeigler, B.P. and G. Zhang, The System Entity Structure: Knowledge

Representation for Simulation Modeling and Design. Artificial Intelligence,
Simulation and Modeling, L. E. Widman, K. A. Loparo, and N. R. Nielsen, Eds.
Wiley, 1989: p. 47-73.

11. Harold, E.R. and W.S. Means, XML in a Nutshell - A Desktop Quick Reference.

2001: O'Reilly.

158

12. Park, S., Cost-Based Partitioning For Distributed Simulation of Hierarchical
Modular DEVS Models, in The Department of Electrical and Computer
Engineering. 2003, the University of Arizona: Tucson.

13. Chandy, K.M. and J. Misra, Dsitributed Simulation: A Case Study in Design and

Verification of Distributed Programs. IEEE Transactions on Software
Engineering, 1979. 5: p. 440-452.

14. Bryant, R.E., A Switch-Level Model and Simulator for MOS Digital Systems.

IEEE Transactions on Computers, 1984. 33: p. 160-177.

15. Jefferson, D.A. and H. Sowizral, Fast Concurrent Simulation Using the Time

Warp Mechanism. 1985, The Society for Computer Simulation (SCS): La Jolla,
California.

16. Jefferson , D.A., Virtual Time. ACM Transactions on Programming Languages

and Systems, 1985. 7: p. 404-425.

17. Zeigler, B.P., T.G. Kim, and H. Praehofer, Theory of Modeling and Simulation

2nd ed. 2000, New York: Academic Press.

18. Cho, Y.K., et al., Design Consideration for Distributed Real-time DEVS, in AI

and Simulation Conference. 2000: Tucson, AZ.

19. Champion, M., et al. Web Services Architecture. 2002,

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

20. W3C. Simple Object Access Protocol (SOAP). 2008, http://www.w3.org/TR/soap/

21. W3C. Web Service Architecture. 2008, http://www.w3.org/TR/ws-arch/

22. W3C. Web Services Description Language (WSDL). 2008,

http://www.w3.org/TR/wsdl20-primer/

23. UDDI. Universal Description, Discovery and Integration (UDDI). 2008,

http://uddi.xml.org/

24. SUN. Service-Oriented Architecture (SOA). 2008,

http://www.sun.com/products/soa/index.jsp/

25. REST. Representational State Transfer (REST). 2008, http://rest.blueoxen.net/cgi-

bin/wiki.pl

26. W3C. Web Ontology Language OWL. 2007, http://www.w3.org/TR/owl-features/

159

27. W3C. Resource Description Framework RDF. 2007, http://www.w3.org/RDF/

28. W3C. Resource Description Framework Schema. 2007,

http://www.w3.org/TR/rdf-schema/

29. OKBC. Open Knowledge Base Connectivity. 2007, http://www.ai.sri.com/~okbc/

30. OMG Group. The Unified Modeling Language (UML), Version 2. 2007,

http://www.uml.org/

31. OMG Group. Object Modeling Group (OMG). 2007, http://www.omg.org/

32. Wikipedia. Unified Modeling Language. 2007,

http://en.wikipedia.org/wiki/Unified_Modeling_Language

33. Stanford University. Protege Ontology Editor and Knowledge-base Framework.

2007, http://protege.stanford.edu/

34. Stanford University. Protege Frame Editor. 2007,

http://protege.stanford.edu/overview/protege-frames.html/

35. Stanford University. Protege OWL Editor. 2007,

http://protege.stanford.edu/overview/protege-owl.html/

36. MusicBrainz. Music Metadata System. 2007, http://musicbrainz.org/

37. Swartz, A., MusicBrainz: A Semantic Web Service. IEEE Intelligent Systems,

Intelligent Web Services, January/February 2002. 17(1): p. 76-77.

38. The United Nations Standard Products and Services Code (UNSPSC). 2007,

http://www.unspsc.org/

39. Cost, S., et al., ITTALKS: A Case Study in the Semantic Web and DAML+OIL.

IEEE Intelligent Systems, Intelligent Web Services, January/February 2002.
17(1): p. 40-47.

40. DARPA. DARPA agent markup language website. 2007, http://wwww.daml.org/

41. Hendler, J. and D. McGuinness, The DARPA agent markup language. IEEE

Intelligent Systems, Intelligent Web Services, November/December 2000. 15(6):
p. 72-73.

160

42. The UCI KDD Archive. KDD 1999 Cup dataset. 1999,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

43. Arizona Center for Integrative Modeling and Simulation (ACIMS). 2007,

http://www.acims.arizona.edu

44. Ethereal. network protocol analyzer. 2007, http://www.ethereal.com/

45. Puketza, N., et al., A Software Platform for Testing Intrusion Detection Systems.

IEEE Software, September/October 1997. 14(5): p. 43-51.

46. Puketza, N., et al., A Methodology for Testing Intrusion Detection System. IEEE

Transactions on Software Engineering, 1996. 22(10): p. 719-729.

47. Bishop, M., S. Cheung, and e. al., The Threat from the Net. IEEE Spectrum, 1997.

38(8): p. 56-63.

48. Haines, J.W., et al., 1999 DARPA Intrusion Detection Evaluation: Design and

Procedure. February 2001 Lincoln Laboratory, Massachusetts Institute of
Technology.

49. Mittal, S., B.P. Zeigler, and M.H. Hwang. W3C XML Schema for Finite

Deterministic(FD) DEVS Models. 2007,
 http://www.u.arizona.edu/%7Esaurabh/fddevs/FD-DEVS.html

50. Mittal, S., DEVS Unified Process for Integrated Development and Testing of

Service Oriented Architectures, in Department of Electrical and Computer
Engineering. 2007, the University of Arizona: Tucson, AZ.

51. W3C the Document Object Model Working Group. Document Object Model

(DOM). 2007, http://www.w3.org/DOM/

52. JFreeChart. Java chart library. 2007, http://www.jfree.org/jfreechart/

53. Mittal, S., J.L. Risco-Martin, and B.P. Zeigler, DEVS-Based Simulation Web

Services for Net-centric T&E, in 2007 Summer Computer Simulation Conference
(SCSC'07). July 2007: San Diego, CA.

54. Mittal, S., J.L. Risco-Martín, and B.P. Zeigler, DEVSML: Automating DEVS

Execution Over SOA Towards Transparent Simulators, in DEVS Symposium,
Spring Simulation Multiconference. March 2007: Norfork, Virginia. p. 287-295.

55. Karatsuba, A. and Y. Ofman, Multiplication of multidigit numbers on automata.

Soviet Physics doklady, 1963. 7(7): p. 595-596.

161

56. Lincoln Laboratory in Massachusetts Institute of Technology. DARPA Intrusion

Detection Evaluation. 2008, http://www.ll.mit.edu/IST/ideval/index.html/

57. KDD Cup 1999. 2008,
 http://www.sigkdd.org/kddcup/index.php?section=1999&method=info/

58. Glinsky, E. and G. Wainer. Definition of Real-Time simulation in the CD++

toolkit. in Proceedings of SCS Summer Computer Simulation Conference,. 2002.
San Diego, CA.

59. Kim, K., et al. Efficient Distributed Simulation of Hierarchical DEVS Models:

Transforming Model Structure into a Non-Hierarchical One. in Proceedings of
the 33rd Annual Simulation Symposium. 2000. Washington DC.

60. Lee, J.S., Space-Based Data Management for High Performance Distributed

Simulation, in Department of Electrical and Computer Engineering. 2001, the
University of Arizona: Tucson, AZ. p. 221.

61. Vargas, J., et al., PDU Bundling and Replication for Reduction of Distributed

Simulation Communication Traffic. The Journal of Defense Modeling and
Simulation, 2004. 1(3): p. 171-183.

62. Apache Tomcat. 2008, http://tomcat.apache.org/

63. Apache Axis2 Web service engine. 2008, http://ws.apache.org/axis2/

64. W3C. Simple Object Access Protocol (SOAP) 1.1 Note. 2008,

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

65. Zhang, M., Toward a Flexible and Reconfigurable Distributed Simulation: A New

Approach to Distributed DEVS, in Department of Electrical and Computer
Engineering. 2007, the University of Arizona: Tucson. p. 137.

