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ABSTRACT 
 
 

 As network uses increase rapidly and high quality-of-service (QoS) is required, 

efficient network managing methods become important. Many previous studies and 

commercial tools of network management systems already exist. But, these tools such as 

tcpdump, Ethereal, and other applications have weaknesses: limited size of files, 

command line execution, and large memory and huge computational power requirements.  

Researchers struggle to find fast and effective analyzing methods to save maintenance 

budgets and recover from systematic problems caused by the rapid increment of network 

traffic or intrusions. The main objective of this study is to propose an approach to deal 

with a large amount of network behaviors being quickly and efficiently analyzed. We 

study an ontology/data engineering methodology based network analysis system. We 

design a behavior, which represents network traffic activity and network packet 

information such as IP addresses, protocols, and packet length, based on the System 

Entity Structure (SES) methodology. A significant characteristic of SES, a hierarchical 

tree structure, enables systems to access network packet information quickly and 

efficiently. Also, presenting an automated system design is the secondary purpose of this 

study. Our approach shows adaptive awareness of pragmatic frames (contexts) and makes 

a network traffic analysis system with high throughput and a fast response time that is 

ready to respond to user applications. We build models and run simulations to evaluate 

specific purposes, i.e., analyzing network protocols use, evaluating network throughput, 

and examining intrusion detection algorithms, based on Discrete Event System 



15 
 

Specification (DEVS) formalism. To speed up evaluation time, we apply a web-based 

distributed simulation methodology. DEVS/Service Oriented Architecture (DEVS/SOA) 

facilitates deploying workloads into multi-servers and consequently increasing overall 

system performance. In addition to the scalability limitations, both tcpdump and Ethereal 

have a security issue. As well as basic network traffic information such as IP addresses, 

port numbers, and packet sizes, captured files by these tools contain secure information: 

user identification numbers and passwords. Therefore, captured files should not be 

allowed to leak out. However, network analyses need to be performed outside target 

networks in some cases. The distributed simulation—allocating distributing models 

inside networks and assigning analyzing models outside networks—also allows analysis 

of network behaviors out of networks while keeping important information secured. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Motivation and Goals 

 During past decades, companies and organizations have constantly been 

developing computer systems, and as a result, they accumulate huge unorganized, 

unshared data; they tend to keep the data as simple and local. Therefore, policy makers in 

companies and organizations obtain needed data by manipulating several processes, or, 

worst case, they never receive the data that they really want to get. However, decision 

makers require fast, accurate, and sufficient data in a rapidly changing social 

environment.  

 Currently, the network uses, especially the number of internet users, increase 

rapidly. Also, high quality of service is required, and this requirement often results in 

sudden network traffic increases. As a result, an efficient system for managing large 

network traffic datasets becomes an important issue. Network traffic analysis includes the 

monitoring of all the network behaviors, controlling networks and hosts, and applying 

network traffic behaviors to achieve an effective management. Network administrators 

have had difficulties with the lack of consistent traffic analysis or a management system. 

Lacking a network traffic analysis system with high throughput and fast response time 

requires that, instead, several processes of manipulating metadata be used, and this results 

in an insufficiency of useful data for designing network capacity. 
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 There are several network traffic analysis tools such as tcpdump, Ethereal, and 

other applications. But, these tools are limited. Tcpdump is a powerful tool that allows us 

to sniff network packets and make some statistical analysis out of those dumps. One 

major drawback to tcpdump is the size of the flat file containing the text output. The 

other weakness is that tcpdump runs under the command line. Ethereal is a tool for 

network protocol analysis, software and protocol development, and educational purposes. 

Because it is an open source project, many network professionals around the world use 

Ethereal, and many researchers support it by adding enhancements. The functionality of 

Ethereal is very similar to the functionality of tcpdump, but it runs under a GUI front-

end. Ethereal has been supported by many network professionals, so it has many 

functions, such as protocol analysis, throughput analysis, and other statistical analysis. 

Ethereal is like a two-sided coin. It is very powerful but also very complicated.  Ethereal 

requires an initial learning curve but is a complete tool, and it is limited to running on 

local machines. In addition, Ethereal uses complete data for every analysis. Accessing a 

big data set requires memory overhead and inefficient computational power. Although 

Ethereal is easier to use than tcpdump, it still limits the size of target-analyzing files. Our 

experiments show that Ethereal cannot analyze more than two-day network activities in 

personal computers. To examine more than two-day activities, network managers must 

control Ethereal by iterating capturing and analyzing processes periodically to avoid 

excessive system memory uses.  

 The main objective of this study is to propose an approach to deal with large 

amounts of information being easily and efficiently shared among organizations. To 
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achieve this goal, we use the System Entity Structure (SES) for the system design. The 

SES is a theory for designing structured information hierarchically and efficiently, and it 

is very useful for data engineering. We propose a feasible network traffic analysis 

system, System Entity Structure based Network analyZER (SES/NZER). We design a 

behavior which represents network traffic activity and network packet information. The 

behavior design is based on System Entity Structure (SES) methodology. In addition, we 

suggest an automated context awareness system for network behavior analyses such as 

protocols evaluation, network throughput analysis, and intrusion detection evaluation. 

Every customer may request different analyses. For example, some customers want to 

evaluate network protocol uses. Other users want to measure network throughput. 

Depending on various requirements (pragmatic frames), systems need to be optimized for 

fast and effective analyses. The SES enables systems to be adaptively optimized. This is 

fundamental automated context awareness. Presenting the automated system design is the 

second objective of this study. Reactions to users’ applications facilitate systems holding 

accurate data only. Therefore, we could analyze long-term network activities which 

Ethereal cannot evaluate. The hierarchical tree structure of SES facilitates efficient and 

fast interpretation of large amounts of data. The two advantages, fast and efficient 

information sharing and automation, save network maintaining costs and enable rapid 

reactions against problems such as the necessity of bandwidth increase for 

protocols/services. To speed up evaluation time, we apply a web-based distributed 

simulation methodology. A web-based distributed simulation contains two fundamental 

processes: distributing models into multi-servers and simulating among loosely coupled 
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models through message-passing methods. DEVS/SOA (DEVS/Service Oriented 

Architecture) facilitates deploying workloads into multi-servers and consequently 

increasing overall system performance. 

 In addition to the scalability problem (the size limitation of capture-files), both 

tcpdump and Ethereal have security issues. Capture-files, which are evaluated by either 

tcpdump or Ethereal, include all the information of packets such as IP addresses, protocol 

types, packet size, and other fundamental attributes. As well as basic network packet 

information, user IDs and passwords are also contained in captured files. Because 

captured files hold secure information, Tcpdump and Ethereal are allowed to monitor 

network behaviors and to capture raw network traffic inside networks with special 

privilege on some platforms. However, network analyses need to be performed outside 

target networks in some cases. It means that monitoring and capturing network behaviors 

are executed inside target networks, and evaluating network activities are completed out 

of the networks. To accomplish this distributed analysis, functionality should be deployed 

into multiple machines. At the same time, high priority information must be secured. 

Distributed simulation is good solution for analyzing network behaviors remotely while 

keeping data secured.  

 

1.2. Organization of the Thesis 

This study includes background knowledge in chapter 2. Chapter 2 introduces 

ontology/data engineering methodology for modeling and simulation, System Entity 
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Structure (SES) theory for representing data engineering, eXtensible Markup Language 

(XML), and Discrete Event System Specification (DEVS) formalism. In chapter 3, we 

show relative studies, the Web Ontology Language (OWL), the Unified Modeling 

Language (UML), and Protégé, and practical examples, a semantic web music service 

(MusicBrainz), a coding system to classify both products and services (UNSPSC), and a 

web-based talk system (ITTALKS), with regard to ontology theorem. Chapter 4 

illustrates design issues for a network traffic analysis system in details. Intrusion 

Detection System (IDS) is introduced in chapter 5. We model and simulate a network 

traffic analysis system (protocols/services evaluation and network throughput analysis) 

based on DEVS formalism in chapter 6. The experimental results for generic network 

behavior analysis are also presented in chapter 6. Comparisons between our system and 

Ethereal are discussed, and we state the problems of our approach in chapter 7. In chapter 

8, we present a web-based distributed simulation for a network behavior analysis system 

and DEVS Service Oriented Architecture (DEVS/SOA). The experimental results of 

distributed simulation are presented in chapter 9. Lastly, we conclude our study and 

address future works. 
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CHAPTER 2.  BACKGROUND KNOWLEDGE 

 

 There exist modeling approaches for designing and simulating complex systems’ 

specifications. Entity-Relation (ER) [1] is an approach to represent systems’ structures 

such as data entities and their relationships. Other approach is Unified Modeling 

language (UML), and it is designed to represent objects and their relationships. Even if 

ER and UML enable modeling systems’ specifications and describe various kinds of 

logical models, each approach is limited in specific modeling. ER is very good for logical 

model representations but not good enough for visual modeling. On the other hand, UML 

is good for both logical models and visual models but lacks model persistence [2]. 

 The System Entity Structure (SES) expressed by XML modeling framework is 

very useful for multi-level (high level applications and low level data specifications) 

modeling and simulation based on ontology and data engineering methodology. The SES 

is a hierarchical tree structure with entities and relations. The SES approach shows more 

potential better for logical, visual, and persistent modeling than either ER or UML. 

 In this chapter, we introduce background theories such as the System Entity 

Structure (SES) theory and Discrete Event System Specification (DEVS) formalism. 
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2.1 Ontology/Data Engineering for Modeling and Simulation 

The concept of ontology, which has a long history in philosophy, is a study of 

reality and the nature of being or existence. In philosophy, ontology (from the Greek, 

ontos: of being and logos: science, theory) is the study of being or existence and forms 

the basic subject matter of metaphysics. It seeks to describe the basic categories and 

relationships of being or existence to define entities and types of entities within its 

framework. In computer science, a well known definition of an ontology is: 

An ontology is a specification of conceptualization [3] 

An ontology is a data model that represents a set of concepts within a domain and 

the relationship between those concepts. It is used to reason about the objects within that 

domain. Ontologies are used in artificial intelligence, the semantic web, software 

engineering, and etc. as a form of knowledge representation with respect to the world or 

some part of it. Ontogolies are commonly encoded using ontology languages such as 

CycL, KIF (Knowledge Interchange Format), OWL (Web Ontology Language), or any 

other representation which can define objects, properties and its relations. Ontology 

languages are formal languages used to construct ontologies. They allow the encoding of 

knowledge about specific domain and often include reasoning rules that support the 

processing of that knowledge. T.Gruber [3] stated that knowledge in ontologies can be 

formalized using five kinds of components: concepts, relations, functions, axioms, and 

instances. 
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1. Concepts: calls as classes, collections of abstract, or types of objects. 

2. Relation:  type of interaction between concepts of the domain 

3. Function: mappings between a list of input arguments and its output argument 

• defined as F: C1 x C2 x… x Cn-1  Cn 

4. Axioms: sentences that are always true 

5. Instances: elements of a given concept, actual objects of classes 

 

 An Ontology could be clearly conceptualized if these components are well 

defined. In computer and information science, an ontology is an essential methodology to 

develop a shared conceptualization in a semantic web. Also, ontology enhances 

knowledge management methodology by unifying pragmatics of knowledge base system. 

The huge advantage of ontology is not in processing, but in sharing meaning, emergence 

and discovery of gaps and for improving a tacit knowledge transfer. Ontology may 

contain information in a specified declarative language, but it may also include 

unstructured or unformalized information expressed in a natural language or a procedural 

code. Computer-based ontology provides formal and structured representation of domain 

knowledge. It is designed to serve as a raw material for computer reasoning and 

computer-based agents. The ontology provides a formally defined specification of the 

meaning of those terms, which are used by agents during their interoperation. Because 

agents can differ in their understanding of environment, it is important goals capabilities, 

but they can still interoperate in order to perform a common task. 
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Data engineering is an aspect of ontology engineering. The Technical Committee 

on Data Engineering (TCDE) of the IEEE Computer Society addresses that “Data 

Engineering is concerned with the role of data in the design, development, management 

and utilization of information systems. Issues of interest include database design; 

knowledge of data and its processing; languages to describe data, define access and 

manipulate databases; strategies and mechanisms for data access; security and integrity 

control; and engineering services and distributed systems.” [4] The contribution of data 

engineering is that it enables easy and efficient information sharing among services in 

organizations. Also, data engineering makes meaningful information be exchanged, not 

just simply bits and byte data. Model and Simulation-based data engineering relies on 

rigorous principles to ensure that metadata structures can be designed, represented, 

constructed and implemented in such a way that facilitates automated comparison and 

analysis, translation, and implementation [5]. In this study, model and simulation-based 

data engineering is applied to support flexibly applicable data exchange using data 

models.  

Recall that ontology describes a state of the world and its changes over time. 

Information exchange occurs when a person or information system reports a new state of 

the world, or changes in previous states, to another person or information system. The 

person or system that generates and reports the information is called a producer while the 

user is called a consumer. The principle that this document emphasize is that the 

consumer’s use of the information should determine the description mechanism, or 

ontology, used by the producer. We’ll formulate a means of characterizing the 
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consumer’s use of the information and call it a pragmatic frame. The developer of the 

ontology, also called the data engineer, has the task of tuning the ontology to the 

pragmatic frame. Context awareness by ontology/data engineering could be developed in 

modeling and simulation approach. For more understanding, an example of social 

relations on an island is presented.  

 

2.1.1 Ontology for Social Relations on an Island 

There are four people stuck on an island: a, b, c, and d (you are free to associate 

your favorite movie or sitcom characters with these letters). Because people in such a 

situation frequently change their affection for each other, we want to represent in some 

way their daily likes and dislikes of one another. We begin with the following matrices 

 

  Likes      Dislikes   
 a b c d   a b c d 
a  1 1   a    1 
b 1     b     
c 1   1  c  1  1 
d   1   d 1    

 

Using this framework, there is a large but easily computable number of possible 

states of affection that characterize this small number of people. Indeed, there are 4 × 4 = 

16 cells in the Likes matrix, each of which can independently have a 1 or a blank. 

Therefore, there are 216 states of the Likes matrix and, again assuming independence, the 

same number for the Dislikes matrix, for a total of 232 that is the product of the two 

groups. In reality, the number of states is much smaller because the following constraints: 
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1. No one likes or dislikes himself or herself; 

2. Affection is mutual and so is disaffection (for example, you like someone who 

likes you, and the same applies to disliking someone); 

3. Liking and disliking are mutually exclusive — you can’t like and dislike someone 

at the same time;  

4. To quote an ancient proverb, “The enemy of my enemy is my friend.” 

 

2.1.2 Definition of Ontology 

Numerous definitions of the concept of ontology can be found in several 

literatures. We’ll employ one that is particularly appropriate to the point of view taken in 

this study. The Federation of Intelligence Physical Agents (FIPA) provides a discussion 

of ontology that can be found on the web [6]. FIPA’s concept of an ontology is a logical 

formalism that tries to express a set of possible world structures through its family of 

models. The definition itself tries to make clear that the language with its axioms usually 

cannot exactly capture the set of world structures that the definer intends, so it is an 

approximation to this intended conceptualization. In our approach, we will not 

necessarily restrict the defining mechanism to a logical formalism. For example, 

eXtensible Markup Language (XML) [7] might be used to capture a set of possible world 

states while itself not being explicitly formulated within the approach of classical logic. 

We will explicitly incorporate a concept of pragmatic frame, which delineates a data 

engineer’s domain of interest and relates an ontology as being adequate or not to this 
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domain. It will turn out, for example, that without further validity-checking tools, XML 

cannot represent the worlds in which enemies of enemies are always friends. Further, we 

will also want to explicitly consider how world states can change over time. For example, 

it might be that our islanders can’t get along with each other for more than one day at a 

time, therefore, if x likes y today, then x will dislike y tomorrow. Further, suppose that it 

takes a whole week for people who have a falling out to reconcile. So, if x dislikes y 

today, then only this time next week will the corresponding “1” in the Dislike matrix 

disappear. Thus, we’ll be interested not only in static data engineering but also in 

dynamic data engineering, and this will lead us toward including the full capability of 

modeling and simulation. 

 

2.1.3 Pragmatics: The Information Exchange Framework 

A producer observes the state of the world at its location and encapsulates it in a 

message to a consumer that stores it for later use. As we noted previously, the world state 

is a member of a set delineated by an ontology that reflects the designer’s 

conceptualization. But what could that conceptualization be? By taking into account the 

pragmatics of the situation, we get a way to answer this question. By pragmatics we 

mean the aspect of language that has to do with how the information transmitted by a 

message will be used. In Figure 1, we can point out how the stored data will be used later. 
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Figure 1. Information exchange framework [5] 

 

Consider two examples 

1. Information Sent by a Dealer to Department of Motor Vehicles  

Whenever you buy a new car, some information is sent from the dealer to the 

Department of Motor Vehicles where you live, which stores it in its database. The 

pragmatics of the use here is the subsequent processing of this data — it will be 

used when you register the vehicle and pick up your plates, and to compute taxes 

and annual renewals. 

 

2. Information Sent by a Dealer to Manufacturer’s Headquarters 

Every month a car dealership sends a sales report to the manufacturer’s 

headquarters to allow it to assess inventory levels and plan its production schedule 

for the next month. Table 1 illustrates the framework.  
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Event causing 
world state 
change 

Producer Consumer 
Pragmatics: 
Subsequent 
use 

Message 
Contents 

New car purchase 
car ownership 
transferred from 
dealer to buyer 

Dealer Department of 
Motor Vehicles 

Register 
owner’s vehicle 
and give out 
plates 

Buyer and 
vehicle 
identification 

New car purchase 
car ownership 
transferred from 
dealer to buyer 

Dealer Manufacturer 
Headquarters 

Assess 
inventory levels 
and production 
schedule 

Number of cars 
of each make 
and model that 
were sold during 
the month 

 
Table 1. The purchase of the car caused a world state change 

 

In our framework, an event occurred when you bought the car. This changed the 

world because the car left the dealer’s lot and it is now yours to drive. The producer is the 

same — the car dealer — but the pragmatics are different in the examples just given: the 

consumers are different (Department of Motor Vehicles and manufacturer) and their 

subsequent use of the received information will be different. The point is this: notice how 

the pragmatics determines the nature of the data to be sent, namely, the contents of the 

message. In the first case, the dealer needs to provide specific information about the 

buyer (name, address, etc.) and vehicle (identification number, make, model, etc.). In the 

second case, this information is not relevant. Instead, the dealer needs to inform the 

manufacturer of how many cars of each make and model he sold during the month. 

We’ll say that an ontology supports (or is applicable to) a pragmatic frame if the 

world states (or state changes) that it can describe include those that are needed by the 
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frame. In other words, the message contents encode the right information for the intended 

use. Notice that an ontology can be designed to describe a set of world states for some 

domain. This might be feasible for a limited situation such as the states of affection of 

four people on an island. However, in many situations, it would be much more efficient 

to describe the change in state caused by an event in contrast to the new state that was 

engendered. So we allow for ontologies that describe state changes rather than states. For 

example, in the case of an island with one million people, we might explicitly convey the 

few pairs of people that started, or ceased, liking each other since the last update. Indeed, 

we’ll later discuss such change-based updating in depth. For the moment, we note that the 

producer and consumer must have agreed initially that entries in the database remain 

valid unless explicitly updated.  

An ontology is minimal for a frame if it supports only that frame, not a larger one. 

For example, we could have minimal ontologies for the vehicle registration and inventory 

update frames, respectively. As illustrated in Figure 2, the first ontology would provide a 

means to describe the buyer’s name, address, and Social Security number and the 

vehicle’s make, model, and identification number. The second would provide a means to 

describe the number of cars of each make and model sold during the last month. On the 

other hand, we could have one larger, more general ontology to cover both needs (and 

possibly others). The minimalist approach offers conciseness and efficiency, whereas the 

generalist approach potentially offers better integration and, if designed with forethought, 

potential extensibility to meet future demands. There will always be a tradeoff between 
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these approaches, but the scope of the ontology — the part of the world that it can help to 

describe — must ultimately be limited by a deliberate choice of the developer. 

 

 

Figure 2. Car purchase example of the information exchange framework [5] 

 

2.1.4 Ontology/Data Engineering based Modeling and Simulation 

Two levels, those of ontology and implementation, constitute the overall 

architecture for our simulation-based ontology engineering methodology. As depicted in 

Figure 3, at the ontology level, the modeler creates an ontology to satisfy the pragmatic 

frames of interest in a given application domain. The pragmatic frames can be specified 

in XML, via restricted natural language, through a GUI which is the SESBuilder [8]. It is 

then automatically encoded to an XML schema/document type definition (XSD or DTD) 

at the implementation level. Such automation is an important advantage, since other 

ontology developments based on UML currently lack the combination of automation and 
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a broad range of tools that the System Entity Structure (SES) framework supports. The 

XML instance documents specified by a schema are formally represented by the family 

of pruned entity structures (PES) at the ontology level. In the context of dynamic data 

engineering, each completely pruned PES specifies a Discrete Event Simulation (DEVS) 

simulation model that constitutes a capability to describe world states that evolve in time. 

When limited to static data engineering, the family of PES represents a logically possible 

set of world states. Each such state is like a snapshot of the world as depicted by the 

ontology in service of the application contexts (the pragmatic frames). An XML 

document instance is the concrete encoding of the abstract PES. It encodes data in an 

information exchange that either directly represents a world state in the static case, or can 

be transformed to a simulation model in the dynamic case. Finally, those of ontology can 

be modeled and simulated. 

 

 

Figure 3. Simulation-based data engineering methodology [5] 
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2.2 System Entity Structure (SES) 

The basic concept of the System Entity Structure is that a system entity represents 

the real system enclosed within a certain choice of system boundary. In a real system, 

many system entities and the experimental frames are dealt. Thus it is necessary to 

organize the model and experimental frames around the structure. The entity structure is a 

template from which the decomposition trees of the existing models can be extracted. 

Moreover, the entity structure is a template for constructing models from those already 

existing. Professor Zeigler proposed the System Entity Structure (SES) [9, 10] and the 

SES is a theory to design systems hierarchically and structurally. The basic idea of the 

SES is that a system entity represents the real system enclosed within a certain choice of 

system boundary. In real system, many system entities and the experimental frames are 

dealt. Thus it is necessary to organize the model and experimental frames around the 

structure. The SES includes entities and their relationships. Table 2 presents the key 

components consisting of the SES. 

 

Components Descriptions 

Entity 
A real world object which either can be independently identified or is 
postulated as a component in some decomposition or a real world 
object. e.g., building 

Entity-Aspect (|) 
A decomposition, a way to break down an entity into parts or 
components (entities). The children of an aspect are entities representing 
components in a decomposition of its parents. e.g., door, roof,  and etc. 
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Multiple Entity (|||) A multi-decomposition, relationship between multi entities and an 
entity. e.g. doors and front door and back door. 

Entity-
Specialization (||) 

A classification, a way to classify an entity into special cases or 
subclasses. The children of a specialization are entities representing 
variants of its parent. e.g., home, office, store, or etc. 

 
Table 2. Components of System Entity Structure (SES) 

 

 To construct a desired simulation model to meet the design objective, the pruning 

operation is used to reduce the SES to a pruned entity structure, PES [9]. The pruned 

entity structure can be transformed into a composition tree and eventually synthesized 

into a simulation model. First of all, the SES, which can describe the components in the 

source data, is developed. The SES structure produces important information to build the 

DTD or Schema. Entity, Aspect, Multi-Aspect, and Specialization build the primary 

components in DTD or Schema. At the ontology level, the modeler develops one or more 

SESs depending on models, and the SESs are merged to create an ontology in order to 

satisfy the pragmatic frames of interest in a given application domain. An SES can be 

specified in various ways, and then it is transformed to an XML schema or an XML 

document type definition (XSD or DTD) at an implementation level. The pruning 

operation of SESs creates pruned entity structures (PESs), and the PESs transform to 

simulation models. 

In chapter 2.3, we provide an overview of a language, which is eXtensible 

Markup Language (XML). 
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2.3 Extensible Markup Language (XML) 

The Extensible Markup Language (XML) is a W3C-recommended general-

purpose markup language for creating special-purpose markup languages, capable of 

describing many different kinds of data [7]. XML is an extensible language not like 

HTML. HTML limits tags within certain syntax. Otherwise, users could define tags 

according to contents of documents and let others use the defined tags in XML. XML is a 

language for expressing other languages, that is a meta language. As a result, XML will 

be widely used due to its characteristics of platform independency. Also, since XML 

substitutes all kinds of data structure and supports various data format [11], it extends its 

uses to search engines, data engineering, and etc. 

 

2.4 Discrete Event Simulation  

2.4.1. Fundamentals of Computer Simulation 

 Computer simulation is an activity of representing the temporal behavior of a 

physical or a conceptual system for a specific period of time. A simulation model is a 

specification representing the system in terms of a set of states, events, and behavior 

functions. Simulation time can be slower, faster, or equal to physical time. Also, time 

resolution can be arbitrarily defined [12]. 

 During simulation, the current status of a model is represented by a state. A state 

transition occurs just before initiating or after completing a particular behavior. A state 

feasibility test may be involved before a state transition happens. An event is a data 
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object that is produced and consumed by simulation components: e.g., logical simulator 

and coordinator. If necessary, a set of events is exchanged among those components in 

order to complete a simulation task. A behavior function is invoked when events are 

received or produced by a model or a specific behavior of the model is to be performed. 

 Simulation is classified into continuous simulation and discrete simulation 

according to the state transition occurrence interval. During a simulation, if a state 

transition occurs continuously in time, the simulation is a continuous simulation. While, 

if state transitions happens in discrete time, the simulation is called a discrete simulation. 

In a discrete simulation, if state transitions occur in term of discrete time interval (or time 

steps), the simulation is referred to as a time driven discrete simulation (or discrete-time 

driven simulation). An event-driven discrete simulation (or discrete-event driven 

simulation) is defined if state transitions happen based on event activities. Figure 4 

depicts the classification of a computer simulation. 

 

Computer Simulation

DEVS

Continuous Time Simulation Discrete Time Simulation

Event Based Simulation Time Based Simulation

 

Figure 4. Classification of computer simulation 
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 Depending on the simulation time synchronization scheme, a simulation is viewed 

as a conservative or an optimistic activity at a specific time. All simulation activities are 

completed before advancing time and time must be synchronized in the conservative 

scheme [13, 14]. In the optimistic scheme, time does not need to be synchronized 

globally and simulation activities at a particular time need not all be completed before 

advancing time. Only when a time causality problem occurs, time needs to be 

synchronized [15, 16]. Conservative schemes guarantee all activities are performed 

without any time causality problems. By loosening the time causality constraint, 

optimistic schemes perform better for certain simulation problems that contain a high 

degree of parallelism between simulation models. However, it requires additional 

memory to keep information in regards to activities that occurred at a previous time. 

When time causality problems happen, current simulation time rolls back to a previous 

time that did not violate time causality. Generally, the performance of the simulation is 

not directly associated with a simulation time synchronization scheme but instead is 

related to the nature of the given simulation problem [12]. 

 

2.4.2. Discrete Event System Specification (DEVS) 

The Discrete Event System Specification (DEVS) is a formalism providing a 

means of specifying a mathematical object called a system [17]. It also allows the 

building of modular and hierarchical model compositions based on the closure-under-

coupling paradigm. The DEVS modeling approach captures a system’s structure from 

both functional and physical points of view. A system is described as a set of input/output 
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events and internal states along with behavior functions regarding event 

consumption/production and internal state transitions. Generally, models are considered 

as either atomic models or coupled models. The Atomic model can be illustrated as a 

black box having a set of inputs(X) and a set of outputs(Y). The Atomic model includes a 

description of the interface as well as the data flow between itself and other DEVS 

models. The Atomic model also specifies a set of internal states(S) with some operation 

functions (i.e., external transition function (δext), internal transition function (δint), output 

function (λ), and time advance function (ta()) ) to describe the dynamic behavior of the 

model. Figure 5 illustrates the system representation of an atomic model.  

 

 

Figure 5. System representation of atomic model [17] 
 

The external transition function (δext) carries the input and changes the system 

states. The internal transition function(δint) changes internal variables from the previous 

state to the next when no events have occurred since the last transition. The output 

function (λ) generates an output event to outside models in the current state. The time 
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advance (ta()) function adjusts simulation time after generating an output event. The 

Atomic model is specified as follows: 

 

Atomic model: 

M = < X, S, Y, δint, δext, λ, ta > 

where, 

  X: set of external input events; 

  S: set of sequential states; 

  Y: set of outputs; 

  int : :S Sδ − >  internal transition function 

  : :b
ext Q X Sδ × − >  external transition function 

where,  

Q = {(s, e)| s∈S, 0 ( )e ta s≤ ≤ }; is the set of total states e is the 

elapsed time since last state transition 

  bX  is a set of bags over elements in X, 

  : :bS Yλ − >  output function generating external events at the output 

  0,: :ta S R+
∞− >  time advance function; 

 

 Basic models may be joined in the DEVS formalism to form a coupled model. A 

coupled model is the major class which embodies the hierarchical model composition 

constructs of the DEVS formalism [17]. A coupled model is made up of component 
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models, and the coupling relations which establish the desired communication links.  A 

coupled model illustrates how to couple (connect) several component models together to 

form a new model.  Two significant activities involved in coupled models are specifying 

its component models and defining the couplings which create the desired 

communication networks.  A coupled model is defined as follows and a coupled model 

can be seen in Figure 6: 

 

Coupled Model: 

DN = < X, Y, D, {Mi}, {Ii}, {Zi,j} >  

where, 

  X: set of external input events; 

  Y: a set of outputs; 

  D: a set of components names; 

  for each i in D, 

   Mi is a component model 

   Ii is the set of influences for i 

     for each j in Ii 

   Zi,j is the i-to-j output translation function 

 

A coupled model template contains the following information [18]:  

• The set of components  

• The set of input ports through which external events are received  
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• The set of output ports through which external events are sent  

• The coupling specification consisting of:  

o The external input coupling (EIC) connects the input ports of the 

coupled model to one or more of the input ports of the components  

o The external output coupling (EOC) connects the output ports of 

the components to one or more of the output ports of the coupled 

model  

o Internal coupling (IC) connects output ports of components to 

input ports of other components  

 

 

Figure 6. An example of coupled model [17] 
 

2.4.3 Experimental Frame 

An experimental frame is a specification of the conditions under which the system 

is observed or experimented with [17]. As such, an experimental frame is the operational 
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formulation of the objectives that motivates a modeling and simulation object. For 

example, out of the multitude of variables that relate to a forest, the set {lightning, rain, 

wind, smoke} represents one particular choice. Such an experimental frame is motivated 

by the interest in modeling the way lightening ignites a forest fire. A more refined 

experimental frame would add the moisture content of the vegetation and the amount of 

unburned material as variable. Thus, many experimental frames can be formulated for the 

same system and the same experimental frame may apply to many systems. Basically an 

experimental frame specifies a limited set of circumstances under which a system (real 

system or model) is to be observed or subjected to experimentation. The objectives and 

experimentation play a role in the modeling enterprise at least equal in significance to 

model construction. However, in current modeling and simulation world, the statement of 

objective is not formalized and cannot play its proper role in a computer supported 

methodology. Experimental Frame demonstrates how the statement of objectives can be 

operationalized in a process whose product is the formulation of experimental frames. 

Initial objectives lead to asking specific questions about the real system which in turn 

require that suitable variables be defined. Such a choice of variables is represented in 

experimental frames which also express constraints on the trajectories of these variables.  

There are two equally valid news of an experimental frame. One views a frame as 

a definition of the type of data elements that will go into the data base. The second views 

a frame as a system that interacts with the system of interest to obtain the data of interest 

under specified condition. In this view, the frame is characterized by its implementation 

as a measurement system or observer. In the implementation, a frame typically has three 
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types of components: generator, acceptor, and transducer. Generator generates input 

segments to the system. Acceptor monitors an experiment to see the desired experimental 

conditions are met. Transducer observes and analyzes the system output segments. Figure 

7 illustrate experimental frame and its components. 

 

SYSTEM

Experimental Frame

generator acceptor transducer

 

Figure 7. Experimental frame and its components 

 

 Component 1 : Generator 

Generator is an active DEVS which is input free and stimulates the system with 

input trajectories. Generator is capable of scheduling itself for a state transition, 

producing an output as a function of this state, and rescheduling itself for the next such 

iteration. The output function is defined in such a way that an output segment produced 

by such a generator when started in an initial state satisfies the constraint of a DEVS 

segment. Generators may be used to implement arrival processes among other classes of 
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input segment to models. In continuous systems such trajectories take the form of various 

kinds of periodic functions such as steps and ramps, or various periodic functions such as 

sine waves or square waves. In discrete event systems, arrival of events may be periodic 

or stochastic. In the latter case, we need to specify the probability distribution of the inter 

arrival times, such as uniform or exponential. The type of processing required is also part 

of the generator specification.  

 

 Component 2 : Acceptor 

We often make a distinction between the transient and steady state characteristics 

of system behavior. The acceptor is the slot in the experimental frame where conditions 

limiting the observation of behavior, such as steady state versus transient, can be 

specified. An acceptor is a passive DEVS with state set partitioned into two sets, the 

accepting and non accepting states. In addition the acceptor designates a state in which 

the system is always initialized. An input segment is accepted by such a system, if it 

causes the acceptor to reach an accepting state at the end of its application. 

 

 Component 3 : Transducer   

 The transducer processes the output trajectories, where such post processing may 

range from none at all to very coarse summaries where only certain features of interest 

are extracted. In discrete event systems, we might be interested in the turnaround times 

required to process jobs or in the throughput, rate of job completion. Utilization of 

various resources and of special events such as failure or blocking may be interest. 
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Usually the many numbers produces are summarized into statistical quantities such as the 

average, maximum, or minimum. In experimentation, input variables are those variables 

that will be treated as influencing the system under study, and output variables are those 

capable of direct measurement and mediating the computation of variables of interest for 

the modeling objectives. There is no output segment specification since these are 

determined by the system during experimentation. When a computation involved in 

computing interest variables from mediating variables is moved to the experimental 

frame stage, these computations are expressed as the summary mapping of the frame. The 

appropriate concrete form of specifying such mapping is the transducer. 

 

2.5 Web Service 
 
 A web service [19] is a software system for communicating between a client and a 

server over a network with XML messages called Simple Object Access Protocol 

(SOAP) [7, 20]. The web service makes the request of machine-to-machine or 

application-to-application communication possible with neutral message passing even 

though each machine or application is not same domain. Such interoperability among 

heterogeneous applications is realized by web service providing a standard means of 

communication and a platform independency. 

 Web services technologies architecture [21] is based on exchanging messages, 

describing web services, and publishing and discovering web service descriptions. The 

messages are exchanged by SOAP messages conveyed by internet protocols. Web 

services are described by Web Services Description Language (WSDL) [22] which is 
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XML based language providing required information, such as message types, signatures 

of services, and a location of services, for clients to consume the services. Publishing and 

discovering web service descriptions is managed by Universal Description Discover and 

Integration (UDDI) [23] which is a platform-independent and XML style registry. In 

other words, three roles are classified in the architecture that is, a service provider, a 

service discovery agency (UDDI), and a service requestor. The interaction of the roles 

involves publishing, finding, and binding operations. A service provider defines a service 

description for a web service and publishes it to a service discovery agency. This 

operation is publishing operation between the service provider and the service discovery 

agency. A service requestor uses a finding operation to retrieve a service description 

locally or from a discovery agency and uses the service description to bind it with a 

service provider and invoke or interact with the web service implementation. Figure 8 

illustrates the basic Web services architecture describing three roles and operations with 

WSDL and SOAP. 

Discovery
Agent

WSDLWSDL

SOAP

UDDI

publishfind

bind
serverclient

Service 
Requestor

Service 
Provider  

Figure 8. Web services architecture 
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 Whereas a web service is an interface described by a service description, its 

implementation is the service which is a software module provided by the service 

provider (server) on the network accessible environment. It is invoked by or interacts 

with a service requestor (client). 

 Web services are invoked by many ways but the common use of web services is 

categorized to three methods such as Remote Procedure Call (RPC), Service Oriented 

Architecture (SOA) [24], and Representational State Transfer (REST) [25]. RPC Web 

services was the first web services approach which had a distributed function call 

interface described in the WSDL operation. Though it is widely used and upheld, it does 

not support loosely coupled concept for reasons of mapping services directly to language-

specific functions calls. A web service is an implementation of Service-Oriented 

Architecture (SOA) concepts, which means a message is important unit of 

communication regarded as “message-oriented” services. This approach supports a loose 

coupling concept focusing on the contents of WSDL. REST Web services focuses on the 

existence of resources rather than messages or operations. It considers WSDL as a 

description of SOAP messaging over HTTP, or is implemented as an abstraction on top 

of SOAP. 
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CHAPTER 3. STATE OF THE ART 

 

 In this chapter, we illustrate relative studies such as the Web Ontology Language 

(OWL), the Unified Modeling Language (UML), and Protégé. Also, we introduce 

practical ontology engineering examples such as a semantic web music service 

(MusicBrainz), a coding system to classify both products and services (UNSPSC), and a 

web-based talk system (ITTALKS). 

 

3.1 The Web Ontology Language (OWL) 

 The Web Ontology Language (OWL) [26] is a W3C recommended ontology 

standard under development to support such intelligent queries. OWL is designed not 

only for understanding human-readable presentation of content but also for developing 

applications for information processing. OWL’s wide vocabulary and formal semantics 

enhance machine-interpretability of web contents comparing to Extensible Markup 

Language (XML), Resource Description Framework (RDF) [27], or Resource 

Description Framework Schema (RDF-S) [28]. The OWL language provides three 

increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The 

standard example to explain the goals and capabilities of OWL is the wine agent who 

must be is to be capable of searching the web for answers to queries such as what wine 

would go with a particular dinner course. The basic ontology framework employs classes, 

class hierarchies, and properties, which are standalone binary relations. The primary 
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objective of OWL is to support automated logical reasoners that can derive new 

inferences when applied to combined ontologies from multiple web sites. OWL is 

intended to operate in the open web environment where ontologies are not developed 

under central control. Since information cannot be retracted, reasoners must be prepared 

to cope with contradictions that can arise from merging diverse independently developed 

ontologies. This represents a departure from earlier applications of formal logic that 

employed brief belief revision mechanisms to maintain logical consistency under the 

addition of new knowledge. A research project at Stanford University, Protégé, is a free, 

open source ontology editor and knowledge-base framework which is implemented for 

the Open Knowledge Base Connectivity (OKBC) [29] compatible knowledge model and 

OWL. 

 

3.2 The Unified Modeling Language (UML)  

 The Unified Modeling Language [30] is the Object Management Group’s [31] 

most used specification, and the world models not only application structure, behavior, 

and architecture, but also business process and data structure. The Object Management 

Group’s (OMG) Unified Modeling Language (UML) helps to specify, visualize, and 

document models of software systems, including their structure and design, in a way that 

meets all of these requirements. UML can be used for business modeling and modeling of 

other non-software systems too. Using any of the large number of UML-based tools on 

the market, future application requirements and design of a solution that meets them can 

be analyzed, representing the results using UML's standard diagram types. Recently, 
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OMG have improved with a major update, UML 2.0. UML 2.0 defines thirteen types of 

diagrams. Figure 8 helps to understand the diagrams by a hierarchically categorized tree 

structure.  

 

 

Figure 9. UML diagrams: hierarchically categorized [32] 

 

1. Structure diagrams: Things what should be in systems 

• Class Diagram 

• Component Diagram 

• Composite Structure Diagram 

• Deployment Diagram 

• Object Diagram 

• Package Diagram 

 

2. Behavior diagrams: Things that happen in systems 
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• Use Case Diagram 

• State Machine Diagram  

• Activity Diagram 

 

3. Interaction Diagrams: Flows of controls and data in systems 

• Sequence Diagram 

• Communication Diagram 

• Interaction Overview Diagram 

• UML Timing Diagram 

 

3.3 Protégé  

 Protégé is an open-source development environment for ontologies and 

knowledge-based systems. It is a tool supporting the construction of ontologies, and it 

also provides an application platform for knowledge-based systems and libraries for 

application building. Protégé was developed at Stanford University. It is the best-known 

ontology editor with plug-ins that supports OWL and enables the following [33]: 

 

• loading and saving OWL and RDF ontologies, 

• editing and visualizing OWL classes and their properties, 

• defining logical class characteristics as OWL expressions, 

• executing reasons such as description logic classifiers, 
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• editing OWL individuals for Semantic Web markup. 

 

 Protégé has flexible architecture and is easy to configure and extend. Protégé has 

an open-source Java API for the development of custom-tailored user interface 

components or arbitrary semantic web services. There are several other ontology editors 

such as OilEd, OntoEdit or DUET. However, Protégé, with its plug-in architecture, gives 

much wider possibilities. Powerful associations, which consist of developers, 

universities, governments, and organizations, have supported Protégé, and continuous 

updates and revisions are promising strengths of Protégé. Protégé-2000 was first 

published in 1999, and Protégé 4.0 alpha is available now, December 2007. Currently, 

there are 82,980 registered users. The Protégé platform supports two main ways of 

modeling ontologies via the Protégé-Frames editor [34] and Protégé-OWL editor [35].  

 The Protégé-Frames editor enables users to build and populate ontologies that are 

frame-based, in accordance with the OKBC. In this model, an ontology consists of a set 

of classes organized in a subsumption hierarchy to represent a domain's salient concepts, 

a set of slots associated with classes to describe their properties and relationships, and a 

set of instances of those classes—individual exemplars of the concepts that hold specific 

values for their properties. The Protégé-OWL editor enables users to build ontologies for 

the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL 

ontology may include descriptions of classes, properties and their instances. Given such 

an ontology, the OWL formal semantics specifies how to derive its logical consequences, 

i.e. facts not literally present in the ontology, but entailed by the semantics. These 
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entailments may be based on a single document or multiple distributed documents that 

have been combined with using defined OWL “mechanisms.” In addition, Protégé 

ontologies can be exported into a variety of formats including RDF(S), OWL, and XML 

Schema. 

 

3.4 Practical Ontology Examples  

In this chapter, we introduce three practical examples for ontology engineering. 

The first example is MusicBrainz which is a semantic web music service. The second 

example is UNSPSC, which stands for United Nations Standard Products and Services 

Code, a coding system to classify both products and services. The last one is a web portal 

offering access to information about talks, seminars, and colloquia related to information 

technology, ITTALKS.  

 

3.4.1 MusicBrainz: A Semantic Web Music Service 

 MusicBrainz is a music metadatabase, and its purpose is to create a 

comprehensive open-content music database. It systematically manages music metadata, 

which is created by various organizations, through an ontology. MusicBrainz includes a 

large database of music metadata. It contains information about 349,693 artists, 533,749 

albums, and 6,275,935 tracks at Dec, 2007 [36]. The MusicBrainsz metadata provides 

data about music, such as artists, album titles, and tracks, but not the music itself.  
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 MusicBrainz is one of the first the Semantic Web Services [37]. It combines the 

principles idea of the Semantic Web and web services together. The Semantic Web is a 

project to create machine-processable information into human-readable contents on the 

web. The web service is very similar to the Semantic Web, but it aims to enable 

interaction with machine-interpretable information over a network. It assigns a Uniform 

Resource Identifier (URI) about artists, albums, tracks, and other such information to its 

database, and it uses RDF to address information. Instances are expressed only by URIs 

and can escape metadata redundancy and reduce error rates. In this system, an ontology 

facilitates mapping distributed metadata.  

 

3.4.2 UNSPSC: Coding System to Classify both Products and Services 

 The United Nations Standard Products and Services Code (UNSPSC) provides an 

open, global multi-sector standard for efficient, accurate classification of products and 

services [38]. It is a standard to classify hierarchically all the products and services 

throughout the global eCommerce marketplace and eBusiness. The UNSPSC services a 

single global classification system that can be used for the following: 

 

• Company-wide visibility of spend analysis 

• Cost-effective procurement optimization 

• Full exploitation of electronic commerce capabilities 
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 An ontology is used for standardizing common vocabulary items about products, 

and the ontology links together scattered products found on the web. The common 

vocabulary items of the ontology facilitate information exchanges among the products on 

the web.   

 

3.4.3 ITTALKS: web-based talk system 

 ITTALKS is a web portal offering access to information about talks, seminars, 

and colloquia related to information technology [39]. It is a DARPA Agent arkup 

Language (DAML) [40, 41] based system that enables both users and agents interaction. 

ITTALKS implements ontologies to describe talks and details about the talk, such as 

people, locations, and discussion topics. The ontologies are connected in ITTALKS 

system, but they are independent. In this independently cooperative environment, each 

ontology develops by itself, and individual advances promote the complete ITTALKS 

system. 
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CHAPTER 4. DESIGN ISSUES OF SES/NZER 

 

 The goals of a network traffic analyzer are to help network administrators to 

manage very complicated network topology and to increase efficiency for secure and 

effective data transfer. The network use, especially the number of internet users, 

increases rapidly. Also, high quality of service is required, and this requirement results in 

sudden network traffic increases. As a result, designing efficient systems for managing 

large network traffic data becomes an important issue. Ontology/data engineering 

methodology is used to build an effective system for analyzing large amounts of network 

traffic data. The primary objective of this study is to develop a system that allows easy 

and efficient information sharing among organizations. The SES and XML modeling 

approaches allow systems to easily handle huge amounts of data, and the two approaches 

facilitate the modeling and simulation study because the architecture of the SES is a 

hierarchical tree structure. In addition, the characteristics of XML, such as scalability and 

portability, are very good for managing metadata. This study illustrates how to analyze 

network behaviors that are requested by customers. Both protocol analysis and network 

throughput analysis are provided as pragmatic frames (users’ applications). Therefore, we 

design a behavior (SES) reflecting network packet transmissions and packet information. 

The SES includes a methodology for interpreting metadata in SES/NZER. This chapter 

shows the overview of developing processes, i.e., the way of capturing network traffic 

data and analyzing the data, of SES/NZER. Figure 10 shows the developing processes of 
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SES/NZER. We classify three levels: Design, Implement, and Analyze levels. In the 

Design level, we design an SES for network traffic behavior and capture network traffic 

in a subnet. In the Implement level, the SESBuilder [8] generates an XML schema for an 

SES. From an XML schema, XML instance files including data attribute values that are 

created through pruning operations at the Analyze level. Also, we run a simulation 

(DEVS modeling and simulation) and evaluate results. The simulation framework is 

automatically re-structured according to customers’ requirements (pragmatic frames). 

Developing an automated system design is the secondary goal in this study. 

 

Network Traffic 
Capture using EtherealOntology Design

Writing Natural Language

Ontology XML Schema in SES

XML Instances
By Pruning AnalysisSimulation

SESBuilder

Design Level

Implement Level

Analyze Level

 

Figure 10. Developing process of the network traffic analysis system 

 

4.1 SES design for network traffic analysis 

 In this chapter, we design network behaviors using SES theory. The SES 

represents network traffic behaviors for the purpose of a host-based analysis. Nine 
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elements, which are an event time, a source IP address, a source MAC address, a source 

port number, a destination IP address, a destination MAC address, a destination port 

number, a protocol, and packet length, are examined in a network traffic analysis. These 

nine essential elements are included in network packet headers. Categorizing these nine 

elements is important for fast and accurate network behavior evaluation and analysis. We 

use the SES methodology to classify network packet information in the hierarchical tree 

structure. Figure 10 is a hierarchical SES tree structure representing network packet 

behaviors.  

HostBasedAnalysis NetworkBasedAnalysis

PacketInfoTime Protocols

TCP UDP HTTP FTP

Protocol_spec

Host

DestHostSrcHost

Addresses Ports

MAC 
Address

IP
Address Port

{~ event_time} {~ packet_size}{~ protocol_type}

{~ protocol_name}
{~ protocol_name} {~ protocol_name}

{~ protocol_name}

{~ num_hosts = 2}

{~ ip_address} {~ mac_address} {~ port_number}

NetworkTrafficAnalysis_spec 

HostBasedAnalysis_dec

Hosts

Host_multAsp

SrcHost_DestHost_dec

channel_dec channel_dec

Addresses_spec Ports_multAsp

NetworkTrafficAnalysis

Addresses Ports

MAC 
Address

IP
Address Port

{~ mac_address} {~ port_number}

Addresses_spec Ports_multAsp

{~ ip_address}  

Figure 11. System Entity Structure (SES) of network traffic behavior 
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The root entity NetworkTrafficAnalysis is the top-level entity that analyzes 

network traffic, and using the NetworkTrafficAnalysis_spec, the NetworkTrafficAnalysis 

can be implemented with the HostBaseAnalysis or the NetworkBasedAnalysis. Since the 

aim of this example is to analyze network traffic on hosts, we do not branch the 

NetworkBasedAnalysis any further. The HostBasedAnalysis is composed of four entities: 

the Hosts, the Time, the Protocols, and the PacketInfo. The Hosts is composed of multi-

Host, and the Host has an attribute identifying the number of hosts, and that value is set 

as two because the Host is always composed of the SrcHost and the DestHost. The 

SrcHost is composed of two entities such as the Addresses and the Ports. The Addresses 

can be specialized as the IPAddress or the MACAddress using the Addresses_spec. Both 

the IPAddress and the MACAddress have their own attribute of the ip_address and the 

mac_address. The Ports is composed of multi-Port, and the Port has an attribute, the 

port_number. The DestHost has the same tree structure as the SrcHost. One of the 

HostBasedAnalysis’s children is the Time, and the Time has an attribute of the 

event_time. Another child entity of the HostBasedAnalysis is the Protocols, and the 

Protocols has the protocol_type attribute. The Protocols can be implemented with the 

TCP, the UDP, the HTTP, or the FTP using the Protocol_spec. Those four entities have 

their own attribute, the protocol_name. We filter and capture network traffic data related 

to four very common protocols. The last entity of the HostBasedAnalysis’s children is the 

PacketInfo. In this study, we aim to analyze throughputs so that the packet_size is the 

only attribute of the PacketInfo entity. 
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Based on this SES, we monitor network activities and capture the fundamental 

packet information which is mentioned in this chapter. We also design simulation models 

for network traffic analysis, and run simulations to examine how efficient the SES based 

data engineering methodology is in the research areas of network protocols/services and 

throughput evaluations.  

 

4.2 Network Traffic Data 

 To evaluate network traffic behaviors, network traffic data is required. Network 

traffic data could be real data, virtual data (simulated experimental results), or existing 

dataset such as KDD 1999 Cup dataset [42]. In this study, we use real network traffic 

data. To obtain real data, we monitor network behaviors in a subnet of Arizona Center for 

Integrative Modeling and Simulation (ACIMS) lab [43] in the department of electrical 

and computer engineering at the University of Arizona. We use the Ethereal [44], which 

is a well-known network protocol analyzer, for capturing network behaviors. Figure 11 

shows a screen shot of the Ethereal. 
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Figure 12. Network traffic capture using Ethereal 

 

 Recall that the fundamental elements in network packet headers—an event time, a 

source IP address, a source MAC address, a source port number, a destination IP address, 

a destination MAC address, a destination port number, a protocol, and a packet length—

are classified hierarchically based on SES methodology to evaluate network traffic 

activities. We set up Ethereal to capture only the packet elements listed above, and to 

capture network behaviors of the target network that make up the subnet of ACIMS lab. 

We notice that the number of events is very large; for example, the number of packet 

transmitted inside the subnet during one second is about fourteen hundred and twenty. 

Suppose that we need monthly information or even yearly information. Data captured 
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during those time periods would include a tremendous number of events. It may take a 

very long time, or it may be impossible to evaluate that huge network traffic data because 

of memory overflows. But, fast and accurate network analysis is required for the network 

system manager to save budget and recover their systems from problems such as a 

hacker’s intrusion, attacks, or a system down caused by viruses. That is the reason why 

we propose a new approach for analyzing network traffic behaviors quickly and 

efficiently based on the data engineering theorem. The data engineering methodology 

using the SES envisions efficient data management approaches for integrative system 

evaluations.  

 

4.3 Instantiation (PES Generation) 

This chapter illustrates the Implement Level in Figure 5. We use the SESBuilder 

for designing an SES (network traffic behaviors). The SESBuilder is an integrated tool to 

utilize the System Entity Structure (SES). The SESBuilder generates ontologies in XML 

schema format. The SESBuilder also creates XML instance files followed by SES 

pruning rules. The first step of performing the SESBuilder is writing a natural language 

formatted script that represents a behavior (ontology). Writing up ontologies by human-

readable natural language is more convenient than writing up scripts by machine-readable 

languages. The SESBuilder has its own natural language interpreter, but we must follow 

its rules strictly. Figure 13 addresses the natural language which presents the SES shown 

in Figure 11. 
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A NetworkTrafficAnalysis can be HostBasedAnalysis or NetworkBasedAnalysis in 
analysis! 
 
From the data perspective, a HostBasedAnalysis is made of PacketInfo, Time, Hosts, 
and Protocols! 
 
The Time has a event_time! 
The range of Time's event_time is string! 
 
The Hosts has a num! 
The range of Hosts's num is double with values 2! 
From the mult perspective, a Hosts is made of more than one Host! 
From the host perspective, a Host is made of a SrcHost, and DestHost! 
From the compose perspective, A SrcHost  is made of Addresses, and Ports! 
From the compose perspective, A DestHost is made of Addresses, and Ports! 
 
Addresses can be IPAddress, or MACAddress in mediaType! 
The IPAddress has a ip_address! 
The range of IPAddress's ip_address is string! 
The MACAddress has a mac_address! 
The range of MACAddress's mac_address is string! 
 
From the mult perspective, Ports are made of more than one Port! 
The Port has a port_number! 
The range of Port's port_number is double! 
 
Protocols can be TCP, UDP, HTTP, or FTP in protocol! 
The Protocols has a protocol_type! 
The range of Protocols's protocol_type is string! 
The TCP has a protocol_name! 
The range of TCP's protocol_name is string! 
The UDP has a protocol_name! 
The range of UDP's protocol_name is string! 
The HTTP has a protocol_name! 
The range of HTTP's protocol_name is string! 
The ARP has a protocol_name! 
The range of FTP's protocol_name is string! 
 
The PacketInfo has a packet_size! 
The range of PacketInfo's packet_size is double! 
 

 
Figure 13. Natural language representing the SES for network traffic behavior 
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 The SESBuilder needs a natural language script as its initial input. The internal 

natural language interpreter verifies if an input natural language script follows its 

syntactic rules. Once a natural language script is verified, the SESBuilder generates an 

XML schema. The XML schema, including entities and attributes, represents the 

hierarchical SES tree structure. Processes of generating an XML schema from an SES 

and a corresponding natural language script in the SESBuilder are as given below: 

 

1. Users write a natural language depicting a behavior    

2. The SESBuilder interprets the natural language script 

3. The SESBuilder generates an XML schema (SES) which represents the behavior 

 

Figure 14 shows the relationships among the behavior in SES structure, the 

natural language, and the XML schema.  

 

 

Figure 14. Transformation from the SES to the XML code 
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An SES is a method to describe an ontology (behavior) conceptually. SESs 

(ontologies) represent real world states. A pruning operation instantiates SESs. The 

Pruned Entity Structure (PES) is a composition tree structure instantiated from SES, and 

it is used in simulation models and data engineering purposes. SESs are illustrated in 

XML DTDs or XML Schemas, but attributes’ values of entities are not included in either 

XML DTSs or XML Schemas. The XML schema in Figure 14 shows entity names and 

attribute types. However, we need practical, usable objects that include real values. XML 

documents (PESs) include data values and information as well as entities. PESs (XML 

documents) are used in simulation models and data engineering purposes. Figure 15 

illustrates how PESs are produced from an SES. 

 

 

Figure 15. Multi-aspect for pruning of copies of its entity 
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 Because networks are so active that the number of events, which is the number of 

generated packets, are enormous, they are not efficient to handle large amounts of data at 

one time. Therefore, we apply segmentation for pruning an SES. Every PES, from the 

PES for NetworkTrafficAnalysis_1 to the PES for NetworkTrafficAnalysis_n, is 

segmented by time. For instance, if we monitor network behaviors during ten minutes 

and we prune by one minute segmentation, the resulting PES are ten XML instance files. 

Each of the XML instance files are treated in the modeling and simulation environment.  

 

4.4 Automation  

4.4.1 Generating new ontologies 

 Target network behavior analyses are defined by customers. We illustrate two 

cases: protocols analysis and network throughput measurement. The first analysis, 

evaluating the number of packets per protocols, requires two attributes of protocol names 

and identification numbers (ID). The second analysis, measuring network throughput, 

needs event times and packet sizes. This means that every analysis should have a 

different set of information. Keeping unnecessary information decreases computational 

power in both time (CPU) and size (memory). For speed and effectiveness, customers’ 

requirements (pragmatic frames) need to create corresponding SESs which keep right 

entities and attributes. Consequently, users’ target analyses must be modeled and 

simulated based on the new SES and their XML document instances (PESs). The unified 
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processes, creating new SESs and setting up simulation environments dynamically 

according to users’ requests, is our secondary objective in this study.  

 Once customers or users request a protocol usage analysis, a new SES is created 

automatically as given in Figure 16. The SES, ProtocolAnalyses, has multiple aspect of 

ProtocolAnalysis. The entity, ProtocolAnalysis, is composed of two entities, ID and 

Protocol. Users’ requirements produce Java class files reflecting SESs. For preparation, 

we have a generic network behavior analysis class. New Java class files inherit from the 

generic network behavior analysis class. Objects of Java class files are assigned into a 

memory space automatically as soon as Java class files are produced. One instance of a 

class object file depicts one tuple of the SES for ProtocolAnalyses, a set of required 

entities. Multiple instances (tuples) of a class file compose a PES xml instance file for the 

practical purpose of modeling and simulation. 

 

 

Figure 16. Ontology for protocol analyses in SES 

 

 Figure 17 shows an SES for the network throughput evaluation. The SES name is 

ThroughputAnalyses. ThroughputAnalyses has multi-aspect of ThroughputAnalysis. 
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ThroughputAnalysis is decomposed by EventTime and PacketSize. EventTime has an 

attribute, event_time, and PacketSize has an attribute, packet_size. 

 

 

Figure 17. Ontology for throughput analyses in SES 

 

4.4.2 Mapping 

 Once a new SES is generated to correspond to a customer’s requirements, the next 

step is producing new PESs based on the new SES. First, we need to extract correct right 

data values from large PESs instances (XML documents) of a source SES. Then, newly 

customized PESs are generated with the extracted attribute values from the source PESs. 

However, the problem is the case in which structures of two SESs, a source SES and a 

target SES, are different. In this case, it is constrained from generating the new PESs by 

transforming directly from the source PESs. As a result, we must apply an alternative 

operation. Mapping enables the retrieval of required data values from the source PESs 

and assigns the correct values to the target PESs. 



69 
 

 We design the SES, NetworkTrafficAnalysis, for generic purposes of network 

traffic behavior analyses as described in Figure 11. New SESs are generated to 

correspond to customers’ requirements. The next step is producing new PESs based on a 

customized SES. First, we need to extract accurate data values from large PES instances 

(XML documents) of the SES, NetworkTrafficAnalysis. Consequently, new customized 

PESs are generated with the extracted attribute values. However, the problem is the case 

in which structures of two SESs, a source SES and a target SES, are different. The two 

SESs, the NetworkTrafficAnalysis and either the ProtocolAnalyses or the 

ThroughputAnalysis, have different structures. So, it is not possible to generate new PESs 

by transforming directly from source PESs. Alternatively, we must apply an approach, 

mapping operation. Mapping enables the retrieval of required data values from the 

NetworkTrafficAnalysis and the assigning of the data values to the other SES. Figure 18 

illustrates the mapping process.  

 

Pragmatic
Frame

SES
(Network Traffic Analysis)

SES
(Required Analysis)

PES

Mapping

PES

Ontology

Instance 1
Instance 2

Instance n

<Target Analyses>

</Target Analyses>

targetAnalysis.xml

 

Figure 18. Mapping process 
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 Outputs of mapping operations are PES xml instance files. Resulting PESs are 

composed of multiple instances of customers’ required SES. One tuple includes attribute 

data of one packet transmission event in networks. For instance, there are two packet 

transmissions during monitoring time and a customer wants a protocol evaluation. Then, 

a resulting PES looks like the tree structure in Figure 19. Also the PES could be 

expressed by a XML instance file as shown in the right of Figure 19. Tuples have two 

attributes and their values. The XML instance file is used as a role of input source data 

for modeling and simulation purposes. Simulation models extract one tuple at a time and 

evaluate all the retrieved tuples at last for statistical or dynamic results. Processing one 

mass of a tuple instance at one time has advantages of speed and effectiveness against 

processing every small piece of the attributes.  

  

 
Figure 19. PES for protocol analysis with two events 

 

4.5 Automated Modeling and Simulation 
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 Two processes, which are creating new ontologies and generating PESs through 

mapping operations, facilitate automated modeling and simulation. Figure 20 shows an 

overall architecture of these automated modeling and simulation processes. We could 

separate this overall process into the following four steps: 

  

1. Capturing network behaviors, and generating PES instance files 

2. Creating new ontologies according to users’ requests  

3. Mapping from the PESs of captured data to newly generated SES, and resulting 

PESs out 

4. Modeling and simulation using PESs generated in the third step 

 

 
Figure 20. Automated modeling and simulation 
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 We need modeling and simulation to evaluate users’ requested network behaviors. 

In this study, we build models and run simulation under the DEVSJAVA environment. 

DEVS atomic models and a DEVS coupled model are introduced in the next chapter.  
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CHAPTER 5. INTRUSION DETECTION SYSTEM 
 

 In this chapter, we discuss an advanced concept, intrusion detection evaluation. 

Widespread use of networked computers has made computer security a serious issue. 

Every networked computer, to varying degrees, is vulnerable to malicious computer 

attacks that can result in a range of security violations, such as, unauthorized user access 

to a system or the disruption of system services. Traditionally, computer security 

approaches have focused on preventing such attacks from occurring through the use of 

firewalls and security policies. However, for most systems, complete attack prevention is 

not realistically attainable due to system complexity, configuration and administration 

errors, and abuse by authorized users. For this reason, attack detection has been an 

important aspect of recent computer security efforts [45, 46]. 

 Intrusion Detection Systems are systems designed to detect computer attacks. 

They monitor activities of computers and networks for attacks that are inevitable, despite 

security precautions. If attacks are discovered, intrusion detection systems can alert 

administrators, defend against the attacks, or provide information that may help prevent 

future attacks. Intrusion detection systems are not all equal in capabilities or reliability. A 

particular system may only detect a specific subset of possible attacks. In addition, it may 

have a different level of detection accuracy or a different false alarm rate than other 

systems. Results from intrusion detection system evaluations allow users to make 

informed decisions on what system to use and are extremely important for guiding 

research. Intrusion detection systems have become an essential component of computer 
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security to detect these attacks before they inflict widespread damage. A review of 

current approaches to intrusion detection is available in Bishop’s article [47]. Some 

approaches detect attacks in real time and can stop an attack in progress. Others provide 

after-the-fact information about attacks and can help repair damage, understand the attack 

mechanism, and reduce the possibility of future attacks of the same type. More advanced 

intrusion detection systems detect never-before-seen attacks, while the more typical 

systems detect previously seen, known attacks.  

 While advances in network IDS development have led to more stable network 

security, fast and effective analysis methods are needed to save maintenance budgets and 

recover from problems caused by attacks and anomalous behavior errors. These critical 

issues are yet to be addressed due to the lack of appropriate frameworks. Indeed, IDS 

researchers have difficulty in testing their algorithms before applying them to real 

systems. In IDS testing, the main problems are:  

 

1. Problem 1. Limitation of data storage 

a. There are multitudes of events in networks and hosts  

b. Each event includes many attributes of packet information  

2. Problem 2. Lack of analysis methods  

a. Difficulty of generating attacks  

b. Difficulty of implementing complete intrusion detection systems  

3. Problem 3. Excessive resource consumption  
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a. Existing systems require huge computational resources in time (CPU) and 

space (memory).  

 

 A data engineering based modeling and simulation framework is intended to 

support testing and evaluation of network IDS. Data engineering, supported by network 

ontology modeling enables our approach to be efficient in managing and processing huge 

amounts of network traffic data. As an example, the KDD’99 dataset [42] was generated 

by MIT’s Lincoln Lab for the purpose of testing network intrusion detection systems. The 

dataset includes various attack packet events as well as normal transmissions. From this 

dataset, network traffic generators are produced automatically in response to customers’ 

(IDS developers and testers) requirements. Different customers may need different 

attributes for their particular IDSs (pragmatic frames). Including unnecessary data in 

packet information consumes computational power and memory. This is the reason why 

we employ data engineering based simulation framework for IDS. Our goal is to support 

a simulation framework for testing and evaluating network intrusion detection systems 

(IDS). Ontology/Data engineering methodology empowers our design to be efficient for 

managing and using large size data.  

 In this study, we build two IDS agent models, the LAND attack agent and the 

POD attack agent, and evaluate the two models. One advantage of SES/NZER is that it 

provides a simulation framework for testing IDSs. SES/NZER is available for IDS 

researchers to test their algorithms. IDS researchers build only their models 

corresponding to their IDS algorithms, and they request necessary attributes to evaluate 
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their models. Other required models for simulations are provided. In addition to this 

scalability, SES/NZER should include more pre-defined models which are agents to 

detect various intrusions. Intrusions are classified into five kinds: Denial of Service 

attacks, User to Root attacks, Remote to Local attacks, Probes attacks, and Data attacks. 

If SES/NZER were capable of more functions, SES/NZER could give more convenience 

to users as a concrete tool. Intrusions are classified and described in Table 3. Intrusion 

detection algorithms should reserve specific policies. Each attack signature (attack 

detection policy) needs a different set of information to detect a corresponding attack. If 

IDS developers want to examine if their IDS algorithms work well, necessary attribute 

values in network packet headers must be provided. According to researchers’ target IDS 

algorithms, new SESs, which represent required attributes, have to be generated, and, 

subsequently, the new SESs are used for pruning entities and mapping to the generic 

network behavior SES, which is described in Figure 11. Table 3 lists many attacks, and 

every attack in this table has different attack signatures. For example, detecting Apache2 

attack needs to scrutinize in packet headers if http GET requests with the header “User-

Agent: sioux\r\n” are over a certain number. A typical http request contains twenty or 

fewer headers in most systems. Therefore, a corresponding SES must hold three entities:  

protocol type, source IP address, and packet header information. Similar to this Apache2 

attack example, new SESs are generated when researchers ask to analyze the other 

intrusions. In addition to these specific IDS cases, general cases must be covered, too, 

because new intrusions are being created constantly. To achieve accurate results for both 

non-specified general analyses and totally new attacks, we need to expand the generic 
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network behavior SES, which is shown in Figure 11, by including more entities such as 

Internet Header Length (IHL), Type of Service (TOS), Time to Live (TTL), header 

checksum, and other obtainable attributes from packet headers, into the SES. As a result, 

IDS developers may have better opportunities to evaluate precisely their algorithms.  

 

Type Name Description 

Denial 
of 

Service 
(DoS) 

Apache2 Apache2 is an attack against an apache web server 
where a client sends a request with many http headers. 

ARPPoison 
The goal of ARP Poison attack is to trick hosts on the 
same Ethernet by giving wrong MAC address for 
known IP address. 

Back 
Back is an attack against an apache web server in 
which attackers submit requests with URLs containing 
many frontslashes(/). 

CrashIIS 
Crash is an attack again an NT IIS web server. 
Attackers send malformed GET requests which crash 
the web server because GETs are part of IIS. 

DoSNuke DoSNuke sends out of band data to port 
139(NetBIOS), and crashs NT vitims. 

Land 
Land is effective against older TCP/IP implementation. 
It sends spoofed SYN packet with the same source and 
destination IP address. 

Mailbomb Mailbomb sends many messages to a server and 
overflows the server’s mail queue. 

SYN Flood 
(Neptune) 

TCP/IP implementation has a data structure to store 
pending connection, and the data structure is of finite 
size. SYN Flood fills the servers and the victims are not 
able to new coming connections.   

Ping of Death 
(POD) 

Ping of Death attack affects older operating systems by 
sending oversized IP packets (Ping messages). 

Process Table 

Process Table attack is against network services which 
fork or allocate new processes for incoming TCP/IP 
connections. So, it is possible to completely fill a target 
machine’s process table and makes the machine be 
crashed. 
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Selfping Selfping is an attack in which normal users can 
remotely reboot systems with a single Ping command. 

Smurf 
Smurf uses ICMP echo request packets to broadcast 
addresses from remote location. Machines that hear 
them respond packets. Finally, a victim is crashed. 

SSHProcesstable SSHProcesstable lets victims fork so many children 
that the victim cannot spawn more processes. 

Syslogd Syslogd attacks to remotely kill a syslogd services on 
Solaris servers. 

TCPreset 
TCPreset listens for TCP connections to a victim and 
sends a spoofed TCP RESET packet to the victim. The 
victim terminates the TCP connection. 

Teardrop 
Teardrop exploits a flow of old TCP/IP 
implementations, which do not properly handle 
overlapping IP fragments. 

Udpstorm Udpstorm causes network congestions and slow down 
packet transmission time. 

User 
to 

Root 
(U2R) 

Anypw Anypw attack allows an attacker to log in to a system 
without a password. 

CaseSen 

CaseSen exploits the case sensitivity of the NT object 
directory. The attacker ftps three attack files to the 
victim: soundedt.exe, editwavs.exe, psxss.exe, and 
activate Trojan attack file. 

Eject 
Eject exploits a buffer overflow of the 'eject' binary 
distributed with Solaris 2.5. It overwrites internal stack 
space of an eject program. 

Ffbconfig 
Ffbconfig configures the Creator Fast Frame Buffer 
(FFB) Graphics Accelerator. It is possible to overwrite 
the internal stack space of the ffbconfig attack 

Fdformat Fdformat attack formats diskettes and PCMCIA 
memory cards. 

Loadmodule 

Loadmodule attack is used in SunOS 4.1 system to load 
two dynamically loadable kernel drivers into the 
currently running system. So, unauthorized users can 
gain root access on the local machine. 

Ntfsdos Ntfsdos attack reboots the system from a floppy disk 
containing NTFSDOS.EXE. 

Perl 
Perl attack exploits a bug in some Perl 
implementations, so that anyone with access to an 
account on the system can gain root access. 

Ps Ps allows an attacker to execute arbitrary code with 
root privilege. Any users logged in to the system can 
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gain unauthorized root privileges. 

Sechole 
Sechole attack uploads test.exe and testfile.dll. The 
attacker runs test.exe. Then, the attacker is added to the 
Administrators group. 

Xterm Xterm attack allows an attacker to execute arbitrary 
instructions with root privilege in Redhat 5.0 systems. 

Yaga Yaga attack adds the attacker to the Domain Admins 
group by hacking the registry. 

Remote 
to 

Local 
(R2L) 

Dictionary 

Dictionary attack tries to gain access to some machine 
by making repeated guesses at possible usernames and 
passwords with many services; telnet, ftp, pop, rlogin, 
and imap. 

FrameSpoofer 
FrameSpoofer tricks a victim to believe he is viewing a 
trusted web site, but in actuality the page's main body is 
spoofed with a frame created by the attacker. 

Ftp-write 
Ftpwrite takes advantage of a common anonymous ftp 
misconfiguration. An attacker will be able to add files 
and gain local access to the system. 

Guest 

Because guest accounts are often left with no password 
or with an easy to guess password in most systems, 
Guest attack is one of the first and simplest 
vulnerabilities an attacker will attempt to exploit. 

HttpTunnel 

HttpTunnel sets up and configures an http client to 
periodically query a web server. An attacker is able to 
"tunnel".requests for information through the http 
protocol. 

Imap 
Imap attack exploits a buffer overflow in the Imap 
server of Redhat Linux 4.2. It allows remote attackers 
to execute arbitrary instructions with root privileges. 

Named Named attack crash named server by requesting 
improper and malicious query on a TCP stream. 

Ncftp 
Ncftp is an ascii UI ftp program for linux. Ncftp 
exploits the ability to get subdirectories recursively and 
creates new directories using the system command. 

Netbus 

Netbus attack installs a trojan program and runs the 
Netbus server. Once Netbus is running, it acts as a 
backdoor attack. The attacker can access the machine 
using the Netbus client. 

Netcat 

Netcat attack installs a trojan program and runs the 
netcat program on a specific port (53). So, the attacker 
can access the machine through the netcat port without 
a username or password. 
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Phf 
Phf attack abuses an improperly using CGI script to 
execute commands with the privilege level of the http 
server. 

PPmacro 
PPmacro attack uses a trojan PowerPoint macro to read 
secret files. It saves secret files as ppt files, and posts 
them on a web. 

Sendmail 
Sendmail attack sends a carefully crafted email 
message to a system, and attackers force sendmail to 
execute arbitrary commands with root privilege. 

SSHtrojan 

SSHtrojan attack tricks the system administrator into 
installing a trojan version of the SSH program. This 
program allows an attacker to log in via ssh, with the 
login "monkey" and no password. 

Xlock 
Xlock attack gains local access by fooling a legitimate 
user who has left their X console unprotected and 
obtains their password. 

Xsnoop 
Xsnoop monitors keystrokes processed by an 
unprotected X server to gain information that can be 
used for local access. 

Probes 

Insidesniffer 
Insidesniffer attacks a new machine to an inside 
ethernet hub, configured with an ip, and begins sniffing 
traffic. 

Ipsweep Ipsweep attack monitor activities to determine which 
hosts are listening on a network 

Is_domain 

Is_domain attack uses the "nslookup" command in 
interactive mode to "list" all machines in a given DNS 
domain. Attackers learn what machines connect to the 
DNS domain

Mscan Mscan is a probing tool that uses DNS zone transfers 
and scans IP addresses to locate machines. 

NTinfoscan 
NTInfoScan is a NetBIOS based scanner. It scans and 
obtains share information: users, services running, and 
other information. 

Nmap Nmap is a general-purpose tool for performing network 
scans.  

QueSO 
QueSO is a utility used to determine what kind of 
machine and operating system exists at a certain IP 
adress. 

ResetScan ResetScan sends reset packets to a list of IP addresses 
in a subnet to determine which machines are active 

SAINT 
Security Administrator's Integrated Network 
Tool(SAINT) gathers information about remote hosts 
and networks by examining such network services as 
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NFS, NIS, ftp, and other services. 

SATAN SATAN is a previous version of the SAINT scanning 
program 

Data Secret Secret attack maliciously transfers data which they 
have access to a place where it doesn't belong to  

 
Table 3. Intrusion classification [48] 
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CHAPTER 6. Modeling and Simulation for Network Traffic 
Analysis 

 

In this chapter, we illustrate how we build models and run simulations to evaluate 

customers’ required network activity analyses. There are three major models: Selector, 

Extractor and Analyzer. The Selector model contains three functionalities: obtaining 

users’ requests of target analysis, creating the new SES in a Java class format, and 

generating a new PES in XML format through mapping operations. The Extractor model 

reads events (packet transmissions in networks) from XML instance files (PESs) which 

are generated from the Selector model’s process. The Extractor model obtains one packet 

event’s information at one time. Packet event information includes attributes which are 

chosen by users through the Selector model. The Extractor model sends out messages 

which are SES tuple instances. The other model, the Analyzer, receives messages from 

the Extractor model and processes the messages. Once the Analyzer model receives all 

the messages from the Extractor model, the Analyzer model shows statistic results.  

 

6.1 Selector Model 

The Selector model is fundamental for automated context awareness. The 

functions of the Selector model are obtaining users’ input requests, creating new SES 

tuple class object files, generating PES XML instance files, and notifying the users’ 

target analyses to the other models that are connected with this Selector model. There are 

four states: passive, Get_Req, Genr_PES, and out states. In passive state, the Selector 
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model waits for customers to activate it. Once the Selector model is activated, it becomes 

Get_Req state. During Get_Req state, several internal processes are performed. The 

Selector model invokes a GUI user input system. Customers could choose target analyses 

or select individual attributes for specific analyses. According to customers’ requests, 

new SES tuple Java class files are created, and the class objects of the new SES tuples are 

consequently generated through the compiling process. After these processes are 

completed, the Selector model comes to the Genr_PES state, and new PES instance files 

are produced through mapping operations which are illustrated in chapter 4.4.2. At out 

state, the Selector model notifies users’ selections to the other linking models to be ready. 

Figure 21 shows the state diagram of the Selector model. 

 

 

Figure 21. State diagram for Selector model 

  

 We address several internal processes that should be performed in the Get_Req 

state. The Selector model never advances to the Genr_PES state from the Get_Req state 
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until these processes are completed. Figure 21 illustrates the internal processes at 

Get_Req state. We could explain these internal processes just like the Finite 

Deterministic DEVS (FD-DEVS) [49, 50] performs. FD-DEVS is aimed towards 

development of DEVS models using a template-based design. FD-DEVS is a very 

convenient tool for building models in both an XML format and DEVSJAVA format. 

FD-DEVS generates models automatically according to users’ requests. 

 

 

Figure 22. Internal processes at a state 

 

6.2 Extractor Model 

The Extractor model reads XML instance files which represent the PESs of 

ontologies for a customers’ requested target network behavior analysis. Figure 23 shows 

the state diagram of the Extractor model. There are five states: passive, ready, extract, 

generate, and end. There exist two input ports (“inAnal” and “in”) and one output port 

(“out”) which have the purpose of sending/receiving messages. The Extractor model’s 

initial state is passive and it comes to the ready state when it receives messages at the 

input port inAnal. The Extractor model is now ready to evaluate the analyses which are 
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illustrated in the input messages. When an input, start extracting data, arrives at the input 

port in, the Extractor model comes to the extract state. During the extract state, the 

Extractor model retrieves information of one tuple in PES XML instance files at one time 

using the Document Object Model (DOM) library [51]. The model assigns a set of the 

attributes which are extracted from the PES XML files to an SES tuple class object. Next, 

the state changes to generate state. The Extractor model sends out messages which are 

the SES tuple class instances produced at the extract state. If there exist no more data to 

read in PES XML files at extract state, the model’s state changes to end state, and the 

model transmits an “end” message. Consequently, the Extractor model finally turns back 

to the passive state. 

 

 

Figure 23. State diagram for Extractor model 
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6.3 Analyzer Model 

The Analyzer model evaluates messages received from an input port and shows 

the results statistically. Figure 24 shows the state diagram of the Analyzer model. The 

initial state is the passive state, and the time advance is set to infinity in this state. If the 

Analyzer model receives a message which addresses a target analysis, at the input port 

inAnal, the state changes to ready state. When a message arrives at the input port in, the 

model comes to the busy state. During the busy state, the Analyzer model receives 

messages which describe SES tuple instances. Consequently, the target evaluation is 

being processed, and the Analyzer model waits for input messages at the busy state. Once 

the Analyzer model receives an “end” message instead of SES tuple instance messages, 

the Analyzer model comes to the end state and sends the results in statistical outputs. The 

outputs are shown in graphical user interface chart diagrams. For the GUI chart diagrams, 

we use the JFreeChart library [52].  

 

 

Figure 24. State diagram for Analyzer model 
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6.4 Coupled Model for Network Traffic Analysis 

 Recall that basic models may be coupled in the DEVS formalism to form a 

coupled model. A coupled model is the major class which embodies the hierarchical 

model composition constructs of the DEVS formalism. A coupled model is defined by 

specifying its component models, called its components, and the coupling relations which 

establish the desired communication links.  

In this study, the basic models are the Selector model, the Extractor model, and 

the Analyzer model. We make a coupled model, NetworkTrafficAnalysis, by linking the 

Extractor model and the Analyzer model. The output port of the Extractor model and the 

input port of Analyzer model are connected to each other for sending/receiving messages. 

The purpose of this coupled model, NetworkTrafficAnalysis, is evaluation. Then, we 

make a coupling between the Selector model and the coupled model, 

NetworkTrafficAnalysis. The output port (“out”) of the Selector model links to an input 

port of the NetworkTrafficAnalysis model. As soon as the NetworkTrafficAnalysis 

receives input messages, the NetworkTrafficAnalysis model delivers the input messages 

to its component models, the Extractor model and Analyzer model. Messages from the 

Selector model enable the Extractor and the Analyzer to be ready to evaluate network 

traffic behaviors. For instance, if an output message of the Selector model represents 

protocol analysis, the Extractor model and the Analyzer model are set up for analyzing 

protocols. Otherwise, if a user grants throughput analysis input to the Selector model, 

then the simulation environment is set up for network throughput analysis. The 

automated simulation environment is set up by the following steps: 
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1. The Selector model acquires users’ requests. 

2. Internal processes of the Selector model produces PES XML instance files 

according to users’ requests. 

3. The Selector model sends a message (target analysis) out to the Extractor model 

and the Analyzer model. 

4. The Extractor model and the Analyzer model are ready for the target analysis. 

  

The Extractor model reads the PES XML instance files including network 

behavior information such as event times and protocols, and the Extractor model sends a 

message out to the Analyzer model. The Analyzer model receives messages from the 

Extractor model, and it evaluates the messages. Finally, the Analyzer model concludes 

statistical simulation results to easy-to-read graphical user interfaced charts as soon as all 

the data is analyzed. Figure 25 shows the DEVS coupled model and its components.  

 

 

Figure 25. DEVS coupled model and its components 

 



89 
 

6.5 Experimental Results for Network Traffic Analysis 

 Recall that we monitor network behaviors in a subnet of the Arizona Center for 

Integrative Modeling and Simulation (ACIMS) lab in the department of electrical and 

computer engineering, the University of Arizona for this study. We monitor one-day 

network behavior from Jan 16 9:00 AM to Jan 17 9:00 AM. The total number of events is 

2,045,699. In other words, there is an average of 1420 packet transmissions per second. 

Network administrators of large organizations such as companies, governments, and 

universities may have large amounts of data than the amounts of data that could be 

captured in the ACIMS lab. This enormous data size leads to memory overflows and 

degradation of computational powers. Therefore, automated, efficient, and fast ways of 

analyzing network behaviors and detecting system problems become more important as 

network activity grows.  

 The original captured data size in text file format is 288MB. The size of XML 

files which is transformed from the captured data by Ethereal is 5.43GB because of 

additional tags that represent the SES (behavior) as a tree structure. XML format is easier 

to read and understand than text format, but 5.43GB of XML files is about twenty times 

over the size of the 288MB text files. However, we prune the 5.43GB sized XML files 

according to the users’ target analysis. In this study, we test two cases: a protocols usage 

analysis and a network throughput analysis. For the first case study of protocol analysis, 

we gain 323MB XML files which have the two attributes of a packet ID and a protocol 

name. For the other case study of throughput analysis, we obtain 385MB XML files 

having an event time and packet size. Either 323MB or 385MB is still larger than the 
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original text file size of 288MB. However, the XML files keep only necessary data for 

the analyses. Also, the tags in the XML files enable easy and fast access to attribute 

values.  

 Figure 26 represents the DEVSJAVA simulation environment. We design three 

major atomic models: the Selector, the Extractor, and the Analyzer. The coupled model, 

NetworkTrafficAnalysis, includes the Extractor and the Analyzer models. The output port 

of the Selector model and the input port of the coupled model, NetworkTrafficAnalysis, 

are connected for message passing. The coupled model, NetworkTrafficAnalysis, 

distributes its input messages to its components, the Extractor and the Analyzer. Also, in 

the coupled model, the Extractor and the Analyzer models are connected each other so 

that the simulation runs extracting data from PES XML instance files and evaluating the 

data. For the protocols/services analysis purpose, the data elements extracted from the 

PES XML files are packet IDs and protocols. For the other purpose of network 

throughput analysis, event times and packet sizes are retrieved from the database XML 

files. The others elements in XML files, such as source IP address, source port number, 

destination IP address, and destination port number, are not considered to be extracted as 

a result of fast and effective data processing.  
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Figure 26. DEVSJAVA simulation 

 

 The statistical results are shown in GUI reporting windows in forms of both the 

charts analysis and the text analysis method. Figure 27 shows the results of the protocol 

analyses. When a simulation is done, a GUI window is invoked to represent statistical 

results in text. Text results illustrate protocols and the number of events per protocols. 

There are 71 kinds of protocols in monitored network activities. The most visible 

protocol is Address Resolution Protocol (ARP) with 1,742,107 events. This is about 85 

percent of the total packet transmissions. ARP is a protocol for mapping an Internet 

Protocol address (IP address) to a physical machine address that is recognized in the local 

network. As well as text results, two kinds of charts are shown as given in Figure 27. Bar 



92 
 

charts can easily illustrate the number of events per protocols. Pie charts show intuitive 

comparisons between protocols.  

 

 

Figure 27. Simulation result for protocol analysis 

 

 We also evaluate network throughput. To analyze network throughput (bytes per 

minutes), we require two attributes: event time and packet size. Figure 28 helps to 

understand network throughput variations. The results show that there are no abrupt 

changes during one day. The network keeps between 80,000 bytes to 180,000 bytes per 

minute. So, a network manager may conclude that the maximum bandwidth of 200,000 

bytes per minutes is big enough to maintain this network. 
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Figure 28. Simulation result for throughput analysis 

 

 The advantages of SES/NZER are easy and fast information capturing of large 

amounts of data, a fast response time, and a user centric schema. The fact that SES/NZER 

is developed based on ontology/data engineering methodology represented by SES theory 

facilitates users reading, understanding, and manipulating the network data easily. The 

user-friendly graphical chart gives customers, who are network administrators, general 

ideas with respect to their requests such as protocols analysis and network throughput 

evaluation. In this study, we have illustrated the strength of using the SES to represent a 

large data set consisting of elementary units through the concept of multiAspect. As we 

have shown, the SES concept of pruning employs aspects, multiAspects and 
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specializations to allow very flexible specification of subsets of a given data set, and 

aggregation operations on them. Aggregation is a form of abstraction commonly 

employed in modeling in disciplines ranging from physics to economics [17]. The 

aggregation restructuring concepts give a better idea of how to select subsets of event 

data and how to aggregate the subsets together to integrate various ubiquitous systems in 

real-world applications.  
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CHAPTER 7. DISCUSSIONS 
 

7.1 Comparisons of SES/NZER with Ethereal 

 Ethereal is a tool for network protocol analysis, software and protocol 

development, and educational purposes. Because it is an open source project, many 

network professionals around the world use Ethereal, and many researchers support it by 

adding enhancements.  We use Ethereal to capture network behaviors in this study. The 

captured data is evaluated by SES/NZER. Table 4 illustrates comparisons of analyzing 

manners between Ethereal and SES/NZER. 

 

 Ethereal SES/NZER 

  
Functionality

Protocol Analysis 
Throughput Analysis 
Service Analysis 
And more 

Protocol Analysis 
Throughput Analysis 
User-selected and combined 
Analysis 

Analyzing    
Methods 

Graphical charts 
Text Analyses 

Graphical charts 
Text Analyses 

Complexity 
Complicated 

• Hard to learn 
• Hard to evaluate 

Simple 
• Easy to learn 
• Easy to understand 

Locality 
Local machine only 

• Local machine : Monitor, 
capture, and analysis 

Potentially distributed 
Environment 

• Local machine: monitor, 
capture 

• Remote machine: analysis 
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Data Size Big complete data for every 
analysis 

Specified small data for each 
analysis 

Modularity One process Several individual processes 

Scalability Complete system 
Not good for flexibility 

Possible to add new analyses 
Interoperability with XML-related 
systems 

 
Table 4. Comparisons between Ethereal and SES/NZER 

 

 The first comparison is functionality. Ethereal has been supported by many 

network professionals, so it has many functions, such as protocol analysis, throughput 

analysis, and other statistical analyses. SES/NZER focuses on customers’ specific 

requests. In this study, we study two cases: protocol analysis and throughput analysis. 

But, SES/NZER is widely open to be developed for further requests. The second aspect to 

comparatively analyze is the methods. Both Ethereal and SES/NZER have two kinds of 

resulting methods, graphical charts and textual analyses. Ethereal is like a two-sided coin. 

Ethereal is very powerful but also very complicated.  Ethereal requires an initial learning 

curve. SES/NZER is simple and customized for target analyses, so it is easy to learn and 

understand. Ethereal is one complete tool, and it is limited to running on local machines. 

On the other hand, SES/NZER is a combination of individual processes such as 

monitoring and capturing processes and analyzing process. As a result, it has the potential 

to extend to a distributed environment. Monitoring and capturing network activities could 

be performed in local hosts, and analyzing network behaviors could be evaluated in 

remote hosts. SES/NZER is intentionally designed for distributed simulations. The DEVS 

modeling shown in Figure 25 has two components: the Selector model and the 
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NetworkTrafficAnalysis model. We could distribute the models into multi-servers. A 

distributed simulation could be performed by message-passing methods among servers. A 

web service middleware, DEVS Service Oriented Architecture (DEVS/SOA) [53, 54], 

facilitates in distributing workloads and scaling to handle multiple customers. The ways 

of accessing data are different. Ethereal uses complete data for every analysis. Accessing 

a big data set requires memory overhead and inefficient computational power.  

SES/NZER needs small sized data for each analysis. It takes time initially to generate 

user specific pruned data, but using compact data is a fast and effective approach. This is 

the most important advantage of a SES based system. Figure 29 shows these different 

data accessing methods.  

 

 

Figure 29. Data access methods 

 

 We measure system memory (RAM) usages and execution times of both Ethereal 

and SES/NZER. We use a half-day, one day, and two days of data to evaluate system 

performance variations.  Table 5 shows measurements of memory uses and execution 

times for network protocol analyses. Table 6 illustrates experimental results for 

throughput evaluations. 
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Ethereal SES/NZER 

Half day One day Two days Half day One day Two days 
Loading 
time 

1 min 
18 sec 

2 min 
28 sec N/A 5 min 

28 sec 
10 min 
44 sec 

20min 
59sec 

Number  
of Events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400 

Memory 
Usage 706 MB 1323 MB N/A 98 MB 98 MB 98MB 

Analyzing 
time 25 sec 50 sec N/A 5 min 

29 sec 
10 min 
58 sec 

22min 
59sec 

 
Table 5. Memory usages and execution times for protocol analysis 

 

 
Ethereal SES/NZER 

Half day One day Two days Half day One day Two days 
Loading 
time 

1 min  
18 sec 

2 min  
28 sec N/A 5 min  

32 sec 
11 min  
27 sec 

22min 
14min 

Number  
of Events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400 

Memory 
Usage 706 MB 1323 MB N/A 104 MB 104 MB 104MB 

Analyzing 
time 19 sec 55 sec N/A 5 min  

17 sec 
9 min  
56 sec 

22min 
13min 

 
Table 6. Memory usages and execution times for throughput analysis 

 

 The loading time of Ethereal refers to the time of invoking the captured data file. 

The loading time of SES/NZER is a time of generating PES XML document files with 

regards to users’ requests. SES/NZER takes a longer time for loading data to evaluate 

than Ethereal. Also, Ethereal is faster to analyze data than SES/NZER. We notice that 

both loading time and analyzing time increase linearly corresponding to total numbers of 
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events during capturing period. Figure 30 illustrates comparisons between data flow of 

Ethereal and data flow of SES/NZER. 

 

 

Figure 30. Data flow comparisons 
 
 
 Table 5 and Table 6 indicate that Ethereal is faster than SES/NZER. However, 

Ethereal is a complete tool, so it should be run on a single machine only. On the other 

hand, SES/NZER is scalable to distributed environments. Web-based distributed 

SES/NZER may reduce both loading data time and analyzing time by deploying 

workloads. Ideally, run time decreases as an inverse ratio of number of servers. 

Ultimately, SES/NZER can be faster than Ethereal under distributed environments. The 

important things we must see are the values of memory use measurements. For half-day 
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data, Ethereal requires 706 MB of a system memory (RAM). As data size increases, the 

memory requirement of Ethereal increases linearly. However, SES/NZER needs 98MB of 

a system memory for half-day data, and the memory requirement of SES/NZER never 

increases in correspondence to source data sizes. SES/NZER fragments source data into 

multiple numbers of small size datasets. SES/NZER allocates one segmented dataset to 

system memory. Once evaluating the dataset is completed, SES/NZER frees the dataset 

from system memory, and, consequently, it loads another dataset into system memory. 

Therefore, SES/NZER holds only one small-sized dataset during simulation time frame, 

and the memory requirement never increases. SES/NZER keeps the system stable. For 

two-days captured data, Ethereal cannot load data and consequently cannot analyze the 

network activities. Ethereal is shut down due to memory overflow problems. On the other 

hand, SES/NZER can evaluate network behaviors although it takes time.  

 

7.2 Problem Statements 

 The fact that SES/NZER is more efficient in system memory requirement than 

Ethereal facilitates SES/NZER analyzing large amount of data. However, SES/NZER is 

weak in evaluation speed. One solution to achieve feasible speed-up and efficiency is 

parallel processing. This is the reason why developing a web-based distributed 

SES/NZER is a promising research area of network analysis fields. Parallel processing 

consists of dividing data into two or more smaller datasets, assigning datasets into 

multiple processors, and processing multiple datasets in multiple processors 
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simultaneously. Divide and conquer (D&C) is an important algorithm design paradigm. 

Divide and conquer was first introduced by Karatsuba [55] as an algorithm for 

multiplying two n-digit numbers with an algorithmic complexity O(n) on 2lo g 3n . But, the 

divide and conquer scheme is widely used in parallel processing designs for reducing 

complexity of processors. Divide and conquer solves a problem easily by dividing a 

problem into two or more smaller problems. Each of these smaller problems is solved, 

and the solutions for smaller problems are combined to produce a solution for the original 

problem. Figure 31 shows a divide and conquer scheme for SES/NZER.  

 

 

Figure 31. Divide and conquer SES/NZER 
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 The first step is the dividing process. Large amount of source data are segmented 

by n numbers of small datasets. Fragmented individual datasets are assigned to n numbers 

of processors. Each processor analyzes its corresponding dataset. The workload of each 

processor may be reduced as an inverse ratio of the number of processors. Subsequently, 

all the analyzed results of processors are integrated together at last. This integrating of all 

the results and concluding with a final output is the conquering process. This divide and 

conquer approach requires not only segmentation overheads for dividing data but also 

communication overheads for conquering all the results. Even though there are overhead 

disadvantages, this method includes two strengths which overcome the disadvantages. 

One advantage is that this approach enables applications, which need to process large 

amount of data and require high computational power in time (CPU) and in space 

(memory), to be run on inexpensive personal computers rather than on high cost server 

machines. The other advantage is quick evaluation time. Multiple processors execute 

their work simultaneously. Therefore, parallel processing methods reduce processing 

time compared to sequential processing methods. In addition, the divide and conquer 

approach may be applied to distributed environments. Processors are deployed into 

multiple machines which are connected by loosely coupled links. Loosely coupled 

systems are harder to implement than tightly coupled systems because systems should be 

synchronized for validation issues. However, once it is implemented, each processor is 

independent to other processors, and each processor’s activities never affect other 

processors’ behaviors.  In this study, we use web service schemes over Service Oriented 
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Architecture (SOA) to construct distrusted environments. This web-based distributed 

simulation increases independency and decreases complexity in each host. Table 7 

illustrates comparisons between SES/NZER and a Web-based distributed SES/NZER. 

 

 SES/NZER Distributed SES/NZER 

Locality local host Distributed hosts 

Parallelism None high 

Process time slow fastest 

Overheads No additional overhead Data segment overheads 
Communication overheads 

 
Table 7. SES/NZER Vs. Distributed SES/NZER 

 
 



104 
 

CHAPTER 8. WEB-BASED DISTRIBUTED SES/NZER 
 

8.1 Design Issues 

 In this study, we show two kinds of network behavior analyses: generic network 

behavior analyses and specialized analyses. For generic purpose network behavior 

evaluation, a protocol analysis and throughput analysis are examined. And, intrusion 

detection systems are evaluated for specialized cases. Figure 32 represents the 

hierarchical system structure. 

 

Analysis_spec

DistributedSES/NZER

SimForIDSSimForNTA

NetworkTrafficEventSets

SimForIDS_dec

Collector

Experimental Frame IDS

NetworkTrafficEventSets_spec

BaseModel LumpedModel

LumpedModel_spec

LAND POD

NetworkTrafficEventSets

SimForNTA_dec

Collector

Experimental Frame NTA

NetworkTrafficEventSets_spec

BaseModel LumpedModel

LumpedModel_spec

Protocol Throughput  

Figure 32. Distributed SES/NZER system hierarchy 
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 A Web-based distributed SES/NZER fulfills either analyzing generic network 

traffic activities (protocol analysis or throughput analysis) or evaluating an intrusion 

detection system (LAND or POD). A complexity constraint is that modeling is severely 

limited [17]. The complexity of a model can be measured by the resources required by a 

particular simulator to correctly interpret it. That is, complexity is measured relative to a 

particular simulator, or class of simulators. Computers continue to become faster and 

increase in memory, but they are still not good enough to make our models into reality. 

Successful modeling can be seen as valid simplification. Simplifying or reducing the 

complexity enables models to be executed in our limited resource (time and size) 

simulation environments. However, simplified models must be valid within some 

experimental frame of interest. An experimental frame represents a specification of the 

conditions under which the system is observed or experimented with. As such, an 

experimental frame is the operational formulation of the objectives that motivate a 

modeling and simulation project. Figure 33 shows a pair of models involved. They are 

base and lumped models in an experimental frame. 

 

 

Figure 33. Base/lumped model equivalence in experimental frame 
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 The base model requires more resources in time and size for interpretation than 

the lumped model. Moreover, the base model is more valid within a larger set of 

experimental frames (with respect to a real system) than the lumped model. As such, the 

lumped model might be just as valid as the base model within a particular frame of 

interest (a particular pragmatic frame). The concept of morphism, a relation that places 

elements of system descriptions into correspondences, provides criteria for judging the 

equivalence of base and lumped models with respect to an experimental frame. Base 

models include many elements, but all the elements in a base model are not always 

required in pragmatic frames. Mapping a methodology from a base model to lumped 

models reduces the number of elements included so that it increases computational power 

in time (CPU) and size (memory).  

 

8.1.1 Pragmatic Frames (Lumped Models) 

 We design the SES for illustrating the generic network behaviors in Figure 11. 

This SES represents based models of both simulation for network traffic analysis and 

simulation for intrusion detection systems (IDS). For the use of generic network traffic 

analysis simulation, we monitor network activities and capture the fundamental packet 

information in ACIMS lab using the Ethereal. Unlike generic network behavior analyses, 

source data for IDS simulation must include attack packet transmissions as well as 

normal packet transmissions. But, generating attack packets is strictly prohibited even if 

it is for academic research purposes. Therefore, for the purpose of intrusion detection 
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system simulation, we use a KDD’99 dataset [42]. The MIT Lincoln lab supported by the 

DARPA project [56] simulated and generated a network traffic dataset, including attacks, 

in 1998. This dataset has been widely used in the area of computer network intrusion 

detection system research and is now regarded as the standard.  Also, it is well-known by 

the name, KDD’99 dataset, because Knowledge Discovery and Data Mining [57] 

processed the network traffic data generated by MIT Lincoln lab and opened a contest. 

Many network researchers and artificial intelligent researchers use this dataset for their 

intrusion detection system. The dataset includes two weeks (five days/week) simulation 

data. Every day data set is huge, e.g., the first week’s Monday data has 60,000 events. 

According to the SES in Figure 11, the KDD’99 dataset is re-structured. Figure 34 

represent KDD’99 dataset. 

 

 

Figure 34. KDD’99 dataset 

  

 Target network behavior analyses are defined by customers. Every analysis 

should have a different set of information with regards to users’ requests. These different 
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requests are pragmatic frames. Keeping unnecessary information decreases 

computational power in both time (CPU) and size (memory). For speed and effectiveness, 

customers’ requirements need to create corresponding SESs which keep accurate entities 

and attributes. Consequently, users’ target analyses must be modeled and simulated based 

on the new SES and their XML document instances (PESs). Newly created SESs 

according to customers’ requirements (pragmatic frames) represent lumped models in a 

modeling point of view. The unified processes, creating new SESs and setting up 

simulation environments dynamically by assigning a lumped model instead of a base 

model that is shown in Figure 33, increase efficiency and automated factors. This study 

examines four pragmatic frames: protocol analysis, throughput analysis, LAND attack 

detection, and POD attack detection. Figure 35 illustrates an ontology representing 

network behaviors and pragmatic frames. It shows that every frame requires different sets 

of attributes. 

 

 

Figure 35. Pragmatic frames for network traffic analysis 
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 We illustrate two cases of generic network behavior analyses: protocols analysis 

and network throughput measurement. The first analysis, evaluating the number of 

packets per protocols, requires two attributes of protocol names and identification 

numbers (ID). The second analysis, measuring network throughput, needs event times 

and packet sizes. The two SESs, ProtocolAnalyses and ThroughputAnalyses, are 

described in Figure 16 and Figure 17. The third and the fourth pragmatic frames are 

regarding evaluating intrusion detection systems. We examine two intrusion detecting 

agents for a LAND attack and a Ping of Death (POD) attack. The LAND attack is a 

Denial of Service (DoS) attack that consists of sending a special poison spoofed packet to 

a computer, causing it to lock up. The LAND attack occurs when an attacker sends a 

spoofed SYN packet in which the source address is the same as the destination address 

[48]. This is a rather old attack, and current patches should stop them for most systems. 

Symptoms of the LAND attack are different by operating systems. The LAND attack 

slows down operating speed, crashes and shuts down systems, or denies users access to 

services on machines. The LAND attack is recognizable because IP packets with 

identical source IP address and destination IP address must never exist on a properly 

working network. Therefore, we need two attributes, a source IP address and a 

destination IP address, to detect LAND attacks. In addition to the source IP address and 

destination IP address, an attribute, event time, is needed for diagnosis purposes. Figure 

36 illustrates an SES for the LAND attack detection. 
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Figure 36. SES for the LAND attack detection 

 

 The Ping of Death (POD) attack is a type of Denial of Service (DoS) attack in 

which the attacker sends a ping request that is larger than 65,536 bytes, which is the 

maximum size that IP allows. While a ping larger than 65,536 bytes is too large to fit in 

one packet that can be transmitted, TCP/IP allows a packet to be fragmented, essentially 

splitting the packet into smaller segments that are eventually reassembled. The Ping of 

Death attack was relatively easy to carry out and very dangerous due to its high 

probability of success. Operating system vendors had made patches available to avoid the 

Ping of Death. Still, many Web sites continue to block Internet Control Message Protocol 

(ICMP) ping messages at their firewalls to avoid similar denial of service attacks. An 

attempted Ping of Death can be identified by noting the size of all ICMP packets and 

flagging those that are larger than 64000 bytes [48]. However, KDD’99 dataset does not 

have the attribute of packet size. ICMP does not have a port abstraction. ICMP (ping, 

trace) is a layer 3 protocol suite within the TCP/IP suite, and ICMP does not test any 

layer 4 or above functions, therefore, it has no TCP/UDP layer 4 port number. So, we 

may detect Ping of Death attacks with three attributes: a source host port number, a 
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destination host port number, and a protocol. Figure 37 presents an SES for the POD 

attack detection. 

 

 

Figure 37. SES for the Ping of Death attack detection 

  

 We discuss mapping operations in Chapter 4.4.2. Mappings could be two kinds of 

forms: transformations and restructurings. Transformations are mappings from one 

representation to another and referred as general mappings. Restructurings are mappings 

whose domain and range are the same. That means that a restructuring changes the 

structure of an object without changing the form in which it is expressed. A concept of 

equivalence must support such restructurings, i.e., the before and after structures must be 

equivalent with respect to some aspect of interest to the modeler. Such restructurings 

apply to reducing the size of a tree which enables optimization for finding the best 

representation of some given information within a representation domain. This general 

restructuring process eliminates labels, including those of aspect, multi-aspect, and 

specialization. Eliminating such labels in a Schema for an SES reduces the amount of 

overhead in carrying payload information. The resulting SES is equivalent to the original 

in the sense that the same family of pruned entity structures is defined. However, this 
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mapping has a limitation. That is “not reversible” because such restructuring removes 

information that may be needed in downstream processing of the transmitted data. 

 We design the SES, NetworkTrafficAnalysis, for generic purposes of network 

traffic behavior analyses. New SESs are generated to correspond to customers’ 

requirements. But, the problem is that the structures of the two SESs, the 

NetworkTrafficAnalysis and one of the ProtocolAnalyses, the ThroughputAnalysis, the 

LANDs, or the PODs, have different structures. Performing mapping operations results in 

PES outputs, and the outputs are instances in XML Document format. Then, the PES 

XML instance files are used as a role of input source data for modeling and simulation 

purposes. 

 

8.2 DEVS Service Oriented Architecture (DEVS/SOA) 

 DEVS simulation on Service Oriented Architecture (SOA) [50, 53] consists of 

three layers such as model distribution, simulation, and simulation result return. To 

support these layers, two services, named MainSerivce and Simulation, are implemented. 

MainService has four services, Upload DEVS model, Compile DEVS model, Simulate 

DEVS model, and Get result of simulation. Simulation service is for covering DEVS 

simulation protocols. It has nine services, Initialize simulator, Run transition in 

simulator, Run lambda function in simulator, Inject message to simulator, Get time of 

next event from simulator, Get time advance from simulator, Get console log from all the 

simulators, Finalize simulation service, and Get result of simulation.  
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Figure 38. Overall architecture of DEVS simulation on SOA 

 

 Figure 38 represents the overall sketch of DEVS simulation on SOA. As seen in 

Figure 38, this system has two components, such as a client and some servers. Each 

server has two services (MainService and Simualtion) and the DEVS Modeling and 

Simulation (M&S) environment. The beginning of DEVS simulation on SOA is to upload 

DEVS models to each server. A client assigns each model to an available server that has 

two services for DEVS simulation. A main server assigned to a top DEVS model 

becomes a coordinator during the DEVS simulation. When the main server receives a 

request of an upload service from the client, the main server requests an upload service to 

the others. If the upload service is completed, the client requests a compile service to be 

performed in the main server. The main server does the same procedure as the upload 



114 
 

service. After finishing the compile request, the client sends a simulation request to the 

main server. These procedures are displayed by solid-line arrows among the components. 

This is a top layer of the DEVS simulation on SOA. 

 The main server generates and stores proxies of simulation services to which 

DEVS models are assigned as soon as the simulation request is received. Each simulation 

service holds an atomic model or atomic models on the storage. In the case of a coupled 

model, there is a mechanism of coupled model abstraction [50] to an atomic model with 

DEVS state machine because there is no support of the coupled simulation on the 

simulation service. Each simulation service sends messages to the main server 

encapsulating a coordinator according to the DEVS simulation protocols. This is a middle 

layer of the DEVS simulation on SOA, which is displayed by dotted-line arrows among 

the servers. 

 After the completion of the simulation, the client sends a request of the simulation 

results to the main server. In the DEVS simulation in this study, a Collector DEVS 

atomic model collects simulation results sent from each DEVS model on each server. The 

main server sends the request of simulation results to the server possessing the collector 

DEVS model, receives the results, and sends the results to the client. This is a third layer 

of the DEVS simulation on SOA, which is displayed by dashed-line arrows between the 

client and the main server. 

 In this version of DEVS simulation on SOA, the client has equipment for 

displaying simulation results on graphic charts. The results are stored into a file named 

result.txt processed to data format which charts use as an input.  
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Figure 39. Example of XML object message handler 

 

 Models upload is done through serialization and SOA technologies, and message 

passing is done through XML style message and SOA technologies. Figure 39 is an 

example of a DEVS message to a XML-style message conversion. A DEVS message is a 

language specific object class, and Web Service does not have an apparatus to send an 

arbitrary object message to another service because Web Service supports only fixed 

structured messages defined in WSDL. A DEVS message is too dynamic to define it as 

one type of classes in the WSDL. So, XML Object message handler is employed to 

transform an object DEVS message to a XML-style message. As seen in Figure 39, the 

structure of DEVS message consists of at least more than one contents containing a port 

and Entity object. Entity objects can be any type of objects inherited by Entity. This 

DEVS message is converted to a XML-style message by the XML Object message 

handler. 

 The DEVS simulation on SOA is a centralized simulation done through a central 

coordinator which is located at the main server. Simulation begins with the coordinator’s 
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requesting nextTN to all simulation services. After receiving all responses from all 

simulation services, the coordinator sends minTN to all simulation services. If any 

simulation service matches with minTN, the simulation service produces an output 

message propagated to the coordinator and sent to a simulation service or simulation 

services according to the coupling information. The output message is a XML-style 

message produced by XML Object message handler. After the message sending is 

finished, simulation time is updated, and the coordinator requests a delta function to all 

simulation services. If there are some simulation services receiving a message from the 

external models, they execute the external transition function. After that, the coordinator 

repeats above procedures until simulation termination condition meets. 

   

 

Figure 40. A network behavior analysis using DEVS/SOA 
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 Figure 40 illustrates a DEVS simulation on SOA which is applied to a network 

behavior analysis example which is the case that a client wants to analyze protocol uses 

and evaluate network throughput. There is a data extraction web service server inside a 

subnet. The server for a data extraction web service captures network behaviors and 

stores the network activities in a database. There are three servers: a server 1 for acting as 

a coordinator, a server 2 for analyzing protocol uses, and a server 3 for measuring 

network throughput, out of the subnet. The four servers (one in the subnet and three out 

of the subnet) are linked under the DEVS/SOA environment. The two servers (the 

protocol analysis server and the throughput analysis server) receive customized data for 

specific analysis from the data extraction server. The customized data are relatively size 

compared to the original data which is stored in the data extraction server. Deploying 

workloads into multiple machines (assigning protocol analysis to the server 2 and 

throughput analysis to the server 3) reduces the computational burden of servers. Small 

size customized data decreases communication overheads among servers. And a small 

amount of data is effective in time (CPU) and space (memory). These two factors, 

distributed workloads and small size customized data, enable clients to obtain simulation 

results fast and efficiently.  

 

8.2.1 Real Time DEVS Simulation on SOA 

 Other approach of DEVS Simulation on SOA is real time simulation in which 

next time for occurring internal transition passes by real time. Unlike virtual time 

simulation, time synchronizes simulation protocol to simulate DEVS models on SOA, 
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and real time DEVS simulation has minimum network activity among simulators because 

the simulators only invoke web services at the time of the propagation of out messages. 

Also it is decentralized simulation because there is no coordinator to supervise all 

RTSimulators. Each RTSsimulator follows a procedure to simulate their DEVS model 

without intervention for synchronization. 
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Figure 41. Overall architecture of real time DEVS simulation system on SOA 
 

 Figure 41 represents overall structure of real time DEVS simulation system on 

SOA. As seen in the figure 41, each server participating in simulation has two web 

services similar to centralized simulation. But some functions in the simulation service 

and classes such as RTCoordinator and RTSimulator, are added to support real time 

simulation. RTCoordinator used in the MainService and RTSimulator used in the 

Simualtion are made of multi-threads. RTCoordinator generates proxies for Simulation 



119 
 

services with DEVS models and coupling information which contains port names and 

addresses in which DEVS models are placed, and runs the RTSimulators in the 

Simulation services. Real time simulation begins with a client program like centralized 

simulation on SOA. Solid-lines on figure 41 represent uploading files, compiling the files 

on each server, and executing RTSimulators on Simulation services. Dashed-lines show 

out message passing routes. 

 Figure 42 depicts real time DEVS simulation protocol. The protocol starts with 

the initialization of the DEVS models in the RTSimulators. Each RTSimulator waits for 

passing tN after which internal transition occurs. If one of the RTSimulators has wall-

clock time equal to tN, the RTSimulator executes internal transition function consisting of 

lamda function which produces an out message, propagation function which sends the 

out message to other RTSimulators according to coupling information, and delta function 

which handles internal and external events. RTSimulator2 in the figure 42 shows “send 

out message” after internal transition and wait again with tN regenerated by delta 

function. Meanwhile, RTSimulator1 receives a message from the RTSimulator2, executes 

external transition function having delta function, and recalculates tN to wait. The 

interaction between RTSimulator2 and RTSimulator1 does not affect RTSimulator3. Only 

way to influence to others send a message to others.  
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Figure 42. Real time simulation protocol 

  

 Though real time DEVS simulation has minimum network traffic, in case of 

network delay and tiny value of tN, the simulation might fail to get correct results 

because of distorted protocol. To filter the problem, it is important to know threshold 

value of tN to make real time DEVS simulation done or speed up. 

 

8.3 Distributed SES/NZER in DEVS/SOA 

8.3.1 Distributed Simulation 

 A distributed SES/NZER is different to classic single machine DEVS simulation. 

In this chapter, we illustrate how DEVS models, which are deployed in multiple 

machines in networks, can be simulated. Distributed DEVS models have components 
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(DEVS atomic models and DEVS coupled models) of a DEVS coupled model that are 

distributed on several host computers. Figure 43 shows distributed DEVS simulation. 

 

 

Figure 43. Distributed DEVS simulation 

  

 For distributed DEVS simulation, there must be a controller, a coordServer, 

which manages a whole simulation cycle and synchronizes all the distributed simulators. 

The coordServer is responsible for passing messages among distributed simulators as 

well as for advancing DEVS models which are dispersed in networks. The coordServer 

could be in a host which also holds a distributed simulator, or the coordServer could stay 

on an independent machine. Distributed machines, which include DEVS atomic models 

or DEVS coupled models, need simulators, clientSimulators for atomic models or 

clientHieSimulator for coupled models, on the machines.  The clientSimulator is 

responsible for simulating a local DEVS atomic model. The clientHieSimulator is 

responsible for simulating a local DEVS coupled model, and there is a coupledSimualtor 
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to take care of a local DEVS atomic model.  The coordServer creates simulatorProxys 

that facilitate the coordServer communicating with corresponding clientSimulators or 

clientHieSimulators. In addition, all the distributed components, the coordServer, the 

simulatorProxys, the clientSimulators, and the clientHieSimulators, has its own thread. 

Figure 44 shows an example of DEVS modeling for a distributed simulation for network 

traffic analysis (SimForNTA). 

 

 

Figure 44. DEVS modeling: Distributed SimForNTA 

  

 The top level of coupled model is a SimForNTA. The SimForNTA is composed of 

two coupled models, a NTA 1 and a NTA 2, and three atomic models, a Distribute 1, a 

Distributor 2, and a Collector. Two sub coupled models (the NTA 1 and the NTA 2) 

include their own components (a Extractor and a Analyzer). To achieve fast analysis 

time, we apply the divide and conquer approach. A whole job is divided by two, and each 

divided work is assigned to different processors. The Distributor 1 and the NTA 1 

evaluate one half of the whole work, and, at the same time, the Distributor 2 and the NTA 

2 examine the other half of the whole job. Subsequently, the Collector model gathers 

analyzed results from the two processes. We assign all the models to different computers 
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which are connected in networks. Figure 45 illustrates a hierarchically structured 

distributed DEVS simulator and corresponding DEVS models. 

 

 

Figure 45. Distributed DEVS simulators and models for SimForNTA 

  

 In this example, the top level coupled model, the SimForNTA, two sub coupled 

models, the NTA 1 and the NTA 2, and three atomic models, the Distributor 1, the 

Distributor 2, and the Collector, are distributed into six computers. The coordServer for 

SimForNTA creates five simulatorProxys. Each simulatorProxy helps the coordServer to 

communicate with its corresponding clientSimulator or clientHisSimulator. In distributed 

DEVS simulation, the top level coupling information is kept by the coordServer. The 

coupling information is downloaded to each simulatorProxy, and each clientSimulator or 

clientHieSimulator does not know the coupling information. The coordinator controls a 
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whole simulation cycle and helps to pass messages among clientSimulators or 

clientHieSimulators. If the Distributor 1 wants to send a message to the NTA 1, the 

clientSimulator 1 sends the message to simulatorProxy 1 over networks. Consequently, 

the coordServer decides the target host according to the top level coupling information 

and puts the message to simulatorProxy 2. Finally, the message is delivered to the NTA 1 

in the clientHisSimulator 1. Sending messages among DEVS models in a distributed 

computer requires network communication overheads. However, each clientHieSimulator 

keeps its local coupling information. As a result, messages are transmitted directly among 

coupledSimulators not through simulatorProxys. For example, if the Extractor 1 needs to 

send a message to the Analyzer 1, the coupledSimulator 1 puts the message directly to the 

coupledSimulator 2. Therefore, there are no network communication overheads in this 

case.    

 Although a coordServer, simulatorProxys, clientSimulators, and 

clientHieSimulator have their own thread, the slowest thread determines the overall 

simulation speed in the divide and conquer mechanism because the divide and conquer is 

a pipeline with divider, processors (in parallel) and compiler so the slowest one of these 

stages determines the overall speed. Therefore, speeding up all the threads is important. 

And, reducing communication overhead over networks is also a critical issue in 

distributed simulation environments. 
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8.3.2 DEVS Modeling and Simulation  

 Although a distributed SES/NZER follows decentralized distributed DEVS 

simulation scheme, couplings among components (DEVS atomic models and DEVS 

coupled models) keep the function as single machine DEVS. For example, a coupled 

model, coupledModel, is composed of three atomic models: atomicModel 1, atomicModel 

2, and atomicModel 3, we could assign the atomicModel 1 to a host 1, the atomicModel 2 

to a host 2, the atomicModel 3 to a host 3, and the coupledModel to a host 4 or one of the 

hosts which hold the atomic models. Therefore, the coupledModel controls 

synchronization among the atomic models. There must be message transmissions to 

control a whole DEVS simulation cycle. 

 The most considerable factor in distributed simulation over the Web is how to 

reduce communication overheads. A distributed SES/NZER is performed under loosely 

coupled environments over the Web. And, Discrete Event Specification (DEVS) is used 

for simulation engine. To advance simulation cycle, basic DEVS simulation protocol 

requires five message transmissions, nextTN, outTN, getOut, sendOut, and applyDelt, 

among a coordinator and simulators. The DEVS protocol is described below and Figure 

46: 

 
1. Coordinator sends a nextTN message to request next event time (tN) from each of 

the simulators. 
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2. All the simulators reply with their tNs in an outTN message back to the 

coordinator 

3. Coordinator sends to each simulator a getOut message containing the global tN 

(the minimum of the tNs) 

4. Each simulator checks if it is imminent, which means its tN equals to global tN, 

and if so, returns an output of its model in a message to the coordinator in a 

sendOut message. 

5. Coordinator uses the coupling specification to distribute the outputs as 

accumulated messages back to the simulators in an applyDelt message to the 

simulators. For those simulators not receiving any input, the messages sent are 

empty. 

 

1. nextTN

3. getOut

5. applyDelt

2. outTN    

4. sendOut  

 

Figure 46. Basic DEVS simulation protocol 

 

 The basic DEVS simulation protocol is illustrated in Figure 46. If a coupled 

model and all the atomic models are assigned in different machines which are connected 
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in networks, DEVS protocol overheads may exceed the advantage of distributed 

simulation deploying workloads. Diminishing the number of DEVS protocol messages 

among computers results in decreasing communication overheads. Therefore, we may 

expect overall speed up. In an effort to reduce DEVS protocol overheads, we apply two 

approaches: closure under coupling and minimizing the number of states. The closure 

under coupling allows us to use networks of systems as components in a larger coupled 

system, leading to hierarchical, modular construction [17]. This means that every coupled 

model is behaviorally equivalent to a basic atomic model.  

 

 

Figure 47. Closure under coupling for SimForNTA 

 

 Figure 47 presents the closure under coupling. The coupled model NTA is 

composed of two atomic models, the Extractor and the Analyzer. The closure under 

coupling makes these three DEVS components to be one component, the NTA atomic 

model. We translate the coupling information of coupled model, NTA, into a flat-

structured atomic model, NTA. By this translation, hierarchical structure of the DEVS 

model can be flattened. Message exchanges consume a large amount of time if the model 

structure is too complex or extremely large in distributed environments. If the model 

hierarchy is flattened, communication overheads among models can be minimized. 

Therefore, flat-structured modeling approach facilitates to reduce the number of 
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messages, and we can achieve better performance results [58, 59]. In DEVS/SOA 

environments, a coorServer creates simulatorProxys as many as the number of total 

models. Even though, the coupled model, NTA, and two atomic models, the Extractor 

and the Analyzer, are assigned into one computer with single IP address, a coordServer 

creates three simulatorProxys. Therefore, the coordServer needs more processing time to 

decide a destined simulatorProxy among three simulatorProxy for a message. If the 

atomic model NTA replaces the three component DEVS model, only one simulatorProxy 

is created by the coorServer. As a result, we could obtain speed up. Figure 48 shows that 

the closure under coupling decreases the number of simulatorProxys and simplifies the 

DEVS simulation architecture. The left diagram illustrates a simulation environment 

before DEVS models are refined, and the right figure presents the refined DEVS model. 
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Figure 48. DEVS model comparison under the DEVS/SOA environment 

 

 In addition to the effort of reducing the number of DEVS models (atomic models 

and coupled models), we decrease the number of state transitions in atomic models. For 

each simulation cycle, there are five message transmissions between a coordServer and 

clientSimulators or clientHieSimulators. Processing time for these DEVS protocol 

messages transmissions should not overwhelm processing time of the processor. An 

atomic model of SES/NZER loads PES XML documents and analyzes one tuple 

information at one state transition. This approach needs many state transitions according 

to the number of tuples in PEX XML files. For example, there are ten PES XML files, 

and each PES XML file includes 1,300 tuples information. Then, there must be 13,020 
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state transitions. The 13,020 transitions include 10 state transitions (the extract state to 

the analyze state) after loading PES XML documents, 1300*10 iterative transitions (the 

analyze state to the analyze state) for evaluating all the tuples in ten PESs, and 10 

transitions (the analyze state to the extract state) to load PES files. Figure 49 shows these 

state transitions. 

 

 

Figure 49. State diagram in SES/NZER 

 

 A coordinator sends and receives a total of 65,100 (5*13,020) message 

transmissions only for DEVS protocol processing. Although the size of a DEVS protocol 

message is trivial, 65,050 message transmissions is a considerable number. For 

distributed simulation, if workloads are distributed to five computers, the total number of 

DEVS protocol messages is 325,500 (5*65,100). In this case, there is too much 

communication overhead for only advancing simulation cycle. So, we fit SES/NZER’s 

atomic models to a distributed simulation. An NTA atomic model of the distributed 

SES/NZER loads PES XML files and evaluates a complete PES document at one state 

transition. Therefore, the total number of state transitions in this example is 20. The 20 

transitions include 10 state transitions (the extract state to analyze state) for loading 10 

PES files and 10 state transitions (the analyze state to the extract state) after examining 
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all 10 datasets. Figure 50 illustrates an updated state transition diagram for the distributed 

SES/NZER. 

 

 

Figure 50. State diagram in Distributed SES/NZER 

 

 Reducing the number of state transitions results in decreasing communication 

overheads which are caused by passing DEVS protocol messages. Respectively, we could 

speed up overall simulation time over network environments. The Lee’s Ph.D dissertation 

[60] discusses the effect of quantization in distributed DEVS/HLA environments. 

Communication latency and overhead reduction technique in distributed interactive 

simulation are introduced through an approach of bundling Protocol Data Unit (PDU) 

[61].  
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CHAPTER 9. EXPERIMENTAL RESULTS 
 

 We set up a testbed for a distributed simulation environment in the ACIMS lab as 

shown in Figure 51. We install Apache Tomcat 6.0 on six computers (four desktop 

computers and two laptop computers) with the Windows XP operating system. Apache 

Tomcat is a servlet container that is used in the official Reference Implementation for the 

Java Servlet and JavaServer Pages technologies [62]. We install an Apache Axis2/Java 

Web service engine [63]. Apache Axis2 is the core engine for Web services, and it is an 

implementation of the World Wide Web Consortium (W3C) Simple Object Access 

Protocol (SOAP). W3C defines SOAP as below: 

  
SOAP is a lightweight protocol for exchange of information in a 

decentralized, distributed environment. It is an XML based protocol that 

consists of three parts: an envelope that defines a framework for 

describing what is in a message and how to process it, a set of encoding 

rules for expressing instances of application-defined datatypes, and a 

convention for representing remote procedure calls and responses. SOAP 

can potentially be used in combination with a variety of other protocols; 

however, the only bindings defined in this document describe how to use 

SOAP in combination with HTTP and HTTP Extension Framework. [64] 
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150.135.218.202 150.135.218.203 150.135.218.204

 

Figure 51. Testbed for distributed simulation using DEVS/SOA 

 

 We monitor and capture network activities inside the ACIMS lab subnet, and we 

use the captured data for generic network behavior analyses such as protocol evaluation 

and throughput measurement. For intrusion detection analyses, the KDD’99 dataset is 

used as source data because the KDD’99 dataset was originally generated for the purpose 

of intrusion detection system researches, and the dataset includes various attacks as well 

as normal packet transmission events. Figure 52 shows the main GUI of the distributed 

SES/NZER. There are two functions: network traffic analysis and intrusion detection 

system. 
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Figure 52. Main GUI of distributed SES/NZER 

 

9.1 Network Traffic Analysis 

 This chapter presents the experimental results for a generic network behavior 

analysis. We preset two analyses, protocol and throughput analyses in a user’s request 

input system which is shown in Figure 53. According to target analyses, corresponding 

required attributes are selected automatically. Or, users could choose attributes if they 

want to evaluate their specialized target analyses. Target analyses selections generate new 

SESs. The newly generated SESs act like agents, so overall simulations are controlled by 

these new SESs. Then, deciding time frames is next. Finally, customers select the degree 

of parallelism, which is the number of computers for distributed simulations. Requests 
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which are combinations of target time frames and the number of simulation machines 

create new DEVS coupled models. Data is partitioned by the number of hosts, and each 

portion of the data is assigned to corresponding computers. A model partitioning 

approach in distributed simulation is proposed and implemented in the Zhang’s Ph.D 

dissertation [65]. 

 

 

Figure 53. User request input system for network traffic analyses 

 
 The next step is assigning DEVS models into distributed computers. Once a top 

level coupled model is selected, this selection holds the top level coupled model’s 

following child components. After allocating models into dispersed machines, a 
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simulation starts to examine users’ requests. Figure 54 shows the processes of choosing a 

top level coupled model and assigning models into distributed servers. 

 

 

Figure 54. Assign models into multiple servers 

 

 We measure the data size, and the original data sizes for half-day, one day, and 

two days are 2.83 GB, 5.44 GB, and 10.8 GB. Instead of keeping all the attributes, PES 

XML documents for protocol analysis holds two attributes: a packet ID and a protocol 

type. So, the PES file sizes are 168 MB, 326 MB, and 646 MB. Their sizes are about six 

percent of the original data size. PES files for throughput evaluation include two 

attributes, an event time and a packet size, and their sizes are 200MB, 387MB, and 770 
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MB. The ratio is about seven percent. Table 8 presents the data size comparisons between 

original data and PES data for network traffic analyses. 

 

Data Original PES for Protocol PES for Throughput 

Half day 2.83 GB 168 MB 200 MB 

One day 5.44 GB 326 MB 387 MB 

Two day 10.8 GB 646 MB 770 MB 
 

Table 8. Data size comparisons for network traffic analyses 

 
 In addition to measuring the data size, we examine execution times of half-day, 

one day, and two days data of both protocol analysis and throughput measurement by 

varying degree of parallelism (numbers of computer for analysis). We experiment four 

sorts of server sets: a local machine, two machines (one distributing server and one 

analyzing server), four machines (two distributing servers and two analyzing server), and 

six machines (three distributing servers and three analyzing servers). The execution time 

is composed of three sub-times: time for distributing data to servers, time for evaluating 

received data at analyzing servers, and time for collecting and displaying evaluated 

results at a client computer. Table 9 shows the execution times of protocol analyses, and 

Table 10 presents the simulation times of throughput analyses in virtual time 

DEVS/SOA. 

 

Data Execution Times Local 1*1 2*2 3*3 
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Half 
day 

Distributing 
time 8min 23sec 8min 18sec 12min 28sec 10min 5sec 

Analyzing time 1min 26sec 1min 12sec 57sec 59sec 

Collecting time 1sec 2sec 1sec 1sec 

Total 8min 50sec 9min 32 sec 13min 26sec 11min 5sec 

One 
day 

Distributing 
time 16min 15sec 15min 23sec 18min 16sec 16min 29sec 

Analyzing time 2min 20sec 2min 1sec 1min 47sec 1min 59sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 18min 35sec 17min 25sec 20min 4sec 18min 29sec 

Two 
days 

Distributing 
time 30min 34sec 32min 57sec 35min 47sec 33min 21sec 

Analyzing time 4min 43sec 4min 34sec 3min 32sec 3min 56sec 

Collecting time 1sec 1sec 1sec 2sec 

Total 35min 18sec 37min 32sec 39min 20sec 37min 19sec 
 

Table 9. Execution times of protocol analyses in virtual time simulation 

 

Data Execution Times Local 1*1 2*2 3*3 

Half 
day 

Distributing 
time 9min 26sec 10min 13sec 14min 15sec 12min 13sec 

Analyzing time 1min 8sec 1min 4sec 57sec 1min 3sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 10min 35sec 11min  18sec 15min 13sec 13min 27sec 

One 
day 

Distributing 
time 18min 13sec 19min 37sec 22min 11sec 21min 46sec 

Analyzing time 2min 18sec 2min 2sec 1min 51sec 2min 13sec 
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Collecting time 1sec 1sec 1sec 1sec 

Total 20min 32sec 21min 40sec 24min 3sec 24min 0sec 

Two 
days 

Distributing 
time 34min 1sec 39min 58sec 39min 37sec 42min 14sec 

Analyzing time 4min 0sec 5min 53sec 5min 26sec 3min 58sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 38min 2sec 45min  52sec 45min 4sec 46min 13sec 

 
Table 10. Execution times of throughput analyses in virtual time simulation 

 
 For three different datasets, we measure three kinds of times: distributing data 

time, analyzing data time, and collecting resulting data time. We measure execution times 

at four different sets of computers: {a local computer}, {one distributing data computer, 

one analyzing data computer}, {two distributing data computers, two analyzing data 

computers}, and {three distributing data computers, three analyzing data computers}. We 

notice that distributing times increase gradually as the number of distributed computers 

increases. Ideally, distributing times must decrease in the counter ratio of the number of 

hosts. However, communication overheads (data messages and DEVS protocol 

messages) prevent us from achieving optimal results. We see that analyzing data times 

are getting smaller as the number of computers is getting larger. Against distributing 

times, analyzing times are not affected by network communication overheads. Because 

collecting resulting data times are one second or two seconds in most cases, we could 

forgo collecting times for comparing execution times. Figure 55 illustrates virtual time 

simulation results of network behavior analyses.  
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Virtual Time Protocol Analysis Virtual Time Throughput Analysis 

 
Figure 55. Virtual time simulation results of network behavior analyses 

  

 In virtual time DEVS/SOA simulation, all the simulation servers are controlled by 

a top level coordination server for advancing discrete events and passing messages 

among simulation servers even though each simulation server runs by itself and does not 

affect the other simulation servers. This is a centralized approach, and this simulation 
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causes time delay. The overall simulation speed fits to the slowest server’s evaluating 

time. In addition, there must be many sets of message transmissions, nextTN, outTN, 

getOut, sendOut, and applyDelt, between a top level coordinating server and model 

simulating servers for the DEVS protocol. These DEVS protocol messages are another 

cause of degrading simulation speed. To overcome these limitations of virtual time 

simulation, real time DEVS/SOA simulation is applied, and, finally, we accomplish a 

goal of distributed simulation, speed up execution times, through real time simulation. 

Because each simulator in different machine has own simulation time, and overall 

execution time is not affected by communication overheads which are caused by DEVS 

protocol messages and data messages between a centralized coordinator and distributed 

simulators, we achieve speed up comparing to virtual time simulation. Table 11 shows 

the execution times of protocol analyses, and Table 12 presents the simulation times of 

throughput analyses in real time DEVS/SOA. Figure 56 illustrates real time simulation 

results for both protocol and throughput analyses.  

 

Data Execution Times Local 1*1 2*2 3*3 

Half 
day 

Distributing time 6min 10sec 6min 53sec 6min 1sec 2min 20sec 

Analyzing time 1min 9sec 30sec 15sec 9sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 7min 20sec 7min 24sec 6min 17sec 2min 30sec 

One 
day 

Distributing time 11min 55sec 12min 24sec 7min 0sec 3min 40sec 

Analyzing time 2min 16sec 53sec 21sec 16sec 
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Collecting time 1sec 1sec 1Sec 1sec 

Total 14min 12sec 13min 18sec 7min 22sec 3min 57sec 

Two 
days 

Distributing time 26min 36sec 27min 18sec 12min 2sec 7min 37sec 

Analyzing time 3min 47sec 3min 44sec 54sec 36sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 30min 24sec 31min 3sec 12min 57sec 8min 14sec 
 

Table 11. Execution times of protocol analyses in real time simulation 

 

Data Execution Times Local 1*1 2*2 3*3 

Half 
day 

Distributing time 7min 29sec 8min 25sec 7min 00sec 3min 24sec 

Analyzing time 1min 23sec 29sec 15sec 10sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 8min 53sec 8min  55sec 7min 16sec 3min 35sec 

One 
day 

Distributing time 15min 15sec 15min 24sec 8min 57sec 4min 54sec 

Analyzing time 2min 24sec 1min 35sec 18sec 12sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 17min 40sec 17min 0sec 9min 16sec 5min 7sec 

Two 
days 

Distributing time 30min 22sec 33min 27sec 16min 7sec 10min 4sec 

Analyzing time 3min 58sec 3min 37sec 1min 32sec 37sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 34min 21sec 37min  5sec 17min 40sec 10min 42sec 
 

Table 12. Execution times of throughput analyses in real time simulation 
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Real Time Protocol Analysis Real Time Throughput Analysis 

 
Figure 56. Real time simulation results of network behavior analyses 

 

9.2 Intrusion Detection System 

 Recall that we built two IDS agent models: the LAND agent and the POD agent. 

As illustrated in Chapter 8.1., after customers’ requests, which are selecting a target IDS, 

time frames (start time and end time) and a degree of parallelism (the number of 

distributed computer for analysis) are applied through an input system, users could assign 
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simulation models into multiple servers according to the selected degree of parallelism. 

Figure 57 shows the user’s request input system for evaluating intrusion detection 

systems. Users’ requests generated both new SESs and new DEVS coupled models for 

evaluating IDSs.  

 

 

Figure 57. User request input system for intrusion detection systems 

 

 First, we measure the data sizes. The original source data size for two weeks (five 

days a week) is 4.12 GB. The pruned data size for LAND IDS, which include even times, 

source host IP addresses, and destination host IP addresses size, is 368 MB. The data size 

for POD IDS is 437 MB. These PES data sizes are about 9 percent (LAND) and 10 
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percent (POD) of the original KDD’99 dataset. Table 13 presents the data size 

comparisons for IDS evaluations. 

 

 Original PES for LAND PES for POD 

Source Data (2weeks) 4.12 GB 368 MB 437 MB 

 
Table 13. Data size comparisons for IDS evaluations 

 

 Also, we observe IDS evaluating times of both the LAND attack and the POD 

attack using the two weeks of the KDD’99 dataset. We differentiate the number of 

computers like we experiment for generic network traffic analysis. We achieve similar 

execution times to what we gain in Chapter 8.1.  We notice that distributing data times 

are getting larger as the number of evaluating machines increases due to overheads 

(network packet transmission delays and DEVS protocol message overheads). We speed 

up analyzing times.  

 

 Local 1*1 2*2 3*3 

Distributing time 41min 1sec 41min 43sec 47min 29sec 49min 14sec 

Analyzing time 8min 13sec 11min 39sec 9min 55sec 9min 39sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 49min 15sec 53min 23sec 57min 25sec 58min 54sec 

 
Table 14. Execution times of LAND attack detection in virtual time simulation 
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 Local 1*1 2*2 3*3 

Distributing time 32min 36sec 36min 1sec 38min 33sec 39min 24sec 

Analyzing time 8min 3sec 12min 1sec 10min 1sec 9min 11sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 40min 40sec 48min 3sec 48min 35sec 48min 36sec 
 

Table 15. Execution times of POD attack detection in virtual time simulation 

 

Virtual Time IDS LAND Attack Detection Virtual Time IDS POD Attack Detection 

  

Figure 58. Virtual time experimental results of IDS analyses 
 

 Table 14, Table 15, and Figure 58 illustrate that there is no big improvement in 

total execution times (adding distributing time, analyzing time, and collecting time) in 

virtual time simulation environment. A distributed SES/ZER speeds up analyzing times 

by dividing a whole workload into several small jobs and deploying the small works into 

multiple machines. Experimental results in real time simulation are presented in table 16, 

table 17, and figure 59. 
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 Local 1*1 2*2 3*3 

Distributing time 48min 50sec 41min 7sec 22min 58sec 16min 3sec 

Analyzing time 11min 57sec 12min 55sec 2min 54sec 2min 8sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 1hr 0min 48sec 54min 3sec 25min 53sec 18min 14sec 
 

Table 16. Execution times of LAND attack detection in real time simulation 

 

 Local 1*1 2*2 3*3 

Distributing time 44min 43sec 35min 58sec 18min 21sec 11min 59sec 

Analyzing time 12min 43sec 8min 38sec 5min 39sec 3min 25sec 

Collecting time 1sec 1sec 1sec 1sec 

Total 57min 27sec 44min 37sec 24min 1sec 15min 25sec 
 

Table 17. Execution times of POD attack detection in real time simulation 

 

Real Time IDS LAND Attack Detection Real Time IDS POD Attack Detection 

Figure 59. Real time experimental results of IDS analyses 
 

 We accomplish speed up of total execution times in real time simulation. The 

experimental results in this section show that a distributed SES/NZER reduces data sizes 
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in terms of different customers’ requests in both virtual time and real time simulations. 

And, a distributed SES/ZER speeds up analyzing times by dividing a whole workload 

into several small jobs and deploying the small works into multiple machines. In 

addition, we achieve fast execution times in real time simulations since real time 

simulations reduce the message transmission delay overheads which are occurred in 

virtual time simulations. 

 
 

9.3 Discussion 
 

 In our experiments, we assume that every machine, in which DEVS Distributor 

models are located, keep the same large-sized PES data which depict generic network 

behavior SES. However, it takes time to copy the large sized PES data from a host which 

monitors and captures network activities to computers which include DEVS Distributor 

models. Then, each Distributor deploys partitioned and customized data to Analyzer 

models which are assigned to different machines. Data flows are explained in figure 60. 

The dotted-line arrows present data flows of copying original PES data from the 

Distributor 1 machine to the Distributor 2 and Distributor 3 machines.  
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Figure 60. Semi multi-distributing and multi-analyzing machines simulation 

 

 To remove copying data time, we do experiments another approach. Three 

Distributor models are assigned into one single machine and three Analyzer models are 

located in three different computers. The data flows are shown in figure 61. This 

approach removes time overheads of copying original PES data time from a network 

activity capturing machine to the other distributing computer. However, many workloads 

are assigned into one distributing machine. Even though three Distributor models run on 

own simulator threads, operating systems do not support multi-thread processing.  

Therefore, only one Distributor model sends one message out to an analyzing computer 

at one time.  
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Figure 61. Single-distributing and multi-analyzing machines simulation 

 

 Execution times are shown in table 18. Two days data is evaluated in a 1*3 

environment and 3*3, and, then, execution times are compared with the experimental 

results of the 3*3 environment presented in chapter 8.1. Although 3*3 simulation requires 

copying data time, total execution times (sum of copying time, distributing time, and 

analyzing time) of this approach is faster than total execution times (sum of distributing 

time and analyzing time) of 1*3 approach in both protocol analysis and throughput 

analysis. 
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Analysis Protocol Analysis Throughput Analysis 

Execution Times 1*3 3*3 1*3 3*3 

Copying time 0 10min 49sec 0 10min 49sec 
Distributing time 37min 00sec 7min 37sec 40min 57sec 10min 4sec 
Analyzing time 36sec 36sec 28sec 37sec 
Collecting time 1sec 1sec 1sec 1sec 

Total 37min 37sec 19min 3sec 41min 26sec 21min 31sec 
 

Table 18. Execution times of 1*3 and 3*3 environmental simulation 
 

 The experimental results illustrated in table 18 provide us feasible approach to 

fast overall analysis time. We may speed up by combining these two approaches (1*n and 

n*n). Deploying multiple computers inside sub-networks and assigning capturing 

network activity roles to the computers facilitate to remove copying PES data times 

(because every computer keeps their own captured data) and reduce distributing 

customized PES data times (since every Distributor model is distributed into individual 

machines). Figure 62 shows this approach.  Because every distributing machine captures 

different network activities, a Collector model must have intelligent gathering methods to 

integrate different analyzed results together. 
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Figure 62. Multi-distributing and multi-analyzing machines simulation 
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CHAPTER 10. CONCLUSIONS AND FUTURE WORKS 
 

10.1 Conclusions 

 Recently, network uses have been increasing rapidly. Therefore, the size of data, 

which is caused by network activities, is getting larger. Network administrators or 

managers need network traffic analysis tools that could produce results quickly and 

accurately. There are several network traffic analysis tools such as tcpdump, Ethereal, 

and other applications. But, these tools have drawbacks: limited data size and excessive 

resource consumptions. These problems cause a slow analyzing time and require big 

budgets for maintaining. In addition to these problems, currently existing tools are limited 

to be performed inside networks, due to security issues. Dump files which are monitored 

and captured by these tools includes secure information such as user ID, passwords, and 

other information. These secure attributes must be protected against abnormal accesses, 

so observing network activities from out of networks should be prohibited.  However, 

network behaviors need to be analyzed outside target networks in some cases. 

 This study proposes a Web-based distributed simulation for network traffic 

analyses over Service Oriented Architecture (SOA). The main objective of this study is to 

develop an approach for quick and efficient network behavior analysis. To deal with large 

numbers of network behaviors being quickly and efficiently analyzed, the System Entity 

Structure (SES) theory is applied. The SES facilitates implementing a system to achieve 

our main goal, fast and accurate network traffic evaluation. The SES is a theory for 
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designing structured information hierarchically and efficiently. Specifically, the SES is 

very useful for data engineering for a high throughput and a low response time. The SES 

data engineering helps SES/NZER to transform captured network traffic data into 

practical data expressed by Extensible Markup Language (XML). The advantages of the 

SES using a data engineering concept are easy and fast access to information, no 

necessary for multi-query, fast response time, and a user-centric schema. Also, the SES 

data engineering is a hierarchical tree structure, and the hierarchical tree structure is easy 

to read, understand, and manipulate. We design a generic network behavior in SES 

format. Also, automated awareness to pragmatic frames (customers’ applications) makes 

reactions fast and results in no needs of human interference. We must notice that every 

customer has different requests (different applications). For example, some customers 

want to evaluate network protocol uses. Other users want to measure network throughput. 

Depending on various requirements (pragmatic frames), systems need to be optimized for 

the pragmatic frames to speed up analysis time effectively. Two processes for creating a 

new SES to correspond to users’ requests by pruning operations and mapping the newly 

generated SES with the pre-defined SES which represents a generic network packet 

behavior enables systems to be adaptively optimized. Reactions to pragmatic frames 

facilitate systems keeping accurate data only, so we are able to reduce overall data size. 

Therefore, we could analyze extensive long-term network activities which Ethereal 

cannot do. Although we enable large amounts of data to be examined, we still need a long 

evaluation time. To speed up evaluation time, we apply a Web-based distributed 

simulation approach over Service Oriented Architecture (SOA). Deploying workloads 
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into multiple machines decreases burdens of individual computers, and results in hosts, 

which have low computational powers (CPU and memory), to participate in large scale 

simulations. As a result, there are no needs for super computers anymore. DEVS/SOA 

(DEVS/Service Oriented Architecture) facilitates deploying workloads into multi-servers, 

and, consequently, increasing overall system performance. 

 

10.2 Future Works 

 We achieve both evaluating large amount of network traffic activity data and 

performing a Web-based distributed simulation over SOA. In addition, we accomplish 

fast execution times through real time decentralized distributed simulation. However, 

there are further research works: developing web services for network traffic analyses 

and implementing additional attack detecting functions for intrusion detection systems. 

The ultimate goal is to implement network behavior analyses web services. This study 

aims for a decentralized distributed DEVS simulation to speed up evaluation times by 

deploying workloads into multi-computers. But, customers are still responsible for 

building models for simulating their systems. Web services, which are implementations 

of integrating automated model constructing process with analyzing corresponding 

system process, provide more accommodation to users. Another future work is 

implementing web service systems to perform the case that customers hold data which 

need to be analyzed. Customers may provide data to multiple web services 
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asynchronously. Subsequently, web services evaluate received data and give evaluated 

results back to customers.  
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