

Embedding DEV&DESS in DEVS

Bernard P. Zeigler
Arizona Center of Integrative Modeling and Simulation (ACIMS)

ECE Department, University of Arizona
Tucson, AZ 85721

 zeigler @ece.arizona.edu

Abstract

DEV&DESS was defined to represent combined continuous and discrete model event
simulation models and was shown to have the properties expected from a universal
representation of such models in “Theory of Modeling and Simulation.” Also in that
theory, it was shown that DEVS can provide accurate simulations of DESS models. In
this paper, we offer a proof that DEVS on its own is capable of accurately implementing
the combination of DEVS and DESS formalisms as formulated in DEV&DESS, thus
filling in the missing pieces to complete the picture. We elucidate the characteristic
primitives needed to express hybrid or combined continuous/discrete event models and
provide a rigorous proof of the ability to express these within a purely discrete event
computational framework. We discuss the implications of these results for multi-
formalism modeling and the implication of the results for a related, but alternative,
formalization of hybrid systems called Heterogeneous Flow System Specification.

1 Introduction

Although DEVS (Discrete Event System Specification) has been employed in a number
of studies in which both discrete and continuous elements appear [1,2,3, 4], it has not
received a formal proof of its capability to express such combined or hybrid models as
they are often called [5,6,7] . In this paper, we offer such a proof by supplying some of
the missing pieces that complete the picture presented in Theory of Modeling and
Simulation [8]. Praehofer [9] defined the combined formalism, DEV&DESS to represent
combined continuous discrete models that are simulatable in simulation languages such
as SLAM and ARENA [10]. As defined, DEV&DESS describes a subclass of dynamic
systems that includes the subclasses specified by DEVS and DESS (Differential Equation
System Specification), respectively. As such it provides a rigorous framework for
considering properties of hybrid models but it does not provide a computational
framework for simulating such models. Barros [11,12] has also provided a DEVS-based
extension to include continuous system modeling with implementation on a SmallTalk
platform [13], to which we shall return later. On the other hand, the DEVS formalism has
been implemented in numerous platforms [14-19] thus affording an advantageous
computational basis for simulation of combined models. Therefore, an official proof of
the embedding of DEV&DESS into DEVS would provide a formal justification for the

use of the latter for combined or hybrid models. Furthermore, we show how
multiformalism modeling [20] – the integrated use of many formalisms in the same
framework – can be explicitly supported in such a framework.

The possibilities for expression of a formalism relative to DEVS are illustrated in Figure
1.

DESS

DEV&DESS

DEVS

Combining Formalisms within Systems Theory

Formalism

Embedding Formalisms into DEVS

DEV&DESS DEVS

Embedding DEV&DESS into DEVS

DEVS

Formalism DEVS

Coupling Formalisms with DEVS

Dynamic
Systems

DEVS – Discrete Event System Specification DESS – Differential Equation System Specification

Figure 1. DEVS-based Multi-formalism Embedding and Compositional Approaches

Three approaches are depicted:

1. Extending DEVS into a larger subclass of dynamic systems: As mentioned earlier,
the extension to DEV&DESS was performed by Praehofer [9] in his doctoral
dissertation. He proved closure under coupling, thereby establishing that the
structures and couplings included in the basic definitions are sufficiently
expressive to represent arbitrary hierarchical compositions of discrete and
continuous components. DEV&DESS is therefore a good candidate to consider as
basis for hybrid and multi-formalism modeling theory investigations.

2. Embedding a formalism into DEVS: TMS2000 [8] also proved that DEVS is

universal for discrete event systems, i.e., any system within the sub-class of
dynamic systems having discrete event input/output behavior (when reduced to its
canonical form) is isomorphic to a DEVS. This invites the possibility of
exploiting the properties of special formalisms for discrete event systems by

expression them as subclasses of DEVS. Studies of this nature has been done for
Petri Nets [21, 22], state charts [23] and timed automata [24].

3. Interoperating a non-dynamic systems formalism with DEVS: Sarjoughnian et al.

[25] have shown the benefit of this approach, where linear and non-linear
programs are coupled with discrete event simulation to optimize supply chains.
The approach employs an interface specification to mediate between the two
forms of knowledge (called a knowledge interchange broker) that provides a
generic means of coupling a variety of simulation models with optimization
strategy implementations.

Within this framework of discussion, we focus on embedding formalisms into DEVS. In
particular, we show that the DEV&DESS formalism, the extension of DEVS with DESS,
can be embedded within DEVS itself – within an accuracy specification that relates to the
quantization-based representation of DESS within DEVS. As suggested above, the proof
provides a justification for employing DEVS-based simulation environments as tools for
hybrid and multi-formalism modeling – the latter taking into account the capabilities of
DEVS to embed more restricted formalisms and to be interoperated with non-dynamic
systems formalisms.

2 Characteristic Behaviors of the DEV&DESS Formalism

As background for the embedding of DEV&DESS into DEVS we first briefly review the
DEV&DESS formalism presented in [8] and then go on to elucidate the characteristic
behaviors need to achieve full DEV&DESS expressive capability.

2.1 Review of DEV&DESS

The DEV&DESS formalism [8] envisions a composition of discrete event and continuous
parts as illustrated in Figure 2.

DEVS

Sdiscr

DESS

Scont

Xdiscr

Xcont Ycont

Ydiscr

Figure 2. DEVS and DESS combined model

The DEV&DESS formalism prescribes the components and their interfaces. It is
presented as follows:

DEV&DESS = co

int int, , , , , , , , , , ,discr nt discr cont discr cont discr cont
extX X Y Y S S C fδ δ λ λ< >

,discr discrX Y are sets of discrete event inputs and outputs, resp.

co ,nt contX Y are sets of continuous inputs and outputs, resp.
,discr contS S are sets of discrete and continuous states, resp.

co

0

: is the external transition function

 where is the sequential state set, and
 where {(,) | , } is the total state set

discr nt
ext

discr cont

Q X X S

S S S
Q s e s S e

δ

+

× × →

= ×

= ∈ ∈ �

co
int : is the discrete event internal transition functionntQ X Sδ × →

co: is the discrete event output functiondiscr nt discrQ X Yλ × →
co: is the continuous output functioncont nt contQ X Yλ × →

co: is the derivative functionnt contf S X S× →
co: is the event detection condition predicate ntC Q X Bool× →

The semantics of the DEV&DESS formalism are given in terms of the subclass of
dynamic systems that it defines [8]. A state event is considered to be the occurrence of a
change in the value of the event condition predicate from false to true. The concept of
state event derives from Pritsker’s [26,27] original formulation of combined continuous
and discrete simulation in which it was defined as a threshold crossing of the continuous
state. In the DEV&DESS formulation, the concept of state event is generalized so that it
can occur due to a change in any of its arguments, of which the continuous state is one
component.

We note that as just formulated, the DEV&DESS formalism does not include a time
advance function. Instead, triggering of the internal transition function is performed by
the output of the event detection condition. We will show later that the time advance
trigger can be captured within the formalism.

2.2 Capabilities Exhibited in the DEV&DESS Formalism

DEV&DESS defines certain behavior primitives that are manifest in the formalism that
are not found in either of its components separately. As illustrated in Figure 3, these are:
a) state event detection, b) derivative function change, c) integrator state reset, and d)
event detector threshold change.

state event

scont

threshold

t T

threshold reached

discrete change
-> discontinuity

State
Event

Detection

Integrator
State
Reset

⇒

Derivative
Function
Change

Detection
Threshold

change

Figure 3.Behaviors in DEV&DESS

Let’s see how the formalism makes use of these basic primitives to obtain behaviors
characteristic of hybrid systems.

Behavior 1. Discrete Events, both state and external, can control the derivative function,
thus causing an instantaneous change in the derivative of the continuous state trajectory.

By expressing the sequential state set as a cross product of the discrete and continuous
state sets, the derivative function takes the form:

co: discr cont nt contf S S X S× × →

Since the discrete state changes only through discrete events, we can consider f to be a
family of functions indexed by discrS , with the interpretation that the differential equation

co(,)discr

cont
cont nt

s

ds f s x
dt

=

holds for the interval during which discrs is the state of the discrete event part as depicted
in Figure 4.

∫f
conts

contx

discrs

() 0 ()disc
cont disc

s
f s C s true= ⇔ =

Figure 4. Illustration of discrete event control of derivative function

External events, through the invocation of the external transition function can change the
discrete state and hence control the derivative function. Similarly, a state event, through
the invocation of the internal transition function, can exhibit the same effect. An example
given in TMS2000 concerns the filling of a container until full. This requires setting the
derivative of the filling function to zero to shut off a flow, either externally, or when a
level is exceeded (a state event).

Behavior 2. Discrete Events, both state and external, can control the event detection
condition, thus instantaneously changing the thresholds governing event detection.

In the same manner as done for the derivative function, we can consider the event
detection condition to be indexed by the discrete state set:

co:discr
cont nt

s
C S X Bool× →

where a particular predicate discrs

C holds during the interval in which the discrete state
discrs prevails (Figure 5).

∫

C

co n ts

con tx

discrs

B o o l

x

y

[, 1) " "ix i i phase stair∈ + ⇒ =
() [" ()]phase i iC y phase stair y height stair≡ = ∧ <

Figure 4. Illustration of discrete event control of event detection function

As an example, in a model first developed by Kofman [19], a ball bounces down a
staircase. In our reformulation, the stair currently underneath the ball can be tracked by a
phase variable in the discrete event part. The event detection condition controlled by this
phase is made up of two parts corresponding to the vertical and horizontal coordinates of
the ball. In the vertical component, the detection condition monitors the ball’s vertical
position for crossing the level of the current stair. In the horizontal component, the
detection condition monitors the ball’s horizontal position for the transition to the next
lower stair. Thus the horizontal position of the ball determines the stair phase, e.g.

[, 1) " "ix i i phase stair∈ + ⇒ = . This in turn determines the height of the stair currently
below the ball and thereby the level to be crossed in order to change the derivative
function to represent the bouncing region, e.g.

() [" ()]phase i iC y phase stair y height stair≡ = ∧ <

Similarly, the continuous input or and/an external event can change the event detection
function. Furthermore, in the latter case, the elapsed time can be taken into account.
When an external event arrives after an elapsed time e since the last event, it can trigger

the external transition function which can change the discrete state based on the current
state and the elapsed time e .

public double thresholdFn(double e) {
if (phaseIs("absoluteRefractory")) {

return INFINITY;
} else
if (phaseIs("relativeRefractory")) {

return restingThresh *
(1 +

(refractFactor /(elapsedSinceLastFire + e)));
}
else if (phaseIs("resting"))

return restingThresh;

Absolute
Refractory
Period

Relative
Refractory
Period

threshold

elapsedSinceLastFire

Resting
Threshold

resting

absolute
Refractoryrelative

Refractory

fire

input>
thresh

input>
thresh

Figure 5. Firing threshold of a leaky integrator neuron

An example of dependence on external events is given by a model of the firing threshold
of a leaky integrator neuron [28] as modeled in DEV&DESS. As depicted in Figure 5,
the model has a discrete event phase variable such that the firing threshold depends both
on the phase as well as the elapsed time since it was last fired. In the “resting” phase the
threshold equals the resting threshold value. When the input exceeds the threshold, the
phase changes to “absoluteRefractory” in which the neuron cannot fire (the threshold
effectively takes on an infinite value). The passage from “absoluteRefractory” to
“relativeRefractory” is an event that is triggered by the passage of a fixed refractory time.
In the “relativeRefractory” phase, the threshold is given as a function of time since last
fired, which itself is updated through the elapsed time, e .

Behavior 3. Discrete Events, both state and external, can instantaneously change the
continuous state (causing discontinuities from the point of view of differential equation
systems)

This is true because the continuous state is one of the components in the range of the
external and internal transition functions. For example, we have

co: discr nt discr cont
ext Q X X S Sδ × × → ×

Since the occurrence of an external event triggers this function, the external event can
directly change the continuous state, which is the composite state of the integrators
underlying the differential equation of the continuous part.

The barrel filling model provides an example of a state event triggering an integrator
reset. When the barrel becomes full (state event),e.g.
 the contents of the barrel (hence the integrator
representing the barrel) is reset back to zero. An example of an external event triggering a
reset is provided by a model of the synapse of a leaky integrator neuron [28]. Spike
arrivals at the synapse (external events) cause an immediate jump in the soma integrator
state (which then proceeds to decay to zero).

∫ contscontx

discrs

(,) []cont disc contC s s s fullLevel= >

Figure 6. Illustration of discrete event control of integrator state

SIMULINK can reset integrator states during simulation but only to the state that was
used in initializing the model – hence for a return to the initial state. This meets the
requirements of the barrel filler example. However. it does work not for spikes arriving to
a synapse where the reset is to a potentially different state on each occasion. In an
inverted pendulum model [29], the angle of the pendulum must be set to 0 when it
reaches 2π . This is not the same as the initial angle of the pendulum which is π).

2.2 Regaining the DEVS time advance function trigger of the internal transition
function

In DEV&DESS as presented in [8], there is no explicit time advance and hence no
triggering of the internal transition function due to time events. This is a simplification of
the definition of DEV&DESS as first presented by Praehofer [9]. It is important to show
that the simplified definition does not reduce the class of systems specified by the
original definition. The time advance triggering functionality is regained by the approach
illustrated in Figure 7. Incidentally, the approach also demonstrates the necessity of the
three characteristic behaviors. We start by recognizing that time can be represented by the
output of an integrator with constant unit input. To get the effect of a scheduled time

(,) []cont disc contC s s s fullLevel= >

advance, we need a condition predicate that detects when the output crosses the given
time advance threshold. The output triggers the internal transition function that resets the
time integrator back to zero as well as sending the new time advance value to the
condition predicate. Thus all three DEV&DESS characteristic behaviors are needed to
capture the effect of the time advance trigger in DEVS.

 ∫ 1

 ()e ta s≥

 e

reset to 0

level
crossing
detector

in tδ

trigger
internal
transition
function

DEVS
 e

()ta s

 t

elapsed time is obtained
as the output of an
integrator that is reset to
zero at a state event

time
advance
value from
DEVS

Figure 7. Expressing the time advance triggering of the internal transition function

3 DEVS implementation of DEV&DESS

3.1 Embedding DEV&DESS into DEVS

The DEVS implementation of DEV&DESS will be shown by the embedding of
DEV&DESS into DEVS. This is done by showing how an arbitrary DEV&DESS model
is realized by a DEVS model. The realization employs the same component-wise
simulation concepts that were employed in [8] to provide the embedding of DESS into
DEVS. The embedding in Figure 8 implements the individual DEVS and DESS parts of
a DEV&DESS model as modular DEVS components coupled within the DEVS
formalism. The DEVS part is implemented by a corresponding DEVS denoted by DEVS’.
The DESS part is implemented using the quantized integrator approach [8,19], with
accuracy determined by the quantum size. The instantaneous derivative functions in this
representation are augmented with input ports that allow output events from the DEVS’

component to control the derivative functions. Likewise, the DEVS integrators have
additional ports to allow output events from the DEVS’ component to instantaneously
change the integrator state. The event detection condition is implemented as a DEVS
component with input ports receiving outputs of the integrators. Finally, the output ports
of the event detector are coupled to the input ports of the DEVS’ providing the event
detection information to it. This realization which is, in part, an exercise in converting
from non-modular to modular form, requires that zero time advances are employed to
transmit state and control information that is immediately available in the non-modular
form. In this manner, the three behaviors characteristic of DEV&DESS are implemented
with DEVS itself.

∫d q1/dt q1f1x

∫d q2/dt q2f2

∫d qn/dt qnfn

q
x

q
x

q
x

...

DEVS’

event
detection

DEVS
implementation
of DESS

DEVS Integrator
with port to
reset state

DEVS control
of threshold
crossing
condition

DEVS
control of
derivative
function

DEVS external
transition function
includes
DEV&DESS
internal transition
specification and
is triggered by
event detection

Figure 8. DEVS implementation of DEV&DESS

3.2 Well-defined DEV&DESS: Potential Zero-Time Loop in Integrator Resetting

We recall that the criterion for well-definition of any system specification requires that it
specifies a unique system in the class of mathematical input/output systems [8]. The well-
definition for DEV&DESS was formulated as a combination and extension of the
separate well-definition criteria for DEVS and DESS separately. The DESS requirement
is that solutions satisfying the underlying differential equation exist and define unique
state trajectories and are guaranteed the Lipshitz condition as well as the absence of
algebraic loops, (see page 164 of [8]). The essence of DEVS well-definition is the
legitimacy criterion which requires that time always moves forward through the
accumulation of time advances. An equivalent formulation was given in terms of events,
namely, there are only a finite number of external and internal events in any finite time

interval of a simulation run. The extension of this criterion to DEV&DESS is called
state-event legitimacy and requires that the number of state events be finite for every
admissible input segment (page 213 of [8]). We recall that a loop of components all
having zero time advances violates this legitimacy criterion. However, this is not the only
source means by which illegitimacy arises. In general the convergence of infinite series
of time advances must be avoided (see [8] page 142), akin to Zeno’s paradox (see [3] for
recent perspective.)

Let’s now consider how this applies to the testing a DEV&DESS model for legitimacy by
employing its embedding in DEVS as in Section 3.1. Theorem 5 of Chapter 15 in [8] is
easily amended to state that that the absence of algebraic loops in DESS is equivalent to
the absence of zero-time advance loops in its DEVS realization. Assuming Lipshitz
conditions hold, this fact reduces the test of well-definition of the DESS part to that of
legitimacy of its DEVS representation. However, there remains a source of state-
illegitimacy that needs to be considered. It relates to the resetting integrator states by the
discrete events.

Figure 10 a) extends Figure 6 by explicitly showing the feedback loop from an integrator
through the condition function that decides when and how to reset the integrator. This is a
zero-time loop if the integrator’s output is instantaneously sent to the decision condition
which instantaneously resets the integrator. The example in Figure 10 b) illustrates a
feedback coupling between an integrator, x and a level crossing detector, xUp. The
integrator broadcasts its state with zero time advance upon any resetting of its state. The
level crossing detector has zero time advance to send the value to the integrator reset port.

∫ contscontx

C

a)

b)

() [10]C x x≡ >

reset x to 1

dx x
dt
=

Figure 10. Potential Zero-time Loop in Integrator Reset

Under certain circumstances, this will form a loop of zero time advances. However, this
cycle need not be manifest. For example, if the state to which the integrator is reset no
longer satisfies the event detector’s output criterion then the latter passivates, thus
breaking the zero time advance loop. In Figure 10 b), when the level 10 is crossed from
below, the integrator is reset back to 1, thus passivating the detector. Note that
passivation (setting the time advance to infinity) is available only in a discrete event
framework.1

We concluded that the well-definition of a DEV&DESS model can be tested in its DEVS
embedding by testing for Lipshitz conditions on the DESS derivative functions and state-
event legitimacy of the DEVS. A necessary condition for the latter is absence of zero
time-advance loops in the DESS part as well as in the interaction between the DEVS and
the integrator resets. Although it deals with a major source of illegitimacy, the condition
is not sufficient since the latter may still arise through converge in the manner of Zeno’s
paradox as mentioned above.

4 The Need for Multiple Formalisms in Information Technology-based Systems

The need for multi-formalism modeling in developing modern information technology-
based systems is increasingly recognized [2,20]. The ability of DEVS to support such
modeling follows from the results just presented. Since DEVS implements DEV&DESS
and leads to computationally effective and efficient environments, it offers the basis for
combined discrete and continuous (hybrid) modeling. Moreover, as mentioned, since
DEVS is universal for discrete event systems, special formalisms such as Petri Nets can
be included when appropriate. Finally, DEVS-based simulation components can be
interoperated with optimization and other non-dynamic software components. We now
briefly discuss robot collaboration to show how this works to address new information-
technology challenges.

1 The same situation shows up in a continuous simulation language that allows integrator resetting as well.
However, in that context, it may be treated as an algebraic loop that is detected by the syntactic analyzer.
To resolve this situation, SIMULINK adds a state output port to the integrator which provides the last
known state to the condition function. Syntactically, this breaks the algebraic loop but may not resolve the
true problem. The formulation in Figure 10 within the realization of DEV&DESS in DEVS provides a
useful context for examining the problem.

linear time
invariant

fuzzy logic
control

discrete event
coordination

DEVS

[] [][] [][]
[][][]

x A x B u

y C x

= +

=

&

cooperative robot
pushing task

*Discrete Event Modeling, Simulation And Control With
Application To Sensor Based Intelligent Mobile Robotics,
MS Thesis, UNM, 2003

DESS

Figure 9.Mulltiformalism Modeling within DEVS

Figure 9 illustrates how several formalisms were employed in the development of
cooperative robotics. To design robotic controls so that two or more robots can push an
object to a given location, the following formalisms were implemented as packages in
DEVSJAVA [4]:

• Linear time invariant (LTI) systems– implemented as coupled models that
represent differential equations specified in the form:

[] [][] [][]
[][][]

x A x B u

y C x

= +

=

&

where the lower case elements are real-valued vectors of inputs, states, and
outputs, and the upper case elements are matrices that define the derivative and
output functions. LTI is a subclass of DESS that forms the basis of classical
control theory. Although not sufficient for robot dynamics, LTI simplifies
specification, has a legacy of analytical support, and can be employed within sub-
components of non-linear systems, for example, in representing robot and object
motion with Newton’s laws.

• Fuzzy Logic Control (FLC) systems – implemented as coupled models with
components for fuzzification, fuzzy rule processing, and defuzzification. FLC is
a sub-class of instantaneous functions that has been used in a variety of
intelligent control applications [4,18]. FLC provides robust control logic for
guiding robots toward goal locations, avoiding obstacles, and cooperatively
pushing objects.

• Discrete Event Coordination (DEC) systems – directly implemented within

DEVS to provide overall coordination and supervision of robot task executors.
DEC provides control phases, analogous to the states of Statecharts, to direct and
synchronize individual robot activities toward a global objective.

5. Conclusions: Comparison with Alternative Formalisms

The Heterogeneous Flow System Specification (HFSS) [11,12,13] formalism provides an
alternative formulation of combined discrete and continuous systems. The formalism is
an extension of DEVS that builds in an input sampling mechanism as well as variable
structure capability. The approach allows multirate numerical methods for solving
differential equations to be represented and supports event detection. Barros [11] claims
that the HFSS formalism provides a unified framework for representing digital control,
signal processing, numerical integration and hybrid systems. For example, it is possible
to describe numerical integrators as part of the formalism and not as an external construct
that needs to be incorporated into a pure modeling formalism. Barros [11] also claims
that HFSS offers precise semantics to enable the interoperability of hybrid systems in a
similar manner existing for discrete systems. However, there has been no discussion of
the conditions under which models in the formalism are well-defined nor whether closure
under coupling holds for the formalism. The discussion of these issues herein should
carry over in large measure to HFSS. A precursor of HFSS, Continuous Flow Specified
System (CFSS) was mapped into DEVS as a sub-formalism [30]. Essentially, the
mapping shows how to simulate the sampling behavior of CFSS explicitly as a request
and wait protocol in DEVS. Since HFSS is an extension of CFSS that preserves this
sampling construct, the relationship of HFSS to DEVS an open question for further
investigation. Other representations for combined systems within DEVS need attention as
well [31,32].

This paper has explicitly pointed out the behavioral features in the DEV&DESS
formalism that need to be supported in DEVS for the latter to be able to implement the
former. In a broader perspective, the results elucidate the characteristic primitives needed
for hybrid or combined continuous/discrete event models and provide a rigorous proof of
the ability to express these within a purely discrete event computational framework.
These results lay the foundation for a user-friendly modeling environment that puts the
primitives directly at the user fingertips as templates for DEVS atomic and coupled
models that can be easily instantiated and composed.

References

1. Enrique V. Kortright Modeling and Simulation, Article in Encyclopedia of Computer
Science and Technology: Volume 40 -, Allen Kent, James G Williams Taylor and
Francis, CRC Press. 1999, pp 177-190

2. R.W. Sierenberg, Combined discrete/continuous modeling, in: L. M. Tijskens (Editor),
M. Hertog (Editor), B. Nicolai (Editor) Food Process Modelling, 2001

3. Le Goc, M. and C. Frydman, “SACHEM, a Real Time Intelligent Diagnosis System
based on the Discrete Event Paradigm”, Transaction of Society for Modeling and
Simulation International (SCS), 2003.

4. Shahab, S., “Discrete Event Modeling, Simulation And Control With Application To
Sensor Based Intelligent Mobile Robotics,” MS Thesis, UNM, 2003

5. ALUR, R., GROSU, R. LEE, I., AND SOKOLSKY, O. 2001. Compositional
refinement for hierarchical hybrid systems. In Hybrid Systems: Computation and Control.
Proceedings of the 4th International Conference (HSCC’01). Lecture Notes in Computer
Science, vol. 2034. Springer-Verlag, New York, 33-48.

6. R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer Science,
V.126, pp 183-235, 1994

7. ANTSAKLIS, P. J. 2000. A brief introduction to the theory and application of hybrid
systems. Proc. IEEE 88, 7, 879–887.ACM Transactions on Modeling and Computer
Simulation, Vol. 13, No. 3, July 2003.

8. Zeigler, B. P., T.G.Kim and H. Praehofer “Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems, second edition Academic Press,
Boston”, 2000. 510 pages

9. Praehofer, H., System Theoretic Formalisms for Combined Discrete-Continuous
System Simulation. Int. J. Gen. Sys., 1991. 19(3): p. 219-240.

10. R.C. Huntsinger, Simulation Languages and Applications;, in: George A. Bekey,
Boris Y. Kogan (Editors), Modeling and Simulation : Theory and Practice A Memorial
Volume for Professor Walter J. Karplus, Kluwer, 2000.

11. F.J. Barros. “Towards a Theory of Continuous Flow Models,” International Journal
of General Systems, Vol. 31, No. 1, 29-39, 2002.

12. F.J. Barros. “Modeling and Simulation of Dynamic Structure Heterogeneous Flow
Systems.” SIMULATION: Transactions of The Society for Modeling and Simulation
International, Vol. 78, No. 1, 18-27, 2002.

13. F.J. Barros, “Dynamic Structure Multi-Paradigm Modeling and Simulation,” ACM
Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, pp. 259-275, 2003.

14. Q. Liu, G. Wainer “Simulating Market Dynamics with CD++”.. In Proceedings of the
International Conference on Computational Science. Lecture Notes in Computer Science.
Atlanta, GA. 2005

15. Jong-keun Lee, Min-Woo Lee, Sung-Do Chi, “DEVS/HLA-Based Modeling and
Simulation for Intelligent Transportation Systems”, SIMULATION, Vol. 79, No. 8, 423-
439 (2003).

16. Bernard P.Zeigler, Doohwan Kim, Stephen J. Buckley, “Distributed supply chain
simulation in a DEVS/CORBA execution environment”, December 1999 Proceedings of
the 31st conference on Winter simulation: Simulation---a bridge to the future - Volume 2.

17. Bernard P.Zeigler, Yoonkeon Moon, Doohwan Kim, Jeong Geun Kim, “DEVS-C++:
A High Performance Modeling and Simulation Environment”, January 1996, Proceedings
of the 29th Hawaii International Conference on System Sciences (HICSS'96) Volume 1:
Software Technology and Architecture.

18. Bernard P.Zeigler, Hessam S. Sarjoughian, Introduction to DEVS Modeling and
Simulation with JAVA: Developing Component-Based Simulation Models,
http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/DevsJavaUserGuidev1.1.
zip

19. Kofman, E. (2003). "Quantization-Based Simulation of Differential Algebraic
Equation Systems". Simulation (Journal of The Society for Computer Simulation
International). 79(7). pp 363-376.

20. Hans Vangelieuve and P. Mosterman, “Computer Automated Multi-Paradigm
Modeling,” TOMACS. 12, 4, 1–7.

21. C. Jacques, G. Wainer Using the CD++ DEVS toolkit to develop Petri Nets. In Proceedings of the
2002 Summer Computer Simulation Conference. San Diego, CA. USA. 2002.

22. Carmen-Veronica Bobeanu, Eugene J. H. Kerckhoffs,Hendrik Van Landeghem,”Modeling of
Discrete Event Systems: A Holistic and Incremental Approach Using Petri Nets,” ACM
Transactions on Modeling and Computer Simulation, Vol. 14, No. 4, October 2004.

23. Spencer Borland and Hans Vangheluwe. Transforming Statecharts to DEVS. In
A. Bruzzone and Mhamed Itmi, editors, Summer Computer Simulation Conference.
Student Workshop, pages S154 - S159. Society for Computer Simulation International
(SCS), July 2003. Montréal, Canada.

24. H. Dacharry, N. Giambiasi ``Formal Verification with Timed Automata and DEVS
Models: a case study", in: ASSE 2005 Simposio Argentino de Ingeniería de Software - 34
JAAIO Jornadas Argentinas de Informatica e Investigacion Operativa, pp. 251-265,
Rosario, Argentine, 29 août- 2 septembre 2005

25. H. Sarjoughian, “Hybrid Discrete Event Simulation With Model Predictive Control
For Semiconductor Supply-chain Manufacturing,” Proceedings of the 2005 Winter
Simulation Conference, Orlando, FL, 2005.

26.F.E. Cellier, 1979 Combined Discrete/Continuous System Simulation by Use of Digital
Computers. Techniques and Tools. PhD Thesis, Swiss Federal Institute of Technology,.

27. Pritsker, A.A.B., The GASP IV Simulation Language, John Wiley & Sons, New York,
N.Y., 1974

28. Rachel, Olivier, “Une approche evenementielle pour la modelisation et la simulation
de reseaux de neurones impulsionnels,” Doctoral Dissertation, Henri Pontcarre
University, 2004.

29. K. J. Åström†and K. Furuta‡ Swinging Up A Pendulum By Energy Control, Paper
presented at IFAC 13th World Congress, San Francisco, California, 1996

30. F.J. Barros, B.P. Zeigler, Model Interoperability in the Discrete Event Paradigm:
Representation of Continuous Models, in: George A. Bekey, Boris Y. Kogan (Editors),
Modeling and Simulation : Theory and Practice A Memorial Volume for Professor
Walter J. Karplus, Kluwer, 2000.

31. M. D'Abreu, G. Wainer. M/CD++: modeling continuous systems using Modelica and
CD++, MASCOTS 2005. Atlanta, GA. 2005

32. N. Giambiasi, G. Wainer ``Using G-DEVS and Cell-DEVS to model complex
continuous systems", in: Simulation: Transactions of the Society for Modeling and
Simulation International, vol. 81, n° 2, pp. 137-151, February 2005.

33. A. Cotaldo, E.L. Lee, X. Liu, E. Matsikouda and H. Zheng, “Discrete-Event Systems:
Generalizing Metric Spaces and Fixed-Point Semantics”, J. DEDS,

