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Abstract 
 

DEV&DESS was defined to represent combined continuous and discrete model event 
simulation models and was shown to have the properties expected from a universal 
representation of such models in “Theory of Modeling and Simulation.”  Also in that 
theory, it was shown that DEVS can provide accurate simulations of DESS models. In 
this paper, we offer a proof that DEVS on its own is capable of accurately implementing 
the combination of DEVS and DESS formalisms as formulated in DEV&DESS, thus 
filling in the missing pieces to complete the picture. We elucidate the characteristic 
primitives needed to express hybrid or combined continuous/discrete event models and 
provide a rigorous proof of the ability to express these within a purely discrete event 
computational framework. We discuss the implications of these results for multi-
formalism modeling and the implication of the results for a related, but  alternative, 
formalization of hybrid systems called Heterogeneous Flow System Specification. 
 
 
1 Introduction 
 
Although DEVS (Discrete Event System Specification) has been employed in a number 
of studies in which both discrete and continuous elements appear [1,2,3, 4], it has not 
received a formal proof of its capability to express such combined or hybrid models as 
they are often called [5,6,7] . In this paper, we offer such a proof by supplying some of 
the missing pieces that complete the picture presented in Theory of Modeling and 
Simulation [8]. Praehofer [9 ] defined the combined formalism, DEV&DESS to represent 
combined continuous discrete models that are simulatable in simulation languages such 
as SLAM and ARENA  [10].  As defined, DEV&DESS describes a subclass of dynamic 
systems that includes the subclasses specified by DEVS and DESS (Differential Equation 
System Specification), respectively. As such it provides a rigorous framework for 
considering properties of hybrid models but it does not provide a computational 
framework for simulating such models.  Barros [11,12] has also provided a DEVS-based 
extension to include continuous system modeling with implementation on a SmallTalk 
platform [13], to which we shall return later. On the other hand, the DEVS formalism has 
been implemented in numerous platforms [14-19] thus affording an advantageous 
computational basis for simulation of combined models. Therefore, an official proof  of 
the embedding of  DEV&DESS into DEVS would provide a formal justification for the 



use of the latter for combined or hybrid models. Furthermore, we show how 
multiformalism modeling [20]  –  the integrated use of many formalisms in the same 
framework – can be explicitly supported in such a framework. 
 
The possibilities for expression of a formalism relative to DEVS are illustrated in Figure 
1.  
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Figure 1.  DEVS-based Multi-formalism Embedding and Compositional Approaches 

 
 

Three  approaches are depicted: 
 

1. Extending DEVS into a larger subclass of dynamic systems: As mentioned earlier, 
the extension to  DEV&DESS was performed by Praehofer [9] in his doctoral 
dissertation. He proved closure under coupling, thereby establishing that the  
structures and couplings included in the basic definitions are sufficiently 
expressive to represent arbitrary hierarchical compositions of discrete and 
continuous components. DEV&DESS is therefore a good candidate to consider as 
basis for hybrid and multi-formalism modeling theory investigations.  

 
2. Embedding a formalism into DEVS: TMS2000 [8] also proved that DEVS is 

universal for discrete event systems, i.e., any system within the sub-class of 
dynamic systems having discrete event input/output behavior (when reduced to its 
canonical form) is isomorphic to a DEVS. This invites the possibility of 
exploiting the properties of special formalisms for discrete event systems by 



expression them as subclasses of DEVS.  Studies of this nature has been done for 
Petri Nets [21, 22], state charts [23] and timed automata [24].  

 
3. Interoperating a non-dynamic systems formalism with DEVS: Sarjoughnian et al. 

[25] have shown the benefit of this approach, where linear and non-linear 
programs are coupled with discrete event simulation to optimize supply chains.  
The approach employs an interface specification to mediate between the two 
forms of knowledge (called a knowledge interchange broker) that provides a 
generic means of coupling a variety of simulation models with optimization 
strategy implementations.  

 
Within this framework of discussion, we focus on embedding formalisms into DEVS. In 
particular, we show that the DEV&DESS formalism, the extension of DEVS with DESS, 
can be embedded within DEVS itself – within an accuracy specification that relates to the 
quantization-based representation of DESS within DEVS.  As suggested above, the proof 
provides a justification for employing DEVS-based simulation environments as tools for 
hybrid and multi-formalism modeling – the latter taking into account the capabilities of 
DEVS to embed more restricted formalisms and to be interoperated with non-dynamic 
systems formalisms.  
 
2  Characteristic Behaviors of the DEV&DESS Formalism  
 
As background for the embedding of  DEV&DESS into DEVS we first briefly review the  
DEV&DESS formalism presented in [8] and then go on to elucidate the characteristic 
behaviors need to achieve full DEV&DESS expressive capability. 
 
2.1 Review of DEV&DESS 
 
The DEV&DESS formalism [8] envisions a composition of discrete event and continuous 
parts as illustrated in Figure 2. 
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Figure 2. DEVS and DESS combined model 

 
The DEV&DESS formalism prescribes the components and their interfaces. It is 
presented as follows: 
 
DEV&DESS = co

int int, , , , , , , , , , ,discr nt discr cont discr cont discr cont
extX X Y Y S S C fδ δ λ λ< >  

 
,discr discrX Y  are sets of discrete event inputs and outputs, resp. 
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co
int :  is the discrete event internal transition functionntQ X Sδ × →  

co:   is the discrete event output functiondiscr nt discrQ X Yλ × →  
co:   is the continuous output functioncont nt contQ X Yλ × →  

co:  is the derivative functionnt contf S X S× →  
co:    is the event detection condition predicate ntC Q X Bool× →  

 
 



The semantics of the DEV&DESS formalism are given in terms of the subclass of 
dynamic systems that it defines [8].   A state event is considered to be the occurrence of a 
change in the value of the event condition predicate from false to true.  The concept of 
state event derives from Pritsker’s [26,27] original formulation of combined continuous 
and discrete simulation in which it was defined as a threshold crossing of the continuous 
state.  In the DEV&DESS formulation, the concept of state event is  generalized so that it 
can occur due to a change in any of its arguments, of which the continuous state is one 
component.   
 
We note that as just formulated, the DEV&DESS formalism does not include a time 
advance function. Instead, triggering of the internal transition function is performed by 
the output of the event detection condition.  We will show later that the time advance 
trigger can be captured within the formalism. 
 
2.2 Capabilities Exhibited in the DEV&DESS Formalism 
  
DEV&DESS defines certain behavior primitives that are manifest in the formalism that 
are not found in either of its components separately.  As illustrated in Figure 3, these are: 
a) state event detection, b) derivative function change, c) integrator state reset, and d) 
event detector threshold change.   
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Figure 3.Behaviors in DEV&DESS 

 



Let’s see how the formalism makes use of these basic primitives to obtain behaviors 
characteristic of hybrid systems.  
 
Behavior 1. Discrete Events, both state and external, can control the derivative function, 
thus causing an instantaneous change in the derivative of the continuous state trajectory.  
 
By expressing the sequential state set as a cross product of the discrete and continuous 
state sets, the derivative function takes the form: 
 

co: discr cont nt contf S S X S× × →  
 
Since the discrete state changes only through discrete events, we can consider f  to be a 
family of functions indexed by discrS , with the interpretation that the differential equation  
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holds for the interval during which discrs  is the state of the discrete event part as depicted 
in Figure 4. 
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Figure 4. Illustration of discrete event control of derivative function 
 
External events, through the invocation of the external transition function can change the 
discrete state and hence control the derivative function. Similarly, a state event, through 
the invocation of the internal transition function, can exhibit the same effect. An example 
given in TMS2000 concerns the filling of a container until full. This requires setting the 
derivative of the filling function to zero to shut off a flow, either externally, or when a 
level is exceeded (a state event). 
 
 



Behavior 2. Discrete Events, both state and external, can control the event detection 
condition, thus instantaneously changing the thresholds governing event detection. 
 
In the same manner as done for the derivative function, we can consider the event 
detection condition to be indexed by the discrete state set: 
 

co:discr
cont nt

s
C S X Bool× →  
 
where a particular predicate discrs

C  holds during the interval in which the discrete state 
discrs prevails (Figure 5). 
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Figure 4. Illustration of discrete event control of event detection function 

 
As an example, in a model first developed by Kofman [19], a ball bounces down a 
staircase. In our reformulation, the stair currently underneath the ball can be tracked by a 
phase variable in the discrete event part. The event detection condition controlled by this 
phase is made up of two parts corresponding to the vertical and horizontal coordinates of 
the ball. In the vertical component, the detection condition monitors the ball’s vertical 
position for crossing the level of the current stair. In the horizontal component, the 
detection condition monitors the ball’s horizontal position for the transition to the next 
lower stair. Thus the horizontal position of the ball determines the stair phase, e.g.  

[ , 1) " "ix i i phase stair∈ + ⇒ = . This in turn determines the height of the stair currently 
below the ball and thereby the level to be crossed in order to change the derivative 
function to represent the bouncing region, e.g. 

( ) [ " ( )]phase i iC y phase stair y height stair≡ = ∧ <  
 
Similarly, the continuous input or and/an external event can change the event detection 
function. Furthermore, in the latter case, the elapsed time can be taken into account. 
When an external event arrives after an elapsed time e  since the last event, it can trigger 



the external transition function which can change the discrete state based on the current 
state and the elapsed time e .  

 

public double thresholdFn(double e) {
if (phaseIs("absoluteRefractory")) {

return INFINITY;
} else
if (phaseIs("relativeRefractory")) {

return restingThresh *
(1 +

(refractFactor /(elapsedSinceLastFire + e)));
}
else if (phaseIs("resting")) 

return restingThresh;
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Figure 5. Firing threshold of a leaky integrator neuron 

 
 
An example of dependence on external events is given by a model of the firing threshold 
of a leaky integrator neuron [28]  as modeled in DEV&DESS.  As depicted in Figure 5, 
the model has a discrete event phase variable such that the firing threshold depends both 
on the phase as well as the elapsed time since it was last fired. In the “resting” phase the 
threshold equals the resting threshold value. When the input exceeds the threshold, the 
phase changes to “absoluteRefractory” in which the neuron cannot fire (the threshold 
effectively takes on an infinite value). The passage from “absoluteRefractory” to 
“relativeRefractory” is an  event that is triggered by the passage of a fixed refractory time.  
In the “relativeRefractory” phase, the threshold is given as a function of time since last 
fired, which itself is updated through the elapsed time, e . 
 
Behavior 3. Discrete Events, both state and external, can instantaneously change the 
continuous state (causing discontinuities from the point of view of differential equation 
systems) 
 
This is true because the continuous state is one of the components in the range of the 
external and internal transition functions. For example, we have  
 

co:  discr nt discr cont
ext Q X X S Sδ × × → ×  

 
Since the occurrence of an external event triggers this function, the external event can 
directly change the continuous state, which is the composite state of the integrators 
underlying the differential equation of the continuous part.  



 
The barrel filling model provides an example of a state event triggering an integrator 
reset. When the barrel becomes full (state event),e.g. 
  the contents of the barrel (hence the integrator 
representing the barrel) is reset back to zero. An example of an external event triggering a 
reset  is provided by a model of the synapse of a leaky integrator neuron [28].   Spike 
arrivals at the synapse (external events) cause an immediate jump in the soma integrator 
state (which then proceeds to decay to zero).  
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Figure 6. Illustration of discrete event control of integrator state  
 
 

SIMULINK can reset integrator states during simulation but only to the state that was 
used in initializing the model – hence for a return to the initial state. This meets  the 
requirements of the barrel filler example. However. it does work not for spikes arriving to 
a synapse where the reset is to a potentially different state on each occasion. In an 
inverted pendulum model [29], the angle of the pendulum must be set to 0 when it 
reaches 2π . This is not the same as the initial angle of the pendulum which is π ).  

 
 
2.2 Regaining the DEVS time advance function trigger of the internal transition 
function 
 
In DEV&DESS as presented in [8], there is no explicit time advance and hence no 
triggering of the internal transition function due to time events. This is a simplification of 
the definition of DEV&DESS  as first presented by Praehofer [9]. It is important to show 
that the simplified definition does not reduce the class of systems specified by the 
original definition. The time advance triggering functionality is regained by the approach 
illustrated in Figure 7. Incidentally, the approach also demonstrates the necessity of the 
three characteristic behaviors. We start by recognizing that time can be represented by the 
output of an integrator with constant unit input. To get the effect of a scheduled time 

( , ) [ ]cont disc contC s s s fullLevel= >



advance, we need a condition predicate that detects when the output crosses the given 
time advance threshold. The output triggers the internal transition function that resets the 
time integrator back to zero as well as sending the new time advance value to the 
condition predicate.  Thus all three DEV&DESS characteristic behaviors are needed to 
capture the effect of the time advance trigger in DEVS.  
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Figure 7.  Expressing the time advance triggering of the internal transition function 
 
 
3 DEVS implementation of DEV&DESS 
 
3.1 Embedding DEV&DESS  into DEVS 
 
The DEVS implementation of DEV&DESS will be shown by  the embedding of  
DEV&DESS  into DEVS. This is done by showing how an arbitrary DEV&DESS model 
is realized by a DEVS  model.  The realization employs the same component-wise 
simulation concepts that were employed in [8] to provide the embedding of DESS into 
DEVS.  The embedding in Figure 8 implements the individual DEVS and DESS parts of  
a DEV&DESS model as modular DEVS components coupled within the DEVS 
formalism. The DEVS part is implemented by a corresponding DEVS denoted by DEVS’. 
The DESS part is implemented using the quantized integrator approach [8,19], with 
accuracy determined by the quantum size.  The instantaneous derivative functions in this 
representation are augmented with input ports that allow output events from the DEVS’ 



component to control the derivative functions. Likewise, the DEVS integrators have 
additional ports to allow output events from the DEVS’ component to instantaneously 
change the integrator state. The event detection condition is implemented as a DEVS 
component with input ports receiving outputs of the integrators. Finally, the output ports 
of the event detector are coupled to the input ports of the DEVS’ providing the event 
detection information to it.   This realization which is, in part, an exercise in converting 
from non-modular to modular form, requires that zero time advances are employed to 
transmit state and control information that is immediately available in the non-modular 
form. In this manner, the three behaviors characteristic of DEV&DESS are implemented 
with DEVS itself. 
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Figure 8. DEVS implementation of DEV&DESS 
 

3.2 Well-defined DEV&DESS: Potential Zero-Time Loop in Integrator Resetting 
 
We recall that the criterion for well-definition of any system specification requires that it 
specifies a unique system in the class of mathematical input/output systems [8]. The well-
definition for DEV&DESS was formulated as a combination and extension of the 
separate well-definition criteria for DEVS and DESS separately. The DESS requirement 
is that solutions satisfying the underlying differential equation exist and define unique 
state trajectories and are guaranteed the Lipshitz condition as well as the absence of 
algebraic loops, (see page 164 of [8]).  The essence of DEVS well-definition is the 
legitimacy criterion which requires that time always moves forward through the 
accumulation of time advances. An equivalent formulation was given in terms of events, 
namely, there are only a finite number of external and internal events in any finite time 



interval of a simulation run.  The extension of this criterion to DEV&DESS is called 
state-event legitimacy and requires that the number of state events be finite for every 
admissible input segment (page 213 of [8]). We recall that a loop of components all 
having zero time advances violates this legitimacy criterion. However, this is not the only 
source means by which illegitimacy arises. In general the convergence of infinite series 
of time advances must be avoided  (see [8] page 142), akin to Zeno’s paradox (see [3] for 
recent perspective.) 
 
Let’s now consider how this applies to the testing a DEV&DESS model for legitimacy by 
employing its embedding in DEVS as in Section 3.1. Theorem 5 of Chapter 15 in [8]  is 
easily amended to state that that the absence of algebraic loops in DESS is equivalent to 
the absence of zero-time advance loops in its DEVS realization. Assuming Lipshitz 
conditions hold, this fact reduces the test of well-definition of the DESS part to that of 
legitimacy of its DEVS representation.  However, there remains a source of state-
illegitimacy that needs to be considered. It relates to the resetting integrator states by the 
discrete events.  
 
Figure 10 a) extends Figure 6 by explicitly showing the feedback loop from an integrator 
through the condition function that decides when and how to reset the integrator. This is a 
zero-time loop if the integrator’s output is instantaneously sent to the decision condition 
which instantaneously resets the integrator. The  example in Figure 10 b) illustrates a 
feedback coupling between an integrator, x and a level crossing detector, xUp. The 
integrator broadcasts its state with zero time advance  upon any resetting of its state. The 
level crossing detector has zero time advance  to send the value to the integrator reset port.  
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Figure 10. Potential Zero-time Loop in Integrator Reset 



 
Under certain circumstances, this will form a loop of zero time advances. However, this 
cycle need not be manifest. For example, if the state to which the integrator is reset no 
longer satisfies the event detector’s output criterion then the latter passivates, thus 
breaking the  zero time advance loop. In Figure 10 b), when the level 10 is crossed from 
below, the integrator is reset back to 1, thus passivating the detector. Note that 
passivation (setting the time advance to infinity) is available only in a discrete event 
framework.1  
 
We concluded that the well-definition of a DEV&DESS model can be tested in its DEVS 
embedding by testing for Lipshitz conditions on the DESS derivative functions and state-
event legitimacy of the DEVS. A necessary condition for the latter is absence of zero 
time-advance loops in the  DESS part as well as in the interaction between the DEVS and 
the integrator resets. Although it deals with a major source of illegitimacy, the condition 
is not sufficient since the latter may still arise through converge in the manner of Zeno’s 
paradox as mentioned above. 
 
4 The Need for Multiple Formalisms in Information Technology-based Systems 
 
The need for multi-formalism modeling in developing modern information technology-
based systems is increasingly recognized [2,20].   The ability of DEVS to support such 
modeling follows from the results just presented.  Since DEVS implements DEV&DESS 
and leads to computationally effective and efficient environments, it offers the basis for 
combined discrete and  continuous (hybrid) modeling. Moreover, as mentioned, since 
DEVS is universal for discrete event systems, special formalisms such as  Petri Nets can 
be included when appropriate. Finally, DEVS-based simulation components can be 
interoperated with optimization and other non-dynamic software components. We now 
briefly discuss robot collaboration to show how this works to address new information-
technology challenges.  

                                                 
1 The same situation shows up in a continuous simulation language that allows integrator resetting as well. 
However, in that context, it may be treated as an algebraic loop that is detected by the syntactic analyzer.  
To resolve this situation, SIMULINK adds a state output port to the integrator which provides the last 
known state to the condition function. Syntactically, this breaks the algebraic loop but may not resolve the 
true problem. The formulation in Figure 10 within the realization of DEV&DESS in DEVS provides a 
useful context for examining the problem. 
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Figure 9.Mulltiformalism Modeling within DEVS 
 
Figure 9 illustrates how several formalisms were employed in the development of 
cooperative robotics. To design robotic controls so that two or more robots can push an 
object to a given location, the following formalisms were implemented as packages in 
DEVSJAVA [4]: 
 

• Linear time invariant (LTI)  systems– implemented as coupled models that 
represent differential equations specified in the form: 

[ ] [ ][ ] [ ][ ]
[ ][ ][ ]

x A x B u

y C x

= +

=

&
 

where the lower case elements are real-valued vectors of inputs, states, and 
outputs, and the upper case elements are matrices that define the derivative and 
output functions. LTI is a subclass of DESS that forms the basis of classical 
control theory. Although not sufficient for robot dynamics, LTI simplifies 
specification, has a legacy of analytical support, and can be employed within sub-
components of non-linear systems, for example, in representing  robot and object 
motion with Newton’s laws. 
 

• Fuzzy Logic Control (FLC) systems – implemented as coupled models with 
components for fuzzification, fuzzy rule processing, and defuzzification. FLC is 
a sub-class of instantaneous functions that has been used in a variety of 
intelligent control applications [4,18]. FLC provides robust control logic for 
guiding robots toward goal locations, avoiding obstacles, and cooperatively 
pushing objects.  



 
• Discrete Event Coordination (DEC) systems – directly implemented within 

DEVS to provide overall coordination and supervision of robot task executors.  
DEC provides control phases, analogous to the states of Statecharts, to direct and 
synchronize individual robot activities toward a global objective. 

 
 
5. Conclusions: Comparison with Alternative Formalisms 
 
The Heterogeneous Flow System Specification (HFSS) [11,12,13] formalism provides an 
alternative formulation of combined discrete and  continuous systems. The formalism is 
an extension of DEVS that builds in an input sampling mechanism as well as variable 
structure capability.  The approach allows multirate numerical methods for solving 
differential equations to be represented and supports event detection. Barros [11] claims 
that the HFSS formalism provides a unified framework for representing digital control, 
signal processing, numerical integration and hybrid systems. For example, it is possible 
to describe numerical integrators as part of the formalism and not as an external construct 
that needs to be incorporated into a pure modeling formalism. Barros [11] also claims 
that HFSS offers precise semantics to enable the interoperability of hybrid systems in a 
similar manner existing for discrete systems. However, there has been no discussion of 
the conditions under which models in the formalism are well-defined nor whether closure 
under coupling holds for the formalism. The discussion of these issues herein should 
carry over in large measure to HFSS. A precursor of HFSS, Continuous Flow Specified 
System (CFSS) was mapped into DEVS as a sub-formalism [30]. Essentially, the 
mapping shows how to simulate the sampling behavior of CFSS explicitly as a request 
and wait protocol in DEVS. Since HFSS is an extension of CFSS that preserves this 
sampling construct, the relationship of HFSS to DEVS an open question for further 
investigation. Other representations for combined systems within DEVS need attention as 
well [31,32]. 
 
This paper has explicitly pointed out the behavioral features in the DEV&DESS 
formalism that need to be supported in DEVS for the latter to be able to implement the 
former. In a broader perspective, the results elucidate the characteristic primitives needed 
for hybrid or combined continuous/discrete event models and provide a rigorous proof of 
the ability to express these within a purely discrete event computational framework. 
These results lay the foundation for a user-friendly modeling environment that puts the 
primitives directly at the user fingertips as templates for DEVS atomic and coupled 
models that can be easily instantiated and composed. 
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