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ABSTRACT 

Simulation software tools allow users to model and test processes in a graphical 

environment on a computer. In generating models to be simulated, data visualization is a 

useful tool for model verification and validation. This thesis addresses the problem of 

synchronization between data generation and visualization. This thesis introduces a 

synchronization mechanism within the Model-Facade-View-Controller (MFVC) 

architecture without compromising the simulation engine’s validity or efficiency, which 

current simulators lack. The approach to this topic includes researching background on 

the MFVC architecture pattern, and other simulation tools’ approaches to data 

visualization. After implementing synchronization, experiments were conducted to 

compare execution speed under different conditions. The synchronization method 

presented here restricts simulation speed to no faster than the visualization rate. While the 

synchronization feature is added to only one simulation tool, the approach used can be 

generalized and applied to other simulators. 
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1 Introduction 

Some simulation software tools allow users to model and test various real-world and 

abstract processes in a graphical environment on a computer. Models can range in 

complexity anywhere from one component changing its state at certain intervals to 

interactions between the inhabitants of an entire city, and beyond. Simulations are 

constrained by the software and hardware executing them. While software suites and 

packages contain generally the same set of user interface features, there has been little 

research done on comparing the speed and memory efficiency of those graphical features. 

1.1  Overview of Modeling and Simulation 

It is highly desirable for simulation tools to allow users to observe the structure and 

behavior of a real system. Certain basic features are necessary in a simulator for a user to 

be able to interact with the system. 

First, there needs to be a data repository where the information relevant to the 

models, or components being simulated, will be contained. Second, we will also need to 

be able to see what is happening within the system. A graphical user interface (GUI) that 

is loosely coupled with the data repository will be needed to display the data to the user. 

The reason it must be loosely coupled is that we should be able to easily replace or make 

changes to the GUI without needing to alter any other components. The last important 

basic feature to a simulator is the ability to control the simulation execution. The user 

should have the option to automatically run the virtual system from start to finish, or in 

small increments. To accomplish this, we add some controller features to the GUI, such 

as buttons, that will interact with the simulator. This overall concept of dividing the 
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simulator into separate, loosely coupled component is a design pattern called Model 

View Controller, and will be discussed later in this thesis. 

There are many simulation tools currently available that offer these basic 

capabilities. For example, some well known simulation tools include Ptolemy [1] and 

Simulink [2]. These all feature similar capabilities to store, display, and control the 

simulation data. However, to our knowledge, DEVS-Suite, which is based on a formal 

modular, hierarchical modeling framework, is the only simulation tool available today 

that offers multiple, simultaneous views of the model information.  

DEVS-Suite is a Java-based application used to represent models and their 

interactions in a graphical, interactive environment. It supports simulation of models 

described according to the Discrete Event System Specification (DEVS) [3]. Each model 

is visually represented by one of two basic shapes: a filled rectangle for basic 

components, or a rectangular outline for hierarchical models that are composed of one or 

more inner components. Each component may have input and output ports, which are 

used to transmit messages between components. All visualization systems surveyed by 

Mather have these basic capabilities [4], and some tools support hierarchical modeling, 

such as Ptolemy [1] and Simulink [2]. The DEVS-Suite framework (including 

DEVSJAVA) is the only one to support the visualization of hierarchical models in a 

single view [4]; Ptolemy and Simulink require separate displays for each level of the 

hierarchy. From the simulator perspective these tools (DEVS-Suite, Ptolemy, and 

Simulink) are distinct and serve different purposes [5]. 
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Figure 1: DEVS-Suite Tracking Environment 

Figure 1 shows an example of the DEVS-Suite interface. There are four main 

sections to this screen: the Model Viewer, Simulator Control, SimView, and Tracking 

Window. After loading a model, the Model Viewer in the top left corner is populated 

with a list of the components, both atomic and coupled, contained in this model. 

Immediately below the component list is a box that lists the predefined variables 

pertaining to the model selected by the user. In Figure 1, we can see that the g component 

has three input ports, one output port, and an event that is set to occur at t=10. This box 

will be updated whenever the user selects another component. Immediately below that 

are two buttons: Inject, for manually providing data at arbitrary time points in the 

simulation; and Tracking, which users use to initialize data visualization windows. 
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The SimView on the top right displays the model visually, including any 

hierarchical components. This particular model, gpt2, contains four atomic components 

contained in one large coupled component. Below that is the Tracking Window, which 

contains the standard output console by default as well as any TimeView tabs, such as g 

in Figure 1. Finally, in the lower left, there is the Simulator Control. From here, the user 

can control the actions of the simulator. 

Along the top of the window, there are two groups of buttons that act as shortcuts 

for the menu options. The left group controls files: New Model, Load Model, Save 

Console, Clean Console, Console Setting, and About. The right group only appears after 

a model has been loaded, and includes: Step(n), Step, Run, Pause, and Reset. These are 

analogous to the buttons provided in the Simulator Control. 

DEVS-Suite offers a number of buttons and sliders for the user to control the 

simulator (see Figure 1). The first slider, Real Time Factor, controls how fast the logical 

time of the program progresses in relation to “wall-clock” time. This variable can adjust 

the scale of simulation logic time in order to get a faster, slower, or even soft real-time 

response [5]. If this number is set to 1, then each unit of time in the program will take one 

second to pass. When this is set to 1e-4, ten thousand units of time will pass in one 

second. The other slider, Animation Speed, determines how quickly messages will move 

around the screen between components. This slider ranges in value from 1 to 9, with 9 

being the fastest. Both of these program parameters are subject to hardware and software 

limitations of the system. 

Simulation execution time is defined in terms of logical time, which is defined as 

a real number between zero and infinity. In order to cut down on unnecessary processing, 
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the program calculates the next state change in the simulation and skips to it, since 

nothing relevant happens between those state changes. We refer to each skip in time as a 

“step.” 

Near the sliders, there is a group of buttons that controls the behavior of the 

simulator. The first button, Run, tells the simulator to automatically step through the 

model interaction until the user manually halts execution or no more state changes exist. 

Next, the Step button runs the program until a state change occurs, and then returns 

control to the user. A similar button is Step(n), which lets the user decide how many steps 

to run in sequence. Note that for Step and Step(n), all messages generated by the 

components will be animated on the model display, while when the user clicks Run, no 

messages will be displayed. The fourth button, Request Pause, is only enabled after the 

user has clicked Run, and is used to stop the simulator. Once the user pauses simulation, 

he may select to either Step through a fixed number of iterations, or Run the simulation 

again. The last button, Reset, resets the components to their initial states. This option is 

available at any point except when the simulation is running. 

After each step, new information must be presented to the user. One update that 

occurs at each step is a state change. The state is printed in the middle of the components, 

and is always visible. When the user clicks Step or Step(n), the simulator also displays 

the animated messages that move across the screen. As stated earlier, these messages are 

not visible when the user clicks Run. If the user has selected to track any ports or 

components in the TimeView window, new information about their messages or states 

will be displayed there, as well. 
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 DEVS-Suite handles the separation of concerns by processing component data 

and visualization separately. The models maintain the components’ data, while different 

objects take care of the view. This is consistent with the MFVC (Model, Facade, View, 

Control) design pattern, and makes the models interchangeable without compromising 

the quality of the simulation interface. 

1.2 Architecture of DEVS-Suite 

The DEVS-Suite simulation environment uses the fundamentals of the MFVC software 

design concept. This defines four specific systems for the software, and how they 

interact. They are the Model, Façade, View, and Controller systems. 

As the composite of two important subsystems, the Model is responsible for 

encapsulating core Modeling and Simulation logic [6]. The model and simulation engines 

exist within this layer and define all of the components, behaviors, and relationships of 

the application. This layer communicates with the next layer called Façade. 

The Façade layer of the MFVC pattern acts as a mediator between the Model, 

View, and Controller. While the Façade does not add any new functionality to the Model, 

it does expose a consistent set of functionalities to the View and Controller, so that those 

components can interact with any Model effortlessly. The presence of this façade allows 

the Model to maintain its black box nature [7]. 

The View and Controller layers of this architecture enable human interaction with 

the simulator. First, the View is responsible for interacting with the Façade in order to 

obtain state information from the Model about the components to be visualized. The 

View then interprets these values and displays them to the user. In the case of DEVS-



 

 

7

 

Suite, this data is shown in the animated component windows as well as any TimeView 

graphs. The View must also provide ways of interacting with the system, such as text 

fields or buttons. 

The user can interact with the Model through the Controller layer. Although the 

interaction methods are provided by the View layer of this architecture, we generally 

consider the Controller as the one responsible for interpreting these user inputs and 

communicating with the Model via the Façade. Once it receives a signal, such as Run or 

Step, the Controller will send an appropriate message through the Façade’s exposed 

functionality, and on to the Model. 

While this MFVC pattern has been used by DEVS-Suite and possibly other 

simulation tools to support the separation of concerns in an application environment, it 

has not been used to build a simulator that is both efficient and capable of supporting 

multiple, synchronized views, such as animated and graphical plots. At this point, DEVS-

Suite can support both views at the same time, but they are not synchronized, especially 

as the scale of the model grows. To our knowledge, all existing simulators have major 

limitations in supporting different kinds of visualizing simulation dynamics in near-real-

time. 

In the course of this thesis, we will study the limitations of existing M&S tools, 

and propose a new software architecture that will allow configuration flexibility in terms 

of visualization and synchronization. 

 



 

 

8

 

1.3 Problem Description 

The problem we are addressing with this thesis regards the synchronization between data 

generation and data visualization. All of the tools surveyed thus far [4, 1, 2] lack the 

ability to synchronize simulation execution with data visualization. While the tools can 

produce graphs that accurately reflect the final results of the simulation, they are not 

produced concurrently with the simulation, often leading to the simulation finishing well 

before the output can be displayed to the user. 

For the purposes of this study, we are defining synchronization as the condition 

where the simulation is no more than one logical step ahead of any of the views. We 

cannot constrain synchronization any further than this, because in order to display the 

data, it must be generated by the simulation first. Once this newly created information has 

been displayed on all of the appropriate views, the views will have caught up to the 

simulation, allowing the simulation to proceed with the next logical step. 

 We will show how it is possible to force the simulation and views to stay 

synchronized in this sense throughout the execution. This will allow the user to see the 

data that the simulation generates with minimal delay. 

1.4 Contributions of this Study 

We will demonstrate how our synchronization techniques for DEVS-Suite can be 

generalized and applied to any simulation environment. Our principles and design 

choices will be applied to the MFVC architecture so that any application that implements 

this design can easily integrate the synchronization shown here. 
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Visualization synchronization benefits end-users in multiple ways. The effects of 

synchronization are not limited to eliminating the lag between data generation and 

display. Forcing the simulator and views to stay in sync assists in the process of model 

verification and validation. The user can more easily verify the behavior of a model if he 

can see the data it generates while it is being simulated, rather than after the simulation 

has completed. 

One specific benefit to implementing synchronization applies to simulated 

processors. A DEVSJAVA-based MIPS32 simulator developed by Yu Chen at ACIMS 

allowed students in an undergraduate computer architecture course to better learn and 

instructors to better teach MIPS processor designs [8, 9]. Synchronizing the data 

visualization with the model will further assist students to more easily understand how 

the data sets displayed on the screen relate to each other. 

 



2 Background and Related Works 

There are many papers that discuss how to make a graphical user interface (GUI) 

functional and intuitive to user as well as aesthetically pleasing, but there are few that 

explain the ramifications of interface design on reusability [10] as well as performance 

[11]. One paper [10] explains how design patterns such as model-view-controller (MVC) 

can be used to develop a simulation environment. 

Once the models have been developed, the execution speed of the simulation 

software becomes a concern. Depending on the amount and method of visualization, the 

simulation may run quickly or very slowly. In their paper, Mitchell and Power [11] 

discuss one approach to benchmarking graphical simulation software by using a program 

to fill in the fields on a form and automatically click “submit,” thereby taking user error 

and hesitation out of the equation.  

 As a simulation runs, the computer must not only calculate results and keep track 

of the different models involved, but also display feedback and output to the user. 

Obviously, as the amount of output generated increases, the time to complete a particular 

set of tasks also increases. 

The amount of this slowdown varies among different simulation engines. Some 

handle it better than others, but in each case, simulation execution speeds up when the 

program is left to run by itself without any intermediate output or animated displays. 

There is also the problem of deciding how much information is too much to show 

the user. In most simulations, few options are provided to allow users restrict the amount 

or type of output generated and viewed during execution. 
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2.1 Model Display Issues 

One way the simulation can provide information to the user is via model displays. For 

example, in DEVS-Suite, each model is displayed as a colored rectangle containing three 

lines of text: the name of the model, its current phase, and the amount of time until its 

next self-invoked phase change. Currently, this kind of view cannot be disabled via UI at 

arbitrary instance during simulation execution. Each time a new event occurs, the time 

value is updated, and the phase changes if necessary. In typical simulation runs with few 

to many millions of operations, there is a significant slowdown in overall processing 

speed when there is a need for run-time visualization. 

2.2 Generic Output Display 

The graph below demonstrates the effect of output display on the time required to execute 

a very simple program. This base case test consists of a Java program that performs one 

floating-point operation, and then prints any number of characters to the screen. These 

two steps repeat inside of a loop an arbitrary number of times, and then the program 

calculates the amount of time required per loop. This experiment was run on a machine 

running Windows XP Home SP2, with 2.8 GHz CPU and 960MB RAM. 
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Figure 2: Time Required to Display Output 
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Figure 3: Portion of Execution Time Required to Display Output 

The horizontal axis in Figure 2 shows the number of characters displayed per 

iteration of the loop, and the vertical axis shows the amount of time in milliseconds 

required to perform that iteration. The first entry on the horizontal axis, “none”, refers to 
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the case that there was no print statement at all, whereas the “0” entry refers to another 

case with an empty string (i.e., “”) inside the print statement. 

The two values, “Window Visible” and “Window Not Visible” refer to whether 

the console window that displayed the output had focus (visible), or was hidden behind 

other windows (not visible). When the output was not being displayed to the user, the 

program ran at approximately a constant speed regardless of the amount of output. If the 

output was being displayed in real time, the program slowed down significantly as the 

amount of output increased. A string of length one or two did not seem to have an effect 

on the overall execution speed, but at ten characters, the program began to show 

significant slowing. As the output string length increased, the time required appears to be 

directly proportional to the string length. 

Figure 3 reorganizes this data to show proportionally how much time was spent in 

processing and displaying the data. The “Window Not Visible” time was used as the 

processing time, and the difference between “Window Visible” and “Window Not 

Visible” was used as the displaying time, as visualizing the text required both processing 

and displaying. We found that as the length of the string increased, nearly all of the time 

needed to visualize each string was spent in the displaying phase. 

This simple test shows us two things: there is a significant time-cost for 

displaying any output at all, and then there is extra time required to display the output, 

depending on its length. The program with no output functionality at all ran by far the 

fastest of any test. When the print statement was introduced, even with a zero-length 

string, execution slowed considerably. In the next test, when the program displayed a 

single character, execution slowed even further. With longer strings (two or more), 
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execution speed then depended on whether the output window was visible or not. If it 

was hidden, execution speed remained relatively constant. Otherwise, the program took 

an amount of time directly proportional to the length of the string. 

The results of this experiment may have an impact on our approach to studying efficient 

data visualization techniques. Since this experiment was purely text-based, there may be 

some differences in results when moving to a graphical environment. However, we 

expect the overall concepts of this trial to hold for graphical user interfaces that can be 

used in simulation tools. A GUI that has no output should require the least amount of 

time. The amount of output to be rendered should have a directly proportional effect on 

the time needed to complete execution. 

2.3 Animations 

 

Figure 4: Animated messages in the model view for a Generator-Processor-Transducer 

model. 

Another way to convey model interactions to the user is through animated 

displays. One example of this is the messages that are passed between components in 

DEVS-Suite. Whenever this occurs, a small rectangle slides across the screen, following 
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a predetermined path from the sender component to the receiver component (see Figure 

4). Components may transmit multiple messages at a time in a broadcast, and it is 

possible for multiple components to send multiple messages at the same time. If this is 

the case, then DEVS-Suite will render every message animation simultaneously. The user 

may adjust the speed of the animation, but there is no option to toggle specific models on 

or off; all models will display their messages on the screen, unless the user turns off the 

animation at initialization. 

2.4 TimeView Display in DEVS-Suite 

DEVS-Suite’s main data presentation interface is called the TimeView. The TimeView 

belongs to the View layer of the MFVC architecture, and exists to visually organize 

component activity. Each component selected to be viewed by the user is created in its 

own window, which we will refer to as a view. These views may be placed inside of a 

tabbed pane on the main DEVS-Suite window, or created in their own windows. 

 Each view contains one or more data plots called graphs. These graphs are where 

the data generated by the simulation will be rendered to the user. Graphs’ trajectories 

may either be event-based or piecewise-constant, depending on the type of variable. It is 

important to differentiate between our concepts of views and graphs: one view represents 

one component, and this view may contain multiple graphs pertaining to this component. 

A view may not contain duplicate graphs or graphs for other components, and at most 

one view can be created for each component.  

 The number of graphs contained in a single view can vary. Each variable selected 

to be tracked by the user must have its own graph. At least one graph must be visible in a 
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view, and the user may select up to N graphs, where N is the cardinality of the predefined 

state variables, user-defined input ports, and user-defined output ports of the component 

combined.  

 Since the TimeView is loosely coupled with the Façade layer, it has no 

knowledge of the Model layer’s state. The View layer’s purpose is to receive data and 

display it accordingly, so the TimeView lacks a fundamental sense of time progression. 

The data contained in the TimeView is a compilation of output collected from the 

simulation that is stored in an array and then visually arranged on the screen. This 

arrangement gives the TimeView graphs the look of an oscilloscope.  

 Each graph contains a two-dimensional area for plotting data. The horizontal axis 

is subdivided into segments with a length defined by the user at initialization, called the 

scale, which all graphs on the same view must share. Different views may have different 

scales. As the view collects data, if there is new data that cannot be plotted on the screen, 

all graphs on that view will scroll to accommodate the new data points. 
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Figure 5: TimeView sample in DEVS-Suite of the Generator-Processor-Transducer 

model. 

 While the TimeView (see Figure 5) is a powerful tool for capturing the 

information generated by one or more components over time, it is not without its share of 

problems. One of the most prevalent issues with the TimeView window is that when a 

user views it along with the model display, the TimeView trajectory may lag behind the 

actual simulation execution. We will discuss how this lag affects simulation time later in 

this thesis. Another problem that may affect users is that a component must be tracked 

from start to finish; there are no options to track a new component mid-simulation or 

remove a component after starting to track it. Since the TimeView is only an instance of 

the View layer of the MFVC pattern, it is not a critical component to the functionality of 

the modeling and simulation engines, and can be added or removed without adversely 

affecting the integrity of the rest of the simulation. 
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2.5 Trials with DEVS-Suite 
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Figure 6: TimeView Increment vs. Execution Time 

Now that we have studied the effect of visualization on program execution time in 

text-based programs, we are moving on to GUI-based programs. The experiment shown 

in Figure 6 was performed running DEVS-Suite version 2.0, using a manual stopwatch to 

estimate execution time. This experiment was also run on the same machine running 

Windows XP Home SP2, with 3 GHz CPU, 512MB RAM, and JVM 1.5. This 

demonstrates how the X-axis increment in the TimeView window affects how long it 

takes to fully display all of the information. This TimeView window can be seen in the 

lower right corner. The X-axis increment determines the difference in values between 

two consecutive ticks on the graph. As this number decreases, the longer the graph will 

appear horizontally. 
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Figure 7: DEVS-Suite UI 

Figure 7 shows a screenshot of DEVS-Suite in action. The top-right window 

contains a visualization of the models used in the simulation. The lines connecting the 

rectangles are the couplings along which messages travel. These messages are small, 

yellow boxes containing some amount of text. They travel along the paths at a certain 

speed, as regulated by the “Animation Speed” slider in the lower-left corner of the screen. 

In the lower-right corner, the program displays a tracking log and a time-view graph of 

various states of the simulation. As the simulation progresses, this graph updates with 

information taken from the model view directly above it. TimeView can display primitive 

data types such as double and string. The time increment and unit for time and any other 
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variable can be set by users. Users can monitor, track, and view status of each model 

component separately as time trajectories [12]. 

The problem with the TimeView in DEVS-Suite is that it can lag behind the 

simulation view, depending on the speed of the simulation and amount of information 

displayed. Adding variables to track does not hinder the execution time at all, but each 

additional item to graph increases the latency of the tracking window.  

 Figure 6 demonstrates this: when the increment on the x-axis is small, the time-

view graph takes longer to complete. This is due to two factors: horizontal scrolling, and 

a maximum horizontal scroll speed. When the x-axis increment is very large, the results 

of the simulation can be fit on a single screen, which does not require horizontal 

scrolling. If the increment is smaller, the graph will need to automatically scroll to the 

right as it progresses through the simulation time. This may be a problem if the axis 

increment is very small, because DEVS-Suite limits how quickly the graph can scroll, as 

discussed in section 4.2. This restriction imposed by the program is also constrained by 

the physical capabilities of the system, and demonstrates that due to the nature of data 

visualization, it is not possible in certain cases to display the information from the 

simulation in real time.  

2.6 Ptolemy 

The Ptolemy project is an ongoing endeavor by the Electrical Engineering & Computer 

Sciences department at University of California Berkeley to study the modeling, 

simulation, and design of concurrent, real-time, embedded systems. It also provides 
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visualization support for viewing simulation results through a graphical user interface 

called Vergil. 

Ptolemy is described as having an actor-oriented framework. Objects within 

Ptolemy are called “Actors” and implement an interface called Executable. The 

Executable interface provides the abstract semantics of control for the actor [13]. These 

actors that are used to build the models are separated from the UI packages. The 

graphical support exists in separate packages with names such as gui, vergil, and plot. 

There is also support for MoML, an XML-based language that is used to describe 

Ptolemy models. 

 Actor-orientation differs from object-orientation in a number of ways. In object-

oriented programming, classes provide methods that are invoked sequentially; that is, 

they receive the control from a calling method, and eventually return that control [14]. In 

actor-oriented programming, an actor has data (known as its state), but communicates 

with other actors through its ports. 

These ports provide an interface for concurrency and asynchronous 

communication. Object-oriented programming handles concurrency by using 

semaphores, monitors, and other low-level communication protocols [14]. Because actors 

do not have to wait for control to return from another actor, they can continue processing 

something else while waiting for a response. This built-in concurrency lends itself, and 

the actor-oriented paradigm, to model-based design. 

 In addition to these actors, Ptolemy also has a set of components called directors. 

These directors define component interaction semantics [15]. Many well known 

interaction types have been implemented in Ptolemy, including Continuous Time and 



 

 

22

 

Discrete Event [16]. The director’s job is to manage the order in which the actors 

execute. Models are not restricted to have only one director. In Ptolemy’s strict model 

hierarchy, it is possible to place directors within composite actors [16]. These directors 

will only control the execution of the actors within their composite actor. While it is true 

that actors’ communication is not synchronized, directors must be able to control the 

actors’ behaviors to keep the results consistent and execution logically correct.  

 MoML is an XML modeling markup language intended for specifying 

interconnections of parameterized, hierarchical components [17]. While this language is 

used to specify Ptolemy models, it is designed to be programming language-independent. 

If a simulation tool were developed in C++, for example, it would need to be able to 

parse MoML files and load the appropriate classes. The MoML document is designed to 

be a self-contained description of the model, including all components, properties, 

connections, and hierarchies, but not behaviors. Behaviors are defined in class files 

written in a specific language, which the MoML file references. 

Vergil allows the user to design and execute models in Ptolemy. Vergil is based 

on a diagram-editing called Diva, which is built on top of existing Java Swing 

technologies. Diva is a collection of loosely coupled components that employ the 

principles of MVC to separate data and the presentation of that data [18]. Components in 

Diva include the infospaces, which act as the model portion of MVC, and the surfaces, 

which are the view portion of MVC. These surfaces are sometimes simply wrappers for 

existing visual Java Swing components, but in most cases, there is extra infrastructure 

added to the components to help them work together in Diva. 
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 There are also classes called “sinks” that exist to visualize data effectively. These 

components are added to models, but only exist to collect data produced by the 

simulation. Just like regular components, multiple sinks may exist for a single model. 

There are three types of data sinks available in Ptolemy II: Generic Sinks, Timed Sinks, 

and Sequence Sinks. These three groups contain a total of 17 different actor types. 

Example plotter actors include the XYPlotter, TimedPlotter, ArrayPlotter, which belong 

to the Generic, Timed, and Sequence Sink categories, respectively. 

 However, it does not appear that the views are required by the simulator to stay 

synchronized. The models seem to generate the data to be displayed and push it towards 

the views. The views then display the information as quickly as possible. Consider an 

example where a model generates one piece of information for each logical step in the 

simulation, and sends that information to one of the two graphs associated with the 

model. If the model were to send one piece of information to the first graph, then a 

million pieces to the second, then one more piece of information to the first again, the 

lack of synchronization in the views means that the first graph will plot its two pieces of 

information before the second graph finishes with its million, despite the fact that some 

of the data in the first graph was generated after some of the data in the second graph. 

Simulations in Ptolemy can be run at one of two available speeds. The first speed, 

which is the default, is logical time. At this speed, the simulation will run as quickly as 

possible, subject to the physical limitations of the hardware. The other speed, real-time, is 

accessible through the View/Run Window menu. In real-time execution speed, the 

simulation time will stay in sync with wall-clock time. At this point, there are no other 

speeds available. 
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Additionally, there is no way to enforce the speed of the views attached to a 

model in Ptolemy. The execution speed chosen by the user (logical time or real time) 

only affects the speed of the model, which generates the data; the view itself that displays 

the information it receives will always run as fast as possible. This is apparent when the 

user clicks “Pause” and “Resume” in quick succession. When paused, the view will not 

update with new information. However, once resumed, the view will try to catch up to 

displaying all of the data it received from the model during the pause, since clicking 

pause did not stop the simulation itself from continuing. 

Another modeling and simulation tool that also supports data visualization is 

DEVS-Suite. DEVS-Suite uses the same visualization engine as DEVSJAVA, but adds 

new features, such as the tracking environment and TimeView. 
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A comparison of two simulation software programs 

Modeling Features 
Feature Ptolemy DEVS-Suite 

Interaction 
Semantics 

Provided by Directors, many 
kinds available, including 
Discrete Time/Event, and 
Continuous. 

Continuous Time is only option 
available for component 
phase/sigma. Discrete Event is only 
option available for ports. 

View Features 
Feature Ptolemy DEVS-Suite 

Tracking 
Options 

User must manually add data 
sinks to model in order to track 
information. 

Tracking options are built into all 
components. User selects 
components to watch using a menu. 

Data 
Viewing 
Options 

Sinks’ graphs appear in separate 
windows from the model. Each 
graph window corresponds to a 
single data sink. 

Graphs appear in same window, but 
in a tabbed pane. Each tab can 
display an unlimited number of 
graphs but from no more than one 
component. 

Scalability Graph view can be dynamically 
resized in both dimensions, even 
mid-execution. 

X-axis scale must be set before 
starting execution, and cannot be 
changed mid-execution. Y-axis 
automatically rescales to fit data. 

Scrolling 
Capability 

Graphs do not scroll to show 
incoming data. 

Graphs automatically scroll to show 
incoming data. They mimic the 
behavior of an oscilloscope. 

Control Features 
Feature Ptolemy DEVS-Suite 

Pause 
Functionality 

Pressing pause suspends the data 
from being presented to the user. 
Pausing does not suspend model 
execution. 

Pressing pause suspends model 
execution, but the graph may 
continue to update itself with 
backlogged data. 

Execution 
Speed 

Only logical-time and real-time 
available. 

Logical-time and real-time available, 
as well as intermediate steps, and 
sub-real-time speeds. 

 

Figure 8: A comparison of features offered by Ptolemy and DEVS-Suite 

TimeView displays historical graphs for users to track various features of a 

component in the model. This is similar to Vergil’s plotter classes, except each 

component selected to be viewed appears in its own tab, and only one tab can be visible 
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at a time. Each tab can contain multiple plots, which may include the phase or sigma of a 

component, if the user selects them. 

There are several differences in DEVS-Suite’s TimeView and Ptolemy’s plotters, 

as described in Figure 8. In Ptolemy, clicking pause only halts the displays, but does not 

stop the progress of the simulation. In DEVS-Suite, clicking “Request Pause” will 

actually stop the simulation itself, until the user decides to continue. 

Another major difference between the graphical displays is that Ptolemy’s plotters 

allow the user to dynamically rescale the plot dimensions, whereas DEVS-Suite’s 

TimeView graphs scroll automatically to keep up with incoming data. In Ptolemy, the 

plotters cannot scroll if a plot point exists outside of the window range. TimeView’s 

scrolling window is often too slow to keep up with the speed of incoming messages, 

especially if the axis increment set by the user is too low. 

The TimeView’s graph scrolling is a process that starts automatically when 

information appears off the edge of the visible range. The speed of the scrolling is 

constant and cannot be changed by the user. The scrolling behavior cannot be controlled 

by the user, either. Viewing a different component’s tab in the TimeView pane does not 

affect the speed of the scrolling; the component’s graphs continue at the same rate 

regardless of visibility.  

While the TimeViews receive the graph data as quickly as the model can generate 

it, the TimeView’s automatic scrolling feature is what causes the latency between the 

data generation and data visualization. Sometimes it is possible for the graph to continue 

scrolling long after the simulation has completed. 
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2.7 Testing the DEVS-Suite TimeView 

Figure 9 shows a list of factors that influence the execution speed of DEVS-Suite, and 

which can be controlled by the user. In the case of hardware limitations and other 

software running on the machine concurrently, these are out of the user’s control. 

The user does have control over visualization, the TimeView scale, which 

variables to monitor, and the speed of the execution. In the case of visualization, the user 

can select to view or not view the animation and tracking windows. If viewed, the user 

can select to track any or all of the variables and ports associated with any or all of the 

components in the model. The user can also define the scale of the TimeView window for 

each component. There is also a slider the user can adjust to modify the execution speed. 

These are the extent to which users can control the execution speed of DEVS-Suite. 

 

Factor Controllable? 
Hardware No 
Behavior of other software No 
DEVS-Suite Visualization Yes (On/Off) 
TimeView axis scale Yes (Any positive integer) 
Variables to monitor with 
TimeView 

Yes (any or all variables/ports provided by component) 

Simulation speed Yes (via Real Time Factor) 
 

Figure 9: Factors on a computer system that may influence the execution speed of DEVS-

Suite 
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Figure 10: Models “gpt” and “gpt2” in the SimView 

 

To test the behavior of the TimeView plots in DEVS-Suite, we constructed a test 

model specifically designed to reveal any flaws in the views. This model, called “gpt2” 

(see Figure 10), was derived from the “gpt” (Generator, Processor, Transducer) model. 

The difference between the two is that gpt2 has a second processor that only processes 

the first job created by the generator, and takes ten times longer than the original 

processor to finish the job. By the time the second processor finishes its job, the first one 
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will have already produced several output messages, possibly causing the TimeView 

windows for the two processors to fall out of sync with the animation window or each 

other. 

For this experiment, the gpt2 model was executed in logical time without pausing 

between steps. The simulator only monitored the activity on the “out” output ports for 

both processors. The only change made between trials was altering the scale on the 

graph’s x-axis. 

Experiment gpt’s 
scale 

gpt2’s 
scale 

Result 

1 10 10 Both views scrolled in sync. P2’s message was 
out of the range of the graph at first, but when it 
came into range, the message was plotted. 

2 10 40 P2’s message appeared (at t=105) after only two 
messages on P1 were plotted (t=15, t=25). P1’s 
messages then continued to display normally, in 
sequence. (See Figure 12) 

3 40 10 P2’s message appeared after P1 finished 
graphing its entire results (through time=200). 
P2’s graph then kept automatically scrolling to 
time=200, making P2’s message disappear. (See 
Figure 13) 

4 1 1000 P2’s message did not appear on the graph at all. 
 

Figure 11: TimeView behaviors given variable component scales 
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Figure 12: Illustration of Experiment 2 from Figure 11. 

 

Figure 13: Illustration of Experiment 3 from Figure 11. 

 From these experiments, we can draw two conclusions about the behavior of the 

DEVS-Suite TimeView graphing functionality. Regarding its synchronization with the 
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animated display window, there does not appear to be any mechanism or logic in place to 

enforce the TimeView and model animation to stay in sync. Both tasks run as quickly as 

possible and ignore each other’s progress. They only communicate through messages 

from the model to the view about what to graph. This is what leads to the TimeView 

lagging so far behind the animated display window in some cases. 

 

Figure 14: Example of a physical synchronization in two TimeView graphs. 

As for the TimeView’s ability to synchronize its own graphs, there appears to be a 

physical synchronization, but not a logical one. What this means is that for any two 

components, their plots will be visualized in sync with respect to their position on screen 

rather than when the plotted events occur. Suppose there are two graphs: G, which has a 

time-scale of 10; and P, which has a time-scale of 20, as in Figure 14. This means any 

given point on P’s graph will represent a point in time twice as far from the logical start 

of the simulation than the same point on G’s graph. Furthermore, suppose both graphs 
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transmit a message to display every 10 time-units, starting at 0 for G, and starting at 5 for 

P. Since the TimeView graphs are physically synchronized, these messages will be 

plotted in order with respect to their physical position on the screen (i.e., number of 

pixels). P’s first message at time=15 will be graphed slightly before G’s first message at 

time=10 even though it occurred later, because P’s time=15 corresponds to G’s time=7.5. 

Next, P’s messages at time=25 and time=35 will appear, then G’s message at time=20.  

 

Figure 15: Physical synchronization with piecewise-constant variable phase. 

Piecewise-constant variables such as phase or sigma produce similar results (see 

Figure 15); the graphs are updated with respect to physical screen location rather than 

logical time. This method of synchronization is only useful if all graphs on the screen 

have the same time-scale. If the scale varies between components, messages will be 

displayed out of order, as we have shown in Figures 12 through 15. 



3 Approach 

In order to add synchronization to DEVS-Suite while maintaining the simulator’s 

validity, we had to add new components as well as modify existing code. During the 

process of adding synchronization, we encountered several other issues that needed to be 

fixed before we could ensure proper simulation behavior. This section details our 

modifications to the existing DEVS-Suite source code, and their implications on the 

software architecture. 

 

Figure 16: Package diagram of the DEVS-Suite simulation environment. 

 Our initial task was to determine the critical components that drove the data 

generation and visualization features. In the MFVC architecture, the View receives its 

data from the Façade, and interacts with the Façade via the Controller as illustrated in 

Figure 16 [5, 12]. We decided that our changes needed to be made within the Controller 

layer. Within the View layer, we located the objects responsible for containing the data 
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received from the Model, and within the Façade, we located the methods responsible for 

transmitting the data to the View. 

 After determining which components were important to the visualization, we had 

to define the interactions between those components to ensure proper synchronization 

without compromising the simulator integrity. Our approach was to suspend the 

simulation while the View had data that had yet to be visualized. In this section, we will 

show how this procedure was effective in synchronizing the simulation with the views. 

3.1 The Governor Class 

In order to synchronize the graphical data displays and the data models used in the 

simulation, we introduced a new static class called Governor. The governor interacts 

between the façade and views to accomplish this. Immediately before advancing the 

simulation time to the time of the next event, the central coordinator inside the coupled 

simulator calls the Governor’s syncGraphs method (see Figure 18). Since the simulator is 

pushing data to the views, the Governor needs to ensure they are keeping up with the 

information. The purpose of syncGraphs is to stall the execution of the simulator until the 

views have finished displaying the data given to them (see Figures 19 and 20). When the 

simulation is complete, the Governor will remove all of its references to the views (see 

Figure 21). 

A simulation may have any number of views associated with it, and each view 

contains at least one graph. Graphs are the components that display the information to the 

user. Each graph contains three arrays: prev, current, and next, which hold the incoming 

events. The current array contains the events that are within the bounds of the scrolling 
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graph, prev contains events that have scrolled off the side of the graph, and next contains 

events that have yet to appear on screen. 

Events sent from the simulator to the graph are placed into the next array, and 

moved to the current array depending on the values of the graph display boundary 

variables beginTime and endingTime. These two variables respectively define the values 

at the extreme left and right ends of the graph. The graph is scrolled by incrementally 

adjusting these two values. A third variable, curTime, restricts the speed at which events 

move from the next array to the current array and onto the graphical display. 

As discussed earlier, if the simulation gets ahead of the views, two very 

noticeable problems arise in the graphs. The first, and more obvious of the problems, is 

that a view may continue to scroll its graphs to accommodate the generated events long 

after the simulation has finishing executing. This is due to the limited incrementing speed 

of the endingTime variable. These graph boundaries increment at a fixed time interval by 

an amount proportional to the graph scale. The graphs already contain all of the events in 

their next arrays, but are waiting for the endingTime variable to increase so they can 

move the events into the current arrays. 

The second problem appears when two views are created with different x-axis 

scales. If the simulation pushes too many events into the graphs’ next arrays, events will 

appear on the screen with respect to their physical positions on the screen. This is caused 

by how the curTime variable increments. Since it increases by an amount proportional to 

the scale of the view, two views’ curTime variables will move across the screen at the 

same rate regardless of the x-axis scale. 



 

 

36

 

In synchronizing the views and model with the governor class, both of these 

limitations are removed. By suspending the operation of the simulator when any graph 

had events that needed to be graphed, events appeared on the graphs in the order the 

models generated them, and never fell behind the simulation execution. Below is the 

algorithm that allowed this synchronization to happen: 

 

 

Figure 17: Sequence diagram of a time view’s registration with the Governor class. 

When a new Time View object is created, the constructor passes a reference to itself to 

the static Governor object, and then invokes its own internalClock() method to initialize 

the Time View update timer. 

 
 

For each time view created by user 

 Register time view with governor 

 Initialize internal clock that will check for new event data received 
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Figure 18: Sequence diagram of how Governor enforces synchronization by interacting 

with coordinator. After the coordinator completes its waiting period between steps, it 

passes execution control to the Governor class’s syncGraphs() method. If the Governor is 

enabled, this method will then call checkView() intermittently until the method returns 

true. This checkView() return value is dependent on checkTimeGraphs(), which is 

responsible for checking each individual Time View object that is registered with the 

Governor (see Figure 17). Once all Time View objects have plotted all of their event 
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data, the Governor returns execution control to the coordinator, which continues 

processing the simulation normally. 

 

Figure 19: A state diagram of the system as the coordinator calls the Governor.  

When the Time Views have data yet to plot, the Governor will cycle through the “check 

views”, “check time graphs”, and “wait” states until the Time Views catch up, effectively 

synchronizing the model and view components of the simulation. 
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In central coordinator: 

After pausing graph, call Governor.syncGraphs() 

Governor.syncGraphs(): 

While checkView() is false 

 Sleep for a certain amount of time 

Governor.checkView(): 

For each registered view, if the view’s checkTimeGraphs() is false, 

 Return false 

Return true 

CheckTimeGraphs(): 

For each graph within the view, 

 If next.size() > 0 

  Return false 

Return true 

 

Figure 20: A generic algorithm for describing synchronization enforcement. 
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Figure 21: Governor unregisters TimeView objects when the user resets the simulator.  

The GUI sends a gesture to the Controller, which interprets the gesture and invokes 

Governor.reset(). This method is responsible for clearing its list of registered Time View 

objects, and setting the Governor to the disabled state. 

3.2 Interface Alterations 

To more effectively work with the DEVS-Suite user interface, we made a few minor 

adjustments to help facilitate this research. The three modifications made include adding 

a slider to control the speed of the time views, adding a checkbox to control invoking the 

Governor, and making the time views appear in separate windows rather than in a tabbed 

pane. 

The first two changes were done to the interface to give the user more control 

over simulation execution. A slider added to the control panel lets the user decide how 

fast the views associated with the simulation should refresh. The slider is labeled “Time 
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View Update Speed” and has values ranging from 1 to 1000, which represent the how 

many times per second each view refreshes. When this value is higher, it will reduce the 

time needed to completely plot all of the points given to a time view. Since each graph 

scrolls by a fixed amount each time it is refreshed, when the time between refreshes is 

decreased, it may decrease the time spent waiting for the graph to finish plotting the 

points. When the update speed is decreased, it allows the user to view the contents for a 

longer period of time before the data scrolls off the left side of the graph. 

A checkbox was added near this slider to allow the user to enable or disable the 

Governor as needed. It is unchecked by default, but the user may decide to enable the 

Governor at any time, even during execution. Changing the state of the Governor mid-

execution affects the simulation and views upon the next simulation step. When disabled, 

the simulation will continue without checking to see if it is still synchronized with the 

time view, which may cause the simulation progress far ahead of the views, depending on 

how quickly information is generated. When enabled, it may have no effect if there are 

no views linked to the simulation, but if there is at least one component that has a backlog 

of events or data to plot, the simulation will immediately halt and allow those views to 

catch up before proceeding with further simulation. This feature can be useful if a user 

wants to use the Governor for certain experiments, but not for others, since enforcing 

synchronization can potentially slow down simulation by a significant amount. 

The third change concerns how time views appear to the user. Before, time views 

were added to a tabbed pane on the main window. This was space-efficient, but did not 

allow the user to visually track more than one component at a time. Multiple graphs 

within a view could be seen, but all graphs had to belong to a single component. Now, 
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each time view is assigned its own window. Users may now view as many time views 

concurrently as their screen allows. This change was necessary to ensure that all views 

were running in time with each other. 

3.3 Complications arising from design choice 

Implementing the Governor effectively synchronized the execution of the simulation and 

the animated displays, but introduced a new complication: under certain circumstances 

(see Figures 22 and 23), the simulation would fall into an infinite loop, causing the 

DEVS-Suite program to lock up and become unresponsive. 

The cause of this was a combination of the values of the variables curTime, 

endingTime, and the time at which the most recent event occurred, which we will denote 

as nextTime. The variables curTime and endingTime were responsible for producing the 

scrolling effect on the graphs. They increment at values that were based on the graph’s 

scale, and it was possible for curTime to exceed endingTime as well as the time at which 

the next event to be displayed occurred. There are two conditions that must be met in 

order for a graph to cause this error: 

- No value of curTime belongs to the range [nextTime, endingTime] as it 

increases by the increment. More formally, there is a value of the integer k 

such that: 

increment * k < nextTime < nextTime + 1 = endingTime <  

increment * (k + 1). 

- nextTime > increment. 
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Scale Increment curTime Next.time endingTime Result 
20 4 12 15 16 OK 
20 4 24 25 26 Halted 
10 2 108 110 111 OK 
21 4.2 109.2 110 111 Halted 
26 5.2 109.2 110 111 Halted 
30 6 108 110 111 Halted 
110 22 110 110 111 OK 
550 110 110 110 111 OK 

 
Figure 22: Determining the conditions under which the DEVS-Suite simulator will halt. 

 

Figure 23: Graphical representation of the conditions for a simulator halt. 

Before the governor was introduced to enforce synchronization, this problem 

existed in DEVS-Suite, but did not cause the program to become unresponsive. Without 

synchronization enforcement, the simulator simply pushed all of the events generated to 

the views and did not have to wait for the infinite loop created by the time variables. This 

caused the views to remain blank while the simulation continued normally. 

We have determined four distinct solutions to prevent this lockup from affecting 

the program. One way we have already mentioned is to simply not enforce the governor. 

This causes the simulation and views to fall out of sync, and will not allow the data to 

appear on the time views, so we had to select another option. 
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Figure 24: The same component tracked in TimeView graphs with scales 2 and 20. 

The second possible way to avoid the lockup would be to make the x-axis scale 

very small. This option has been available to users from the very beginning, and was 

often used when the time view graphs did not behave as expected. The downside to this 

option is that if the scale is very small, the graph takes a very long time to display all of 

the data it receives, and cannot contain as much information on the screen as a graph with 

a larger range. This is exemplified in Figure 24, where we tracked the p component of the 

gpt2 model with two different scales. On the top graph, the scale is 2, so only two events 

can be plotted on the screen. The bottom graph has a scale of 20 and can hold many more 

events. In some cases it may not be suitable to only display the last two events on the 

screen, so we needed to develop another way to prevent this lockup error. 

A third option is very similar, and involves tweaking the source code. The 

increment by which the graphs scroll is defined as one-fifth the x-axis scale. If that 

fraction were decreased to one-tenth or one-hundredth, it would solve most of these 

lockup issues. Even though the graphs would be able to display the same amount of data 

as before, they would still require a great deal more time to complete their graphs, and the 

increment defines how quickly they can scroll or update. Another important point is that 
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even if these two options were employed, it would not protect against a model with 

sufficiently small event times. If nextTime is 220 and the increment is 12, then reducing 

the increment to 4 will solve the problem, but if nextTime is 73, the problem occurs 

again. It would be ideal to have a solution that worked in all cases and did not 

compromise the efficiency of the time views. 

Our selected solution to fix the lockup problem caused by introducing the 

governor was to add a condition into the function responsible for updating the graphs. In 

the updateTime function, there is a check to see if curTime is less than endingTime. If so, 

the function updates the graphs and, if needed, scrolls the graph region by incrementing 

the beginTime and endingTime variables. A second condition was added to check if the 

next array contained any items, and if either condition was true, the graph was updated as 

needed. This condition acted as a fail-safe in the few cases when large increments to 

curTime caused it to exceed endingTime even though there were still more events to plot. 

 

Figure 25: An incomplete TimeView graph. 

Another issue related to the variables curTime and endingTime is the problem of 

incomplete graphs. Under certain conditions, some graphs may plot points outside of the 

boundaries defined by the x-axis (see Figure 25). Data points, such as events, and 

continuous plots, such as sigma or phase, simply continue past the right side of the graph. 

This causes views to have unnecessary horizontal scroll bars, and makes the graph plot 

data without providing the x-axis for reference. 
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Incomplete graphs are caused when curTime and endingTime are incompatible. 

When curTime exceeds endingTime, it makes an if-statement fail, causing the graph to 

quit scrolling temporarily. Events and data to plot are still coming in from the façade, so 

the graph falls behind. If this happens only a few times, it usually is not noticeable, but 

when it occurs many times, these short pauses add up and the discrepancy between the 

end of the plotted points and the end of the graph becomes very obvious. Incomplete 

graphs are more common when multiple views are employed simultaneously. 

The solution for this problem involved removing one of the conditions of the 

failing if-statement. Two conditions must be true in order for a graph to scroll: curTime 

must be strictly less than endingTime, and curTime must be greater than timeEnd, the 

variable representing the value of the end of the axis. When curTime increased past the 

end of the graph, it was time to scroll to the right. By simply removing the condition that 

curTime must be less than endingTime, we were able to prevent the graph from plotting 

too far to the right. 
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Figure 26: Synchronized TimeView windows with different scales. 

With the governor in place, all time views will now stay in sync with the 

simulator. This can be demonstrated by making all views appear in separate windows 

instead of a single tabbed pane (see Figure 26). Regardless of the number of views, the 

governor will ensure that all views are up-to-date before letting the simulation proceed. 

However, this synchronization comes at a cost: the time it takes to complete a 

simulation is almost always limited by the speed of the views. More precisely, the 

weakest link in the synchronization process is often the graph scrolling. Before adding in 

the governor, the feature that caused the graphs to take so long to complete was the rate at 

which the graph scrolled to incorporate events that occurred outside the visible bounds of 

the graph.  

Fixing the lockup issue had an unexpected side effect: graphs now display all data 

they receive, regardless of the scale of the x-axis. Under normal circumstances, the graph 
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will plot a short, vertical line for incoming events, or a piecewise constant line graph for 

state variables such as phase and sigma. The graph will also plot a label next to events 

and on top of horizontal lines for state variables. As the scale increases, the graph 

becomes more compressed towards the y-axis, and the labels overlap each other. At a 

certain point, the graph becomes compressed into a single vertical line on the far left side 

of the axis, and labels cease to appear. 

It is possible to determine the point at which the labels will cease to appear. In the 

code that determines the visual properties of the view, there are several variables of 

importance within the TimeGraph class: graphXstart and graphXend define the starting 

and ending positions of the graph within the view display, labelIncrement is the 

difference in values between each label on the x-axis, and numLabels defines how many 

segments are to appear on the graph. Normally, graphXstart and graphXend are set to 30 

and 780 respectively, to define a plot area 750 pixels wide. The variable labelIncrement is 

10 by default, but can be changed by the user input when a view is instantiated. Finally, 

numLabels is fixed at 10; the user has no control over how many graph segments appear 

on the time view. 

The key variable in the class that determined whether the labels would appear is 

xIncrement, which is computed as  

(graphXend - graphXstart)/(labelIncrement * numLabels). 

This variable represents the number of resolution of the graph in pixels per x-axis unit. A 

very small number means the graph is very compressed and able to display a lot of data 

on the screen at once, whereas a larger number means less data will be on the screen at 

the same time, but will be easier to see. 
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Under the current version of DEVS-Suite, if xIncrement falls below 0.1, the graph 

will behave differently. The plotted lines will be compressed to a single line, and no 

labels will be applied to the data. Assuming the user cannot alter the variables in the 

program other the graph scale, this means the scale must not exceed 750 units, which is 

coincidentally the width in pixels of the plot within the graph. 

3.4 Simulation cleanup 

After a simulation has completed and all data has been plotted to the time views, the user 

must either reset the simulation or choose another model to load. When a user performs 

either of these actions, there will be no visible remains of the previous run; it will be as if 

the user had just loaded the program. 

However, if the user opted to display any time views during the previous run, the 

threads that prompted the graphs to update constantly would persist. Java’s garbage 

collector would not stop these Timer objects from running, so after each simulation, these 

threads continued to run in the background, consuming CPU resources. Wasting CPU 

time on these rogue Timer objects caused subsequent simulations to slow down 

considerably without contributing anything useful to them. Finding a way to solve this 

problem would provide an efficient and more consistent environment for subsequent 

simulations in DEVS-Suite. 

The Governor was used to terminate these threads once the simulation was over. 

When the user clicks the Reset button on the interface, a gesture is sent to the controller, 

which then interprets the gesture and performs certain related functions. We added in an 

extra function call to the controller’s reset routine that would prompt the Governor to halt 
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all Timer threads related to time views. Since the Governor contains an array with 

references to every time view, it was able to shut the Timer objects down safely before 

clearing the array. 

3.5 Implementing Synchronization in other Simulation Tools 

Software developers can add a Governor component to other simulation tools as long as 

those tools use the MFVC architecture. Adding synchronization is still possible with the 

MVC architecture, but our implementation specifically utilizes functionality of the 

Façade. 

 First, locate the simulator protocol responsible for executing the model and 

generating events, and determine which classes are involved in the simulation process. 

This protocol should be located in the Model and accessible via the Façade. Simulation 

will be suspended by Governor to enforce synchronization as described in Section 3.1. 

The Governor may need to be adapted to the protocol of the simulator.  

 Second, determine which components are responsible for displaying simulator 

output. These are not limited to graphical displays; anything that will receive data from 

the Model is applicable here. The Governor must have references to the visualization 

objects in order to track their progress. Each time a new display is created, it must be 

registered with the Governor. Also, it is critical to ensure that views are self-driven. Each 

individual view must have its own thread responsible for updating its displays. 

 Third, find how data is collected in the View to be displayed. In order to 

effectively synchronize the simulation with the displays, a scheme needs to be devised to 
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track how much data has yet to be visualized. In the case of DEVS-Suite, data is moved 

between arrays inside of each individual TimeView as it is displayed on the screen. 

 Fourth, after collecting all of this information, the Governor needs to be adapted 

and added to a specific simulation engine. A single instance of the Governor class is 

used. In Java, this can be achieved by declaring the contents of the Governor as static. 

During a simulation, a scheme needs to be devised to pass execution control to the 

Governor temporarily in order to synchronize the Model and View, and then return 

control in order to continue the simulation (see Figure 18). 

 Finally, after the Governor has been implemented, a suite of tests need to be 

devised and carried out to ensure that synchronization is working properly. The first test 

is to test a model with no visualization, with and without the Governor. If the 

implementation is successful, there should be no significant difference in execution times 

with the Governor enabled and without. Next, test a model with and without the 

Governor, but for each simulation enable a view for one component. There should be a 

significant increase in execution time for the simulation when the Governor is enabled. If 

there is a difference between the execution time between the simulator and display, the 

simulation time will increase to match the display time when the Governor is enabled, as 

this is evidence that synchronization is being enforced. Additionally, similar results will 

be obtained when multiple views are added to a model. 

 Each test of the synchronization should be executed multiple times, recording 

execution times to build a sample data set. Running each test multiple times is advisable 

because the execution time for a single simulation can vary significantly. Hardware 
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constraints, operating system processes, and other programs running simultaneously may 

all have an impact on the execution time of a single execution of a test. 

 



4 Results and Benchmarks 

Once the Governor was in place to synchronize the graphs with each other and the 

simulator, we did performance testing on the entire system to see how well it ran. To do 

this, we needed a way to measure the time taken by the program. Rather than rely on a 

manual stopwatch we developed a special class called Stopwatch that could be used to 

track the time elapsed from an arbitrary time point in the execution. 

Below is a list of trials we ran on the DEVS-Suite system, using the efp and gpt2 

models under various program settings. The time to completion is measured in the 

following ways: for the simulator, it is the time for the model to passivate (all 

components have a tN of infinity); and for the views, it is the time to plot all data points. 

 

Trial Notation SimView Governor 
TimeView 
(scale=10) 

TimeView 
(scale=30) 

O     
S X    

SG X X   
ST X  X  

SGT1 X X X  
SGT2 X X X (Multiple)  
SGT3 X X  X 

 

Figure 27: Definitions of notations used in result tables. 

 
 In Figure 27, we define a notation that we will be referencing in the tables that 

describe the results of our experiments. For each model and test condition, we employed 

a number of different combinations of simulator features that could potentially impact the 

simulation time. These features include the SimView, Governor, and TimeView. A mark 
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in the SimView column means we enabled the visual model depiction (see Figure 4). A 

mark in the Governor column means we enabled synchronization, otherwise it was 

disabled. A mark in the TimeView column means that we tracked and plotted one 

variable from one component during the experiment, with an x-axis scale of 10 for SGT1, 

or a scale of 30 for SGT3. For the row SGT2, we tracked multiple variables from 

multiple components. 

 Our basis for ordering these feature combinations as such is to determine which 

conditions create a significant difference in execution time for the simulator or the 

visualization. We believe that this order represents increasing levels of required 

processing; each added component should require more time to complete. 

 For each combination of model, simulation length, and feature set, we applied a 

consistent methodology. Each experiment was run ten times, clicking “Reset” after run. 

The model was not reloaded and nor program terminated between runs. After collecting 

the ten data samples, we removed the minimum and maximum values, and computed the 

mean and standard deviation from the remaining eight samples.  
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Model name = “efp”, simulation length = 200 
Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 

S 3.098 0.216 
SG 2.903 0.0833 
ST 5.382 0.144 

SGT1 6.667 0.0649 
SGT2 12.963 0.810 

 
Model name = “efp”, simulation length = 1000 

Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 
S 16.650 0.757 

ST 25.346 1.334 
SGT1 30.539 1.390 

 
Model name = “efp”, simulation length = 3000 

Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 
S 65.655 0.720 

ST 74.241 2.067 
SGT1 119.404 1.259 

 
 

Model name = “gpt2”, simulation length = 200 
Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 

O 0.414 0.0637 
S 0.619 0.140 

SG 0.521 0.0463 
ST 0.700 0.0656 

SGT1 5.751 0.149 
SGT3 1.914 0.0234 

 
 
 
 

Model name = “gpt2”, simulation length = 1000 
Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 

O 2.064 0.0610 
S 2.501 0.121 

SG 2.430 0.0842 
ST 3.214 0.114 

SGT1 27.620 1.108 
SGT3 9.953 0.381 
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Model name = “gpt2”, simulation length = 5000 

Trial Mean Simulation Time (sec.) Standard Deviation (sec.) 
O 25.514 0.100 
S 26.637 0.697 

SG 25.658 0.132 
ST 28.854 0.356 

SGT1 145.328 1.493 
SGT3 64.064 0.466 

 

Figure 28: Simulation times for various models, lengths, and GUI features. 

The tables in Figure 28 show the effect of various experimental conditions on the 

simulation time. The next tables contain identical conditions, but the values will now 

represent the visualization time. For these, the trials “S” and “SG” have been removed, as 

they have no measurable visual component. Figures 29 and 30 show how visualization 

time changes under different experimental conditions. 

Model name = “efp”, simulation length = 200 
Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 6.779 0.0971 

SGT1 6.717 0.0634 
SGT2 12.894 0.818 

 
 

Model name = “efp”, simulation length = 1000 
Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 31.965 0.916 

SGT1 30.628 1.378 
 
 

Model name = “efp”, simulation length = 3000 
Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 114.658 1.481 

SGT1 119.510 1.249 
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Model name = “gpt2”, simulation length = 200 
Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 5.722 0.0311 

SGT1 5.971 0.158 
SGT3 1.934 0.0236 

 
Model name = “gpt2”, simulation length = 1000 

Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 27.846 0.304 

SGT1 27.833 1.092 
SGT3 10.002 0.382 

 
Model name = “gpt2”, simulation length = 5000 

Trial Mean Visualization Time (sec.) Standard Deviation (sec.) 
ST 155.008 1.491 

SGT1 145.577 1.495 
SGT3 64.125 0.470 

 

Figure 29: Visualization times for various models, lengths, and GUI conditions. 
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EFP model, logical time=1000
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EFP model, logical time=3000
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GPT2 model, logical time=200
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GPT2 model, logical time=1000
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GPT2 model, logical time=5000
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Figure 30: Comparisons of simulation and visualization times between efp and gpt2 

models. 

One noticeable issue with these trials is that the actual time taken to complete a 

particular task can vary significantly. If a simulation was conducted immediately after 

initializing DEVS-Suite, it ran significantly slower than subsequent simulations after 

clicking “reset”. After one or two runs, the simulation speed increased and remained 

much more consistent. We have no control over this factor as it is likely a side effect of 
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dynamic memory allocation in Java. We have accounted for this in our experiments by 

throwing out the highest and lowest run times before calculating the mean.  

During these trials, the computer was allowed to function normally, operating all 

programs and background processes that it would during normal use, including 

networking connections, Eclipse, and browser windows. However, there was no user 

interaction while the experiments were in progress. There will always be something 

running in the background intermittently, such as the operating system trying to 

reorganize memory, or more process-intensive applications such as a development 

environment. What is important is how long one time view takes to finish relative to the 

others. 

 Since the simulator generates data for the time views to show the user, it is clear 

that the simulator should terminate before the views do. One can estimate the amount of 

time needed by a view to finish graphing all of its data, under certain conditions, with the 

following formula. 

 VT = ST + E + I, where: 

VT := “View Time” = amount of time needed for view to complete. 

ST := “Simulation Time” = amount of time needed for simulation to 

complete. 

E := “Event” = ceil(delta-tfinal / (scale / 5) ) * cycle = “event time”, or the 

time needed to plot the last event generated by the model. 

delta-tfinal := change in simulation time between the second-to-last and last 

events in the model. 
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scale := x-axis increment as defined by the user when creating the time 

view. 

cycle := time between refreshes of the time view displays. 

I := “Idle” = time spent by CPU on other applications, drawing the graph 

to the screen, etc. 

Furthermore, this formula only applies under the following conditions. First, in 

order for this to be accurate, it may only be applied when the Governor is being enforced. 

Second, the time view being measured must have data to visualize at the last time point 

of the simulation. 

We can draw a number of conclusions from these experiments. Using the efp 

model, we have shown that the Governor does not introduce a significant change to 

simulation time if no TimeViews are active. Adding a TimeView to display simulation 

data does introduce a significant change in raw simulation time. Enabling 

synchronization constrains the simulation to run only as fast as the TimeView can display 

data, but does not introduce any change in execution time for the visualization. 

Additionally, the more components or variables are tracked by the user, the longer they 

all take to complete. 

The gpt2 model experiment reinforces these conclusions. Not only does the 

Governor effectively synchronize data generation with data visualization without 

introducing processing time overhead, the Governor class also behaves correctly for any 

scale model. Regardless of the number of components tracked or the length of the 

execution, synchronization was enforced for the length of the experiment. 
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In testing the gpt2 model, we also adjusted the TimeView scale and noted its 

effects. When adding a new component to be tracked, the user may specify a value for the 

x-axis scale, or use the default of 10. We increased this value to 30, which allowed the 

graph to plot more data and scroll less. We found a significant decrease in the time 

needed to plot all of the data generated when the scale was increased. In section 3.3, we 

discussed how the TimeView graphs scroll by a constant amount based on the graph’s 

scale. In increasing the scale, we increased this amount, thereby decreasing the amount of 

time needed to scroll the graph to the end of the data. 

While testing the gpt2 model, we also studied the effects of disabling the 

SimView feature of DEVS-Suite. SimView is responsible for visualizing the model and 

displaying the current states of the components. When this feature was removed, the 

simulation time exhibited a significant decrease in processing time for short simulations. 

However, once the simulation length was too large, as in our case with a length of 5000, 

there was no significant benefit to be gained from disabling the SimView. We believe 

this relates to the transducer component’s ability to effectively manage large quantities of 

collected events, but this problem is beyond the scope of this study. 

 



5 Conclusions 

Solving the problem of synchronizing the model and view components of a simulation 

system has led to many discoveries about software architecture. We have taken a look at 

the MFVC software design, which is what DEVS-Suite uses as its foundation. In adding 

the Governor class, we were able to establish a link between the simulator and the views. 

The simulator used the Governor to check if all views were up-to-date with their plotting, 

and if so, allowed the simulation to proceed for one step. This process enforced 

synchronization between the model and view of the system. 

Synchronization is a useful tool for model verification and subsequent validation. 

For example, if a user wanted to watch a set of components to make sure they were 

sending and receiving messages properly, it would be easy to set up a handful of time 

views to track the components. Without synchronization, the data would appear on the 

views nearly all at once without regard to simulation time. When the user enforces 

synchronization by enabling the Governor, the user can see when data is generated by 

each component with respect to each other. If one component sends a message to another, 

and both of them have time views associated with them, the user should be able to see 

that transaction instantly on both of the time view graphs. The user doesn’t have to wait 

for the graphs to catch up to the simulation, and there will be no confusion when events 

occur relative to each other, because the simulator slows down to accommodate for the 

time-consuming process of visualizing the data. 

Synchronization is not useful in all situations. If a user has already validated their 

model and is concerned with the execution speed of their simulation, synchronization 

would not be useful to them. The trade-off of having the views and simulation stay 
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together is that data visualization in inherently slower than data generation. We have 

shown that enabling the Governor restricts the simulator to running only as fast as the 

program displays data to the user. Depending on the specific parameters of the views, this 

could have a variable, but consistently negative, impact on the performance. 

Implementing the Governor also revealed a number of issues that needed to be 

addressed before the program could run smoothly. The issues with plotting data became 

important when those problems interfered with the simulation. We had to address the 

graphing problem when a specific condition regarding the graph variables caused the 

simulator to lock up in an infinite loop. The Timers that would not stop after resetting the 

simulator were not critical to the execution, but were a nuisance in that they caused poor 

performance in subsequent simulations. Once these were all addressed, the Governor 

performed its function perfectly. 

The changes specified in this thesis have been applied to DEVS-Suite, and are 

available on the web. Version 2.1.0 of DEVS-Suite supports synchronization between the 

model, SimView, and TimeViews. The latest version of this project can be downloaded at 

the following URL: https://sourceforge.net/projects/devs-suitesim/ 

 



6 Future Work 

Now that DEVS-Suite can effectively synchronize the Model and View layers, we plan 

on making this version of the simulator more accessible to others in the Modeling and 

Simulation community, as well as more feature-rich. Our plans for simplifying 

accessibility include making a stand-alone, web-based version of DEVS-Suite, and 

integrating this version with a visual modeling tool.  

 There are several auxiliary functions that DEVS-Suite currently lacks. First, 

TimeViews created in separate windows can only be used for one simulation. If the user 

resets the model or loads a different one, all TimeView windows cease to function and 

must be closed manually. Second, there are no capabilities to scroll backwards on a 

TimeView graph. We have determined that no data sent to a view is deleted, so with 

proper user controls, a user could manually scroll through the data collected to review the 

simulation results. Third, we are unable to estimate the wall-clock time required to 

complete a simulation. We have discovered that the actual time needed to run a single 

simulation varies greatly, so having a way to deterministically predict simulation time 

would be useful. 

 We will use Java WebStart [19] as a way of distributing DEVS-Suite through the 

web. WebStart technologies will allow users to download and launch the program 

automatically, without having to launch through an IDE such as Eclipse, or locate 

executable files. If users access the program via WebStart, and updates made to DEVS-

Suite on the web will take effect immediately; users will not have to check for updates 

themselves. 
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 Furthermore, we plan to integrate DEVS-Suite with CoSMoS (Component-Based 

System Modeling and Simulation), a visual model development environment. Users will 

then be able to develop their models in CoSMoS and simulate them in DEVS-Suite. Not 

only will this simplify the model development process, but it will encourage users to 

make more logically correct models. By removing users from the low-level coding, users 

without Java programming proficiency will be able to develop models for use in DEVS-

Suite.  
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