

DESIGN AND ANALYSIS OF

VIEW SYNCHRONIZATION IN DEVS-SUITE

by

Eric Joseph Helser

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

May 2009

DESIGN AND ANALYSIS OF

VIEW SYNCHRONIZATION IN DEVS-SUITE

by

Eric Joseph Helser

has been approved

April 2009

Graduate Supervisory Committee:

Hessam S. Sarjoughian, Chair
Hasan Davulcu
Stephen S. Yau

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

Simulation software tools allow users to model and test processes in a graphical

environment on a computer. In generating models to be simulated, data visualization is a

useful tool for model verification and validation. This thesis addresses the problem of

synchronization between data generation and visualization. This thesis introduces a

synchronization mechanism within the Model-Facade-View-Controller (MFVC)

architecture without compromising the simulation engine’s validity or efficiency, which

current simulators lack. The approach to this topic includes researching background on

the MFVC architecture pattern, and other simulation tools’ approaches to data

visualization. After implementing synchronization, experiments were conducted to

compare execution speed under different conditions. The synchronization method

presented here restricts simulation speed to no faster than the visualization rate. While the

synchronization feature is added to only one simulation tool, the approach used can be

generalized and applied to other simulators.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES……………………...……………………………………………….vi

1 INTRODUCTION .. 1

1.1 Overview of Modeling and Simulation ... 1

1.2 Architecture of DEVS-Suite ... 6

1.3 Problem Description ... 8

1.4 Contributions of this Study ... 8

2 BACKGROUND AND RELATED WORKS .. 10

2.1 Model Display Issues .. 11

2.2 Generic Output Display .. 11

2.3 Animations .. 14

2.4 TimeView Display in DEVS-Suite ... 15

2.5 Trials with DEVS-Suite .. 18

2.6 Ptolemy ... 20

2.7 Testing the DEVS-Suite TimeView .. 27

3 APPROACH ... 33

3.1 The Governor Class .. 34

3.2 Interface Alterations .. 40

3.3 Complications arising from design choice .. 42

3.4 Simulation cleanup.. 49

3.5 Implementing Synchronization in other Simulation Tools 50

iv

Page

4 RESULTS AND BENCHMARKS ... 53

5 CONCLUSIONS... 63

6 FUTURE WORK .. 65

BIBLIOGRAPHY………………………………………………………………………..67

v

LIST OF FIGURES

Figure Page

1: DEVS-Suite Tracking Environment ... 3

2: Time Required to Display Output ... 12

3: Portion of Execution Time Required to Display Output .. 12

4: Animated messages in the model view for a Generator-Processor-Transducer model. 14

5: TimeView sample in DEVS-Suite of the Generator-Processor-Transducer model. 17

6: TimeView Increment vs. Execution Time .. 18

7: DEVS-Suite UI ... 19

8: A comparison of features offered by Ptolemy and DEVS-Suite 25

9: Factors on a computer system that may influence the execution speed of DEVS-

Suite .. 27

10: Models “gpt” and “gpt2” in the SimView .. 28

11: TimeView behaviors given variable component scales .. 29

12: Illustration of Experiment 2 from Figure 11. .. 30

13: Illustration of Experiment 3 from Figure 11. .. 30

14: Example of a physical synchronization in two TimeView graphs. 31

15: Physical synchronization with piecewise-constant variable phase. 32

16: Package diagram of the DEVS-Suite simulation environment. 33

17: Sequence diagram of a time view’s registration with the Governor class. 36

18: Sequence diagram of how Governor enforces synchronization by interacting with

coordinator.. .. 37

vi

Figure Page

19: A state diagram of the system as the coordinator calls the Governor. 38

20: A generic algorithm for describing synchronization enforcement. 39

21: Governor unregisters TimeView objects when the user resets the simulator. 40

22: Determining the conditions under which the DEVS-Suite simulator will halt........... 43

23: Graphical representation of the conditions for a simulator halt. 43

24: The same component tracked in TimeView graphs with scales 2 and 20. 44

25: An incomplete TimeView graph. .. 45

26: Synchronized TimeView windows with different scales. .. 47

27: Definitions of notations used in result tables. ... 53

28: Simulation times for various models, lengths, and GUI features. 56

29: Visualization times for various models, lengths, and GUI conditions. 57

30: Comparisons of simulation and visualization times between efp and gpt2 models. .. 59

vii

1 Introduction

Some simulation software tools allow users to model and test various real-world and

abstract processes in a graphical environment on a computer. Models can range in

complexity anywhere from one component changing its state at certain intervals to

interactions between the inhabitants of an entire city, and beyond. Simulations are

constrained by the software and hardware executing them. While software suites and

packages contain generally the same set of user interface features, there has been little

research done on comparing the speed and memory efficiency of those graphical features.

1.1 Overview of Modeling and Simulation

It is highly desirable for simulation tools to allow users to observe the structure and

behavior of a real system. Certain basic features are necessary in a simulator for a user to

be able to interact with the system.

First, there needs to be a data repository where the information relevant to the

models, or components being simulated, will be contained. Second, we will also need to

be able to see what is happening within the system. A graphical user interface (GUI) that

is loosely coupled with the data repository will be needed to display the data to the user.

The reason it must be loosely coupled is that we should be able to easily replace or make

changes to the GUI without needing to alter any other components. The last important

basic feature to a simulator is the ability to control the simulation execution. The user

should have the option to automatically run the virtual system from start to finish, or in

small increments. To accomplish this, we add some controller features to the GUI, such

as buttons, that will interact with the simulator. This overall concept of dividing the

2

simulator into separate, loosely coupled component is a design pattern called Model

View Controller, and will be discussed later in this thesis.

There are many simulation tools currently available that offer these basic

capabilities. For example, some well known simulation tools include Ptolemy [1] and

Simulink [2]. These all feature similar capabilities to store, display, and control the

simulation data. However, to our knowledge, DEVS-Suite, which is based on a formal

modular, hierarchical modeling framework, is the only simulation tool available today

that offers multiple, simultaneous views of the model information.

DEVS-Suite is a Java-based application used to represent models and their

interactions in a graphical, interactive environment. It supports simulation of models

described according to the Discrete Event System Specification (DEVS) [3]. Each model

is visually represented by one of two basic shapes: a filled rectangle for basic

components, or a rectangular outline for hierarchical models that are composed of one or

more inner components. Each component may have input and output ports, which are

used to transmit messages between components. All visualization systems surveyed by

Mather have these basic capabilities [4], and some tools support hierarchical modeling,

such as Ptolemy [1] and Simulink [2]. The DEVS-Suite framework (including

DEVSJAVA) is the only one to support the visualization of hierarchical models in a

single view [4]; Ptolemy and Simulink require separate displays for each level of the

hierarchy. From the simulator perspective these tools (DEVS-Suite, Ptolemy, and

Simulink) are distinct and serve different purposes [5].

3

Figure 1: DEVS-Suite Tracking Environment

Figure 1 shows an example of the DEVS-Suite interface. There are four main

sections to this screen: the Model Viewer, Simulator Control, SimView, and Tracking

Window. After loading a model, the Model Viewer in the top left corner is populated

with a list of the components, both atomic and coupled, contained in this model.

Immediately below the component list is a box that lists the predefined variables

pertaining to the model selected by the user. In Figure 1, we can see that the g component

has three input ports, one output port, and an event that is set to occur at t=10. This box

will be updated whenever the user selects another component. Immediately below that

are two buttons: Inject, for manually providing data at arbitrary time points in the

simulation; and Tracking, which users use to initialize data visualization windows.

4

The SimView on the top right displays the model visually, including any

hierarchical components. This particular model, gpt2, contains four atomic components

contained in one large coupled component. Below that is the Tracking Window, which

contains the standard output console by default as well as any TimeView tabs, such as g

in Figure 1. Finally, in the lower left, there is the Simulator Control. From here, the user

can control the actions of the simulator.

Along the top of the window, there are two groups of buttons that act as shortcuts

for the menu options. The left group controls files: New Model, Load Model, Save

Console, Clean Console, Console Setting, and About. The right group only appears after

a model has been loaded, and includes: Step(n), Step, Run, Pause, and Reset. These are

analogous to the buttons provided in the Simulator Control.

DEVS-Suite offers a number of buttons and sliders for the user to control the

simulator (see Figure 1). The first slider, Real Time Factor, controls how fast the logical

time of the program progresses in relation to “wall-clock” time. This variable can adjust

the scale of simulation logic time in order to get a faster, slower, or even soft real-time

response [5]. If this number is set to 1, then each unit of time in the program will take one

second to pass. When this is set to 1e-4, ten thousand units of time will pass in one

second. The other slider, Animation Speed, determines how quickly messages will move

around the screen between components. This slider ranges in value from 1 to 9, with 9

being the fastest. Both of these program parameters are subject to hardware and software

limitations of the system.

Simulation execution time is defined in terms of logical time, which is defined as

a real number between zero and infinity. In order to cut down on unnecessary processing,

5

the program calculates the next state change in the simulation and skips to it, since

nothing relevant happens between those state changes. We refer to each skip in time as a

“step.”

Near the sliders, there is a group of buttons that controls the behavior of the

simulator. The first button, Run, tells the simulator to automatically step through the

model interaction until the user manually halts execution or no more state changes exist.

Next, the Step button runs the program until a state change occurs, and then returns

control to the user. A similar button is Step(n), which lets the user decide how many steps

to run in sequence. Note that for Step and Step(n), all messages generated by the

components will be animated on the model display, while when the user clicks Run, no

messages will be displayed. The fourth button, Request Pause, is only enabled after the

user has clicked Run, and is used to stop the simulator. Once the user pauses simulation,

he may select to either Step through a fixed number of iterations, or Run the simulation

again. The last button, Reset, resets the components to their initial states. This option is

available at any point except when the simulation is running.

After each step, new information must be presented to the user. One update that

occurs at each step is a state change. The state is printed in the middle of the components,

and is always visible. When the user clicks Step or Step(n), the simulator also displays

the animated messages that move across the screen. As stated earlier, these messages are

not visible when the user clicks Run. If the user has selected to track any ports or

components in the TimeView window, new information about their messages or states

will be displayed there, as well.

6

 DEVS-Suite handles the separation of concerns by processing component data

and visualization separately. The models maintain the components’ data, while different

objects take care of the view. This is consistent with the MFVC (Model, Facade, View,

Control) design pattern, and makes the models interchangeable without compromising

the quality of the simulation interface.

1.2 Architecture of DEVS-Suite

The DEVS-Suite simulation environment uses the fundamentals of the MFVC software

design concept. This defines four specific systems for the software, and how they

interact. They are the Model, Façade, View, and Controller systems.

As the composite of two important subsystems, the Model is responsible for

encapsulating core Modeling and Simulation logic [6]. The model and simulation engines

exist within this layer and define all of the components, behaviors, and relationships of

the application. This layer communicates with the next layer called Façade.

The Façade layer of the MFVC pattern acts as a mediator between the Model,

View, and Controller. While the Façade does not add any new functionality to the Model,

it does expose a consistent set of functionalities to the View and Controller, so that those

components can interact with any Model effortlessly. The presence of this façade allows

the Model to maintain its black box nature [7].

The View and Controller layers of this architecture enable human interaction with

the simulator. First, the View is responsible for interacting with the Façade in order to

obtain state information from the Model about the components to be visualized. The

View then interprets these values and displays them to the user. In the case of DEVS-

7

Suite, this data is shown in the animated component windows as well as any TimeView

graphs. The View must also provide ways of interacting with the system, such as text

fields or buttons.

The user can interact with the Model through the Controller layer. Although the

interaction methods are provided by the View layer of this architecture, we generally

consider the Controller as the one responsible for interpreting these user inputs and

communicating with the Model via the Façade. Once it receives a signal, such as Run or

Step, the Controller will send an appropriate message through the Façade’s exposed

functionality, and on to the Model.

While this MFVC pattern has been used by DEVS-Suite and possibly other

simulation tools to support the separation of concerns in an application environment, it

has not been used to build a simulator that is both efficient and capable of supporting

multiple, synchronized views, such as animated and graphical plots. At this point, DEVS-

Suite can support both views at the same time, but they are not synchronized, especially

as the scale of the model grows. To our knowledge, all existing simulators have major

limitations in supporting different kinds of visualizing simulation dynamics in near-real-

time.

In the course of this thesis, we will study the limitations of existing M&S tools,

and propose a new software architecture that will allow configuration flexibility in terms

of visualization and synchronization.

8

1.3 Problem Description

The problem we are addressing with this thesis regards the synchronization between data

generation and data visualization. All of the tools surveyed thus far [4, 1, 2] lack the

ability to synchronize simulation execution with data visualization. While the tools can

produce graphs that accurately reflect the final results of the simulation, they are not

produced concurrently with the simulation, often leading to the simulation finishing well

before the output can be displayed to the user.

For the purposes of this study, we are defining synchronization as the condition

where the simulation is no more than one logical step ahead of any of the views. We

cannot constrain synchronization any further than this, because in order to display the

data, it must be generated by the simulation first. Once this newly created information has

been displayed on all of the appropriate views, the views will have caught up to the

simulation, allowing the simulation to proceed with the next logical step.

 We will show how it is possible to force the simulation and views to stay

synchronized in this sense throughout the execution. This will allow the user to see the

data that the simulation generates with minimal delay.

1.4 Contributions of this Study

We will demonstrate how our synchronization techniques for DEVS-Suite can be

generalized and applied to any simulation environment. Our principles and design

choices will be applied to the MFVC architecture so that any application that implements

this design can easily integrate the synchronization shown here.

9

Visualization synchronization benefits end-users in multiple ways. The effects of

synchronization are not limited to eliminating the lag between data generation and

display. Forcing the simulator and views to stay in sync assists in the process of model

verification and validation. The user can more easily verify the behavior of a model if he

can see the data it generates while it is being simulated, rather than after the simulation

has completed.

One specific benefit to implementing synchronization applies to simulated

processors. A DEVSJAVA-based MIPS32 simulator developed by Yu Chen at ACIMS

allowed students in an undergraduate computer architecture course to better learn and

instructors to better teach MIPS processor designs [8, 9]. Synchronizing the data

visualization with the model will further assist students to more easily understand how

the data sets displayed on the screen relate to each other.

2 Background and Related Works

There are many papers that discuss how to make a graphical user interface (GUI)

functional and intuitive to user as well as aesthetically pleasing, but there are few that

explain the ramifications of interface design on reusability [10] as well as performance

[11]. One paper [10] explains how design patterns such as model-view-controller (MVC)

can be used to develop a simulation environment.

Once the models have been developed, the execution speed of the simulation

software becomes a concern. Depending on the amount and method of visualization, the

simulation may run quickly or very slowly. In their paper, Mitchell and Power [11]

discuss one approach to benchmarking graphical simulation software by using a program

to fill in the fields on a form and automatically click “submit,” thereby taking user error

and hesitation out of the equation.

 As a simulation runs, the computer must not only calculate results and keep track

of the different models involved, but also display feedback and output to the user.

Obviously, as the amount of output generated increases, the time to complete a particular

set of tasks also increases.

The amount of this slowdown varies among different simulation engines. Some

handle it better than others, but in each case, simulation execution speeds up when the

program is left to run by itself without any intermediate output or animated displays.

There is also the problem of deciding how much information is too much to show

the user. In most simulations, few options are provided to allow users restrict the amount

or type of output generated and viewed during execution.

11

2.1 Model Display Issues

One way the simulation can provide information to the user is via model displays. For

example, in DEVS-Suite, each model is displayed as a colored rectangle containing three

lines of text: the name of the model, its current phase, and the amount of time until its

next self-invoked phase change. Currently, this kind of view cannot be disabled via UI at

arbitrary instance during simulation execution. Each time a new event occurs, the time

value is updated, and the phase changes if necessary. In typical simulation runs with few

to many millions of operations, there is a significant slowdown in overall processing

speed when there is a need for run-time visualization.

2.2 Generic Output Display

The graph below demonstrates the effect of output display on the time required to execute

a very simple program. This base case test consists of a Java program that performs one

floating-point operation, and then prints any number of characters to the screen. These

two steps repeat inside of a loop an arbitrary number of times, and then the program

calculates the amount of time required per loop. This experiment was run on a machine

running Windows XP Home SP2, with 2.8 GHz CPU and 960MB RAM.

12

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01
M

ill
is

ec
o

nd
s

pe
r

S
tr

in
g

 P
ri

n
te

d

none 0 1 2 5 10 20 40 60 80 100

Length of String Displayed

Time Required to Display Text

Window Visible Window Not Visible

Figure 2: Time Required to Display Output

Time Required to Display Text

0%

20%

40%

60%

80%

100%

none 0 1 2 5 10 20 40 60 80 100

Length of String Displayed

P
or

tio
n

o
f

ex
ec

u
ti

on
 ti

m
e

Visualization Processing

Figure 3: Portion of Execution Time Required to Display Output

The horizontal axis in Figure 2 shows the number of characters displayed per

iteration of the loop, and the vertical axis shows the amount of time in milliseconds

required to perform that iteration. The first entry on the horizontal axis, “none”, refers to

13

the case that there was no print statement at all, whereas the “0” entry refers to another

case with an empty string (i.e., “”) inside the print statement.

The two values, “Window Visible” and “Window Not Visible” refer to whether

the console window that displayed the output had focus (visible), or was hidden behind

other windows (not visible). When the output was not being displayed to the user, the

program ran at approximately a constant speed regardless of the amount of output. If the

output was being displayed in real time, the program slowed down significantly as the

amount of output increased. A string of length one or two did not seem to have an effect

on the overall execution speed, but at ten characters, the program began to show

significant slowing. As the output string length increased, the time required appears to be

directly proportional to the string length.

Figure 3 reorganizes this data to show proportionally how much time was spent in

processing and displaying the data. The “Window Not Visible” time was used as the

processing time, and the difference between “Window Visible” and “Window Not

Visible” was used as the displaying time, as visualizing the text required both processing

and displaying. We found that as the length of the string increased, nearly all of the time

needed to visualize each string was spent in the displaying phase.

This simple test shows us two things: there is a significant time-cost for

displaying any output at all, and then there is extra time required to display the output,

depending on its length. The program with no output functionality at all ran by far the

fastest of any test. When the print statement was introduced, even with a zero-length

string, execution slowed considerably. In the next test, when the program displayed a

single character, execution slowed even further. With longer strings (two or more),

14

execution speed then depended on whether the output window was visible or not. If it

was hidden, execution speed remained relatively constant. Otherwise, the program took

an amount of time directly proportional to the length of the string.

The results of this experiment may have an impact on our approach to studying efficient

data visualization techniques. Since this experiment was purely text-based, there may be

some differences in results when moving to a graphical environment. However, we

expect the overall concepts of this trial to hold for graphical user interfaces that can be

used in simulation tools. A GUI that has no output should require the least amount of

time. The amount of output to be rendered should have a directly proportional effect on

the time needed to complete execution.

2.3 Animations

Figure 4: Animated messages in the model view for a Generator-Processor-Transducer

model.

Another way to convey model interactions to the user is through animated

displays. One example of this is the messages that are passed between components in

DEVS-Suite. Whenever this occurs, a small rectangle slides across the screen, following

15

a predetermined path from the sender component to the receiver component (see Figure

4). Components may transmit multiple messages at a time in a broadcast, and it is

possible for multiple components to send multiple messages at the same time. If this is

the case, then DEVS-Suite will render every message animation simultaneously. The user

may adjust the speed of the animation, but there is no option to toggle specific models on

or off; all models will display their messages on the screen, unless the user turns off the

animation at initialization.

2.4 TimeView Display in DEVS-Suite

DEVS-Suite’s main data presentation interface is called the TimeView. The TimeView

belongs to the View layer of the MFVC architecture, and exists to visually organize

component activity. Each component selected to be viewed by the user is created in its

own window, which we will refer to as a view. These views may be placed inside of a

tabbed pane on the main DEVS-Suite window, or created in their own windows.

 Each view contains one or more data plots called graphs. These graphs are where

the data generated by the simulation will be rendered to the user. Graphs’ trajectories

may either be event-based or piecewise-constant, depending on the type of variable. It is

important to differentiate between our concepts of views and graphs: one view represents

one component, and this view may contain multiple graphs pertaining to this component.

A view may not contain duplicate graphs or graphs for other components, and at most

one view can be created for each component.

 The number of graphs contained in a single view can vary. Each variable selected

to be tracked by the user must have its own graph. At least one graph must be visible in a

16

view, and the user may select up to N graphs, where N is the cardinality of the predefined

state variables, user-defined input ports, and user-defined output ports of the component

combined.

 Since the TimeView is loosely coupled with the Façade layer, it has no

knowledge of the Model layer’s state. The View layer’s purpose is to receive data and

display it accordingly, so the TimeView lacks a fundamental sense of time progression.

The data contained in the TimeView is a compilation of output collected from the

simulation that is stored in an array and then visually arranged on the screen. This

arrangement gives the TimeView graphs the look of an oscilloscope.

 Each graph contains a two-dimensional area for plotting data. The horizontal axis

is subdivided into segments with a length defined by the user at initialization, called the

scale, which all graphs on the same view must share. Different views may have different

scales. As the view collects data, if there is new data that cannot be plotted on the screen,

all graphs on that view will scroll to accommodate the new data points.

17

Figure 5: TimeView sample in DEVS-Suite of the Generator-Processor-Transducer

model.

 While the TimeView (see Figure 5) is a powerful tool for capturing the

information generated by one or more components over time, it is not without its share of

problems. One of the most prevalent issues with the TimeView window is that when a

user views it along with the model display, the TimeView trajectory may lag behind the

actual simulation execution. We will discuss how this lag affects simulation time later in

this thesis. Another problem that may affect users is that a component must be tracked

from start to finish; there are no options to track a new component mid-simulation or

remove a component after starting to track it. Since the TimeView is only an instance of

the View layer of the MFVC pattern, it is not a critical component to the functionality of

the modeling and simulation engines, and can be added or removed without adversely

affecting the integrity of the rest of the simulation.

18

2.5 Trials with DEVS-Suite

TimeView Increment vs. Execution Time

0

5

10

15

20

25

30

35

40

45

1 10 20 100

X-Axis Scale

T
im

e
to

 c
om

p
le

te
 (

se
c.

)

Graph Display Execution

Figure 6: TimeView Increment vs. Execution Time

Now that we have studied the effect of visualization on program execution time in

text-based programs, we are moving on to GUI-based programs. The experiment shown

in Figure 6 was performed running DEVS-Suite version 2.0, using a manual stopwatch to

estimate execution time. This experiment was also run on the same machine running

Windows XP Home SP2, with 3 GHz CPU, 512MB RAM, and JVM 1.5. This

demonstrates how the X-axis increment in the TimeView window affects how long it

takes to fully display all of the information. This TimeView window can be seen in the

lower right corner. The X-axis increment determines the difference in values between

two consecutive ticks on the graph. As this number decreases, the longer the graph will

appear horizontally.

19

Figure 7: DEVS-Suite UI

Figure 7 shows a screenshot of DEVS-Suite in action. The top-right window

contains a visualization of the models used in the simulation. The lines connecting the

rectangles are the couplings along which messages travel. These messages are small,

yellow boxes containing some amount of text. They travel along the paths at a certain

speed, as regulated by the “Animation Speed” slider in the lower-left corner of the screen.

In the lower-right corner, the program displays a tracking log and a time-view graph of

various states of the simulation. As the simulation progresses, this graph updates with

information taken from the model view directly above it. TimeView can display primitive

data types such as double and string. The time increment and unit for time and any other

20

variable can be set by users. Users can monitor, track, and view status of each model

component separately as time trajectories [12].

The problem with the TimeView in DEVS-Suite is that it can lag behind the

simulation view, depending on the speed of the simulation and amount of information

displayed. Adding variables to track does not hinder the execution time at all, but each

additional item to graph increases the latency of the tracking window.

 Figure 6 demonstrates this: when the increment on the x-axis is small, the time-

view graph takes longer to complete. This is due to two factors: horizontal scrolling, and

a maximum horizontal scroll speed. When the x-axis increment is very large, the results

of the simulation can be fit on a single screen, which does not require horizontal

scrolling. If the increment is smaller, the graph will need to automatically scroll to the

right as it progresses through the simulation time. This may be a problem if the axis

increment is very small, because DEVS-Suite limits how quickly the graph can scroll, as

discussed in section 4.2. This restriction imposed by the program is also constrained by

the physical capabilities of the system, and demonstrates that due to the nature of data

visualization, it is not possible in certain cases to display the information from the

simulation in real time.

2.6 Ptolemy

The Ptolemy project is an ongoing endeavor by the Electrical Engineering & Computer

Sciences department at University of California Berkeley to study the modeling,

simulation, and design of concurrent, real-time, embedded systems. It also provides

21

visualization support for viewing simulation results through a graphical user interface

called Vergil.

Ptolemy is described as having an actor-oriented framework. Objects within

Ptolemy are called “Actors” and implement an interface called Executable. The

Executable interface provides the abstract semantics of control for the actor [13]. These

actors that are used to build the models are separated from the UI packages. The

graphical support exists in separate packages with names such as gui, vergil, and plot.

There is also support for MoML, an XML-based language that is used to describe

Ptolemy models.

 Actor-orientation differs from object-orientation in a number of ways. In object-

oriented programming, classes provide methods that are invoked sequentially; that is,

they receive the control from a calling method, and eventually return that control [14]. In

actor-oriented programming, an actor has data (known as its state), but communicates

with other actors through its ports.

These ports provide an interface for concurrency and asynchronous

communication. Object-oriented programming handles concurrency by using

semaphores, monitors, and other low-level communication protocols [14]. Because actors

do not have to wait for control to return from another actor, they can continue processing

something else while waiting for a response. This built-in concurrency lends itself, and

the actor-oriented paradigm, to model-based design.

 In addition to these actors, Ptolemy also has a set of components called directors.

These directors define component interaction semantics [15]. Many well known

interaction types have been implemented in Ptolemy, including Continuous Time and

22

Discrete Event [16]. The director’s job is to manage the order in which the actors

execute. Models are not restricted to have only one director. In Ptolemy’s strict model

hierarchy, it is possible to place directors within composite actors [16]. These directors

will only control the execution of the actors within their composite actor. While it is true

that actors’ communication is not synchronized, directors must be able to control the

actors’ behaviors to keep the results consistent and execution logically correct.

 MoML is an XML modeling markup language intended for specifying

interconnections of parameterized, hierarchical components [17]. While this language is

used to specify Ptolemy models, it is designed to be programming language-independent.

If a simulation tool were developed in C++, for example, it would need to be able to

parse MoML files and load the appropriate classes. The MoML document is designed to

be a self-contained description of the model, including all components, properties,

connections, and hierarchies, but not behaviors. Behaviors are defined in class files

written in a specific language, which the MoML file references.

Vergil allows the user to design and execute models in Ptolemy. Vergil is based

on a diagram-editing called Diva, which is built on top of existing Java Swing

technologies. Diva is a collection of loosely coupled components that employ the

principles of MVC to separate data and the presentation of that data [18]. Components in

Diva include the infospaces, which act as the model portion of MVC, and the surfaces,

which are the view portion of MVC. These surfaces are sometimes simply wrappers for

existing visual Java Swing components, but in most cases, there is extra infrastructure

added to the components to help them work together in Diva.

23

 There are also classes called “sinks” that exist to visualize data effectively. These

components are added to models, but only exist to collect data produced by the

simulation. Just like regular components, multiple sinks may exist for a single model.

There are three types of data sinks available in Ptolemy II: Generic Sinks, Timed Sinks,

and Sequence Sinks. These three groups contain a total of 17 different actor types.

Example plotter actors include the XYPlotter, TimedPlotter, ArrayPlotter, which belong

to the Generic, Timed, and Sequence Sink categories, respectively.

 However, it does not appear that the views are required by the simulator to stay

synchronized. The models seem to generate the data to be displayed and push it towards

the views. The views then display the information as quickly as possible. Consider an

example where a model generates one piece of information for each logical step in the

simulation, and sends that information to one of the two graphs associated with the

model. If the model were to send one piece of information to the first graph, then a

million pieces to the second, then one more piece of information to the first again, the

lack of synchronization in the views means that the first graph will plot its two pieces of

information before the second graph finishes with its million, despite the fact that some

of the data in the first graph was generated after some of the data in the second graph.

Simulations in Ptolemy can be run at one of two available speeds. The first speed,

which is the default, is logical time. At this speed, the simulation will run as quickly as

possible, subject to the physical limitations of the hardware. The other speed, real-time, is

accessible through the View/Run Window menu. In real-time execution speed, the

simulation time will stay in sync with wall-clock time. At this point, there are no other

speeds available.

24

Additionally, there is no way to enforce the speed of the views attached to a

model in Ptolemy. The execution speed chosen by the user (logical time or real time)

only affects the speed of the model, which generates the data; the view itself that displays

the information it receives will always run as fast as possible. This is apparent when the

user clicks “Pause” and “Resume” in quick succession. When paused, the view will not

update with new information. However, once resumed, the view will try to catch up to

displaying all of the data it received from the model during the pause, since clicking

pause did not stop the simulation itself from continuing.

Another modeling and simulation tool that also supports data visualization is

DEVS-Suite. DEVS-Suite uses the same visualization engine as DEVSJAVA, but adds

new features, such as the tracking environment and TimeView.

25

A comparison of two simulation software programs

Modeling Features
Feature Ptolemy DEVS-Suite

Interaction
Semantics

Provided by Directors, many
kinds available, including
Discrete Time/Event, and
Continuous.

Continuous Time is only option
available for component
phase/sigma. Discrete Event is only
option available for ports.

View Features
Feature Ptolemy DEVS-Suite

Tracking
Options

User must manually add data
sinks to model in order to track
information.

Tracking options are built into all
components. User selects
components to watch using a menu.

Data
Viewing
Options

Sinks’ graphs appear in separate
windows from the model. Each
graph window corresponds to a
single data sink.

Graphs appear in same window, but
in a tabbed pane. Each tab can
display an unlimited number of
graphs but from no more than one
component.

Scalability Graph view can be dynamically
resized in both dimensions, even
mid-execution.

X-axis scale must be set before
starting execution, and cannot be
changed mid-execution. Y-axis
automatically rescales to fit data.

Scrolling
Capability

Graphs do not scroll to show
incoming data.

Graphs automatically scroll to show
incoming data. They mimic the
behavior of an oscilloscope.

Control Features
Feature Ptolemy DEVS-Suite

Pause
Functionality

Pressing pause suspends the data
from being presented to the user.
Pausing does not suspend model
execution.

Pressing pause suspends model
execution, but the graph may
continue to update itself with
backlogged data.

Execution
Speed

Only logical-time and real-time
available.

Logical-time and real-time available,
as well as intermediate steps, and
sub-real-time speeds.

Figure 8: A comparison of features offered by Ptolemy and DEVS-Suite

TimeView displays historical graphs for users to track various features of a

component in the model. This is similar to Vergil’s plotter classes, except each

component selected to be viewed appears in its own tab, and only one tab can be visible

26

at a time. Each tab can contain multiple plots, which may include the phase or sigma of a

component, if the user selects them.

There are several differences in DEVS-Suite’s TimeView and Ptolemy’s plotters,

as described in Figure 8. In Ptolemy, clicking pause only halts the displays, but does not

stop the progress of the simulation. In DEVS-Suite, clicking “Request Pause” will

actually stop the simulation itself, until the user decides to continue.

Another major difference between the graphical displays is that Ptolemy’s plotters

allow the user to dynamically rescale the plot dimensions, whereas DEVS-Suite’s

TimeView graphs scroll automatically to keep up with incoming data. In Ptolemy, the

plotters cannot scroll if a plot point exists outside of the window range. TimeView’s

scrolling window is often too slow to keep up with the speed of incoming messages,

especially if the axis increment set by the user is too low.

The TimeView’s graph scrolling is a process that starts automatically when

information appears off the edge of the visible range. The speed of the scrolling is

constant and cannot be changed by the user. The scrolling behavior cannot be controlled

by the user, either. Viewing a different component’s tab in the TimeView pane does not

affect the speed of the scrolling; the component’s graphs continue at the same rate

regardless of visibility.

While the TimeViews receive the graph data as quickly as the model can generate

it, the TimeView’s automatic scrolling feature is what causes the latency between the

data generation and data visualization. Sometimes it is possible for the graph to continue

scrolling long after the simulation has completed.

27

2.7 Testing the DEVS-Suite TimeView

Figure 9 shows a list of factors that influence the execution speed of DEVS-Suite, and

which can be controlled by the user. In the case of hardware limitations and other

software running on the machine concurrently, these are out of the user’s control.

The user does have control over visualization, the TimeView scale, which

variables to monitor, and the speed of the execution. In the case of visualization, the user

can select to view or not view the animation and tracking windows. If viewed, the user

can select to track any or all of the variables and ports associated with any or all of the

components in the model. The user can also define the scale of the TimeView window for

each component. There is also a slider the user can adjust to modify the execution speed.

These are the extent to which users can control the execution speed of DEVS-Suite.

Factor Controllable?
Hardware No
Behavior of other software No
DEVS-Suite Visualization Yes (On/Off)
TimeView axis scale Yes (Any positive integer)
Variables to monitor with
TimeView

Yes (any or all variables/ports provided by component)

Simulation speed Yes (via Real Time Factor)

Figure 9: Factors on a computer system that may influence the execution speed of DEVS-

Suite

28

Figure 10: Models “gpt” and “gpt2” in the SimView

To test the behavior of the TimeView plots in DEVS-Suite, we constructed a test

model specifically designed to reveal any flaws in the views. This model, called “gpt2”

(see Figure 10), was derived from the “gpt” (Generator, Processor, Transducer) model.

The difference between the two is that gpt2 has a second processor that only processes

the first job created by the generator, and takes ten times longer than the original

processor to finish the job. By the time the second processor finishes its job, the first one

29

will have already produced several output messages, possibly causing the TimeView

windows for the two processors to fall out of sync with the animation window or each

other.

For this experiment, the gpt2 model was executed in logical time without pausing

between steps. The simulator only monitored the activity on the “out” output ports for

both processors. The only change made between trials was altering the scale on the

graph’s x-axis.

Experiment gpt’s
scale

gpt2’s
scale

Result

1 10 10 Both views scrolled in sync. P2’s message was
out of the range of the graph at first, but when it
came into range, the message was plotted.

2 10 40 P2’s message appeared (at t=105) after only two
messages on P1 were plotted (t=15, t=25). P1’s
messages then continued to display normally, in
sequence. (See Figure 12)

3 40 10 P2’s message appeared after P1 finished
graphing its entire results (through time=200).
P2’s graph then kept automatically scrolling to
time=200, making P2’s message disappear. (See
Figure 13)

4 1 1000 P2’s message did not appear on the graph at all.

Figure 11: TimeView behaviors given variable component scales

30

Figure 12: Illustration of Experiment 2 from Figure 11.

Figure 13: Illustration of Experiment 3 from Figure 11.

 From these experiments, we can draw two conclusions about the behavior of the

DEVS-Suite TimeView graphing functionality. Regarding its synchronization with the

31

animated display window, there does not appear to be any mechanism or logic in place to

enforce the TimeView and model animation to stay in sync. Both tasks run as quickly as

possible and ignore each other’s progress. They only communicate through messages

from the model to the view about what to graph. This is what leads to the TimeView

lagging so far behind the animated display window in some cases.

Figure 14: Example of a physical synchronization in two TimeView graphs.

As for the TimeView’s ability to synchronize its own graphs, there appears to be a

physical synchronization, but not a logical one. What this means is that for any two

components, their plots will be visualized in sync with respect to their position on screen

rather than when the plotted events occur. Suppose there are two graphs: G, which has a

time-scale of 10; and P, which has a time-scale of 20, as in Figure 14. This means any

given point on P’s graph will represent a point in time twice as far from the logical start

of the simulation than the same point on G’s graph. Furthermore, suppose both graphs

32

transmit a message to display every 10 time-units, starting at 0 for G, and starting at 5 for

P. Since the TimeView graphs are physically synchronized, these messages will be

plotted in order with respect to their physical position on the screen (i.e., number of

pixels). P’s first message at time=15 will be graphed slightly before G’s first message at

time=10 even though it occurred later, because P’s time=15 corresponds to G’s time=7.5.

Next, P’s messages at time=25 and time=35 will appear, then G’s message at time=20.

Figure 15: Physical synchronization with piecewise-constant variable phase.

Piecewise-constant variables such as phase or sigma produce similar results (see

Figure 15); the graphs are updated with respect to physical screen location rather than

logical time. This method of synchronization is only useful if all graphs on the screen

have the same time-scale. If the scale varies between components, messages will be

displayed out of order, as we have shown in Figures 12 through 15.

3 Approach

In order to add synchronization to DEVS-Suite while maintaining the simulator’s

validity, we had to add new components as well as modify existing code. During the

process of adding synchronization, we encountered several other issues that needed to be

fixed before we could ensure proper simulation behavior. This section details our

modifications to the existing DEVS-Suite source code, and their implications on the

software architecture.

Figure 16: Package diagram of the DEVS-Suite simulation environment.

 Our initial task was to determine the critical components that drove the data

generation and visualization features. In the MFVC architecture, the View receives its

data from the Façade, and interacts with the Façade via the Controller as illustrated in

Figure 16 [5, 12]. We decided that our changes needed to be made within the Controller

layer. Within the View layer, we located the objects responsible for containing the data

34

received from the Model, and within the Façade, we located the methods responsible for

transmitting the data to the View.

 After determining which components were important to the visualization, we had

to define the interactions between those components to ensure proper synchronization

without compromising the simulator integrity. Our approach was to suspend the

simulation while the View had data that had yet to be visualized. In this section, we will

show how this procedure was effective in synchronizing the simulation with the views.

3.1 The Governor Class

In order to synchronize the graphical data displays and the data models used in the

simulation, we introduced a new static class called Governor. The governor interacts

between the façade and views to accomplish this. Immediately before advancing the

simulation time to the time of the next event, the central coordinator inside the coupled

simulator calls the Governor’s syncGraphs method (see Figure 18). Since the simulator is

pushing data to the views, the Governor needs to ensure they are keeping up with the

information. The purpose of syncGraphs is to stall the execution of the simulator until the

views have finished displaying the data given to them (see Figures 19 and 20). When the

simulation is complete, the Governor will remove all of its references to the views (see

Figure 21).

A simulation may have any number of views associated with it, and each view

contains at least one graph. Graphs are the components that display the information to the

user. Each graph contains three arrays: prev, current, and next, which hold the incoming

events. The current array contains the events that are within the bounds of the scrolling

35

graph, prev contains events that have scrolled off the side of the graph, and next contains

events that have yet to appear on screen.

Events sent from the simulator to the graph are placed into the next array, and

moved to the current array depending on the values of the graph display boundary

variables beginTime and endingTime. These two variables respectively define the values

at the extreme left and right ends of the graph. The graph is scrolled by incrementally

adjusting these two values. A third variable, curTime, restricts the speed at which events

move from the next array to the current array and onto the graphical display.

As discussed earlier, if the simulation gets ahead of the views, two very

noticeable problems arise in the graphs. The first, and more obvious of the problems, is

that a view may continue to scroll its graphs to accommodate the generated events long

after the simulation has finishing executing. This is due to the limited incrementing speed

of the endingTime variable. These graph boundaries increment at a fixed time interval by

an amount proportional to the graph scale. The graphs already contain all of the events in

their next arrays, but are waiting for the endingTime variable to increase so they can

move the events into the current arrays.

The second problem appears when two views are created with different x-axis

scales. If the simulation pushes too many events into the graphs’ next arrays, events will

appear on the screen with respect to their physical positions on the screen. This is caused

by how the curTime variable increments. Since it increases by an amount proportional to

the scale of the view, two views’ curTime variables will move across the screen at the

same rate regardless of the x-axis scale.

36

In synchronizing the views and model with the governor class, both of these

limitations are removed. By suspending the operation of the simulator when any graph

had events that needed to be graphed, events appeared on the graphs in the order the

models generated them, and never fell behind the simulation execution. Below is the

algorithm that allowed this synchronization to happen:

Figure 17: Sequence diagram of a time view’s registration with the Governor class.

When a new Time View object is created, the constructor passes a reference to itself to

the static Governor object, and then invokes its own internalClock() method to initialize

the Time View update timer.

For each time view created by user

 Register time view with governor

 Initialize internal clock that will check for new event data received

37

Figure 18: Sequence diagram of how Governor enforces synchronization by interacting

with coordinator. After the coordinator completes its waiting period between steps, it

passes execution control to the Governor class’s syncGraphs() method. If the Governor is

enabled, this method will then call checkView() intermittently until the method returns

true. This checkView() return value is dependent on checkTimeGraphs(), which is

responsible for checking each individual Time View object that is registered with the

Governor (see Figure 17). Once all Time View objects have plotted all of their event

38

data, the Governor returns execution control to the coordinator, which continues

processing the simulation normally.

Figure 19: A state diagram of the system as the coordinator calls the Governor.

When the Time Views have data yet to plot, the Governor will cycle through the “check

views”, “check time graphs”, and “wait” states until the Time Views catch up, effectively

synchronizing the model and view components of the simulation.

39

In central coordinator:

After pausing graph, call Governor.syncGraphs()

Governor.syncGraphs():

While checkView() is false

 Sleep for a certain amount of time

Governor.checkView():

For each registered view, if the view’s checkTimeGraphs() is false,

 Return false

Return true

CheckTimeGraphs():

For each graph within the view,

 If next.size() > 0

 Return false

Return true

Figure 20: A generic algorithm for describing synchronization enforcement.

40

Figure 21: Governor unregisters TimeView objects when the user resets the simulator.

The GUI sends a gesture to the Controller, which interprets the gesture and invokes

Governor.reset(). This method is responsible for clearing its list of registered Time View

objects, and setting the Governor to the disabled state.

3.2 Interface Alterations

To more effectively work with the DEVS-Suite user interface, we made a few minor

adjustments to help facilitate this research. The three modifications made include adding

a slider to control the speed of the time views, adding a checkbox to control invoking the

Governor, and making the time views appear in separate windows rather than in a tabbed

pane.

The first two changes were done to the interface to give the user more control

over simulation execution. A slider added to the control panel lets the user decide how

fast the views associated with the simulation should refresh. The slider is labeled “Time

41

View Update Speed” and has values ranging from 1 to 1000, which represent the how

many times per second each view refreshes. When this value is higher, it will reduce the

time needed to completely plot all of the points given to a time view. Since each graph

scrolls by a fixed amount each time it is refreshed, when the time between refreshes is

decreased, it may decrease the time spent waiting for the graph to finish plotting the

points. When the update speed is decreased, it allows the user to view the contents for a

longer period of time before the data scrolls off the left side of the graph.

A checkbox was added near this slider to allow the user to enable or disable the

Governor as needed. It is unchecked by default, but the user may decide to enable the

Governor at any time, even during execution. Changing the state of the Governor mid-

execution affects the simulation and views upon the next simulation step. When disabled,

the simulation will continue without checking to see if it is still synchronized with the

time view, which may cause the simulation progress far ahead of the views, depending on

how quickly information is generated. When enabled, it may have no effect if there are

no views linked to the simulation, but if there is at least one component that has a backlog

of events or data to plot, the simulation will immediately halt and allow those views to

catch up before proceeding with further simulation. This feature can be useful if a user

wants to use the Governor for certain experiments, but not for others, since enforcing

synchronization can potentially slow down simulation by a significant amount.

The third change concerns how time views appear to the user. Before, time views

were added to a tabbed pane on the main window. This was space-efficient, but did not

allow the user to visually track more than one component at a time. Multiple graphs

within a view could be seen, but all graphs had to belong to a single component. Now,

42

each time view is assigned its own window. Users may now view as many time views

concurrently as their screen allows. This change was necessary to ensure that all views

were running in time with each other.

3.3 Complications arising from design choice

Implementing the Governor effectively synchronized the execution of the simulation and

the animated displays, but introduced a new complication: under certain circumstances

(see Figures 22 and 23), the simulation would fall into an infinite loop, causing the

DEVS-Suite program to lock up and become unresponsive.

The cause of this was a combination of the values of the variables curTime,

endingTime, and the time at which the most recent event occurred, which we will denote

as nextTime. The variables curTime and endingTime were responsible for producing the

scrolling effect on the graphs. They increment at values that were based on the graph’s

scale, and it was possible for curTime to exceed endingTime as well as the time at which

the next event to be displayed occurred. There are two conditions that must be met in

order for a graph to cause this error:

- No value of curTime belongs to the range [nextTime, endingTime] as it

increases by the increment. More formally, there is a value of the integer k

such that:

increment * k < nextTime < nextTime + 1 = endingTime <

increment * (k + 1).

- nextTime > increment.

43

Scale Increment curTime Next.time endingTime Result
20 4 12 15 16 OK
20 4 24 25 26 Halted
10 2 108 110 111 OK
21 4.2 109.2 110 111 Halted
26 5.2 109.2 110 111 Halted
30 6 108 110 111 Halted
110 22 110 110 111 OK
550 110 110 110 111 OK

Figure 22: Determining the conditions under which the DEVS-Suite simulator will halt.

Figure 23: Graphical representation of the conditions for a simulator halt.

Before the governor was introduced to enforce synchronization, this problem

existed in DEVS-Suite, but did not cause the program to become unresponsive. Without

synchronization enforcement, the simulator simply pushed all of the events generated to

the views and did not have to wait for the infinite loop created by the time variables. This

caused the views to remain blank while the simulation continued normally.

We have determined four distinct solutions to prevent this lockup from affecting

the program. One way we have already mentioned is to simply not enforce the governor.

This causes the simulation and views to fall out of sync, and will not allow the data to

appear on the time views, so we had to select another option.

44

Figure 24: The same component tracked in TimeView graphs with scales 2 and 20.

The second possible way to avoid the lockup would be to make the x-axis scale

very small. This option has been available to users from the very beginning, and was

often used when the time view graphs did not behave as expected. The downside to this

option is that if the scale is very small, the graph takes a very long time to display all of

the data it receives, and cannot contain as much information on the screen as a graph with

a larger range. This is exemplified in Figure 24, where we tracked the p component of the

gpt2 model with two different scales. On the top graph, the scale is 2, so only two events

can be plotted on the screen. The bottom graph has a scale of 20 and can hold many more

events. In some cases it may not be suitable to only display the last two events on the

screen, so we needed to develop another way to prevent this lockup error.

A third option is very similar, and involves tweaking the source code. The

increment by which the graphs scroll is defined as one-fifth the x-axis scale. If that

fraction were decreased to one-tenth or one-hundredth, it would solve most of these

lockup issues. Even though the graphs would be able to display the same amount of data

as before, they would still require a great deal more time to complete their graphs, and the

increment defines how quickly they can scroll or update. Another important point is that

45

even if these two options were employed, it would not protect against a model with

sufficiently small event times. If nextTime is 220 and the increment is 12, then reducing

the increment to 4 will solve the problem, but if nextTime is 73, the problem occurs

again. It would be ideal to have a solution that worked in all cases and did not

compromise the efficiency of the time views.

Our selected solution to fix the lockup problem caused by introducing the

governor was to add a condition into the function responsible for updating the graphs. In

the updateTime function, there is a check to see if curTime is less than endingTime. If so,

the function updates the graphs and, if needed, scrolls the graph region by incrementing

the beginTime and endingTime variables. A second condition was added to check if the

next array contained any items, and if either condition was true, the graph was updated as

needed. This condition acted as a fail-safe in the few cases when large increments to

curTime caused it to exceed endingTime even though there were still more events to plot.

Figure 25: An incomplete TimeView graph.

Another issue related to the variables curTime and endingTime is the problem of

incomplete graphs. Under certain conditions, some graphs may plot points outside of the

boundaries defined by the x-axis (see Figure 25). Data points, such as events, and

continuous plots, such as sigma or phase, simply continue past the right side of the graph.

This causes views to have unnecessary horizontal scroll bars, and makes the graph plot

data without providing the x-axis for reference.

46

Incomplete graphs are caused when curTime and endingTime are incompatible.

When curTime exceeds endingTime, it makes an if-statement fail, causing the graph to

quit scrolling temporarily. Events and data to plot are still coming in from the façade, so

the graph falls behind. If this happens only a few times, it usually is not noticeable, but

when it occurs many times, these short pauses add up and the discrepancy between the

end of the plotted points and the end of the graph becomes very obvious. Incomplete

graphs are more common when multiple views are employed simultaneously.

The solution for this problem involved removing one of the conditions of the

failing if-statement. Two conditions must be true in order for a graph to scroll: curTime

must be strictly less than endingTime, and curTime must be greater than timeEnd, the

variable representing the value of the end of the axis. When curTime increased past the

end of the graph, it was time to scroll to the right. By simply removing the condition that

curTime must be less than endingTime, we were able to prevent the graph from plotting

too far to the right.

47

Figure 26: Synchronized TimeView windows with different scales.

With the governor in place, all time views will now stay in sync with the

simulator. This can be demonstrated by making all views appear in separate windows

instead of a single tabbed pane (see Figure 26). Regardless of the number of views, the

governor will ensure that all views are up-to-date before letting the simulation proceed.

However, this synchronization comes at a cost: the time it takes to complete a

simulation is almost always limited by the speed of the views. More precisely, the

weakest link in the synchronization process is often the graph scrolling. Before adding in

the governor, the feature that caused the graphs to take so long to complete was the rate at

which the graph scrolled to incorporate events that occurred outside the visible bounds of

the graph.

Fixing the lockup issue had an unexpected side effect: graphs now display all data

they receive, regardless of the scale of the x-axis. Under normal circumstances, the graph

48

will plot a short, vertical line for incoming events, or a piecewise constant line graph for

state variables such as phase and sigma. The graph will also plot a label next to events

and on top of horizontal lines for state variables. As the scale increases, the graph

becomes more compressed towards the y-axis, and the labels overlap each other. At a

certain point, the graph becomes compressed into a single vertical line on the far left side

of the axis, and labels cease to appear.

It is possible to determine the point at which the labels will cease to appear. In the

code that determines the visual properties of the view, there are several variables of

importance within the TimeGraph class: graphXstart and graphXend define the starting

and ending positions of the graph within the view display, labelIncrement is the

difference in values between each label on the x-axis, and numLabels defines how many

segments are to appear on the graph. Normally, graphXstart and graphXend are set to 30

and 780 respectively, to define a plot area 750 pixels wide. The variable labelIncrement is

10 by default, but can be changed by the user input when a view is instantiated. Finally,

numLabels is fixed at 10; the user has no control over how many graph segments appear

on the time view.

The key variable in the class that determined whether the labels would appear is

xIncrement, which is computed as

(graphXend - graphXstart)/(labelIncrement * numLabels).

This variable represents the number of resolution of the graph in pixels per x-axis unit. A

very small number means the graph is very compressed and able to display a lot of data

on the screen at once, whereas a larger number means less data will be on the screen at

the same time, but will be easier to see.

49

Under the current version of DEVS-Suite, if xIncrement falls below 0.1, the graph

will behave differently. The plotted lines will be compressed to a single line, and no

labels will be applied to the data. Assuming the user cannot alter the variables in the

program other the graph scale, this means the scale must not exceed 750 units, which is

coincidentally the width in pixels of the plot within the graph.

3.4 Simulation cleanup

After a simulation has completed and all data has been plotted to the time views, the user

must either reset the simulation or choose another model to load. When a user performs

either of these actions, there will be no visible remains of the previous run; it will be as if

the user had just loaded the program.

However, if the user opted to display any time views during the previous run, the

threads that prompted the graphs to update constantly would persist. Java’s garbage

collector would not stop these Timer objects from running, so after each simulation, these

threads continued to run in the background, consuming CPU resources. Wasting CPU

time on these rogue Timer objects caused subsequent simulations to slow down

considerably without contributing anything useful to them. Finding a way to solve this

problem would provide an efficient and more consistent environment for subsequent

simulations in DEVS-Suite.

The Governor was used to terminate these threads once the simulation was over.

When the user clicks the Reset button on the interface, a gesture is sent to the controller,

which then interprets the gesture and performs certain related functions. We added in an

extra function call to the controller’s reset routine that would prompt the Governor to halt

50

all Timer threads related to time views. Since the Governor contains an array with

references to every time view, it was able to shut the Timer objects down safely before

clearing the array.

3.5 Implementing Synchronization in other Simulation Tools

Software developers can add a Governor component to other simulation tools as long as

those tools use the MFVC architecture. Adding synchronization is still possible with the

MVC architecture, but our implementation specifically utilizes functionality of the

Façade.

 First, locate the simulator protocol responsible for executing the model and

generating events, and determine which classes are involved in the simulation process.

This protocol should be located in the Model and accessible via the Façade. Simulation

will be suspended by Governor to enforce synchronization as described in Section 3.1.

The Governor may need to be adapted to the protocol of the simulator.

 Second, determine which components are responsible for displaying simulator

output. These are not limited to graphical displays; anything that will receive data from

the Model is applicable here. The Governor must have references to the visualization

objects in order to track their progress. Each time a new display is created, it must be

registered with the Governor. Also, it is critical to ensure that views are self-driven. Each

individual view must have its own thread responsible for updating its displays.

 Third, find how data is collected in the View to be displayed. In order to

effectively synchronize the simulation with the displays, a scheme needs to be devised to

51

track how much data has yet to be visualized. In the case of DEVS-Suite, data is moved

between arrays inside of each individual TimeView as it is displayed on the screen.

 Fourth, after collecting all of this information, the Governor needs to be adapted

and added to a specific simulation engine. A single instance of the Governor class is

used. In Java, this can be achieved by declaring the contents of the Governor as static.

During a simulation, a scheme needs to be devised to pass execution control to the

Governor temporarily in order to synchronize the Model and View, and then return

control in order to continue the simulation (see Figure 18).

 Finally, after the Governor has been implemented, a suite of tests need to be

devised and carried out to ensure that synchronization is working properly. The first test

is to test a model with no visualization, with and without the Governor. If the

implementation is successful, there should be no significant difference in execution times

with the Governor enabled and without. Next, test a model with and without the

Governor, but for each simulation enable a view for one component. There should be a

significant increase in execution time for the simulation when the Governor is enabled. If

there is a difference between the execution time between the simulator and display, the

simulation time will increase to match the display time when the Governor is enabled, as

this is evidence that synchronization is being enforced. Additionally, similar results will

be obtained when multiple views are added to a model.

 Each test of the synchronization should be executed multiple times, recording

execution times to build a sample data set. Running each test multiple times is advisable

because the execution time for a single simulation can vary significantly. Hardware

52

constraints, operating system processes, and other programs running simultaneously may

all have an impact on the execution time of a single execution of a test.

4 Results and Benchmarks

Once the Governor was in place to synchronize the graphs with each other and the

simulator, we did performance testing on the entire system to see how well it ran. To do

this, we needed a way to measure the time taken by the program. Rather than rely on a

manual stopwatch we developed a special class called Stopwatch that could be used to

track the time elapsed from an arbitrary time point in the execution.

Below is a list of trials we ran on the DEVS-Suite system, using the efp and gpt2

models under various program settings. The time to completion is measured in the

following ways: for the simulator, it is the time for the model to passivate (all

components have a tN of infinity); and for the views, it is the time to plot all data points.

Trial Notation SimView Governor
TimeView
(scale=10)

TimeView
(scale=30)

O
S X

SG X X
ST X X

SGT1 X X X
SGT2 X X X (Multiple)
SGT3 X X X

Figure 27: Definitions of notations used in result tables.

 In Figure 27, we define a notation that we will be referencing in the tables that

describe the results of our experiments. For each model and test condition, we employed

a number of different combinations of simulator features that could potentially impact the

simulation time. These features include the SimView, Governor, and TimeView. A mark

54

in the SimView column means we enabled the visual model depiction (see Figure 4). A

mark in the Governor column means we enabled synchronization, otherwise it was

disabled. A mark in the TimeView column means that we tracked and plotted one

variable from one component during the experiment, with an x-axis scale of 10 for SGT1,

or a scale of 30 for SGT3. For the row SGT2, we tracked multiple variables from

multiple components.

 Our basis for ordering these feature combinations as such is to determine which

conditions create a significant difference in execution time for the simulator or the

visualization. We believe that this order represents increasing levels of required

processing; each added component should require more time to complete.

 For each combination of model, simulation length, and feature set, we applied a

consistent methodology. Each experiment was run ten times, clicking “Reset” after run.

The model was not reloaded and nor program terminated between runs. After collecting

the ten data samples, we removed the minimum and maximum values, and computed the

mean and standard deviation from the remaining eight samples.

55

Model name = “efp”, simulation length = 200
Trial Mean Simulation Time (sec.) Standard Deviation (sec.)

S 3.098 0.216
SG 2.903 0.0833
ST 5.382 0.144

SGT1 6.667 0.0649
SGT2 12.963 0.810

Model name = “efp”, simulation length = 1000

Trial Mean Simulation Time (sec.) Standard Deviation (sec.)
S 16.650 0.757

ST 25.346 1.334
SGT1 30.539 1.390

Model name = “efp”, simulation length = 3000

Trial Mean Simulation Time (sec.) Standard Deviation (sec.)
S 65.655 0.720

ST 74.241 2.067
SGT1 119.404 1.259

Model name = “gpt2”, simulation length = 200
Trial Mean Simulation Time (sec.) Standard Deviation (sec.)

O 0.414 0.0637
S 0.619 0.140

SG 0.521 0.0463
ST 0.700 0.0656

SGT1 5.751 0.149
SGT3 1.914 0.0234

Model name = “gpt2”, simulation length = 1000
Trial Mean Simulation Time (sec.) Standard Deviation (sec.)

O 2.064 0.0610
S 2.501 0.121

SG 2.430 0.0842
ST 3.214 0.114

SGT1 27.620 1.108
SGT3 9.953 0.381

56

Model name = “gpt2”, simulation length = 5000

Trial Mean Simulation Time (sec.) Standard Deviation (sec.)
O 25.514 0.100
S 26.637 0.697

SG 25.658 0.132
ST 28.854 0.356

SGT1 145.328 1.493
SGT3 64.064 0.466

Figure 28: Simulation times for various models, lengths, and GUI features.

The tables in Figure 28 show the effect of various experimental conditions on the

simulation time. The next tables contain identical conditions, but the values will now

represent the visualization time. For these, the trials “S” and “SG” have been removed, as

they have no measurable visual component. Figures 29 and 30 show how visualization

time changes under different experimental conditions.

Model name = “efp”, simulation length = 200
Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 6.779 0.0971

SGT1 6.717 0.0634
SGT2 12.894 0.818

Model name = “efp”, simulation length = 1000
Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 31.965 0.916

SGT1 30.628 1.378

Model name = “efp”, simulation length = 3000
Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 114.658 1.481

SGT1 119.510 1.249

57

Model name = “gpt2”, simulation length = 200
Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 5.722 0.0311

SGT1 5.971 0.158
SGT3 1.934 0.0236

Model name = “gpt2”, simulation length = 1000

Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 27.846 0.304

SGT1 27.833 1.092
SGT3 10.002 0.382

Model name = “gpt2”, simulation length = 5000

Trial Mean Visualization Time (sec.) Standard Deviation (sec.)
ST 155.008 1.491

SGT1 145.577 1.495
SGT3 64.125 0.470

Figure 29: Visualization times for various models, lengths, and GUI conditions.

EFP model, logical time=200

0
2
4
6
8

10
12
14

S SG ST SGT1 SGT2

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)

Sim.
Vis.

58

EFP model, logical time=1000

0
5

10
15
20
25
30
35

S ST SGT1

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)
Sim.
Vis.

EFP model, logical time=3000

0
20
40
60
80

100
120
140

S ST SGT1

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)

Sim.
Vis.

GPT2 model, logical time=200

0
1
2
3
4
5
6
7

O S SG ST SGT1 SGT3

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)

Sim.
Vis.

59

GPT2 model, logical time=1000

0

5

10

15

20

25

30

O S SG ST SGT1 SGT3

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)
Sim.
Vis.

GPT2 model, logical time=5000

0

50

100

150

200

O S SG ST SGT1 SGT3

Trial Type

W
a

ll-
cl

oc
k

T
im

e
(s

e
c.

)

Sim.
Vis.

Figure 30: Comparisons of simulation and visualization times between efp and gpt2

models.

One noticeable issue with these trials is that the actual time taken to complete a

particular task can vary significantly. If a simulation was conducted immediately after

initializing DEVS-Suite, it ran significantly slower than subsequent simulations after

clicking “reset”. After one or two runs, the simulation speed increased and remained

much more consistent. We have no control over this factor as it is likely a side effect of

60

dynamic memory allocation in Java. We have accounted for this in our experiments by

throwing out the highest and lowest run times before calculating the mean.

During these trials, the computer was allowed to function normally, operating all

programs and background processes that it would during normal use, including

networking connections, Eclipse, and browser windows. However, there was no user

interaction while the experiments were in progress. There will always be something

running in the background intermittently, such as the operating system trying to

reorganize memory, or more process-intensive applications such as a development

environment. What is important is how long one time view takes to finish relative to the

others.

 Since the simulator generates data for the time views to show the user, it is clear

that the simulator should terminate before the views do. One can estimate the amount of

time needed by a view to finish graphing all of its data, under certain conditions, with the

following formula.

 VT = ST + E + I, where:

VT := “View Time” = amount of time needed for view to complete.

ST := “Simulation Time” = amount of time needed for simulation to

complete.

E := “Event” = ceil(delta-tfinal / (scale / 5)) * cycle = “event time”, or the

time needed to plot the last event generated by the model.

delta-tfinal := change in simulation time between the second-to-last and last

events in the model.

61

scale := x-axis increment as defined by the user when creating the time

view.

cycle := time between refreshes of the time view displays.

I := “Idle” = time spent by CPU on other applications, drawing the graph

to the screen, etc.

Furthermore, this formula only applies under the following conditions. First, in

order for this to be accurate, it may only be applied when the Governor is being enforced.

Second, the time view being measured must have data to visualize at the last time point

of the simulation.

We can draw a number of conclusions from these experiments. Using the efp

model, we have shown that the Governor does not introduce a significant change to

simulation time if no TimeViews are active. Adding a TimeView to display simulation

data does introduce a significant change in raw simulation time. Enabling

synchronization constrains the simulation to run only as fast as the TimeView can display

data, but does not introduce any change in execution time for the visualization.

Additionally, the more components or variables are tracked by the user, the longer they

all take to complete.

The gpt2 model experiment reinforces these conclusions. Not only does the

Governor effectively synchronize data generation with data visualization without

introducing processing time overhead, the Governor class also behaves correctly for any

scale model. Regardless of the number of components tracked or the length of the

execution, synchronization was enforced for the length of the experiment.

62

In testing the gpt2 model, we also adjusted the TimeView scale and noted its

effects. When adding a new component to be tracked, the user may specify a value for the

x-axis scale, or use the default of 10. We increased this value to 30, which allowed the

graph to plot more data and scroll less. We found a significant decrease in the time

needed to plot all of the data generated when the scale was increased. In section 3.3, we

discussed how the TimeView graphs scroll by a constant amount based on the graph’s

scale. In increasing the scale, we increased this amount, thereby decreasing the amount of

time needed to scroll the graph to the end of the data.

While testing the gpt2 model, we also studied the effects of disabling the

SimView feature of DEVS-Suite. SimView is responsible for visualizing the model and

displaying the current states of the components. When this feature was removed, the

simulation time exhibited a significant decrease in processing time for short simulations.

However, once the simulation length was too large, as in our case with a length of 5000,

there was no significant benefit to be gained from disabling the SimView. We believe

this relates to the transducer component’s ability to effectively manage large quantities of

collected events, but this problem is beyond the scope of this study.

5 Conclusions

Solving the problem of synchronizing the model and view components of a simulation

system has led to many discoveries about software architecture. We have taken a look at

the MFVC software design, which is what DEVS-Suite uses as its foundation. In adding

the Governor class, we were able to establish a link between the simulator and the views.

The simulator used the Governor to check if all views were up-to-date with their plotting,

and if so, allowed the simulation to proceed for one step. This process enforced

synchronization between the model and view of the system.

Synchronization is a useful tool for model verification and subsequent validation.

For example, if a user wanted to watch a set of components to make sure they were

sending and receiving messages properly, it would be easy to set up a handful of time

views to track the components. Without synchronization, the data would appear on the

views nearly all at once without regard to simulation time. When the user enforces

synchronization by enabling the Governor, the user can see when data is generated by

each component with respect to each other. If one component sends a message to another,

and both of them have time views associated with them, the user should be able to see

that transaction instantly on both of the time view graphs. The user doesn’t have to wait

for the graphs to catch up to the simulation, and there will be no confusion when events

occur relative to each other, because the simulator slows down to accommodate for the

time-consuming process of visualizing the data.

Synchronization is not useful in all situations. If a user has already validated their

model and is concerned with the execution speed of their simulation, synchronization

would not be useful to them. The trade-off of having the views and simulation stay

64

together is that data visualization in inherently slower than data generation. We have

shown that enabling the Governor restricts the simulator to running only as fast as the

program displays data to the user. Depending on the specific parameters of the views, this

could have a variable, but consistently negative, impact on the performance.

Implementing the Governor also revealed a number of issues that needed to be

addressed before the program could run smoothly. The issues with plotting data became

important when those problems interfered with the simulation. We had to address the

graphing problem when a specific condition regarding the graph variables caused the

simulator to lock up in an infinite loop. The Timers that would not stop after resetting the

simulator were not critical to the execution, but were a nuisance in that they caused poor

performance in subsequent simulations. Once these were all addressed, the Governor

performed its function perfectly.

The changes specified in this thesis have been applied to DEVS-Suite, and are

available on the web. Version 2.1.0 of DEVS-Suite supports synchronization between the

model, SimView, and TimeViews. The latest version of this project can be downloaded at

the following URL: https://sourceforge.net/projects/devs-suitesim/

6 Future Work

Now that DEVS-Suite can effectively synchronize the Model and View layers, we plan

on making this version of the simulator more accessible to others in the Modeling and

Simulation community, as well as more feature-rich. Our plans for simplifying

accessibility include making a stand-alone, web-based version of DEVS-Suite, and

integrating this version with a visual modeling tool.

 There are several auxiliary functions that DEVS-Suite currently lacks. First,

TimeViews created in separate windows can only be used for one simulation. If the user

resets the model or loads a different one, all TimeView windows cease to function and

must be closed manually. Second, there are no capabilities to scroll backwards on a

TimeView graph. We have determined that no data sent to a view is deleted, so with

proper user controls, a user could manually scroll through the data collected to review the

simulation results. Third, we are unable to estimate the wall-clock time required to

complete a simulation. We have discovered that the actual time needed to run a single

simulation varies greatly, so having a way to deterministically predict simulation time

would be useful.

 We will use Java WebStart [19] as a way of distributing DEVS-Suite through the

web. WebStart technologies will allow users to download and launch the program

automatically, without having to launch through an IDE such as Eclipse, or locate

executable files. If users access the program via WebStart, and updates made to DEVS-

Suite on the web will take effect immediately; users will not have to check for updates

themselves.

66

 Furthermore, we plan to integrate DEVS-Suite with CoSMoS (Component-Based

System Modeling and Simulation), a visual model development environment. Users will

then be able to develop their models in CoSMoS and simulate them in DEVS-Suite. Not

only will this simplify the model development process, but it will encourage users to

make more logically correct models. By removing users from the low-level coding, users

without Java programming proficiency will be able to develop models for use in DEVS-

Suite.

Bibliography

[1] Ptolemy II home, <http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm> (15
January 2009).

[2] Simulink Home, <http://www.mathworks.com/products/simulink/> (15 January
2009).

[3] Zeigler, B.P., H. Praehofer, and T.G. Kim, Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems, Second Edition.
Academic Press.

[4] Mather, Jeff. The DEVSJAVA Simulation Viewer: A Modular GUI That Visualizes
the Structure and Behavior of Hierarchical DEVS Models. 2003.

[5] Kim, Sungung. Simulator for Service-Based Software Systems: Design and
Implementation with DEVS-Suite. 2008.

[6] Sarjoughian, Hessam S., and Ranjit K. Singh. Building Simulation Modeling
Environments Using Systems Theory and Software Architecture Principles. Advanced
Simulation Technology Symposium, 2004.

[7] Singh, Ranjit, and Hessam Sarjoughian. Software Architecture for Object-
Oriented Simulation Modeling and Simulation Environments: Case Study and Approach.
2003.

[8] Chen, Yu and Hessam Sarjoughian. A Component-based Simulator for MIPS32
Processors. Simulation Transactions, 2009.

[9] Sarjoughian, Hessam, Yu Chen, and Kevin Burger. A Component-based
Simulator for MIPS32 Processors. 2009.

[10] Hansen, Stuart and Timothy V. Fossum. Refactoring Model-View-Controller.
Consortium for Computing Sciences in Colleges, 2005.

[11] Mitchell, Aine and James F. Power. An Approach to Quantifying the Run-time
Behaviour of Java GUI Applications. 2004.

[12] Kim, Sungung, Hessam Sarjoughian, and Vignesh Elamvazhuthi. DEVS-Suite A
Simulator For Visual Experimentation and Behavior Monitoring. SpringSim Conference,
2009.

[13] Ptolemy FAQ. <http://ptolemy.berkeley.edu/ptolemyII/ptIIfaq.htm> (12 February
2009).

68

[14] Ptolemy PPT.
<http://ptolemy.eecs.berkeley.edu/presentations/04/overviewptolemyOMG.ppt> (12
February 2009).

[15] EE249 Presentation
<http://ptolemy.eecs.berkeley.edu/presentations/03/EE249presentation.ppt> (12 February
2009).

[16] Asrigo, Yanwar. Reading Report: Modeling and Simulation of Heterogeneous
System in Ptolemy.
<http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/projects/repository/Yanwar%2
0Asrigo/readingReport.pdf> (12 February 2009).

[17] Lee, Edward A., and Stephen Neuendorffer. MoML — A Modeling Markup
Language in XML — Version 0.4. University of California at Berkeley, 2000.

[18] DIVA: Dynamic Interactive Visualization.
<http://embedded.eecs.berkeley.edu/diva/about/papers/thanksgiving.html> (12 February
2009).

[19] Java SE Desktop Technologies.
<http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp> (20 March
2009).

[20] Booch, Grady. 2007. Object-Oriented Analysis and Design with Applications.
Second Edition. Addison Wesley.

[21] Bass, Len, Paul Clements, and Rick Kazman. 2003. Software Architecture in
Practice. Second Edition. Addison Wesley.

[22] Schmidt, Douglas, Michael Stal, Hans Rohnert, and Frank Buschmann. 2000.
Pattern-Oriented Software Architecture. Volume 2. John Wiley & Sons, Ltd.

