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ABSTRACT 

Complex software system designs are often plagued by defects that stem from 

misunderstood requirements and poor design decisions. The ability to execute and test 

high level design elements can help with decision making and defect detection early in 

the design process. Simulation is a tool that can be used to model high level software 

design elements and execute them for analysis purposes. More specifically, domain 

aware simulation environments can provide these benefits while reducing the time spent 

developing simulation models. System-theoretic modeling and simulation frameworks 

such as Object-Oriented Discrete-event System Specification (OO-DEVS) are commonly 

used for simulating complex systems, but they do not account for domain knowledge. In 

contrast, Model-Driven Design environments like Rhapsody support capturing domain-

specific software design, but offer limited support for simulation. This thesis describes 

the use of domain knowledge in empowering simulation environments to support 

domain-specific modeling. Software design pattern abstractions are identified from the 

domain and used to extend domain-neutral simulation modeling. To demonstrate this the 

Façade, Observer, and Strategy patterns from the domain of astronomical observatory 

(AO) control systems are used to develop a domain-specific extension of DEVSJAVA, a 

realization of OO-DEVS, called DEVSJAVA-AO. This approach is exemplified with 

simulation experiments using models developed with DEVSJAVA-AO based on an 

actual AO control system. 
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1. Introduction 

1.1. Motivation for Early Design Analysis 

 The engineering of complex software-intensive systems begins with a rigorous 

process of gathering technical and non-technical requirements. These requirements are 

then used to generate a design specification that serves as a blue print for the system 

being developed. As with many engineering disciplines, a blue print gives instructions on 

how the product is to be built. Errors in the blue prints can translate into defects in the 

final product, which in turn can be costly to fix. It is therefore important to validate 

designs early in the project lifecycle in order to help identify design defects and correct 

them before they are incorporated into the implementation of the product. The time and 

cost savings associated with correcting a design defect at this stage versus finding it 

during testing or even in production are significant. 

 Validation of a software system design against its requirements can ensure that 

the system provides the expected functionality and quality attributes. Traditional 

approaches to design validation include design reviews and requirements traceability. 

Although useful, such approaches do not explore the dynamic behavior of the design and 

therefore are limited in their ability to ensure functionality and Quality of Service (QoS) 

attributes will be satisfied. These approaches primarily serve as a checklist type 

validation at the end of the design phase. The need to obtain design feedback and 

validation earlier in the engineering lifecycle gave rise to another technique known as 

prototyping. With prototyping, certain aspects of an early design can be implemented and 

presented to the customer for validation while the requirements and design are still open 

for revision. Design reviews, requirement tracing, and prototyping are all useful tools for 



 
 
 
 
 

 

 

2
validating design. For these techniques and many others the level of validation that can 

be performed and when it can be obtained is heavily dependent on the design 

representation. 

 Typical software system designs are represented by a document or series of 

documents. Such documents usually provide specifications and diagrams that capture the 

structure and behavior of system elements. However such static representations are 

limited in that they do not allow us the ability to simulate the behaviors of the design 

components. Simulation of software design components can allow us to evaluate how the 

system will behave early in the engineering process. The results of these evaluations can 

help to identify defects in the design that were not obvious during design verification. 

1.2. Challenges with Complex System Design 

 Advances in computer technology have introduced new complexities to system 

design for solving computing problems. These systems are often built on architectures 

that are distributed and in some cases multi-processor. The complexity of these systems 

presents new challenges in designing the software to meet customer requirements. 

Traditionally systems were judged on how well they met their functional requirements. 

However, the large amount of time and money invested in development and support of 

these systems requires attention to the quality attributes the functionality is built upon. 

Attributes such as maintainability, portability, and scalability have a more lasting impact 

on the cost of the system over time. These attributes typically cannot be validated until 

the software is built, at which time it may be too costly to change. Thus there is a 

growing need to analyze the system design early in the engineering lifecycle to see how 

well it will meet these quality attributes. 



 
 
 
 
 

 

 

3
1.3. Existing Design Tools 

 Due to the large number of components and interactions that comprise complex 

systems, there is a growing need for a more automated analysis of their software 

specifications. Traditional software design tools provide engineers with the ability to 

graphically represent the structure, interaction, and behavior of system components. 

Although useful for producing design documentation, many of these tools lack the ability 

to test and validate designs through execution. Commercial tools such as Rational Rose 

RT (Rational 2006) and Spin (Spin 2006) have provided the ability for software and 

system specifications to be executed, therefore allowing logical behavior to be tested and 

validated given the allotted resources and time. The ability to analyze software 

specifications at this stage of the development lifecycle does help to identify design 

issues before entering the implementation phase. However these tools rely on execution 

of detailed specifications and near complete implementations, therefore restricting their 

use to later points in the design phase. Other approaches such as Model Driven 

Engineering’s (MDE) Domain Specific Modeling Languages (DSML) help to validate 

the semantics and constraints of models and their interactions in a domain, but still lack 

support for rigorous simulation of the system components’ behaviors (Balasubramanian 

2006). 

1.4. Simulation for Design Evaluation 

 Simulation can be used as a unifying artifact in developing conceptual and 

architectural design of software-intensive systems. Rather than relying entirely on logical 

and physical system specifications before entering detailed design followed by 

implementation, simulation enables evaluation of a system architecture behavior. This 



 
 
 
 
 

 

 

4
capability becomes indispensable since major flaws or shortcomings in a system’s 

architectural specifications can be identified and thus resolved in the early stages of the 

detailed design and development process lifecycle (Ferayorni and Sarjoughian 2007). 

This produces benefits such as reduced time to market and lower project costs. Figure 1.1 

gives a general view of the traditional approach to design evaluation (blue arrows only) 

and the proposed simulation based approach (blue and red arrows).  

 

Figure 1.1 Traditional and Simulation Based approaches to design evaluation; the 
Traditional approach is depicted with the blue arrows; the simulation based approach is 
depicted with red arrows. 
 

 The benefits of simulation throughout various phases of the software development 

lifecycle have been recognized. Simulation tools such as ProSim have been successfully 

used to model business process flows and analyze them under varying conditions (Dalal 

1997). Although process simulation tools might be used to study the impact of software 

design influences such as technology and standards choices on the software engineering 

process, they are not well suited for examination of the actual software architecture of the 

system being built. Simulation has played an important role in the development of 
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5
system/software architectural descriptions, the benefits of which lead to improved 

system design architecture (Cox 2002). Software product lines have also drawn the 

attention of simulation. Recent research has proposed the use of simulation for strategic 

management and long term forecasting of product line development and evolution (Chen 

2004). Another example is simulation of an Intelligence, Surveillance, and 

Reconnaissance (ISR) system which requires synchronized processing of sensor data, 

prioritizing of resources, and communication among sensors (Hall 2005). This is an 

example of simulating architecture of a complex, large-scale ISR management system. 

Although beneficial, the use of the DEVS modeling and simulation framework and 

others, including HLA (IEEE 2000)(Sarjoughian and Zeigler 2000)(USDOD 2005), in 

the software development lifecycle remains ad-hoc. Similarly, the use of software 

modeling methodologies such as Unified Modeling Language – Real Time (UML-

RT)(OMG 2006) and Model Driven Architecture (MDA) (OMG 2005) are not well 

suited for simulation (Huang 2004). 

 Systems theory (Wymore 1993)(Zeigler 2000) gives us design capabilities such as 

composition, component connectivity, and time dependent state transitions based on input 

and output interfaces. Furthermore, Discrete-event System Specification (DEVS) a class 

of systems theoretic models, provides additional design aspects such as state chart 

behavior mapping and concurrent execution (ACIMS 2003)(Zeigler 2000). Object-

Oriented Discrete-event System Specification (OO-DEVS) incorporates object oriented 

concepts into its simulation modeling capabilities, but by itself lacks support for domain 

specific modeling. In order for OO-DEVS to support domain specific modeling it’s 

modeling capabilities must be extended further. This thesis focuses on the use of design 
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patterns to extend upon the object oriented modeling capabilities of an OO-DEVS 

simulation environment. The aim is to detail the importance of software design patterns 

in developing simulation models in the context of a domain. 

1.5. Thesis Statement 

 System-theoretic modeling and simulation frameworks such as Object-Oriented 

Discrete-event System Specification (OO-DEVS) are commonly used for simulating 

complex systems, but they do not account for domain knowledge (Zeigler and 

Sarjoughian 1997). In contrast, Model-Driven Design environments like Rhapsody 

support capturing domain-specific software design, but offer limited support for 

simulation. This thesis work describes the use of domain knowledge in empowering 

simulation environments to support domain-specific modeling. The research outcome 

shows how software design pattern abstractions extend the domain-neutral simulation 

modeling. This approach is demonstrated through application of Façade, Observer, and 

Strategy patterns (Gamma, et al. 1995) to an astronomical observatory (AO) command 

and control system (Braeside Observatory 2005)  and development of domain-specific 

simulation models for the system using DEVSJAVA, a realization of OO-DEVS. This 

approach is exemplified with simulation models developed based on an actual AO 

system. 

1.6. Thesis Contributions 

 This thesis defines a methodology of using domain design patterns to extend 

simulation modeling environments to systematically enable simulation modeling of high 

level software system designs. These simulation models are then used to study high level 



 
 
 
 
 

 

 

7
design of the software system and thus expose design issues. These issues are therefore 

identified early in the design lifecycle, thus saving time and money. 

 The remainder of this thesis is organized as follows. Chapter 2 presents and 

discusses background information. This includes a comparison of software modeling and 

simulation modeling techniques, an introduction to the domain of astronomical 

observatory control systems, as well as information on the discrete event simulation 

modeling environment used in this work. Chapter 3 starts a detailed discussion on the 

approach used to develop domain specific design patterns and using them to extend the 

simulation environment. More specifically, it looks at how these patterns provide re-

usable high level simulation modeling constructs that incorporate domain knowledge. 

Chapter 4 demonstrates this methodology using DEVSJAVA (ACIMS 2003), the domain 

of Astronomical Observatory (AO) control systems, and simulation experiments that 

evaluate the design of a simple AO system. Chapter 5 reviews other related work in the 

areas of software design analysis, simulation, and design patterns. Finally, Chapter 6 is a 

thesis summary and discussion of future work in this area.



2. Background 

 This chapter discusses background material in the area of software modeling and 

simulation modeling. In addition it will introduce the domain of astronomical observatory 

command and control systems, and specifically the Braeside Observatory system used at 

Arizona State University. This domain will be used in Section 4 to demonstrate the thesis 

contribution. 

2.1. Software Lifecycle Challenges 

 With the increasing demand for complex computer systems comes the pressure to 

build these systems more quickly and more cost effectively. For a company producing a 

commercial software application, the time to market can make or break its success. In a 

corporate IT department on a tight budget, ensuring a project performs to time and 

resource estimates is critical. Therefore it is well known that good project management 

and software engineering processes are needed to deliver a product on schedule and on 

budget. 

 A host of tools and techniques have been introduced in an effort to reduce the 

time and cost of the software engineering process. The requirements gathering phase is 

one area that has improved significantly as a result of these advances. For example, the 

use of prototyping can allow the customer to test drive the look and feel of different user 

interfaces. Use cases are another popular tool that allow the customer to represent their 

functional requirements with a visual medium. Both prototyping and use cases help 

reduce time and cost in a project by improving the communication between the 

engineering team and the customer during requirements gathering. The result of this 

improved communication is a more accurate set of requirements that are well understood 



 
 
 
 
 

 

 

9
by the customer and the engineering team. These requirements create a solid foundation 

for transition into the design phase of the project. 

 The design phase of the software engineering lifecycle continues to be a popular 

area for research and development of new methodologies and tools. These techniques 

look to improve many aspects of design such as productivity, representation, accuracy, 

and quality. The ability to verify the accuracy of a design against its requirements is one 

aspect that can have a significant impact on the time and cost of a project. For example, 

design defects identified in the testing phase of a project lifecycle are far more difficult to 

resolve than if they had been detected earlier. This difficulty in defect resolution is 

because changes late in the design phase can have an impact on several components in 

the system. If significant changes are required, it can potentially delay ongoing testing 

and cause a slip in the project timeline. Therefore, it is critical for the software design 

process to incorporate methods that will identify defects as early as possible. 

2.2. Software System Modeling 

 The use of object oriented modeling methods and sound architectural principles 

(including design patterns) have been well utilized in the software design realm to ensure 

preciseness and quality. Software modeling emphasizes structural and behavioral 

specifications of executable software. Models describe conceptual and formal 

specification of software prior to implementation and testing activities. For example, 

Statecharts serve as a suitable basis to describe behavioral blueprint of a system. 

Statecharts are important for developing detailed software design specifications (Dias and 

Marlon 2007), and can also be used for simulation (Briand 2004). However, simulating 
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state space of a (hierarchical) Statechart relies on detailed specifications as they were 

to be implemented. 

 At the forefront of software modeling techniques is an approach known as Model 

Driven Engineering (MDE). A key feature of emerging MDE technologies is Domain 

Specific Modeling Languages (DSML) (Schmidt 2006). The idea behind DSMLs is their 

ability to define the relationships between concepts in a domain and specify key 

semantics and constraints associated with those domain concepts. The languages defined 

by these meta-models account for domain knowledge therefore supporting a declarative 

approach to modeling design intent. The second feature used in MDE technologies is 

model transformation. These are transformation engines and generators that analyze 

aspects of software models in order to support automated mappings to software 

implementation artifacts. These mappings help to ensure the design captured in the 

software models is applied appropriately during implementation (Balasubramanian 

2006). The use of MDE technologies incorporating DSMLs and model transformation in 

software design is motivated from the standpoint of domain driven software modeling 

and transition to software implementation. In this regard, simulation is not a primary 

capability and thus the approach is limited to implementation level analysis such as 

logical design verification. For example, model to model transformations using tools such 

as C-Saw provide the ability for automated scalability analysis of models (Gray 2006). 

This type of analysis is focused on software model scalability impact on system 

constraints, and does not provide any results based on executed model behavior. In 

contrast, development of simulation models to represent the software design will enable 
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model execution. Results produced from simulation model execution will support 

behavioral evaluation of architectural choices against QoS attributes such as scalability. 

2.3. Simulation Modeling 

 In contrast to software modeling, simulation modeling is concerned with 

describing simulations of a system. These model descriptions may range from conceptual 

foundations to logical operations of systems under varying settings. Therefore, these 

model descriptions need to offer a variety of ways to experiment with the external and 

internal workings of a system beyond what could eventually be developed for the real 

system. For example, alternative models of system architecture can be simulated by 

composing hierarchical, and/or specialized, model components. Simulation models can 

also be detailed – e.g., complete component-to-component communication protocols can 

be simulated as it were the actual software application (Gerla 1999). A central feature of 

simulation is its support for treating time in logical and/or physical scales (Fujimoto 

2000). Logical time and physical time are complementary concepts with the former 

supporting artificially slow or fast passage of time. The importance of manipulating time 

in simulation is central to simulation models as compared with software models. 

 Systems theory provides us with the ability to define a system in terms of its 

structure and behavior. The structure of system components is modeled hierarchically, 

whereas the behavior of system components can be modeled in continuous or discrete 

time. System components can be configured with input and output ports, which when 

connected to the ports of other components, allowing interaction between them. Discrete-

event System Specification (DEVS) is a class of system theoretic models which supports 

the modeling of hierarchical interacting components that can exhibit autonomous and 
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reactive based behaviors. System structure and behavior are captured with atomic and 

coupled models. Parallel atomic models allow for multiple ports that can accept bags of 

inputs and produce bags of outputs. Parallel coupled models can consist of any number of 

atomic and coupled models but must 1) consist of atomic models at the lowest level of 

any coupled model; 2) no coupled model can contain itself; and 3) output to input port 

coupling resulting in direct feedback is not allowed for atomic and coupled models. 

 The modeling capabilities of systems theory are well suited for simulation; 

however they are not intended for complex software design and development 

(Sarjoughian and Singh 2004). Systems theory gives us design capabilities such as 

composition and component connectivity. Furthermore, DEVS provides additional design 

aspects such as Statechart behavior mapping and concurrent execution. Although 

necessary, these features do not support some important software design techniques 

available to us in methods such as object oriented analysis and design. For example, the 

Unified Modeling Language (UML)(OMG 2005) can show the relationships between 

classes, interfaces, and sub systems in terms of inheritance, aggregation, composition, 

dependency, and realization. Modeling these relationships allows for the detailed 

characterization of components and their relationships with one another which are key to 

software design and implementation. 

2.4. Executable Software Architecture 

 In recent years software architecture has emerged as a crucial step in the design 

process of complex software systems. The need for software architecture specifications 

has brought forth tools and standards for documenting and analyzing them. In recent 

years simulation has been used in conjunction with architecture specification to produce 
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executable architecture description languages (EADL). Rapide (PAVG 1998) is an 

event-based, concurrent, object oriented language specifically designed for prototyping 

architectures of distributed systems. 

 Architectures in Rapide consist of interfaces, connections, and constraints. 

Interfaces are used to specify the features of components and the behaviors they exhibit. 

The behaviors of a component’s features can be modeled using reactive rules. 

Connections are used to define the communication between components in the system 

using the interfaces provided by those components. Constraints are what allow for 

restrictions on the behavior of interfaces and connections. By specifying components of 

an architecture using interfaces, connections, and constraints, Rapide can then perform 

checks against these requirements under various architecture component configurations. 

 Execution of an architecture specification using Rapide allows for testing and 

validation before making implementation decisions. The output produced by an execution 

is called a partially ordered set of events (POSET). A POSET represents the events that 

occurred in the execution of the system and their dependence on one another. The 

dependence of events can be analyzed in two ways, by causality or by time. Causally 

related events are most commonly the result of reactive rules in interface behaviors, 

connection rules, and mapping rules. The event generated by a reactive rule is said to be 

caused by the events that triggered the rule. Events can also be dependent based on the 

timing in which they occurred. Events that occur at time T+n are said to be dependent on 

events that occur at time T where T < T+n. Figure 2.1 shows an example POSET as 

viewed in Rapide. In the example below, behavior between a calling system (CIS) and 

resource (RSC) is modeled as synchronous. Therefore, the POSET result shows that the 
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CIS must wait for the result of a request to come back from the RSC before sending 

another request. 

 

Figure 2.1   Sample POSET in Rapide 
 

 EADLs such as Rapide offer support for high level architecture analysis in terms 

of system components. However, they are limited in their ability to support modeling of 

high level software design concepts such as design patterns and object oriented concepts 

such as interfaces/realization. In addition, the behavioral modeling capabilities are limited 

to reactive events, and are not devised to support autonomous component behaviors. 

Therefore, the modeling capabilities of EADLs are limited for simulation of software 

design. 

2.5. Astronomical Observatory Control Systems 

 Computer systems have played a crucial role in advancing research capabilities in 

astronomy. The science of astronomy is one that requires configurations of hardware and 

software components to support precise data measurements, accurate handling of timing 

of actions and events, and data collection. Computers are well suited for such tasks and in 

addition are not susceptible to human limitations such as fatigue or error when working 

late into the night. As a result, computers allow astronomers to spend less time worrying 

about controlling instrumentation and logging data, and more time devising experiments 

and analyzing the actual data gathered. 
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 In a modern astronomical observatory one would find several components 

working closely together to carry out observations. Instruments that collect data, such as 

telescopes and imaging devices, are the most common components. Others might include 

motors and sensors for movement of the observatory dome, a humidity sensor, or 

something as simple as a room light switch. It is not uncommon for these and other 

components of an observatory to be controlled by a computer system. These systems are 

responsible for coordinating and synchronizing all these components so that observations 

can be conducted accurately and remotely by astronomers. 

 Designing software to control an observatory requires in depth knowledge about 

how these systems work. Understanding the domain of astronomical observatories 

requires knowledge from those who use them on a daily basis; astronomers. These 

domain experts can provide insight into the complexity of these systems and help identify 

important quality attributes. Dr. Paul Scowen, Arizona State University, and Dr. Marc 

Buie, Lowell Observatory, designed and developed a control system for ASU’s Braeside 

Observatory (Braeside Observatory 2005). Working with these experts helps identify 

complexities and challenges faced when designing AO control systems. 

 The Braeside Observatory software system architecture consists of three layers: 

user interface, application, and data. Figure 2.2 shows each of these layers, their 

components, and the high level communication links between them. 
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Figure 2.2   Braeside Observatory computer system architecture 
Source: [Dr. Paul Scowen, Arizona State University] 
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 The user interface (UI) layer enjoys the benefit of being independent from the 

application and data layers. The UI layer communicates with the application layer via 

TCP/IP messaging to dedicated ports on the application server. This layering allows the 

implementation of the UI to be totally independent of the application layer, and allows 

the UI to reside anywhere on the internet. The current implementation of the user 

interface was done with the Interactive Data Language (IDL), and can be run from any 

operating system with IDL and the Braeside IDL libraries installed. IDL is a 

programming language that is popular with scientists and researches due to its ease of 

use, widget based UIs, and image processing capabilities. In addition to the IDL based 

UI, the system also provides a UNIX command line based UI that can only be used on the 

application server itself. 

 The application layer consists of two major components, the Telescope Control 

Program (TCP) and the Camera Control Daemon (CCD). Each of these programs 

operates as a daemon process listening for command requests from the UI layer and 

communicating command responses and data back to the UI layer over dedicated TCP/IP 

ports. The TCP and CCD also communicate with each other to help with coordination 

during observation tasks. 

 The TCP daemon bears the responsibility of controlling all the components in the 

observatory except the camera, which is managed by the CCD daemon. The most critical 

of these components is the telescope mount which requires the utmost precision in 

positioning of the telescope and timing for tracking of an object with minimal error. In 

addition, the TCP must coordinate movement of the observatory dome so that the dome 

opening is aligned with the telescope during observations. Other components the TCP 
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must manage include the telescope focuser and room lighting. The TCP interacts with 

a PC48 stepper motor control card to facilitate many of the hardware level signals that 

must be generated to activate motors, switches, and sensors of these components. 

 The CCD daemon is solely responsible for interfacing between the UI and the 

CCD camera. The CDD daemon translates user commands coming from the UI layer into 

commands for the CCD camera to execute, and streams data results back to the user when 

requested. One key feature of the CCD is its ability to suggest adjustments to the 

telescope pointing based on data gathered in a CCD exposure. These small corrections 

are crucial in ensuring the telescope coordinates and tracking are as accurate as possible, 

and improving long exposure image quality. Once the CCD had identified pointing 

corrections, the CCD daemon will transfer the corrected coordinates to the TCP through 

messages in the OS level message queue. 

 The data layer is simply a separate UNIX server and large hard disk used for data 

storage. Data is stored on a separate disk in an effort to keep the application server hard 

disk from filling up with data, and potentially crashing that server. Having the data layer 

on its own server hard disk also reduces the risk of losing data should the application 

server hard disk crash. 

 



3. Approach for Domain Specific Simulation with Design Patterns 

 This chapter introduces a four step approach for extending a component based 

simulation environment with domain knowledge to support simulation modeling of high 

level OO software design. The first step explains how to obtain domain knowledge and 

use it to identify design challenges specific to the domain. The second step will discuss 

selection of suitable domain specific OO design patterns as solutions to these challenges. 

The third step will discuss how these patterns can be used to extend a component based 

simulation modeling environment, thus creating a domain specific modeling and 

simulation tool. The fourth step will explain how the domain specific modeling and 

simulation tool can be used to create customized simulation models that represent high 

level OO software design. Finally, the expected benefits of this approach as well as 

known limitations will be discussed. 

3.1. Overview 

 This approach introduces design patterns into simulation modeling. Instead of 

solely using systems theory and object orientation for specifying simulation models, 

design patterns are used to extend the simulation environment. These patterns capture 

important traits of common solutions to design challenges in the domain. This kind of 

simulation modeling provides principled use of design patterns as applied to a domain. 

With a suitable choice of design patterns, domain specific simulation model components 

(see Figure 3.1) can be created. The result of the extended simulation environment is a 

collection of simulation model components where relationships among them include 

patterns of interaction and dependency beyond whole-part and is-a relationships. These 

components extend the domain-neutral simulation environment’s structural and 
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behavioral modeling constructs with domain specific dynamics. The result is a domain 

specific simulation environment which can be used to develop specialized simulation 

models and evaluate alternative architectural or high-level design configurations. 

 
Figure 3.1 Simulation model design using domain specific environment 
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3.2. Step 1: Gather Domain Knowledge with Use Cases 

 Simulation supports evaluating the behavior of a system under varying conditions. 

In order to study high level software design, simulation models that represent the 

components and interactions of the design must be created. However, identifying these 

aspects of the design requires knowledge about the problem domain in which the system 

operates. Domain experts are an excellent source for obtaining this knowledge. They are 

users and software engineers that are experienced with working in the system domain. 

Gathering domain knowledge from these experts helps identify domain specific design 

challenges. Solutions to these challenges can then be incorporated in the high level 

software design. Simulation models representing these design elements are therefore 

domain aware. 

 Gathering domain knowledge can be achieved through generation of use cases 

(Jacobson, 1992). Use case diagrams support capturing the scenarios (use cases) under 

which the system will be used from the perspective of its users (actors). Each use case 

that is generated represents a goal that the user wants to achieve with the system. These 

goals help to describe the requirements of the system by specifying what is expected of it. 

However, these requirements should not specify the details of how the system will 

achieve these goals. Once a set of use cases have been developed for a system they will 

help expose the high level functions expected of it. Use cases can also expose 

dependencies between expected functions. Understanding these high level functions and 

their dependencies will help identify where complex system challenges exist, and enable 

engineers to start looking for ways to solve them. 
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3.3. Step 2: Select Design Patterns to Solve Design Challenges 

 Use cases provide valuable domain knowledge about what functions the system is 

expected to provide and dependencies between system functions. This information can be 

used to identify challenges that will be faced in the system design. Many of the 

challenges faced when designing software have been solved by engineers before on other 

projects. Solutions to these common challenges have similarities, and are often referred to 

as design patterns. Design patterns (Gamma, et al. 1995) are re-usable object oriented 

(OO) solutions to common software design challenges. These patterns are solutions that 

engineers have re-used many times, and that are known to have worked in the past. 

Because these patterns are based on experience and re-use, they are often flexible enough 

to be incorporated into many different systems. Every system will have its own design 

challenges, some of which may be solved by re-usable design patterns. A group of 

systems from the same domain will often have similar design challenges, and therefore 

call upon some of the same design patterns to help solve them. 

 Selection of one or more design patterns to solve a design challenge requires 

some research. There are many design patterns documented, from the original 20 

published by the Gang of Four (Gamma, et al. 1995), to the many available on internet 

web sites. It is the discretion of the engineer to decide if a pattern is appropriate for use. 

When evaluating a design pattern it is important to think about its intent, and how it can 

be used to solve problems. Reviewing an example of how a pattern solves a problem can 

help clarify how the pattern is intended to be used. 

 Once a set of design patterns has been selected the high level design of the 

software system begins to take shape. This set of patterns represents solutions based on 
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domain knowledge and design experience. Evaluation of high level design can start at 

this point and progress as more concrete classes are defined. In order to enable simulation 

based evaluation of these high level design elements, simulation models representing 

these elements must be created. 

3.4. Step 3: Extend Simulation Environment with Design Patterns 

 Incorporating domain knowledge into a simulation environment requires the 

access to extend its core modeling constructs. Environments that do not support 

extending the core modeling constructs are not well suited for capturing domain 

knowledge in the form of design patterns. Many commercial off-the-self (COTS) 

products do not support extending their proprietary core modeling constructs. It is also 

important for domain knowledge in a simulation environment to be modifiable so it can 

evolve with the domain. Many domain specific COTS simulation environments do not 

allow their domain specifics to be modified by the user. Therefore for this approach it is 

important to select a simulation environment that is extensible and domain-neutral. 

 Domain neutral object oriented (OO) modeling and simulation environments 

provide basic constructs for component based modeling. These core constructs can be 

extended with OO design patterns to incorporate domain knowledge into the simulation 

environment. The new extended modeling constructs allow the user to model at a higher 

level while ensuring domain knowledge is enforced. For example, Discrete-event System 

Specification provides the systems theory based component modeling constructs, and 

Statechart based behavior modeling constructs needed for simulation modeling of 

software design. An object oriented realization of DEVS (OO-DEVS) provides additional 

modeling capabilities needed to represent OO software design concepts such as 
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specialization and inheritance. These OO capabilities also support capturing the 

domain knowledge represented by OO design patterns. 

 Object oriented design patterns typically consist of a set of abstract classes and 

interfaces which define methods and behaviors to be implemented by a set of concrete 

classes. The abstract layer defines what abstract classes are involved in the pattern and 

what functionality is expected of them. However the modeler has the flexibility to create 

different concrete implementations of these abstract classes. These concrete classes are 

also where behavior modeling using the protocol defined by the simulation environment 

should be done. To enforce use of the simulation protocol, the abstract classes that these 

concrete classes implement should extend the core behavioral modeling constructs of the 

simulation environment. 

3.5. Step 4: Create Customized Simulation Models 

Software designs for systems in the same domain will typically solve some of the 

same design challenges, and thus incorporate some of the same design patterns to solve 

them. The domain specific simulation environment developed with this approach aims to 

capture these common patterns and enforce their use as more customized models are built 

on top of them. These customized models will be required to follow the structural and 

behavioral rules defined by the patterns they are built on. However each model still 

maintains a degree of freedom in how it’s behaviors, both expected and un-expected, are 

implemented. 

The design patterns used to extend the simulation environment typically define 

abstract classes and interfaces that must be realized by concrete classes. It is the creation 

of these concrete classes by the modeler that provides the ability to customize the design 
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of the system. For example, an abstract class from a pattern may require some 

functionality be provided by the concrete class that implements it. However the specifics 

of how the concrete class behaves when providing that functionality are customizable by 

the modeler. Similarly, a pattern may not define a limit on how many objects of a certain 

type can exists. The modeler can therefore create as many instances of that object as 

needed to represent the specific object structure of the system being modeled. 

Creating customized simulation models in a domain specific simulation 

environment provides the ability to capture the unique attributes of a specific system 

design while enforcing domain knowledge through use of design patterns. These 

customized models can now be simulated and the result evaluated to determine how well 

the specified design meets functional and quality of service attributes. 

3.6. Expected Benefits 

 This approach allows for developing prominent features of an application domain 

on top of the general-purpose capabilities of a modeling and simulation environment. 

There are a number of benefits. First, modelers can take advantage of design patterns to 

develop domain specific simulation models. Second, since design patterns are 

incorporated into simulation model components, they can support simulating “software 

architecture” without first developing simulation models which are close to actual 

detailed designs. Third, basic differences between simulation and software models can be 

bridged in a logical fashion since high-impact architectural specifications can be 

evaluated via simulation instead of delaying them until detailed design, implementation, 

and testing phases. Consequently this can help with reuse of “solution” simulation 

models for developing software design models which in turn should lead to improved 
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time to market and increased quality of the end software/system product. The main 

benefit of design patterns, therefore, is the ability to create simulatable software 

architectures. 

 
Figure 3.2  Simulation approaches in the software engineering lifecycle 
 
3.7. Limitations 

There are many different tools and approaches available for evaluating aspects of 

software design. Each of these looks to provide some value at different points in the 

software engineering lifecycle. The approach presented in this thesis of modeling object 

oriented (OO) software design using simulation environments extended with domain 

specific (DS) design patterns crosses several stages of the lifecycle. This DS OO 

Modeling and Simulation approach begins with the analysis phase of the lifecycle, during 

which use case generation occurs. It continues in the analysis phase with identifying 

design challenges and then enters the design phase as patterns are selected to solve these 

challenges. Simulation modeling of these high level patterns now begins, and evaluation 

of the design can start. Because the simulation models contain some of the same high 

level design elements as the software models they can continue to be used in parallel for 

design evaluation. Figure 3.2 shows the general start and end points for use of this 

approach in relation to the other simulation tools discussed earlier.
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4. Demonstration 

This chapter will demonstrate the proposed 4 step approach using DEVSJAVA, 

an OO realization of DEVS in Java, and the domain of Astronomical Observatory control 

systems. AO domain knowledge will be gathered and used to identify design patterns. 

These patterns will be used to extend the DEVSJAVA environment into the domain 

aware DEVSJAVA-AO. Simulation models for a simple AO control system design will 

be built using DEVSJAVA-AO, and simulation experiments will be executed to evaluate 

the design. Figure 4.1 shows the tools and models used in this demonstration. 

 

Figure 4.1 Extending DEVSJAVA for the AO domain 
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4.1. Step 1: Gather AO Domain Knowledge with Use Cases 

 To better understand AO control systems a group of domain experts must be 

consulted. Braeside Observatory in Flagstaff, Arizona is owned and operated by Arizona 

State University. Dr. Paul Scowen (ASU) and Dr. Marc Buie (Lowell Observatory) 

designed and developed the control software for Braeside. Working closely with these 

experts domain knowledge was obtained and used to create use cases that help identify 

the functionalities expected and their dependencies. 

 During analysis of the AO domain two types of users are focused on; the 

astronomer and the technician. The astronomer would primarily be concerned with the 

use of the system during an observation. The technician on the other hand would be 

interested in the configuration of the system. Three general categories are created to 

capture how these users would view their needs of the system. The analysis category 

would capture requirements for which data from the system is needed. The observation 

category would cover control of the system during an observation or test. This category 

would be common between the astronomer and the technician. Finally, the configuration 

category would include needs involving setup of the system components. 

 The next few sections will cover use cases for the CDD controller in more detail. 

For a collection of other use cases generated as part of this research please refer to 

Appendix A. 

4.1.1. Identify expected functions 

 In Figure 4.2 a use case diagram for the CCD camera control module is shown. 

The actors in this use case diagram are the astronomer and the technician. The CCD 

system module is represented by a box, and the use cases are shown as ovals within the 
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system box. Use cases for the astronomer stem from the observation category and 

include tasks such as starting, stopping, and aborting an exposure. The astronomer also 

has use cases such as downloading an exposure, which fall into the analysis category. The 

technician, by nature of being in a support role, inherits all the same use cases as the 

astronomer, but adds abilities from the configuration category such as registering a new 

CCD camera. The use cases in this example will most likely map into functions the users 

can invoke from the user interface layer of the system. However, these use cases also 

expose a design challenge: the need for further layering of the system in order to prevent 

tight coupling between user interface and CCD camera control modules. 
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Astronomer

Start Exposure

Stop Exposure

Register new  CCD
camera

Download Exposure

CCD Camera Controller
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Unregister CCD
camera

setExposureAcceptan
ceRules

 

Figure 4.2   Use case diagram for a CCD camera control program 
 

Actor / Use Case Descriptions: 

Astronomer: Actor that interacts with the system to take observations and collect data. 

Technician: Actor that interacts with the system to perform maintenance. 

statExposure: Start taking an image 
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stopExposure: Stop taking an image 

abortExposure: Abort process currently taking an image 

startDownload: Begin process to download data from AO system to user’s local system 

registerCCDCamera: Register a CCD camera controller with the system. 

unregisterCCDCamera: Un-register a CCD camera controller with the system. 

setExposureAcceptanceRules: Set algorithm to use when deciding to accept an exposure 

request. 

4.1.2. Identify functional dependencies 

 The previous example showed how use cases can identify the functions users will 

invoke in the system. In addition to these functions, use cases can also expose what other 

system functions are carried out as a result of the user invoked functions. These 

functional dependencies are often referred to as an “include” relationship between use 

cases. Figure 4.3 shows that when the user invokes the Start Exposure use case in the 

CCD control system, this includes invoking functionality in the Telescope control system 

that disables telescope slewing. This behavior of the system is required to prevent new 

slew requests from being executed during an exposure. Similar behavior can also be seen 

in this use case diagram such that when the exposure is stopped or aborted, the slewing is 

enabled again. This use case exposes a design challenge: a state change dependency 

relationship between two major components in the system. The next section will discuss 

how this relationship can be included in the design by allowing a component to observe 

the state changes of another component, and take appropriate actions. 
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Figure 4.3   Use case extension from CCD controller to Mount controller 
 

Actor / Use Case Descriptions: 

Astronomer: Actor that interacts with the system to take observations and collect data. 

Technician: Actor that interacts with the system to perform maintenance. 

startExposure: Start taking an image 

stopExposure: Stop taking an image 

abortExposure: Abort process currently taking an image 

disableSlew: Disable the ability to slew. 

enableSlew: Enabe the ability to slew. 
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4.2. Step 2: Select Design Patterns to Solve AO Design Challenges 

 Observatory control systems present several design challenges that must be 

analyzed. Meeting with domain experts and generating use case diagrams for the system 

allows these challenges to be identified. This section will discuss some of the key 

challenges of AO control systems, and how domain specific design patterns can help 

solve them. Additional design patterns can be found in Appendix B. 

4.2.1. Decoupling layers with the Façade design pattern 

 In the Braeside Observatory command and control system there are several sub 

systems each providing control over different components. Over time these sub-systems 

may need to change as instruments and devices are upgraded. An example of this need 

for system re-configuration can be seen with the CCD camera used to capture images 

through the telescope. Earlier, a use case diagram was developed to capture common high 

level commands that a user would issue to interact with the CCD camera through the 

system. As CCD technology evolves and new techniques for optimizing CCD image 

capture arise, new functionality will be added to camera systems. For example, many 

modern systems now offer add on modules such as advanced cooling, external dew 

control, and expanded filter wheels. These changing features in CCD technology often 

prompt researchers to upgrade their old CCD camera to newer models, or camera 

manufacturers to change their APIs to accommodate new image capture methods. If the 

user interface layer or application layer interact directly with these sub-systems they will 

encounter maintenance issues as those sub-systems evolve. A façade can therefore be 

introduced to help de-couple the application layer from its client (user-interface). Use of a 



 
 
 
 
 

 

 

34
façade can be incorporated at one or more levels in the design depending on how the 

system needs to be layered. 

 The use of the Interface classifier in design allows us to show what functionality 

is expected (syntheses, interaction, and collaborations) but not how that functionality will 

be achieved. The method signatures for each operation of an interface will specify what 

inputs are to be given and what outputs are expected. The details of how interface 

operations will be implemented are left to the model classes that realize them. 

 The concept of interfaces maps to the first design pattern for the AO domain. The 

façade design pattern provides a unified interface to a set of sub-systems. AO control 

systems are comprised of many sub-components that work together to complete a user 

request. Once interfaces that capture the services provided to the user have been 

identified, all or part of those interfaces can be combined to create a façade. This higher 

level interface will hide the details of how sub-system components are used to execute 

the request. In addition, changes to how the sub-system components carry out the request 

can be made without impacting the user of the façade. This layering through use of the 

façade is an important pattern for the AO domain because instrumentation is frequently 

upgraded to stay atop research needs and evolving technologies. 

 Figure 4.4 shows the use of an interface (DetectorControllerInterface) in support 

of the façade pattern between a client of the observatory (ObservatoryClient) and the 

detector controller (DetectorController). This controller may be implemented with one 

software component (as shown in this example), or with coordination of many sub-

components. The example below also shows two types of specialized detector controllers 

(CCDCameraController and SpectrometerController) and how the façade can hide the 
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details of which controller is being used. Therefore applying the façade pattern allows 

us to hide the details of how the interface methods are actually carried out. 

 

Figure 4.4   Facade design pattern for the AO domain detector controller 
 

4.2.2. Component synchronization via the Observer design pattern 

 Another key design challenge in the AO domain is the communication between 

individual software components in the observatory control system. Several of the 

instruments and mechanics in the observatory must be managed by dedicated software 

modules. These modules can be separate processes running on the same server or in some 

cases on different servers. In many scenarios these software processes must share 

information with one another in order to complete a task. Earlier this type of interaction 

was seen in the use case diagram for starting and stopping exposures. An extension of the 

Start Exposure use case with the CCD control program was to notify the mount control 

program so that it could disable slewing. An example of this interaction was seen in the 

Braeside Observatory control system where a communication link exists between the 

TCP daemon and the CCD daemon. That implementation made use of OS level message 
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queues to share information between the daemon processes. Another approach to 

solving this problem is to have one process observe another process in order to look for 

state changes. This pattern of interaction between components is commonly referred to as 

the “observer” design pattern. 

 The observer pattern allows for components (the observers) to be notified when 

the state of another component (the subject) changes. It is also referred to as Publish-

Subscribe or Subject-Observer. This pattern is important for the AO domain because 

subject component state changes are often shared with many observing components that 

may vary from one system configuration to another. For example, when the detector is 

taking images the mount will need to block any incoming slew requests from the user. 

Similarly when the detector is finished taking an image the mount will need to unblock. 

This common coordination between the control software of the mount and detector can 

be managed via the observer pattern. Furthermore, a new system configuration may 

introduce a second detector that also needs to be observed by the mount. In this case the 

pattern supports the client subscribing the new observer to the subject through well 

defined interfaces. 

 Figure 4.5 shows how the observer pattern can be used to allow a mount 

controller (observer) to subscribe to state change notifications by the CCD controller 

(subject). In this example the DetectorController class is the subject, and extends the 

DetectorController_Subject abstract class which defines the subject interface methods 

that must be implemented. The subject’s attach and detach methods are called by 

observers to subscribe and unsubscribe respectively from state change notifications. The 

notify method is used by the subject to send its current state to all subscribed observers. 
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The MountController class is the observer and implements the 

DetectorController_Observer interface which defines the observer methods that must be 

implemented. The observer’s update method is called by the subject passing the state, 

and allows the observer to define what actions to take.  

 

Figure 4.5   Observer design pattern used by AO detector and mount 
 

4.2.3. Modifying control algorithms using Strategy design pattern 

 AO control systems consist of many algorithms that define the behavior of the 

system in different scenarios. In some cases, the algorithm used for controlling a certain 

aspect of the system needs to be changed frequently depending on the observing being 

done. In other cases an algorithm may need to be modified due to new requirements of 

the system. In many systems these algorithms are difficult to locate because they are 

buried in thousands of lines of code. Once found, these algorithms can be difficult to 
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change without impacting many other pieces of the system. Having a system design 

that allows simplified modification to these algorithms can save time and money.  

 The strategy design pattern allows a family of algorithms to be defined and 

provides access to them through a standard interface. Clients can then change between 

different algorithms in the family without having to change the way the algorithm is 

called. One of the use cases presented earlier showed that the technician may need to 

change algorithms in the CCD control program. The strategy pattern allows these 

changes to be made easily and with minimal impact to the rest of the system. For 

example, a technician may need to change the algorithm that determines whether the 

CCD control program will accept an exposure request or not. One algorithm, called 

“Always in View”, might require that the coordinates the system is currently pointed to 

are above the horizon for the entire requested exposure length. Another algorithm, called 

“Now in View”, may simply accept any request and not be concerned about the current 

coordinates falling below the horizon before the exposure time is over. 

 Figure 4.6 shows how the strategy pattern can be used to solve this design 

problem. The abstract class ExpReqAcceptStrategy defines the algorithm interface which 

is a method checkExpReqForAcceptance that accepts all the parameters that might be 

needed to make the decision. There are two concrete classes, 

AlwaysInViewExpReqAcceptStrategy and NowInViewExpReqAcceptStrategy. Each 

implements the checkExpReqForAcceptance interface method but with different decision 

logic. Also shown is how each client will have an object of type ExpReqAcceptStrategy, 

and must provide an attach method that takes an ExpReqAcceptStrategy object as a 
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parameter. The attach method can be used to assign a different algorithm from the 

ExpReqAcceptStrategy family to the client. 

 

Figure 4.6   Strategy design pattern used by AO detector controller 
 

4.3. Step 3: Extend DEVSJAVA with Selected AO Design Patterns 

 Implementation of the AO system simulation models will require an environment 

that supports object orientation and provides the ability for extension of the core 

components with design patterns. Commercial Off The Shelf (COTS) simulation 

packages generally do not allow access to core components of the environment, and 

therefore are not well suited for extension with design patterns. Simulation packages such 

as DEVSJAVA and SimPy (SimPy 2004) support modeling using object orientation and 

also allow for extension of core environment components. This research extended the 

DEVSJAVA environment with AO domain design patterns to create the DEVSJAVA-
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AO simulation environment. This environment was then used to create simulation 

models representing the software components of a simple observatory control system. 

The following sections will look at the implementation details and discuss challenges 

faced. 

4.3.1. Extending DEVSJAVA to DEVSJAVA-AO 

 At the foundation of the DEVSJAVA-AO environment is its extension of the 

DEVSJAVA classes. The two primary modeling constructs in DEVSJAVA are atomic 

and coupled models, which are made available with basic visualization through the 

ViewableAtomic and ViewableDigraph classes. These core modeling constructs provide 

the link to the simulation environment, as well as the part-of and is-a modeling 

relationships needed to develop simulation models. However with these components 

alone there are still many ways in which their ports can be defined. This variability in 

port definition presents a problem as more and more models are created because they will 

need to know the port names of those models they interact with. This limits the ability to 

easily re-configure the model to model couplings. Thus the first step taken in the AO 

specific modeling environment is to standardize the definition of port names for atomic 

and coupled models. 

 The AOControlEntity and AOControlNode extend the ViewableAtomic and 

ViewableDigraph classes respectively (see Figure 4.7), adding standard port name 

definitions. Every component will have two in ports and two out ports. The inCmd and 

outCmd ports are used to move commands in and out of model, while the inData and 

outData ports will move data in and out of the model. Models created in DEVSJAVA-
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AO can now easily be coupled together because they share the same simple interface 

port definitions. 

 

Figure 4.7   Extending DEVSJAVA core modeling constructs for AO 
domain 

 

 Three major software components of an AO control system are those controlling 

the mount, detector instruments, and telescope accessories. For this example AO system 

the mount, detector and focuser controllers are modeled. Because there can be different 

types of mounts, detectors, and focusers, each of these is first modeled with an abstract 

class capturing any general attributes and behaviors. These abstract classes are then 

specialized to capture attributes and behaviors specific to different types of controllers. 

This specialization is seen in Figure 4.8 with the MountController, DetectorController, 

and FocuserController forming the abstract class layer, and the ForkMountController, 

CCDCameraController, and CatadioptricFocuserController forming the specialized 

layer.  
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 At this point object oriented concepts such as composition, abstraction, and 

specialization have been utilized to extend the DEVSJAVA environment into the 

DEVSJAVA-AO environment. These same concepts are commonly used in software 

modeling, and will be a part of the AO control system software design. The simulation 

models therefore align with software modeling goals. Another software modeling 

concept, design patterns, will also be used in the simulation modeling. The next few 

sections will discuss how these patterns were implemented and the challenges faced in 

doing so.  

4.3.2. Implementation of the AO façade design pattern 

 The simple AO control system design shown in Figure 4.8 uses a separate 

controller for each of the mount, detector, and focuser. However, other AO system 

configurations may be different. To support configurability without impacting the users 

of the system the façade design pattern can be utilized. This pattern is utilized by having 

each controller abstract class realize the corresponding interface. Thus the 

MountController implements the MountControllerInterface, the DetectorController 

implements the DetectorControllerInterface, and the FocuserController implements the 

FocuserControllerInterface. These interfaces define the methods that must be 

implemented by the abstract class itself, or a specialization of it. 

 One interesting note with the use of interfaces in DEVSJAVA-AO is that the Java 

programming language requires that their methods be public. However it turns out that 

when these interface methods are implemented they are actually being called in a private 

sense. These methods are private because atomic models in DEVSJAVA do not 

communicate via direct method calls with one another, but instead through passing 
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messages to their DEVS port interfaces. The external transition function is where 

incoming messages are processed, and it is there that the model determines which façade 

interface method should be called. These methods are therefore private to the model, and 

do not benefit from being defined as public.  

4.3.3. Implementation of the AO observer pattern 

 The observer pattern is utilized for state change notification between the mount 

and detector. In this example system the detector controller is represented with a single 

atomic model named DetectorController, this class can act as the subject by inheriting 

from DetectorController_Subject and providing access to its state. The mount controller 

is also represented with a single atomic model named MountController, which can be 

setup as an observer of the detector controller because it realizes the 

DetectorController_Observer interface. 

 There are some differences in how the observer pattern is used in simulation 

modeling versus how it is traditionally used in software modeling. For example, in 

software modeling the subject directly calls the update method of the observer, passing 

the subject’s state. The only requirement is that the subject and observer objects be in the 

same scope or contain references to one another so they can call each others methods. 

However simulation modeling does not permit atomic models to directly call the methods 

of other models. Therefore the subject cannot directly call the update method of the 

observer. Instead it must pass a message from its output port to the input port of the 

observer, and the observer’s external transition function must handle the message and 

know to call its own update method. Another issue is that in order to enable this port to 

port message passing, the coupled model that contains the subject and observer atomic 
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models must explicitly couple their ports. There is not a straight forward way to 

establish this connection from the attach method within the atomic subject model. 

4.3.4. Implementation of the AO strategy pattern 

 In the AO control system the strategy pattern is used by the detector to allow easy 

configuration with different exposure request acceptance algorithms. The strategy 

interface is defined by the ExpReqAcceptStrategy abstract class. This abstract class 

defines the method signatures but does not provide any implementation for them. The 

implementation details are left to the specializations since they will differ for each 

algorithm. For exposure request acceptance there are two algorithm strategies: 

NowInViewExpReqAcceptStrategy and AlwaysInViewExpReqAcceptStrategy. The 

“NowInView” algorithm will accept a request as long as the current system coordinates 

are in view at the current time. The “AlwaysInView” algorithm will accept a request as 

long as the current system coordinates are in view now and will be above the horizon 

when the exposure completes. In this example the DetectorController provides the 

ExpReqAcceptStrategy member variable and a setExpRequestAcceptStrategy method for 

allowing configuration with a given ExpReqAcceptStrategy strategy.  
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Figure 4.8   Simulation models for simple AO control system 
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 The strategy pattern is well known and used in many software system designs. 

To make use of it in the AO system simulation environment is fairly straight forward. 

One reason implementation challenges are not as common here is because the algorithm 

is an internal method, and not a method that is called by another system object. Thus the 

algorithm is typically not called upon until a related state change requires it to be 

invoked. 

4.4. Step 4: Create Customized Simulation Models for AO System Design 

 For this demonstration a simple set of customized models was created using the 

DEVSJAVA-AO environment. The observatory being modeled was similar to the 

Braeside Observatory and consisted of a catadioptic telescope on a fork mount with a 

CCD camera attached for imaging. The control system design was simple in that there 

was one controller for each major component. 

 The fork mount controller was modeled using a specialization of the 

MountController abstract class called ForkMountController. This class modeled all the 

behavior of a fork mount controller, including object tracking and slew capability along 

the right ascension and declination axes. Because it inherits from the MountController 

abstract class, two design patterns are enforced. The façade pattern is supported because 

the methods of the MountControllerInterface are realized. The observer pattern is also 

supported because the methods of the DetectorController_Observer are realized. 

 The CCD detector controller was modeled using a specialization of the 

DetectorController abstract class called CCDDetectorController. This class modeled all 

the behavior of the CCD detector controller including behaviors such as taking and 

downloading an exposure. Because it inherits from the DetectorController abstract class, 
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three design patterns are supported. The façade pattern is supported because the 

methods of the DetectorControllerInterface are realized. The observer pattern is 

supported because the methods of the DetectorController_Subject interface are realized. 

The strategy pattern is supported by inclusion of the ExposureRequestStrategy object, and 

realization of the setExposureRequestStrategy method. 

 The catadioptic focuser controller was modeled using a specialization of the 

FocuserController abstract class called CatadiopticFocuserController. This class 

implements behaviors of the focuser controller such as moving focus in and out. Because 

it inherits from the FocuserController abstract class it also supports one design pattern. 

The façade pattern is supported because the methods of the FocuserControllerInterface 

are realized. 

 
4.5. Simulation Experiments using DEVJAVA-AO 

 The DEVSJAVA-AO environment provides the base classes necessary to build 

atomic and coupled models for a simple AO control system. In addition, it provides 

classes for basic block diagram visualization of simulation executions. Figure 4.9 shows 

the DEVSJAVA-AO simulation view for a system configuration that includes one 

detector controller for a CCD camera. The AOControlSystem coupled model contains all 

atomic models in the AO control system. The “AO Control System Client” is actually a 

group of models that generate data over time trajectories and collect results for analysis 

over time periods. These simulation results are evaluated to choose suitable command 

and control designs under a range of operational settings. 
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Figure 4.9   Simulation view for AO system configured with one detector controller 
 
 Simulation provides the ability to run experiments on a system and learn about its 

behavior under certain conditions. The models described here of a simple AO control 

system can be simulated in various experiments to measure many aspects of the system 

such as correctness, performance, and “what if” scenarios. 

4.5.1. Analysis of system configurations 

 One interesting aspect of software architecture simulation is its ability to test how 

addition of a new module will impact the rest of the system. The first AO control system 

configuration introduced earlier contained only one CCD Camera detector, and thus one 

controller. However, another AO control system configuration might have a second 

detector, such as a spectrometer for measuring properties of the light. Therefore a second 

controller may be needed for this new Spectrometer detector. Addition of a new 

spectrometer controller to the system provides an opportunity to test how well the façade, 
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observer, and strategy design patterns support QoS attributes such as configurability 

and modifiability. In addition, simulation tests can allow execution results to be captured 

and analyzed to validate the systems behavior under this new configuration. 

 Introduction of the SpectrometerController class to the system is easily done as a 

specialization of the DetectorController_Subject abstract class. This specialization allows 

it to inherit the subject methods that are part of the detector-mount observer design 

pattern and the DetectorController_Interface methods that are part of the façade design 

pattern. Finally, when implementing the SpectrometerController class, the 

setExpReqAcceptStrategy method can be provided from the strategy design pattern to 

allow different acceptance algorithms to be set. The design patterns therefore allow the 

system to be easily modified. In addition, simulation runs can be performed to verify that 

the new SpectrometerController functions correctly and that the other system 

components are not negatively impacted. Figure 4.10 shows the DESVJAVA-AO 

simulation view of this new configuration. The ability to execute the system architecture 

in this manner provides information that would not be available if the design was only on 

paper. 
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Figure 4.10   Simulation view for AO System configured with two detector controllers 
 

4.5.2. Analysis of system behavior 

 Another aspect of software that can be tested is the behavior of the system when 

different algorithms are used to perform certain system functions. For example, when an 

exposure request is received the system must determine if the request is valid. Suppose 

there are two algorithms to choose from for implementing the CCD exposure request 

acceptance logic. The first algorithm will check only if the current coordinates are above 

the horizon. With this algorithm the detector software will simply check that the current 

coordinates are above the horizon. If they are, the request is accepted and the exposure 

begins. If they are not, then the request is rejected. The second algorithm will check if the 

current coordinates are above the horizon now and that they will be above the horizon for 

the length of the exposure. To check this rule the algorithm takes the current time plus the 
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length of the exposure to get the time the exposure will end. The algorithm then checks 

if the current coordinates will be above the horizon at that time. If they are, the request is 

accepted and the exposure begins. If they are not then the request is rejected. 

 To conduct the experiment the Strategy design pattern is utilized, and two 

specializations of the ExpReqAcceptStrategy abstract class are created: 

AlwaysInViewExpReqAcceptStrategy and NowInViewExpReqAcceptStrategy. The use of 

this pattern allows configuration of a detector controller with the desired strategy by 

simply passing an instance of it to the controller’s setExpReqAcceptStrategy method. 

Changing to the other strategy requires a one line code change to pass an instance of the 

other strategy to the method. 

 To see the impact this algorithm change has on the system, simulations are 

conducted in which observation requests generated by the experimental frame are carried 

out by the AO control system. These requests are created by selecting random 

coordinates and a random exposure time. The exposure time is limited by a maximum 

value that is increased by two hours with each simulation run. A successful observation 

request is one in which the coordinates of the object being imaged can be tracked by the 

telescope from start to finish of the exposure. This scenario is considered to return the 

desired image. A failed observation request results if the exposure is cut short because the 

object goes below the horizon. This scenario is considered to return an erroneous image. 
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Current View Only Algorithm :

Percentage of Erroneous Observations vs. Max Exposure Time
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Figure 4.11   Simulation results using two exposure request acceptance 
algorithms 

 

 The same set of observation requests are fed as input to the models for each max 

exposure time, once for algorithm 1 and a second time for algorithm 2. This will show 

how many successful observation requests occur given the chosen decision algorithm and 

allowed maximum exposure time. The first chart in Figure 4.11 shows the percentage of 

observations that were erroneous as the max exposure time allowed was increased. Since 

algorithm 1 only checks that the object is currently in view when the request is received, 

the results start to see more erroneous exposures as the max allowed exposure time 

increases. The second chart in Figure 4.11 shows the percentage increase in the number 
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of observations that were successfully carried out using Algorithm 2 versus Algorithm 

1. This chart shows that as the allowed exposure time increases there is more benefit in 

using Algorithm 2. These benefits  are due to an increase in the number of long exposure 

requests that are received as the max exposure time is increased. Overall the results show 

that the second algorithm is a better choice because it eliminates requests that will be 

erroneous because the object is going out of view before the end of the exposure. 



5. Related Work 

5.1. Software modeling of real-time systems 

 Software modeling primarily deals with specification and implementation of 

software. Object-oriented modeling techniques allow for characterization of software 

components and their composition. Approaches such as UML allow specification of the 

relationships between components in terms of inheritance, aggregation, and realization. 

In addition, the UML sequence diagram can capture the timing of component interactions 

in non-real time. However these modeling approaches do not allow for execution of the 

models under logical time, and thus have limited capabilities for testing and validation. 

 The design of real time software applications is unique in that the need to include 

formal timing and concurrency in the software modeling is crucial. Methods such as 

UML-RT have been introduced to extend the OO modeling to formally account for time. 

In UML-RT the time, schedule, and performance related properties of the software 

models can be captured using UML stereotypes, tagged values, and constraints. Models 

are outfitted with ports that when connected to other models, allow events to be 

communicated during statechart execution. During this execution the timing related 

properties can be validated (Huang 2004). 

 Although UML-RT model execution is useful in testing for defects in timing 

constraints of software models, it cannot be used until the software modeling reaches a 

detailed stage. One benefit of the approach presented in this thesis versus UML-RT is 

that simulations are performed on high level software design concepts, such as design 

patterns. These patterns are identified early in the design phase, and therefore benefits of 

the simulation experiments are realized early.  
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5.2. Software design techniques in simulation 

 The benefits of using of modern software engineering techniques to build 

simulation models are now being realized by the simulation community. Researchers that 

use simulation to study science are utilizing the object oriented capabilities of 

environments such as DEVSJAVA to design more maintainable and re-usable models. In 

addition, software design concepts such as design patterns are being adapted for 

simulation model design. The result is models that are more easily configured and easy to 

maintain (Innocenti 2004). The use of design patterns in these applications is driven from 

the desire to make the models more maintainable and re-usable. The research presented in 

this thesis will also enjoy these benefits, but differs in that the use of patterns is driven 

more from the domain. This thesis lays out a principled approach for identifying design 

patterns in the AO domain. Use of the design patterns to develop the simulation models is 

driven from the desire to simulate those patterns, and thus simulate the high level design 

of the AO control system. In addition, the design patterns identified with this approach 

are used beyond simulation modeling, and are also incorporated in the detailed software 

modeling design. 



6. Conclusion 

 The motivation behind this work was Simulation Based Acquisition (SBA 1998) 

which promotes systematic use of simulation across lifecycle of systems from conception 

to retirement. In this respect, the presented approach focuses on supporting simulation-

based software design. This work demonstrated the use of design patterns in support of  

the command and control paradigm for the software development of astronomical 

observatory control systems using DEVSJAVA-AO. Thus the inclusion of design 

patterns in a modeling and simulation environment for specific domains plays a 

significant role in creating software design that can be simulated prior to detailed 

software design specification, with a key benefit being reduction in the overall software 

development effort. A future direction for this research is applying the simulation models 

for developing software controlling an astronomical observatory. Another future research 

opportunity involves forward engineering from simulation models to software models. A 

related area of interest is the inclusion of design patterns in real-time simulation 

modeling. 
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APPENDIX A  

UML USE CASE DIAGRAMS 
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 This appendix provides additional use case diagrams generated during research in 

the domain of astronomical observatory (AO) control systems. These use cases were 

gathered through information obtained while studying the Braeside Observatory control 

system. The approach used to obtain and analyze these use cases is described in Chapter 

3 of this thesis. 

 One of the key components of the observatory control system is the software that 

controls the telescope focuser. This software is responsible for carrying out requests from 

the user to adjust the telescope focus. In Figure A.1 the use cases for interaction between 

the client and the focuser controller are shown. 

 

Figure A.1   Use case diagram for focuser controller 
 

Actor / Use Case Descriptions: 

Astronomer: Actor that interacts with the system to take observations and collect data. 

startMoveFocusOut: Start movement of the focuser outward. 

startMoveFocusIn: Start movement of the focuser inward. 

stopMoveFocus: Stop movement of the focuser. 
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 The mount controller is responsible for carrying out user requests to move the 

telescope mount. It also supports the ability to link with detector controllers in order to 

allow data to be shared, which is useful for applications such as auto-guiding. In Figure 

A.2 the use cases are shown as well as the actors that typically invoke them. 
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unlinkToDetectorCon
troller
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Figure A.2   Use case diagram for mount controller 
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Actor / Use Case Descriptions: 

Astronomer: Actor that interacts with the system to take observations and collect data. 

Technitian: Actor that interacts with the system to perform maintenance. 

startMoveRAWest: Start movement of the right ascension axis in the West direction. 

startMoveRAEast:Start movemenet of the right ascension axis in the East direction. 

stopMoveRA: Stop movement of the right ascension axis. 

startMoveDECNorth: Start movement of the declination axis in the North direction. 

startMoveDECSouth: Start movemenet of the declination axis in the South direction. 

stopMoveDEC: Stop movemenet of the declination axis. 

setSlewRateRA: Set the slew rate for the right ascension axis to a given value. 

setSlewRateDEC: Set the slew rate for the declination axis to a given value. 

linkToDetectorController: Link the mount controller to a detector controller. 

unlinkToDetectorController: Un-link the mount controller from a  detector controller. 
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 This appendix provides additional UML class diagrams that capture design 

patterns used in the DEVSJAVA-AO framework. These patterns were identified using 

the same approach discussed in Chapter 3 of this thesis. 

 The mount controller component of an AO control system may contain many sub-

components that provide the functionalities shown in the mount controller use case 

diagram (see Figure A.2). These use cases helped identify the need to create a façade 

layer that hides the details of how the mount controller functions are carried out. Figure 

B.1 shows the use of the façade design pattern in the design of a simple AO control 

system. The MountControllerInterface is used to specify which functions will be 

provided, what parameters they require, but not which software components actually 

implement them. The MountController class realizes this interface, thus de-coupling the 

client from the implementation details of the façade functions. 

 

Figure B.1   Facade design pattern for mount controller 
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 The focuser controller is responsible for carrying out all client requests to adjust 

the focus of the telescope. The use cases in Figure A.1 helped identify the need for a 

façade layer between the client and the focuser controller. The façade design pattern, 

shown in Figure B.2, is implemented using the FocuserControllerInterface, which must 

be realized by the sub-components of the FocuserController. This façade layer helps to 

de-couple the client from the implementation details of the focuser controller functions. 

 

Figure B.2   Facade design patterns for focuser controller 


