
INTEROPERABILITY BETWEEN DEVS SIMULATORS USING

SERVICE ORIENTED ARCHITECTURE AND DEVS NAMESPACE

by

Chungman Seo

Copyright © Chungman Seo 2009

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2009

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Chungman Seo
entitled Interoperability between DEVS Simulators using Service Oriented Architecture
and DEVS Namespace
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy in Electrical and Computer Engineering.

__ Date: 03/27/09
Bernard P. Zeigler

__ Date: 03/27/09
Jonathan Sprinkle

__ Date: 03/2709
Ali Akoglu

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.
I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

___ Date: 03/27/09
Dissertation Director: Bernard P. Zeigler

STATEMENT BY AUTHOR

 This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library to
be made available to borrowers under rules of the Library.

 Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the copyright holder

SIGNED: Chungman Seo

ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor Dr. Bernard P. Zeigler,
who guided me through this research work and introduced me to many exciting areas in
discrete event simulation and its application. His help and support are endless. He made
me gain new knowledge and insights in my career, without him I would never reach to
this point. I am very grateful for his dedication and advising.

I also express my appreciations to the committee members Dr. Jonathan Sprinkle and Dr.
Ali Akoglu for providing suggestions enhancing the content of this dissertation.

I would like to express thank to my colleagues at ACIMS Lab, Ho Jun Lee, Lahiru
Ariyananda, Dr. Han, and Dr. DH Kim for the useful discussion and advice.

I would like to thank to my parents, sisters, and brothers who always support and trust me.

Special thank goes to my wife, Jeongyeon, for her endless support and love. I can not
make it without her. She is everything to me.

5

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

ABSTRACT ……………………………………………………………….15

CHAPTER 1. INTRODUCTION ………………………………………….17

1.1 Motivation and Goals …………………………………………………….………….17

1.2 Organization of the Thesis …………………………………………………………..20

CHAPTER 2. BACKGROUND …………………………………………...21

2.1 Discrete Event System Modeling and Simulation …………………………………..21

2.1.1 Discrete Event System Specification (DEVS) Modeling and simulation ………....24

2.2 Service Oriented Architecture (SOA) ………………………………………………. 27

2.2.1 Web Service ………………………………………………………………………..28

2.2.2 Simple Object Access Protocol (SOAP) …………………………………………..30

2.2.3 Web Services Description Language (WSDL) …………………………………….33

2.3 Apache AXIS2 ……………………………………………………………………….34

2.4 Interoperability studies ………………………………………………………………37

CHAPTER 3. OVERALL ARCHITECTURE OF DEVS SIMULATOR

SERVICES INTEROPERABILITY ………………………………………42

3.1 System of Interoperability of DEVS Simulator Services…………………………….43

3.2 The DEVS Namespace……………………………………………………………….45

3.3 The Structure and design of DEVS Simulator Service ……………………………...49

6

TABLE OF CONTENTS - Continued

3.3.1 The structure of DEVS simulator service ………………………………………….49

3.3.2 Design of the DEVS simulator service …………………………………………….50

3.4 WSDL of the DEVS Simulator Service ……………………………………………..53

3.5 Creation of the DEVS Simulator Service ……………………………………………55

3.6 DEVS Simulator Service Integration and Execution ………………………………..57

3.6.1 Invocation of a DEVS simulator service …………………………………………..57

3.6.2 Integration of DEVS simulator services …………………………………………...60

3.6.3 Execution of integrated DEVS simulator services ………………………………...63.

3.7 DEVS message to XML message ……………………………………………………67

CHAPTER 4. IMPLEMENTATION OF THE DEVS NAMESPACE AND

DEVS SIMULATOR SERVICES …………………………………………69

4.1 Implementation of DEVS Namespace ……………………………………………..69

4.1.1 The GUI for schema data registration …………………………………………...70

4.1.2 Browsing GUI …………………………………………………………………...73

4.1.3 NamespaceService web service ………………………………………………….73

4.2 Simulator Services encapsulating DEVSJAVA …………………………………….74

4.2.1 DEVSJAVA ………………………………………………………………………74

4.2.2 DEVSJAVA interface …………………………………………………………….79

4.2.3 DEVS simulator service with DEVSJAVA ……………………………………...89

4.3 Web Service encapsulation ADEVS …………………………………………………92

4.3.1 ADEVS …………………………………………………………………………….92

7

TABLE OF CONTENTS - Continued

4.3.2 ADEVS Interface …………………………………………………………………..95

4.3.3 DEVS simulator service with ADEVS …………………………………………...101

4.4 DEVS Simulator Web Services Integration and Execution ………………………..103

CHAPTER 5. APPLICATION OF INTEROPERABILITY OF DEVS

SIMULATOR SERVICES ………………………………………………..109

5.1 Track Display ………………………………………………………………………109

5.1.1 Design of Track Display DEVS models ………………………………………….110

5.1.2 Implementation of Track Display with DEVS simulator service ………………...112

5.2. Negotiation System ………………………………………………………………..116

5.2.1. Design of Negotiation System with DEVS simulator service …………………...117

5.2.2 Implementation of Negotiation System with DEVS simulator service …………..124

5.3 Test Agents for Net-centric …………………………………………………………127

5.3.1 Design of Test Agents for Net-centric ……………………………………………128

5.3.1.1 Modified negotiation system …………………………………………………...128

5.3.1.2 Observer models ………………………………………………………………..134

5.3.2 Implementation of Test Agents for Net-centric applying DEVS simulator service

…………………………………………………………………………………………..138

CHAPTER 6. DISCUSSIONS …………………………...………………147

6.1 Different WSDL with same Design ………………………………………………...147

8

TABLE OF CONTENTS - Continued

6.2 XML message converter ……………………………………………………………150

6.3 Other issues ………………………………………………………………………...152

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS ………………153

7.1 Conclusions ………………………………………………………………………...153

7.2 Future Work .……………………………………………………………………….155

REFERENCES …………………………………………………………...158

9

LIST OF ILLUSTRATIONS

Figure 2-1 DEVS Modeling and Simulation Framework ……………………………….24

Figure 2-2 Coupled modules formed via coupling and their use as components ……….25

Figure 2-3 DEVS simulation Protocol …………………………………………………..26

Figure 2-4 Web Services Architecture …………………………………………………..29

Figure 2-5 The structure of SOAP ………………………………………………………31

Figure 2-6 WSDL document structure …………………………………………………..33

Figure 2-7 AXIS2 architecture diagram …………………………………………………35

Figure 2-8 JAX-RPC Physical architecture ……………………………………………...36

Figure 3-1 Creation and consuming of DEVS simulator services ………………………42

Figure 3-2 Overall system of DEVS simulator services interoperability ………………..44

Figure 3-3 The DEVSNamespace.xsd …………………………………………………...46

Figure 3-4 Conversion of Job class to schema data type ………………..........................47

Figure 3-5 The registration of a schema document ……………………………………...48

Figure 3-6 The software stacks of a DEVS simulator service…………………………...49

Figure 3-7 The operations of DEVS simulator service ……………………………….…51

Figure 3-8 Java Interface of Simulator ………………………………………………..…54

Figure 3-9 The usage of the Java2WSDL tool ………………………………………..…55

Figure 3-10 The procedure of creation of the web service ……………………………...56

Figure 3-11 The procedure of consuming a web service ……………………………..…58

Figure 3-12 WSDL-based dynamic invocation of a web service with AXIS2 ………….59

Figure 3-13 DEVS Simulator Services Integrator ……………………………………....60

10

Figure 3-14 The Information of a service ……………………………………………….61

Figure 3-15 Coupling GUI ………………………………………………………………62

Figure 3-16 The procedure of preparing simulation …………………………………….64

Figure 3-17 The centralized simulation protocol ………………………………………..65

Figure 3-18 The decentralized real time simulation protocol …………………………...66

Figure 3-19 The structure of the XML message …………………………………………67

Figure 3-20 The DEVS message and XML message in the web service………………...68

Figure 4-1 Overview of registering and browsing schema ………………….…………..70

Figure 4-2 The GUI for type generator ………………………………………………….71

Figure 4-3 The Example of the GUI for schema register ………………………………..72

Figure 4-4 The Example of the GUI for schema browser ……………………………….73

Figure 4-5 DEVSJAVA class hierarchy ………………………………………………….75

Figure 4-6 Class hierarchy of container class …………………………………………...76

Figure 4-7.The view of relationship between a model and a simulator or a coordinator...78

Figure 4-8 The atomic model functions with a coordinator embedding a coupled model 80

Figure 4-9 Simulator class view …………………………………………………………81

Figure 4-10 Example of XML Object Message Handler ………………………………..82

Figure 4-11 The algorithm of the conversion of the DEVS message to the XML message

……………………………………………………………………………………………84

Figure 4-12 The example of DEVS message with an array ……………………………..85

Figure 4-13 The algorithm to extract the information of the XML message ……………86

Figure 4-14 The algorithm to make an instance of DEVS message …………………….88

11

Figure 4-15 The package diagram of the DEVS simulator service with DEVSJAVA …..89

Figure 4-16 The example of a services.xml ……………………………………………..90

Figure 4-17 The structure of the service archive for an EFModel service ………………91

Figure 4-18 The classification of ADEVS header files into their usages…………..……92

Figure 4-19 Hierarchy structures of ADEVS modeling class …………………………...93

Figure 4-20 Simulation of ADEVS model ………………………………………………94

Figure 4-21 The added functions in the ADEVS simulator for DEVS simulator service

……………………………………………………………………………………………96

Figure 4-22 The message converting in the DEVS simulator service for ADEVS ……...97

Figure 4-23 An algorithm for Bag object to XML conversion …………………………..98

Figure 4-24 The algorithm for extracting information from the XML message ………...99

Figure 4-25 The algorithm for creating a Bag instance with Event <PortValue> ……...101

Figure 4-26 The operations of DEVS simulator service for ADEVS ………………….102

Figure 4-27 The view of the GPT model ……………………………………………….103

Figure 4-28 GT simulation web service using AXIS2 and DEVSJAVA ……………….104

Figure 4-29 Process model simulator web service using .Net and ADEVS ……………105

Figure 4-30 The integrator for EFP web services ……………………………………...106

Figure 4-31. The GUI for the information of services …………………………………106

Figure 4-32 The GUI for coupling between the services ……………………………...107

Figure 4-33 The XML document for DEVS Simulator WS Integration ………………107

Figure 4-34 The result of simulation of DEVS simulator services ……………………108

Figure 5-1 State diagrams for track generator and track display ………………………110

12

Figure 5-2 The view of Track Display DEVS models with simView ………………….112

Figure 5-3 The schema for the TrackData ……………………………………………...113

Figure 5-4 The view of the XML document for the track display system ……………..114

Figure 5-5 The track display window …………………………………………………..115

Figure 5-6 The state diagram of the marketplace model ……………………………….117

Figure 5-7 The state diagram for the user model ………………………………………119

Figure 5-8 The state diagram for the provider model ………………………………….121

Figure 5-9 The negotiation system model for a printing jobs service …………………122

Figure 5-10 The schema document for the ContractQuery message …………………..125

Figure 5-11 The result of the negotiation system using DEVS simulator services …….126

Figure 5-12 The state diagram for a modified user model ……………………………..129

Figure 5-13 The state diagram for a modified provider model ………………………...131

Figure 5-14 The operations of marketplace service ……………………………………132

Figure 5-15 Interaction between a user and a provider through marketplace web service

…………………………………………………………………………………………..133

Figure 5-16 The state diagram for a user observer……………………………………...135

Figure 5-17 The state diagram for a provider observer ………………………………...137

Figure 5-18 The DEVS model view of negotiation system ……………………………138

Figure 5-19 The four atomic models in DEVS Agent ………………………………….139

Figure 5-20 The view of observer models ……………………………………………...140

Figure 5-21 Overall testing agent system ………………………………………………143

Figure 5-22 The experiment of the testing agents system………………………………144

13

Figure 6-1 The data type conversion to schema in AXIS2 and .NET ………………….147

Figure 6-2 Instance of getOutportsResponse type ……………………………………..148

Figure 6-3 The example DEVS message with the format ……………………………...151

14

LIST OF TABLES

Table 2-1 Five levels in LISI …………………………………………………………….39

Table 2-2 Level of OIM ………………………………………………………………….39

Table 2-3 Degree of NC3TA ……………………………………………………………..39

Table 2-4 Level of LCIM ………………………………………………………………..40

Table 2-5 Linguistic levels of interoperability …………………………………………..40

Table 5-1 A message used in the Track Display system ………………………………..113

Table 5-2 The messages used in the negotiation system ……………………………….124

Table 5-3 Assignment of DEVS simulator services to servers …………………………126

Table 5-4 Messages to send/receive between the observer models….……...…………..140

Table 5-5 Servers, services, and negotiation model ……………………………………145

15

ABSTRACT

Interoperability between heterogeneous software systems is an important issue to

increase software reusability in the software industry. Many methods are proposed to

implement interoperable systems using distributed computing infrastructures such as

CORBA, HLA and SOA. Those infrastructures can provide communication channels

between software systems with heterogeneous environments. SOA (Service Oriented

Architecture) provides a more flexible approach to interoperability than do the others

because it provides platform independence and employs platform-neutral message

passing with Simple Object Access Protocol (SOAP) to communicate between a service

and a client.

 The main contribution of this study is to design and implement an interoperable

DEVS simulation environment using the SOA concept and a new construct called the

DEVS namespace. The interoperable DEVS environment consists of a DEVS simulator

service and an associated integrator. The DEVS simulator service provides both simulator

level and model level interoperability. Moreover, using the DEVS namespace, DEVS

simulator services can be interoperable with any services using the same message types.

 To demonstrate the utility of the proposed environment, we describe various

applications of the interoperable DEVS simulation environment. The applications are

drawn from real world development of automated testing environments for military

information system interoperability. A radar track generation and display federation and a

model negotiation web service illustrated the ability of the proposed middleware to work

16

across platforms and languages. Its ability to support higher level semantic

interoperability will be demonstrated in a testing service that can deploy model agents to

provide coordinated observation of web requests of participants in simulated distributed

scenarios.

17

CHAPTER 1. INTRODUCTION

1.1. Motivation and Goals

 The study of interoperability has been conducted to suggest a methodology to

integrate different systems distributed over the network systems. The integrated system

called the System of Systems (SoS) is differentiated from a single monolithic system in

that it requires interoperability among its constituent systems [1]. SoS engineering has

priority on interoperability on the development of command and control (C2) capabilities

for joint and coalition warfare [2-4]. From the research of interoperability, models with

levels of interoperability describing technical interoperability and the complexity of

interoperations [5-7] are suggested in the SoS research groups. The model of levels of

interoperability is reinterpreted in the different applications such as telecommunication

and software to search their own interoperability levels.

 As a result, [8] introduced linguistic levels of interoperability divided into three

levels: pragmatic level, semantic level, and syntactic level. The pragmatic level stresses

data used in relation to data structure and context of application. The semantic level has a

low level focusing on definitions and attributes of terms, and a high level focusing on the

combined meaning of multiple terms. The syntactic level focuses on a structure and

adherence to the rules that govern that structure. The linguistic levels interoperability

concept provides a simultaneous testing environment at multiple levels.

18

 Interoperability between heterogeneous software systems is an important issue to

increase software reusability in the software industry. Many methods are proposed to

implement interoperable systems using distributed computing infrastructures such as

CORBA, HLA and SOA [9-11]. Those infrastructures can provide communication

channels between software systems with heterogeneous environments. SOA (Service

Oriented Architecture) provides a more flexible approach to interoperability than others

because it provides platform independence and employs neutral message passing with

Simple Object Access Protocol (SOAP) to communicate between a service and a client

[12-15].

 The research groups of DEVS modeling and simulation have been interested in

interoperable DEVS modeling and simulation in order to enhance model composability

and reusability with DEVS models and non DEVS models in different languages and

platforms. The problem to interoperate heterogeneous DEVS models with DEVS

simulators is that DEVS simulators implement the DEVS modeling formalism in diverse

programming environments (e.g. DEVSJAVA, ADEVS, PythonDEVS) [27, 28]. Though

the DEVS formalism specifies the same abstract simulator algorithm for any simulator,

different simulators implement the same abstract simulator using different codes. This

situation inhibits interoperating DEVS simulators and prevents simulation of

heterogeneous models. Also, each simulator can not provide platform-neutral message

passing.

 The interoperable DEVS simulation has been tried to develop the interoperable

framework through DEVS standard to simulate DEVS models generated in the different

19

languages and platforms. Some research of interoperability on DEVS has been studied

along with HLA and SOA [10, 11]. Prior work includes DEVS/SOA which Mittal and

Rico developed using web services [11]. However, it provides only platform

interoperability because it employs JAVA serialization which converts JAVA objects into

byte array to send messages to simulators. This restricts interoperation to simulators

based on JAVA. To add the language interoperability to the platform interoperability, we

apply neutral message passing and the SOA environment. The interoperability on DEVS

uses simulator level interoperability that uses common simulator interfaces to simulate

DEVS models. The simulator interface describes a minimum agreement being able to

implement a simulator class using different languages such as JAVA, C++, and C#. This

approach strengthens model reusability because DEVS modeling and simulation separates

models and simulators. To increase model composibility, we apply a new construct called

the DEVS namespace which is a specific XML namespace to define unique message

types used at DEVS models in the DEVS simulator services. It provides semantic

interoperability when we integrate different DEVS simulators.

 The main contribution of this study is to design and implement interoperable DEVS

simulation environment using SOA and DEVS namespace. The interoperable DEVS

simulation environment is categorized to the design of DEVS simulator service and

DEVS simulator service integrator. The DEVS simulator service provides not only

simulator level interoperability, but also model level interoperability. Also, through the

DEVS namespace, we can couple DEVS simulator services with same message types. In

an interoperable DEVS environment, web services represent DEVS simulators

20

embedding specific DEVS models. They have minimum agreement for simulator and

information of input/output ports which have specific data types described in DEVS

namespace.

1.2. Organization of the Thesis

 Background knowledge, discrete event system modeling and simulation, SOA, and

interoperability studies are discussed in the chapter 2. Chapter 3 addresses the overall

system architecture of DEVS simulator service interoperability consisting of system of

interoperability of DEVS simulator services, DEVS namespace, and DEVS simulation

service integration and execution. Chapter 4 explains implementation of DEVS

namespace and DEVS simulator services. In chapter 4 we demonstrate two DEVS

simulator services using JAVA and VC++ with DEVSJAVA and ADEVS, respectively.

The example of integration of DEVS simulator services is presented in section 4. In

chapter 5, we present application of interoperability of DEVS simulator services. The

track display and negotiation systems are integrated among DEVS simulator services

implemented with different languages. The testing agents system is implemented using

DEVSJAVA modeling and simulation and DEVS simulator services with real time

simulator. In chapter 6, we discuss the difference between concept level and

implementation level in DEVS simulator service, as well as some issues about web

service and platform. The paper’s summary and future work are presented in chapter 7.

21

CHAPTER 2. BACKGROUND

2.1. Discrete Event System Modeling and Simulation

 The Discrete Event System Specification (DEVS) [14] is a formalism which describes

entities and behaviors of a system. It also allows the building of modular and hierarchical

model compositions based on the closure-under coupling paradigm that means that the

hierarchical models can be expressed to the single model. The DEVS formalism describes

a system as a mathematical expression using set theory. It is a theoretically well-defined

system formalism. The original DEVS formalism called the Classic DEVS had constraints

that originated with the sequential operation of early computers and hindered the exploitation

of parallelism, a critical element in modern computing. The parallel DEVS formalism equips

bags to accommodate multiple input messages and the confluent function to handle

simultaneous internal and external events.

 There are two kinds of models in DEVS: atomic and coupled models. An atomic

model depicts a system as a set of input/output events and internal states along with

behavior functions regarding event consumption/production and internal state transitions.

A coupled model consists of a set of atomic models, information of message connections

between the atomic models, and input/output ports.

 The Atomic model can be illustrated as a black box having a set of inputs(X) and a set

of outputs(Y), or a white box specifying a set of states(S) with some operation functions

(i.e., external transition function (δext), internal transition function (δint), output function

(λ), and time advance function (ta())) to describe the dynamic behaviors of the model.

22

The external transition function (δext) carries the input messages and changes the system

states. The internal transition function (δint) changes internal variables from the previous

state to the next state when the time advance is expired and no events have occurred since

the last transition. The output function (λ) generates an output event in the current state.

The time advance (ta()) function determines the time to stay in the state after generating

an output event. The atomic model is specified as follows:

M = <X, S, Y, δint , δext , λ, ta>

where,

X: a set of inputs;

S: a set of states;

Y: a set of outputs;

δint: SS→ : internal transition function;

δext : SXQ b
→× : external transition function;

λ: bYS→ : output Function;

ta : +

∞
→ ,0RS :time advance function.

 bX and bY are a set of bags over elements in X and Y.

)}(0,|),{(staeSsesQ ≤≤∈= is the set of total states where e is the elapsed

time since last state transition.

A coupled model is the major class which embodies the hierarchical model composition

constructs of the DEVS formalism [14]. A coupled model is made up of component

models, and coupling relations that establish the desired communication links. A coupled

23

model illustrates how to connect several component models together to form a new model.

Two significant activities involved in coupled models specify its component models and

define the couplings which create the desired communication networks. The coupled

model is specified as follows:

DN = < X, Y, D, {Mi}, {I i}, {Z i,j} >

where,

X: a set of external input events;

 Y: a set of outputs;

 D: a set of components names, for each i in D;

 Mi: a component model;

 Ii: the set of influences for I; for each j in Ii;

 Zi,j: the i-to-j output translation function.

A coupled model contains the following information:

� The set of components

� For each component, its influencees

� The set of input ports through which external events are received

� The set of output ports through which external events are sent

� The coupling specification consisting of:

� The external input coupling (EIC) connects the input ports of the coupled

to one or more of the input ports of the components

� The external output coupling (EOC) connects the output ports of the

components to one or more of the output ports of the coupled model

24

� Internal coupling (IC) connects output ports of components to input ports

of other components

2.1.1. Discrete Event System Specification (DEVS) Modeling and Simulation

 The DEVS modeling and simulation framework provides a very flexible and scalable

modeling and simulation by separating models and simulators. The advantage of

separation of modeling and simulation is an increase of adaptation of simulation in the

various environments. For example, DEVS models can be simulated in distributed

environment if simulators are altered to simulate models on the environment such as

CORBA, HLA, and MPI [14].

Figure 2-1 DEVS Modeling and Simulation Framework [15]

 Figure 2-1 depicts DEVS modeling and simulation framework where simulator can be

implemented in the single processor, distributed environment, real time manner, or non-

25

DEVS environment. The DEVS model can be implemented with C++, JAVA, or other

implementation [27, 28, 75]. The simulator can simulate the DEVS models with

simulation protocol. With this concept, the same models can be executed in different ways

using different DEVS simulation protocols. Furthermore, middleware for parallel and

distributed computing could be easily applied on separately developed DEVS models.

Figure 2-2 Coupled modules formed via coupling and their use as components [15]

Figure 2-2 represents the hierarchical model construction with components coupling. For

example, a set of atomic models can be a coupled model by adding a coupling

specification and the coupled model can be used as a component in a larger system. A

hierarchical coupled model can be built by adding a set of model components as well as

coupling information among these components.

26

 The hierarchical construction and closure under coupling properties provide an

excellent DEVS composition framework. Sometimes, the coupled model can not be used

in the special circumstance such as middleware environment, so if the coupled model is

considered as an atomic model and a simulator interprets the atomic model from the

property of closure under coupling, the DEVS model will have more flexible simulation

environment.

Figure 2-3 DEVS simulation protocol [15]

 Figure 2-3 depicts the basic DEVS simulation protocol which is the key method to

interconnect the modeling framework with simulation engines. There are two types of

model handler called coordinator and simulator. Each handler manages a DEVS model,

that is, a coordinator is assigned to the coupled model and simulators are assigned to the

atomic models. The coordinator is responsible for overall simulation time management

27

and execution. Simulation begins with the coordinator’s sending nextTN to request tN

from each of the simulators. All the simulators reply with their tNs in the outTN message

to the coordinator. The coordinator sends to each simulator a getOut message containing

the global tN selected from tNs as minimum tN. Each simulator checks if it is imminent

(its tN = global tN) and if so, returns the output of its model in a message to the

coordinator in a sendOut message. If it is imminent and its input message is empty, then it

invokes its model’s internal transition function. If it is imminent and its input message is

not empty, it invokes its model’s confluence transition function. If it is not imminent and

its input message is not empty, it invokes its model’s external transition function. If is not

imminent and its input message is empty then nothing happens. The coordinator uses the

coupling specification to distribute the outputs as accumulated messages back to the

simulators in an applyDelt message to the simulators. For those simulators not receiving

any input, the messages sent are empty.

 The basic DEVS simulation protocol provides a key concept on how DEVS uses the

simulators as well as how simulators interact with model components. In general, the

DEVS based framework supports hierarchical, modular based modeling and simulation

using reusable model components. The simulation protocol can be modified to increase

simulation speed or to support real time simulation [30].

2.2. Service Oriented Architecture (SOA)

 SOA [12] is a methodology with which a new application is created through

integrating existing and independent business processes which are distributed over the

28

networks. The business processes are called modules or services which communicate with

each other, passing a message through the networks. This design concept requires

interoperability between heterogeneous systems and languages and orchestration of

services to meet the purpose of the creator.

2.2.1. Web Service

 One of the implementations of the SOA concept is web service, which is a software

system for communicating between a client and a server over a network with XML

messages called Simple Object Access Protocol (SOAP) [15]. The web service makes the

request of machine-to-machine or application-to-application communication possible

with neutral message passing even though each machine or application is not in the same

domain. Web services realize interoperability among different applications providing a

standard means of communication and a platform independence.

 The web services technologies architecture [13] is based on exchanging messages,

describing web services, and publishing and discovering web service descriptions. The

messages are exchanged by SOAP messages conveyed by internet protocols. Web

services are described by Web Services Description Language (WSDL) [14] which is a

XML based language providing required information such as message types, signatures of

operations, and a location of a service, for clients to consume the services. Publishing and

discovering WSDLs is managed by Universal Description Discover and Integration

(UDDI), which is a platform-independent and XML style registry. In other words, three

roles are classified in the architecture: a service provider, a service discovery agency

29

(UDDI), and a service requestor. The interaction of the roles involves publishing, finding,

and binding operations. A service provider defines a service description for a web service

and publishes it to a service discovery agency. This operation publishes operations

between the service provider and the service discovery agency. A service requestor uses a

finding operation to retrieve a service description locally or from a discovery agency and

uses the service description to bind it with a service provider and invoke or interact with

the web service implementation. Figure 2-4 illustrates the basic Web services architecture

describing three roles and operations with WSDL and SOAP.

Figure 2-4 Web Services Architecture

 Whereas a web service is an interface described by a service description, its

implementation is the service which is a software module provided by the service

provider (server) on the network accessible environment. It is invoked by or interacts with

a service requestor (client).

 Web services are invoked in many ways, but the common use of web services is

categorized to three methods such as Remote Procedure Call (RPC) [16], Service

Oriented Architecture (SOA) [16], and Representational State Transfer (REST) [16]. RPC

30

Web services was the first web services approach which had a distributed function call

interface described in the WSDL operation. Though it is widely used and upheld, it does

not support the loosely coupled concept for reasons of mapping services directly to

language-specific functions calls. Another web service is an implementation of SOA

concepts, which means a message is an important unit of communication regarded as

“message-oriented” services. This approach supports a loose coupling concept focusing

on the contents of WSDL. REST Web services which focus on the existence of resources

rather than messages or operations. It considers WSDL as a description of SOAP

messaging over HTTP, or is implemented as an abstraction on top of SOAP.

2.2.2. Simple Object Access Protocol (SOAP)

SOAP [17] is a simple and lightweight XML-based mechanism for creating

structured data packages that can be exchanged between network applications. SOAP

consists of four fundamental components: an envelope that defines a framework for

describing message structure, a set of encoding rules for expressing instances of

application-defined data types, a convention for representing remote procedure calls

(RPC) and responses, and a set of rules for using SOAP with HTTP. SOAP can be used

in combination with a variety of network protocols such as HTTP, SMTP, FTP, RMI/IIOP,

or a proprietary messaging protocol [62, 63].

SOAP provides a way to communicate between applications running on different

operating systems, and a SOAP message is an ordinary XML document containing the

following elements as seen in figure 2-5:

31

� An Envelope element that identifies the XML document as a SOAP message

� A header element that contains header information

� A body element that contains call and response information

� A fault element containing errors and status information

<? xml version="1.0"?>

< soap: Envelope>

< soap: Header>

 ...

 ...

</ soap: Header>

< soap: Body>

 ...

 ...

 < soap: Fault>

 ...

 ...

 </ soap: Fault>

</ soap: Body>

</ soap: Envelope>

SOAPEnvelope

Header Entries

Header Element

Fault Element

Body Element

SOAP Message Structure

Figure 2-5 The structure of SOAP

The required SOAP envelop element is the root element of a SOAP message. The

namespace defines the envelope as a SOAP envelope, and if a different namespace is used,

the application generates an error and discards the message. The encodingStyle attribute is

used to define the data types used in the document. This attribute may appear on any

SOAP element, and it will apply to that element’s contents and all children.

The optional SOAP header element contains application specific information like

authentication, and payment. SOAP defines three attributes in the default namespace.

These attributes are mustUnderstand, actor, and encodingStyle. The attributes defined in

the SOAP header define how a recipient should process the SOAP message. The actor

32

attribute is used to address the header element to a specific endpoint. The encodingStyle

attribute is used to define the data types used in the document. The required SOAP body

element contains the actual SOAP message intended for the ultimate endpoint of the

message. The optional SOAP fault element is used to indicate error messages.

SOAP is currently the standard for XML messaging for a number of reasons. First,

SOAP is relatively simple, defining a thin layer that builds on top of existing network

technologies such as HTTP that are already broadly implemented. Second, SOAP is

flexible and extensible in that rather than trying to solve all of the various issues

developers may face when constructing Web services, it provides an extensible,

composable framework that allows solutions to be incrementally applied as needed.

Thirdly, SOAP is based on XML. Finally, SOAP enjoys broad industry and developer

community support.

The following details explain more about SOAP [18-19]

� Specification: SOAP is not a product but a document that describes the

characteristics of a piece of software.

� Ubiquitous application: SOAP is a high level of abstraction that any operation

system and programming language combination could be used to create SOAP-

compliant programs.

� XML-Basis: SOAP is designed on top of XML, which means that SOAP

documents are XML documents constructed to a tighter set of specifications.

33

2.2.3. Web Services Description Language (WSDL)

WSDL is a document written in an XML format published for describing Web

services. It specifies the location of the service and the operations which the service

exposes. WSDL describes how to communicate using the web service; namely, the

protocol bindings and message formats required to interact with the web services listed in

its directory. The supported operations and messages are described abstractly, and then

bound to a concrete network protocol and message format.

< definitions >

< types >

 definition of types

< / types >

< message >

 definition of a message

< / message >

< portType >

 definition of a port

< / portType >

< binding >

 definition of a binding

< / binding >

< / definitions >

WSDL Document Structure

Figure 2-6 WSDL document structure

The WSDL document structure consists of portType, message, types, and binding as

seen in figure 2-6. The portType element describes a web service, the operations that can

be performed, and the messages that are involved. It can be compared to a function

library in a traditional programming language. The message element defines the data

elements of an operation. The types element defines the data type that are used by the web

34

service. The binding element defines the message format and protocol details for each

port.

WSDL is often used in combination with SOAP and XML Schema to provide web

services over the internet. A client program connecting to a web service can read the

WSDL to determine what functions are available on the server. Any special data types

used are embedded in the WSDL document in the form of XML Schema. The client can

use SOAP to actually call one of the functions listed in the WSDL.

2.3. Apache AXIS2

 Apache AXIS2 [20] is the core engine for web services, supports SOAP 1.1 and

SOAP 1.2, and has integrated support for the widely popular REST style of web services.

It gives both a WS- style interface and REST/POX style interface to the same web service

implementation simultaneously. Apache AXIS2 is a SOAP engine which processes the

SOAP message in and out services.

 Figure 2-7 represents the AXIS2 architecture diagram which consists of core

components and other components. The core components are XML processing model

(AXIOM), SOAP processing model (handler framework), and information processing

model (contexts and descriptions). Other components include deployment model,

transports, client API, and code generation model. AXIOM (AXIs2 Object Model) is the

base for AXIS2, where any incoming SOAP message is represented as AXIOM inside

AXIS2. It is based on a pull parser technique in which the invoker has the full control on

the parser.

35

Figure 2-7 AXIS2 architecture diagram [20]

 The handler framework has a special handler called a receiver which receives

messages and is used to call the provider component, a sender which sends messages and

invokes the outflow handler chain, and a dispatcher which finds the service. The handlers

are the execution units and phases are logical handler collections. The deployment

provides an AXIS archive called .aar file which is like a jar file with all the service

classes and the service description. It can be uploaded through the web or directly through

the file system. The deployment model has hot deployment and hot update functions with

which it can deploy and update services without shutting down the system. The client API

provides facility for synchronous/asynchronous invocations whose supported styles are

in-out sync, in-out async, and in-only. The code generation model provides WSDL2Java

or Java2WSDL tools to make code generation easy.

36

 Figure 2-8 represents JAX-RPC physical architecture for web service invocation. The

service client invokes the service through a stub class which is implemented with client

side JAX-RPC. An invoking message reaches to server side JAX-RPC which dispatches

the message to the service endpoint.

 AXIS2 provides two methods for creating web services. They are top-down method

with WSDL, and bottom-up method with codes. The top-down method uses WSDL2Java

utility to generate server side codes. We add some codes to the server side codes to

implement each service. After service codes are complete, we create an .aar file

containing all resources and deploy the .aar file to a server. The bottom-up method with

codes begins with creating service codes, creates a service descriptor, an .aar file

including all resources, and deploys the .aar to a server. To consume web service, we

 Transpor

Protocol

Server Side JAX-
RPC

Runtime System

JAX-RPC JAX-RPC

Client Side JAX-
RPC

Runtime System

 Stub

Service Endpoint

WSDL

WSDL<->Java

Service Client

Dispatch

Containe

37

need to create the client stub using WSDL2Java utility and create the client application

using the generated stub to call a service.

2.4. Interoperability studies

Interoperability is required in the integrated system with complex and distributed

software modules to create a new system. It is not easy for software modules in the

different domains to interoperate with other software modules. Sometimes we consider

the interoperable problems among heterogeneous systems as message mapping problems.

It is partly true, but the message mapping is not always true to create interoperable

systems. At this point, we have a question regarding what is the definition of

interoperability. The IEEE has four definitions of interoperability:

� The ability of two or more systems or elements to exchange information and to

use the information that has been exchanged.

� The capability for units of equipment to work together to do useful functions

� The capability, promoted but not guaranteed by joint conformance with a given

set of standards, that enables heterogeneous equipment, generally built by various

vendors, to work together in a network environment.

� The ability of two or more systems or components to exchange information in a

heterogeneous network and use the information.

We can find more definition of interoperability in the DoD:

� The ability of systems, units, or forces to provide services to and accept services

from other systems, units, or forces, and to use the services so exchanged to

38

enable them to operate effectively together [21].

� The condition achieved among communications-electronics systems or items of

communications-electronics systems equipment when information or services can

be exchanged directly and satisfactorily between them and/or their users. The

degree of interoperability should be defined when referring to specific cases. For

the purposes of this instruction, the degree of interoperability will be determined

by the accomplishment of the proposed Information Exchange Requirement

(IER) fields [22].

� (a) Ability of information systems to communicate with each other and exchange

information. (b) Conditions, achieved in varying levels, when information

systems and/or their components can exchange information directly and

satisfactorily among them. (c) The ability to operate software and exchange

information in a heterogeneous network (i.e., one large network made up of

several different local area networks). (d) Systems or programs capable of

exchanging information and operating together effectively [23].

From the above definitions, we can partly understand the meaning of interoperability.

According to the complexity of interoperability used, terms to define the interoperability

are changed. For example, interoperability is satisfied if some systems have capability for

communication and exchange of information. But in some situations, interoperability

conditions could be different.

Levels of information system interoperability (LISI) are categorized into five levels

according to the increasing levels of complexity of systems interoperability. The five

39

levels are defined in the table 2-1.

Table 2-1 Five levels in LISI
Level 0 Isolated interoperability in a manual environment between stand-alone

system
Level 1 Connected interoperability in a peer-to-peer environment
Level 2 Functional interoperability in a distributed environment
Level 3 Domain based interoperability in an integrated environment
Level 4 Enterprise-based interoperability in a universal environment

LISI concentrates on technical interoperability and the complexity of interoperations

between systems and does not mention the environmental and organizational issues that

affect the construction and maintenance of interoperable system.

 The Organizational Interoperability Maturity Model (OIM) broadens the LISI model

into the more abstract layers of command and control support [72]. OIM in table 2-2

focuses on the human-activity and user aspects of military operations.

 Table 2-2 Level of OIM

Level 0 Independent
Level 1 Ad hoc
Level 2 Collaborative
Level 3 Integrated (combined)
Level 4 Unified

NATO C3 Technical Architecture (NC3TA) reference model for interoperability

provides four degrees of interoperability in table 2-3.

Table 2-3 Degree of NC3TA

Degree 1 Unstructured Data Exchange: exchange of human-interpretable
unstructured data such as text

Degree 2 Structured Data Exchange: exchange of human-interpretable structured
data intended for manual and/or automated handling.

40

Degree 3 Seamless sharing of Data: automated sharing of data amongst systems
based on a common exchange model.

Degree 4 Seamless Sharing of Information: universal interpretation of information
through data processing based on cooperating applications.

NC3TA categorized how operational effectiveness could be enhanced by structuring

and automating the exchange and interpretation of data and was updated to closely

reflect the LISI model.

Levels of Conceptual Interoperability (LCIM) model addresses levels of conceptual

interoperability that go beyond technical models like LISI [4]. This model is intended to

a link between conceptual design and technical design.

Table 2-4 Level of LCIM

Level 0 System specific data: black box components with no interoperability or
shared data

Level 1 Documented data: shared protocols between systems with data accessible
via interfaces.

Level 2 Aligned static data: common reference model with the meaning of data
unambiguously described. Systems are black boxes with standard
interfaces. However, even with a common reference model, the same data
can be interpreted differently in different systems.

Level 3 Aligned dynamic data: Use of data is defined using software engineering
methods like Unified Modeling Language.

Level 4 Harmonized data: Non-obvious semantic connections are made apparent
via a documented conceptual model underlying components.

Three linguistic levels of interoperability have been defined [8, 25]. These levels are

illustrated in table 2-5:

 Table 2-5 Linguistic levels of interoperability

Linguistic
Level

A collaboration of systems or services
interoperates at this level if:

41

Pragmatic – how
information in messages is
used

The receiver reacts to the message in a manner that
the sender intends (assuming non-hostility in the
collaboration).

Semantic – shared
understanding of meaning
of messages

The receiver assigns the same meaning as the
sender did to the message.

Syntactic – common rules
governing composition
and transmitting of
messages

The consumer is able to receive and parse the
sender’s message

 The linguistic levels of interoperability focus on the meaning of messages interpreted

in the view of syntactic, semantic, and pragmatic, whereas, LISI categorizes the complex

system into five levels for interoperability. Implementations of the Interoperability system

vary according to the domains and requirements. The above mentioned research describes

a generic approach of interoperability in the specific domains such as DoD and SoS.

42

CHAPTER 3. OVERALL ARCHITECTURE OF DEVS

SIMULATOR SERVICES INTEROPERABILITY

 The overall architecture of DEVS simulator services interoperability consists of web

technology and namespace concepts. The web service provides common infrastructure of

system/language interoperability and the namespace presents a look-up table for messages

which are passed between services.

Figure 3-1 Creation and consuming of DEVS simulator services

 Figure 3-1 explains the roles of service providers, a user, and a DEVS namespace to

illustrate how DEVS simulators interoperability works. A service provider generates web

services with a specific language, which contain DEVS models and uses predefined

service operations, and before loading the web services, the provider registers message

types used in the DEVS model to the DEVS namespace. Other provider gets the schema

containing a message type from the DEVS namespace to create a web service which is

43

interoperable with web services with the same message types. The web service contains a

location of the DEVS namespace and information of types of messages.

 The user integrates DEVS simulator services whose information is displayed as a

XML formed document conforming to its schema document called devswsintegrator.xsd

and executes the integration of DEVS simulator services through parsing the XML

document.

 In this chapter, we discuss a structure and a design of DEVS simulator service

conforming to DEVS simulation protocol and the DEVS namespace containing data types

for DEVS models in the DEVS simulator services. Also, we mention a structure and a

function of a document of devswsintegrator.xsd, and an extraction of a XML document

resulting from the user’s integration of DEVS simulator services.

3.1. System of Interoperability of DEVS Simulator Services

 The interoperability system of DEVS simulator services consists of three parts: a

DEVS namespace, DEVS simulator services, and DEVS simulator service integration and

execution (DSSIE). The DEVS namespace is a schema that contains message type

definitions. It is used to recognize message types between distributed or different systems

when the systems need to cooperate in a system of systems [26]. The message types of

each service are registered in the DEVS namespace before the service publishes in the

server.

44

DEVS

Simulator

Service

Common

Interface

(WSDL)

Common

Interface

(WSDL)

OS 1 / Language 1

DEVS namespace

Use DEVS

message types

Register DEVS

message types

DEVS Simulator Services

Integration/Execution

Use DEVS message types

Simulation

protocol

Simulation

protocol

DEVS

Simulator

Service

OS 2 / Language 2

Schema Schema

Service

Provider 1
Service

Provider 2

Web

service

Web

service

user

Web Server 1 Web Server 2

Figure 3-2 Overall system of DEVS simulator services interoperability

 The DEVS simulator service has a common interface to provide interoperability

between different platforms or different languages. The common interface is called

WSDL defining operations, message types, and the location of the service. To generate a

common interface for the DEVS simulator service, there are different ways according to

implementation of web service referred to web service middleware. Through the

middlewares, the DEVS simulator service can be implemented on various operating

systems and computer languages. Through various implementations of the DEVS

simulator service, SOAP messages, which are used as request and response messages of

operations of the web service, provide loosely coupling and neutral message passing.

45

Each middleware for the web service provides functions to convert SOAP messages to an

instance of a specific language and vice versa.

 In figure 3-2, two DEVS simulator services provide common interfaces on the

different platforms. A common interface contains operations for DEVS simulation

protocol to simulate DEVS models in different services.

 DSSIE has two functions, the integration of the DEVS simulator services based on

message types and the execution of the integrated system. The integration of the DEVS

simulator services is performed by a GUI called a DEVS simulation service integrator

which uses the DEVS namespace to verify if couplings between two services are possible

or not. The data on the integrator are written to a XML document sent to the executor

which simulates DEVS simulator services. The executor adopts Java Architecture for

XML Binding (JAXB) API to make handling the XML easy. In the figure 3-2, the DSSIE

obtains DEVS message types of DEVS simulator services from the DEVS namespace to

integrate services and simulate the DEVS services with simulation protocols.

3.2. The DEVS namespace

 The DEVS namespace is storage for types of messages which are used in DEVS

models. The types are expressed into an element of XML schema that describes a

structure of the XML document. XML schema assigns a unique name to each element.

For example, if the name of the element is Job, Job element is unique in the schema

document. Uniqueness of a type gives clearness for message passing between systems on

interoperable operation.

46

 WSDL for a DEVS simulator service defines data types for each operation. When the

web service communicates with a user, the operations of the web service receive an

argument as XML document embraced in a SOAP message. The XML document is

created in conformance with a type of schema in WSDL. The return value of operations is

generated above the procedure. The data types in WSDL are just defined for operations of

a DEVS simulator not a DEVS model. In the view of simulation, the structure of a DEVS

message consists of a set of content which has a port name and an object. The DEVS

model uses an object as a message. That means the message type has no common type

covering all DEVS messages in the different languages. To overcome this problem, a

DEVS message is converted to a XML document in the web service level. This approach

works if DEVS simulator services use the same messages in the DEVS models.

Figure 3-3 The DEVSNamespace.xsd

 To integrate DEVS simulator services in different platforms or languages, information

of model level messages should be known to a user. To meet this end, we employ a DEVS

namespace to the system for the interoperability of DEVS simulator services. The DEVS

47

namespace is a document called DEVSNamespace.xsd that we can access through the

network.

 Figure 3-3 shows the DEVSNamespace.xsd document which has a data type named as

Job. In the document, xsd is a prefix referring to “http://www.w3.org/2001/XMLSchema”

site containing primitive type definition. For example, type = xsd:int means type is int

value defined in the “http://www.w3.org/2001/XMLSchema”. [67] has more information

about the meaning of basic elements of XML schema and how a schema document is

composed.

Figure 3-4 Conversion of Job class to schema data type

 Figure 3-4 shows the conversion of a language class to a schema type. If a Job class is

used in the DEVS model, the Job class should be expressed as a corresponding schema

data type. In the example, Job class has two variables named id and time which are

assigned to int and double type, respectively. The schema data type represents all

variables in the class. The name of class is the name of a data type and variables become

sub elements of the data type. The sub elements are assigned to primitive data types like

variables in the class.

48

 Conversion of a class to a schema is performed by a service provider. The schema

document resulting from the conversion is registered into the DEVS namespace. Figure 3-

5 depicts a procedure of registration of a schema data type into a DEVS namespace server.

The procedure starts with sending a schema document to a web service which has four

operations. One operation, called checkSchema, has one argument for the schema

document and a Boolean return type to send a result of checking if the schema type is in

the DEVS namespace. Another operation, called registerSchema, is for registering the

schema document to the DEVS namespace. The getDomains and getMessageTypes

operations are used to search the DEVS namespace and get a specific message type.

Figure 3-5 The registration of a schema document

49

3.3. The Structure and design of DEVS Simulator Service

3.3.1. The structure of DEVS simulator service

 To implement a web service for a DEVS simulator, a middleware for helping create

the web service is needed such as Apache eXtensible Interaction System (AXIS2) [9]

or .Net framework [12]. The middleware provide API to make building a web service

easy, hiding complicating network programming. AXIS2 can be adopted as web service

middleware which is embodied by Java program while .Net can be used for C++ or C#

user.

Figure 3-6 The software stacks of a DEVS simulator service

 Figure 3-6 shows that DEVS simulator service is supported by several APIs to

implement a DEVS simulator services interoperability system. The bottom layer is a web

service middleware which provides the network connection environment and a handler of

SOAP messages between a web service and a client program. The handler of SOAP

messages includes a convertor of SOAP messages to instances of application and vice

50

versa. This layer can be selected according to an operation system and a language that

supports the web service.

 DEVS modeling and simulation (DEVS M&S) API enable DEVS M&S to be used in

the web service. DEVS M&S can be implemented with different environments and

languages. For example, if a service provider uses a Java language, DEVS M&S for Java

should be used to generate a DEVS simulator service. What language is used in the

middleware decides what kind of implementation of DEVS M&S is used. DEVS M&S is

embodied with Java, C++, C#, and so on [27, 28].

 The role of DEVS interface is connection between web service operations which is

described by WSDL, and DEVS M&S. The DEVS interface is required because DEVS

M&S API do not support what web service operations want. It helps web service

operations extract information in the DEVS M&S.

 Web service operations are described in the WSDL and in a class which has methods

whose name is the same as the web service operations. The web service operations are

designed to reflect the provider’s intention. The operations of DEVS simulator service is

selected to conform to DEVS simulation protocol.

3.3.2. Design of the DEVS simulator service

 The design of the DEVS simulator service starts from consideration of what is the role

of the DEVS simulator service. First of all, the DEVS simulator service is capable of

handing the information of a DEVS model to a requestor in order to make the DEVS

model simulated with other DEVS simulator services. Second, the DEVS simulator

51

service passes the information of schema location and message types to a client to let the

client know information of schema location and message types of the DEVS model. Last,

the user should know the result of simulation after finishing the execution of the

integration of DEVS simulator services. Therefore, reporting functions are included in the

design of the DEVS simulator service.

 As a result of all considerations, DEVS simulator service has three categories: DEVS

simulation protocol operations, schema location and message type operations, and

reporting function operations. Figure 3-7 represents three categories of operations and

signatures of operations.

Figure 3-7 The operations of DEVS simulator service

 The operations for DEVS simulation protocol at the top of the figure 3-7 are utilized

when DEVS simulation is executed by a user. There are nine operations: getSimulator,

initialize, getTN, lambda, getOutput, receiveInput, deltfcn, addCoupling, and exit. The

getSimulator operation decides which simulator is used. There are two kinds of

52

simulators which are for centralization and decentralization. If its argument is set to false,

the DEVS simulator service uses a simulator for centralization. If true, it uses a simulator

for decentralization. The addCoupling operation is used in case of a simulator for

decentralization to let the simulator know coupling information for sending messages to a

destination service. When a simulator is selected, the simulator has a DEVS model.

 DEVS simulation protocol starts with the initializing operation which is called when

the simulation begins. The getTN operation returns next internal event time (TN) to a

coordinator which is in the DEVS simulator services integration and execution as seen in

figure 3-2. The lambda operation generates output messages if the model has an internal

event. The getOutput operation returns output messages which consist of the XML

document to the coordinator which looks up the coupling table and requests the

invocation of the receiveInput operation to a corresponding DEVS simulator service. The

receiveInput operation sends output messages, input port name, and output port name to

the target service. The input port name is used to generate DEVS messages in the target

service. Thereafter, the deltfcn operation changing the state of the model and scheduling

TN is called to all DEVS simulator services. This is one cycle of DEVS simulation

protocol. The simulation protocol is repeated until meeting the certain condition to stop

the simulation such as infinity of TN of all simulator services, and the number of

simulation protocol cycles.

 The operations for schema location and message type in middle of the figure 3-7 have

four operations which are getSchemaInfo, getType, getInports, and getOutports. Each

simulator service has information of schema location and model’s message types which is

53

registered in the schema repository called DEVS namespace and exposes the location of

the schema, the names of input ports and output ports, and message types used in the

input or output ports with the four operations. The getSchemaInfo returns the location of

schema, the getType returns the type for an input or output port when sending a port name,

the getInports returns an array of names of input ports of the model, and the getOutports

returns an array of names of output ports of the model. These operations are used when

DEVS simulator services are integrated based on matching message types between the

models.

 The operations of the reporting function in the bottom of the figure 3-7 has two

operations, that is, getConsole and getResult. The getConsole operation returns a

document produced by the simulator service during simulation protocol cycles. The

document can be used to check any bug in the model and validate if the model in the

simulator service is appropriately working. The getResult operation returns the result of

the simulation if the simulator service generates data written in the result document

located in the specific place.

3.4. WSDL of the DEVS Simulator Service

 Based on the operations as seen in the figure 3-7, we can obtain WSDL for the DEVS

simulator service by using a tool or creating a web service. AXIS2 provides a tool named

Java2WSDL to create WSDL conforming to the Java class. The procedure of creating

WSDL of the DEVS simulator service is as follows.

� Make a Java class including all operations

54

� Compile the class

� Apply a JAVA2WSDL tool with options

 Figure 3-8 represents the Java interface for the DEVS simulator service to generate

WSDL. We add two operations for the future named isReady4delta and simulateReal.

Once creating the Java interface, we should compile it for a Java2WSDL tool.

Figure 3-8 Java Interface of Simulator

 Figure 3-9 shows how to use the Java2WSDL tool. The tool requires as options the

name of WSDL document, the location of the DEVS simulator service, and the target

names-pace. After applying the Java2WSDL, we get the WSDL for the DEVS simulator

service.

 The other way to get WSDL for the DEVS simulator service is from the web service.

When completing uploading the web service to the web server, the web service

middleware creates the WSDL for the web service. The WSDL can be seen through a web

55

browser if the web service is working properly.

Figure 3-9 The usage of the Java2WSDL tool

3.5. Creation of the DEVS Simulator Service

 There are two ways to create a web service. One way is to use the WSDL created by

using a Java2WSDL tool. The other way is to directly write the codes for the web service

based on defined operations in 3.3.2. When using WSDL, we can use command line or

the plug-in for the IDE such as Eclipse or intelliJ IDEA [73].

 Figure 3-10 displays the procedure to generate a web service. In the left hand side, we

can create the web service with the WSDL where a wsdl2java tool automatically creates a

skeleton Java file, message handling file, and service.xml. The service provider adds

contents to the operations from the skeleton document. In this procedure, supporting

classes can be used in the skeleton document. For example, in case of a DEVS simulator

service, DEVS M&S API and DEVS interface API can be used. In the service.xml, the

information of the web service is written to let the web service middleware know what

the class of the web service is and which message handlers should be used for operations.

Thereafter, all codes should be compiled and archived to be easy to deploy the web

56

service.

WSDL

Server side code generator

Skeleton code

Message handling codes

service.xml

Add the logic into the

skeleton code

Archive all classes

(.aar, .dll)

Deploy the archive

into the server

Make codes for the

Web service

Create service.xml

Figure 3-10 The procedure of creation of the web service

 On the right hand side, we can create a web service directly from the source codes

without WSDL. The main source code should contain all operations defined in 3.3.2.

After adding all logics in the operations, next procedure is same as that of WSDL based

57

web service generation.

3.6. DEVS Simulator Service Integration and Execution

 In this section, we discuss the invocation of a web service and composition of

interoperable DEVS simulator services with message matching coupling. We show how

to execute the integrated DEVS simulator services. The integration of DEVS simulator

services is performed through the GUI with which we can easily get a XML document

describing information of DEVS simulator services and of coupling between the services.

Also, the XML document is used as an input during the execution of Interoperable DEVS

simulator services.

3.6.1. Invocation of a DEVS simulator service

 There are two approaches to make a client program which invokes the web service.

One is to use the WSDL with which a client codes are generated using a client code

generation tool. The other is to use middleware API for dynamic invocation of web

services. In figure 3-11, two kinds of invocations begin with handling the WSDL. The left

side in the figure 3-11 depicts how an application uses a tool based generated code called

a client stub [20]. The client stub has network connection information, signatures of

operations, SOAP message handler, and XML to class converter vice versa. A user can

access to a web service with its client stub. There are two types of invocation of a web

service, that is, synchronous and asynchronous invocations. When using the tool of

AXIS2, a callbackhandler code is generated to support asynchronous invocation of the

58

web service [20]. The asynchronous invocation can reduce total time of invocations when

lots of web services are invoked. If the callbackhandler is not used in the application, the

invocation of the web service is synchronous.

Figure 3-11 The procedure of consuming a web service

 Without using a client stub, we can invoke a web service with a dynamic method. The

dynamic invocation of a web service needs some information from the WSDL. WSDL

describes a types tag that are sent and received during the invocation, a message tag that

includes one type, a portType tag that describe the forms of operations, a binding tag that

indicates a communication method, and a service tag that displays the location of the

service. Figure 3-12 describes which information is needed when a web service is

59

invoked dynamically. WSDL-based dynamic invocation function requires five arguments:

a name of WSDL document, a name of an operation, a service location, target name space,

and an argument of an operation which is a request message. As seen in figure 3-12,

target name space, the names of operations, and the service location can be found in the

WSDL. To make a request SOAP message, information of types and message on WSDL

is used. The dynamic invocation of a web service is implemented with AXIS2.

Figure 3-12 WSDL-based dynamic invocation of a web service with AXIS2

 The dynamic invocation web service client function returns a response of the web

service. The client function consists of an operation client, a request message, and

execution of the operation client. Initially a SOAP message is returned into the client

function, but it filters the SOAP message to get the body context which is a response

message.

60

3.6.2. Integration of DEVS simulator services

 As seen in the figure 3-13, DEVS Simulator Services Integrator is graphic user

interface (GUI) which consists of five functionalities: a WSDL handler, a title of

integration, a DEVS service handler, a coupling handler, and writing a XML document.

The WSDL handler saves on a specific place a selected WSDL which is used in the

integration. If a DEVS simulator service is known, we can get WSDL of the service with

the WSDL handler. In the GUI, there are three components to enter an address of WSDL

and save WSDL. A textfield component is where an address of WSDL is written. After the

WSDL name of DEVS service is written in the textfield by the URL label, clicking the

save WSDL button writes the WSDL from the URL address on a file. The title of

integration provides a file name of a XML document.

Figure 3-13 DEVS Simulator Services Integrator

61

 The DEVS service handler begins with clicking the “ADD” button by a DEVS

services label. The information of service GUI shows up immediately as seen in the figure

3-14. The GUI displays a repository where WSDLs are saved if “Show” button is clicked.

The user selects a WSDL file which is used in the integration. The selected WSDL from

the repository provides a WSDL file name, a model name, WSDL location, and schema

location obtained by invocation of an operation called getSchemaInfo in the figure 3-7.

That information is displayed on the table below the “DEVS services“ label.

Figure 3-14 The Information of a service

 After selecting some DEVS simulator services in the DEVS service handler, the

coupling handler is carried out. Pushing the “ADD” button by the “Coupling” label shows

a GUI for helping make coupling between DEVS simulator services as seen in the figure

3-15. The coupling GUI displays a source, an output message, a destination, and an input

message if the output message is matched to the input message. When displaying an

output message and an input message, the invocations of three operations are performed

to get the name of the output ports and input ports and the message type of each port. The

62

operations are getInports, getOutports, and getType in the figure 3-7. The coupling

information is shown in the table below the “Coupling” label.

Figure 3-15 Coupling GUI

 After finishing the integration of DEVS simulator services, clicking the “OK” button

creates a XML document structured to contain the information from the integrator. The

schema for the XML document is defined to validate an instance of the schema. The

XML document begins with a devswsintegrator tag, and has five tags, that is, title,

services, couplinginfo, inports, and outports. The services tag can have many model tags

which have wsdl, name, location, and schema tags. Similarly, couplinginfo tag can have

many coupling tags which have source, outport, destination, and inport tags. The

devswsintegrator.xsd is the following.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:complexType name="inport">
 <xs:sequence>
 <xs:element name="inport" type="xs:string"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="outport">
 <xs:sequence>

63

 <xs:element name="outport" type="xs:string"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="modelinfo">
 <xs:sequence>
 <xs:element name="wsdl" type="xs:string" />
 <xs:element name="name" type="xs:string" />
 <xs:element name="location" type="xs:string" />
 <xs:element name="schema" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="couplings">
 <xs:sequence>
 <xs:element name="source" type="xs:string" />
 <xs:element name="outport" type="xs:string" />
 <xs:element name="destination" type="xs:string" />
 <xs:element name="inport" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="coupling">
 <xs:sequence>
 <xs:element name="coupling" type="couplings"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="model">
 <xs:sequence>
 <xs:element name="model" type="modelinfo"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="devswsintegrator">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string" />
 <xs:element name="services" type="model" />
 <xs:element name="couplinginfo"
 type="coupling" />
 <xs:element name="inports" type="inport" />
 <xs:element name="outports" type="outport" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

3.6.3. Execution of integrated DEVS simulator services

 Execution of integrated DEVS simulator services consists of two parts. One is to

prepare the simulation, and the other is simulation. The preparation of the simulation

64

includes making instances of client proxies for DEVS simulator services and structuring

coupling information with a XML document. To easily handle the XML document, JAXB

is used as seen in the figure 3-16. JAXB generates Java classes containing schema tags

through compilation of the schema and converts the XML document to Java instances.

From the Java instances, we can extract the information of all tags that is used to generate

client proxies and to make a data structure for coupling information.

Figure 3-16 The procedure of preparing simulation

 The execution of the simulation adopts a centralized virtual time simulation method

which controls simulation protocols in the coordinator and distributed real time

simulation. Figure 3-17 represents the centralized virtual time simulation protocol that

displays calling operations in the coordinator to the DEVS simulator services. The

coordinator has the instances of client proxies for the DEVS simulator services. The

simulation begins with calling an initialize operation to all simulator services. After that,

the coordinator requests a getTN operation to get next time for an internal event of a

65

DEVS model. Calculating a minimum time of next times, a lambda operation is called

with an argument which is the minimum time. After the lambda operation, the simulator

service with minimum next time produces an output message. The response of the

getOutput is output messages of the simulator services. The coordinator looks up the

coupling information which displays the flow of messages to inject the output message to

a corresponding simulator service. Through a receiveInput operation, the output message

is sent to the simulator service which has the corresponding DEVS model. After routing

the output message, the coordinator requests a deltFunc operation to all simulator services

to execute an internal or external event function in the simulator service. The coordinator

repeats this procedure except the initialization of the simulator service until meeting a

certain condition to terminate the simulation.

Figure 3-17. The centralized simulation protocol

66

Figure 3-18 The decentralized real time simulation protocol

Figure 3-18 depicts decentralized real time DEVS simulation protocol which starts

with the initialization of the DEVS models in the RTSimulators that the DEVS simulator

service provides for the decentralized real time simulation. Each RTSimulator waits for

the internal event time (TN) after which internal transition occurs. If one of the

RTSimulators has wall-clock time equal to TN, the RTSimulator produces an output

message, sends the output message to the RTSimulator with the corresponding DEVS

model according to the coupling information, and executes a delta function which

rearranges the state and the internal event time of the DEVS model. Server2, figure 3-18,

shows “send out message” after internal transition and wait again with TN regenerated by

the delta function. Meanwhile, Server1 receiving a message from the Server2 executes an

external transition function included by the delta function and recalculates TN to wait.

The interaction between the server2 and the server1 does not affect the server3 which

67

waits for its internal event time. The decentralized real time simulation is terminated

when the internal event time of each DEVS model goes to infinity.

3.7. DEVS message to XML message

 DEVS messages are defined as pairs consisting of a port and a value in the DEVS

modeling and simulation. The DEVS implementations of the DEVS theory use the pairs

to express DEVS messages. That means that the DEVS messages can be converted to a

common expression in the XML. We design a common XML message to cover generic

DEVS messages.

Figure 3-19 The structure of the XML message

 Figure 3-19 represents the structure of the XML message starting with a Message tag.

The Message tag consists of content tags whose elements are a port and an entity tag. The

port tag contains the name of the port through which messages are sent. The entity tag

expresses any object as a message used in the DEVS model. It has a class tag containing

the name of the object. Tags under the class tag are created according to the number of

68

variables of the object. The tags have an attribute called type describing the type of the

variable.

Figure 3-20 The DEVS message and XML message in the web service.

 Figure 3-20 represents conversion of DEVS messages to XML messages and vice

versa. A DEVS simulator service consists of DEVS modeling and simulation (DEVS

M&S), DEVS interface, and web service. The DEVS M&S handle the DEVS messages,

and the DEVS interface converts DEVS messages to XML messages, and the web service

generates an SOAP message including the XML messages. This procedure is called

serialization. The opposite procedure converts XML messages to DEVS messages. It is

called deserialization.

69

CHAPTER 4. IMPLEMENTATION OF THE DEVS

NAMESPACE AND DEVS SIMULATOR SERVICES

 DEVS modeling and simulation is implemented with Java, C++, or C# languages

according to intention of the designers. To demonstrate the concept of interoperability

using DEVS Simulators, two DEVS M&S instances implemented with different computer

languages and system environments are used. One is DEVSJAVA [10] developed with

Java language by ACIMS lab, and the other is ADEVS [11] embodied with C++. In this

chapter, we describe the implementation of DEVS namespace, how to create a DEVS

simulator service with two different DEVS implementations based on the previous

chapter, and XML to the DEVS message conversion method.

4.1. Implementation of the DEVS Namespace

 We created a web service called NamespaceService through which Schema of a

DEVS simulator service is registered and browsed. Figure 4-1 illustrates a procedure of

registering and browsing a schema used in a DEVS simulator service. A service provider

has responsibility of registration of a schema. When the provider registers the schema, the

provider uses a GUI called schema data register. The GUI has client codes for

NamespaceService web service, which can help easily invoke operations. It displays the

response of the operations. Any web service provider who uses a Java based environment

or .Net based environment can use the GUI to register a schema. If a user wants to browse

70

the DEVS namespace, the user can use a browsing GUI consisting of two parts. One part

is to display all data types in the DEVS namespace and the other part is to show the

schema document corresponding to the data type chosen by the user.

Provider

DEVS

Namespace

Register GUI

User

Browsing GUI

Web Service for

DEVS namespace

Schema

1

Schema

3

Schema

2

Figure 4-1 Overview of registering and browsing schema

4.1.1. The GUI for schema data registration

 The GUI has three functions: to enter message information such as class name,

method name and type, to compose a schema document, and to check and register the

schema to DEVS namespace. A service provider can use this GUI to make sure that the

schema of DEVS message is registered or to register the schema into the DEVS

namespace. If a name of DEVS message is “Job” and the “Job” message has two

variables called “id” and “time” whose types are int and double, respectively, the provider

71

provides information of DEVS messages including a domain name which represents a

name of a DEVS model. Figure 4-3 represents the result of conversion “Job” message to a

schema. The table on figure 4-3 has two columns, Message and Contents, that display the

messages using the domain. There are two buttons called “ADD” and “Remove” to add or

remove a row in the table. A provider adds DEVS messages through an “ADD” button

which makes a type generator GUI, as shown. As seen in the figure 4-2, the type

generator represents a DEVS message with information of a class name, variable names

and types. When the provider finishes entering the information of the DEVS message, a

schema document is created and displayed by clicking the button called “Generating

Schema”. In figure 4-3, we can see a schema document containing “EFP” domain name,

“Job” class name and all names and types of variables in the “Job” class.

Figure 4-2 The GUI for type generator

72

Figure 4-3 The Example of the GUI for schema register

 The “Checking Schema” button makes a checkSchema operation in Namespace-

Service web service invoked with a schema document, and gets the return value which is

a Boolean type. If the return value is true, the schema is already registered. If false, the

schema needs to be registered in the DEVS namespace. In case the return value of the

checkSchema operation is false, the “Registering Schema” button gets enabled and the

schema is registered by clicking the button. In this case, a registerSchema operation is

invoked.

73

4.1.2. Browsing GUI

Figure 4-4 represents the browsing GUI which has two buttons called “Search

Domains from DEVS Namespace” and “Select Domain”. If a user clicks the “Search

Domains from DEVS Namespace” button, the GUI shows all domains in the list under

that button. When the user selects one of the domains and clicks the “Select Domain”

button, then the GUI shows the schema document for the selected domain.

Figure 4-4 The Example of the GUI for schema browser

4.1.3. NamespaceService web service

NamespaceService web service is designed to check, register, browse, and get a

74

schema into DEVS namespace. There are four operations in the service. They are called

“checkSchema”, “registerSchema”, “getDomains”, and “getMessageTypes”. The

“checkSchema” and “registerSchema” are used to check and register a schema document.

Both operations have one argument and one return value, which are a string type and

Boolean type, respectively. The “checkSchema” operation extracts the first element of a

schema, called a domain name, and checks if the domain name is on the DEVS

namespace document. If the name is on the DEVS namespace, the “checkSchema”

returns true. If not, the “checkSchema” returns false. The “registerSchema” operation

adds the schema document to the DEVS namespace. If there is no error, then the

operation returns true. If there is an error during addition of the schema, the operation

returns false.

The “getDomains” and “getMessageTypes” are used to browse and get a schema

document. The “getDomains” operation has no argument and a string array for a return

type. The string array contains all domain names in the DEVS namespace. The

“getMessageTypes” has a string as an argument and a string as a return value. The return

value contains a schema document for the argument.

4.2. Simulator Services encapsulating DEVSJAVA

4.2.1. DEVSJAVA

 DEVSJAVA consists of three libraries, that is, DEVS M&S supporting data structures,

modeling, and simulation. All libraries follow an object oriented design concept which

presents inheritance, polymorphism, and information hiding. The modeling library is used

75

to create two kinds of DEVS models which are atomic and coupled models. The entity

class is a base class for all modeling and DEVS M&S supporting data structure classes as

seen in the figure 4-5 [25]. The devs class has basic methods constructing DEVS models

which are divided to atomic class and coupled class. The digraph class inherits from

coupled class and has a container class which stores all devs class components in the

coupled model.

Figure 4-5 DEVSJAVA class hierarchy

 The container class is used to handle multiple messages in and out to or from the

DEVS model. The message class inherited from the container class contains the set of

content classes which consist of a port name and an entity class.

76

entity

entity(String)

Sring get_name()

boolean equal(entity)

boolean eq(String)

boolean

greater_than(entity)

container

container()

void add(entity)

int get_length()

boolean is_io(entity)

pair

pair(entity1,entity2)

entity get_key()

entity get_value()

bag

bag()

void remove(entity)

int number_of(entity)

set

set()

void add(entity)

relation

relation()

void add(entity1,entity2)

void remove(entity1,entity2)

set assoc_all(entity)

function

function()

void replace(entity1,entity2)

void remove(entity)

entity assoc(entity)

order

order()

void add(entity)

entity Get_max()

void remove()

queue

queue()

entity front()

stack

stack()

push[=add]

pop[=remove]

entity top()

list

list()

void insert(entity, int)

void remove(int)

void list_ref(int)

Figure 4-6 Class hierarchy of container class

77

 The data structures support modeling and simulation with holding necessary objects

such as models, simulators, and messages. Figure 4-6 shows the container class hierarchy

and their main functions. The class is roughly characterized as follows.

• entity - the base class for all classes of objects to be put into containers

• pair - holds a pair of entities called key and value

• container - the base class for container classes, provides basic services for the

derived classes

• bag - counts numbers of object occurrences

• set - only one occurrence of any object is allowed in.

• relation - is a set of key-value pairs, used in dictionary fashion

• function - is a relation in which only one occurrence of any key allowed

• order - maintains items in given order

• queue - maintains items in first-in/first-out (FIFO) order

• stack - maintains items in last-in/first-out (LIFO) order

• list - maintains items in order determined by an insertion index

 The simulation library helps execute DEVS models. There are two main classes called

a coordinator and a simulator in the simulation library. The simulator controls an atomic

model, and the coordinator manages the simulators through the message passing such as

simulation time and DEVS messages. In case of a DEVS coupled model, it has a

hierarchical structure of DEVS components and each component is encapsulated by a

coordinator or a simulator according to the type of components. A coupled model is

assigned to a coordinator and an atomic model is assigned to a simulator. A top level

78

coupled model is assigned to a top level coordinator which decides minimum time

advance from all coordinators and simulators which send time advance and controls

simulation protocols. Figure 4-7 represents assignment of a simulator or a coordinator to

each model in a top level coupled model [13].

Coupled

Simulator 4

Coupled

Simulator 3

Coupled

Coordinator

putMessage

Coupled

1

sendDownMessage

putMyMessage

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("DeltFunc“)

Coordinator

Atomic

4

Atomic

1

Atomic

2

Coupled

Simulator 1

Coupled

Simulator 2

putMessage

putMessage

putMessage

putMessage

Atomic

3

Simulation protocol

Message passing

Figure 4-7. The view of relationship between a model and a simulator or a coordinator

 The simulation of DEVS model starts with calling a simulators.tellAll(“initialize”)

function at the top level coordinator as seen in figure 4-5. If a coupled coordinator

receives a “initialize” message, it calls the same function as that called in the coordinator

to its coupled simulators. Dotted lines display propagation of the simulation protocol to

all coordinators and simulators. After finishing the simulators.tellAll(“initialize”), the

79

coordinator invokes a simulators.AskAll(“nextTN”). All coupled simulators get the

nextTN from an atomic model embedded in them. In case of a coupled coordinator, it

propagates a simulation protocol to its coupled simulators and gets the nextTNs from the

coupled simulators. It sends minimum nextTN to the coordinator. The coordinator selects

minimum nextTN from all nextTNs, and calls a simulators.TellAll(“computeInput-

Output”) to low level coupled coordinators and simulators with the minTN. Each coupled

simulator generates and stores an output message. When it receives “sendMessage” from

the coordinator or the coupled coordinator, it sends the output message to other coupled

coordinators or simulators using a “putMessage” method. In case of different level

message passing, there are two functions to send messages to a lower level or an upper

level, they are, “sendDownMessage” and “putMy-Message”. After all output messages are

placed according to the coupling information, the coordinator invokes a simulators.Tell-

All(“deltfunc”) to make all simulators process internal or external events. This is one

cycle of DEVSJAVA simulation which is terminated in meeting an ending condition.

 DEVS message can be any object inherited by an entity class. A container for DEVS

message is a content class which has two variables representing a port of a model and a

DEVS message. To cover multiple content classes, there is a container for contents which

is called a message class. More information about DEVSJAVA is in the [27].

4.2.2. DEVSJAVA interface

 DEVSJAVA is specific implementation of DEVS theory with the Java language.

To adept DEVSJAVA models to DEVS simulator service, interfacing classes called

80

DEVSJAVA interface are required. DEVSJAVA interface includes a Simulator class, an

Atomic class, a Digraph2Atomic class, and a Message class which has three functions for

DEVS message converting. The DEVSJAVA interface helps DEVS simulator service

extract information from the DEVSJAVA model and convert DEVSJAVA messages to

messages compatible to the web service.

 Modeling interface is an Atomic and a Digraph2Atomic class. The Atomic class has a

DEVSJAVA atomic class and basic atomic DEVS functions to provide information of the

DEVSJAVA atomic model. The Digraph2Atomic class is designed to represent a coupled

model as an atomic model because the DEVS simulator service provides atomic model

functions. DEVS modeling is closure under coupling which means behaviors of a coupled

model are expressed to behaviors of one atomic model.

coordinator coord

public void initialize() {

coord.initialize();

}

public void deltext(double e, message x) {

coord.simInject(e, x);

}

public void deltint() {

coord.wrapDeltfunc(coord.getTN());

}

public message out() {

coord.computeInputOutput(coord.getTN());

return (message)coord.getOutput();

}

public double ta() {

return coord.getTN() - coord.getTL();

}

Figure 4-8 The atomic model functions with a coordinator embedding a coupled model

Figure 4-8 shows a part of codes of the Digraph2Atomic class which represent an atomic

model with a coordinator class coming from the DEVSJAVA simulation package. When

81

converting a coupled model to an atomic model, the Digraph2Atomic extracts input ports

and output ports from the coupling information of the coupled model to provide ports to

the atomic model. Each function representing an atomic model is implemented by

functions provided by a coordinator. For example, initialize, deltext, and deltint functions

contain initialize, simInject, and wrapDeltafunc functions from a coordinator class,

respectively. A ta function contains getTN and getTL functions from the coordinator class.

An out function is expressed with computeInputOutput and getOutput functions

Figure 4-9 Simulator class view

 The Simulator class consists of basic atomic model functions, schema and ports

information function, and port type information functions. Figure 4-9 represents a

82

Simulator class which has an Atomic class, two Message classes, and two arrays of String.

The Atomic class can represent an atomic DEVS model or a coupled DEVS model using a

Digraph2Atomic class. The Message classes are used to handle input messages and output

messages. The arrays of String are for the names of input and output ports. Also, the

Simulator class has a Hashtable and a string variable for location of schema. The

Hashtable contains ports and type information as keys and values. With a getType method,

the type information of the port is obtained from the Hashtable. Therefore, the Simulator

class has methods to handle DEVSJAVA model and schema information of ports, and

connects the information of DEVSJAVA models to the DEVS simulator service.

Figure 4-10 Example of XML Object Message Handler

 The Message class converts a DEVSJAVA message class to XML message and vice

versa using an XMLObjectMessageHandler class. Figure 4-10 depicts the example of

83

conversion XML message to DEVS message and vice versa using XMLObjectMessage-

Handler. On the left side, the structure of DEVSJAVA message consists of multiple

Content classes which have a name of port and an entity class. In this example, a Job

class inheriting an entity class has two variables called id and time. The

XMLObjectMessageHandler takes a DEVS message as an input to generate a XML

message. The right side on the figure 4-8 displays the XML message for the DEVS

message. The tags follow the structure of the DEVS message. In the entity tag, there are

three tags called class, id, and time for a specific Job class example. The class tag

indicates a class name and the id and time tags have an attribute called type representing a

data type of the variable. The message tag can include multiple content tags to express

that DEVS models can get multiple messages during the simulation.

 Figure 4-11 illustrates the algorithm of the conversion of the DEVSJAVA message to

the XML message. The algorithm begins with receiving the DEVSJAVA message as an

argument. The msg in line 1 is a variable for a DEVSJAVA message. The messageXML is

declared to return the XML message. The document in line 3 represents a XML document

from which all XML elements are written. The messageElement representing a top tag in

the XML message is created from the XML document. From the msg in line 1,

contentIterator can be obtained as seen in line 5. The iterator contains a set of content

classes. We extract each content class to get the information inside the content in line 7.

The contentElement is created in line 8 and is appended to messageElement. From the

content class, a port name is obtained by the getPortName() function in the content class.

Thereafter, the portElement is created, has a text value as the port name, and is appended

84

to the contentElement. The entityElement is created in line 14 and is appended to the

contentElement.

Figure 4-11 The algorithm of the conversion of the DEVSJAVA message to the XML

message

 To get the DEVSJAVA model message, the getValue() function in the content class is

used. The DEVSJAVA model message can be any kind of object. In the Java, we can get

the information of variables of any object using the getDeclaredFields function in the

85

Class class in line 21. The field array contains the information of variables, and each

element of the field array is recorded to the XML message. Line 24 creates a

variableElement using the name of the field class. Through lines 25 and 26, we can get

the type of the variable. For example, if a variable is int, then the type is assigned to “int”.

If a variable is int[], then the type is assigned to “intArray”. The type is added to the

variableElement as an attribute as seen in line 27. We can get the value of the variable

using the method provided by the object. We assume that a DEVSJAVA model message

class provides get- and set- methods to access the variables. We can invoke a get- method

to get the value of the variable through the dynamic method call provided by Java in lines

28 and 29. After getting the value of the variable, the value is added as a text to the

variableElement which is appended to the entityElement. This procedure (lines 23 to 31)

is repeated until writing the information of all variables to the XML message. The

procedure for the content class (lines 7 to 31) is repeated if the DEVSJAVA message has

multiple content classes.

Figure 4-12 The example of DEVS message with an array

86

 This conversion algorithm for the DEVSJAVA message to the XML message covers

the DEVSJAVA model message with primitive types and primitive array types. The

DEVSJAVA model message should have get- and set- methods to handle the variables. In

case of primitive array types, the XML message needs to have an additional tag called

“element”. For example, if Job class has one int array type variable and one double type

variable, the XML message looks like figure 4-12 where a id tag includes multiple

element tags to contain the elements of the array.

1. cInfo := contentInfo;

2. contentNode := getContentNode(XML document);

3. while(contentNode != 0)

4. if(portNode)

5. cInfo.port := port;

6. while(entityNode !=0)

7. if(classNode)

8. cInfo.classType := class;

9. else

10. v := vector, variable := NodeName, type := NodeAttribute(“type”);

11. value := “”;

12. if(type.endswith(“Array”))

13. while(ElementNode !=0)

14. value := Element value;

15. v.add(value);

16. cInfo.setArray(type,v);

17. else

18. value := Node value;

19. cInfo.setBag(variable,type,value);

Figure 4-13 The algorithm to extract the information of the XML message

 To convert the XML message to the DEVSJAVA message, there are two steps which

are used to gather the information into the predefined class and a container, and to make

an instance of the DEVSJAVA message. Figure 4-13 shows the algorithm to extract the

87

information of the XML message. The contentInfo class in line 1 is for gathering the

information of the content tag. In line 2, we get the nodes for the content tags called

contentNodes from the XML document. The contentNode is handled to accumulate the

information from the content tag. The contentNode has a portNode and an entityNode.

The name of a portNode is stored in the contentInfo class in line 5. To extract the

information in the entityNode, we search all nodes in the entityNode. We define a class

tag, but others depend on the name of variables. If the classNode is encountered, the name

of the classNode is stored in the contentInfo class in line 8. If not, we assume that the tag

is one of the variables. There are ramifications to handle primitive variables and primitive

array variables between lines 12 and 18. If a type is “array”, values of element tags are

extracted, stored in a vector, and a pair consisting of the type and the vector is sent to the

contentInfo class as seen in lines 15 and 16. If the type is primitive, a value is obtained by

the variableNode. Finally line 19 shows that the variable, the type, and the value are

stored in the contentInfo class.

 Based on the contentInfo class created with the algorithm shown in the figure 4-13,

DEVS message is created using the algorithm shown in the figure 4-14. A message and

an object class are declared in lines 1 and 2. The message class comes from DEVSJAVA

API, and the object class represents DEVSJAVA model message, which is not defined

yet. If a classType in the contentInfo class is “entity”, the object class is replaced to an

entity class with a value from the contentInfo class as an argument shown in line 4. Line 5

adds an instance of a content class to the message class. The instance of the content class

has a name of a port from the contentInfo class and the entity class as the arguments. If

88

the classType is not “entity”, the classType is reassigned with a class location and the

classType, and the object class is assigned to a dynamic created instance with the

classType. To assign variables in the object to values from the contentInfo class, a bag for

NTV classes, which represent names, types, and values of the variables, is extracted in the

contentInfo class (line 9). The variables of the object class in line 8 are set to the specific

values from the NTV class using a method class provided by Java (line 14). Line 15 adds

a content class with a port and the object class to the message class. This algorithm

returns an instance of a message class containing the information of XML message.

Figure 4-14 The algorithm to make an instance of DEVS message

89

4.2.3. DEVS simulator service with DEVSJAVA

 To create web services for DEVSJAVA, we need to put all things together mentioned

in the previous sections such as DEVSJAVA API, DEVS interface, and a class containing

operations of the DEVS simulator service.

adapter

service

service.devs

service.modeling

service.models

service.simulation

service.util

Figure 4-15 The package diagram of the DEVS simulator service with DEVSJAVA

 Figure 4-15 depicts the package diagram for the DEVS simulator service with

DEVSJAVA. There are seven packages to create the DEVS simulator service. The actual

service of DEVSJAVA is in the service.devs package where a Java class having all

operations of the service is implemented. The DEVSJAVA model is in the service.models

package. The adapter package has a Digraph2Atomic class to make a coupled model seen

to an atomic model. The service.modeling package has classes to connect DEVSJAVA

90

model to DEVS simulator service such as an Atomic and a Message classes. The Atomic

class makes an atomic or a coupled DEVS model look like one class type, that is to say,

the Atomic class. The Message class has an XMLObjectMessageHandler class in the

service.util package and a message class from DEVSJAVA. Message conversion is done

in the Message class. The service.simulation package has a simulator class handling

DEVS simulation protocol with the Atomic class.

 After all classes are implemented, the classes need to be placed in the web server

where we use an Apache tomcat6 server and AXIS2 middleware. We can deploy all

classes into the specific folder. Another option is to compress all classes as an archive.

The archive has a structure to contain all classes and services.xml document which

indicates a service class and message exchange patterns for the web service. The message

exchange patterns show the shapes of operations. For example, if an operation has an

argument and no return type, the message exchange pattern is in-only. If an operation has

an argument and return type, the message exchange pattern is in-out.

Figure 4-16 An example of a services.xml

 Figure 4-16 represents an example of a services.xml. The services.xml consists of

several tags that implicate their roles. The service tag represents the name of the web

service. In figure 4-16, we see that the name of the web service is EFModel. The

91

description tag lets users know the information of the web service. The messageReceivers

tag has multiple messageReceiver tags which indicate the message exchange patterns for

operations in the web service. The parameter tag shows the location of the service class.

Figure 4-17 The structure of the service archive for an EFModel service

 Figure 4-17 depicts the structure of the service archive for an example web service

called EFModel service. The name of this archive is EFModel.aar which is the same

as .zip or .jar, so we can easily create .aar file if using zip or jar programs and changing

the file extension to aar. The archive should include all server side class files, libraries,

and a folder named META-INF with the WSDL and services.xml files. The libraries are

used to support the service class.

 We need the environment of integrating an Apache web server and AXIS2 to

deploy .aar file. A web archive (WAR) file is used to connect between the server and

AXIS2 and has a specific structure consisting of axis2-web, META-INF, and WEB-INF

folders. The WAR file contains contents for web services and has a configuration file

EFModel.aar

META-INF

adapter

service
devs

modeling

models

simulation

util

lib devsjava.jar

services.xml

92

called a web.xml in the WEB-INF folder. The web.xml contains directions of processing

web requests between the web server and AXIS2. The web service compressed to .aar is

located in the services folder in the WEB-INF folder.

4.3. Web Service encapsulating ADEVS

4.3.1. ADEVS

 A discrete event system simulator (ADEVS) is implementation of DEVS based on

parallel and dynamic DEVS formalism using C++ [11]. It consists of modeling,

simulation, and container libraries as seen in figure 18, which represents the classification

of ADEVS API into their usages. The APIs do not have many source codes but they are

used in the various domains to solve specific domain problems with a simulation

approach.

Figure 4-18 The classification of ADEVS header files into their usages

 The modeling API is used to create atomic and coupled models containing elements

of DEVS formalism such as states, internal/external event handler, output messages, and

input/output ports. Figure 4-19 represents hierarchical structures of ADEVS modeling

classes. The top level class is the Devs class with an X message, which is implemented

93

with templates to accommodate a generic message. The Devs<X> class contains basic

operations used during simulation to indicate whether the model is an atomic or a couple

model and the information of its parent. The Atomic<X> class inherits Devs<X> class

and provides basic functions to implement an atomic DEVS formalism. The Network<X>

class is a base class for DEVS coupled models and provides getComponents and route

functions. The getComponents function is used to obtain all components in the coupled

model, and the route function sends the external message into the component(s) according

to the coupling information displaying the flow of the messages in the coupled model.

Figure 4-19 Hierarchy structures of ADEVS modeling class

 The SimpleDigraph<X> and Digraph<class VALUE, class PORT = int> have

Network<X> as parents. The difference between two derived digraphs from Network<X>

class is a type of message. The SimpleDigraph<X> has a single X message, but

Digraph<class VALUE, class PORT=int> class has the PortValue object to make

couplings among the components. The port type in the PortValue object is integer as a

default. The Digraph class has add and couple functions with the functions from the

94

Network class. The add function is to add a model to the network, and the couple function

is to connect the source model to the destination model.

 The simulation API has a schedule class and a simulator class which controls

simulation protocol. To get the minimum time for the next event, the simulator uses the

scheduler with a bag container storing atomic models and gets minimum next event time

of atomic models in the scheduler. Therefore, ADEVS does not use a hierarchy structure

of model when calculating minimum event time (TA). When passing messages from a

source model to a destination model, the simulator calls a route function in the simulator

class and each coupled model uses its route function in the Digraph class. The simulation

of an ADEVS model is executed by three functions in the simulator class as seen in figure

4-20.

Figure 4-20 Simulation of ADEVS model

The functions are the following.

� nextEventTime() calls a scheduler’s minPriority() calculating next event time and

classifying imminant models which have next event time and a token for internal

transition.

� computeNextOutput() executes a lamda function if any model has next event time and

routes the output message to destination models which have a token for external

transition.

95

� computeNextState() executes a delta function according to the token which the models

have and initializes the tokens and input/output message containers of models.

 The container API consists of a bag class, a set class, and an object_pool class. The

bag class holds any type of object and is used in the atomic model and the simulator to

store the input or output messages. The set class adds some operations with a set class

which comes from STL. The object_pool class is a utility class to handle pools of objects

that are stored on the heap and uses the new and delete operators to create and destroy

objects.

4.3.2. ADEVS Interface

 ADEVS API can not be used directly to create a DEVS simulator service because

ADEVS does not provide functions that a DEVS simulator service requires. For example,

an method to get time advance (TA) is not provided by the ADEVS simulator class. But

there is no modification required in the modeling because the ADEVS simulator is used

for atomic or coupled model simulation. However, to substitute the functions of ADEVS

simulator to the functions of DEVS simulator service in the simulation, some methods are

added in the ADEVS simulator as seen in the right side of figure 4-21. The initialize

function is for initializing an ADEVS model, getTN function returns next event time,

getOutput function returns output message bag from imminent models, putMessage

function sends the output messages to the corresponding models as input messages,

deltfcn function lets the models execute their delt function, and getImminent function is

96

for getting imminent models of all models at the specific time. Those functions are

integrated in the ADEVS simulator as seen on the left side of figure 4-21.

Figure 4-21 The added functions in the ADEVS simulator for DEVS simulator service

 A String converter is required due to using C++ standard API and Visual C++ API.

Visual C++ is used to create a DEVS simulator web service while C++ standard API is

based on the ADEVS. When returning a string to a user in the web service, it should be

String class provided in the Visual C++ API. Because a string coming from ADEVS

models is C++ standard API, we need to have a string converter of a string for C++ to a

String class for Visual C++ and vice versa in the ADEVS interface.

 There are two types of classes in the ADEVS for the message passing. One is

PortValue class and the other is Event class. The PortValue consists of a value and a type.

The value which is used as a message can be expressed by any class, and the type

represents the port which has integer as a default value. The Event class is made of a

model and a value. The model is a pointer of Devs<X> class and the value is a PortValue.

It is used to route the message to the destination, and the PortValue is used for component

coupling.

97

 To send the message to another DEVS simulator service from the DEVS simulator

service for ADEVS, the message converter is required as the case of simulator service for

DEVSJAVA. An imminent model produces a bag containing PortValue objects as an

output. In the DEVS simulator service, a getOutput operation returns a string containing a

XML document format as seen on the right side of the figure 4-22. The message structure

of ADEVS is shown on the lift side of the figure 4-22. A Bag class can get multiple

PortValue objects consisting of an output port and the message used in the atomic model.

The Bag class is written to a XML document which is the same as that of the DEVS

simulator service for DEVSJAVA.

Figure 4-22 The message converting in the DEVS simulator service for ADEVS

 To get an XML message from a Bag object, an algorithm for Bag object to XML

conversion is used as seen in figure 4-23. In line 1, an instance of XmlTextWriter class,

which is provided in the visual c++ 2005, is created, and a tag name called “Message” is

written using a WriteStartElement function in line 2. In line 3, an output Bag is obtained

98

from a getOutput function in the simulator class. PortValue objects are got out from the

Bag in line 4. Inside of while statement, “content” tag is written and “port” tag is written

with a port value using a WriteString function in lines 5 to 8. After getting a message of

the PortValue, “entity” and “class” tags are written and the “class” tag has a name of the

instance of the message as a string in lines 10 to 13. Lines 15 to 17 represent a process to

make variable tags from the message. The variable tag has an attribute called “type” and

a string value for the variable. The process is repeated in case of multiple variables in the

message. Line 19 returns an XML document for the ADEVS message.

Figure 4-23 An algorithm for Bag object to XML conversion

 The converting of an XML message to an ADEVS message is involves two steps. One

is a process to gather information from the XML message using specific class and a list

class, and the other is to create an ADEVS message using a Bag class containing

Event<X> objects. Figure 4-24 represents the algorithm for extracting information from

99

the XML message. Line 1 makes the container classes gather information from the XML

message and line 2 makes a list for content classes which represent “content” tags. The

XML document is sent to an XmlTextReader class to turn each tag to an object (line 3).

The XmlTextReader class provides a read function to indicate the end of the document

(line 4). If the document reaches end, the read function returns false. The reader, which is

an instance of the XmlTextReader, has a NodeType to indicate attributes of the nodes. For

example, “content” tag is represented as XmlNodeType::Element, and if the tag has a text

value, the text value is represented as XmlNodeType::Text. The closing of “content” tag is

represented as XmlNodeType::EndElement.

Figure 4-24 The algorithm for extracting information from the XML message

100

 Names of tags are obtained from the XmlNodeType::Element. If any tag has an

attribute, a pair having a name of a tag and a value of an attribute is stored in the list for

attributes (lines 6 to 9). Textvalues of tags are provided from the XmlNodeType::Text, and

a pair with a name of tag and a textvalue is saved in the list for textvalue (lines 10 to 11).

With the XmlNodeType::EndElement, the list of content classes is generated with the list

for attributes and the list for textvalues. If XmlNodeType::EndElement is a content tag, an

instance of a content class is created, and the list for textvalue is used to fill out the

content class. A name in a textvalue pair is used to select to use a variable of a ThreeValue

class in the content. If the name is equal to “port”, the value corresponding to the name is

assigned to a port variable in the content (line 17). If the name is equal to “class”, the

value is assigned to a class variable in the content (line 18). If the name is not equal to

either “port” or “class”, the name is considered to be a variable name of a message. In this

case, an instance of a ThreeValue class is created to accommodate the name, the type and

the value of the variable used in the message. The procedure of assigning the name, the

type and the value to variables in the ThreeValue class is displayed in lines 20 to 25. The

variables of the message could be multiple, so the content class has a list for them (line

26).

 Once we get a list of content classes, we can create an instance of a Bag<Event<X>>

class based on information of content classes. Figure 4-25 represents the algorithm to

create a Bag instance with Event<PortValue> classes. In line 1 a Bag instance for Event

classes is created. A content class from a Bag is used to generate an Event class. The name

and the port are obtained from the content class (line 3) and an Event class is created (line

101

4). The instance of an ADEVS model is assigned to a model variable in the Event class,

and the port is assigned to a port variable in the value variable (lines 5 to 6). An instance

of a class with the name from the content class is created in line 7. The instance is set

with values from threeValue classes in lines 8 to 9. The instance is assigned to the value

for the value variable in the Event class in line 10. The Event class is put into the Bag

used to input bag in the simulation.

Figure 4-25 The algorithm for creating a Bag instance with Event <PortValue>

4.3.3. DEVS simulator service with ADEVS

 To make web service for ADEVS, visual studio VC++ is used in the .NET

environment. The web server is provided by windows OS such as Windows XP or

Windows Vista. Visual Studio has a template to create ASP.NET web services [12]. With

the template, the operations of the interoperable simulator service are declared, as seen in

figure 4-26. Figure 4-26 is a snippet of a header file of the DEVS simulator service, and

annotations are used to indicate that methods in the class are used as operations in the

web service. [System::Web::Services::WebMethod] is an annotation used in the operation.

102

The web service class inherits a System::Web::Services::-WebService class and the name

of the web service class becomes the service name.

Figure 4-26 The operations of DEVS simulator service for ADEVS

 A web service class is implemented with ADEVS interface and ADEVS modeling and

simulation. After finishing writing, the web service class and the project file built in the

visual studio, the web service can be automatically deployed to the web server. What is

deployed is a bin folder containing a .dll file for the web service class, service description

file, and web configuration file.

103

4.4. DEVS Simulator Web Services Integration and Execution

 To demonstrate the DEVS simulator service interoperability system, an example

DEVS model called GPT is used, as seen in figure 4-23. The GPT model consists of a

coupled model called an Experiment Frame (EF) model and an atomic model called a

Processer model. The EF model has two atomic models called Generator and Transducer.

The GPT model uses a Job type message which has two variables, that is, id and time.

The Generator creates new Job type messages repeatedly according to the internal time

of the model. The Processer model processes the Job coming from the “in” input port. If

the Job is finished, it is sent to the Transducer which collects information of generated or

processed Jobs and takes the statistics during a certain time. If the certain time is passed,

the Transducer sends the message to the Generator to stop generating a Job message.

Figure 4-27. The view of the GPT model

 Two web services are generated to simulate the GPT model with the interoperable

system. One is created with a JAVA based system and DEVSJAVA. Its web service name

104

is GTModel containing the EF model, as seen in figure 4-28, which displays a view of

web service through web browser.

Figure 4-28 GT simulation web service using AXIS2 and DEVSJAVA

 The other web service is generated with an ASP.NET based system with VC++ 2005

and ADEVS. ProcessServiceClass is the name of the web service embedding the

Processer model, as seen in figure 4-29, which displays basic information of the service

and names of operations used in the web service.

 Before a producer of the EF web service publishes the EF web service, the producer

needs to check and register a schema for a DEVS messages used in the EF model. In this

example, the producer uses a domain name as “EFP”, and Job type is used as a DEVS

message type, as seen in the figure 4-3. A provider of the processor web service gets a

schema for the EFP domain from the DEVS namespace and creates the processor web

service with .NET and ADEVS. The two web services have common data types for

DEVS messages.

105

Figure 4-29 Process model simulator web service using .Net and ADEVS

The DEVS web service integrator is used to integrate two different web services as

seen in figure 4-30. The name of integration is “HybridGTP” used for a file name of a

XML document. A user can choose a web service, as shown in figure 4-31, appearing

when the user clicks an ADD button. The GUI for the information of services displays the

information of WSDL selected by the user and sends it to the integrator. In this example,

EFservice.wsdl and ProcessService.asmx.WSDL are selected and their information is

shown in the table. Figure 4-32 shows how to couple the web services. The GUI for

coupling invokes operations of web services to get their port names and data types of

their ports. When finishing the integration, the integrator creates a XML document which

contains information of the location of the web service and coupling of selected web

services. Figure 4-33 shows the XML document of integration of EF and Processer web

services.

106

Figure 4-30. The integrator for EFP web services

Figure 4-31. The GUI for the information of services

107

Figure 4-32. The GUI for coupling between the services

<?xml version="1.0" encoding="ISO-8859-1" ?>

<devswsintegrator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="devswsintegrator.xsd">

<title>HybridEFP</title>

<services>

<model>

<wsdl>EF_Service.wsdl</wsdl>

<name>EF_Service</name>

<location>http://150.135.218.206:8080/DEVSSimulators/services/EFService</location>

<schema>http://150.135.218.199:8080/DEVSNameSpace/Job.xsd</schema>

</model>

<model>

<wsdl>ProcessService.asmx.wsdl</wsdl>

<name>ProcessService</name>

<location>http://150.135.218.199/ProcessService/ProcessService.asmx</location>

<schema>http://http://150.135.218.199:8080/DEVSNameSpace/Job.xsd</schema>

</model>

</services>

<couplinginfo>

<coupling>

<source>EF_Service</source>

<outport>out</outport>

<destination>ProcessService</destination>

<inport>0</inport>

</coupling>

<coupling>

<source>ProcessService</source>

<outport>1</outport>

<destination>EF_Service</destination>

<inport>in</inport>

</coupling>

</couplinginfo>

<inports>

</inports>

<outports>

</outports>

</devswsintegrator>

Figure 4-33. The XML document for DEVS Simulator WS Integration

 To execute the XML document, we need an execution program called a coordinator,

which prepares simulation and runs the simulation. The procedure of the simulation

follows the centralized virtual time simulation protocol.

108

Figure 4-34. The result of simulation of DEVS simulator services

 The simulation result is shown in the figure 4-34. It is the same as the result of the

GPT model simulated in the DEVSJAVA.

109

CHAPTER 5. APPLICATION OF INTEROPERABILITY OF

DEVS SIMULATOR SERVICES

 In this chapter, several applications are introduced with DEVS simulator services and

DEVS namespace. The applications need to interoperate with other applications in

different platforms and computer languages. The track display and negotiation system are

integrated among different language DEVS simulator services implemented in AXIS2 and

ADEVS. However, the testing agents system is implemented using DEVSJAVA modeling

and simulation, and DEVS simulator services with real time simulator. The testing agents

system will show the multiple levels testing concept.

5.1. Track Display

 One of the projects, called Automated Test Case Generation (ATCGen) [51], generates

DEVS models that are semi-automatically generated from test sequences. A test driver

that is based on the DEVS simulation protocol executes the test models in a distributed

simulation infrastructure based on the HLA [33]. The test models are DEVS models

implemented with C++ language. The integrated system consisting of the test driver and

the test model produces its result, which is considered as information of tracks and has a

capability of displaying tracks on the track display window.

 To display the tracks from DEVS models with heterogeneous computer languages, we

should solve interoperability problems between them. The system with DEVS simulator

110

services can communicate between DEVS models with different languages. Accordingly,

in this section, we show that the DEVS simulator services and DEVS namespace are

applied to solve the interoperable problems with the simple track display system.

5.1.1. Design of Track Display DEVS models

Figure 5-1 State diagrams for track generator and track display

 The Track display DEVS model consists of two atomic models called track generator

and track display. Figure 5-1 represents state diagrams for the track generator which has

two states and two ports, and the track display which has a state and two ports. An initial

state of the track generator is an “active” state with 1 unit time, which means the track

generator produces an output message and has an internal transition after passing 1 unit

time. The output message precedes the internal transition, producing a TrackData

message. If internal variable t is not equal to 80 units, a next state is the “active” state

again with 1 unit time for an internal transition. If t is equal to 80 units, the next state is

111

changed to a “passive” state with infinity units which mean that the track generator does

not produce output messages any more.

 The track display has a “wait” state with infinity unit time as an initial state. When the

track display receives an input message, its state is not changed at all. Instead, a track

display window, which resides in the track display model, receives the input message to

display the track into the GUI.

 The two models share the same message type called a TrackData, which has four

variables: id, xposition, yposition, and heading. The id is integer type and all others are

double type. The id, xposition, yposition, and heading represent a name, longitude,

latitude, and direction of a track. To fill out the TrackData, the track generator has simple

equations to get the longitude, latitude, and heading information. The x value, y value,

and heading below (5.1) represent longitude, latitude, and direction of the track,

respectively. The velocity and θ are assigned constant values.

θ

θ

θ

=

+=

+=

heading

velocityyy

velocityxx

)sin(*

)cos(*

 (5 . 1)

 Figure 5-2 shows the view of track display DEVS models using the simView

application provided by DEVSJAVA API. There are three DEVS atomic models named

“Track Generator”, “Track Generator2”, and “Track Display”. The output port of “Track

Generator” and “Track Generator2” are coupled with the input port of “Track Display”.

112

The initial state of the “Track Generator” and “Track Generator2” is “active” with 1 unit

time, while the initial state of the “Track Display” is “wait” with infinity unit time. The

simView application enables the DEVS model to be simulated with two modes. One mode

is to simulate the model with step by step and the other mode is to simulate the model

from start to end. The simulation is over when next event time of all models is infinity.

Figure 5-2 The view of Track Display DEVS models with simView

5.1.2. Implementation of Track Display with DEVS simulator service

 Each model is encapsulated by DEVS simulator service which follows the design

concept. The “Track Generator” and “Track Display” reside in TrackGenerator and

TrackDisplay services with DEVSJAVA, AXIS2, and Apache server. The “Track

Generator2” model is placed in the TrackGenerator2 service with ADEVS, .NET, and

113

Windows server. Before the services are deployed to their servers, data type schema

should be registered in the DEVS nameservice with a GUI for schema register. In this

case, one message type, called TrackData, is used to send the information of the track.

 Table 5-1 A message used in the Track Display system
Name of Message Name of Variable Type of Variable

TrackData

id int
xposition double
yposition double

heading doube

 Table 5.1 displays the data used in the schema register GUI to generate a schema

document for the message. The first column is the name of the message, the second

column is the name of the variable, and the third column is the type of the variable.

Figure 5-3 represents the schema for the TrackData generated by the schema register GUI.

Figure 5-3 The schema for the TrackData

 We are ready to integrate DEVS simulator services for the Track Display system

using the DEVS simulator service integrator. The integrator generates an XML document

to describe information of services and coupling information for the track display system.

114

Figure 5-4 shows the XML document of the track display system. In the document, the

locations of services and DEVS namespace and coupling information are displayed.

Figure 5-4 The view of the XML document for the track display system

 According to the XML document, the TrackGenerator service is located in the

http://150.135.218.206:8080 server, the TrackDisplay service is located in the

http://150.135.218.204:8080 server, and the TrackGenerator2 service and DEVS

namespace are located in the http://150.135.218.199 server with ports 80 and 8080,

respectively. To execute the XML document, the track display window GUI is shown in

the server containing the TrackDisplay service.

115

Figure 5-5 The track display window

 Figure 5-5 shows the track display window GUI in the TrackDisplay DEVS model.

The track display window displays tracks with a triangle shape in green on the world map.

Two tracks, one from TrackGenerator service and the other from TrackGenerator2

service, are shown on the right upper side in the map. The red line shows the trajectory of

the track.

 Through the track display system consisting of DEVS simulator services, we know

that a track display model in DEVS simulator service can have a capability of displaying

tracks from the DEVS simulator services if the message between a track generator and a

track display is the same even though the services do not have the same platform and

language. The track generator can be any system like ATCGen to generate the information

of tracks based on the simulation.

116

5.2. Negotiation System

[74] proposed a negotiation system to be used in the different domains by defining

the dynamic message structure with the System Entity Structure (SES). Also, [74]

suggested an automated domain independent marketplace architecture where user agents

can interact with providers with negotiation protocols that describe the policy of

communications in multi-agent environments. In the [74], there is an example of

distributed services environment called printing jobs scenario where users send different

kinds of printing jobs to the marketplace which selects the best providers, and negotiates

on different aspects of the job specifications with the providers until they reach an

acceptable agreement within their range. The user and the provider, who are represented

as DEVS models with specific behaviors, are considered as agents in the negotiation

system. The printing jobs with marketplace are implemented with DEVSJAVA to validate

the concept proposed in [74]. The behaviors of the user, the providers, and the

marketplace are more complicated than the track display system, and the printing jobs

system has more messages than the track display system.

The printing jobs system can be extended to accommodate agents who are created in

the different platforms and languages using the DEVS simulator services. We use

DEVSJAVA models and ADEVS models to create the printing jobs system with an agent

from a different environment. The printing jobs system basically has three models called

a user, a provider and a marketplace model. One of the providers is modeled with ADEVS

and others are modeled with DEVSJAVA. Each model is capsulated in the DEVS

simulator service and integrated to make the printing jobs system. Through the simulation

117

of the integrated system, we will show that the negotiation system can be used by agent

models from different languages

5.2.1. Design of Negotiation System with DEVS simulator service.

The negotiation system for printing jobs consists of three models called user, provider,

and marketplace model which have their own behavior for negotiation. The behavior of

the marketplace model is represented in figure 5-6.

Active

Infinity

RoutingItemRequest

0
RoutingReject

5

WaitandSelect

10

RoutingAccept

0

Monitoring

Infinity

Termination

1

InterpretQuery

5

DecisionMaking

5

TransactionReview

5

RoutingContract

0

ProcessingCapability

5

RoutingOffer

0

RoutingCounterOffer

0

!
o
u
tC

a
p
a
b
ili
ty

S
ta

te
m

e
n
t

?
 in

C
a
p
a
b
ilityQ

u
e
ry

!
o
u
tI
te

m
C

h
e
c
k
R

e
s
u
lt

?
 in

Ite
m

! o
ut
R
ej
ec

t

? inR
eject

?
 i
n
T
e
rm

ia
te

! o
ut

Offe
r

? inOffer

?
in
Ite

m
R
eq

ue
st !outItem

R
equest

? inLinkEstablished

? inAccept

! o
ut
A
cc

ep
t

? inContractQ
uery

!

!

! o
u
tC

o
n
tra

ctQ
u
e
ry

?
 in

C
o
u
n
te

rO
ffe

r!
o
u
tC

o
u
n
te

rO
ff
e
r

!
o
u
tB

e
st

P
ro

vi
d
e
r

! outTerminate

? inReject

? inA
ccept

! Means an Output port

? Means an input port

? inOfffer

Figure 5-6 The state diagram of the marketplace model

 The initial state of the marketplace model is “Active” state with infinity unit time.

When the marketplace receives a CapabilityQuery message from the user, its state is

118

changed to “ProcessingCapability” with 5 unit time, and comes back to “Active” states

after passing 5 unit time and generating a CapabilityStatement message. If the

CapabilityStatement is satisfied, the user sends a ContractQuery message to the

marketplace. When the marketplace receives the message, its state is changed to

“InterpretQuery” with 5 units. After 5 units, its state is changed to “DecisionMaking”

with 5 units. In this state, the marketplace decides the providers to cover the contract with

its database for providers. After finishing selecting the providers, the marketplace routes

the contract to the selected providers in the “RoutingContract” state. In the

“WaitandSelect” state, the marketplace can receive three different types of messages, that

is, Reject, Accept, and Offer. When the marketplace receives a Reject message, it stays on

the “WaitandSelect” state. If it receives an Accept message, it changes its state to

“RoutingAccept” state, produces an Accept message right away, and goes to “Active”

state. If it receives an Offer message, its state is changed to “RoutingOffer” with 0 unit, it

sends an Offer message to the user, and its state becomes “Active” state. The marketplace

has a role to hand the message to the user or the providers. For example, the user provides

a “CounterOffer” message to the marketplace, and the marketplace sends the message to

the providers. Conversely, the provider sends an “Offer” message to the marketplace, and

the marketplace hands the message to the user. If the user and the provider agree in the

negotiation with each other, the marketplace expects a “LinkEstablished” message, it goes

to “Monitoring” states with infinity, and the negotiation is terminated after receiving a

“Terminate” message from the user and providers.

119

Passive

infinity

Start

1

ServiceDiscovery

2

Wait

15

IssuesContract

2

DecisionMaking

2

IssuesCounterOffer

0

Agreement

20

Acceptance

2

Rejection

2

LinkEstablishment

2

ReceiveData

Deadline+50

Termination

1

? inStart

!

! outCapabilityQuery

? inCapabilityStatement

! outContractQuery
? inBestProvider

? inAccept

? inTerminate

? inReject

!

!

? inOffer
If check ==2

If offer !=0

If check ==1

If check >2

! outAccept

! outLinkEstablished

? inDataInput

? inTerminate

? inNotMet

! outTerminate

If offer ==0

! outReject

If offer !=0

? inOffer

? inOffer

! outCounterOffer

! Means an Output port

? Means an input port

Figure 5-7 The state diagram for the user model

 Figure 5-7 represents the state diagram for the user model in the negotiation system

for printing jobs service. The initial state of the user model is “Start” state with 1 unit.

After passing 1 unit, the user of the printing services changes its state to

“ServiceDiscovery” state with 2 units, sends a “CapabilityQuery” message to the

marketplace after passing 2 units, and goes to “Wait” state with 15 units. If the user

receives the “CapabilityStatement” message and the message satisfies the user, its state is

changed to “IssueContract” with 2 units. After 2 units, it changes its state to “Agreement”

state with 20 units and sends a ContractQuery message to the marketplace. During the

“Agreement” state, it can receive four messages called a BestProvider, an Offer, a

120

Terminate, and a Reject. The BestProvider changes the state of the user to

“LinkEstablishment” state with 2 units, the Offer makes the state of the user stay on

“Agreement” state with the next event time, and the Terminate and the Reject change the

user’s state to “Terminate” state with 1 unit. When the user spends its internal event time,

its state is changed to “DecisionMaking” state with 2 units. In the “DecisionMaking” state,

the user evaluates the offers from marketplace with its own decision processing, and

produces an integer value called “check”. According to the value of the “check” variable,

the user’s state is changed to “Acceptance” with 2 units in check = 1,

“IssuesCounterOffer” with 0 unit in check = 2, and “Rejection” with 2 units in check > 2.

In case of “IssuesCounterOffer”, the user sends a CounterOffer message and changes its

state to “Wait” state with 15 units. In “Rejection”, if the offers do not exist in the offer

bag, the user’s state becomes “Passive”, which means the negotiation is over. In case of

“Acceptance”, the user sends an Accept message and its state becomes

“LinkEstablishment” state with 2 units after which it sends a LinkEstablished message

and its state is changed to “ReceiveData” state with Deadline+50 units. If the user

receives a DataInput message, its state goes to “Terminate” state with 1 unit. This stage

means the negotiation for printing jobs service is successfully finished. If the user

receives a Terminate or NotMet message, the negotiation is unsuccessfully terminated.

 The user has certain rules to accept the offer from the providers. If the acceptance

condition is not satisfied, the user sends a counteroffer to the providers until the

acceptance condition is met.

121

Figure 5-8 The state diagram for the provider model

 Figure 5-8 represents the state diagram for the provider model whose initial state is

“Passive” with infinity for next internal event time. When the provider receives a

ContractQuery message, its state is changed to “DecisionMaking” with 2 units. In this

state, the provider proposes the offer for the contract and changes its state to “Offering”

with 1 unit after which it produces an Offer message and changes its state to

“WaitonOffer” with 20 units. If 20 units are passed, the provider goes to “Termaination”

state, sends a Terminate message right away and changes its state to “Passive”. If the

provider receives a CounterOffer message in the “WaitonOffer”, its state is changed to

“Decision” with 2 units. If the provider receives an Accept message, it changes its state to

“ProvideService” with 1 unit after which it produces a DataOut message and changes its

state to “Passive”. The above processes represent the processes of negotiation in the

122

provider model.

Figure 5-9 The negotiation system model for a printing jobs service

 The overall negotiation system is displayed in the figure 5-9 containing five atomic

models called Customer, MarketPlace, Print Server 1, Print Server 3, and Print Server 6.

The Customer is the user model and Print Server 1, 3, and 6 are the provider models. The

Customer model has decision making rules as follows [74].

� The Customer model is going to find a provider that has the Business Cards

printing capability.

� The Customer would accept an offer if one of the following conditions is

123

satisfied:

� If the paper quality is medium or high, the color is full HD and the deadline

is less than 80.

� If the paper quality is medium or high, the color is RGB and deadline is less

than 30.

� If the paper quality is medium or high, the color is grayscale and the deadline

is less than 20.

� If the offer does not match any of its acceptable ranges, the user sends back a

counter offer asking either his first preference or a modified one based on the

history of the offers he was receiving.

 The Print Server 1, 3, and 6 have their capability of providing printing services and

propose offers based on their own data. In this model, each Print Server has its data in the

model and provides a random value to calculate the current Deadline for its printing

service. For instance, current Deadline is the subtraction of its own random value from

previous deadline. The marketplace has its own database to answer the capability query

from the customer. In this model, the database is confined to the Business Cards service

which the customer requests.

 The result of the simulation of the negotiation system is following.

>>
Offer information are:
Customer : Customer
Job Type : Business Cards
Print Server : Print Server 6
Color : FullHDColor
Paper Quality : High
Deadline : 72

124

Duplex : Yes
Number of Copies : 1
Technology Type : Thermography
>>

5.2.2. Implementation of Negotiation System with the DEVS simulator service

Each model is encapsulated in the DEVS simulator service for DEVSJAVA or

ADEVS. The Customer, MarketPlace, Print Server 1, Print Server 3 is placed in the

DEVS simulator service for DEVSJAVA, and Print Server 6, which is generated with

ADEVS, is embedded in the DEVS simulator service for ADEVS. The models have

unique ports with specific data type that should be registered to DEVS namespace. The

data types used in the negotiation system are displayed in the table 5-2.

 Table 5-2 The messages used in the negotiation system

Name of Message Name of Variable Type of Variable

CapabilityQuery customer, printJob String

CapabilityStatement printJob, printServer String

ContractQuery

printJob, technologyType,
noCopies, deadline,

customer, paperQuality,
duplex, printJobID, color

String

CounterOffer

printJob, technologyType,
noCopies, deadline,

customer, paperQuality,
duplex, printJobID, color,

printServer

String

Offer

printJob, technologyType,
noCopies, deadLine,

customer, paperQuality,
duplex, printJobID, color,

printServer

String

Accept
customer, printServer,

printJobID
String

125

Advertise provider, content String
DataOut user, content String

LinkEstablished customer, printServer String

Reject
customer, printServer,

printJobID
String

Terminate msg String

 Each port in the models should be mapped to the one of messages above. The

information of mapping ports to message is added in the DEVS simulator service. Each

message is converted to a schema document which is stored in the DEVS namespace.

Figure 5-10 represents the schema document for the ContractQuery message which

consists of nine variables that have string type. Other messages are converted to the

schema documents and registered to the DEVS namespace using schema register GUI. In

the DEVS simulator service, the information of schema location, input ports array, output

ports array, and mapping port to message type are needed to couple between services.

Based on the information, the client consuming the services can compose the negotiation

system with the DEVS simulation service integrator.

Figure 5-10 The schema document for the ContractQuery message

126

Table 5-3 Assignment of DEVS simulator services to servers

Server name Services and Client Method of implementation
150.135.218.199 Print Server 6,

DEVS namespace
ADEVS

150.135.218.201 Print Server 1,

Print Server 3
DEVSJAVA

150.135.218.204 Customer DEVSJAVA
150.135.218.206 MarketPlace

DEVS service integrator
DEVSJAVA

 Table 5-3 shows the assignment of the services to servers and method of

implementation. To execute the negotiation system using DEVS simulator services, we

use four machines running their server as seen in the first column of table 5-3. Each

server has DEVS simulation services shown in the second column of table 5-3. The

service in the 150.135.218.199 uses ADEVS and .NET environment, but others use

DEVSJAVA and AXIS2.

Figure 5-11 The result of the negotiation system using DEVS simulator services

127

 Figure 5-11 shows the result of the negotiation system using DEVS simulator

services. The result of simulation of integrating the services is the same as that of

simulation of the DEVSJAVA model. Through the negotiation system, a provider called

Print Server 6 implemented with different language (ADEVS), can be simulated with

heterogeneous DEVS models (DEVSJAVA) using the DEVS simulator service concept.

Fairly complex models with different implementation methods can be interoperated under

the DEVS simulator services.

5.3. Test Agents for Net-centric

Test agents for Net-centric have different levels of testing capability of interaction

between the user and the provider through the web services. The different levels are

divided into three layers called syntactic layer, semantic layer, and pragmatic layer. The

syntactic layer belongs to common formats and protocols for communicating message

data frames [25]. The semantic layer includes share of meaning of the message between a

sender and a receiver. The pragmatic layer employs the shared agreements about the use

of information exchanged. For example, the receiver reacts to the message in a manner

that the sender intends [25]. With test agents, a system using web services to corroborate

among participants can be simultaneously tested at the multiple layers.

This test agents system has two sub-systems where one is participant models with

DEVS agents, and the other is observer models watching the participant models to verify

the participant’s behaviors. The participant models interact with each other through the

web services, and the observer models are distributed in the networks forming the web

128

services. The DEVS agents in the participants send messages containing the information

of invocation of web services to the observer services which send the messages to other

observer services to notify what the participants do.

In this section, the observer models turn to the DEVS simulator services called

observer services. With the integration of the observer services, observing environments

are constructed through a message type matching method using DEVS namespace. We

will implement the test agents with a modified negotiation system to show the possibility

of multiple layer testing.

5.3.1. Design of Test Agents for Net-centric

5.3.1.1. Modified negotiation system

The negotiation system in the previous section consists of DEVS models, but a

modified negotiation system includes DEVS models and a marketplace web service. The

marketplace model is substituted to the web service in the modified negotiation system to

make an environment of collaboration between a user model and a provider model. The

user model and the provider model need to be changed in their modeling to communicate

with the marketplace web service.

129

setCapabilityQuery

(1.0)

issueContract

(1.0)

waitOffer

(5.0)

DecisionMaking

(10.0)

CounterOffer

(1.0)

reject

(1.0)

waitLinkRequest

(5.0)

setLink

(1.0)

waitData

(5.0)

terminate

(INFINITY)

getOffer = true

getOffer = false

counterOffe

r

reject

accept

false

true

false

true

Initial state

Figure 5-12 The state diagram for a modified user model

The state diagram for a modified user model is displayed in figure 5-12 which shows

the initial state of the user as “setCapabilityQuery” state with 1 unit. In this state, the user

model invokes a web service to send capabilityQuery to the marketplace service, and it

receives the result of the capabilityQuery. If the result from the marketplace service

satisfies the user, the user produces a contract for the marketplace service through

invoking a web service, and it changes its state to “waitOffer” with 5 units. In the

“waitOffer” state, the user is waiting for an offer by invoking a web service for getting an

offer. If a getOffer variable is false after getting a result of invocation of the web service,

the user stays on the “waitOffer” state. While the getOffer is true, the user changes its

130

state to “DecisionMaking” state with 10 units. The user decides on the result for the offer,

and if the decision is a counteroffer, its state is changed to “CounterOffer” with 1 unit,

after which it invokes the web service for sending the counteroffer message. If it is

rejected, the user alters its state to “reject” with 1 unit, after which its state is changed to

“terminate” with infinity units. If accepted, the user changes its state to

“waitLinkRequest” with 5, after which if a result of invocation of a web service is false,

its state stays on the same state, but if true, the user establishes the link with a provider. At

that time, its state is “setLink” state with 1 unit. After passing 1 unit, the user waits to

receive data from a provider with “waitData” state. If the user receives the data, the

negotiation is successfully over, and the user has “terminate” state with infinity.

Figure 5-13 shows the state diagram for a provider model whose initial state is

“waitContract” with 5 units after which, if a result of invocation of a web service is false,

the provider is still in the “waitContract” state. If true, it changes its state to

“makeDecision” with 10 units after which it changes its state to “offer” with 1 unit.

Passing 1 unit, the provider invokes a web service for sending an offer to the user, and its

state alters its state to “waitReply” with 5 units, after which, if the provider gets the reply

from the user, it changes its state to “makeDecision”, “setRequestLink”, and “EndNego”

according to the return values called counteroffer, accept, and reject, respectively. If not,

the provider stays on “waitReply”. In case of counteroffer, the states make a loop until the

provider receives the accept result. In case of reject, the provider stops the negotiation

with the user staying in “EndNego”. If the provider receives accept from the user, it

changes its state to “setRequestLink” state with 1 unit, after which it invokes a web

131

service to request link to the user and goes into “waitLink” state with 5 units. In

“waitLink”, if the result from the web service is false, the provider’s state stays in

“waitLink”, but if true, its state is altered to “setData”, and it invokes the web service to

send Data to the user. After that, the provider finishes the negotiation with the user with

“EndNego” state.

Figure 5-13 The state diagram for a modified provider model

132

Figure 5-14 The operations of marketplace service

Figure 5-14 represents the operations of the marketplace service which has 17 operations

having a string argument and a string return value, and two containers for a user and a

provider. When a user and a provider models are initialized, they register their names in

the hashtable to make instances of user and provider class to put the messages in the

instances. The capabilityQuery operation is for searching a provider which has capability

that a user requests. The setContractQuery is for putting the contract into the instance of

the provider and the getContractQuery is for picking up the contract from the instance of

the provider. The setCounterOffer is to set a counteroffer into the instance of the provider,

and the getConuterOffer is to get the counteroffer from the instance. The setOffer and

getOffer are used to send an offer to the user. The checkDecision and the putDecision are

used to let their opposite know their decision. The setLinkEstablished and the

133

getLinkEstablished are used to send information for link from the user to the provider.

The putData and checkData are for sending data from the provider to the user. The

setLinkRequest and getLinkRequest are for requesting link between the user and the

provider.

Figure 5-15 Interaction between a user and a provider through marketplace web

service

Figure 5-15 represents the interaction between a user and a provider through a

marketplace web service. The Customer is an instance of a user, and the Print Server 1 is

an instance of a provider. The Customer and the Print Server 1 use the marketplace web

service to communicate with each other. Bidirectional arrows between the Customer and

the MarketPlace web service, and between the MarketPlace web service and the Print

134

Server 1, represent invocation of operations. The Customer invokes nine operations in the

web service, while the Print Server 1 invokes seven operations. Red rectangles mean busy

waiting whose purpose is to get the information from the server. Blue rectangles mean a

period for decision making after which the Customer generates the message regarding

the decision making. If the decision making is a counteroffer, the Customer is moved to a

position to get the offer from the Print Server 1, and after the Print Server 1 gets the

information for the Customer’s decision, it is moved to a position of decision making. If

accepted, the two models successfully finish their negotiation.

5.3.1.2. Observer models

There are two observer models called a user observer and a provider observer. Figure

5-16 represents the state diagram for the user observer whose initial state is

“waitForCapabilityQuery” with infinity units. There are rules to make ports according to

the sources. For example, “waitForCapabilityQuery” state waits for an input message in

the inCapabilityQuery port. The input port receives a message sent by the Customer

model in the negotiation system. If the user observer receives a CapabilityQuery message,

it changes its state to “sendOutCapabilityQueryAlert”, and produces a Capability-

QueryAlert message to the provider observer model. The output port, whose name has

“Alert”, connects to the input port whose name has “Alert”. The input port, whose name

has “Result”, connects to the output port whose name has “Notice”. When the observer

waits for an offer from the provider observer, its state is “waitForOffer” until it receives

an OfferAlert message from the provider observer.

135

Figure 5-16 The state diagram for a user observer

136

Receiving the OfferAlert message means that the provider model sends the offer to the

marketplace service, and the user model can pick it up from the marketplace service. To

pick up the message, the user model invokes the operation called “GetOffer” and the

information of invocation is sent to the DEVS agent model coupled with the user model.

The DEVS agent sends the information to the user observer service. As soon as the user

observer model in the user observer service receives the message from inGetOffer port,

the user observer changes its state to “sendOutOfferNotice” where it produces an

OfferNotice message to notify that the user model picked up the offer message to the

provider observer. The state diagrams for the user observer and the provider observer are

based on the behaviors of the user and the provider models as well as add ports and states

for alerting messages, resulting messages, and noticing messages to communicate

between the user observer and the provider observer.

Figure 5-17 represents the state diagram for the provider observer whose initial state

is “waitForCapabilityQueryAlert” with infinity units. The provider observer has passive

states until it receives a ContractAlert message. After that, it changes its state to

“sendOutContractNotice” where it produces a ContractNotice message to let the user

observer know that it received the ContractAlert message. The state diagram shows the

states and ports having words like “Alert”, “Notice”, and “Result”.

The observer models watch behaviors of the user and the observer models which

invoke the web service and exchange the information of their states. For instance, when

the user model sends a message to the provider model through the marketplace web

service, the user observer lets the provider observer know what the user does.

137

 Figure 5-17 The state diagram for a provider observer

138

5.3.2. Implementation of Test Agents for Net-centric applying DEVS simulator service

Figure 5-18 The DEVS model view of negotiation system

 There are two implementations for testing agents for Net-centric. One is for

implementing the user, the provider, and the marketplace service, and the other is for

generating the user and the provider observer models.

 Figure 5-18 represents the whole negotiation system with the DEVS agent. The

user and the provider model are generated in accordance with the behaviors in the state

diagrams. The DEVS agent consists of a DEVS coupled model, GUI for displaying

results, as seen in figure 5-19. The DEVS coupled model has four atomic models such as

the DevsServiceListener, agent Acceptor, Agent transducer, and observer agent. The

DevsServiceListener has its state changed to active whenever a web service client invokes

139

a web service. The role of an Agent transducer is to calculate statistical data for web

service invocation and send it to an Agent Acceptor. The Agent Acceptor decides if the

statistics from the agent transducer meets the predefined threshold values. The observer

agent has a capability to send a message to the observer service using a receiveInput

operation provided by the observer service. The receiveInput operation needs four

arguments: a name of the observer model, an input port name, a message, and an output

port name.

The DEVSAgent displays the results of the statistics for a web service invocation

through a GUI composed of two tabs. One tab has a table for showing data and two text

areas for showing request and response SOAP messages. The other is to write logs for

invoking web services.

Figure 5-19 The four atomic models in DEVS Agent

140

Figure 5-20 The view of observer models

 The observer models, as shown in figure 5-20, consist of an UserObserver and a

ProviderObserver model. The input/output ports have specific data types to integrate the

UserObserver and the ProviderObserver using the DEVS simulator service integrator. The

coupling between two observers is made through the ports whose names end with “Alert”,

“Notice”, and “Result”. The others have the same data types shown in table 5-2.

Table 5-4 Messages to send/receive between the observer models

Name of Message Name of Variable
Type of
Variable

Output port
Input port

141

CapabilityQueryAlert customer, time String
outCapabilityQueryAlert
inCapabilityQueryAlert

ContractQueryAlert

customer,
printJobID, time

String
outContractAlert
inContractAlert

CounterOfferAlert
customer,

printJobID, time
String

outCounterOfferAlert
inCounterOfferAlert

OfferAlert
printServer,

printJobID, time
String

outOfferAlert
inOfferAlert

AcceptAlert
customer,

printServer,
printJobID, time

String
outAcceptAlert
inAcceptAlert

LinkAlert
customer, content

, time
String

outLinkAlert
inLinkAlert

LinkRequestAlert
customer,

printServer, time
String

outLinkRequestAlert
inLinkRequestAlert

RejectAlert
customer,

printServer,
printJobID, time

String
outRejectAlert
inRejectAlert

SetDataAlert
printServer,

customer, time
String

outSetDataAlert
inSetDataAlert

OfferNotice
OfferResult

customer,
printJobID, time

String
outOfferNotice
inOfferResult

LinkRequestNotice
LinkRequestResult

customer,
printServer, time

String
outLinkRequestNotice
inLinkRequestResult

DataNotice
DataResult

printServer,
customer, time

String
outSetDataNotice
inSetDataResult

ContractNotice
ContractResult

printServer,
printJobID, time

String
outContractNotice
inContractResult

CounterOfferNotice
CounterOfferResult

printServer,
printJobID, time

String
outCounterOfferNotice
inCounterOfferResult

RejectNotice
RejectResult

customer,
printServer,

printJobID, time
String

outRejectNotice
inRejectResult

AcceptNotice
AcceptResult

customer,
printServer,

printJobID, time
String

outAcceptNotice
inAcceptResult

LinkNotice
LinkResult

printServer,
content
, time

String
outLinkNotice
inLinkResult

 All messages have time variables to record the time to receive any message from the

observers or the user and the provider model. With recorded time data, we can diagnose

142

network delay and healthiness.

 The observer models can be DEVS simulator services using DEVSJAVA and AXIS2,

and are integrated by the DEVS simulator services integrator. The testing agents system

requires the real time system. To support the real time simulation between observer

services, The DEVS simulator service should equip the real time codes called

RTSimulator. The RTSimulator simulates its model without interacting with the other

RTSimulators for virtual time simulation protocol. Only the RTSimulator sends and

receives a message from/to other RTSimulator in the coupling information.

Figure 5-21 depicts the overall testing agent system consisting of the marketplace

service, DEVSJAVA model, and web enabled DEVS simulation environment which has

DEVS simulator service and real time simulation. The marketplace and DEVSJAVA

model have an invocation relation, that is, the model invokes an operation of marketplace.

The characters on the blue arrows are operations in the marketplace service and the

number is the order of the invocation. The DEVSJAVA model and the web enabled DEVS

simulation have a receiveInput relation, that is, The DEVSJAVA model invokes a

receiveInput operation in the observer service. The numbers in front of the input ports

indicate which input port has a message from the DEVSJAVA after which the operation is

invoked. For instance, if the getOffer is invoked in the user model, the user observer

receives a message in the ingetOffer port. The ports connected between the observers are

displayed in the center of the web enabled DEVS simulation.

143

MarketPlace Web Service

User with

DEVS Agents

Provider with

DEVS Agents

UserObserver ProviderObserver

C
a
p
a
b
il
it
y
Q
u
e
ry
 (
1
)

s
e
tC
o
n
tr
a
ct
Q
u
er
y
 (
2)

s
et
C
o
u
n
te
rO
ff
e
r(
6)

p
u
tD
ec
is
io
n
 (
8)

s
e
tL
in
kE
s
ta
b
li
s
h
ed
 (
12
)

(1) inCapabilityQuery
inCapabilityQueryAlert

(2) inContract
inContractAlert

(4) inOffer

inOfferAlert
(4) inOffer

outAcceptAlert

(10) inLinkRequest

(12) inLinkEstablish
inLinkAlert

(14) inSetData
inDataAlert

(1
0
)s
e
tL
in
k
R
e
q
u
e
s
t

(4
)s
e
tO
ffe
r

(1
3
)g
e
tL
in
k
E
s
ta
b
lis
h
e
d

DEVSJAVAModel

Web Enabled DEVS Simulation

outCapabilityQueryAlert

outContractAlert

(3) inGetContractoutContractNoticeinContractResult

outOfferAlertinOfferAlert

(5) inGetOffer outOfferNotice inOfferResult

(6) inCounterOffer
inCounterOfferAlertoutCounterOfferAlert

(7) inGetCounterOfferoutCounterOfferNoticeinCounterOfferResult

outOfferAlert

(5) inGetOffer outOfferNotice inOfferResult

(8) inAccept
inAcceptAlert

(9) inGetAccept
outAcceptNoticeoutAcceptResult

inLinkRequestAlert outLinkRequestAlert

(11) inGetLinkRequest outLinkRequestNotice inLinkRequestResult

outLinkAlert

(13) inGetLink
outLinkNoticeinLinkResult

outDataAlert

(15) inGetData
outDataNotice inDataResult

g
et
O
ff
er
 (
5
)

g
et
L
in
kR
eq
u
e
s
t
(1
1
)

c
h
e
ck
D
a
ta
 (
1
5
)

(3
)g
e
tC
o
n
tra
c
tQ
u
e
ry

(7
)g
e
tC
o
u
n
te
rO
ffe
r

(9
)c
h
e
c
k
D
e
c
is
io
n

(1
4
)p
u
tD
a
ta

Figure 5-21 Overall testing agent system

144

Figure 5-22 The experiment of the testing agents system

 The procedures for the experiment of the testing agents system are the following:

1. Integrate observer services with DEVS simulator services integrator.

2. Execute integrated observer services with RTSimulators.

3. Simulate the negotiation system with DEVS Agent.

 Figure 5-22 shows the simView displaying the negotiation model, two windows

145

displaying statistics and logs for invocation of the marketplace service, and three

command windows displaying APACHE web servers. Table 5-5 represents the servers

containing services and a client. The procedure 1 is executed in the 150.135.218.199 with

the DEVS simulator services integrator. The procedure 2 is done by executing the XML

document for the observer models. The UserObserver service is located in the

150.135.218.201, and the ProviderObserver service is located in the 150.135.218.204.

After finishing the procedure 2, the simView is run to simulate the negotiation system

with the DEVS agent. With the “step” button in the simView, we can simulate the

negotiation system step by step. With the “run” button the simulation of the negotiation

system is executed until the simulation is over.

Table 5-5 Servers, services, and negotiation model
 Server name Service and client
150.135.218.199 A user and provider with DEVS Agent, DEVS simulator

services integrator
150.135.218.201 UserObserver service
150.135.218.204 ProviderObserver service
150.135.218.206 Marketplace service

 Figure 5-22 displays the picture after the simulation is over. Each server displays the

texts from its model or marketplace service. The observer servers display the texts for

input message information and arrival time. The server with the UserObserver presents

the summary of observation of the user model, and the servers with observer can report

the negotiation outcome and duration. The windows for statistics and logs display current,

average, max, and min round trip time (RTT) in the tables along with the number of

invocation.

 In testing the agents system, we see that the DEVS simulator services with observer

146

models can be integrated with the particular group through the interoperability of message

types. Different domain observer models can be integrated if they have an agreement on

their messages sent/received to/from output ports/input ports. The message types are

described in the DEVS namespace to verify that the coupled models are using the same

syntactic structures.

 We demonstrate the design concept of the testing agents system to prove that the

testing agents system can test multiple levels with the negotiation system and its observer

services. As a result of the experiment, the testing agents system can not only observe

their observee models, such as a user and a provider model, but also it can assess the

negotiation system from the network level to the pragmatic level with the DEVS Agent

and observer services if the observer models have more diagnostic functionalities.

147

CHAPTER 6. DISCUSSIONS

6.1. Different WSDL with the same Design

When we design a web service, we focus on the definition of the operations and data

types used as arguments and return values in the operations. For example, when we want

to implement an operation that has a string argument and a string return in the web

service, we can define the operation such as string getName(string). Obviously, the data

types used in the operation are converted to schema in the WSDL by a tool provided in

the web service middleware such as AXIS2 and .NET. Two middleware produce the

same signature for operations in the web service if the data types are all primitive type.

But when a complex data type is used in the operations, the tool converting a class used

for a web service to a WSDL document produces different kinds of schema.

Figure 6-1 The data type conversion to schema in AXIS2 and .NET

148

 Figure 6-1 represents each return data type of getOutports operation generated in

AXIS2 and .NET. The meaning of the operation is that the operation gives string array

value for outports. The signature of the method in AXIS2 is different from that of the

method in .NET. But the name of the element tag of a return type of getOutports is the

same. The return type is mapped to “getOutportsResponse”, which describes its data type

using a element tag. String array in the AXIS2 is expressed to an element tag that has five

attributes called maxOccurs, minOccurs, name, nillable, and type. AXIS2 assigns the

values to the attributes with their rules. The name of String array is assigned to “return”,

type is “xs:string”, and maxOccurs is “unbounded”. The array<String> in the .NET has

different properties. The .NET defines a complexType called “ArrayOfString” to express

array<String> type used in VC++. The ArrayOfString element is the same as the

getOutportResponse element, except for the name attribute. In the case of the

ArrayOfString element, the name is “string”.

Figure 6-2 Instance of getOutportsResponse type

 Figure 6-2 represents an instance of “getOutportsResponse” type in the AXIS or .NET.

149

The names of outports are “out1” and “out2”. AXIS2 generates SOAP body like the lift

side of figure 6-2 when getOutports is invoked by a user, whereas .NET produces SOAP

body, as shown on the right side of figure 6-2. There is a difference of expression of data

types between AXIS2 and .NET.

 Another difference is to define the namespace used in the WSDL. Target namespace

can be defined by a user in the AXIS2 and .NET. AXIS2 provides flexible naming on

namespace or schema namespace. The target namespace is important to invoke web

services because an SOAP message contains the information of target namespace. If a

different target namespace is used in the SOAP message to invoke the web service, the

web server gives an error message complaining that the target namespace is not matched.

AXIS2 allows a user to define target namespace for schema when we use data types

assigned to classes.

 We designed the DEVS simulator service with the expectation it be executed by a

generic approach simulation program because we thought conceptually that the DEVS

simulator service would provide homogeneous values although it is implemented in

different languages and platforms. However, at the implementation level, different rules

are applied to each development environment, such as AXIS2 and .NET. The generic

simulation program is implemented in the DEVS simulator service integrator except for

client codes containing stub classes to communicate with web services. If different web

service middleware, except for AXIS2 and .NET, provides DEVS simulator service with a

different definition of data types, the generic simulation program for DEVS simulator

service should be modified to recognize client codes for new service. To distinguish

150

where the DEVS simulator service is from, the simulation program uses the name of

WSDL. The WSDL created by AXIS2 ends with “servicename?wsdl”, whereas the

WSDL by .NET ends with “servicename.asmx?WSDL”. When the name of WSDL

includes “asmx”, the service is invoked by client codes for .NET. If the name of WSDL

does not include “asmx”, then client codes for AXIS2 are used to simulate DEVS

simulator services.

6.2. XML message converter

XML to specific language instance conversion is introduced in chapter 5. In case of

AXIS2 supporting a Java language, Java provides information of attributes from the class,

a mechanism to make an instance of a class with a name of the class and invocation of a

method with the method name and argument values. With these features, Java class

defined by a user provides its information to other user or programs. However, there is

one condition to be satisfied, that is, that an argument type be known. For example,

assume that we define void setName(String), to invoke the setName method, we should

know the type of argument. In the XML message, the information of the Java class is

contained. So XMLObjectMessageHandler class can automatically convert XML message

to Java class and vice versa.

XMLObjectMessageHandler can not cover all Java class because of lack of

information on the class. The DEVS message used in the DEVS simulator service has a

format to help XMLObjectMessagHandler convert the message. Figure 6-3 shows the

example of a DEVS message with the format. Job class inherits entity class which is base

151

class in the DEVS modeling. There are two variables and four methods to set/get

variables. The set/get method is required to make an instance of a class from XML. There

is a rule to make the set/get method, that is, “set/get” + “variable name” with first

character written in capitals. For example, in case of id variable, the methods are “getId”

and “setId”, as seen in figure 6-3. If other methods not following the above rules are

added in the Job class, Job instance misses the information in the process of converting

XML to Java instance. XMLObjectMessageHandler does not cover highly complex

classes not following the rules.

Class Job extends entity{

 int id;

 double time;

 Job(){

super(“Job”);

 }

 public int getId(){

return id;

 }

 public void setId(int i){

id =i;

 }

 public double getTime(){

return time;

 }

 public void setTime(double t){

time = t;

 }

}

Figure 6-3 The example DEVS message with the format

 In case of .NET supporting VC++, the conversion XML to C++ instance is manually

executed because C++ class does not have any base class which handles information of

that class. There is no way to get the information of C++ class, such as the names and

types of variables. Also, the mechanism to make an instance with a class name is required

152

in the C++ to automatically convert C++ class to XML and vice versa.

 An XML message from the DEVS simulator service for ADEVS should be parsed in

the DEVS simulator service for DEVSJAVA. In our previous work, an XML message for

DEVSJAVA is created using a XML handler called AXIOM (AXIs Object Model),

whereas XML message for ADEVS is created using a DOM for C++. When running the

integrated services, there is an error regarding XML parsing. The service for ADEVS

does not recognize a XML document from the service for DEVSJAVA. Finally, the XML

message for DEVSJAVA was generated using a DOM for Java, and the problem was

solved.

6.3. Other issues

Other issues concern web services and web server platform. The issue for web

service is that web service is stateless, which means the value of the variable in the web

service does not continue in the next invocation. The DEVS simulator service needs to

keep the variables for simulation. In current implementation, we use static variables for

the server system to hold the variables in AXIS2 and .NET. It may cause errors when the

same services are participating in the many integrated services.

When simulating the DEVS simulator services in the windows XP, there is an error in

the connection refusal. This problem comes from a server platform using XP OS because

XP OS has a long timeout period for socket connections. To solve this problem, the

timeout period should be set to a shorter period in the registry in XP.

153

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

 As the request for reusability in the software industry increases, it is inevitable that

the interoperability problem will occur. Interoperability requires platform independence

and neutral message passing. SOA provides an interoperability environment satisfying the

above requirements. DEVS modeling and simulation provides adaptability because DEVS

theory can be implemented in any environment and system with various computer

languages. Integration of DEVS and SOA gives interoperability environment to every

domain.

 In this study, we implemented an interoperable DEVS simulation environment using

SOA and DEVS M&S. In the environment, SOA provides network interoperability and

DEVS M&S provides message and pragmatic interoperability. DEVS simulator

interoperability is implemented by DEVS simulator service consisting of three layers, that

is, simulation protocol layer, message connection layer, and reporting layer. The

simulation protocol layer provides basic functionality to simulate DEVS models. The

message connection layer provides message type information to a DEVS simulator

service integrator. Through this layer, heterogeneous DEVS simulator services can be

integrated. The report layer provides the result of simulation of information generated

during the simulation period.

 SOA uses an SOAP message to provide an interoperable environment. When SOA

and DEVS meet, the SOAP message gives fixed messages to DEVS models residing in

154

the DEVS simulator services. To overcome this problem, we employ XML-style message

passing on an SOA environment. An XML-style message passing means that the DEVS

message in specific language is converted to a XML DEVS message. This XML DEVS

message conforms to the message part of DEVS theory which defines a message as a set

of pairs containing a port and a value. The value can be any type of class defined in the

modeling. DEVS messages are converted to XML-style messages to be interoperable in

the different language and platform. The Dynamic converter of JAVA object to XML

message is implemented in the environment. But the converter does not cover all possible

JAVA objects. In case of ADEVS, the XML message generation codes are inserted into

the DEVS simulator service whenever the DEVS model is changed because C++ does not

have a mechanism to dynamically get information of classes.

 The ADEVS library does not cover some operations in DEVS simulator service

because it does not provide those functions. We modified an ADEVS simulator in order

to map the methods of the ADEVS simulator to operations of the DEVS simulator

service. Through the extended ADEVS simulator, ADEVS models can be simulated with

DEVSJAVA models.

 To integrate heterogeneous DEVS simulator services, we developed a DEVS

simulator service integrator which extracts information from WSDLs of the DEVS

simulator services and verifies if two simulator web services have common messages

during their coupling. As a result of integration of the services, a XML document is

created and is utilized to execute integrated services. We demonstrate interoperable DEVS

simulation using a GPT model implemented in AXIS2 and .NET. The GPT model

155

consists of an EF model implemented in DEVSJAVA and a Processer model implemented

in ADEVS. Each model is embedded in its DEVS simulator service.

 We designed and implemented the DEVS namespace which is schema document

containing data types of DEVS messages. The DEVS namespace can be updated by a web

service called “NamespaceService”. Through the NamespaceService, a service provider

can register schema for message types used in a DEVS model in the DEVS namespace

and look up schema to interoperate with a necessary model when the provider generates

DEVS simulator services. As a result, each web service shares common message types.

When integrating DEVS simulator services, the DEVS namespace provides a semantic

interoperability between the DEVS simulator services.

 We showed various applications of the interoperable DEVS simulation environment.

The applications were drawn from real world development of automated testing

environments for military information system interoperability. A radar track generation

and display federation and a model negotiation web service illustrated the ability of the

proposed middleware to work across platforms and languages. Its ability to support

higher level semantic interoperability was demonstrated in a testing service that can

deploy model agents to provide coordinated observation of web requests of participants in

simulated distributed scenarios.

7.2. Future Work

 In the future, we need to design and implement pragmatic level interoperability in the

DEVS simulator service. The pragmatic level interoperability requires intentions of usage

156

of the messages in the models. The DEVS simulator service should have the information

for the pragmatic level interoperability. When it is integrated and executed with other

services, each service checks its incoming messages for its pragmatic information

interoperability. We need to define what pragmatic information is to apply to the

interoperable DEVS simulation system. If the DEVS simulator service has pragmatic

functions, it is possible to perform multi- levels testing suggested in [35].

 We used two implementations, DEVSJAVA and ADEVS, of DEVS modeling and

simulation to show demonstrations of the interoperable DEVS simulation system. To

interoperate with other implementations of DEVS, the DEVS simulator service needs to

be generated for them. For example, PythonDEVS, DEVSSim++, CD++, and DEVS

Matlab are interoperable if the DEVS simulator service exists for them.

 In agents system, we introduced a real time simulator in the DEVSJAVA. It needs to

be added in the DEVS simulator service with the ADEVS. The DEVS simulator service

with real time simulator can have autonomous functions to automatically search its

corresponding services if information of services is given. It may require machine to

machine communication and P2P concept to implement autonomous coupling and

simulation.

 The dynamic message conversion mechanism will be developed to make it easy to

build up DEVS simulator services. Each language has different functions to extract

information of its object. A JAVA language provides functions to get the names of

variables and methods in the object and to invoke the methods. However, A C++ language

does not provide those functions. In this case, we can add some functions which

157

manipulate information of objects to the DEVS message class. The dynamic message

conversion will be possible with the information of objects.

 A web service for the DEVS namespace will be extended to delete data schema in the

DEVS namespace. If there are some modifications on the DEVS message in the DEVS

simulator service, the schema for the DEVS message should be updated to reflect new

message types. In this case, the old schema is deleted and the modified schema is

registered in the DEVS namespace.

158

REFERENCES

[1] Sage, A., “From Engineering a System to Engineering an Integrated System Family,
From Systems Engineering to System of Systems Engineering”, 2007 IEEE International
Conference on System of Systems Engineering (SoSE). April 16th -18th, 2007, San
Antonio, Texas

[2] Jacobs, R.W. “Model-Driven Development of Command and Control Capabilities For
Joint and Coalition Warfare,” Command and Control Research and Technology
Symposium, June 2004.

[3] Muguira, J., Tolk., A “Applying a Methodology to identify Structural Variances in
Interoperations,” JDMS: The Journal of Defense Modeling and Simulation, Vol 3, No 2,
2006

[4] Tolk, A., and Muguira, J.A. “The Levels of Conceptual Interoperability Model
(LCIM)”, Proceedings Fall Simulation Interoperability Workshop, 2003

[5] DiMario M.J., “System of Systems Interoperability Types and Characteristics in Joint
Command and Control”, Proceedings of the 2006 IEEE/SMC International Conference on
System of Systems Engineering, Los Angeles, CA, USA - April 2006

[6] Levels of Information Systems Interoperability (LISI),
http://www.sei.cmu.edu/isis/guide/introduction/lisi.htm

[7] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an Interoperability-Enabling
Ontology,” Proceedings of Fall Simulation Interoperability Workshop, 2005.

[8] Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J., “Framework for M&S Based
System Development and Testing in Net-centric Environment”, ITEA Journal, Vol. 26,
No. 3, October 2005

[9] Wutzler, T. H.S. Sarjoughian (2007), “Interoperability among Parallel DEVS
Simulators and Models Implemented in Multiple Programming Languages”,
SIMULATION: Transactions of The Society for Modeling and Simulation International,
Accepted.

[10] Sarjoughian, H. S., and B. P. Zeigler. "DEVS and HLA: Complementary Paradigms
for Modeling and Simulation?" Simulation: Transactions of the Society for Modeling and
Simulation International 17, no. 4 (2000): 187-97.

[11] Mittal, S., and J. L. R. Martín. "DEVSML: Automating DEVS Execution over SOA
Towards Transparent Simulators Special Session on DEVS Collaborative Execution and

159

Systems Modeling over SOA." Paper presented at the DEVS Integrative M&S
Symposium DEVS' 07 2007.

[12] SOA http://www.sun.com/products/soa/index.jsp

[13] Web Service Architecture http://www.w3.org/TR/ws- arch/

[14] WSDL2.0 http://www.w3.org/TR/wsdl20-primer/

[15] SOAP1.2 http://www.w3.org/TR/soap12-part0/

[14] Zeigler, B.P., Kim, T.G., and Praehofer, H., Theory of Modeling and
Simulation, 2nd ed., Academic Press, New York, 2000.

[15]. B. P. Zeigler, H.S. Sarjoughian, “Approach and Techniques for Building
Component-based Simulation ModelsThe Interservice/Industry Training”, presentation at
Simulation and Education Conference '04, Orlando, FL

[16] Eric Newcomer and Greg Lomow, “Understanding SOA with Web Services”,
Addison-Wesley Professional, 2004

[17] D Box, D Ehnebuske, G Kakivaya, A Layman, “Simple Object Access Protocl
(SOAP) 1.1”, 2003

[18] James Snell, Doug Tidwell, and Pavel Kulchenko, “Programming Web Services with
SOAP”, O'Reilly Media, Inc.; 1 edition, 2001

[19] Thomas Erl, “Service-Oriented Architecture (SOA): Concepts, Technology, and
Design”, Prentice Hall PTR, 2005

[20] Apache AXIS2 : http://ws.apache.org/axis2/

[21] Turnitsa C., and Tolk, A., “Evaluation of the C2IEDM as an Interoperability-
Enabling Ontology,” Proceedings of Fall Simulation Interoperability Workshop, 2005.

[22] Lasschuyt , E., Henken, M., Treurniet, W., and Visser, M., “How to Make an
Effective Information Exchange Data Model,” RTO-IST-042/9,2004

[23] Hoffmann, M., “Challenges of Model Interoperation in Military Simulations”.
SIMULATION, Vol. 80, pp. 659-667, 2004

[24] Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global Information Grid,”
Proceedings Interservice/Industry Training, Simulation and Education Conference
(I/ITSEC), 2005.

160

[25] Zeigler, B.P. and P.E. Hammonds, Modeling & Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange. 2007.

[26] Zeigler, B.P., Mittal, S., Hu, X., “Towards a Formal Standard for Interoperability in
M&S/Systems of Systems Engineering”, Critical Issues in C4I, AFCEA-George Mason
University Symposium, May 2008

[27] DEVSJAVA : http://www.acims.arizona.edu/

[28] ADEVS: an open source C++ DEVS Simulation engine. Available at:
http://www.ornl.gov/~1qn/adevs/index.html

[29] Microsoft Corporation. XML and .NET White Papers.
http://www.microsoft.com/serviceproviders/whitepapers/xml.asp

[30] Xiaolin Hu, Bernard Zeigler, " A Proposed DEVS Standard: Model and Simulator
Interfaces, Simulator Protocol"

[31] Mittal, S., Risco-Martín, J.L., Zeigler, B.P.,"Implementation of Formal Standard for
Interoperability in M&S/Systems of Systems Integration with DEVS/SOA", submitted to
C2 Journal

[32] Pullen, M., Wilson, L.T.C.K, Hieb, M., Tolk, A., “Extensible Modeling and
Simulation Framework (XMSF) C4I Testbed,” available from
http://www.movesinstitute.org/xmsf/xmsf.html

[33] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for Simulation: As Simple As
Possible But Not Simpler The High Level Architecture For Simulation. Simulation, 1998.
71(6): p. 378

[34] Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., Jamshidi, M., “Modeling and
Simulation for Systems of Systems Engineering”, to appear in Systems of Systems --
Innovations for the 21st Century (to be published by Wiley)

[35] Zeigler, B.P., and Hammonds, P., “Modeling & Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange”, 2007,
New York, NY: Academic Press.

[36] Zeigler, B. P., Kim, T.G., and Praehofer, H., “Theory of Modeling and Simulation”
New York, NY, Academic Press, 2000.

[37] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-Based Web Services for Net-
centric T&E”, Summer Computer Simulation Conference, 2007

161

[38] Badros, G. “JavaML: a Markup Language for Java Source Code”, Proceedings of the
9th International World Wide Web Conference on Computer Networks: the international
journal of computer and telecommunication networking, pages 159-177

[39] Zeigler, B. P., Mittal, S., “Enhancing DoDAF with DEVS-Based System Life-cycle
Process”, IEEE International Conference on Systems, Man and Cybernetics, Hawaii,
October 2005

[40] Reichenthal, S.W., SRML - Simulation Reference Markup Language W3C Note 18
December 2002 http://www.w3.org/TR/SRML/

[41] Mittal, S., “Extending DoDAF to allow DEVS-Based Modeling and Simulation”,
Special issue on DoDAF, Journal of Defense Modeling and Simulation (JDMS), Vol 3.
No. 2

[42] Mittal, S. Martin, J.L.R., “Design and Analysis of Service Oriented Architectures
using DEVS/SOA-Based Modeling and Simulation”, whitepaper at
www.duniptechnologies.com

[43] Mittal, S., Martin, J.L.R., Zeigler, B.P., ”DEVS/SOA: A Cross-platform Framework
for Net-centric Modeling and Simulation in DEVS Unified Process”, SIMULATION:
Transactions of SCS, to appear

[44] Mittal, S., Martin, J.L.R., Zeigler, B.P., “DEVSML: Automating DEVS Execution
over SOA Towards Transparent Simulators”, Special Session on DEVS Collaborative
Execution and Systems Modeling over SOA, DEVS Integrative M&S Symposium DEVS'
07, Spring Simulation Multi-Conference, March 2007

[45] Mittal, S., Zeigler, B.P., Hwang, M.H., XML-Based Finite Deterministic DEVS
(XFD-DEVS); http://www.saurabh-mittal.com/fddevs/

[46] ACIMS software site: http://www.acims.arizona.edu/SOFTWARE/software.shtml

[47] Hu, X., and Zeigler, B.P., “Model Continuity in the Design of Dynamic Distributed
Real-Time System”s, IEEE Transactions on Systems, Man And Cybernetics— Part A,
Volume 35, Issue 6, pp. 867-878, November 2005

[48] Cho, Y., Zeigler, B.P., Sarjoughian, H., “Design and Implementation of Distributed
Real-Time DEVS/CORBA”, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[49] Wainer, G., Giambiasi, N., “Timed Cell-DEVS: modeling and simulation of cell-
spaces”. Invited paper for the book Discrete Event Modeling & Simulation: Enabling
Future Technologies, Springer-Verlag 2001

162

[50] Zhang, M., Zeigler, B.P., Hammonds, P., “DEVS/RMI-An Auto-Adaptive and
Reconfigurable Distributed Simulation Environment for Engineering Studies”, ITEA
Journal, July 2005

[51] Mittal, S., “DEVS Unified Process for Integrated Development and Testing of
Service Oriented Architectures”, Ph. D. Dissertation, University of Arizona

[52] DUNIP: A Prototype Demonstration http://www.acims.arizona.edu/dunip/dunip.avi

[53] MatLab Simulink, http://www.mathworks.com/products/simulink/

[54] OMNET++, http://www.omnetpp.org/

[55] NS-2, http://www.isi.edu/nsnam/ns/

[56] XDEVS web page: http://itis.cesfelipesegundo.com/~jlrisco/xdevs.html

[57] HLA, https://www.dmso.mil/public/transition/hla/

[58] Sarjoughian, H.S., Zeigler, B.P., "DEVS and HLA: Complimentary Paradigms for
M&S?" Transactions of the SCS, (17), 4, pp. 187-197, 2000

[59] Carstairs, D.J., “Wanted: A New Test Approach for Military Net-Centric
Operations” , Guest Editorial, ITEA Journal, Volume 26, Number 3, October 2005

[60] Mittal, S., Zeigler, B.P., “DEVS Unified Process for Integrated Development and
Testing of System of Systems” , Critical Issues in C4I, AFCEA-George Mason University
Symposium, May 2008

[61] Sarjoughian, H., Zeigler, B.P., and Hall, S., “A Layered Modeling and Simulation
Architecture for Agent-Based System Development” , Proceedings of the IEEE 89 (2);
201-213, 2001

[62] HTTP : http://www.w3.org/Protocols/

[63] SMTP : http://cr.yp.to/smtp.html

[64] Mittal, S., Zeigler, B.P., Hammonds, P., Veena, M., “Network Simulation
Environment for Evaluation and Benchmarking HLA/RTI Experiments”, JITC Report,
Fort Huachuca, December 2004.

[65] Hu, X., Zeigler, B.P., Mittal, S., “Dynamic Configuration in DEVS Component-
based Modeling and Simulation”, SIMULATION: Transactions of the Society of
Modeling and Simulation International, November 2003

163

[66] Mittal, S., Zeigler, B.P.,, “Modeling/Simulation Architecture for Autonomous
Computing”, Autonomic Computing Workshop: The Next Era of Computing, Tucson,
January 2003.

[67] XML: http://www.w3.org/XML/

[68] Martin, J.L.R., Mittal, S., et.al, “Optimization of Dynamic Data Types in Embedded
Systems using DEVS/SOA-based Modeling and Simulation”, 3rd International ICST
Conference on Scalable Information Systems, Italy, June 2008

[69] aDEVS: an open source C++ DEVS Simulation engine. Available at:
http://www.ornl.gov/~1qn/adevs/index.html

[70] Mittal, S., Martin,J.L.R., Zeigler, B.P., “WSDL-Based DEVS Agent for Net-Centric
Systems Engineering”, International Workshop on Modeling and Applied Simulation,
Italy, September 2008

[71] Department of Defense Architecture Framework (DoDAF) version 1.5 downloadable
from: http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf

[72] Thea Clark, Richard Jones, “Organisational Interoperability Maturity Model for C2”,
1999

[73] eclipse : http://www.eclipse.org/

[74] Moath Jarrah, “ An Automated Methodology for Negotiation Behaviors in Multi-
Agent Engineering Applications”, summer 2008, ECE, University of Arizona

[75] Jean-Sébastien Bolduc and Hans Vangheluwe. The modelling and simulation
package PythonDEVS for classical hierarchical DEVS. MSDL technical report MSDL-
TR-2001-01, McGill University, June 2001.

