INTEROPERABILITY BETWEEN DEVS SIMULATORS USING

SERVICE ORIENTED ARCHITECTURE AND DEVS NAMESPACE

by

Chungman Seo

Copyright © Chungman Seo 2009

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

2009

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify ttahave read the dissertation
prepared by Chungman Seo

entitled Interoperability between DEVS Simulators using Ser@dented Architecture
and DEVS Namespace

and recommend that it be accepted as fulfilling the disserta¢éignirement for the
Degree of Doctor of Philosophy in Electrical and Computer Engineering.

Date: 03/27/09

Bernard P. Zeigler

Date: 03/27/09

Jonathan Sprinkle

Date: 03/2709

Ali Akoglu

Final approval and acceptance of this dissertation is contingent uparanidelate’s
submission of the final copies of the dissertation to the Graduate College.

| hereby certify that | have read this dissertation preparedrumgedirection and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: 03/27/09

Dissertation DirectorBernard P. Zeigler

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilmentegtirements for an
advanced degree at the University of Arizona and is deposited in the Univéosigylto
be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable withoutiap@ermission,
provided that accurate acknowledgement of source is made. Requgstsnfigssion for
extended quotation from or reproduction of this manuscript in whole orrimyzy be
granted by the copyright holder

SIGNED: Chungman Seo

ACKNOWLEDGEMENTS

| would like to express my greatest appreciation to my advisoBBmard P. Zeigler,
who guided me through this research work and introduced me to meiting areas in

discrete event simulation and its application. His help and suppoendless. He made
me gain new knowledge and insights in my career, without him | wower meach to

this point. | am very grateful for his dedication and advising.

| also express my appreciations to the committee membedoiathan Sprinkle and Dr.
Ali Akoglu for providing suggestions enhancing the content of this dissertation.

| would like to express thank to my colleagues at ACIMS Lab, tio Lee, Lahiru
Ariyananda, Dr. Han, and Dr. DH Kim for the useful discussion and advice.

| would like to thank to my parents, sisters, and brothers who alsvgysort and trust me.

Special thank goes to my wife, Jeongyeon, for her endless support and ¢davenot
make it without her. She is everything to me.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES

AB ST RACT o 15
CHAPTER 1. INTRODUCTION ... e 17
1.1Motivation and GOalScoeeiiiiiii i 17
1.20rganization of the TheSISoiii i e 20
CHAPTER 2. BACKGROUND ... e e 21
2.1 Discrete Event System Modeling and Simulationcoiivinnn. 21.

2.1.1 Discrete Event System Specification (DEVS) Modeling and simulation24.

2.2 Service Oriented Architecture (SOA)ovuiiiiiii i e e 27
2.2 1 WeD SEIVICE ..o 28
2.2.2 Simple Object Access Protocol (SOAP) ... e 30
2.2.3 Web Services Description Language (WSDL)coviiiiiiiiiiiiiiiieneenn s 33.
2.3 APACNE AXIS 2 ..o s 34
2.4 Interoperability STUAIEScuuieiie e e 37

CHAPTER 3. OVERALL ARCHITECTURE OF DEVS SIMULATOR

SERVICES INTEROPERABILITY ... e 42

3.1System of Interoperability of DEVS Simulator Services.................ccovv.... 43,
3.2 The DEVS NamMESPaACE ... e uttut ittt et e et e et et et e e e e e ae e ee e e ee e 45

3.3 The Structure and design of DEVS Simulator Serviceccccovivnnee. 49.

TABLE OF CONTENTS - Continued

3.3.1 The structure of DEVS SiMUlator SEIVICEoue e e e 49.
3.3.2 Design of the DEVS simulator SEIVICEovvviiiiieiie e iiieiieiienae 50.
3.4 WSDL of the DEVS Simulator SEIVICEovenii e e e 53

3.5 Creation of the DEVS Simulator Servicecovoveiiiiiiiiiiiiiiiennnn....... B0,

3.6 DEVS Simulator Service Integration and Execution51,

3.6.1 Invocation of a DEVS SIMUlator SEIVICEoveeiee e 54

3.6.2 Integration of DEVS SIMulator SErVICESoovii i e e e
3.6.3 Execution of integrated DEVS simulator servicescocvevee 2830

3.7 DEVS message t0 XML MESSAQEuiuin ittt ittt e e e eaeeeeaans 67..

CHAPTER 4. IMPLEMENTATION OF THE DEVS NAMESPACE AND

DEVS SIMULATOR SERVICES ... 69

4.1 Implementation of DEVS NameSPacecoovieiiiiiiiiiiieiieieecne e e e 69

4.1.1 The GUI for schema data registrationcccvcvvvvievie i ven e e ewn 70

4.1.2 BrowSiNG GUI ... uiiieiit i e e e e e e e e e e e 73
4.1.3 NamespaceServiCe WED SEIVICEovieie ittt ee e e e aen 73
4.2 Simulator Services encapsulating DEVSJAVAooiiiiiiii i 74.
4.2.1 DEV ST AV A L e 74

4.2.2 DEVSIAVAINEITACE ... e e e e 9
4.2.3 DEVS simulator service with DEVSJAVA89
4.3 Web Service encapsulation ADEVS ...ttt e e ee e 92

60

TABLE OF CONTENTS - Continued

4.3.2 ADEVS INtEITACE ... e e e e e e 295
4.3.3 DEVS simulator service With ADEVS ... e, 101

4.4 DEVS Simulator Web Services Integration and Execution 103

CHAPTER 5. APPLICATION OF INTEROPERABILITY OF DEVS

SIMULATOR SERVICES ... e 109
5.1 Track DiSPlaycviiei i e e e e e e e 109
5.1.1 Design of Track Display DEVS modelscccooiiiiiiiiiiiiiie e 110

5.1.2 Implementation of Track Display with DEVS simulator service112
5.2. Negotiation SYStemcccoiiiii i e e e e ee e 2116
5.2.1. Design of Negotiation System with DEVS simulator service 117

5.2.2 Implementation of Negotiation System with DEVS simulator service124.

5.3 Test Agents for Net-CENLIICvuviriie it e e e e e e e e e 127
5.3.1 Design of Test Agents for Net-CeNntriCcooviiiiiiiiiii i i e e eenaas 128
5.3.1.1 Modified negotiation SYStEMccuiiiiii i i e e e 128

5.3.1.2.0bserver modelsccouveiii i a0 134
5.3.2 Implementation of Test Agents for Net-centric applying DEWSulator service

...138
CHAPTER 6. DISCUSSIONS ..., 147

6.1 Different WSDL With SAmMe DeSIgNovviiiiie e e e e e 147

TABLE OF CONTENTS - Continued
6.2 XML MESSAJE CONVEITEL ...ttt ittt et e e e e e e et e e e e eenas 150
6.3 OtheriSSUEScuviiii i e e e a0 200152
CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 153

7.1 CONCIUSIONS ..o e e e e e e e e e e e e e 1B3

T2 FUTUIE WWOTK e e e e e e e e e e e e e 155

REFERENCES ... e 158

LIST OF ILLUSTRATIONS

Figure 2-1 DEVS Modeling and Simulation Framework24.

Figure 2-2 Coupled modules formed via coupling and their use as components.25......
Figure 2-3 DEVS simulation ProtoColccooiiiii i e e 26
Figure 2-4 Web Services ArchiteCturecc.vie e iie i e 29

Figure 2-5 The structure of SOAPcoiviiiiii i e 31
Figure 2-6 WSDL doCumMent SIrUCIUIEc.vveiirie e e e e e e v e e a e 33
Figure 2-7 AXIS2 architecture diagramc.coovieiiiiin i e e 35

Figure 2-8 JAX-RPC Physical architecturecccceeviiiiiiii i e et 2.36

Figure 3-1 Creation and consuming of DEVS simulator services 42....
Figure 3-2 Overall system of DEVS simulator services interopesahilit............... 44
Figure 3-3 The DEVSNamMESPACE.XSAovvi it ee e e e aenaand 46
Figure 3-4 Conversion dfobclass to schema data type..........c.ccoceeeiiiieiiiiveeveeeinnns a7

Figure 3-5 The registration of a schema documentccccevvevvnenn . 48,

Figure 3-6 The software stacks of a DEVS simulator service.......................ou 49.
Figure 3-7 The operations of DEVS simulator Serviceccccevvieennnnnn.. 51
Figure 3-8 Java Interface of Simulatorcoo i e 54
Figure 3-9 The usage of the Java2WSDL t0oOlccoiiiiiiiiiiii e e, 55
Figure 3-10 The procedure of creation of the web servicecccevvim 56.
Figure 3-11 The procedure of consuming a web Serviceccocevvee e v 58
Figure 3-12 WSDL-based dynamic invocation of a web service with AXIS2....... 59

Figure 3-13 DEVS Simulator Services Integratorcovviiiiiiiiiieie s e 60

10

Figure 3-14 The Information Of @ SEIVICEiviiiiiiiiiiii e 61
Figure 3-15 Coupling GUI ... e e e e 62
Figure 3-16 The procedure of preparing simulationccoocvevievnnnn.64,
Figure 3-17 The centralized simulation protocolccoovvieievevenet. .65
Figure 3-18 The decentralized real time simulation protocol66.
Figure 3-19 The structure of the XML messageccoeevviiiinii i ienieenn BT

Figure 3-20 The DEVS message and XML message in the web service.....................

Figure 4-1 Overview of registering and browsing schemaccceeee........ 70
Figure 4-2 The GUI for type generatorc.cvvveiiiiiiiie i 01
Figure 4-3 The Example of the GUI for schema registercccooevvvvvevnend 2.
Figure 4-4 The Example of the GUI for schema browser13..
Figure 4-5 DEVSJAVA class hierarchy ... e 75
Figure 4-6 Class hierarchy of container classccoovoiiiiiiiiii s 76

Figure 4-7.The view of relationship between a model and a simulator or a comdirtat
Figure 4-8 The atomic model functions with a coordinator embedding a coupled8@odel
Figure 4-9 Simulator class VIEWooviiiii it 81
Figure 4-10 Example of XML Object Message Handlercooiiiiiinas 82

Figure 4-11 The algorithm of the conversion of the DEVS messatiee XML message

...84
Figure 4-12 The example of DEVS message with an arrayccoveiiennie 85..
Figure 4-13 The algorithm to extract the information of the XML message86....

Figure 4-14 The algorithm to make an instance of DEVS message 88....

11

Figure 4-15 The package diagram of the DEVS simulator service with DBMSJA89

Figure 4-16 The example of @ Services.Xmlcoooiiiiiiii i 20
Figure 4-17 The structure of the service archive for an EFModel service........... 91
Figure 4-18 The classification of ADEVS header files into their usages............ 92
Figure 4-19 Hierarchy structures of ADEVS modeling classc..cocivvivew 93
Figure 4-20 Simulation of ADEVS modelcccoooiiiiiiiiii .94

Figure 4-21 The added functions in the ADEVS simulator for DEVWulsitor service

...96
Figure 4-22 The message converting in the DEVS simulator servia®tvs 97
Figure 4-23 An algorithm for Bag object to XML conversioncccceeveenn... 98
Figure 4-24 The algorithm for extracting information from the XML ragss........... 99
Figure 4-25 The algorithm for creating a Bag instance with Eventv&toe>101
Figure 4-26 The operations of DEVS simulator service for ADEVS 102
Figure 4-27 The view of the GPT model ... 103
Figure 4-28 GT simulation web service using AXIS2 and DEVSJAVA 104
Figure 4-29 Process model simulator web service using .Net and ADEVS 105....
Figure 4-30 The integrator for EFP web servicescccoiiiiinn. . 106
Figure 4-31. The GUI for the information of servicescooviiiiiiinenns 106
Figure 4-32 The GUI for coupling between the servicescooiiiiii i 107
Figure 4-33 The XML document for DEVS Simulator WS Integration10Z.
Figure 4-34 The result of simulation of DEVS simulator services 108..
Figure 5-1 State diagrams for track generator and track displayc..o..t.

12

Figure 5-2 The view of Track Display DEVS models with simView 112
Figure 5-3 The schema for the TrackDatacooiviiiiiiiciicci e 113
Figure 5-4 The view of the XML document for the track display system 114
Figure 5-5 The track display WINdOWcooiii i e 115
Figure 5-6 The state diagram of the marketplace modelo.. 117..
Figure 5-7 The state diagram for the user modelonll 1000
Figure 5-8 The state diagram for the provider model 000121
Figure 5-9 The negotiation system model for a printing jobs service 122...
Figure 5-10 The schema document for the ContractQuery message 125...

Figure 5-11 The result of the negotiation system using DEVS simulatacese... ... 126
Figure 5-12 The state diagram for a modified user model 129
Figure 5-13 The state diagram for a modified provider model131

Figure 5-14 The operations of marketplace Servicecooviiiiiii i iiiinnns

Figure 5-15 Interaction between a user and a provider through pladestveb service

...133
Figure 5-16 The state diagram for a user observer...................c.ceeevvnenn135
Figure 5-17 The state diagram for a provider observerccooooviiiiiinines 137
Figure 5-18 The DEVS model view of negotiation systemccccvvviiieannne. 138
Figure 5-19 The four atomic models in DEVS Agentccoveeveenen... 139
Figure 5-20 The view of observer modelso s 140
Figure 5-21 Overall testing agent Systemc.ccoovii i i eeeeen el .. 143

Figure 5-22 The experiment of the testing agents system.............coooviiiiiiiiieennns

13

Figure 6-1 The data type conversion to schema in AXIS2 and .NET 147..
Figure 6-2 Instance of getOutportSReSPoONSe typec.ovvvviiiiiiiii i ieens 148
151

Figure 6-3 The example DEVS message with the formatc

14

LIST OF TABLES

Table 2-1 Five levels iN LIST ... e 39
Table 2-2 Level of OIM ... e e e 039
Table 2-3 Degree Of NC 3T A .o e e e e e 39
Table 2-4 Level of LCIM ... e e 40
Table 2-5 Linguistic levels of interoperabilityc.oooiii e 40

Table 5-1 A message used in the Track Display systemcoevvneen 1130

Table 5-2 The messages used in the negotiation systemcccoevienn 124...
Table 5-3 Assignment of DEVS simulator services to servers 126..
Table 5-4 Messages to send/receive between the observer models................ 140....

Table 5-5 Servers, services, and negotiation modelo.eeeel . 1450

15

ABSTRACT

Interoperability between heterogeneous software systems im@ortant issue to
increase software reusability in the software industry. Margghods are proposed to
implement interoperable systems using distributed computing infcastes such as
CORBA, HLA and SOA. Those infrastructures can provide communicat@mnels
between software systems with heterogeneous environments. SOAc€Semented
Architecture) provides a more flexible approach to interoperalitiyn do the others
because it provides platform independence and employs platforminewtssage
passing with Simple Object Access Protocol (SOAP) to commenizstiveen a service
and a client.

The main contribution of this study is to design and implement anopamable
DEVS simulation environment using the SOA concept and a new constiled the
DEVS namespace. The interoperable DEVS environment consists BV& Bimulator
service and an associated integrator. The DEVS simulatocsgmovides both simulator
level and model level interoperability. Moreover, using the DEVS espace, DEVS
simulator services can be interoperable with any services using the sasageng/pes.

To demonstrate the utility of the proposed environment, we describeuyar
applications of the interoperable DEVS simulation environment. Thecapiphs are
drawn from real world development of automated testing enviroramient military
information system interoperability. A radar track generagiod display federation and a

model negotiation web service illustrated the ability of the preghosiddieware to work

16

across platforms and languages. Its ability to support higheel Isemantic
interoperability will be demonstrated in a testing service ¢hatdeploy model agents to
provide coordinated observation of web requests of participants in sichdiatebuted

scenarios.

17

CHAPTER 1. INTRODUCTION

1.1. Motivation and Goals

The study of interoperability has been conducted to suggesetthodology to
integrate different systems distributed over the network systéhes integrated system
called the System of Systems (SoS) is differentiated fr@mmgle monolithic system in
that it requires interoperability among its constituent systdfisSoS engineering has
priority on interoperability on the development of command and cof@&)! capabilities
for joint and coalition warfare [2-4]. From the research of intenadpkty, models with
levels of interoperability describing technical interoperabilihd gahe complexity of
interoperations [5-7] are suggested in the SoS research groups. Theomiedels of
interoperability is reinterpreted in the different applicationshsag telecommunication
and software to search their own interoperability levels.

As a result, [8] introduced linguistic levels of interoperapiliivided into three
levels: pragmatic level, semantic level, and syntactic levet. @ragmatic level stresses
data used in relation to data structure and context of appiticdthe semantic level has a
low level focusing on definitions and attributes of terms, and a kigHl focusing on the
combined meaning of multiple terms. The syntactic level focases structure and
adherence to the rules that govern that structure. The lingwestdts|interoperability

concept provides a simultaneous testing environment at multiple levels.

18

Interoperability between heterogeneous software systeras isnportant issue to
increase software reusability in the software industry. Margghods are proposed to
implement interoperable systems using distributed computing infcastes such as
CORBA, HLA and SOA [9-11]. Those infrastructures can provide comeatioh
channels between software systems with heterogeneous environ®e#{s(Service
Oriented Architecture) provides a more flexible approach toaperability than others
because it provides platform independence and employs neutralgegssssing with
Simple Object Access Protocol (SOAP) to communicate betwessmvace and a client
[12-15].

The research groups of DEVS modeling and simulation have been tederas
interoperable DEVS modeling and simulation in order to enhance model calmijpps
and reusability with DEVS models and non DEVS models in differamguages and
platforms. The problem to interoperate heterogeneous DEVS models DEYUS
simulators is that DEVS simulators implement the DEVS moddbnmalism in diverse
programming environments (e.g. DEVSJAVA, ADEVS, PythonDEVS) [27, 28]. Tihoug
the DEVS formalism specifies the same abstract simudgmrithm for any simulator,
different simulators implement the same abstract simulatiog whfferent codes. This
situation inhibits interoperating DEVS simulators and preventsiulation of
heterogeneous models. Also, each simulator can not provide platforratnaessage
passing.

The interoperable DEVS simulation has been tried to develop nteeoperable

framework through DEVS standard to simulate DEVS models gewkena the different

19

languages and platforms. Some research of interoperability on DBEY®een studied
along with HLA and SOA [10, 11]. Prior work includes DEVS/SOA whidhtal and
Rico developed using web services [11]. However, it provides only platform
interoperability because it employs JAVA serialization wheonverts JAVA objects into
byte array to send messages to simulators. This restrieioperation to simulators
based on JAVA. To add the language interoperability to the platimenoperability, we
apply neutral message passing and the SOA environment. The intbrityesa DEVS
uses simulator level interoperability that uses common simuilaterfaces to simulate
DEVS models. The simulator interface describes a minimum agrdéebeing able to
implement a simulator class using different languages sudi\#s C++, and C#. This
approach strengthens model reusability because DEVS modeling and simségitarates
models and simulators. To increase model composibility, we apply @owstruct called
the DEVS namespace which is a specific XML namespace toedefiique message
types used at DEVS models in the DEVS simulator servicesroltiges semantic
interoperability when we integrate different DEVS simulators.

The main contribution of this study is to design and implement intexbleeDEVS
simulation environment using SOA and DEVS namespace. The interop&&M8&
simulation environment is categorized to the design of DEVS siarukervice and
DEVS simulator service integrator. The DEVS simulator servprovides not only
simulator level interoperability, but also model level interopeitsbihlso, through the
DEVS namespace, we can couple DEVS simulator services with seessage types. In

an interoperable DEVS environment, web services represent DEV&latins

20

embedding specific DEVS models. They have minimum agreemeninfotasor and
information of input/output ports which have specific data types destrin DEVS

namespace.

1.2. Organization of the Thesis

Background knowledge, discrete event system modeling and simulaféy, &ad
interoperability studies are discussed in the chapter 2. Chapi#dr8saes the overall
system architecture of DEVS simulator service interoperghlbinsisting of system of
interoperability of DEVS simulator services, DEVS namespand, DEVS simulation
service integration and execution. Chapter 4 explains implenentatf DEVS
namespace and DEVS simulator services. In chapter 4 we deatenstio DEVS
simulator services using JAVA and VC++ with DEVSJAVA and ADE\V\&spectively.
The example of integration of DEVS simulator services isemtesl in section 4. In
chapter 5, we present application of interoperability of DEVS sitmwulservices. The
track display and negotiation systems are integrated among BiWi#ator services
implemented with different languages. The testing agentemyst implemented using
DEVSJAVA modeling and simulation and DEVS simulator serviceth weal time
simulator. In chapter 6, we discuss the difference between corieept and
implementation level in DEVS simulator service, as well ases@ssues about web

service and platform. The paper’s summary and future work are presenkaptar 7.

21

CHAPTER 2. BACKGROUND

2.1. Discrete Event System Modeling and Simulation

The Discrete Event System Specification (DEVS) [14] isren&lism which describes
entities and behaviors of a system. It also allows the buildingpdiufar and hierarchical
model compositions based on the closure-under coupling paradigm thag thatthe
hierarchical models can be expressed to the single model. The EWS&ism describes
a system as a mathematical expression using set thiesra theoretically well-defined
system formalism. The original DEVS formalism called @lassic DEVS had constraints
that originated with the sequential operation of early compatetshindered the exploitation
of parallelism, a critical element in modern computing. Thalfg DEVS formalism equips
bags to accommodate multiple input messages and the confluent functibantle
simultaneous internal and external events.

There are two kinds of models in DEVS: atomic and coupled modelsat@mic
model depicts a system as a set of input/output events and ins¢aed along with
behavior functions regarding event consumption/production and internal ateggtidns.
A coupled model consists of a set of atomic models, information s$age connections
between the atomic models, and input/output ports.

The Atomic model can be illustrated as a black box having @t sgputs(X) and a set
of outputs(Y), or a white box specifying a set of states(S) soime operation functions
(i.e., external transition functiord), internal transition functiondg;), output function

(A), and time advance function (ta())) to describe the dynaeii@aviors of the model.

22

The external transition functiodd) carries the input messages and changes the system
states. The internal transition functiai.§ changes internal variables from the previous
state to the next state when the time advance is expired awnits have occurred since
the last transition. The output functidk) @enerates an output event in the current state.
The time advance (ta()) function determines the time to sttyeistate after generating
an output event. The atomic model is specified as follows:

M=<X,S, VY,dnt, Oext , A, ta>
where,

X: a set of inputs;

S: a set of states;

Y: a set of outputs;

dint. S— S:internal transition function;
Sext: QX XP — S: external transition function;
L: S—Y": output Function;
ta: S— Rj, :time advance function.
X® and Y"are a set of bags over elements in X and Y.
Q={(s,e)|se S0<e<ta(s)} is the set of total states where e is the elapsed

time since last state transition.
A coupled model is the major class which embodies the hierarchmadl composition
constructs of the DEVS formalism [14]. A coupled model is made upoofponent

models, and coupling relations that establish the desired commanitaks. A coupled

23

model illustrates how to connect several component models togethemta foew model.
Two significant activities involved in coupled models specify amponent models and
define the couplings which create the desired communication netwikscoupled
model is specified as follows:
DN =<X,Y, D, {M}, {l i}, {Zi} >
where,
X: a set of external input events;
Y: a set of outputs;
D: a set of components names, for each i in D;
M;: a component model,
i the set of influences for I; for each jin |
Z;;. the i-to-j output translation function.
A coupled model contains the following information:
B The set of components
B For each component, its influencees
B The set of input ports through which external events are received
B The set of output ports through which external events are sent

B The coupling specification consisting of:

€ The external input coupling (EIC) connects the input ports of the coupled

to one or more of the input ports of the components

€ The external output coupling (EOC) connects the output ports of the

components to one or more of the output ports of the coupled model

24

€ Internal coupling (IC) connects output ports of components to input ports

of other components

2.1.1. Discrete Event System Specification (DEVS) Modeling and Simulation

The DEVS modeling and simulation framework provides a verybilexand scalable
modeling and simulation by separating models and simulators. The agb/aota
separation of modeling and simulation is an increase of adaptdt®mulation in the
various environments. For example, DEVS models can be simulated ribufest
environment if simulators are altered to simulate models on riligoament such as

CORBA, HLA, and MPI [14].

Single C+
processor DEVS
e Simulation -
A Protocol ,./_\:_... —-- | Java
| | - L
Distributed R 4 ‘“\-«‘“ e
5 !].1: for - L h 7 \\'\
tmntator / Simulator DEVS “| Other
Representation
Real-Time _,-'I Non
Simulator [} DEVS

Figure 2-1 DEVS Modeling and Simulation Framework [15]
Figure 2-1 depicts DEVS modeling and simulation frameworkrgvBgnulator can be

implemented in the single processor, distributed environment, ne@alnianner, or non-

25

DEVS environment. The DEVS model can be implemented with C+¥A Jér other
implementation [27, 28, 75]. The simulator can simulate the DEVS modéh
simulation protocol. With this concept, the same models can be executed in diffagent w
using different DEVS simulation protocols. Furthermore, middlewarepé&oallel and

distributed computing could be easily applied on separately developed DEVS models.

JI__.—...—hr —=

—e| Atomic | o § = Atomic

7
- —+ — A

Atomic

| - :
—= . Atormic |

-
' = :EE I
—

— ‘=
hierarchical | — 1 - &
constmiction —- |/_F _rJ e

b

| Atomic |

Figure 2-2 Coupled modules formed via coupling and their use as components [15]
Figure 2-2 represents the hierarchical model construction witipaoemts coupling. For
example, a set of atomic models can be a coupled model by addiogping
specification and the coupled model can be used as a componentgerasistem. A
hierarchical coupled model can be built by adding a set of model contpaasewell as

coupling information among these components.

26

The hierarchical construction and closure under coupling propertiesd@rav
excellent DEVS composition framework. Sometimes, the coupled madeiat be used
in the special circumstance such as middleware environmenttls® ¢bupled model is
considered as an atomic model and a simulator interprets thecatomdiel from the
property of closure under coupling, the DEVS model will have moxrgbfke simulation

environment.

/ / --_. ﬂ-\, Coupled
3 gerCmur : coordinator :7 Model
N S

/' 4 sendiCut

/‘:i.tmllator \\.l P I.-’/E-i;nulmor\ I,/:iululator \\.'I

| =.outlld |

\ = // | Il'\\. T}:/ \\ = ’/
After each transition
tIN=t+ta). tL=1t

Component Component Component
tN. 1L
i tN.

Figure 2-3 DEVS simulation protocol [15]

Figure 2-3 depicts the basic DEVS simulation protocol whecthe key method to
interconnect the modeling framework with simulation engines. Therdwar types of
model handler called coordinator and simulator. Each handler maadgE¥S model,
that is, a coordinator is assigned to the coupled model and simuleg@ssagned to the

atomic models. The coordinator is responsible for overall simulatio® management

27

and execution. Simulation begins with the coordinator’s sendexgTNto requestN

from each of the simulators. All the simulators reply with tkdg in theoutTN message

to the coordinator. The coordinator sends to each simulaetGutmessage containing
the globaltN selected frontiNs as minimumntN. Each simulator checks if it is imminent
(its tN = global tN) and if so, returns the output of its model in a message to the
coordinator in a sendOut message. If it is imminent and its inpggage is empty, then it
invokes its model’s internal transition function. If it is imminent ats input message is
not empty, it invokes its model’s confluence transition function.iff ot imminent and

its input message is not empty, it invokes its model’s exterarasition function. If is not
imminent and its input message is empty then nothing happens. The ctwordses the
coupling specification to distribute the outputs as accumulated gessémck to the
simulators in arapplyDeltmessage to the simulators. For those simulators not receiving
any input, the messages sent are empty.

The basic DEVS simulation protocol provides a key concept on how RE¥Sthe
simulators as well as how simulators interact with model comyenén general, the
DEVS based framework supports hierarchical, modular based modalingiraulation
using reusable model components. The simulation protocol can be modifrextease

simulation speed or to support real time simulation [30].

2.2. Service Oriented Architecture (SOA)

SOA [12] is a methodology with which a new application is eathrough

integrating existing and independent business processes which aiteuigidt over the

28

networks. The business processes are called modules or services which aatawuith
each other, passing a message through the networks. This design cmuges
interoperability between heterogeneous systems and languagesrdrestration of

services to meet the purpose of the creator.

2.2.1. Web Service

One of the implementations of the SOA concept is web servicEhws a software
system for communicating between a client and a server ovetveork with XML
messages called Simple Object Access Protocol (SOAP) [15wé&beervice makes the
request of machine-to-machine or application-to-application commiamicaossible
with neutral message passing even though each machine or applisatann the same
domain. Web services realize interoperability among different agijgns providing a
standard means of communication and a platform independence.

The web services technologies architecture [13] is based onngixehamessages,
describing web services, and publishing and discovering web sensceptiens. The
messages are exchanged by SOAP messages conveyed by iptetoebls. Web
services are described by Web Services Description LangMég§8L) [14] which is a
XML based language providing required information such as message tgpesysas of
operations, and a location of a service, for clients to consunsethiees. Publishing and
discovering WSDLs is managed by Universal Description Discaret Integration
(UDDI), which is a platform-independent and XML style registry.other words, three

roles are classified in the architecture: a service prqvaeervice discovery agency

29

(UDDI), and a service requestor. The interaction of the roles invplviesshing, finding,
and binding operations. A service provider defines a service descriptiarweb service
and publishes it to a service discovery agency. This operation publishedioyse
between the service provider and the service discovery agenegigesrequestor uses a
finding operation to retrieve a service description locally or feodiscovery agency and
uses the service description to bind it with a service providerraote or interact with
the web service implementation. Figure 2-4 illustrates the Wdsb services architecture
describing three roles and operations with WSDL and SOAP.

8 UDDI

Discovery

/4Agent \
find publish
»
g bind
o R
o ==
o - E = Q@
Service SOAF

Service

Requestor A
Provider

Figure 2-4 Web Services Architecture
Whereas a web service is an interface described by acesed@scription, its
implementation is the service which is a software module providedhé service
provider (server) on the network accessible environment. It is invoked by @cisterith
a service requestor (client).
Web services are invoked in many ways, but the common use ofeveiges is
categorized to three methods such as Remote Procedure Call (REIC)Service

Oriented Architecture (SOA) [16], and Representational State fErafi®EST) [16]. RPC

30

Web services was the first web services approach which hadriaudesd function call
interface described in the WSDL operation. Though it is widedg @d upheld, it does
not support the loosely coupled concept for reasons of mapping seduieey to
language-specific functions calls. Another web service isnglementation of SOA
concepts, which means a message is an important unit of communiegeed as
“message-oriented” services. This approach supports a loose cocphiogpt focusing
on the contents of WSDL. REST Web services which focus on thereasté resources
rather than messages or operations. It considers WSDL as apt@scof SOAP

messaging over HTTP, or is implemented as an abstraction on top of SOAP.

2.2.2. Simple Object Access Protocol (SOAP)

SOAP [17] is a simple and lightweight XML-based mechanism dpeating
structured data packages that can be exchanged between networktiapglicSOAP
consists of four fundamental components: an envelope that definesnawork for
describing message structure, a set of encoding rules forsekmgeinstances of
application-defined data types, a convention for representing eéeprocedure calls
(RPC) and responses, and a set of rules for using SOAP with. HISPAP can be used
in combination with a variety of network protocols such as HTTP, SMTP, RMI/IIOP,
or a proprietary messaging protocol [62, 63].

SOAP provides a way to communicate between applications runningffererl
operating systems, and a SOAP message is an ordinary XML datwontaining the

following elements as seen in figure 2-5:

31

B An Envelope element that identifies the XML document as a SOAP message
B A header element that contains header information

B Abody element that contains call and response information

B A fault element containing errors and status information

SOAP Message Structure

<? xml versior="1.0" 7>

< soap: Envelope> «——— SOAPEnvelope
<soap: Header>q¢—— 1 Header Entries
-«——F— Header Element

</ soap: Header>

<soap:Body> o | Body Element

< soap: Fault> «———+1—— Fault Element

</ soap: Fault>
</ soap: Body>

</ soap: Envelope>

Figure 2-5 The structure of SOAP

The required SOAP envelop element is the root element of a $@Bage. The
namespace defines the envelope as a SOAP envelope, and if a different nansasgped,
the application generates an error and discards the messagacodengStylattribute is
used to define the data types used in the document. This attnlayteppear on any
SOAP element, and it will apply to that element’s contents and all children.

The optional SOAP header element contains application specifiomafion like
authentication, and payment. SOAP defines three attributes in theltdeamespace.
These attributes amaustUnderstandactor, andencodingStyleThe attributes defined in

the SOAP header define how a recipient should process the SOARBgae3he actor

32

attribute is used to address the header element to a specificrendp@encodingStyle
attribute is used to define the data types used in the docuhtentequired SOAP body
element contains the actual SOAP message intended for theteltendpoint of the
message. The optional SOAP fault element is used to indicate error messages
SOARP is currently the standard for XML messaging for a numbeeasfons. First,
SOARP is relatively simple, defining a thin layer that buildstopm of existing network
technologies such as HTTP that are already broadly implemefembnd, SOAP is
flexible and extensible in that rather than trying to solve allthef various issues
developers may face when constructing Web services, it providesxtansiéle,
composable framework that allows solutions to be incrementally eappls needed.
Thirdly, SOAP is based on XML. Finally, SOAP enjoys broad inguatrd developer

community support.

The following details explain more about SOAP [18-19]

B Specification: SOAP is not a product but a document that describes the
characteristics of a piece of software.

B Ubiquitous application: SOAP is a high level of abstraction thst gperation
system and programming language combination could be used to $f@Aaf-
compliant programs.

B XML-Basis: SOAP is designed on top of XML, which means that SOAP

documents are XML documents constructed to a tighter set of specifications.

33

2.2.3. Web Services Description Language (WSDL)
WSDL is a document written in an XML format published for desogbiweb
services. It specifies the location of the service and the apesatvhich the service
exposes. WSDL describes how to communicate using the web semaicely, the
protocol bindings and message formats required to interact withetheervices listed in
its directory. The supported operations and messages are descrilvadtlgbsind then
bound to a concrete network protocol and message format.
WSDL Document Structure

< definitions >

< types >

definition of types ...
</ types >

< message >
definition of a message
</ message >

< portType >
definition of a port ~
</ portType >

< binding >
definition of a binding

</ binding >

</ definitions >

Figure 2-6 WSDL document structure
The WSDL document structure consistgpoftType messagetypes andbinding as
seen in figure 2-6. TheortTypeelement describes a web service, the operations that can
be performed, and the messages that are involved. It can be comparddntiicn
library in a traditional programming language. Timessageelement defines the data

elements of an operation. Ttygweselement defines the data type that are used by the web

34

service. Thebinding element defines the message format and protocol details dor ea
port.

WSDL is often used in combination with SOAP and XML Schema to provele
services over the internet. A client program connecting to aseelbce can read the
WSDL to determine what functions are available on the servey.special data types
used are embedded in the WSDL document in the form of XML SchEmeaclient can

use SOAP to actually call one of the functions listed in the WSDL.

2.3. Apache AXIS2

Apache AXIS2 [20] is the core engine for web services, sup@D8P 1.1 and
SOAP 1.2, and has integrated support for the widely popular RESToétykeb services.
It gives both a WS- style interface and REST/POX stylefaxte to the same web service
implementation simultaneously. Apache AXIS2 is a SOAP enginehmhiocesses the
SOAP message in and out services.

Figure 2-7 represents the AXIS2 architecture diagram whmhsists of core
components and other components. The core components are XML processing model
(AXIOM), SOAP processing model (handler framework), and inforomaprocessing
model (contexts and descriptions). Other components include deploymmiel, m
transports, client API, and code generation model. AXIOM (AXIs2 Qbykodel) is the
base for AXIS2, where any incoming SOAP message is reprdsaatdXIOM inside
AXIS2. It is based on a pull parser technique in which the invoker hdsltlo®ntrol on

the parser.

35

DE.‘FIID}' rment Code QET'I-EI'E[IDI"I
mcclel mode]

Zore componants

Information S0AP XML
processing processing processing
model model model

Client AP Transports

Figure 2-7 AXIS2 architecture diagram [20]

The handler framework has a special handler called avezcerhich receives
messages and is used to call the provider component, a sender whgmssedges and
invokes the outflow handler chain, and a dispatcher which finds thieesefhe handlers
are the execution units and phases are logical handler colleclibesdeployment
provides an AXIS archive callegar file which is like a jar file with all the service
classes and the service description. It can be uploaded through the web lyrtbn@aogh
the file system. The deployment model has hot deployment and hae dpdetions with
which it can deploy and update services without shutting down the system. ThéPElient
provides facility for synchronous/asynchronous invocations whose supportes! sty
in-out sync, in-out async, and in-only. The code generation model praM8&d.2Java

or Java2WSDL tools to make code generation easy.

36

WSDL<->Java Containe

Dispatch

Figure 2-8 represents JAX-RPC physical architecturevédr service invocation. The
service client invokes the service through a stub class whiomplemented with client
side JAX-RPC. An invoking message reaches to server sideRPPXwhich dispatches
the message to the service endpoint.

AXIS2 provides two methods for creating web services. Theyogrelown method
with WSDL, and bottom-up method with codes. The top-down methodWSE4_2Java
utility to generate server side codes. We add some codes to Wiee sele codes to
implement each service. After service codes are completecreste an.aar file
containing all resources and deploy thar file to a server. The bottom-up method with
codes begins with creating service codes, creates a serviceptigs an .aar file

including all resources, and deploys thar to a server. To consume web service, we

37

need to create the client stub usMgpDL2Javautility and create the client application

using the generated stub to call a service.

2.4. Interoperability studies

Interoperability is required in the integrated system with cem@nd distributed
software modules to create a new system. It is not easyoftwase modules in the
different domains to interoperate with other software modules. $ueseie consider
the interoperable problems among heterogeneous systems as nmesppe problems.
It is partly true, but the message mapping is not always ttruereate interoperable
systems. At this point, we have a question regarding what isdéfmition of
interoperability. The IEEE has four definitions of interoperability:

B The ability of two or more systems or elements to exchangematayn and to

use the information that has been exchanged.

B The capability for units of equipment to work together to do useful functions

B The capability, promoted but not guaranteed by joint conformance vgivea

set of standards, that enables heterogeneous equipment, generially arious
vendors, to work together in a network environment.

B The ability of two or more systems or components to exchange irtforma a

heterogeneous network and use the information.

We can find more definition of interoperability in the DoD:

B The ability of systems, units, or forces to provide services taaoept services

from other systems, units, or forces, and to use the services lsangrd to

38

enable them to operate effectively together [21].

B The condition achieved among communications-electronics systenmems af
communications-electronics systems equipment when informationvicesecan
be exchanged directly and satisfactorily between them and/or ubeis. The
degree of interoperability should be defined when referring tofspeases. For
the purposes of this instruction, the degree of interoperabilityo@itletermined
by the accomplishment of the proposed Information Exchange Requirement
(IER) fields [22].

B (a) Ability of information systems to communicate with each o#me exchange
information. (b) Conditions, achieved in varying levels, when information
systems and/or their components can exchange information directly a
satisfactorily among them. (c) The ability to operate softwand exchange
information in a heterogeneous network (i.e., one large network nnadef
several different local area networks). (d) Systems or pragreapable of
exchanging information and operating together effectively [23].

From the above definitions, we can partly understand the meaningpadperability.
According to the complexity of interoperability used, termsgdéine the interoperability
are changed. For example, interoperability is satisfied ilesgystems have capability for
communication and exchange of information. But in some situations, intebilgr
conditions could be different.

Levels of information system interoperability (LISI) ardegporized into five levels

according to the increasing levels of complexity of systemeyaperability. The five

39

levels are defined in the table 2-1.

Table 2-1 Five levels in LISI
Level 0 | Isolated interoperability in a manual environment betweandsilone
system
Level 1 | Connected interoperability in a peer-to-peer environment
Level 2 | Functional interoperability in a distributed environment
Level 3 | Domain based interoperability in an integrated environment
Level 4 | Enterprise-based interoperability in a universal environment

LISI concentrates on technical interoperability and the complexitnteroperations
between systems and does not mention the environmental and organizativeslthat
affect the construction and maintenance of interoperable system.

The Organizational Interoperability Maturity Model (OIM) bdeas the LISI model
into the more abstract layers of command and control support [7E].iOtable 2-2
focuses on the human-activity and user aspects of military operations.

Table 2-2 Level of OIM

Level O | Independent

Level 1 | Ad hoc

Level 2 | Collaborative

Level 3 | Integrated (combined)
Level 4 | Unified

NATO C3 Technical Architecture (NC3TA) reference model foteioperability
provides four degrees of interoperability in table 2-3.

Table 2-3 Degree of NC3TA

Degree 1 | Unstructured Data Exchange: exchange of human-itaéipre
unstructured data such as text

Degree 2 | Structured Data Exchange: exchange of human-intetersteuctured
data intended for manual and/or automated handling.

40

Degree 3| Seamless sharing of Data: automated sharing oamatagst systems
based on a common exchange model.

Degree 4 | Seamless Sharing of Information: universal interjaretat information
through data processing based on cooperating applications.
NC3TA categorized how operational effectiveness could be enhancgtdubturing

and automating the exchange and interpretation of data and was updateselp c
reflect the LISI model.

Levels of Conceptual Interoperability (LCIM) model addresseslsesf conceptual
interoperability that go beyond technical models like LISI [4]isTmodel is intended to
a link between conceptual design and technical design.

Table 2-4 Level of LCIM

Level 0 | System specific data: black box components with no intexoifigr or
shared data

Level 1 | Documented data: shared protocols between systems withcdatsible
via interfaces.
Level 2 | Aligned static data: common reference model withnteaning of data
unambiguously described. Systems are black boxes with standard
interfaces. However, even with a common reference model, the
can be interpreted differently in different systems.

Level 3 | Aligned dynamic data: Use of data is defined ustoityvare engineering
methods like Unified Modeling Language.
Level 4 | Harmonized data: Non-obvious semantic connections are maalerapp
via a documented conceptual model underlying components.

Three linguistic levels of interoperability have been defined [, Ttese levels are
illustrated in table 2-5:

Table 2-5 Linguistic levels of interoperability

Linguistic A collaboration of systems or services
L evel interoperates at thislevel if:

41

Pragmatic - how | The receiver reacts to the message in a mannef that
information in messages |sthe sender intends (assuming non-hostility in fthe
used collaboration).

Semantic — shared| The receiver assigns the same meaning as| the

understanding of meaningsender did to the message.
of messages

Syntactic — common rules| The consumer is able to receive and parse|the
governing compositior) sender’s message
and transmitting of
messages

The linguistic levels of interoperability focus on the meaningne$sages interpreted
in the view of syntactic, semantic, and pragmatic, wherd&,dategorizes the complex
system into five levels for interoperability. Implementationshef Interoperability system
vary according to the domains and requirements. The above mentiseatchedescribes

a generic approach of interoperability in the specific domains such as DoD and SoS.

42

CHAPTER 3. OVERALL ARCHITECTURE OF DEVS

SIMULATOR SERVICES INTEROPERABILITY

The overall architecture of DEVS simulator services inteadphkty consists of web
technology and namespace concepts. The web service provides commoruatfnasof
system/language interoperability and the namespace presents a look-tiqr taddssages

which are passed between services.

é ‘ w5

Service Service

Provider 1 Web server 1 user Web server 2 Web Provider 2
service + ﬁ j A + hw + service
SOAP SOAP

@:hema\‘ /tchema\‘
/_/ /w/

DEVS
Namespace

Figure 3-1 Creation and consuming of DEVS simulator services
Figure 3-1 explains the roles of service providers, a user, &V& namespace to
illustrate how DEVS simulators interoperability works. A sesvicovider generates web
services with a specific language, which contain DEVS models argl predefined
service operations, and before loading the web services, the prowdsene message
types used in the DEVS model to the DEVS namespace. Other provisehgschema

containing a message type from the DEVS namespace to creale service which is

43

interoperable with web services with the same message typesvdb service contains a
location of the DEVS namespace and information of types of messages.

The user integrates DEVS simulator services whose informéiaisplayed as a
XML formed document conforming to its schema document called devegsator.xsd
and executes the integration of DEVS simulator services througdingathe XML
document.

In this chapter, we discuss a structure and a design of DEVSasimlervice
conforming to DEVS simulation protocol and the DEVS namespace nogalata types
for DEVS models in the DEVS simulator services. Also, we rmand structure and a
function of a document of devswsintegrator.xsd, and an extraction ofladdglument

resulting from the user’s integration of DEVS simulator services.

3.1. System of Interoperability of DEVS Simulator Sepsc

The interoperability system of DEVS simulator services cth®o$ three parts: a
DEVS namespace, DEVS simulator services, and DEVS simulatacesentegration and
execution (DSSIE). The DEVS namespace is a schema that contassage type
definitions. It is used to recognize message types betweeibutistl or different systems
when the systems need to cooperate in a system of systemsHh2ahessage types of
each service are registered in the DEVS namespace befoserthee publishes in the

server.

44

Register DEVS Use DEVS

message types message types

» DEVS namespace

Use DEVS message types
Web DEVS Common Common DEVS Web
serviee Simulator Interface /I> Interface Simulator serviee
> Service (WSDL) (WSDL) Service <
Service Service
Provider 1 Simulation Simulaition .
OS 1/ Language 1 protocol prototol OS 2/ Language 2 Provider 2
Web Server 1 Web Server 2
\/ \/ \/

DEVS Simulator Services
Integration/Execution

i‘z

user

Figure 3-2 Overall system of DEVS simulator services interopetabili

The DEVS simulator service has a common interface to provideopaeability
between different platforms or different languages. The commterface is called
WSDL defining operations, message types, and the location skthiee. To generate a
common interface for the DEVS simulator service, there afereift ways according to
implementation of web service referred to web service middewahrough the
middlewares, the DEVS simulator service can be implemented wousaoperating
systems and computer languages. Through various implementatiotise 0DEVS
simulator service, SOAP messages, which are used as requesspoxse messages of

operations of the web service, provide loosely coupling and neutrabhgeegsssing.

45

Each middleware for the web service provides functions to con@&P3nessages to an
instance of a specific language and vice versa.

In figure 3-2, two DEVS simulator services provide common integaon the
different platforms. A common interface contains operations fo®Eimulation
protocol to simulate DEVS models in different services.

DSSIE has two functions, the integration of the DEVS simulaorices based on
message types and the execution of the integrated system. @tpeatiioin of the DEVS
simulator services is performed by a GUI called a DEVSukition service integrator
which uses the DEVS namespace to verify if couplings betweesdweces are possible
or not. The data on the integrator are written to a XML docunmemitte the executor
which simulates DEVS simulator services. The executor adopts Arawdecture for
XML Binding (JAXB) API to make handling the XML easy. In thgure 3-2, the DSSIE
obtains DEVS message types of DEVS simulator services thienDEVS namespace to

integrate services and simulate the DEVS services with simulation patocol

3.2. The DEVS namespace

The DEVS namespace is storage for types of messages aigchsed in DEVS
models. The types are expressed into an element of XML scheamhadéscribes a
structure of the XML document. XML schema assigns a unique naraach element.
For example, if the name of the element is Job, Job elementgseum the schema
document. Uniqueness of a type gives clearness for message [etgiagn systems on

interoperable operation.

46

WSDL for a DEVS simulator service defines data tyjeesach operation. When the
web service communicates with a user, the operations of the wéabesezceive an
argument as XML document embraced in a SOAP message. The ddellment is
created in conformance with a type of schema in WSDL. The return ofatyerations is
generated above the procedure. The data types in WSDL arefjostider operations of
a DEVS simulator not a DEVS model. In the view of simulation, theire of a DEVS
message consists of a set of content which has a port name abjeein The DEVS
model uses an object as a message. That means the messaugstyppecommon type
covering all DEVS messages in the different languages. To awerthis problem, a
DEVS message is converted to a XML document in the web servigle Tenis approach
works if DEVS simulator services use the same messages in the DEAEEB MO

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsd:schema xmlIns:nsO="http://devs.service" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="http://devs.service">
<xsd:element name="EFP">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Job" type="ns0:Job"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="Job">
<xsd:sequence>
<xsd:element name="id" type="xsd:int"/>
<xsd:element name="time" type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>

Figure 3-3 ThdDEVSNamespace.xsd
To integrate DEVS simulator services in different platfoomanguages, information
of model level messages should be known to a user. To meet this end, we employ a DEVS

namespace to the system for the interoperability of DEV$lator services. The DEVS

47

namespace is a document calleBEVSNamespace.xdtlat we can access through the
network.

Figure 3-3 shows thBEVSNamespace.xsibcument which has a data type named as
Job. In the documentsdis a prefix referring to “http://www.w3.0rg/2001/XMLSchema”
site containing primitive type definition. For exampigpe = xsd:intmeanstype is int
value defined in the “http://www.w3.0rg/2001/XMLSchema”. [67] has morermétion

about the meaning of basic elements of XML schema and how a scu@aumaent is

composed.
<xsd:complexType name="Job">
Class Job { <xsd:sequence>
int id;

<xsd:element name="id" type="xsd:int"/>
<xsd:element name="time" type="xsd:double"/>
j </xsd:sequence>

</xsd:complexType>

double time;

Figure 3-4 Conversion dfobclass to schema data type

Figure 3-4 shows the conversion of a language class to a sty aJobclass is
used in the DEVS model, thimb class should be expressed as a corresponding schema
data type. In the exampldpb class has two variables namegtand time which are
assigned toint and double type, respectively. The schema data type represents all
variables in the class. The name of class is the name of &ypatand variables become
sub elements of the data type. The sub elements are assigeditive data types like

variables in the class.

48

Conversion of a class to a schema is performed by a service provider. The schema

document resulting from the conversion is registered into the DEVS nameSpgace 3-

5 depicts a procedure of registration of a schema data typa DEYS namespace server.

The procedure starts with sending a schema document to a wete sehich has four
operations. One operation, calletheckSchemahas one argument for the schema
document and a Boolean return type to send a result of checkirggs€ilema type is in

the DEVS namespace. Another operation, catéggisterSchemais for registering the
schema document to the DEVS namespace. gét®omainsand getMessageTypes

operations are used to search the DEVS namespace and get a specific message typ

Start

Send a schema
document

|

Is the type in the
DEVSNamespace

No
———— P Register the type

Yes

End

Figure 3-5 The registration of a schema document

49

3.3. The Structure and design of DEVS Simulator Service

3.3.1. The structure of DEVS simulator service

To implement a web service for a DEVS simulator, a middlevi@ré&elping create
the web service is needed such as Apache eXtensible Inter&gstem (AXIS2) [9]
or .Net framework [12]. The middleware provide API to make buildinggeb service
easy, hiding complicating network programming. AXIS2 can be adoas web service
middleware which is embodied by Java program while .Net candxkfos C++ or C#

user.

DEVS Web Service
operations

DEVS Interface

DEVS Modeling & Simulation

Web Service Middleware
(AXIS2 or .Net)

Figure 3-6 The software stacks of a DEVS simulator service

Figure 3-6 shows that DEVS simulator service is supportedsdweral APIs to
implement a DEVS simulator services interoperability syst€he bottom layer is a web
service middleware which provides the network connection environment tzanttiier of
SOAP messages between a web service and a client progharhandler of SOAP

messages includes a convertor of SOAP messages to instanggdicdtian and vice

50

versa. This layer can be selected according to an operati@amsgsid a language that
supports the web service.

DEVS modeling and simulation (DEVS M&S) API enable DEVS M&Se used in
the web service. DEVS M&S can be implemented with different enments and
languages. For example, if a service provider uses a JavaEdPOEVS M&S for Java
should be used to generate a DEVS simulator service. What langgiaged in the
middleware decides what kind of implementation of DEVS M&S isluBEVS M&S is
embodied with Java, C++, C#, and so on [27, 28].

The role of DEVS interface is connection between web servicatopes which is
described by WSDL, and DEVS M&S. The DEVS interface is megubecause DEVS
M&S APl do not support what web service operations want. It helds sesvice
operations extract information in the DEVS M&S.

Web service operations are described in the WSDL and in avdtéds has methods
whose name is the same as the web service operations. Therweb eperations are
designed to reflect the provider’s intention. The operations of DEMS8Ia&ior service is

selected to conform to DEVS simulation protocol.

3.3.2. Design of the DEVS simulator service

The design of the DEVS simulator service starts from consideration oismha role
of the DEVS simulator service. First of all, the DEVS simulaervice is capable of
handing the information of a DEVS model to a requestor in order to thakBEVS

model simulated with other DEVS simulator services. Second, theSD&wulator

51

service passes the information of schema location and mesgpagedya client to let the
client know information of schema location and message types DENS model. Last,
the user should know the result of simulation after finishing the uéwec of the
integration of DEVS simulator services. Therefore, reportingtioms are included in the
design of the DEVS simulator service.

As a result of all considerations, DEVS simulator servicetheee categories: DEVS
simulation protocol operations, schema location and message typeianserand
reporting function operations. Figure 3-7 represents three categirieperations and

signatures of operations.

/ \ M)id getSimulator(boolean) \

void initialize(double)
double getTN()

DEVS Simulation protocol vo'.d lambda (double)
. String getOutput()
EES void receivelnput(String,String,String)

void deltfen(double)
void addCoupling(String, String, String)

\ @id exit()
/ @ring getSchemalnfo() \

Schema location and Message String getType(String)
\ type operations String][] getInports()

Qring[] getOutports() /
Reporting function operations String getConsole(String)
String getResult()

Figure 3-7 The operations of DEVS simulator service

AN

A&

The operations for DEVS simulation protocol at the top of the figureare utilized
when DEVS simulation is executed by a user. There are ninatmpey. getSimulator,
initialize, getTN, lambda, getOutput, receivelnpdejtficn, addCouplingand exit The

getSimulator operation decides which simulator is used. There are two kinds of

52

simulators which are for centralization and decentralizatiats Hrgument is set talse
the DEVS simulator service uses a simulator for centraizalf true, it uses a simulator
for decentralization. TheddCoupling operation is used in case of a simulator for
decentralization to let the simulator know coupling information for sgnaiessages to a
destination service. When a simulator is selected, the simulator has a D&EE m

DEVS simulation protocol starts with the initializing operatwmch is called when
the simulation begins. ThgetTN operation returns next internal event tinfiéN) to a
coordinator which is in the DEVS simulator services integration &aduion as seen in
figure 3-2. The lambda operation generates output messages if thehasdel internal
event. ThegetOutputoperation returns output messages which consist of the XML
document to the coordinator which looks up the coupling table and reqiests
invocation of theeceivelnputoperation to a corresponding DEVS simulator service. The
receivelnputoperation sends output messages, input port name, and output port name to
the target service. The input port name is used to generate DEE¥Sages in the target
service. Thereafter, thdeltfcn operation changing the state of the model and scheduling
TN is called to all DEVS simulator services. This is one cyfldDEVS simulation
protocol. The simulation protocol is repeated until meeting theicertadition to stop
the simulation such as infinity of N of all simulator services, and the number of
simulation protocol cycles.

The operations for schema location and message type in middlefiguilee3-7 have
four operations which argetSchemalnfo, getType, getinporésd getOutports Each

simulator service has information of schema location and modelsagesypes which is

53

registered in the schema repository called DEVS namespaceaoskes the location of

the schema, the names of input ports and output ports, and messagasggeas the
input or output ports with the four operations. GeSchemalnfoeturns the location of
schema, thgetTypereturns the type for an input or output port when sending a port name,
the getinportsreturns an array of names of input ports of the model, angeti@utports
returns an array of names of output ports of the model. Theseiopsrate used when
DEVS simulator services are integrated based on matchesgage types between the
models.

The operations of the reporting function in the bottom of the figurehas two
operations, that isgetConsoleand getResult The getConsoleoperation returns a
document produced by the simulator service during simulation protoctdscythe
document can be used to check any bug in the model and validhte niadel in the
simulator service is appropriately working. ThetResultoperation returns the result of
the simulation if the simulator service generates dataenriit the result document

located in the specific place.

3.4. WSDL of the DEVS Simulator Service

Based on the operations as seen in the figure 3-7, we can \8t$&h for the DEVS
simulator service by using a tool or creating a web serdi¥és?2 provides a tool named
Java2WSDLto create WSDL conforming to the Java class. The proceduresating
WSDL of the DEVS simulator service is as follows.

B Make a Java class including all operations

54

B Compile the class
B Apply a JAVA2WSDL tool with options
Figure 3-8 represents the Java interface for the DEV8Ia&ian service to generate
WSDL. We add two operations for the future nanfdeady4deltaand simulateReal
Once creating the Java interface, we should compile it for a Java2WSDL tool.

public interface Simulator {
public void getSimulator(boolean isRT);
public void addCoupling(String portFrom, String portTo, String ipServiceTo);
public String getConsole(String clientlp);
public void exit();
public void initialize(double t);
public double getTN();
public void lambda(double t);
public String getOutput();
public void receivelnput(String portFrom, String msg, String portTo);
public void deltfen(double t);
public String getResult();
public String getSchemalnfo();
public String getType(String port);
public String[] getlnports();
public String[] getOutports();
public boolean isReady4delta();
public void simulateReal();

Figure 3-8 Java Interface of Simulator

Figure 3-9 shows how to use the Java2WSDL tool. The tool req@rept@ns the
name of WSDL document, the location of the DEVS simulator seraicd the target
names-pace. After applying the Java2WSDL, we get the WSDihéoDEVS simulator
service.

The other way to get WSDL for the DEVS simulator servideois the web service.
When completing uploading the web service to the web serverwdie service

middleware creates the WSDL for the web service. The WSDL can be seaghthraxeb

55

browser if the web service is working properly.

Java2WSDL -o Simulator.wsdl
-1"http://localhost:8080/axis/services/Simulator"
-n "urn:http://devs.service" -p"service.devs" "urn:http://devs.service"
service.devs.Simulator
where :
-0 indicates the name of the output WSDL file
-1 indicates the location of the service
-n is the target namespace of the WSDL file
-p indicates a mapping from the package to a namespace. There may be multiple mappings.
the class specified contains the interface of the webservice.

Figure 3-9 The usage of the Java2WSDL tool

3.5. Creation of the DEVS Simulator Service

There are two ways to create a web service. One wayuset the WSDL created by
using a Java2WSDL tool. The other way is to directly write tdes for the web service
based on defined operations in 3.3.2. When using WSDL, we can use commaord line
the plug-in for the IDE such as Eclipse or intelliJ IDEA [73].

Figure 3-10 displays the procedure to generate a web service. In thetefidhe, we
can create the web service with the WSDL whenesdl2javatool automatically creates a
skeleton Java file, message handling file, and service.xml. Theesgmovider adds
contents to the operations from the skeleton document. In this procedppmrting
classes can be used in the skeleton document. For example, in aaB&WE simulator
service, DEVS M&S API and DEVS interface APl can be usedhé service.xmlthe
information of the web service is written to let the welviser middleware know what
the class of the web service is and which message handlers shoskeder operations.

Thereafter, all codes should be compiled and archived to be eadsptoy the web

service.

WSDL

'

Server side code generator

;

Skeleton code
Message handling codes
service.xml

'

Add the logic into the
skeleton code

Archive all classes

Deploy the archive
into the server

56

Make codes for the
Web service

l

Create service.xml

Figure 3-10 The procedure of creation of the web service

On the right hand side, we can create a web service difemthythe source codes

without WSDL. The main source code should contain all operations defingd.ih

After adding all logics in the operations, next procedure is senhat of WSDL based

57

web service generation.

3.6. DEVS Simulator Service Integration and Execution

In this section, we discuss the invocation of a web service and cdiopost
interoperable DEVS simulator services with message matchingiegujVe show how
to execute the integrated DEVS simulator services. The iti@graf DEVS simulator
services is performed through the GUI with which we can egstya XML document
describing information of DEVS simulator services and of coupletg/éen the services.
Also, the XML document is used as an input during the execution obpeeable DEVS

simulator services.

3.6.1. Invocation of a DEVS simulator service

There are two approaches to make a client program which inviokesetb service.
One is to use the WSDL with which a client codes are geneusied a client code
generation tool. The other is to use middleware API for dynamviocation of web
services. In figure 3-11, two kinds of invocations begin with handling t8®M The left
side in the figure 3-11 depicts how an application uses a tool gasedated code called
a client stub [20]. The client stub has network connection informasignatures of
operations, SOAP message handler, and XML to class converéevetisa. A user can
access to a web service with its client stub. There areypes tof invocation of a web
service, that is, synchronous and asynchronous invocations. When using tleé tool

AXIS2, acallbackhandlercode is generated to support asynchronous invocation of the

58

web service [20]. The asynchronous invocation can reduce total timeochtions when
lots of web services are invoked. If tballbackhandleiis not used in the application, the

invocation of the web service is synchronous.

WSDL

'

Client side code generator

Extract inforamtion
from the WSDL

; '

Stub codes Middleware API
Callback function codes for dynamic invocation

Application program

Figure 3-11 The procedure of consuming a web service
Without using a client stub, we can invoke a web service witmardic method. The
dynamic invocation of a web service needs some information froivBBL. WSDL
describes #@ypestag that are sent and received during the invocatiomessageag that
includes one type, jportTypetag that describe the forms of operationbiraing tag that
indicates a communication method, andeavicetag that displays the location of the

service. Figure 3-12 describes which information is needed when a evglesis

59

invoked dynamically. WSDL-based dynamic invocation function requiresafiygments:

a name of WSDL document, a name of an operation, a service location, target name space
and an argument of an operation which is a request message. Am Sggme 3-12,

target name space, the names of operations, and the servicenlazatibe found in the
WSDL. To make a request SOAP message, information of types esshge on WSDL

is used. The dynamic invocation of a web service is implemented with AXIS2.

WSDL Target Name
Space
Types —» XML Schema Make a request
SOAP message
Message ——» Input - Output message names
Port Type > Operations Operation Name
Binding
Service —» Service Location Service Location

Dynamic Invocation Web Service client function

Figure 3-12 WSDL-based dynamic invocation of a web service with AXIS2
The dynamic invocation web service client function returns porese of the web
service. The client function consists of an operation client, a regqunessage, and
execution of the operation client. Initially a SOAP messagetigrned into the client
function, but it filters the SOAP message to get the body comtkiih is a response

message.

60

3.6.2. Integration of DEVS simulator services

As seen in the figure 3-13, DEVS Simulator Services Integrist graphic user
interface (GUI) which consists of five functionalities: a WIS handler, a title of
integration, a DEVS service handler, a coupling handler, and writiiylla document.
The WSDL handler saves on a specific place a selected WSidhwis used in the
integration. If a DEVS simulator service is known, we can géDW of the service with
the WSDL handler. In the GUI, there are three components toan&ildress of WSDL
and save WSDL. Aextfieldcomponent is where an address of WSDL is written. After the
WSDL name of DEVS service is written in thextfield by the URL label, clicking the
save WSDLbutton writes the WSDL from the URL address on a file. The

integration provides a file name of a XML document.

DEVS Simulation Service Integrator

URL: | | | savews..
Mame : | |
DEVS Services | Add | | Delete |
WSDL | MAME [LOCATION SCHEMA
Coupling | Add | | Delete |
SOURCE | OUTPORT | DESTINATION | INPORT
| OK | | Cancel

Figure 3-13 DEVS Simulator Services Integrator

61

The DEVS service handler begins with clicking the “ADD” buttoyy a DEVS
services label. The information of service GUI shows up immediately asrstenfigure
3-14. The GUI displays a repository where WSDLs are saveghibw” button is clicked.
The user selects a WSDL file which is used in the integrafiba.selected WSDL from
the repository provides a WSDL file name, a model name, WSDdtitot, and schema
location obtained by invocation of an operation catietSchemalnfin the figure 3-7.

That information is displayed on the table below the “DEVS services* label.

The Information of a Service

The Information of a Service
MName :
Location :
Schema :
| 0K | | Cancel |

Figure 3-14 The Information of a service
After selecting some DEVS simulator services in the DESéB/ice handler, the
coupling handler is carried out. Pushing the “ADD” button by the “Coupling” label shows
a GUI for helping make coupling between DEVS simulator senaseseen in the figure
3-15. The coupling GUI displays a source, an output message, a destimadi@m input
message if the output message is matched to the input message.digfiiaying an
output message and an input message, the invocations of three operatipagamed

to get the name of the output ports and input ports and the messagédgol port. The

62

operations aregyetlnports getOutports and getTypein the figure 3-7. The coupling

information is shown in the table below the “Coupling” label.

Coupling between a source and a destination

somee |]
oumessace | -]
——]
NMESSAGE | ~]

Figure 3-15 Coupling GUI

After finishing the integration of DEVS simulator serviceg;kihg the “OK” button
creates a XML document structured to contain the information fharintegrator. The
schema for the XML document is defined to validate an instahdbe schema. The
XML document begins with a devswsintegrator tag, and has five thgs is, title,
services, couplinginfo, inportandoutports Theservicestag can have manyodeltags
which havewsd| name, locationand schematags. Similarly,couplinginfotag can have
many coupling tags which havesource, outport, destinatiorand inport tags. The

devswsintegrator.xsid the following.

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena" >
<xs: conpl exType nane="i nport">
<XSs: sequence>
<xs: el enent nanme="inport" type="xs:string"
maxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="outport">
<XS: sequence>

63

<xs: el enent nanme="outport" type="xs:string"
maxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType name="nodel i nf 0" >
<XS: sequence>
<xs: el enent nanme="wsdl" type="xs:string" />
<xs: el enent nane="nane" type="xs:string" />
<xs: el enent nanme="l| ocation" type="xs:string" />
<xs: el enent name="schema" type="xs:string" />
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nane="couplings">
<XS:sequence>
<xs: el enent name="source" type="xs:string" />
<xs: el enent name="outport" type="xs:string" />
<xs: el enent nane="destination" type="xs:string" />
<xs: el enent name="inport" type="xs:string" />
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="coupling">
<XS: sequence>
<xs: el enent nanme="coupling" type="couplings"
maxQOccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType name="nodel ">
<XS:sequence>
<xs: el enent nane="nodel " type="nodel i nfo"
maxQccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent nanme="devswsi ntegrator">
<xs: conpl exType>
<Xs:sequence>
<xs: el enent name="title" type="xs:string" />
<xs: el enent name="servi ces" type="nodel" />
<xs: el enent nane="coupl i ngi nfo"
type="coupling" />
<xs: el enent name="inports" type="inport" />
<xs: el enent name="outports" type="outport" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

3.6.3. Execution of integrated DEVS simulator services
Execution of integrated DEVS simulator services consists ofparts. One is to

prepare the simulation, and the other is simulation. The preparatitre cfimulation

64

includes making instances of client proxies for DEVS simulaorices and structuring
coupling information with a XML document. To easily handle the Xddicument, JAXB
is used as seen in the figure 3-16. JAXB generates Java<lemstaining schema tags
through compilation of the schema and converts the XML document to ristaades.
From the Java instances, we can extract the information @fgalithat is used to generate

client proxies and to make a data structure for coupling information.

JAXB compiler JAXB API

/ Set of Proxies
devswsintegrator.xsd R CRRE Java instance
for schema \
Coupling info

XML document

Coordinator
- Centralized Virtual Time simulation
- Distributed Real Time simulation

Figure 3-16 The procedure of preparing simulation
The execution of the simulation adopts a centralized virtual simalation method
which controls simulation protocols in the coordinator and distributed tiead
simulation. Figure 3-17 represents the centralized virtual §mmeilation protocol that
displays calling operations in the coordinator to the DEVS simulsg¢ovices. The
coordinator has the instances of client proxies for the DEVS aiorukervices. The
simulation begins with calling anitialize operation to all simulator services. After that,

the coordinator requests getTN operation to get next time for an internal event of a

65

DEVS model. Calculating a minimum time of next timedambdaoperation is called
with an argument which is the minimum time. After tambdaoperation, the simulator
service with minimum next time produces an output message. The respotise
getOutputis output messages of the simulator services. The coordinator looks up t
coupling information which displays the flow of messages to itfecbutput message to

a corresponding simulator service. Througle@eivelnputoperation, the output message
is sent to the simulator service which has the corresponding DEd8InAfter routing

the output message, the coordinator requedédtBuncoperation to all simulator services
to execute an internal or external event function in the simuleteice. The coordinator
repeats this procedure except the initialization of the simussnice until meeting a

certain condition to terminate the simulation.

Coordinator Simulator service 1 Simulator service 2
i i
Initialize(}——————— ! !
!nitiallize() > 1 j Initialize all services
—> } I
getTN() » \
|
- |
— gettiIN)——————————————————— ! Calculate minTN
- ‘ |
——lambda(ty———p !
lambda(t—————————— j Lamda function
iterate ——getOutty———»! 1 —
|
- getOut(t) > ! Get messages

|
| |
receivelnpqt(message)—» "] Send out messages
deftaty——— |
| _
delta(t) > Delta function

A

Figure 3-17. The centralized simulation protocol

66

Simulator Simulator Simulator
Service 1 Service 2 Service 3
> Initialize() > Initialize() > Initialize()
Wait until TN (
: Internal Wait until TN
iy - <4 Transition
. . ternal receivelnput
Wait until TN extern operation
Transition
N receivelnput Tlnterr;?l
\ i i operation ransition
\ Wait unti Wait until TN | | P
, new TN external
i Internal Transition
Transition N
i Wait until - - >
reCGlVG'hPUI | new TN Wait until TN external
. . operation / T it
Wait until TN - ransition
Y, Wait until
<’ NEWTN

Figure 3-18 The decentralized real time simulation protocol

Figure 3-18 depicts decentralized real time DEVS simulgtimtocol which starts
with the initialization of the DEVS models in tiRel Simulatordhat the DEVS simulator
service provides for the decentralized real time simulationh BT Simulatorwaits for
the internal event timeT{) after which internal transition occurs. If one of the
RTSimulatorshas wall-clock time equal t@N, the RTSimulatorproduces an output
message, sends the output message t&Rff&mulatorwith the corresponding DEVS
model according to the coupling information, and executes a delta diunatnich
rearranges the state and the internal event time of theSDEMel. Server2, figure 3-18,
shows send out messagafter internal transition and wait again wittN regenerated by
the delta function. Meanwhile, Serverl receiving a message froBetiver2 executes an
external transition function included by the delta function and releaésTN to walit.

The interaction between the server2 and the serverl does notthffesdrver3 which

67

waits for its internal event time. The decentralized teaé simulation is terminated

when the internal event time of each DEVS model goes to infinity.

3.7. DEVS message to XML message

DEVS messages are defined as pairs consisting of a pod wallie in the DEVS
modeling and simulation. The DEVS implementations of the DEVS yhese the pairs
to express DEVS messages. That means that the DEVS nwessagee converted to a
common expression in the XML. We design a common XML messagever generic

DEVS messages.

<Message>
<content>
<port> port name</port>
<entity>
<class> class name </class>
<variable name type = variable type> value </variable name>

</entity>
</content>
<content>

</Message>
Figure 3-19 The structure of the XML message
Figure 3-19 represents the structure of the XML messagmgtaith aMessagédag.
TheMessagdag consists ofontenttags whose elements arp@t and arentitytag. The
port tag contains the name of the port through which messagesnardiseentity tag
expresses any object as a message used in the DEVS mobdsl.allasstag containing

the name of the object. Tags under thesstag are created according to the number of

68

variables of the object. The tags have an attribute cglfgeldescribing the type of the

variable.

DEVS Message / XML

DEVSMessage | Message Convertor

XML Message X

DEVS M&S DEVS Interface

N Web Sevice Middleware

A

hl

Web Service

XML Message

SOAP

NetWork

<«— Deserialize XML to DEVS
—» Serialize DEVS to XML

Figure 3-20 The DEVS message and XML message in the web service.

Figure 3-20 represents conversion of DEVS messages to XMlagesssnd vice

versa. A DEVS simulator service consists of DEVS modeling amailgtion (DEVS

M&S), DEVS interface, and web service. The DEVS M&S handleDtB¥S messages,

and the DEVS interface converts DEVS messages to XML messaue the web service

generates an SOAP message including the XML messages. Thedym®ds called

serialization. The opposite procedure converts XML messages t&DEdssages. It is

called deserialization.

69

CHAPTER 4. IMPLEMENTATION OF THE DEVS

NAMESPACE AND DEVS SIMULATOR SERVICES

DEVS modeling and simulation is implemented with Java, C++, ota@guages
according to intention of the designers. To demonstrate the concepkemperability
using DEVS Simulators, two DEVS M&S instances implemented witardint computer
languages and system environments are used. One is DEVSJAVAdI6lbped with
Java language by ACIMS lab, and the other is ADEVS [11] embaudidC++. In this
chapter, we describe the implementation of DEVS namespace, howatie @ DEVS
simulator service with two different DEVS implementations basadthe previous

chapter, and XML to the DEVS message conversion method.

4.1. Implementation of the DEVS Namespace

We created a web service calldihmespaceServictrough which Schema of a
DEVS simulator service is registered and browsed. Figurelldsirates a procedure of
registering and browsing a schema used in a DEVS simukatacs. A service provider
has responsibility of registration of a schema. When the proedesters the schema, the
provider uses a GUI called schema data register. The GUlclher®t codes for
NamespaceServiageb service, which can help easily invoke operations. It disptesy
response of the operations. Any web service provider who uses bakagenvironment

or .Net based environment can use the GUI to register a schema. If a usetoviaotvse

70

the DEVS namespace, the user can use a browsing GUI consistimg parts. One part
is to display all data types in the DEVS namespace and the mdheis to show the

schema document corresponding to the data type chosen by the user.

Soutieies| Schema
1
Provider —— e

Web Service for DEVS

= DEVS namespace Namespace
\ 4 9 MNamespaceService
= @ checkSchemal(String)
= i@ registerSchema(String)

@ getDomains()
@ getMessageTypes(String)

User

Browsing GUI

Figure 4-1 Overview of registering and browsing schema

4.1.1. The GUI for schema data registration

The GUI has three functions: to enter message information suclass name,
method name and type, to compose a schema document, and to check sied tregi
schema to DEVS namespace. A service provider can use this Ghdki sure that the
schema of DEVS message is registered or to registersthema into the DEVS
namespace. If a name of DEVS message is “Job” and the “JofSage has two

variables called “id” and “time” whose types anéanddouble respectively, the provider

71

provides information of DEVS messages including a domain hame wipcbsents a
name of a DEVS model. Figure 4-3 represents the result of conversion “Jsddgedo a
schema. The table on figure 4-3 has two colurMessageandContentsthat display the
messages using the domain. There are two buttons called “ADD” and “Remove” to add or
remove a row in the table. A provider adds DEVS messages throutfkD&7i button

which makes a type generator GUI, as shown. As seen in the #igBrethe type
generator represents a DEVS message with information lesa same, variable names
and types. When the provider finishes entering the information of thSDRessage, a
schema document is created and displayed by clicking the buttod t@lerating
Schema”. In figure 4-3, we can see a schema document contaitfiij lomain name,

“Job” class name and all names and types of variables in the “Job” class.

[| £:| Type Generator Iﬁ1
Class Name : |J0h |
Variable | ADD | | Delete |
MNAME TYPE
id int
time double
| OK || Cancel

Figure 4-2 The GUI for type generator

| £ Schema Data Register & i @Iﬂlﬁ
Domain Name : |EFF' ‘
Messages ADD | | Remove
Message Contents
Job {id, int}{time double}

Generating Schema

= xsd: complex Type>
xsdislement name="EFF"

=xsd:schema xminsaesd="http:/ v ow3.org 2001 XMLSchema” xmins:ns0="http://devs.service”
sttributeFormbefauit="qusalfied” elementFormDefauit="gqusalfied"”
targetMamespace="http:/devs.service™=
=xsd:complexType nams = "Job™=
=xsd:sequence:=
=xsd:element name="id" type = Mesd:int"/=
=xsd:element name="time" typs = "xsd:double"/=
=/xsd:sequence>

ID

‘]

ChecKking Schema

Registering Schema

Result :

Result :

Figure 4-3 The Example of the GUI for schema register

72

The “Checking Schema” button makesclaeckSchemaperation inNamespace-

Serviceweb service invoked with a schema document, and gets the retuenwlaich is

a Boolean type. If the return valuetise, the schema is already registeredalée the

schema needs to be registered in the DEVS namespace. In castuthevalue of the

checkSchemaperation is false, the “Registering Schema” button gets enabtetha

schema is registered by clicking the button. In this casegiaterSchemaperation is

invoked.

73

4.1.2. Browsing GUI

Figure 4-4 represents the browsing GUI which has two buttorledcabearch
Domains from DEVS Namespace” and “Select Domain”. If a asieks the “Search
Domains from DEVS Namespace” button, the GUI shows all domaitiseitist under
that button. When the user selects one of the domains and clickSefezt*Domain”

button, then the GUI shows the schema document for the selected domain.

r a

| £ Obtain Schema Data =NNCN X

Search Domains From DEV S NHame... ‘

EFP
TrackGenerator

Select Domain

SCHEMA

=xsd:schema xmins:ns0="hitp./'devs.service™ -
xmins:xsd="hitp:fwww w3 org/Z001XMLSchema” altributeFormDefault="qualified”
elementFormDefault="qualified™ targetllamespace="hltp:/'devs semice™=
=xsd.complexType name="Job™=
=xsd:sequences=
=x¥sd:element name="id" type="xsd:int™/=
=xsd.element name="time" type="xsd.double™/=
=fsd sequences=
=psd.complexType=
=xsdelement name="EFP"= —
=xsd.complexType=
=x¥sd:sequence=
=xsd.element name="Job"

1]

type="ns0.Job"/=

Figure 4-4 The Example of the GUI for schema browser

4.1.3. NamespaceServiaeeb service

NamespaceServiceeeb service is designed to check, register, browse, and get a

74

schema into DEVS namespace. There are four operations inrtieesdhey are called
“‘checkSchema”, ‘“registerSchema”, “getDomains”, and “getMessagpsTy The
“checkSchema” and “registerSchema” are used to check anceremsthema document.
Both operations have one argument and one return value, which amegatype and
Boolean type, respectively. The “checkSchema” operation extreetirst element of a
schema, called a domain name, and checks if the domain name is @EW®
namespace document. If the name is on the DEVS namespace, the ttiesc&S
returns true. If not, the “checkSchema” returns false. The stexichema” operation
adds the schema document to the DEVS namespace. If there isonotleen the
operation returns true. If there is an error during addition of thensghthe operation
returns false.

The “getDomains” and “getMessageTypes” are used to browse ama gtema
document. The “getDomains” operation has no argument and a stringf@ri@yeturn
type. The string array contains all domain names in the DEY®espace. The
“‘getMessageTypes” has a string as an argument and a "rangeturn value. The return

value contains a schema document for the argument.

4.2. Simulator Services encapsulating DEVSJAVA
4.2.1. DEVSJAVA

DEVSJAVA consists of three libraries, that is, DEVS M&fgorting data structures,
modeling, and simulation. All libraries follow an object oriented designcept which

presents inheritance, polymorphism, and information hiding. The modeling/librased

75

to create two kinds of DEVS models which are atomic and coupled mddesentity
class is a base class for all modeling and DEVS M&S suppatttaystructure classes as
seen in the figure 4-5 [25]. Thevsclass has basic methods constructing DEVS models
which are divided to atomic class and coupled class. The digraphimhesgs from
coupled class and has a container class which storee\aiclass components in the

coupled model.

Legend
entity
’ inherits

—_— .
atomic o

atomic(String)

devs can hold

content make_content(String, entity)
entity|message_on_port(message, String,int)
void deltext(int, message)
void deltint()

void delcon(int, message)
messgge out()

int tag(

coupled — digraph devs
digraph(String)
void add(devs)
set get_components()

content

entity /

— container » Mmessage
message()
void get val_on_port(String, int
content get_val_on_port(String, int)
p-> String __— entity
val->entity

Figure 4-5 DEVSJAVA class hierarchy
The container class is used to handle multiple messages in abtal @ufrom the
DEVS model. The message class inherited from the contaires ctantains the set of

content classes which consist of a port name and an entity class.

entity

entity(String)

Sring get_name()
boolean equal(entity)
boolean eq(String)
boolean
greater_than(entity)

container

container()

void add(entity)

int get_length()
boolean is_io(entity)

bag

bag()
void remove(entity)
int number_of(entity)

76

pair

pair(entity1,entity2)

set

set()
void add(entity)

A

relation

relation()

void add(entity1,entity2)
void remove(entity1,entity2)
set assoc_all(entity)

A

queue

queue()
entity front()

function

function()

void replace(entity1,entity2)
void remove(entity)

entity assoc(entity)

entity get_key()
entity get_value()

order

order()

void add(entity)
entity Get_max()
void remove()

A

stack

stack()
push[=add]
pop[=remove]
entity top()

Figure 4-6 Class hierarchy of container class

list

list()

void insert(entity, int)
void remove(int)
void list_ref(int)

77

The data structures support modeling and simulation with holdingsegeobjects
such as models, simulators, and messages. Figure 4-6 shows theecatdais hierarchy
and their main functions. The class is roughly characterized as follows.

e entity- the base class for all classes of objects to be put into containers

e pair - holds a pair of entities called key and value

e container- the base class faontainerclasses, provides basic services for the
derived classes

e bag- counts numbers of object occurrences

e set- only one occurrence of any object is allowed in.

e relation- is a set of key-value pairs, used in dictionary fashion

e function- is a relation in which only one occurrence of any key allowed

e order- maintains items in given order

e (ueue- maintains items in first-in/first-out (FIFO) order

e stack- maintains items in last-in/first-out (LIFO) order

e list - maintains items in order determined by an insertion index

The simulation library helps execute DEVS models. There are two mase<lealled
a coordinator and a simulator in the simulation library. The simutatotrols an atomic
model, and the coordinator manages the simulators through the messagg pach as
simulation time and DEVS messages. In case of a DEVS couptstel, it has a
hierarchical structure of DEVS components and each component is @ategpy a
coordinator or a simulator according to the type of components. Aembupbdel is

assigned to a coordinator and an atomic model is assigned taukatsir. A top level

78

coupled model is assigned to a top level coordinator which decideshummitime
advance from all coordinators and simulators which send time advadceoatrols
simulation protocols. Figure 4-7 represents assignment of a simalaa coordinator to

each model in a top level coupled model [13].

simulators.tellAll("initialize*)
simulators.AskAll(“nextTN”)
simulators.tellAll("computelnputOutput*)
simulators.tellAll("sendMessages")

| simulators.tellAll("DeltFunc*)

Coordinator

Ve ~
Ve I N o
ad | ~
e L S
Ve putMl ssage ~
1
s i AN
y's putMessage \/ ~ A
Coupled ‘ Coupled Coupled
»| Coordinator | putMessage| Simulator 3 | » Simulator 4
putMessag
Atomic Atomic
3 4
sendDownMessage
utMyMessage
Coupled putMcssagc Coupled — — - Simulation protocol
Simulator 1 Simulator 2 P Message passing
Atomic Atomic
1 2

Figure 4-7. The view of relationship between a model and a simulator or a ctamrdina
The simulation of DEVS model starts with callingsianulators.tellAll(“initialize”)
function at the top level coordinator as seen in figure 4-5. lbwpled coordinator
receives aihitialize” message, it calls the same function as that called in thelinator
to its coupled simulators. Dotted lines display propagation of the diomularotocol to

all coordinators and simulators. After finishing thenulators.tellAll(“initialize”), the

79

coordinator invokes aimulators.AskAll(*nextTN”) All coupled simulators get the
nextTNfrom an atomic model embedded in them. In case of a coupled coordihator
propagates a simulation protocol to its coupled simulators andngatextTNs from the
coupled simulators. It sends minimuraxtTNto the coordinator. The coordinator selects
minimum nextTN from all nextTNs, and calls asimulators.TellAll(*computelnput-
Output”) to low level coupled coordinators and simulators withntiin€TN Each coupled
simulator generates and stores an output message. When it réseivéSlessagdrom
the coordinator or the coupled coordinator, it sends the output messatieit coupled
coordinators or simulators using @putMessagk method. In case of different level
message passing, there are two functions to send messagésmer level or an upper
level, they are,sendDownMessafgjand “putMy-Messagke After all output messages are
placed according to the coupling information, the coordinator involeswaators.Tell-
All(“deltfunc”) to make all simulators process internal or external events. i$hone
cycle of DEVSJAVA simulation which is terminated in meeting an ending tondi

DEVS message can be any object inherited by an entity. dasontainer for DEVS
message is a content class which has two variables reprgsamort of a model and a
DEVS message. To cover multiple content classes, there isanrfor contents which

is called a message class. More information about DEVSJAVA is in the [27].

4.2.2. DEVSJAVA interface
DEVSJAVA is specific implementation of DEVS theory with theva language.

To adept DEVSJAVA models to DEVS simulator service, interfaontasses called

80

DEVSJAVA interface are required. DEVSJAVA interface indsadaSimulatorclass, an
Atomicclass, aigraph2Atomicclass, and a Message class which has three functions for
DEVS message converting. The DEVSJAVA interface helps ®Eimulator service
extract information from the DEVSJAVA model and convert DEVSdAXessages to
messages compatible to the web service.

Modeling interface is an Atomic anddagraph2Atomicclass. ThéAtomicclass has a
DEVSJAVA atomic class and basic atomic DEVS functions to prawfibemation of the
DEVSJAVA atomic model. Th®igraph2Atomicclass is designed to represent a coupled
model as an atomic model because the DEVS simulator service w@&tmaic model
functions. DEVS modeling islosureunder coupling which means behaviors of a coupled

model are expressed to behaviors of one atomic model.

coordinator coord
public void initialize() {
coord.initialize ()

12

}

public void deltext (double e, message x) {
coord.simInject (e, X);

}

public void deltint () {
coord.wrapDeltfunc (coord.getTN()) ;

}

public message out () {
coord.computeInputOutput (coord.getTN()) ;
return (message)coord.getOutput ()

}
public double ta () {

return coord.getTN() - coord.getTL();
}

Figure 4-8 The atomic model functions with a coordinator embedding a coupled model
Figure 4-8 shows a part of codes of Bigraph2Atomicclass which represent an atomic

model with a coordinator class coming from the DEVSJAVA sitmapackage. When

81

converting a coupled model to an atomic model Dlgraph2Atomicextracts input ports
and output ports from the coupling information of the coupled model todergarts to
the atomic model. Each function representing an atomic model is nmapted by
functions provided by a coordinator. For exampiéialize, deltextanddeltint functions
contain initialize, siminject,and wrapDeltafunc functions from a coordinator class,
respectively. Aa function containgetTNandgetTLfunctions from the coordinator class.

An outfunction is expressed wittomputelnputOutpudndgetOutputfunctions

Simulator

Atomic model
Message input
Message output
double tL

double tN

String[] inports

String[] outports
Hashtable typeRepo
String schemalocation

Simulator()

void initialize(double)

double getTN()

void lambda(double)
Message getOutput()

void receivelnput(String, Message, String)
void deltafcn(double)

void setSchemalnfo(String)
String getSchemalnfo()

void setTypeHash(Hashtable)
String getType(String)

void setlnports(String[])
String[] getinports()

void setOutports(String[])
String[] getOutports()

Figure 4-9 Simulator class view
The Simulator class consists of basic atomic model functions, schema and ports

information function, and port type information functions. Figure 4-9 reptssa

82

Simulatorclass which has astomicclass, twdVlessageclasses, and two arrays$ting
TheAtomicclass can represent an atomic DEVS model or a coupled DEVS model using a
Digraph2Atomicclass. ThéVlessageclasses are used to handle input messages and output
messages. The arrays 8fring are for the names of input and output ports. Also, the
Simulator class has dashtableand a string variable for location of schema. The
Hashtablecontains ports and type information as keys and values. WihTgpemethod,

the type information of the port is obtained from Heeshtable Therefore, th&imulator

class has methods to handle DEVSJAVA model and schema infornudtjoorts, and

connects the information of DEVSJAVA models to the DEVS simulator service.

The Structure of DEVSIAVA XML Document for DEVSJAVA
message message
Message <Message>
<content>
— Content X > <port>out</port>
< <entity>
port o) <class>Job</class>
s
@ <id type="int" >9</id>
Entity 2 <time type="double” >0.0</time>
| 2 </entity>
Job qﬁ </content>
<
t id — g content>
. a.
time o
o
— Content .
i </Message>

Figure 4-10 Example of XML Object Message Handler
The Messageclass converts a DEVSJAVA message class to XML messagievice

versa using arXMLObjectMessageHandlerlass. Figure 4-10 depicts the example of

83

conversion XML message to DEVS message and vice versa Xislh@bjectMessage
Handler. On the left side, the structure of DEVSJAVA message conefstaultiple
Content classes which have a name of port and an entity cla$ss kxample, aob
class inheriting an entity class has two variables aalld and time. The
XMLODbjectMessageHandleiakes a DEVS message as an input to generate a XML
message. The right side on the figure 4-8 displays the XML medsaghe DEVS
message. The tags follow the structure of the DEVS messatje éntity tag, there are
three tags called class, id, and time for a specific Job elasiple. The class tag
indicates a class name and the id and time tags have an attribute galegptgsenting a
data type of the variable. The message tag can include multiptent tags to express
that DEVS models can get multiple messages during the simulation.

Figure 4-11 illustrates the algorithm of the conversion of tB¥ BIAVA message to
the XML message. The algorithm begins with receiving the DEVAJAessage as an
argument. Thensgin line 1 is a variable for a DEVSJAVA message. TessageXMIis
declared to return the XML message. The document in line 3 remes&ML document
from which all XML elements are written. TimeessageElememngpresenting a top tag in
the XML message is created from the XML document. From rtisg in line 1,
contentlteratorcan be obtained as seen in line 5. Ttheator contains a set of content
classes. We extract each content class to get the inforniagiole the content in line 7.
The contentElemenis created in line 8 and is appendedtessageElemenErom the
content class, a port name is obtained byg&t®ortNam@ function in the content class.

Thereatfter, th@ortElements created, has a text value as the port name, and is appended

84

to the contentElementThe entityElementis created in line 14 and is appended to the

contentElement

msg < DEVS message

messageXML :="";

document := newDocument();

messageElement :=document.createElement(“Message™);

contentlterator := msg.mlterator();

while(contentlterator != 0)
contentElement := document.createElement(“content™);
messageElement.appendChild(contentElement);
port := content.getPortName();
portElement := document.createElement(*“‘port™);
portElement.setText(port);
contentElement.appendChild(portElement);
entity Element := document.createElement(“entity”);
contentElement.appendChild(entity Element);
classElement := document.createElement(“class™);
object :=content.getValue();
class :=object.getClass();
classElement.setText(class.name);
entity Element.appendChild(classElement);
field[] :=class.getDeclaredFields();

NN — = o = = e e e e
— O VX INNAEWLWRN ORISR LN =

22.

23. while(field[].size != 0)

24. variableElement := document.createElement(field.name);

25. Class t = field.getType();

26. type :=makeType(t);

27. variableElement.setAttribute(“type”, type);

28. Method := getGetMethod(makeGetMethodName(field.name, class, type)
29. Result := Method.invoke();

30. variableElement.setText(getStringValue(Result));

31. entity Element.appendChild(variableElement);

32. messageXML :=document.toString();

Figure 4-11 The algorithm of the conversion of the DEVSJAVA message to the XM
message

To get the DEVSJAVA model message, fetValu€) function in the content class is

used. The DEVSJAVA model message can be any kind of object. lathewe can get

the information of variables of any object using tetDeclaredFieldsunction in the

85

Classclass in line 21. The field array contains the information of bbesa and each
element of the field array is recorded to the XML messagaee |24 creates a
variableElemenusing the name of the field class. Through lines 25 and 26, we tan ge
the type of the variable. For example, if a variablatisthen the type is assigned to “int”.
If a variable isint[], then the type is assigned to “intArray”. The type is addethdo
variableElementas an attribute as seen in line 27. We can get the valine ofariable
using the method provided by the object. We assume that a DEVSaAdal message
class provides get- and set- methods to access the variablean\iivoke a get- method
to get the value of the variable through the dynamic methogmalided by Java in lines
28 and 29. After getting the value of the variable, the value is aalsledtext to the
variableElementvhich is appended to trentityElementThis procedure (lines 23 to 31)
is repeated until writing the information of all variables to X¥L message. The
procedure for the content class (lines 7 to 31) is repeated DEVSJAVA message has

multiple content classes.

<Message>
<content>
<port>out</port>
<entity>
<class>Job</class>
<id type=" intArray” >

<element>1</element>
<element>2</element>
</id>
<time type=" double” >0.0</time>
</entity>
</content>
</Message>

Figure 4-12 The example of DEVS message with an array

86

This conversion algorithm for the DEVSJAVA message to the Xilssage covers
the DEVSJAVA model message with primitive types and primitimeyatypes. The
DEVSJAVA model message should have get- and set- methods to Handkriables. In
case of primitive array types, the XML message needswve hAa additional tag called
“element”. For example, iJob class has onmt array type variable and one double type
variable, the XML message looks like figure 4-12 whera d@ag includes multiple

element tags to contain the elements of the array.

1. cInfo := contentInfo;

2. contentNode := getContentNode(XML document);
3. while(contentNode != 0)

4. if(portNode)

5. cInfo.port := port;

6. while(entityNode !=0)

7. if(classNode)

8. cInfo.classType := class;

9. else

10. v = vector, variable := NodeName, type := NodeAttribute(“type”);
11. value = “;

12. if(type.endswith(““Array’))

13. while(ElementNode !=0)

14. value := Element value;

15. v.add(value);

16. cInfo.setArray(type,v);

17. else

18. value := Node value;

19. cInfo.setBag(variable,type,value);

Figure 4-13 The algorithm to extract the information of the XML message
To convert the XML message to the DEVSJAVA message, thereva steps which
are used to gather the information into the predefined class and menraad to make

an instance of the DEVSJAVA message. Figure 4-13 shows tbetlalg to extract the

87

information of the XML message. Thmntentinfoclass in line 1 is for gathering the
information of thecontenttag. In line 2, we get the nodes for tbententtags called
contentNodedrom the XML document. TheontentNodeas handled to accumulate the
information from thecontenttag. ThecontentNodehas aportNodeand anentityNode
The name of gortNodeis stored in thecontentinfoclass in line 5. To extract the
information in theentityNode we search all nodes in tleatityNode We define aclass
tag, but others depend on the name of variables. tl#ssNodas encountered, the name
of theclassNodes stored in theontentinfoclass in line 8. If not, we assume that the tag
is one of the variables. There are ramifications to handlatprenvariables and primitive
array variables between lines 12 and 18. If a type is “arrajieseof element tags are
extracted, stored in a vector, and a pair consisting of the typgnamnector is sent to the
contentlnfoclass as seen in lines 15 and 16. If the type is primitivalue is obtained by
the variableNode Finally line 19 shows that the variable, the type, and the \aiee
stored in theontentinfoclass.

Based on theontentinfoclass created with the algorithm shown in the figure 4-13,
DEVS message is created using the algorithm shown in the figlide A message and
an object class are declared in lines 1 and 2. The messageatass from DEVSJAVA
API, and the object class represents DEVSJAVA model messéneh v8 not defined
yet. If aclassTypedn the contentinfoclass is “entity”, the object class is replaced to an
entity class with a value from tlwententinfoclass as an argument shown in line 4. Line 5
adds an instance ofc@ntentclass to thenessagelass. The instance of the content class

has a name of a port from thententinfoclass and the entity class as the arguments. If

88

the classTypes not “entity”, theclassTypes reassigned with a class location and the
classType and the object class is assigned to a dynamic createchdestaith the
classTypeTo assign variables in the object to values fronctrgentinfoclass, a bag for
NTV classes, which represent names, types, and values of the vargabldsacted in the
contentinfoclass (line 9). The variables of the object class in line 8etréo the specific
values from théNTV class using a method class provided by Java (line 14). Line 15 adds
a contentclass with a port and the object class to the message classalgorithm

returns an instance of a message class containing the information of XML message

1. massage msg;

2. Object o;

3. If{cInfo.classType = “entity”)

4. o=new entity(value);

5. msg.add(new content(cInfo.port, (entity)o);
6. continue;

7. classType := class location + cInfo.classType;
8. 0:=dynamic created instance with classType;
9. BagNTV := cInfo.bagNTV;

10. While(BagNTV !=0)

11. variable := NTV.name;

12. type :=NTV.type;

13. value :=NTV.value;

14. Assign values to variables with a Method class

15. msg.add(new content(cInfo.port, (entity)o));

Figure 4-14 The algorithm to make an instance of DEVS message

89

4.2.3. DEVS simulator service with DEVSJAVA
To create web services for DEVSJAVA, we need to put algghtogether mentioned
in the previous sections such as DEVSJAVA API, DEVS interfaoe aaclass containing

operations of the DEVS simulator service.

service.models service.util < : service
|
|
|
| : |
I L _________ P,	
1	
!	
!	
!	
oo - T T !	
	!
:	:
1 A T N	
!	
adapter service.simulation service.modeling	
I
I
1
service.devs

Figure 4-15 The package diagram of the DEVS simulator service with DEX/ASJA

Figure 4-15 depicts the package diagram for the DEVS simusaorce with
DEVSJAVA. There are seven packages to create the DEVS simekatice. The actual
service of DEVSJAVA is in theservice.devgpackage where a Java class having all
operations of the service is implemented. The DEVSJAVA modal tiseservice.models
package. Thadapterpackage has Rigraph2Atomicclass to make a coupled model seen

to an atomic model. Theervice.modelingpackage has classes to connect DEVSJAVA

90

model to DEVS simulator service such asAdamicand aMessageclasses. Théatomic
class makes an atomic or a coupled DEVS model look like onetgfassthat is to say,
the Atomic class. ThéMessageclass has aXMLObjectMessageHandlezlass in the
service.utilpackage and a message class from DEVSJAVA. Message convisrsione

in the Messageclass. Theservice.simulationpackage has a simulator class handling
DEVS simulation protocol with thatomicclass.

After all classes are implemented, the classes need pdabed in the web server
where we use an Apache tomcat6 server and AXIS2 middleware. Wdegdoy all
classes into the specific folder. Another option is to compresdaaiées as an archive.
The archive has a structure to contain all classes and sexmtetocument which
indicates a service class and message exchange pattetims fa@b service. The message
exchange patterns show the shapes of operations. For example, if anoopeas an
argument and no return type, the message exchange pattewoniy.ilf an operation has

an argument and return type, the message exchange pattern is in-out.

<service name="EFModel">

<description>Please Type your service description here</description>

<messageReceivers>
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-only" class="org.apache.axis2.rpc.receivers. RPCInOnlyMessageReceiver" />
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-out" class="org.apache.axis2.rpc.receivers.RPCMessageReceiver" />

</messageReceivers>

<parameter name="ServiceClass" locked="false">service.devs.DevsSimulator Templet</parameter>

</service>

Figure 4-16 An example of a services.xml
Figure 4-16 represents an example of a services.xml.s&heces.xmiconsists of
several tags that implicate their roles. The service tagesepts the name of the web

service. In figure 4-16, we see that the name of the web ses/iEEModel The

91

description tag lets users know the information of the web seiMieanessageReceivers
tag has multiplenessageReceivésgs which indicate the message exchange patterns for

operations in the web service. The parameter tag shows the location of the clessc

EFModel.aar
lib — devsjava.jar
META-INF services.xml
adapter

service
I devs

— modeling
— models

— simulation
L— util

Figure 4-17 The structure of the service archive fdelRodelservice

Figure 4-17 depicts the structure of the service archivarioexample web service
called EFModel service. The name of this archiveB§EModel.aarwhich is the same
as .zip or .jar, so we can easily creaar file if using zip or jar programs and changing
the file extension t@ar. The archive should include all server side class files, lésari
and a folder named META-INF with the WSDL and services.xtesfiThe libraries are
used to support the service class.

We need the environment of integrating an Apache web server an82Ad
deploy .aar file. A web archive (WAR) file is used to connect between #rwes and
AXIS2 and has a specific structure consistingaeis2-web META-INF, and WEB-INF

folders. The WAR file contains contents for web services and hamfeguration file

92

called a web.xml in the WEB-INF folder. The web.xml containedions of processing
web requests between the web server and AXIS2. The welbesenmpressed taar is

located in the services folder in the WEB-INF folder.

4.3. Web Service encapsulating ADEVS

4.3.1. ADEVS

A discrete event system simulator (ADEVS) is implementattf DEVS based on
parallel and dynamic DEVS formalism using C++ [11]. It consistsmodeling,
simulation, and container libraries as seen in figure 18, whiclkgepts the classification
of ADEVS API into their usages. The APIs do not have many saodes but they are

used in the various domains to solve specific domain problems wghmalation

approach.
ADEVS API
Modeling API Simulation AP| Container AP
adevs_models.h
adevs_digraph.h adevs_simulator.h adevs_bag.h
adevs_simpledigraph.h adevs_sched.h adevs_set.h

adevs_wrapper.h object_pool.h

Figure 4-18 The classification of ADEVS header files into their esag
The modeling API is used to create atomic and coupled modelsringtaiements
of DEVS formalism such as states, internal/external event haodigut messages, and
input/output ports. Figure 4-19 represents hierarchical structureDB&VS modeling

classes. The top level class is evsclass with an X message, which is implemented

93

with templates to accommodate a generic messageD@&he<X> class contains basic
operations used during simulation to indicate whether the modelatoaic or a couple
model and the information of its parent. TABmMIic<X> class inheritDevs<X> class
and provides basic functions to implement an atomic DEVS formalieeiNetwork<X>
class is a base class for DEVS coupled models and progel€®mponentand route
functions. ThegetComponentfunction is used to obtain all components in the coupled
model, and the route function sends the external message into the component{sjgacco

to the coupling information displaying the flow of the messages in the coupled model.

Devs<X>
LF AN
Atomic<X> L Network<X>
AN
i <
S e Digraph<class VALUE, class

PORT = int>
Figure 4-19 Hierarchy structures of ADEVS modeling class
The SimpleDigraph<X> and Digraph<class VALUE, class PORT = inthave
Network<X>as parents. The difference between two derived digraphs fromwonNe X>
class is a type of message. TBanpleDigraph<X>has a single X message, but
Digraph<class VALUE, class PORT=intxlass has thePortValue object to make
couplings among the components. The port type inPinValue object is integer as a

default. TheDigraph class hasadd and couple functions with the functions from the

94

Networkclass. Theaddfunction is to add a model to the network, andatgplefunction
is to connect the source model to the destination model.

The simulation API has acheduleclass and asimulator class which controls
simulation protocol. To get the minimum time for the next eventsimellator uses the
scheduler with a bag container storing atomic models and gets\amn next event time
of atomic models in the scheduler. Therefore, ADEVS does not bhegaachy structure
of model when calculating minimum event timBA. When passing messages from a
source model to a destination model, the simulator calls a routigofumet the simulator
class and each coupled model uses its route function Digineph class. The simulation
of an ADEVS model is executed by three functions in the simulator &tassen in figure

4-20.

while (nextEventTime() < DBL_MAX)
{

computeNextOutput();
computeNextState(bogus_input,sched.minPriority());

Figure 4-20 Simulation of ADEVS model

The functions are the following.

B nextEventTim@ calls a scheduler’sninPriority() calculating next event time and
classifying imminant models which have next event time and a tfkeimternal
transition.

B computeNextOutp(Qtexecutes &amdafunction if any model has next event time and
routes the output message to destination models which have a tokextdoral

transition.

95

B computeNextStafeexecutes a delta function according to the token which the models
have and initializes the tokens and input/output message containers of models.
The container API consists ofbag class, a set class, and @nect_poolclass. The
bag class holds any type of object and is used in the atomic madethe simulator to
store the input or output messages. $heclass adds some operations witkedclass
which comes from STL. Thebject_poolclass is a utility class to handle pools of objects
that are stored on the heap and uses the new and delete operateatet@md destroy

objects.

4.3.2. ADEVS Interface

ADEVS API can not be used directly to create a DEVS simuls¢rvice because
ADEVS does not provide functions that a DEVS simulator service esjutor example,
an method to get time advanci is not provided by the ADEVS simulator class. But
there is no modification required in the modeling because the ADEY&atDr is used
for atomic or coupled model simulation. However, to substitute theifuscof ADEVS
simulator to the functions of DEVS simulator service in the sitttriasome methods are
added in the ADEVS simulator as seen in the right side of fige2&. Theinitialize
function is for initializing an ADEVS modeletTN function returns next event time,
getOutput function returns output message bag from imminent mogelsylessage
function sends the output messages to the corresponding models as ispagesge

deltfcn function lets the models execute theglt function, andgetimminentfunction is

96

for getting imminent models of all models at the specificetimihose functions are

integrated in the ADEVS simulator as seen on the left side of figure 4-21.

void initialize(double t);

double nextEventTime(); ST
: Bag<X>* getOutput();
void computeNextOutput(); .
void computeNextState(Bag,double); void putMessage(Bag),
P &AW void deltfen(double t);

void getlmminent(Bag, double);

Figure 4-21 The added functions in the ADEVS simulator for DEVS simulatdcser

A String converter is required due to using C++ standard APl and VisualAP#.
Visual C++ is used to create a DEVS simulator web serviueevC++ standard API is
based on the ADEVS. When returning a string to a user in the wabeseat should be
String class provided in the Visual C++ API. Because agitoming from ADEVS
models is C++ standard API, we need to have a string converdestahg for C++ to a
String class for Visual C++ and vice versa in the ADEVS interface.

There are two types of classes in the ADEVS for the rgesgassing. One is
PortValueclass and the other is Event class. PbetValueconsists of a value and a type.
The value which is used as a message can be expressed blasmyand the type
represents the port which has integer as a default valueEvédm class is made of a
model and a value. The model is a pointeDe¥s<X>class and the value isPartValue
It is used to route the message to the destination, arbttalueis used for component

coupling.

97

To send the message to another DEVS simulator service froDRBW& simulator
service for ADEVS, the message converter is required asafigeat simulator service for
DEVSJAVA. An imminent model produces a bag containkatValue objects as an
output. In the DEVS simulator servicegetOutputoperation returns a string containing a
XML document format as seen on the right side of the figu28.4Fhe message structure
of ADEVS is shown on the lift side of the figure 4-22.B&g class can get multiple
PortValueobjects consisting of an output port and the message used in the atodal.

The Bag class is written to a XML document which is the saméhat of the DEVS

simulator service for DEVSJAVA.

The Structure of ADEVS XML Document for ADEVS message
message
Bag <Message>
<content>
— PortValue <port>1</port>
<entity>
type — port <class>Job</class>
| Message <id type="int" >9</id>
KRS == e Converting <time type="double” >0.0</time>
t id </entity>
time </content>
— PortValue <content>
(]
(]
(] o
' </Message>

Figure 4-22 The message converting in the DEVS simulator service fov8DE
To get an XML message from a Bag object, an algorithm fgr @gect to XML
conversion is used as seen in figure 4-23. In line 1, an instan¢mldextWriterclass,
which is provided in the visual c++ 2005, is created, and adawe called “Message” is

written using aWriteStartElementunction in line 2. In line 3, an output Bag is obtained

98

from agetOutputfunction in thesimulator class.PortValueobjects are got out from the
Bag in line 4. Inside ofvhile statement, “content” tag is written and “port” tag is wntte
with a port value using WriteStringfunction in lines 5 to 8. After getting a message of
the PortValue “entity” and “class” tags are written and the “class” k&g a name of the
instance of the message as a string in lines 10 to 13. Lines 15dpr&gent a process to
makevariable tags from the message. Tvariable tag has an attribute called “type” and
a string value for the variable. The process is repeategeafamultiple variables in the

message. Line 19 returns an XML document for the ADEVS message.

Make an instance of XmlTextWriter as writer
writer->WriteStartElement(““Message™)
Get an output bag with getOutput() in the simulator class
while(output.size != 0)
writer->WriteStartElement(“‘content™)
int port = PortValue.port
writer->WriteStartElement(“port™)
writer->WriteString(port)

ST 2 B g B)=

10. get an instance of message

11. writer->WriteStartElement(“entity’’)

12. writer->WriteStartElement(“class™)

13. writer->WriteString(the name of the instance)

15. writer->WriteStartElement(the name of the variable)

16. writer->WriterAttributeString(“type”, the type of the variable)
17. writer->WriteString(the value of the variable)

19. return the XML document String
Figure 4-23 An algorithm for Bag object to XML conversion
The converting of an XML message to an ADEVS message is involvesdps ©ne
is a process to gather information from the XML message usiragifispeass and a list
class, and the other is to create an ADEVS message usBag &lass containing

Event<X> objects. Figure 4-24 represents the algorithm for extractimgnnation from

99

the XML message. Line 1 makes the container classes gatbenation from the XML
message and line 2 makes a list ¢ontentclasses which represent “content” tags. The
XML document is sent to akmlITextReadeclass to turn each tag to an object (line 3).
The XmlTextReadeclass provides a read function to indicate the end of the document
(line 4). If the document reaches end, ids&d function returndalse The reader, which is

an instance of thEmlTextReadermas aNodeTypedo indicate attributes of the nodes. For
example, “content” tag is representedXasiNodeType::Elemenand if the tag has a text
value, the text value is representedXadNodeType:: TexiThe closing of “content” tag is

represented asmINodeType::EndElement

1. make containers to gather information from a XML document

2. make a list for content classes

3. turn the XML document to XmlTextReader

4. while(reader->Read())

5. switch(reader->NodeType)

6. case XmINodeType::Element

7. get the name from the node

8. if(isAttributes)

9. make a pair for name and type and store it into a list for attributes

10. case XmINodeType::Text

11. make a pair for name and value and store it into a list for textvalue

12. case XmINodeType::EndElement

13. if(name is equal to “content”)

14. make a content instance

15. while the number of elements in the textvalue is not empty

16. get name and value from each element of the textvalue

17. if(name is equal to “port™) assign the value to port variable in the content
18. elseif(name is equal to “class™) assign the value to class variable in the content
19. else

20. make an instance of a threeValue class with name, value, and type variables
21. assign name and value to the name and the value variables

22. while number of elements in the attributes is not empty

23. get n and t from each element of the attributes

24. if name is equal to n

25. assign t to the type variables

26. put the threeValue into the list on the content class

Figure 4-24 The algorithm for extracting information from the XML ragss

100

Names of tags are obtained from tKenINodeType:.Elementlf any tag has an
attribute, a pair having a name of a tag and a value of an attrgostored in the list for
attributes (lines 6 to 9)extvalueof tags are provided from tRamINodeType::Texand
a pair with a name of tag andextvalueis saved in the list faextvalue(lines 10 to 11).
With the XmINodeType::EndElemerthe list of content classes is generated with the list
for attributes and the list faextvalueslf XmINodeType::EndElemeist a content tag, an
instance of a content class is created, and the listeidvalueis used to fill out the
content class. A name int@xtvaluepair is used to select to use a variable ©heeeValue
class in the content. If the name is equal to “port”, the valuesonding to the name is
assigned to a port variable in the content (line 17). If the narequal to “class”, the
value is assigned to a class variable in the content (line 18 ihame is not equal to
either “port” or “class”, the name is considered to be a variable nameneksage. In this
case, an instance ofTdreeValueclass is created to accommodate the name, the type and
the value of the variable used in the message. The procedurggrfimg the name, the
type and the value to variables in fhilereeValueclass is displayed in lines 20 to 25. The
variables of the message could be multiple, so the contenthaass list for them (line
26).

Once we get a list of content classes, we can createstamce of 8ag<Event<X>>
class based on information of content classes. Figure 4-25 regréiserdlgorithm to
create a Bag instance wilBvent<PortValue>classes. In line 1 Bag instance folEvent
classes is created.d®ntentclass from @&8agis used to generate &ventclass. The name

and the port are obtained from the content class (line 3) and andasnts created (line

101

4). The instance of an ADEVS model is assigned to a model vamabie Eventclass,

and the port is assigned to a port variable in the value variaids @ to 6). An instance

of a class with the name from the content class is creatbédel 7. The instance is set
with values fromthreeValueclasses in lines 8 to 9. The instance is assigned to the value
for the value variable in thEventclass in line 10. Th&ventclass is put into th8ag

used to input bag in the simulation.

1. make inputs bag for Event<PortValue>

2. while the list for contents classes is not empty

3. get port and name from the content class

4. make adevs::Event<PortValue> class with model and value variables
5. assign the instance of adevs model to the model variable

6. assign the port to the port for the value variable

7. create an instance of a class with name

8. while the list for threeValue classes is not empty

9 set the variables of the instance using the name and the value of the threeValue
assign the instance to the value for the value variable in the Event class
put the Event class into the inputs bag

—_
— O

Figure 4-25 The algorithm for creatingaginstance wittevent <PortValue>

4.3.3. DEVS simulator service with ADEVS

To make web service for ADEVS, visual studio VC++ is used he tNET
environment. The web server is provided by windows OS such as Windows XP
Windows Vista. Visual Studio has a template to create ASP\W&TIservices [12]. With
the template, the operations of the interoperable simulator sarégaeclared, as seen in
figure 4-26. Figure 4-26 is a snippet of a header file of the ®Evhulator service, and
annotations are used to indicate that methods in the class arasuspeérations in the

web service[System::Web::Services::WebMethad]an annotation used in the operation.

102

The web service class inheritsSgistem::Web::Services::-WebServatass and the name

of the web service class becomes the service name.

public:

[System: iWeb:! Services: WebMethod]
void getSimulator (bool isRT):
[System: iWeb:! Services: WebMethod]
void addCoupling(String “portFrom, String "portTo. String “ipServiceTo)
[System: iWeb: Services: WebMethod]
String "getConscle(String "clientlp):
[System: iWeb: Services: WebMethod]
void exit();

[System: iWeb: Services: WebMethod]
void initialize(double)

[System: iWeb: Services: WebMethod]
double getTN()

[Svatem: :Web::Services: WebMethod]
void lambdal(double 1)

[Svatem: ‘Web::Services: WebMethod]
Strina "getOutput();

[Svstem: :Web::Services: :WebMethod]
void receivelnput (5tring “portFrom, Strina "msg, String “portTol.
[Svstem: :Web::Services: :WebMethod]
void deltfen(double t)

[Svstem: :Web::Services: :WebMethod]
bool isReadvddelta();

[Svstem: :Web::Services: :WebMethod]
void simulateReal ()

[Svstem: :Web::Services: :WebMethod]
String “getResult();

[Svstem: :Web::Services: :WebMethod]
Strina “getSchemalnfo();

[Svstem: :Web::Services: :WebMethod]
String “getTyee(String “port);
[Svstem: :Web::Services: :WebMethod]
arrav<System! ! String”> “getlnports();
[Svstem: :Web::Services: :WebMethod]
arrayv<System::String™> * getOutports();

Figure 4-26 The operations of DEVS simulator service for ADEVS
A web service class is implemented with ADEVS interface and ADEVS Imgdend
simulation. After finishing writing, the web service classl dhe project file built in the
visual studio, the web service can be automatically deployed tweheserver. What is
deployed is a bin folder containingdl file for the web service class, service description

file, and web configuration file.

103

4.4. DEVS Simulator Web Services Integration and Executi

To demonstrate the DEVS simulator service interoperabilityesysan example
DEVS model calledsPT is used, as seen in figure 4-23. TGET model consists of a
coupled model called an Experiment Frar&®)(model and an atomic model called a
Processer model. THeF model has two atomic models called Generator and Transducer.
The GPT model uses dob type message which has two variables, thadigndtime
The Generatorcreates newob type messages repeatedly according to the internal time
of the model. Thérocessemodel processes tld®b coming from the “in” input port. If
theJobis finished, it is sent to thEransducemwhich collects information of generated or
processedolbs and takes the statistics during a certain time. If thtaingime is passed,

the Transducersends the message to theneratorto stop generating b message.

DEVS Simulator Service with DEVSJAVA (AXIS2)

GTModel
DEVS Simulator Service

with ADEVS (.Net)

EF

ProcessServiceClass
stop Generator out

SOAP
- > — Processer —

in J out in out
in |

Transducer
out

solved

Figure 4-27. The view of the GPT model
Two web services are generated to simulate the GPT modelheitmteroperable

system. One is created with a JAVA based system and DEASIts web service name

104

is GTModelcontaining theEF model, as seen in figure 4-28, which displays a view of

web service through web browser.

G TModel

Service EPR : http://localhost: 8080/DEVSSimulators/services/GTModel
Service Description : GTModel

oy e S E R A s
OEeErVvice oLladilus - AcCuOve
Avarlable Operations

getOutports
getSimulator
isReady4delta
getResult
getOutput

exit
addCoupling
getTMN
receivelnput
deltfcn
initialize
getSchemalnfo

Figure 4-28GT simulation web service using AXIS2 and DEVSJAVA

The other web service is generated with an ASP.NET basednsystie VC++ 2005
and ADEVS. ProcessServiceClass the name of the web service embedding the
Processemodel, as seen in figure 4-29, which displays basic information cfettvice
and names of operations used in the web service.

Before a producer of theF web service publishes titeg- web service, the producer
needs to check and register a schema for a DEVS messadan tiseEF model. In this
example, the producer uses a domain name as “EFP’Jantype is used as a DEVS
message type, as seen in the figure 4-3. A provider of theegsor web service gets a
schema for th&FP domain from the DEVS namespace and creates the processor web
service with .NET and ADEVS. The two web services have common tyla¢s for

DEVS messages.

105

ProcessServiceClass

The following operations are supported. For a formal definition, please review the
e addCoupling
e deltfcn

® exit

& getOutports

e getResult

e getSimulator

Figure 4-29 Process model simulator web service using .Net and ADEVS

The DEVS web service integrator is used to integrate twerdift web services as
seen in figure 4-30. The name of integration is “HybridGTP” usedaffile name of a
XML document. A user can choose a web service, as shown in figBite @pearing
when the user clicks an ADD button. The GUI for the information of servicesayssiiie
information of WSDL selected by the user and sends it to thgraite. In this example,
EFservice.wsdland ProcessService.asmx.WSDIte selected and their information is
shown in the table. Figure 4-32 shows how to couple the web servicesGUI for
coupling invokes operations of web services to get their port namedasadypes of
their ports. When finishing the integration, the integrator crea¥@dladocument which
contains information of the location of the web service and couplinggleicted web
services. Figure 4-33 shows the XML document of integration of EFPaocesser web

services.

DEVS Simulation Service Integrator

URL: |

Name : |Hybrid6TP

DEVS Services | Add | | Delete
WSDL MAME LOCATION SCHEMA
EFsemvice wsdl EFservice http:iflocalhost:2080/0DE... |hitp:flocalhost:3080/DE...

ProcessSernvice.asmxw...

ProcessService

http:iflocalhostiProcess...

hitp:fMlocalhost8080/DE. .

106

Coupling | had | | Delete
SOURCE OUTPORT DESTINATION INPORT
ProcessSenice 1 EFsenice in
EFsemvice out ProcessSenice 0
| OK || Cancel |

Figure 4-30. The integrator for EFP web services

The Information of a Service

The Informalion ol a Service

WSDLs

EFserdce.wsdl
GTservice.wsdl
MarketPlaceservice.wsdl
MamespacceScenvice.wsdl
ProcaseSanice asmy.wedl

1.

Chuuse
Name ! ProcessSenvice
Location i ¥ IhostiPr vice/lr Send...
Schema: hitp:localhost:8080/DEVSNameSpace/Job.xsd

0K | | Cancel |

Figure 4-31. The GUI for the information of services

107

B Coupling between a source and & destination E|
SRCE ProcessSorace bt
(DUTNESSAGE 1 -
EESTIMATION EFsanice E
IHMESSAGE n -

o8,

Figure 4-32. The GUI for coupling between the services

<?xml version="1.0" encoding="S0O-8859-1" ?>
<devswsintegrator xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchemalocation="devswsintegrator.xsd">
<title>HybridEFP</title>
<services>
<model>
<wsdI>EF_Service.wsdl</wsdI>
<name>EF_Service</name>
<location>http://150.135.218.206:8080/DEVSSimulators/services/EF Service</location>
<schema>http://150.135.218.199:8080/DEVSNameSpace/Job.xsd</schema>
</model>
<model>
<wsdl>ProcessService.asmx.wsdl</wsdI>
<name>ProcessService</name>
<location>http://150.135.218.199/ProcessService/ProcessService.asmx</location>
<schema>http://http://150.135.218.199:8080/DEVSNameSpace/Job.xsd</schema>
</model>
</services>
<couplinginfo>
<coupling>
<source>EF_Service</source>
<outport>out</outport>
<destination>ProcessService</destination>
<inport>0</inport>
</coupling>
<coupling>
<source>ProcessService</source>
<outport>1</outport>
<destination>EF_Service</destination>
<inport>in</inport>
</coupling>
</couplinginfo>
<inports>
</inports>
<outports>
</outports>
</devswsintegrator>

Figure 4-33. The XML document for DEVS Simulator WS Integration
To execute the XML document, we need an execution progrand @lteordinator,
which prepares simulation and runs the simulation. The procedure ofntinéatsdn

follows the centralized virtual time simulation protocol.

s C:AWINDOWS\system32\cmd.exe - tomcaté

time : 0
type : double
: id type : int value : 8 method : setId service.models.Job
: time type : double value : @ method : setTime service.models.Job
port To : in
receive in Message : portFrom :
content.getlUalue : 8§
Finish job 8 @ t = 97.0
End time: 100.0
jobs arrived : 9
jobs solued : 9
AUERAGE TA =

0
THROUGHPUT 0

T.
0.
Start job 9 @ t = 100.0
portFrom : 1 msg : <?xml version="1.8" encoding="utf-16" standalone:="yes"?>
<Message>

{content>

9

Figure 4-34. The result of simulation of DEVS simulator services
The simulation result is shown in the figure 4-34. It is theesas the result of the

GPT model simulated in the DEVSJAVA.

109

CHAPTER 5. APPLICATION OF INTEROPERABILITY OF

DEVS SIMULATOR SERVICES

In this chapter, several applications are introduced with D&W@8lator services and
DEVS namespace. The applications need to interoperate with othecasippb in
different platforms and computer languages. The track display @yutiaieon system are
integrated among different language DEVS simulator services implemaned$2 and
ADEVS. However, the testing agents system is implemented DéMpIAVA modeling
and simulation, and DEVS simulator services with real time sitoulThe testing agents

system will show the multiple levels testing concept.

5.1. Track Display

One of the projects, called Automated Test Case Generation (ATC&g¢ny¢nerates
DEVS models that are semi-automatically generated fromsésgiences. A test driver
that is based on the DEVS simulation protocol executes the teiisnin a distributed
simulation infrastructure based on the HLA [33]. The test modelD&¥S models
implemented with C++ language. The integrated system consddtithee test driver and
the test model produces its result, which is considered as iriffom@d tracks and has a
capability of displaying tracks on the track display window.

To display the tracks from DEVS models with heterogeneous conmpuotprages, we

should solve interoperability problems between them. The systenDEMSE simulator

110

services can communicate between DEVS models with diffenegtideges. Accordingly,

in this section, we show that the DEVS simulator services andSDEamespace are

applied to solve the interoperable problems with the simple track display system

5.1.1. Design of Track Display DEVS models

Track Generator

Ift!=80
l'out_track

? start

Ift == 80
I'out_track

passive
infinity

Messaage type : TrackData

lout_track ?in_track

Track Display

I ?in_track

Messaage type : TrackData

I out

Figure 5-1 State diagrams for track generator and track display

The Track display DEVS model consists of two atomic modelsdtalhck generator

and track display. Figure 5-1 represents state diagrams forattiegenerator which has

two states and two ports, and the track display which haseaastd two ports. An initial

state of the track generator is an “active” state with 1 timi, which means the track

generator produces an output message and has an internalomaaféér passing 1 unit

time. The output message precedes the internal transition, produciigckData

message. If internal variable t is not equal to 80 units, a t&bet i the “active” state

again with 1 unit time for an internal transition. If t is eqi@a80 units, the next state is

111

changed to a “passive” state with infinity units which mean tthatrack generator does
not produce output messages any more.

The track display has a “wait” state with infinity unit tirag an initial state. When the
track display receives an input message, its state is nogethaat all. Instead, a track
display window, which resides in the track display model, receéhesnput message to
display the track into the GUI.

The two models share the same message type callegickDatg which has four
variables:id, xposition, ypositionand heading Theid is integer type and all others are
double type. Thed, xposition, yposition and heading represent a name, longitude,
latitude, and direction of a track. To fill out theackDatg the track generator has simple
equations to get the longitude, latitude, and heading information. Theue, walvalue,
and heading below (5.1) represent longitude, latitude, and directiorneoftrack,

respectively. The velocity and are assigned constant values.

X = X + velocity * cos(8)
y = Yy + velocity * sin(&) (5.1)
heading =6

Figure 5-2 shows the view of track display DEVS models usimg simView
application provided by DEVSJAVA API. There are three DEV@&@rat models named
“Track Generator”, “Track Generator2”, and “Track Displayhe output port of “Track

Generator” and “Track Generator2” are coupled with the input pdffratk Display”.

112

The initial state of the “Track Generator” and “Track GenePitiw “active” with 1 unit

time, while the initial state of the “Track Display” is “Wawith infinity unit time. The
simViewapplication enables the DEVS model to be simulated with two modes. One mode
is to simulate the model with step by step and the other modesismulate the model

from start to end. The simulation is over when next event time of all models isyinfini

-{éj DEVSIAVA Simulation Viewer

configure track b TrackCoupled B

Track Display coupling

start B out_track

in_trach out

start B out_track

ready clock: 0 000 real time factor: 01 OE-4 always show couplings help

step run restart

Figure 5-2 The view of Track Display DEVS models vatmView

5.1.2. Implementation of Track Display with DEVS simulator service

Each model is encapsulated by DEVS simulator service whicbwflthe design
concept. The “Track Generator” and “Track Display” resideTmackGeneratorand
TrackDisplay services with DEVSJAVA, AXIS2, and Apache server. The “Track

Generator2” model is placed in tAH@ackGenerator2service with ADEVS, .NET, and

113

Windows server. Before the services are deployed to theierserdata type schema
should be registered in the DEVS nameservice with a GUI fegnsa register. In this
case, one message type, calledckDatg is used to send the information of the track.

Table 5-1 A message used in the Track Display system

Name of Message Name of Variable Type of Variable
id int
Xposition double
TrackData yposition double
heading doube

Table 5.1 displays the data used in the schema register GUhéoate a schema
document for the message. The first column is the name of dssage, the second
column is the name of the variable, and the third column is the typleofariable.

Figure 5-3 represents the schema for the TrackData geshérathe schema register GUI.

<xsd:complexType name="TrackData">
<xsd:sequence>
<xsd:element name="id" type="xsd:int"/>
<xsd:element name="xposition" type="xsd:double"/>
<xsd:element name="yposition" type="xsd:double"/>
<xsd:element name="heading" type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>

Figure 5-3 The schema for the TrackData
We are ready to integrate DEVS simulator services forTilaek Display system
using the DEVS simulator service integrator. The integratoergees an XML document

to describe information of services and coupling information forrtek tdisplay system.

114

Figure 5-4 shows the XML document of the track display systertherdocument, the

locations of services and DEVS namespace and coupling information are displayed.

<?xml version="1.0" encoding="IS0O-8859-1" ?>
<devswsintegrator xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:noNamespaceSchemal ocation="devswsintegrator.xsd">
<title>TrackDisplaySystem</title>
<services>
<model>
<wsd|>TrackGenerator.wsdl</wsdI>
<name>TrackGenerator</name>
<location>http://150.135.218.206:8080/DEVSSimulators/services/TrackGenerator</location>
<schema>http://150.135.218.199:8080/DEVSNameSpace/TrackData</schema>
</model>
<model>
<wsdI>TrackDisplay.wsdl</wsdI>
<name>TrackDisplay</name>
<location>http://150.135.218.204:8080/DEVSSimulators/services/TrackDisplay</location>
<schema>http://150.135.218.199:8080/DEVSNameSpace/TrackData</schema>
</model>
<model>
<wsdI>TrackGenerator2.asmx.wsdl</wsdI>
<name>TrackGenerator2</name>
<location>http://150.135.218.199/ProcessService/Process TrackGenerator2.asmx</location>
<schema>http://150.135.218.199:8080/DEVSNameSpace/TrackData</schema>
</model>
</services>
<couplinginfo>
<coupling>
<source>TrackGenerator</source>
<outport>out_track</outport>
<destination>TrackDisplay</destination>
<inport>in_track</inport>
</coupling>
<coupling>
<source>TrackGenerator2</source>
<outport>out_track</outport>
<destination>TrackDisplay</destination>
<inport>in_track</inport>
</coupling>
</couplinginfo>
<inports>
</inports>
<outports>
</outports>
</devswsintegrator>

Figure 5-4 The view of the XML document for the track display system
According to the XML document, th&rackGeneratorservice is located in the
http://150.135.218.206:8080 server, therackDisplay service is located in the
http://150.135.218.204:8080 server, and theackGenerator2 service and DEVS
namespace are located in the http://150.135.218.199 server with ports 80 and 8080,
respectively. To execute the XML document, the track display windoWwigshown in

the server containing thigrackDisplayservice.

| £ Track Display Window — .

= S # i E
GMT Time : 00:00:00 Start Animation || Pause Animation Animation Speed 5 a o = e b] Show The Legend

——

Figure 5-5 The track display window

Figure 5-5 shows the track display window GUI in ffrackDisplayDEVS model.
The track display window displays tracks with a triangle shaggeaen on the world map.
Two tracks, one fromTrackGeneratorservice and the other from TrackGenerator2
service, are shown on the right upper side in the map. The red line #®wajectory of
the track.

Through the track display system consisting of DEVS simulaosices, we know
that a track display model in DEVS simulator service can aav@pability of displaying
tracks from the DEVS simulator services if the messagedsstva track generator and a
track display is the same even though the services do not haventhepkdform and
language. The track generator can be any systemATikESento generate the information

of tracks based on the simulation.

116

5.2. Negotiation System

[74] proposed a negotiation system to be used in the different domauhefibing
the dynamic message structure with the System Entityctdte (SES). Also, [74]
suggested an automated domain independent marketplace architectieaisdreagents
can interact with providers with negotiation protocols that desciiee policy of
communications in multi-agent environments. In the [74], there is amp&aof
distributed services environment called printing jobs scenario whers ssnd different
kinds of printing jobs to the marketplace which selects the bestdersyiand negotiates
on different aspects of the job specifications with the providers thay reach an
acceptable agreement within their range. The user and the providearsvhepresented
as DEVS models with specific behaviors, are considered as agetite negotiation
system. The printing jobs with marketplace are implementdd DEVSJAVA to validate
the concept proposed in [74]. The behaviors of the user, the providers, and the
marketplace are more complicated than the track display syatemthe printing jobs
system has more messages than the track display system.

The printing jobs system can be extended to accommodate agentsewdieaded in
the different platforms and languages using the DEVS simukdorices. We use
DEVSJAVA models and ADEVS models to create the printing jglsgesn with an agent
from a different environment. The printing jobs system basicabytiiee models called
a user, a provider and a marketplace model. One of the providers is modeled wits ADE
and others are modeled with DEVSJAVA. Each model is capsulatettiei DEVS

simulator service and integrated to make the printing jobs sy3temough the simulation

117

of the integrated system, we will show that the negotiatigtesy can be used by agent

models from different languages

5.2.1. Design of Negotiation System with DEVS simulator service.
The negotiation system for printing jobs consists of three modéds esser, provider,
and marketplace model which have their own behavior for negotiationbdtevior of

the marketplace model is represented in figure 5-6.

InterpretQuery
5
DecisionMaking
5

N

RoutingContract

! Means an Output port
? Means an input port

Figure 5-6 The state diagram of the marketplace model
The initial state of the marketplace model is “Active” etatith infinity unit time.

When the marketplace receivesCapabilityQuerymessage from the user, its state is

118

changed to “ProcessingCapability” with 5 unit time, and comes tmtActive” states
after passing 5 unit time and generating CapabilityStatementmessage. If the
CapabilityStatementis satisfied, the user sends GontractQuery message to the
marketplace. When thenarketplacereceives the message, its state is changed to
“InterpretQuery” with 5 units. After 5 units, its state is changedDecisionMaking”
with 5 units. In this state, thmarketplacedecides the providers to cover the contract with
its database for providers. After finishing selecting the provideesnarketplaceroutes

the contract to the selected providers in the “RoutingContract’e.stht the
“WaitandSelect” state, the marketplace can receives thifferent types of messages, that
is, Reject, Accept, and Offer. When the marketplace receives a Rejssage, it stays on
the “WaitandSelect” state. If it receives an Accept meass#gchanges its state to
“RoutingAccept” state, produces an Accept message right away, aasdtg “Active”
state. If it receives an Offer message, its state isgdthto “RoutingOffer” with O unit, it
sends an Offer message to the user, and its state beconties™Atate. The marketplace
has a role to hand the message to the user or the providers. iptesxae user provides

a “CounterOffer” message to timarketplace and the marketplace sends the message to
the providers. Conversely, the provider sends an “Offer” messape todrketplace, and
the marketplacehands the message to the user. If the user and the provider atiree in
negotiation with each other, the marketplace expects a “LinkEstablisresage, it goes

to “Monitoring” states with infinity, and the negotiation is termeth after receiving a

“Terminate” message from the user and providers.

119

If offer ==0

? inTerminate
? inNotlv Termination
Datalnput 1

Rejection

Agreement
20

? inOffer

! outCounterOffer

! Means an Output port
? Means an input port

IssuesCounterOffer
0

Figure 5-7 The state diagram for the user model

Figure 5-7 represents the state diagram for the user motiet inegotiation system
for printing jobs service. The initial state of the user modébtart” state with 1 unit.
After passing 1 unit, the user of the printing services changesstate to
“ServiceDiscovery” state with 2 units, sends a “CapabilityQuenyssage to the
marketplace after passing 2 units, and goes to “Wait” state & units. If the user
receives the “CapabilityStatement” message and the mesatgfées the user, its state is
changed to “IssueContract” with 2 units. After 2 units, it chaitgestate to “Agreement”
state with 20 units and sends a ContractQuery message to thephaaekeDuring the

“Agreement” state, it can receive four messages calldestProvider an Offer, a

120

Terminate and a Reject The BestProvider changes the state of the user to
“LinkEstablishment” state with 2 units, th@ffer makes the state of the user stay on
“Agreement” state with the next event time, and Teeminateand theRejectchange the
user’s state to “Terminate” state with 1 unit. When the userdspiés internal event time,
its state is changed to “DecisionMaking” state with 2 units. In the “Decisaimlg” state,
the user evaluates the offers from marketplace with its deaision processing, and
produces an integer value called “check”. According to the valueedicheck” variable,
the user's state is changed to “Acceptance” with 2 units in checkl, =
“IssuesCounterOffer” with O unit in check = 2, and “Rejectionthv@ units in check > 2.
In case of “IssuesCounterOffer”, the user sends a CounterOéfesage and changes its
state to “Wait” state with 15 units. In “Rejection”, if thee® do not exist in the offer
bag, the user’s state becomes “Passive”, which means the tiegasaover. In case of
“Acceptance”, the user sends an Accept message and its b&temes
“LinkEstablishment” state with 2 units after which it sendsiskEstablished message
and its state is changed to “ReceiveData” state with Deadliheinits. If the user
receives @atalnputmessage, its state goes to “Terminate” state with 1 uni. sthge
means the negotiation for printing jobs service is successfullghéd. If the user
receives a Terminate or NotMet message, the negotiation is unsucgdssfuihated.

The user has certain rules to acceptdfier from the providers. If the acceptance
condition is not satisfied, the user sendsaunterofferto the providers until the

acceptance condition is met.

121

Passive
Infinity

? inContrj
? inTerminate

? inLinkEstablished

? Means an Output port
! Means an input port

Figure 5-8 The state diagram for the provider model

Figure 5-8 represents the state diagram for the provider mdaede initial state is
“Passive” with infinity for next internal event time. Whehet provider receives a
ContractQuerymessage, its state is changed to “DecisionMaking” with 2 .uimitthis
state, the provider proposes the offer for the contract and chasgate to “Offering”
with 1 unit after which it produces a@ffer message and changes its state to
“WaitonOffer” with 20 units. If 20 units are passed, the provideFsgto “Termaination”
state, sends a Terminate message right away and changestat$o “Passive”. If the
provider receives a CounterOffer message in the “WaitonOffex’state is changed to
“Decision” with 2 units. If the provider receives Anceptmessage, it changes its state to
“ProvideService” with 1 unit after which it produces a DataOusgage and changes its

state to “Passive”. The above processes represent the prooéssegotiation in the

122

provider model.

|£| DEVSIAVA Simulation Viewer (= | B]
i configure: | ‘Negotiation |Vi !Negoﬁationﬁystem ivi

Megotiation System

infocept @ Customer 8 outfooept infoscpr sy MarketFlace —3 outocept 1
inBest Provider & g ~utCapability Query 3 out Pocept 3
inCapability Statement £ e infdvatise - S out Focept G
inDatalnput £ —& nur Cuniract Qusy 3 out Best Provider
inhothkt & Siarting —& nutCounterliifer in Capability Quary - @ vut Capability Statement

inOffer - g ot Link Established ~ out Contract Query 1

inReject & : inCoditrast Guary - —3 out Cortract Query 2

inStart @ - & oueject & out Cantract Query 6

inTerminate @ o= 4000 -& stTemiiza inCounterOffer @ ACHVE -y o Counterfter 1
- s — it CongnerOffer 3
itk Establishied @ 8 ounEountarOffer 6

— outham Chack Result

inD¥tgr- g —@ oirtltem Reguest
inFgject 8- 9 0agie
=@ out Reject
inTerminate @ L _ T — outTeminate
infceept € Prict Serwver 1 -0 outfooept
infdwertise g W outidvaiice -~ MPSCERt B Pring Servar 3 - eutfocept infocert @ Pring Server £ @ outéccept
Lontract Query & @ outDatalit. . infdvertise @ -4 outAdvertise infduertize’ i @ outidvertise
[Cownterffer & PasSive g . oo noonECluen o . - outDatalut inContract Query & 3 out Dstalut
ink Established & - inCounterOffer - PASSE | | oiver inCourterdiifer @ Dagsim
inReject - 8 outReject jnlink Established 4 : inLink Established ‘@ @ outtfer
i = . R — outReject i
inTerminate @ g =irfinity % oHtTemminate _dn RFJEG‘T - _ inFeject @ @ outReject
inTemminate @ o = irfinity ¥ outTerminate inTerminate @ g = infinity @ out Temminate

e : 1.0E4
ready clock:). 000 real time factor: O— [1#] slways show couplings | help
S —— L

i step || run H restart |

Figure 5-9 The negotiation system model for a printing jobs service
The overall negotiation system is displayed in the figurecbr@aining five atomic
models calledCustomer, MarketPlace, Print Server 1, Print Ser¥eand Print Server.6
The Custometis the user modeind Print Server 1, 3, andd&e the provider models. The
Customer model has decision making rules as follows [74].
® The Customer model is going to find a provider that has the Bssibasls
printing capability.

® The Customer would accept an offer if one of the following conditiens i

123

satisfied:

B If the paper quality is medium or high, the color is full HD anddbadline
is less than 80.

B If the paper quality is medium or high, the color is RGB andlldeais less
than 30.

B If the paper quality is medium or high, the color is grayscadethe deadline
is less than 20.

® If the offer does not match any of its acceptable rangesjsbesends back a

counter offer asking either his first preference or a modibied based on the

history of the offers he was receiving.

ThePrint Server 1, 3, and Bave their capability of providing printing services and
propose offers based on their own data. In this model, each Print Basws data in the
model and provides a random value to calculate the cuDeatline for its printing
service. For instance, curreDeadlineis the subtraction of its own random value from
previous deadline. The marketplace has its own database to answapdhdity query
from the customer. In this model, the database is confined to theeBssCards service
which the customer requests.

The result of the simulation of the negotiation system is following.
SSSS335333333333353353535533533533535SS53333333335SIDS5>>5>
Offer information are:

Customer : Customer

Job Type : Business Cards
Print Server : Print Server 6
Color : FullHDColor

Paper Quality : High
Deadline : 72

124

Duplex : Yes

Number of Copies : 1

Technology Type : Thermography
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOSSSSSSSSSISSSSSSSSSS>>

5.2.2. Implementation of Negotiation System with the DEVS simulator service

Each model is encapsulated in the DEVS simulator service forSOBEVA or
ADEVS. The Customer, MarketPlace, Print Server 1, Print Ser@eis placed in the
DEVS simulator service for DEVSJAVA, arfrint Server 6,which is generated with
ADEVS, is embedded in the DEVS simulator service for ADEVSe Tiodels have
unique ports with specific data type that should be register®EWS namespace. The
data types used in the negotiation system are displayed in the table 5-2.

Table 5-2 The messages used in the negotiation system

Name of Message Name of Variable Type of Variable
CapabilityQuery customer, printJob String
CapabilityStatement printJob, printServer String

printJob, technologyType,
noCopies, deadline,
customer, paperQuality,
duplex, printJoblD, color
printJob, technologyType,
noCopies, deadline,
CounterOffer customer, paperQuality, String
duplex, printJoblD, color,
printServer
printJob, technologyType,
noCopies, deadLine,
Offer customer, paperQuality, String
duplex, printJoblD, color,
printServer
customer, printServer,
printJobID

ContractQuery String

Accept String

125

Advertise provider, content String
DataOut user, content String
LinkEstablished customer, printServer String
: customer, printServer, .
Reject printJobID String
Terminate msg String

Each port in the models should be mapped to the one of messages dmve. T
information of mapping ports to message is added in the DEVS sonsktvice. Each
message is converted to a schema document which is stored in tHe mdEvespace.
Figure 5-10 represents the schema document forCi@tractQuerymessage which
consists of nine variables that have string type. Other messegeoraverted to the
schema documents and registered to the DEVS namespace using saistaa GUI. In
the DEVS simulator service, the information of schema location, pqts array, output
ports array, and mapping port to message type are needed te betywken services.
Based on the information, the client consuming the servicesorapase the negotiation

system with the DEVS simulation service integrator.

<xsd:complexType name="ContractQuery">
<xsd:sequence>
<xsd:element name="printJob" type="xsd:string"/>
<xsd:element name="technologyType" type="xsd:string"/>
<xsd:element name="noCopies" type="xsd:string"/>
<xsd:element name="deadline" type="xsd:string"/>
<xsd:element name="customer" type="xsd:string"/>
<xsd:element name="paperQuality" type="xsd:string"/>
<xsd:element name="duplex" type="xsd:string"/>
<xsd:element name="printJobID" type="xsd:string"/>
<xsd:element name="color" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Figure 5-10 The schema document for the ContractQuery message

126

Table 5-3 Assignment of DEVS simulator services to servers

Server name

Services and Client

Method of implementation

150.135.218.199

Print Server 6,
DEVS namespace

ADEVS

150.135.218.201 Print Server 1, DEVSJAVA
Print Server 3

150.135.218.204 Customer DEVSJAVA

150.135.218.206 MarketPlace DEVSJAVA

DEVS service integrator

Table 5-3 shows the assignment of the services to serversmeatitbd of
implementation. To execute the negotiation system using DEVS awnidervices, we
use four machines running their server as seen in the first cobdintable 5-3. Each
server has DEVS simulation services shown in the second columablef 3-3. The
service in the 150.135.218.199 uses ADEVS and .NET environment, but others use
DEVSJAVA and AXIS2.

=)

\g C\Program Files\Apache Software Foundation\Tomcat 6.0\bin\tomcatb.exe

R e e el b B e e b e B e e b e e b i e e e e e e e e el de b Offer information a
e =

Customer : Customer

Job Tupe : Business Cards

Print Server : Print Server 6

Color : FullHDGColow

Paper Quality : High

Deadline = 72

Duplex = Yes

Mumher of Copies = 1

Technology Type : Thermography

R N R R R D R R R R R R R R I R R R R R R R I A R R R R R I F b e
b0

Processing: DecisionMaking(>

Figure 5-11 The result of the negotiation system using DEVS simulatocese

127

Figure 5-11 shows the result of the negotiation system usiBgSDsimulator
services. The result of simulation of integrating the serviseghe same as that of
simulation of the DEVSJAVA model. Through the negotiation systempweidar called
Print Server 6 implemented with different language (ADEVSH lba simulated with
heterogeneous DEVS models (DEVSJAVA) using the DEVS simussniice concept.
Fairly complex models with different implementation methods canteeoperated under

the DEVS simulator services.

5.3. Test Agents for Net-centric

Test agents for Net-centric have different levels of testapgplility of interaction
between the user and the provider through the web services. Thendifiarels are
divided into three layers called syntactic layer, semantierland pragmatic layer. The
syntactic layer belongs to common formats and protocols for comatungcmessage
data frames [25]. The semantic layer includes share of meahihg message between a
sender and a receiver. The pragmatic layer employs the slyassinents about the use
of information exchanged. For example, the receiver reacts tméssage in a manner
that the sender intends [25]. With test agents, a system usingemabtes to corroborate
among participants can be simultaneously tested at the multiple layers.

This test agents system has two sub-systems where @agtigpant models with
DEVS agents, and the other is observer models watching the panttigipdels to verify
the participant’s behaviors. The participant models interad¢t @aich other through the

web services, and the observer models are distributed in the nefworksg the web

128

services. The DEVS agents in the participants send messagamiognthe information
of invocation of web services to the observer services which sendetgages to other
observer services to notify what the participants do.

In this section, the observer models turn to the DEVS simuksorices called
observer services. With the integration of the observer servicesvolgs environments
are constructed through a message type matching method using bDdfiwespace. We
will implement the test agents with a modified negotiationiesyso show the possibility

of multiple layer testing.

5.3.1. Design of Test Agents for Net-centric

5.3.1.1. Modified negotiation system

The negotiation system in the previous section consists of DEVS snduldl a
modified negotiation system includes DEVS models and a marketpktzeervice. The
marketplace model is substituted to the web service in the mddi&gotiation system to
make an environment of collaboration between a user model and a providér Tinede
user model and the provider model need to be changed in their modetmmrainicate

with the marketplace web service.

129

/setCapablIltyQuew\ Initial state
A (1.0) 4
=
|
|
f/ issueContract\“
\ (1.0) /
T . ’*ﬁ‘ i
“’/ setLink \\‘ \‘
A 1.0 / |
false /\\()/ // |
- // A | getOffer = false
VRN \ v
[\ T >)
S Ty | true — /" waitOffer \
[/ waitData \

\ (5.0)) f/ /CounterOffe\r\r,,,,nr»/"""""""""‘\\‘ (5.0))
= W T

“//waitLinkRequest\\‘ counterOffe
\ (5.0) : \ r / -
k\\%wig //4 __ accept y getOffer = true
true \\\ f/ N
\ N\ ~_ _ Y
-~ false — ‘/DecisionMakingY‘
e (10.0))
) 17\ ‘,/ ' reject \‘A/ reject
‘/'/ terminate \\ \ (1.0) v
_ (INFINITY < -
g

Figure 5-12 The state diagram for a modified user model

The state diagram for a modified user model is displayedjundi5-12 which shows
the initial state of the user as “setCapabilityQuery’esteith 1 unit. In this state, the user
model invokes a web service to send capabilityQuery to the maketpervice, and it
receives the result of the capabilityQuery. If the result fiibvm marketplace service
satisfies the user, the user produces a contract for thketpl@ace service through
invoking a web service, and it changes its state to “waitOffath 5 units. In the
“waitOffer” state, the user is waiting for an offer by invadia web service for getting an
offer. If a getOffer variable is false after gettingesult of invocation of the web service,

the user stays on the “waitOffer” state. While the getQGffetrue, the user changes its

130

state to “DecisionMaking” state with 10 units. The user de@de$e result for the offer,
and if the decision is a counteroffer, its state is changed aarit€rOffer” with 1 unit,
after which it invokes the web service for sending the counterafiessage. If it is
rejected, the user alters its state to “reject” with 1,@fter which its state is changed to
“terminate” with infinity units. If accepted, the user changés state to
“waitLinkRequest” with 5, after which if a result of invocationafveb service is false,
its state stays on the same state, but if true, the user establishes thehlamlpronider. At
that time, its state is “setLink” state with 1 unit. Afteasping 1 unit, the user waits to
receive data from a provider with “waitData” state. If tger receives the data, the
negotiation is successfully over, and the user has “terminate” state wiityinf

Figure 5-13 shows the state diagram for a provider model whos& wstifite is
“waitContract” with 5 units after which, if a result of invocatioha web service is false,
the provider is still in the “waitContract” state. If true, ¢hanges its state to
“makeDecision” with 10 units after which it changes its statéoffer” with 1 unit.
Passing 1 unit, the provider invokes a web service for sending aroffer user, and its
state alters its state to “waitReply” with 5 units, afténich, if the provider gets the reply
from the user, it changes its state to “makeDecision” RegtiestLink”, and “EndNego”
according to the return values callealinteroffer, accept, and rejecespectively. If not,
the provider stays on “waitReply”. In case of counteroffer, thtestaake a loop until the
provider receives thacceptresult. In case ofeject the provider stops the negotiation
with the user staying in “EndNego”. If the provider receiaeseptfrom the user, it

changes its state to “setRequestLink” state with 1 unigr afthich it invokes a web

131

service to request link to the user and goes into “waitLinktestaith 5 units. In
“waitLink”, if the result from the web service ilse the provider’s state stays in
“waitLink”, but if true, its state is altered to “setData”, and it invokes the welcsgeto
sendData to the user. After that, the provider finishes the negotiation th# user with

“EndNego” state.

false

r'//’ 7 K\\\\
Initial state “waitContract D
A (5.0) 4

pa /r/nakeDecisior\\\\

s U 4
- / \
v‘/ EndNego | v\
< s?EID:)ta ; \\»w,,,f,,i—x// | o offer
: \ x “ 1.0 |
\—»u,,,,,i,,,,—r—{ AN coud;erOﬁer \\\,,,,,,ffﬁf) //
| \\
| reject /
\ AN /
| AN \ /
N/
‘\ /7 waitReply {
I R CHe) B
/7 waitlink T false
AN \,(,5 707)7//4\ - acqe’ﬁt
\ ~_
false ~/setRequestLink

. o

Figure 5-13 The state diagram for a modified provider model

132

MarketPlaceService

€9 MarketPlaceService

o % userHash : Hashtable=String, User>

o 5 providerHash : Hashtable<String, Provider>

@ registerUser(String) : String
registerProvider(5tring) : String
capabilityQuery(5tring) : String
setContractQuery(String) : String
getContractQuery(String): String
setCounterOffer(String) : String
getCounterOffer(String) : String
setOffer(String) : String
getOffer(String]) : String
checkDecision(String) : String
putDecision(String] : String
setLinkEstablished(String) : String
getLinkEstablished(String] : String
putData(5tring) - String
checkData(String) : String
setlinkRequest(String) : String
getLinkRequest(5tring) : String

Figure 5-14 The operations of marketplace service

v 0 00w OO ®WOoOOWY YD

.':_:'

Figure 5-14 represents the operations of the marketplaceeserich has 17 operations
having a string argument and a string return value, and two costdorea user and a
provider. When a user and a provider models are initialized, thesteegieir names in
the hashtableto make instances of user and provider class to put the messates
instances. TheapabilityQueryoperation is for searching a provider which has capability
that a user requests. ThetContractQuerys for putting the contract into the instance of
the provider and thgetContractQuerys for picking up the contract from the instance of
the provider. ThasetCounterOffers to set a counteroffer into the instance of the provider,
and thegetConuterOfferis to get the counteroffer from the instance. Bkr&Offerand
getOfferare used to send an offer to the user. direckDecisiorand theputDecisionare

used to let their opposite know their decision. TéetLinkEstablishedand the

133

getLinkEstablishedire used to send information for link from the user to the provider.

The putData and checkDataare for sending data from the provider to the user. The

setLinkRequesand getLinkRequestre for requesting link between the user and the

provider.
Customer
registerUser
capabilityQuery
setContractQuery
—>
Busy getOffer
Waiting '
[}
(]
If CounterOffer :
Decision putDecision
Making
setCounterOffer
getLinkRequest
If Accept

setLinkEstablished

»

checkData

MarketPlace
Web
Service

Print Server 1

registerProvider

getContractQuery

setOffer

checkDecision

setLinkRequest

getLinkEstablished

putData

Busy
Waiting

<7
Decision

Making

If CounterOffer

Busy
Waiting

If Accept

Figure 5-15 Interaction between a user and a provider through madestpieb

service

Figure 5-15 represents the interaction between a user andvaleprthrough a

marketplace web service. The Customer is an instance of aanddahe Print Server 1 is

an instance of a provider. The Customer and the Print Server 1 usarketplace web

service to communicate with each other. Bidirectional arrowsdsst the Customer and

the MarketPlace web service, and between the MarketPlace esgbesand the Print

134

Server 1, represent invocation of operations. The Customer invokespeiragions in the

web service, while the Print Server 1 invokes seven operations. Radgles mean busy
waiting whose purpose is to get the information from the server.Bhlitangles mean a
period for decision making after which the Customer generateméissage regarding
the decision making. If the decision making is a counteroffeiCtistomer is moved to a
position to get the offer from the Print Server 1, and after tir@ Berver 1 gets the
information for the Customer’s decision, it is moved to a position asidecmaking. If

accepted, the two models successfully finish their negotiation.

5.3.1.2. Observer models

There are two observer models called a user observer and a pabsdever. Figure
5-16 represents the state diagram for the user observer whosd stdte is
“waitForCapabilityQuery” with infinity units. There are ruless make ports according to
the sources. For example, “waitForCapabilityQuery” statéswiar an input message in
the inCapabilityQuery port. The input port receives a messagebgetite Customer
model in the negotiation system. If the user observer receivapabllityQuery message,
it changes its state to “sendOutCapabilityQueryAlert”, and pmeslua Capability-
QueryAlert message to the provider observer model. The output port, waose has
“Alert”, connects to the input port whose name has “Alert”. The iqgaut, whose name
has “Result”, connects to the output port whose name has “Notice”. \Waeavbserver
waits for an offer from the provider observer, its state igitorOffer” until it receives

an OfferAlert message from the provider observer.

135

Initial state

waitForCapabilityQuery
(INFINITY)

? inCapabilityQuery

sendOutCapabilityQueryAlert
(0)

! outDataNotice

! outCapabilityQueryAlert

waitForContract
(INFINITY)

sendOutDataNotice
(0)

? inContract

sendOutContractAlert
(0)

! outContractAlert

waitForContractResult
(INFINITY)

? inContractResult
waitForOffer
(INFINITY)

? inCounterOfferResult
waitForCounterOfferResult
(INFINITY)

! outCounterOfferAlert
waitForMakeDecision
sendOutCounterOfferAlert (INFINITY)
0)

? inCounterOffer

? inGetData

waitForGetData
(INFINITY)

? inDataAlert

waitForData
(INFINITY)

? inLinkResult

terminate

(INFINITY)

? inRejectResul

? inOfferAlert

aitForRejectResul
(INFINITY)

waitForGetOffer
(INFINITY)

waitForLinkResult
(INFINITY)

? inGetOffer
! outRejectAlert

sendOutOfferNotice sendOutRejectAlert
(0) (0)

! outOfferNotice

! outLinkAlertt

sendOutLinkAlert
(0)

? inLinkEstablish

waitForSetLink
(INFINITY)

! outLinkRequestNgtice

? inAccept

sendOutAcceptAlert
(0)

! outAcceptAlert

waitForAcceptResult
(INFINITY)

2 Means input port ? inLinkRequestAlert
! Means output port

sendOutLinkRequestNotice
0)

? inGetLinkRequest
waitForLinkRequest
(INFINITY)

Figure 5-16 The state diagram for a user observer

136

Receiving the OfferAlert message means that the provider nsedels the offer to the
marketplace service, and the user model can pick it up from tHestplace service. To
pick up the message, the user model invokes the operation calle@ff&etand the
information of invocation is sent to the DEVS agent model coupled hatluser model.
The DEVS agent sends the information to the user observer séxsiseon as the user
observer model in the user observer service receives the message&etOffer port,
the user observer changes its state to “sendOutOfferNotitetewit produces an
OfferNotice message to notify that the user model picked up fee message to the
provider observer. The state diagrams for the user observer apobtider observer are
based on the behaviors of the user and the provider models as addl psrts and states
for alerting messages, resulting messages, and noticing messagsommunicate
between the user observer and the provider observer.

Figure 5-17 represents the state diagram for the provider obséngse initial state
is “waitForCapabilityQueryAlert” with infinity units. The pvider observer has passive
states until it receives a ContractAlert message. Aftet, thachanges its state to
“sendOutContractNotice” where it produces a ContractNotice messadet the user
observer know that it received the ContractAlert message. Tteedstggram shows the
states and ports having words like “Alert”, “Notice”, and “Result”.

The observer models watch behaviors of the user and the observer mbobtls
invoke the web service and exchange the information of their statesskamce, when
the user model sends a message to the provider model through ritetpfaae web

service, the user observer lets the provider observer know what the user does.

137

waitForSetDataResult
2 inSetDataResult (INFINITY)

! outSetDataAlert

sendOutSetDataAlert
()

? inSetData

waitForSetData
(INFINITY)

! outLinkNotice

sendOutLinkNotice
(0)

Initial state

waitForCapabilityQueryAlert
(INFINITY)

A

? inCapabilityQueryAlert

waitForContractAlert
(INFINITY)

? inContractAlert

waitForGetContract
(INFINITY)

? inGetContract

endOutContractNotice

0

! outContractNotice

waitForMakeDecision
(INFINITY)

! outCounterOfferNo ? inGetLink
? inOffer
waitForGetLink
sendOutCounterOfferNotice (INFINITY)

sendOutRejectNotice

W) 0)

sendOutOfferAlert
0)

! outOfferAlert

? inLinkAlert

waitForLinkAlert
(INFINITY)

?inLinkRequestResult

waitForLinkRequestResul
(INFINITY)

! outLinkRequestAlert

sendOutLinkRequestAlert
0

? inGetAccept ? inLinkRequest

? inGetCounterOffer

waitForOfferResult
(INFINITY)

waitForGetReject
(INFINITY)

waitForGetCounterOffer
(INFINITY)

? inOfferResult

? inRejectAlert

? inCounterOfferAlert waitForReplyAlert

(INFINITY)

? inAcceptAlert

waitForGetAccept

? Means input port (INFINITY)

! Means output port

sendOutAcceptNotice
(0)

waitForLinkRequest
(INFINITY)

! outAcceptNotice

Figure 5-17 The state diagram for a provider observer

138

5.3.2. Implementation of Test Agents for Net-centric applying DEVSutator service

|2 DEVSJAVA Simulation Viewer 1. (- e] |

incontractQuerny @
incounterOffer @
s

;input Print Server 1 Agent output._l

—@ outReject

indata outaccept

&
inrequestlink '} - [olteontiact
Wﬁ'ﬁﬁ —@ outcounterOffer

I_Winput Custarner Agent output._l

- —& cutcapabilityQuerny

1
| configure | |negoSenrice ‘v| ‘Hegoﬁaﬁon |v‘
Megotiation
Fraovider With Agent UzerWith Agent
C mer -8 outigent
3 inOffer M- B 5 .
infccept .—:@Fﬁ ar y')\ @ outLinkEstablish

ready

clock: 0.000

: 0
real time fa[ﬂ[t]l’:O 1.0E-4 [¥] always show couplings
| step | | run ‘ ‘ restart ‘

Figure 5-18 The DEVS model view of negotiation system

There are two implementations for testing agents for Natrice One is for

implementing the user, the provider, and the marketplace service, amathtr is for

generating the user and the provider observer models.

Figure 5-18 represents the whole negotiation system witDES agent. The

user and the provider model are generated in accordance withhéngdre in the state

diagrams. The DEVS agent consists of a DEVS coupled model, GUdidptaying

results, as seen in figure 5-19. The DEVS coupled model has fourcatadels such as

the DevsServicelListener, agent Acceptor, Agent transducer, andv@bsgent. The

DevsServiceListener has its state changed to active wheneedr service client invokes

139

a web service. The role of an Agent transducer is to calcsiatistical data for web
service invocation and send it to an Agent Acceptor. The Agent Amrcdgtides if the
statistics from the agent transducer meets the predefinetidlteslues. The observer
agent has a capability to send a message to the observee sgsirig a receivelnput
operation provided by the observer service. The receivelnput operation foegds
arguments: a name of the observer model, an input port name, a epesgh@n output
port name.

The DEVSAgent displays the results of the statistics foreh gervice invocation
through a GUI composed of two tabs. One tab has a table for shoatagutl two text
areas for showing request and response SOAP messages. The tdheritie logs for

invoking web services.

F T 5
| 4| DEVSIAVA Level Viewer ESRERT
Semice Listener Agent
) | : i G agent Acceptor
serviceinput @ e - out in - gpaassi'q.-';it - out
o = irfinity | SR
o = infinity
HE input output 8-
E agretTransd
in @y in 4 passive - out
o = infinity
- . ' 1.0 - 1
ready clock: real time factor; [1#] lalways show couplings help J
ﬁ :I_I
step run restart
.

Figure 5-19 The four atomic models in DEVS Agent

140

f 0
|| DEVSJAVA Simulation Viewer . L=l
‘ configure ‘ ‘Market{)bsewers ‘ v‘
tarketPlaceObserers
infccept zerl inTime inAccf.eptﬂ\Igari & Provider TG
inAcceptResult @5 inCapahilitylluenAlert 4
inCapabilityQueny : i”TimeB"m_m"Q - inCantractalert g inTimeButirang
inContract s inCountertiterien
wuthcceptilert - % g R 2
inContractResult @ T inGatiocept A autheTerttotice
; ~wutCapabilityldeenddei inGelContiast
inCounterOffer T . indell B o sutContractiotice
inCounterOfferResult & sutGontractalad inGetCounterOffer
inDataslert &) int etlinic - & outCounterDffertotice

inGethata B outCounterOfferflert inGetheject

inetLinkRequest 4 GutD ataNotice inLinkalas. [Z QURN-S outlinkMotice
i atne: T € e 2 outLinkRequestilert
inLinkEstablizh E-cullinktdert o —inLinkRagquestRes:
inLinkRequestdlet @ = ouiLin.kréeduestNl-o'tloe in O ; = outOfferdlert

inOfferslet @ L sUtiieiniolice inRejectale 2 outRejectMotice

sulRejectiled ingethata
inRejectResult @ inSethataResult 3
telllnputTotateh watehinput

- =@ outSetDatadlert

watchlnput telllnputToWiateh

| ready clock: 000 realtimefactono 0= 4 [#] always show couplings

‘ step H run || restart |

Figure 5-20 The view of observer models

- e —

The observer models, as shown in figure 5-20, consist of an Usev@bsed a

ProviderObserver model. The input/output ports have specific datattypeegrate the

UserObserver and the ProviderObserver using the DEVS simulator setemgetor. The

coupling between two observers is made through the ports whose names end wiith “Ale

“Notice”, and “Result”. The others have the same data types shown in {able 5

Table 5-4 Messages to send/receive between the observer models

Type of Output port

Name of Message| Name of Variahle Variable Input port

141

outCapabilityQueryAlert

CapabilityQueryAlerf customer, time String inCapabilityQueryAlert
ContractQueryAlert customer, Strin outContractAlert
printJoblD, time 9 inContractAlert
customer, . outCounterOfferAlert
CounterOfferAlert printJoblD, time String inCounterOfferAlert
printServer, . outOfferAlert
OfferAlert printJobID, time String inOfferAlert
customer, outAcceptAlert
AcceptAlert printServer, String inAcceptAlert
printJobID, time
: customer, content . outLinkAlert
LinkAlert , time String inLinkAlert
. customer, . outLinkRequestAlert
LinkRequestAlert printServer, time String inLinkRequestAlert
customer, outRejectAlert
RejectAlert printServer, String inRejectAlert
printJoblD, time
printServer, . outSetDataAlert
SetDataAlert customer, time String inSetDataAlert
OfferNotice customer, Strin outOfferNotice
OfferResult printJoblD, time 9 inOfferResult
LinkRequestNotice customer, Strin outLinkRequestNotice
LinkRequestResult| printServer, time 9 inLinkRequestResult
DataNotice printServer, Strin outSetDataNotice
DataResult customer, time 9 inSetDataResult
ContractNotice printServer, Strin outContractNotice
ContractResult printJobID, time 9 inContractResult
CounterOfferNotice printServer, Strin outCounterOfferNotice
CounterOfferResult| printJobID, time 9 inCounterOfferResult
. , customer, outRejectNotice
RejectNotice
. printServer, String inRejectResult
RejectResult : .
printJobID, time
. customer, outAcceptNotice
AcceptNotice . . :
printServer, String inAcceptResult
AcceptResult : .
printJobID, time
. . printServer, outLinkNotice
L|_nkNot|ce content String inLinkResult
LinkResult time

All messages have time variables to record the timedeive any message from the

observers or the user and the provider model. With recorded timeveatcan diagnose

142

network delay and healthiness.

The observer models can be DEVS simulator services using Df¥&hd AXIS2,
and are integrated by the DEVS simulator services integratertesting agents system
requires the real time system. To support the real time diowléetween observer
services, The DEVS simulator service should equip the real todes called
RTSimulator The RTSimulatorsimulates its model without interacting with the other
RTSimulators for virtual time simulation protocol. Only tR& Simulatorsends and
receives a message from/to otRarSimulatorin the coupling information.

Figure 5-21 depicts the overall testing agent system consistitige marketplace
service, DEVSJAVA model, and web enabled DEVS simulation erwvieoth which has
DEVS simulator service and real time simulation. The markedplud DEVSJAVA
model have an invocation relation, that is, the model invokes an operatrarkatplace.
The characters on the blue arrows are operations in the markesglacee and the
number is the order of the invocation. The DEVSJAVA model and the madilezl DEVS
simulation have a receivelnput relation, that is, The DEVSJAVA madeokes a
receivelnput operation in the observer service. The numbers in frahe ohput ports
indicate which input port has a message from the DEVSJAVA afterh the operation is
invoked. For instance, if the getOffer is invoked in the user modeluske observer
receives a message in the ingetOffer port. The ports codneeteeen the observers are

displayed in the center of the web enabled DEVS simulation.

143

MarketPlace Web Service
L0770 BN S
N QRS @ P Pt
OO (D) YN 4 S o 2 Y
& >N & & NN & 2% 2 @
L IE S % 5 %3 % %
e S E8FST SFS SE Bl TG T
PRSP sEsFs 2% %% % %2
$$Q9®°§9¢°.§' 3%\3%5;}%6
Y FLP . g & e 3 LS o S %
ST T E PSL S 22 %% 2 =
Q’“’/& & & ® s 2 &
> O % 2 “\"3"0
9
/ ¥ >/ / / / DEVSJAVAModel \ \ \ %

User with Provider with
DEVS Agents DEVS Agents
Web Enabled DEVS Simulation
UserObserver ProviderObserver

(1) inCapabilityQuery
(2) inContract

(5) inGetOffer

(6) inCounterOffer

(5) inGetOffer

(8) inAccept

(11) inGetLinkRequest

outCapabilityQueryAlert

outContractAlert

inContractResult

inOfferAlert
outOfferNotice
outCounterOfferAlert

inCounterOfferResult
inOfferAlert
outOfferNotice
outAcceptAlert
outAcceptResult

inLinkRequestAlert

outLinkRequestNotice

inCapabilityQueryAlert
inContractAlert
outContractNotice
outOfferAlert
inOfferResult
inCounterOfferAlert
outCounterOfferNotice

outOfferAlert
inOfferResult

inAcceptAlert

outAcceptNotice
outLinkRequestAlert

inLinkRequestResult

(3) inGetContract

(4) inOffer

(7) inGetCounterOffer

(4) inOffer

(9) inGetAccept

(10) inLinkRequest

outLinkAlert inLinkAlert
(12) inLinkEstablish . .
inLinkResult outLinkNotice (13) inGetLink
inDataAlert outDataAlert

(15) inGetData

outDataNotice

Figure 5-21 Overall testing agent system

inDataResult

(14) inSetData

144

Simulation Viewes o |8 E | 15013528 201 - Remote Desktop e
configure negoService ¥ Negotiation ¥ .
Megatiation
wmennnnnmnennnr Sumnary of User Ohseruer SeeesslseeseeEreertteis
Time to hegin the negotiation with Provider = Thu Feh 26 28:51:26 My
Provider With Agent UsarWith Agent Time to veach to accept of the negotiation : 257454.8
Time to spend during the negotiation @ 257938.8
Customer -8 outd gant
) ndff ¢ 4 outlrkEstablsh
inkcoept @ PRk Sarver g cuthgent g olfeitat
InLinkEstablish @+ o e =
ihuitct o SANINERD ‘ Indats a-1Emiale o Wldtv(:p?.) r m "
inconbactOuey 8 oufftaquestLink -8 outeapabilityQuery|
incounterCfer g minfinily -8 outifer inrequarLink @ 8 eilsntee
o % infiy - vtecunterdiier
¢ sendOutLinkNotice
‘) er ¢ waitForfetData
Ty - ” s -
}_”M! Print Server 1 Agent ww% }lww‘ Istomear Agent WLI‘”‘!{ ve t 767076580
i Data in provide ¢ putDataflert
, 1 0E4 state of Provide ndOutSetDataflert
ready clockGa.UZU - realme W:”U b o cowglings |l state of Provide t uaitForSetDataResult
prive tine : 93
step un restart infSetDataResult in provider ol : DataMotice
state of ProviderOhserver : waitForGapahilityQueryflert
| Print Server1Senvice 5| (2] CustomerService Statistics & Logs o|®
Statistics | Logs Stafistics | Logs i m T

Sendce Oper.Curent &) | Sendce Oper... CurrentRTT (.| MaxRTT (ms)| Min RTT (ms)| A RTT (ms)| _Invoked

geflinkEstab..|17.0 putDecision 130 130 130 130 1
getCounter0... 17.0 getOffer 80 130 8.0 100 2 tomer{/name
checkDecision/3.0 theckDala 1160 16 160 160 1 name : Customer
gefContract..|17.0 . 6360 6360 §36.0 536.0 1
e T} T m 0 : action : offer
putData 140 qu... 8.0 16.0 160 160 1
sefliniRequ.. 190 0 100 0.0 100 100 1 {nane>Print Server
cat"antrack 1974 0 294N AN PN i '
nane : Print Server 1
action : accept
Client Requ... Client Requ... Senver Responses

| Customaz

Figure 5-22 The experiment of the testing agents system
The procedures for the experiment of the testing agents system fléothimg:
1. Integrate observer services with DEVS simulator services integrator.
2. Execute integrated observer services WRifSimulators
3. Simulate the negotiation system with DEVS Agent.

Figure 5-22 shows theimView displaying the negotiation model, two windows

145

displaying statistics and logs for invocation of the marketplsersice, and three
command windows displaying APACHE web servers. Table 5-5 rayieefiee servers
containing services and a client. The procedure 1 is executed 16QhE35.218.199 with
the DEVS simulator services integrator. The procedured@ns by executing the XML
document for the observer models. ThiserObserverservice is located in the
150.135.218.201, and tHeroviderObserverservice is located in the 150.135.218.204.
After finishing the procedure 2, tr@mViewis run to simulate the negotiation system
with the DEVS agent. With the “step” button in tsenView we can simulate the
negotiation system step by step. With the “run” button the stronl®f the negotiation
system is executed until the simulation is over.

Table 5-5 Servers, services, and negotiation model

Server name Service and client
150.135.218.199 A user and provider with DEVS Agent, DEVS simulator
services integrator
150.135.218.201 UserObserver service
150.135.218.204 ProviderObserver service
150.135.218.206 Marketplace service

Figure 5-22 displays the picture after the simulation is osahEerver displays the
texts from its model or marketplace service. The observer sedigplay the texts for
input message information and arrival time. The server with tleeQlserver presents
the summary of observation of the user model, and the servers witlvasbsan report
the negotiation outcome and duration. The windows for statistics and $migydcurrent,
average, max, and min round trip time (RTT) in the tables alony tvé number of
invocation.

In testing the agents system, we see that the DEVS sonskatvices with observer

146

models can be integrated with the particular group through the interopgrabiiessage

types. Different domain observer models can be integrated if #ney dn agreement on
their messages sent/received to/from output ports/input ports. Theageeb/pes are
described in the DEVS namespace to verify that the coupled madelssing the same
syntactic structures.

We demonstrate the design concept of the testing agentsnsigsterove that the
testing agents system can test multiple levels with the ia¢igotsystem and its observer
services. As a result of the experiment, the testing agertesrsysn not only observe
their observee models, such as a user and a provider model, bitt Gdeoassess the
negotiation system from the network level to the pragmatid leith the DEVS Agent

and observer services if the observer models have more diagnostic functionalities

147

CHAPTER 6. DISCUSSIONS

6.1. Different WSDL with the same Design

When we design a web service, we focus on the definition of thetiopsrand data
types used as arguments and return values in the operationsafmi@xwhen we want
to implement an operation that has a string argument and a strimg e the web
service, we can define the operation such as string getNamg)s@bviously, the data
types used in the operation are converted to schema in the WS®Loby provided in
the web service middleware such as AXIS2 and .NET. Two middlepraxduce the
same signature for operations in the web service if the yada @are all primitive type.
But when a complex data type is used in the operations, the tool cngwextlass used

for a web service to a WSDL document produces different kinds of schema.

String] | getOutports() ’ array<System::String">* getOutports() ‘
AXIS2 Environment .NET Environment
<xs:element name="getOutportsResponse"> <s:element name="getOutportsResponse">
<xs:complexType> <s:complexType>
<xs:sequence> <s:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" <s:element minOccurs="0" maxOccurs="1"
name="return" nillable="true" type="xs:string" /> name="getOutportsResult" type="tns:ArrayOfString" />
</xs:sequence> </s:sequence>
</xs:complexType> </s:complexType>
</xs:element> </s:element>

<s:complexType name="ArrayOfString">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded"
name="string" nillable="true" type="s:string" />
</s:sequence>
</s:complexType>

Figure 6-1 The data type conversion to schema in AXIS2 and .NET

148

Figure 6-1 represents each return data type of getOutppetstion generated in
AXIS2 and .NET. The meaning of the operation is that the operation gfiieg array
value for outports. The signature of the method in AXIS2 is diffenemh fthat of the
method in .NET. But the name of the element tag of a returndiygetOutports is the
same. The return type is mapped to “getOutportsResponse”, whickbdests data type
using a element ta@tring arrayin the AXIS2 is expressed to an element tag that has five
attributes called maxOccurs, minOccurs, name, nillable, anel #¥EIS2 assigns the
values to the attributes with their rules. The nam8tohg arrayis assigned to “return”,
type is “xs:string”, and maxOccurs is “unbounded”. Hney<String> in the .NET has
different properties. The .NET defines a complexType calledaydfString” to express
array<String> type used in VC++. The ArrayOfString elementthe same as the
getOutportResponse element, except for the name attribute. In age af the

ArrayOfString element, the name is “string”.

{out1, out2}

N

<getOutportsResponse> <getOutportsResponse>
<return>outl</return> <getOutportsResult>
<return>out2</return> <string>outl</string>
</getOutportsResponse> <string>out2</string>
</getOutportsResult>
</getOutportsResponse>

Figure 6-2 Instance of getOutportsResponse type

Figure 6-2 represents an instance of “getOutportsResponse” type in t8eoANET.

149

The names of outports are “outl” and “out2”. AXIS2 generates SAly lke the lift
side of figure 6-2 when getOutports is invoked by a user, wher&as pkbduces SOAP
body, as shown on the right side of figure 6-2. There is a differehexpression of data
types between AXIS2 and .NET.

Another difference is to define the namespace used in the W&DgetThamespace
can be defined by a user in the AXIS2 and .NET. AXIS2 providegthftexaming on
namespace or schema namespace. The target namespace isnintpom&oke web
services because an SOAP message contains the informationedtfriangespace. If a
different target namespace is used in the SOAP message to theoleb service, the
web server gives an error message complaining that tpet taamespace is not matched.
AXIS2 allows a user to define target namespace for schehnesm we use data types
assigned to classes.

We designed the DEVS simulator service with the expectatibe gxecuted by a
generic approach simulation program because we thought concephalithe DEVS
simulator service would provide homogeneous values although it is impled in
different languages and platforms. However, at the implementaveh different rules
are applied to each development environment, such as AXIS2 and .NET. fidr& ge
simulation program is implemented in the DEVS simulator selvigrator except for
client codes containingtub classes to communicate with web services. If different web
service middleware, except for AXIS2 and .NET, provides DEVS simulatocsemith a
different definition of data types, the generic simulation progil@mDEVS simulator

service should be modified to recognize client codes for newcser¥o distinguish

150

where the DEVS simulator service is from, the simulation qarmmguses the name of
WSDL. The WSDL created by AXIS2 ends with “servicename?isshereas the
WSDL by .NET ends with “servicename.asmx?WSDL"”. When the nam&/SDL
includes “asmx”, the service is invoked by client codes for .NEflthel name of WSDL
does not include “asmx”, then client codes for AXIS2 are used tolaien DEVS

simulator services.

6.2. XML message converter

XML to specific language instance conversion is introduced in ch&pter case of
AXIS2 supporting a Java language, Java provides information of attribomegife class,
a mechanism to make an instance of a class with a name dadiseand invocation of a
method with the method name and argument values. With these fedavasclass
defined by a user provides its information to other user or preyrelowever, there is
one condition to be satisfied, that is, that an argument type be knawvrexBmple,
assume that we definmid setName(String}p invoke thesetNamemethod, we should
know the type of argument. In the XML message, the informatiomeofJava class is
contained. SXXMLObjectMessageHandletass can automatically convert XML message
to Java class and vice versa.

XMLObjectMessageHandlecan not cover all Java class because of lack of
information on the class. The DEVS message used in the DEVSasamseérvice has a
format to helpXMLObjectMessagHandleconvert the message. Figure 6-3 shows the

example of a DEVS message with the format. Job class inbatitg class which is base

151

class in the DEVS modeling. There are two variables and fouhougtto set/get
variables. The set/get method is required to make an instaacelads from XML. There
is a rule to make the set/get method, that is, “set/get” +diia name” with first

character written in capitals. For example, in case of id Marighe methods are “getld”
and “setld”, as seen in figure 6-3. If other methods not followingath@ve rules are
added in the Job class, Job instance misses the information in thespob@®nverting

XML to Java instanceXMLODbjectMessageHandledoes not cover highly complex

classes not following the rules.

Class Job extends entity{

int id;

double time;

Job(){
super(“Job™);

}

public int getld(){
return id;

}

public void setld(int 1){
id =i;

}

public double getTime(){

return time;

}

public void setTime(double t){
time = t;

}

}

Figure 6-3 The example DEVS message with the format
In case of .NET supporting VC++, the conversion XML to C++ainsé is manually
executed because C++ class does not have any base class widiels niaformation of
that class. There is no way to get the information of Cass;lsuch as the names and

types of variables. Also, the mechanism to make an instance weldélssaname is required

152

in the C++ to automatically convert C++ class to XML and vice versa.

An XML message from the DEVS simulator service for ADEW8SWHd be parsed in
the DEVS simulator service for DEVSJAVA. In our previous work, &nlnessage for
DEVSJAVA is created using a XML handler called AXIOM (AXIObject Model),
whereas XML message for ADEVS is created using a DOM for. ®/hen running the
integrated services, there is an error regarding XML pardihg service for ADEVS
does not recognize a XML document from the service for DEVSJARAally, the XML
message for DEVSJAVA was generated using a DOM for Javatheng@roblem was

solved.

6.3. Other issues

Other issues concern web services and web server platform.s3ie for web
service is that web service is stateless, which means the ohthe variable in the web
service does not continue in the next invocation. The DEVS simulateice needs to
keep the variables for simulation. In current implementation, westasie variables for
the server system to hold the variables in AXIS2 and .NET. Itcaage errors when the
same services are participating in the many integrated services.

When simulating the DEVS simulator services in the windows XP, there iscanrerr
the connection refusal. This problem comes from a server platfong ¥§1 OS because
XP OS has a long timeout period for socket connections. To solve thiemrotile

timeout period should be set to a shorter period in the registry in XP.

153

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

As the request for reusability in the software industryeases, it is inevitable that
the interoperability problem will occur. Interoperability requipatform independence
and neutral message passing. SOA provides an interoperability engitbsatisfying the
above requirements. DEVS modeling and simulation provides adaptability becauSe DEV
theory can be implemented in any environment and system with varayuputer
languages. Integration of DEVS and SOA gives interoperabitityrenment to every
domain.

In this study, we implemented an interoperable DEVS sinomanvironment using
SOA and DEVS M&S. In the environment, SOA provides network inteatjiléy and
DEVS M&S provides message and pragmatic interoperability.V®Esimulator
interoperability is implemented by DEVS simulator service iimgj of three layers, that
is, simulation protocol layer, message connection layer, and repodiey. IThe
simulation protocol layer provides basic functionality to simulaE&/B models. The
message connection layer provides message type information to & BEwlator
service integrator. Through this layer, heterogeneous DEVS aionudervices can be
integrated. The report layer provides the result of simulatiomfofmation generated
during the simulation period.

SOA uses an SOAP message to provide an interoperable environment.S@he

and DEVS meet, the SOAP message gives fixed messagesvid mDBdels residing in

154

the DEVS simulator services. To overcome this problem, we gm{ML-style message
passing on an SOA environment. An XML-style message passing riedrthe DEVS
message in specific language is converted to a XML DEVS mgesshis XML DEVS
message conforms to the message part of DEVS theory which definessage as a set
of pairs containing a port and a value. The value can be anytygass defined in the
modeling. DEVS messages are converted to XML-style mesdadae interoperable in
the different language and platform. The Dynamic converter oAJédject to XML
message is implemented in the environment. But the converter doevaoak@ossible
JAVA objects. In case of ADEVS, the XML message generatamtes are inserted into
the DEVS simulator service whenever the DEVS model is clitbhgeause C++ does not
have a mechanism to dynamically get information of classes.

The ADEVS library does not cover some operations in DEVS siotukdrvice
because it does not provide those functions. We modified an ADEM8asimin order
to map the methods of the ADEVS simulator to operations of the DEivhulator
service. Through the extended ADEVS simulator, ADEVS models caimhdated with
DEVSJAVA models.

To integrate heterogeneous DEVS simulator services, we apeeela DEVS
simulator service integrator which extracts information from DMS of the DEVS
simulator services and verifies if two simulator web sessibave common messages
during their coupling. As a result of integration of the servieeXML document is
created and is utilized to execute integrated services. We demomgteadperable DEVS

simulation using a GPT model implemented in AXIS2 and .NET. G model

155

consists of afEF model implemented in DEVSJAVA andPaiocessemodel implemented
in ADEVS. Each model is embedded in its DEVS simulator service.

We designed and implemented the DEVS namespace which is asd@mument
containing data types of DEVS messages. The DEVS namespace can be updated by
service called “NamespaceService”. Through NenespaceServica service provider
can register schema for message types used in a DEVS mdtel DEVS namespace
and look up schema to interoperate with a necessary model wheroWgepigenerates
DEVS simulator services. As a result, each web service sbamon message types.
When integrating DEVS simulator services, the DEVS namespamedes a semantic
interoperability between the DEVS simulator services.

We showed various applications of the interoperable DEVS simulatiginonment.
The applications were drawn from real world development of automastthg
environments for military information system interoperabilityra&lar track generation
and display federation and a model negotiation web service ilkedttae ability of the
proposed middleware to work across platforms and languages. lity &bisupport
higher level semantic interoperability was demonstrated inséngeservice that can
deploy model agents to provide coordinated observation of web requestsoibauats in

simulated distributed scenarios.

7.2. Future Work

In the future, we need to design and implement pragmaticitegeebperability in the

DEVS simulator service. The pragmatic level interoperalityuires intentions of usage

156

of the messages in the models. The DEVS simulator service shoulthleavéormation

for the pragmatic level interoperability. When it is integraéed executed with other
services, each service checks its incoming messages faqraggnatic information
interoperability. We need to define what pragmatic information isgply to the

interoperable DEVS simulation system. If the DEVS simulatovise has pragmatic
functions, it is possible to perform multi- levels testing suggested in [35].

We used two implementations, DEVSJAVA and ADEVS, of DEVS madeind
simulation to show demonstrations of the interoperable DEVS diomlaystem. To
interoperate with other implementations of DEVS, the DEVS simukrvice needs to
be generated for them. For example, PythonDEVS, DEVSSim++, CBrd,DEVS
Matlab are interoperable if the DEVS simulator service exists for them.

In agents system, we introduced a real time simulator in EMIJAVA. It needs to
be added in the DEVS simulator service with the ADEVS. The ®EWnulator service
with real time simulator can have autonomous functions to autonhatgedrch its
corresponding services if information of services is given. Iy meguire machine to
machine communication and P2P concept to implement autonomous coupling and
simulation.

The dynamic message conversion mechanism will be developed to tresdsy ito
build up DEVS simulator services. Each language has differentiduscto extract
information of its object. A JAVA language provides functions to d¢et mames of
variables and methods in the object and to invoke the methods. However, A C++ language

does not provide those functions. In this case, we can add soméorignethich

157

manipulate information of objects to the DEVS message class. yit@nit message
conversion will be possible with the information of objects.

A web service for the DEVS namespace will be extended toed#gd¢d schema in the
DEVS namespace. If there are some modifications on the DE$Sage in the DEVS
simulator service, the schema for the DEVS message should beedgdd reflect new
message types. In this case, the old schema is deleted and tHeednsdnema is

registered in the DEVS namespace.

158

REFERENCES

[1] Sage, A., “From Engineering a System to Engineering amgrizated System Family,
From Systems Engineering to System of Systems Engineg80g7 IEEE International
Conference on System of Systems Engineering (SoSE). April 18th,-2007, San
Antonio, Texas

[2] Jacobs, R.W. “Model-Driven Development of Command and Control Capeoiior
Joint and Coalition Warfare,” Command and Control Research antndlegy
Symposium, June 2004.

[3] Muguira, J., Tolk., A “Applying a Methodology to identify Structukéariances in
Interoperations,” JDMS: The Journal of Defense Modeling and Simulatmr3, No 2,
2006

[4] Tolk, A., and Muguira, J.A. “The Levels of Conceptual Interoperabiltgdel
(LCIM)”, Proceedings Fall Simulation Interoperability Workshop, 2003

[5] DiMario M.J., “System of Systems Interoperability Ty@asl Characteristics in Joint
Command and Control”, Proceedings of the 2006 IEEE/SMC International Cor&fenenc
System of Systems Engineering, Los Angeles, CA, USA - April 2006

[6] Levels of Information Systems Interoperability (LISI),
http://www.sei.cmu.edul/isis/quide/introduction/lisi.htm

[7] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an InterdpétgEnabling
Ontology,” Proceedings of Fall Simulation Interoperability Workshop, 2005.

[8] Zeigler, B.P., Fulton, D., Hammonds, P., Nutaro, J., “Framework folSMZased
System Development and Testing in Net-centric Environment”, 1TBénal, Vol. 26,
No. 3, October 2005

[9] Wutzler, T. H.S. Sarjoughian (2007), “Interoperability among Parallel BEV
Simulators and Models Implemented in Multiple Programming Languages”,
SIMULATION: Transactions of The Society for Modeling and Simulationrirggonal,
Accepted.

[10] Sarjoughian, H. S., and B. P. Zeigler. "DEVS and HLA: Complementary Pamdigm
for Modeling and Simulation?" Simulation: Transactions of the Society for Mapahd
Simulation International 17, no. 4 (2000): 187-97.

[11] Mittal, S., and J. L. R. Martin. "DEVSML: Automating DEVS Execution oveASO
Towards Transparent Simulators Special Session on DEVS Collaboratieeutier and

159

Systems Modeling over SOA." Paper presented at the DEVS Integrati® M&
Symposium DEVS' 07 2007.

[12] SOAhttp://www.sun.com/products/soa/index.jsp

[13] Web Service Architecture http://www.w3.0org/TR/ws- arch/

[14] WSDL2.0http://www.w3.0rg/TR/wsdI20-primer/

[15] SOAP1.2http://www.w3.0rg/TR/soapl2-partO/

[14] Zeigler, B.P., Kim, T.G., and Praehofer, H., Theory of Modeling and
Simulation, 2nd ed., Academic Press, New York, 2000.

[15]. B. P. Zeigler, H.S. Sarjoughian, “Approach and Techniques for Bgildi
Component-based Simulation ModelsThe Interservice/Industry Training&rged®n at
Simulation and Education Conference '04, Orlando, FL

[16] Eric Newcomer and Greg Lomow, “Understanding SOA with Web Sesyice
Addison-Wesley Professional, 2004

[17] D Box, D Ehnebuske, G Kakivaya, A Layman, “Simple Object Access Protocl
(SOAP) 1.17, 2003

[18] James Snell, Doug Tidwell, and Pavel Kulchenko, “Programming Web 8gmwith
SOAP”, O'Reilly Media, Inc.; 1 edition, 2001

[19] Thomas Erl, “Service-Oriented Architecture (SOA): Conceptshii@ogy, and
Design”, Prentice Hall PTR, 2005

[20] Apache AXIS2 : http://ws.apache.org/axis2/

[21] Turnitsa C., and Tolk, A., “Evaluation of the C2IEDM as an Interaipéty-
Enabling Ontology,” Proceedings of Fall Simulation Interoperability \&oolp, 2005.

[22] Lasschuyt , E., Henken, M., Treurniet, W., and Visser, M., “How to Make
Effective Information Exchange Data Model,” RTO-IST-042/9,2004

[23] Hoffmann, M., “Challenges of Model Interoperation in Military Siations”.
SIMULATION, Vol. 80, pp. 659-667, 2004

[24] Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global InformationdG
Proceedings Interservice/lndustry Training, Simulation and Educafionference
(NTSEC), 2005.

160

[25] Zeigler, B.P. and P.E. Hammond&odeling & Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Gamtnformation Exchange2007.

[26] Zeigler, B.P., Mittal, S., Hu, X., “Towards a Formal Standardritagroperability in
M&S/Systems of Systems Engineering”, Critical Issue€#l, AFCEA-George Mason
University Symposium, May 2008

[27] DEVSJAVA : http://www.acims.arizona.edu/

[28] ADEVS: an open source C++ DEVS Simulation engine. Available at:
http://www.ornl.gov/~1qgn/adevs/index.html

[29] Microsoft Corporation. XML and .NET White Papers.
http://www.microsoft.com/serviceproviders/whitepapers/xml.asp

[30] Xiaolin Hu, Bernard Zeigler, " A Proposed DEVS Standard: Model and Simulator
Interfaces, Simulator Protocol"

[31] Mittal, S., Risco-Martin, J.L., Zeigler, B.P.,"ImplementationFofmal Standard for
Interoperability in M&S/Systems of Systems Integration witBeM3/SOA", submitted to
C2 Journal

[32] Pullen, M., Wilson, L.T.C.K, Hieb, M., Tolk, A., “Extensible Modeling and
Simulation Framework (XMSF) C4l Testbed,” available from
http://www.movesinstitute.org/xmsf/xmsf.html

[33] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for Simulaso&imple As
Possible But Not Simpler The High Level Architecture For Situta Simulation, 1998.
71(6): p. 378

[34] Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., Jamshidi, Mipdeling and
Simulation for Systems of Systems Engineering”, to appear ste®y of Systems --
Innovations for the 21st Century (to be published by Wiley)

[35] Zeigler, B.P., and Hammonds, P., “Modeling & Simulation-Base@ Bagineering:
Introducing Pragmatics into Ontologies for Net-Centric InforamtExchange”, 2007,
New York, NY: Academic Press.

[36] Zeigler, B. P., Kim, T.G., and Praehofer, H., “Theory of Modelng Simulation”
New York, NY, Academic Press, 2000.

[37] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-BasedelVServices for Net-
centric T&E”, Summer Computer Simulation Conference, 2007

161

[38] Badros, G. “JavaML: a Markup Language for Java Source Cod&e&dings of the
9th International World Wide Web Conference on Computer Networksntdational
journal of computer and telecommunication networking, pages 159-177

[39] Zeigler, B. P., Mittal, S., “Enhancing DoDAF with DEVS-Basggstem Life-cycle
Process”, IEEE International Conference on Systems, Man and @tibsrnHawaii,
October 2005

[40] Reichenthal, S.W., SRML - Simulation Reference Markup Languaggé Wbte 18
December 2008ttp://www.w3.org/TR/SRML/

[41] Mittal, S., “Extending DoDAF to allow DEVS-Based Modeling a8unulation”,
Special issue on DoDAF, Journal of Defense Modeling and Simulat@$), Vol 3.
No. 2

[42] Mittal, S. Martin, J.L.R., “Design and Analysis of Servicee@ted Architectures
using DEVS/SOA-Based Modeling and Simulation”, whitepaper at
www.duniptechnologies.com

[43] Mittal, S., Martin, J.L.R., Zeigler, B.P., "/DEVS/SOA: A Crggatform Framework
for Net-centric Modeling and Simulation in DEVS Unified ProcesSIMULATION:
Transactions of SCS, to appear

[44] Mittal, S., Martin, J.L.R., Zeigler, B.P.DEVSML: Automating DEVS Execution
over SOA Towards Transparent SimulatprSpecial Session on DEVS Collaborative
Execution and Systems Modeling over SOA, DEVS Integrative M&®posium DEVS'
07, Spring Simulation Multi-Conference, March 2007

[45] Mittal, S., Zeigler, B.P., Hwang, M.H., XML-Based Finite Benhinistic DEVS
(XFD-DEVS); http://www.saurabh-mittal.com/fddevs/

[46] ACIMS software sitehttp://www.acims.arizona.edu/SOFTWARE/software.shtml

[47] Hu, X., and Zeigler, B.P.,Model Continuity in the Design of Dynamic Distriedt
Real-Time System;dEEE Transactions on Systems, Man And Cybernetics— Part A,
Volume 35, Issue 6, pp. 867-878, November 2005

[48] Cho, Y., Zeigler, B.P., Sarjoughian, H., “Design and Implementatiddisifibuted
Real-Time DEVS/CORBA”, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[49] Wainer, G., Giambiasi, N., “Timed Cell-DEVS: modeling anchidation of cell-
spaces”. Invited paper for the book Discrete Event Modeling & StioataEnabling
Future Technologies, Springer-Verlag 2001

162

[50] Zhang, M., Zeigler, B.P., Hammonds, P., “DEVS/RMI-An Auto-Adapteed
Reconfigurable Distributed Simulation Environment for Engineeistgdies”, ITEA
Journal, July 2005

[51] Mittal, S., “DEVS Unified Process for Integrated Devel@om and Testing of
Service Oriented Architectures”, Ph. D. Dissertation, University ofokaz

[52] DUNIP: A Prototype Demonstratidritp://www.acims.arizona.edu/dunip/dunip.avi

[53] MatLab Simulinkhttp://www.mathworks.com/products/simulink/

[54] OMNET++, http://www.omnetpp.org/

[55] NS-2,http://www.isi.edu/nsnam/ns/

[56] XDEVS web pagehttp://itis.cesfelipesegundo.com/~jlrisco/xdevs.html

[57] HLA, https://www.dmso.mil/public/transition/hla/

[58] Sarjoughian, H.S., Zeigler, B.P., "DEVS and HLA: Complimentamaéigms for
M&S?" Transactions of the SCS, (17), 4, pp. 187-197, 2000

[59] Carstairs, D.J., “Wanted: A New Test Approach for MilitaNet-Centric
Operation%, Guest Editorial, ITEA Journal, Volume 26, Number 3, October 2005

[60] Mittal, S., Zeigler, B.P., DEVS Unified Process for Integrated Development and
Testing of System of SystefCritical Issues in C4l, AFCEA-George Mason University
Symposium, May 2008

[61] Sarjoughian, H., Zeigler, B.P., and Hall, S., “A Layered Modetind Simulation
Architecture for Agent-Based System Developrhemroceedings of the IEEE 89 (2);
201-213, 2001

[62] HTTP : http://www.w3.org/Protocols/

[63] SMTP : http://cr.yp.to/smtp.html

[64] Mittal, S., Zeigler, B.P., Hammonds, P., Veena, M., “Networkniuation
Environment for Evaluation and Benchmarking HLA/RTI ExperimentsTCIReport,
Fort Huachuca, December 2004.

[65] Hu, X., Zeigler, B.P., Mittal, S., “Dynamic Configuration in W& Component-

based Modeling and Simulation”, SIMULATION: Transactions of the i&pcof
Modeling and Simulation International, November 2003

163

[66] Mittal, S., Zeigler, B.P.,, “Modeling/Simulation Architecturer f Autonomous
Computing”, Autonomic Computing Workshop: The Next Era of Computing, Tucson,
January 2003.

[67] XML: http://www.w3.0org/XML/

[68] Martin, J.L.R., Mittal, S., et.al, “Optimization of Dynamic Datgpes in Embedded
Systems using DEVS/SOA-based Modeling and Simulation”, 3rd IntenahtICST
Conference on Scalable Information Systems, Italy, June 2008

[69] aDEVS: an open source C++ DEVS Simulation engine. Available at:
http://www.ornl.gov/~1gn/adevs/index.html

[70] Mittal, S., Martin,J.L.R., Zeigler, B.P., “WSDL-Based DE¥gent for Net-Centric
Systems Engineering”, International Workshop on Modeling and Appliedil&iion,
Italy, September 2008

[71] Department of Defense Architecture Framework (DoDAF) werdil5 downloadable
from: http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_Il.pdf

[72] Thea Clark, Richard Jones, “Organisational Interoperability Matitodel for C2”,
1999

[73] eclipse http://www.eclipse.org/

[74] Moath Jarrah, “ An Automated Methodology for Negotiation Behaviorslulti-
Agent Engineering Applications”, summer 2008, ECE, University of Arizona

[75] Jean-Sébastien Bolduc and Hans Vangheluwe. The modelling andiatgm
package PythonDEVS for classical hierarchical DEVS. MSDhnmal report MSDL-
TR-2001-01, McGill University, June 2001.

