

A MULTI-MODELING APPROACH USING SIMULATION AND

OPTIMIZATION FOR SUPPLY-CHAIN NETWORK SYSTEMS

by

Gary Wade Godding

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

ARIZONA STATE UNIVERSITY

August 2008

A MULTI-MODELING APPROACH USING SIMULATION AND

OPTIMIZATION FOR SUPPLY-CHAIN NETWORK SYSTEMS

by

Gary Wade Godding

has been approved

May 2008

Graduate Supervisory Committee:

Hessam Sarjoughian, Chair
James Collofello

Esma Gel
Karl Kempf

Arunabha Sen

ACCEPTED BY THE GRADUATE COLLEGE

 iii

ABSTRACT

Enabling two large complex models that use different types of execution

algorithms to work together is a difficult problem. The semantics between the models

must be matched and the execution of the algorithms have to be coordinated in a way that

the data I/O timing is correct, the syntax and semantics of the data I/O to each algorithm

is accurate, the synchronization of control is maintained, and the algorithms concurrent

execution is managed.

In this work, an approach is developed that uses a Knowledge Interchange Broker

(KIB) to enable composition of general optimization and discrete process models

consistent with their respective execution algorithms. The KIB provides a model

specification that matches data and control semantics across two distinct classes of

optimization and discrete process models. The KIB has a sequential execution algorithm

in which two independent execution algorithms are synchronized.

A domain where this kind of problem is seen is in the development of

computational models of real world discrete manufacturing supply chain network

systems. Modeling these systems require that the planning systems, manufacturing

process flows, and their interactions to be concisely described. Planning systems

generally use optimization algorithms for calculating future instructions to command

what the manufacturing processes build. Manufacturing processes are commonly

modeled using discrete event simulations. For supply chain network systems, the

planning and manufacturing models can be very large. The KIB is an enabler for

correctly combining these models into semantically consistent multi-models.

 iv

Two common types of models used for planning and manufacturing are Linear

Programming (LP) and Discrete Event Simulation (DES). In this work, a KIB has been

developed and demonstrated on a set of theoretical representative semiconductor supply-

chain network problems using LP and DES. The approach has then been successfully

applied to integrating planning and simulation models of real-world problems seen at

Intel Corporation’s multi-billon dollar supply-chain network.

 v

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Sarjoughian and Dr. Kempf for their support and

encouragement of carrying out this research. From Intel Corporation I would like

acknowledge Dave Burba, Ben Wang, and Michael O’Brien for their ongoing support

throughout the five years it took to complete and Kirk Smith for his role in developing

the production MPC models. From ASU I would like to acknowledge Randy Singh for

his simulation work on the common control bus and Donping Huang for her related KIB

research work. And finally I would like to acknowledge Intel Corporation for sponsoring

this research at ACIMS, ASU for one year.

 vi

TABLE OF CONTENTS

 Page

LIST OF TABLES………………………………………………………………...…….. xi

LIST OF FIGURES…………………………………………………………...…........... xii

CHAPTER

1 INTRODUCTION .. 1

1.1 Problem Description ... 4

1.2 Background... 6

1.3 Summary of Contributions.. 8

1.4 Dissertation Organization ... 9

2 BACKGROUND .. 12

2.1 Modeling Methodology .. 12

2.2 Multi-Paradigm Modeling .. 13

2.3 Multi-Formalism Modeling Approaches .. 16

2.4 Semiconductor Supply Chain Network Modeling................................ 21

2.5 Summary ... 31

3 APPROACH ... 33

3.1 Supply Chain Network Domain Model .. 35

3.1.1 Supply chain network Domain Model Data Example 36

3.1.2 Supply chain network Domain Model Synchronization Example.... 39

3.2 Supply chain network DEVS/LP KIB .. 40

3.2.1 Formalism Composability with LP and DEVS................................. 41

 vii

CHAPTER Page

3.2.2 DEVS/LP KIB Formalism .. 42

3.2.2.1 Model Specification ... 46

3.2.2.1.1 Interface Model Specifications ... 46

3.2.2.1.2 Transformation Specifications .. 48

3.2.2.1.3 KIB Synchronization Model Specification......................... 49

3.2.2.2 Protocol Specification.. 50

3.2.2.3 KIB Control Model .. 51

3.2.2.3.1 Protocol Execution.. 55

3.3 DEVS/LP Model Specification... 57

3.3.1 Mapping and Transform Example .. 58

3.3.1.1 Data Transforms... 60

3.3.1.2 Mapping between Vectors and Events....................................... 61

3.3.2 Model Interfaces ... 64

3.3.2.1 DEVS interface specification... 64

3.3.2.2 LP interface specification .. 65

3.3.3 Interface Relationships.. 66

3.3.4 Synchronization Model... 72

3.3.5 Transformation Functions For the LP/DEVS KIB 73

3.3.6 Data Mapping Transformation Functions... 73

3.3.7 Data Value Transformation Functions.. 75

3.4 Control Schemes ... 76

 viii

CHAPTER Page

3.5 KIB Specification Implementation in XML ... 77

4 MULTI-FORMALISM SUPPLY CHAIN NETWORK MODELING........ 86

4.1 Supply chain network Topology... 87

4.2 Product routing.. 90

4.3 Mapping of Product Routing onto the Topology.................................. 91

4.4 Control inputs.. 93

4.5 Summary ... 96

5 CASE STUDIES... 97

5.1 Theoretical Experiments: .. 99

5.1.1 Environment.. 101

5.1.1.1 KIB Modeling .. 103

5.1.1.1.1 Transformations: ... 103

5.1.1.2 DES Modeling ... 105

5.1.1.2.1 Simulation Messages .. 108

5.1.1.3 LP Decision Algorithm.. 111

5.1.2 Non-Stochastic Base Model Results... 114

5.1.3 Two Customers Daily Plan ... 117

5.1.4 Two Customers Weekly Plan.. 119

5.1.5 Stochastic base model results.. 121

5.1.6 Optimistic Model Results ... 127

5.1.7 Pessimistic Model Results .. 129

 ix

CHAPTER Page

5.2 Industrial Models .. 130

5.2.1 Logistics Model .. 131

5.2.1.1 Integrating the Honeywell Controller application 131

5.2.1.1.1 Model Composability with Honeywell............................. 132

5.2.1.1.2 Interoperability with Honeywell 133

5.2.1.2 Sort to ADI Logistics Shipping Model Topology.................... 133

5.2.1.3 Product Routing ... 135

5.2.1.4 Simulation Scalability Concerns.. 135

5.2.1.5 KIB modeling... 136

5.2.1.6 Controller Development Approach.. 136

5.2.1.7 Findings.. 138

5.2.1.7.1 KIB Benefits ... 138

5.2.1.7.2 Supply chain network Experimental Findings.................. 139

5.2.1.7.3 Results... 141

5.2.2 Multi-Solver Experiments: MPC and LP....................................... 141

5.2.2.1 Model Description ... 143

5.2.2.1.1 Topology... 143

5.2.2.1.2 Product Routing .. 144

5.2.2.2 KIB Multi-Solver synchronization model extensions.............. 146

5.2.2.3 Experiments ... 148

5.2.2.4 Findings.. 150

 x

CHAPTER Page

5.2.2.4.1 Simulation Scalability Concerns....................................... 151

5.2.2.4.2 Data input for controller.. 152

5.2.2.4.3 KIB Benefits ... 152

5.2.2.4.4 Data results.. 153

5.2.3 Current Work .. 154

6 SYSTEM AND KIB DESIGN.. 156

6.1 Software Application Architecture ... 156

6.2 Interoperability Approach... 158

6.3 KIB Software Architecture ... 161

6.4 KIB Implementation ... 163

6.4.1 InterfaceConfigs.. 164

6.4.2 GenericInterfaces .. 166

6.4.3 ControlModel.. 167

6.4.4 InterfaceAdapter ... 168

6.4.5 ExecutionEngine ... 169

6.4.6 TransformEngine .. 170

6.4.7 KIBModelReader.. 171

6.4.8 Data Store.. 171

6.4.9 Initialization Sequence Diagram... 172

6.4.10 Sequence Diagram for Execution initiated by Sync Event 173

7 CONCLUSIONS... 176

 xi

CHAPTER Page

7.1 Future Work .. 179

REFERENCES ... 182

 xii

LIST OF TABLES

Table Page

1. DEVS Data Element Mappings to KIB Elements ... 65

2. LP Data Element Mappings to KIB Elements ... 66

3. Theoretical Experiment Scenarios ... 100

4. Table of KIB Mappings .. 105

5. Expected Finish Outs at t=32 for Stochastic Base Case .. 126

 xiii

LIST OF FIGURES

Figure Page

1. High Level Modeling Strategy.. 1

2. Composability and Interoperability ... 2

3. Semiconductor Supply Chain Network Sample .. 3

4. Approaches for Integrating Models in Different Formalisms...................................... 20

5. LP Formalism... 25

6. Parallel DEVS Atomic Model Formalism .. 27

7. Parallel DEVS Coupled Model Formalism.. 28

8. Coupled Models in DEVS ... 29

9. DEVS Semantics... 30

10. LP/DEVS KIB ... 35

11. Supply Chain Network Partitioning... 35

12. Domain Mapping and Transform Specification .. 38

13. Supply Chain Network Simple Model of Synchronization 39

14. LP/DEVS KIB Interfaces and Protocols... 44

15. Semiconductor Supply Chain Network LP/DEVS KIB System Design 50

16. Default KIB Control Logic .. 52

17. Example Problem... 58

18. Time Dependant Mapping ... 69

19. Types of Data Aggregation.. 70

20. Transforms over Different Time Scales... 71

 xiv

Figure Page

21. Supply Chain Network Topology .. 89

22. Product Routing ... 91

23. Product Routing Mapped onto the Topology... 92

24. Supply Chain Network Control Inputs .. 93

25. Environment Topology .. 102

26. KIB Input and Output DEVSJAVA Timing Diagram... 110

27. Base Model .. 115

28. Base Model Finish Starts versus Finish Outs .. 116

29. Base Model Non-Stochastic Results.. 117

30. Two Customer Experiment Setup.. 118

31. Two Customers, No Stochastic, Daily Plan Results .. 119

32. Two Customers with Weekly Plan Results.. 120

33. Base Stochastic Model... 122

34. Stochastic Yield Analysis over 5 Experiment Runs .. 123

35. Stochastic TPT Analysis over 5 Experiment Runs .. 124

36. Expected TPT Distribution .. 124

37. Stochastic Base Case Finish Starts versus Outs... 125

38. Base Stochastic Order Fulfillment Performance.. 127

39. Optimistic Orders Filled versus Demand... 128

40. Optimistic CW versus Shipping Starts .. 129

41. Pessimistic Model .. 130

 xv

Figure Page

42. MPC Control Loops... 132

43. Supply Chain Network Topology .. 134

44. Simulation Iterations versus Real World .. 137

45. Manual vs. MPC Performance... 140

46. Multi-Solver Topology .. 143

47. Product Routing Complexity ... 145

48. Data Flows in the Composed Multi-Model ... 147

49. Control Flow of the Composed Multi-Model .. 148

50. Simulated Control versus Actual Historical .. 154

51. Software Application Architecture .. 157

52. Industry Standards Approach to Interoperability... 159

53. KIB Approach to Interoperability.. 161

54. DEVS/LP KIB Architecture .. 163

55. Main KIB Classes .. 164

56. Use Case Sequence Diagram for Initialization ... 173

57. Use Case Sequence Diagram for Action Initiated by a Sync Event 175

1 INTRODUCTION

Many computational systems are constructed from subsystems that have differing

capabilities and characteristics. Subsystems are logical partitions that can focus on a

particular functionality or specialized computational problem. One clear division that can

be made when developing computational models of the real world is the separation of

physical and logical processes. The system being studied frequently has some physical

behavior that develops over time (projection subsystem), but requires direction from a

planner (decision subsystem) whereby it can select among possible actions to help

achieve a desired overarching system goal (see Figure 1). The decision and projection

subsystems can be viewed as two distinct modules in which each has its own structure

and behavior. However, for these modules to interact, they must overlap in terms of

knowledge contained in each and their dependency on one another for input and output.

Decision

Projection

Past and Current
World State

Current and Future
Action Plan

Decision

Projection

Past and Current
World State

Current and Future
Action Plan

Figure 1. High Level Modeling Strategy

Two extreme options can be employed to address these differences. On one hand,

a system design can force the required functionality into a single monolithic model. The

result is often difficult to develop, use, and maintain due to the confounding of the

decision and projection processes. On the other hand, the models and algorithms for

 2

projection and decision can be designed and implemented separately and then used

together in an integrated fashion. The major challenge with this approach is how to

integrate the operation of the two modules. Extensive literature exists on computational

models for decision making and for system projection. However, descriptions of ad-hoc

approaches dominate the integration of the two (Fishwick 1995; Hung and Leachman

1996; Godding and Kempf 2001; Wang 2006; Wang, Rivera et al. 2007). Alternatively,

software engineering techniques may be used. From a more general and formal modeling

perspective, the integration requires model composability (our particular focus here) and

module interoperability as shown in Figure 2. Composability concerns utilizing different

models that are semantically consistent with one another. Interoperability focuses on

supporting interactions between algorithms runtime.

Pr
oj

ec
tio

n
M

od
ul

e

D
ec

is
io

n
M

od
ul

e

Algorithm Interoperability

Projection
Algorithm

Decision
Algorithm

Decision
Model

Projection
Model

Model Composability
Pr

oj
ec

tio
n

M
od

ul
e

D
ec

is
io

n
M

od
ul

e

Algorithm Interoperability

Projection
Algorithm

Decision
Algorithm

Decision
Model

Projection
Model

Model Composability

Figure 2. Composability and Interoperability

 3

To explore these issues without loss of generality, we have selected a

semiconductor supply chain network as our application domain (Figure 3).

Fabrication-1

Fabrication-n

Assembly-1

Assembly-m

how much to hold
how much to release

how much to ship and the destination
how much to hold

how much to release

stochastic duration
stochastic yield

stochastic duration
stochastic yield

stochastic duration

PL
A

N

ST
A

TE

Factory Warehouse Transportation

Fabrication-1

Fabrication-n

Assembly-1

Assembly-m

how much to hold
how much to release

how much to ship and the destination
how much to hold

how much to release

stochastic duration
stochastic yield

stochastic duration
stochastic yield

stochastic duration

PL
A

N

ST
A

TE

Factory Warehouse TransportationFactory Warehouse Transportation

Figure 3. Semiconductor Supply Chain Network Sample

The decision module is charged with building a plan for current and future

activities that include releasing materials into factories, shipping materials between

locations, and moving materials to and from warehouses based on a profitability goal.

The projection module is intended to represent a model of material movement through

the supply/demand network processes consisting of factories, warehouses, and

transportation links of the real system including as much of the stochasticity of the real

world as is possible and appropriate. The decision module needs the state of the world,

resulting from the past application of the previous plan, inputted before it can project the

plan for the future. The execution module needs this plan of action to project forward in

 4

time and produce the future states of the world. Clearly these models require different

algorithms.

To ground our exposition of composability and interoperability, we have chosen

specific decision and execution approaches for experimentation. From the range of

possible mathematical and heuristic decision algorithms, Linear Programming (LP) is our

choice and Discrete Event Simulation (DES) has been selected from the range of possible

execution projection approaches. The focus of our research is not the use of LPs and

DES’s for Semiconductor Supply Chain Network, but rather the general and specific

aspects of the model’s composability in this application domain. We have described our

work using LP and DES in the Semiconductor Supply Chain Network domain in other

publications (Kempf, Knutson et al. 2001; Kempf 2004) and references therein.

Given the complexity of operating a Semiconductor Supply Chain Network, the

test-bed partially described here has far-reaching practical implications. The ability to

refine decision processes and financial goals as well as the number, topology, and

properties of the physical entities in the network without the added time and cost of

continuously reprogramming interfaces is a major improvement over existing methods.

1.1 Problem Description

The integration of decision and projection processes presents some challenging

problems. The underlying objectives of theses two types of operations are fundamentally

different. Decision systems are concerned with finding a good answer when many exist.

Projection processes are focused on how the states of a system will evolve over time.

Different types of modeling formalisms and algorithms can be found that support the

 5

modeling and execution of either decision or projection operations in an efficient and

scalable way. However, there is not an algorithm that provides good support for both. A

decision algorithm employs techniques to efficiently search large solution spaces for

good answers relative to some metric whereas projection algorithms iterate forward

through time reproducing the manner in which states of a system would evolve. Two

potential approaches for modeling systems that require both types of computational

algorithms would be 1) develop a new universal algorithm and supporting modeling

language, or 2) use a methodology that enables the integration of existing approaches.

Since the two models, and therefore their algorithms, are focused on different objectives,

we believe it would not be practical to pursue a universal algorithm. An approach that

supported the integration of existing methods would enable the use of algorithms that

have resulted from years of research. It would also enable the evaluation of how different

models and algorithms work in a given situation. For example, whether rule-based or

mathematical optimization works best for a particular decision problem could be

evaluated.

A methodology that requires the integration of different types of modeling

formalisms and algorithms must consider model composability and algorithm

interoperability. Model composability is concerned with how different components of a

model can work together in a semantically consistent way. For example, given decision

and projection models, this would require that goal-oriented decision models work with

time-based state-oriented projection models. More specifically, if mathematical

optimization and discrete event simulation are used for decision and projection

 6

representations of a Semiconductor Supply Chain Network respectively, the optimization

models would be composed of an objective function, constraints, and initial data states

while the projection models would consist of event I/O, time advance, and state transition

functions. Proper model composability would ensure semantically consistent mapping

between the initial state and results of the optimization I/O to the time based simulation

I/O. Model composability would assure that a semantically consistent representation of

the Semiconductor Supply Chain Network is maintained across the optimization and

simulation models.

Every distinct type of modeling formalism requires an algorithm that can

correctly execute all models specifiable by that formalism. Therefore, when models are

specified using multiple formalisms that require different algorithms, it is necessary to

account for interoperability between them. In particular, interoperability must handle

data and control synchronization. In the case of the Semiconductor Supply Chain

Network optimization and simulation multi-models, a mathematical solver and a

simulation engine would have to correctly interact with each other. Since significant

progress has been made in supporting algorithm interoperability (IEEE 2000; IEEE 2001)

our focus will be on how to support model composability.

1.2 Background

Early work on the Semiconductor Supply Chain Network problem had been

carried out by looking at the use of an expert system for configuring planning heuristics

and running them against discrete event simulations (Godding and Kempf 2001). In this

effort an approach was used to connect a commercial discrete event simulator to an

 7

expert system using sockets. This enabled interoperability across the systems; however,

it did not allow flexible integration. The discrete event simulation and expert system

models had to follow the coordination protocol hard coded into the bridge, and match the

incoming and outgoing messages.

Another area of research involved investigating the use of agent models to control

a discrete event simulation of a vehicle. The environment created a bridge between a

Discrete Event System Specification (DEVS)-based discrete event simulation and an

agent modeling tool known as InterRap (Müller 1996) using RAP (reactive action

planner). The modeling environment created for this effort was known as DEVS/RAP

(Sarjoughian and Plummer 2002). Through this work the idea of a knowledge

interchange broker (KIB) originated. The KIB matched the differences between distinct

formalisms and enabled the creation of semantically consistent multi-formalism models

using heterogeneous execution algorithms.

These two efforts were built upon to create the LP/DEVS KIB described in this

dissertation. The Semiconductor Supply Chain Network problem described previously

required the use of different formalism for planning and manufacturing models. For the

Semiconductor Supply Chain Network models there is also the need to aggregate and

disaggregate data across time horizons and into different granularities to match the real

world models. There is also a desire to experiment with different planning frequencies to

discover the most efficient way to operate. These requirements led to the development of

a KIB where data transformations and modes of sequential control can be configured in

an integration model. That is where the main contributions of this work lie.

 8

A secondary contribution is the development of a methodology to decompose

Semiconductor Supply Chain Network models into manufacturing and planning

components. The methodology uses the supply chain network topology, the product

routes, and the bill of materials (BOMS) to identify the points in which product

differentiation should be simulated versus where they should be modeled as an explicit

external control decision.

1.3 Summary of Contributions

The key contributions of this dissertation are:

• The creation of a methodology for developing LP/DEVS multi-formalism

models using a Knowledge Interchange Broker (KIB)-KIBDEVS/LP.

o A type of multi-formalism (also known as poly-formalism) is

developed where existing research is leveraged through enabling the

composition of different modeling formalisms that are known to be

well-suited for solving the various parts of a problem. The KIBDEVS/LP

enabled the use of the native DEVS and LP languages along with their

supporting protocols. This was a pioneering effort in multi-formalism

modeling using heterogeneous execution algorithms.

o A KIBDEVS/LP is developed to support a simulation test-bed for

semiconductor supply chain network planning and manufacturing

models. The test-bed demonstrated the composition of the OPL-

Studio, DEVSJAVA, and KIBDEVS/LP environments using a

representative semiconductor supply chain network models.

 9

• The application of the KIBDEVS/LP to modeling real world scenarios.

o The KIBDEVS/LP enabled the development of a new controller

technology for managing logistics problems seen at Intel Corporation.

The KIBDEVS/LP facilitated the development and validation of the

control technology against simulation, which significantly advanced

the state-of-the-art of real world supply chain MPC control.

o The KIBDEVS/LP enabled control models to be built at a scale never seen

before in production.

1.4 Dissertation Organization

The dissertation has been organized into seven sections. A brief description of

each follows:

In Chapter 1, the area of research we are going after is described. An introduction

is given to model composability and interoperability. An overview of how the planning

and physical parts of a semiconductor manufacturing supply chain network can be

viewed as two separate systems. The idea of using a methodological approach for the

integration of decision and manufacturing models in Semiconductor Manufacturing

supply chain networks is described. The contributions of the research is outlined and

description of the remainder of the dissertation.

In Chapter 2, we give a background of related work. Different types of multi-

formalism modeling are currently being researched for a variety of problems. However,

the type of multi-formalism modeling using distinct execution algorithms has, until

recently, been unique to this body of work. This work pioneered the approach applying it

 10

to linear programming optimizers with DEVS discrete event simulations. Considerable

research exists for integrating simulations with optimizations, however, how to support

model composition has been overlooked. Also, in this chapter, we will examine some

related work to modeling the types of supply chain network problems under

consideration.

In Chapter 3, a detailed description of using a KIB for multi-formalism modeling

is given. The importance of separating the domain models conceptually and mapping

them to formalisms is described. Then, how to enable formalism composability for

DEVS and LP is shown. An approach using a modeling language and protocol to enable

the multi-formalism composability is outlined. And finally, an example is provided using

an XML implementation.

In Chapter 4, an approach to Semiconductor Supply Chain Network multi-

modeling for separating the decision models from the physical manufacturing and

logistics facilities is provided. Mapping models of the supply chain network topology

and product routing flows are created. From these mappings we can distinguish between

the points where product changes are established by explicit decisions versus where

product changes are determined by the state of the physical processes.

In Chapter 5, the case studies and experiments completed using the multi-

formalism methodology is presented. First, a set of experiments were run against a

theoretical problem set. These experiments enabled the development and validation of

the KIB environment. It also provided proof that the multi-formalism methodology

works. A second set of experiments and studies were run on real world models seen at

 11

Intel Corporation. These experiments showed the benefits of the KIB on real world

problems. It also showed scalability of multi-modeling to the large problems seen in the

industry today.

In Chapter 6, the design of the software environment and the KIB are explained.

The approach taken for application integration is explained. The architecture developed

to enable the multi-formalism model composibility is described. The detailed KIB

architecture and software design is showcased.

In Chapter 7, the conclusions and future work are discussed.

2 BACKGROUND

2.1 Modeling Methodology

Two important concepts that provide the basis of our modeling methodology are

1) use well suited models for solving the problem at hand, and 2) separate the models

from their underlying computational algorithms. At a lower level, these concepts have

been researched and demonstrated for software programming (Dijkstra 1976). The use of

different formalisms suggests that different modeling approaches work better for some

types of problems than others. The separation of the model from its execution algorithm

enables the use of efficient, provably correct computer algorithms. For modeling and

simulation theory this is analogous to separation of the model from the underlying

simulation algorithm (Zeigler, Praehofer et al. 2000). This kind of separation has been

used within system-theoretic worldview and logical processes worldview (Fujimoto

2000).

The separation of a model from its execution protocol (i.e., algorithm) has also

been considered in distributed settings. This separation focuses on a framework where

logical processes and system-theoretic concepts are used in supporting distributed

simulation. Unfortunately, while the separation of the model and simulation protocol is

necessary for model composability, it is not sufficient (Dahmann, Salisbury et al. 1999;

Kasputis and Ng 2000; Sarjoughian and Zeigler 2000). Nonetheless, this kind of

separation is the fundamental starting point to our multi-formalism modeling approach.

The ability to use different types of models to solve varying facets of a problem is

not a new concept. In the modeling and simulation literature, a variety of general

 13

purpose terms have been used. Examples include multi-modeling (Fishwick 1995), multi-

faceted modeling (Zeigler and Oren 1986) and multi-paradigm modeling (Mosterman

and Vangheluwe 2004). While multi-modeling and multi-faceted modeling literature

identifies the need for using different types of models for large systems, they do not

explicitly address how to compose them. Multi-paradigm modeling looks at methods of

combining different kinds of models but does not address the problem of combining

models with very different formalisms such as optimization and simulation.

2.2 Multi-Paradigm Modeling

Within multi-paradigm modeling, three orthogonal types have been identified:

model abstraction, multi-formalism modeling, and meta-modeling. Multi-paradigm

defines model abstraction as the process of finding a type of model to solve a problem.

For instance, the use of an optimization model for solving a planning problem is a form

of abstraction. This research is not focused on model abstraction. It is leveraging the fact

that other disciplines have done considerable research on finding abstract models that will

elegantly and efficiently solve their specific problems. For example, methods of

abstracting planning problems into linear programs have been an area of operations

research (Rardin 2000). The use of linear programming for solving planning problems is

studied since efficient implementations of solvers exist, which can find optimal solutions

on large numbers of variables. Using a linear program requires the practitioner to

abstract the problem into a set of linear equations. Leveraging existing research is an

important consideration when dealing with complex systems across different fields of

study. An entire field of study can exist on the use of a particular modeling formalism

 14

and well known textbook approaches are formulated for creating those types of abstract

models.

Multi-formalism modeling is defined as the use of different formalisms for

solving a problem. A formalism has a language and a protocol that can correctly execute

models written in that language. Picking a formalism that can easily support the model

abstraction to solve the problem is desirable. For example, an operations researcher

using optimization models to solve planning problems would be more efficient using a

framework that supports an optimization language and solver. Similarly, a process

engineer interested in studying the stochastic behavior of a manufacturing problem could

choose discrete events as a model abstraction and the DEVS formalism for creating the

models. To observe how the manufacturing models behave against the planning solver

the optimization models could be combined with the DEVS models to create a multi-

formalism model. In this research the objective is to find an efficient, correct, and

flexible methodology for composing optimization and DES multi-formalism models.

The third type of multi-paradigm modeling is defined as meta-modeling. Meta-

modeling is the ability to represent a model equivalently in a higher level formalism.

Meta-modeling has been used to combine similar formalisms into a single formalism by

use of model transformation. This type of meta-modeling use similar sub-formalisms of

dynamic systems such as state-charts and Petri-nets (Vangheluwe and de Lara 2002).

The Unified Modeling Language (UML) is an example of a very general meta-modeling

language for object-oriented software engineering. UML enables the modeling of logical

classes and the realization of the classes as objects. Meta-modeling abstracts a modeling

 15

formalism into another modeling formalism. For fundamentally different formalisms like

LP and DEVS, abstracting one into the other would not help in providing an environment

that could efficiently execute the composed meta-model since their protocols are

fundamentally different. This research does not consider meta-modeling as a viable

solution for efficiently executing complex multi-models.

When partitioning models into different components, the issues of model

composability and algorithm interoperability must be considered. Composability

research has centered on the ability to create components of models that can be re-used in

many different types of situations (Davis and Anderson 2004). An approach to model

composability, therefore, must ensure syntactic and semantic integrity of the parts and

their combinations. Composite models with appropriate syntax and semantic

underpinnings can then be ensured to correctly execute and interoperate.

Interoperability is the capability for different computer programs (written in

different programming languages) to communicate correctly via a protocol that manages

message syntax and synchronization. Interoperability does not ensure that each

connected program performs in a semantically consistent manner. Instead it ensures that

the connected programs pass data via consistent control protocol and are synchronized at

the process execution level. If the programs being connected are engines for executing

models, and the models have been composed in a manner that is semantically consistent,

existing interoperability techniques can be used to enable the correct execution of the

models. For software engineering, general middleware technologies and infrastructures

exist such as the Common Object Request Broker Architecture (CORBA 2005) and .NET

 16

(Platt 2003). For simulation, the High Level Architecture (HLA) standard (IEEE 2000;

IEEE 2001) has been defined that enables distributed simulations to interoperate. These

interoperability protocols enable the correct execution of two different applications based

on a protocol, but do not ensure that model composability has been addressed. Model

composability, which is the focus in this research, must be considered for semantically

consistent multi-formalism models.

2.3 Multi-Formalism Modeling Approaches

For the Semiconductor Supply Chain Network problem in this work, the LP and

DES formalisms will be used to model the decision and projection models respectively.

A discrete event simulation model is a mathematical representation of the world in terms

of events, states, time, and an encompassing structure. The simulation algorithm is a

mapping from the model into an operational form that lends itself to execution on a

computer. The same is true for mathematical optimization; the models are in the form of

equations and the solvers are algorithms that can be executed. Since LP and DES are two

distinct formalisms with very different execution algorithms, our focus will be on multi-

formalism modeling that enables the coordinated execution of each algorithm. In this

work the knowledge interchange broker (KIB) theory will be built upon to enable

semantically consistent composition and execution of the LP and DEVS models.

Multi-formalism modeling requiring coordination of model interactions described

in different modeling formalisms has been referred to as poly-formalism (Sarjoughian

2006). This approach proposes a KIB to account for the mismatch between the model

semantics and execution algorithm interoperability. Enabling the composition of

 17

disparate formalisms using an interaction model broker was first suggested in

(Sarjoughian and Plummer 2002) where the authors defined how to compose DEVS and

Reactive Action Packages (RAP) formalisms (Firby and Fitzgerald 1999). The

description of that research was further refined and its implementation extended in

(Sarjoughian and Huang 2005). The DEVS/RAP work did not account for other kinds of

modeling formalisms requiring different capabilities. Nor did it account for scale and

complexity of domains such as supply-chain systems (Godding, Sarjoughian et al. 2003;

Kempf 2004) or human-landscape dynamics (Mayer, Sarjoughian et al. 2006). The use

of a KIB for the Semiconductor Supply Chain Network multi-formalism modeling

defined in this dissertation started early 2004 (Godding, Sarjoughian et al. 2004) and is

currently being applied to industry scale problems (Godding, Sarjoughian et al. 2007).

Other related research in the development of KIB theory is ongoing. Theory

concerning a KIB supporting asynchronous control and parallel execution with Model

Predictive Control (MPC) and DEVS formalisms has been examined using the

Semiconductor Supply Chain Network application domain as an exemplar (Huang,

Sarjoughian et al. 2007; Huang 2008) and new kinds of interaction models for agent-

based and cellular automata formalisms (Mayer and Sarjoughian 2007) are being

researched.

Prior to the KIB, alternate approaches could be found to enable models written in

different formalisms to work together. These approaches are illustrated in Figure 4. The

first method is the most commonly seen. A connection between the two applications is

created using off-the-shelf interoperability tools. This form of integration addresses

 18

composability in an ad-hoc way (see Figure 4a). The simulation engine is connected to

the optimizer that enables the systems to interoperate. However, model composability

must be addressed within each of the applications. This results in development of

inflexible solutions. The applications are integrated in such a way that makes the

implemented models work. If a change is required in the integration, both applications

must be updated.

Many commercial packages offer this type of connection via middleware, or data

connection through a database. Research has shown the value of MPC for supply chain

control by demonstrating it with a MatLab Simlink simulation (Wang 2006; Wang,

Rivera et al. 2007). However, since the work did not consider model composability

concepts, the integrated MPC and simulation model resulted in an implementation which

lacked conceptual integrity, robustness, scalability, and performance. Applications

working together in a related area will create standards that define a message structure

and protocol for communicating (Gartland, Godding et al. June 30, 2000). This resulting

standard is then considered when composing the models. These implementations work

well when the relations and interface between the two models can be easily formulated in

terms of simple inputs and outputs that conform to a chosen interoperability protocol.

They also work well in mature environments where there is little change. However, this

approach is not very flexible for experimentation, research, and bringing in new

capabilities. This flexibility is a key requirement for the type of multi-formalism

modeling being developed in this work.

 19

In early related work a framework was built to enable an expert system work with

a supply chain network DES (Godding and Kempf 2001). A broker was designed that

enabled connectivity and messages to be sent between the two. The design closely

followed that of the broker pattern (Buschmann, Meunier et al. 1996) having a server and

API’s, or proxies, on each of the applications. This design worked well for transmitting

messages and enabling the concurrent execution of algorithms. It provided an

implementation in which the data could be parsed at each of the applications; however,

model composability concerns were pushed into each of the respective models. While

developing each of the models, the names of the variables, the syntax of the messages,

and the granularity of the data had to be matched to the other via interoperability

concepts. Differences in the formalisms also had to be addressed. For example, with a

DEVS Java simulation, ports are used as the originating and destination points for

messages. A port is not a construct found in an expert system. Conversely, the name of a

rule that fired in an expert system is not something known to the simulation. If an expert

system rule was refined and renamed, the simulation model would also need to be

updated to be able to comprehend the change. Both of the models must also be

composed to work with each other’s execution protocols. For discrete event and expert

systems, this requires the coordination of asynchronous events with the firing of rules. A

model composability approach that allows independent changes of the different models is

desired. This would allow an existing model to be reused with different implementations

of the other. The KIB enables this by inserting a third model between the other two.

Mismatches in the original models are compensated by the KIB model.

 20

(c) Models transformed
into different formalism

Model in
Formalism

A

Model in
Formalism

B

Meta
Formalism

Modeling
Formalism B
Specification

Super
Formalism

(b) Formalism specifications mapped into
new super formalism

Modeling
Formalism A
Specification

Execution
Engine A

Model in
Formalism

A

Model in
Formalism

B

Execution
Engine B

Ad-Hoc
Composability

Execution engines
Connected via API, Adapter,
Database, or Middleware

(a) Execution engines are connected enabling interoperability

Figure 4. Approaches for Integrating Models in Different Formalisms

The next multi-formalism approach is to map the formalisms into a new super

formalism (see Figure 4b). If a supporting algorithm is created, only a single execution

engine is needed. For example, a formalism and supporting algorithm exists for

representing combined discrete event and continuous models (Prähofer 1991). This

approach is not practical for LP and DES models. The two formalisms and their

underlying algorithms are fundamentally different and non-compatible.

The last approach, shown in Figure 4c, transforms the formalisms into a meta-

formalism that can include the capabilities of the sub-formalisms. If the structure and

behavior of the sub-formalisms can be mapped into an equivalent representation of the

meta-formalism, the aggregate model can be validated against the properties of the meta-

 21

formalism. Thus, only the algorithm of the meta-formalism would be required to execute

the models. This approach has been applied to combining closely related formalisms in

terms of how components and their interactions are formalized (de Lara and Vangheluwe

2002). Transformation of models into different formalisms can also be beneficial for

validating different properties (Vangheluwe and Lara 2004), However, this approach is

not suitable for LP and DES given their inherent differences. The meta-modeling

approach would not work well because the LP and DES do not share a common basis that

can be used to describe their structures and behaviors. A DES is a state-based event

model which use ports for coupling and has a concept of time. LP models consist of an

objective function and constraints. Transforming these two types of models into a single

representation would be impractical.

2.4 Semiconductor Supply Chain Network Modeling

Semiconductor supply demand networks are large complex systems consisting of

interdependent flows of material, control, and capital (Kempf 2004). Material flows are

generated when the physical product is manufactured and transported. Flow of control

determines how decisions will achieve the desired material and cash flows. Cash flows

are produced via revenue from sale of product or expenditures for the cost of

manufacturing, storage, and transportation. A practical approach for modeling the

Semiconductor Supply Chain Network is to partition the system into different modules

and use a framework to enable cross communication of interrelated information flows

(Godding and Kempf 2001; Godding, Sarjoughian et al. 2007). There are many benefits

to modeling the information and physical flows in a way that they can communicate and

 22

influence each other, such as enabling the analysis of how one impacts the other

(Godding, Sarjoughian et al. 2003).

Due to the size and complexity of a supply chain network, data type and

granularity are key factors. For the level of decisions being modeled, the approach for

modeling the physical entities outlined in (Knutson, Fowler et al. 2001) has been utilized.

For modeling controls flows to and from the physical models a bus strategy connecting

all the entities is used (Singh, Sarjoughian et al. 2004). With this level of modeling, an

interface between control and process has been developed to enable their separation and

integration with a KIB. This interface consists of status and control messages with

respect to time. The status messages would include inventory levels, work in progress,

what is being delivered, and the customer demand. The control messages instruct how

much material to release from an inventory.

Partitioning the Semiconductor Supply Chain Network into decision and process

models simplifies each of the components; however, each can still be quite complex. The

decision module needs to calculate start instructions for complex stochastic processes

based on stochastic input signals from the market demand. Process modules must model

complex product flows based on stochastic process. The interface between the decision

and process modules must be able to transform the data and communicate control

between the two (Godding, Sarjoughian et al. 2004).

For experiments using different planning frequencies, the interface between the

decision and process models must allow flexibility in how often one module runs in

relation to the other. This implies that data flowing between the two can be aggregated or

 23

disaggregated over discrete time periods. Decision and process models are typically

developed at different abstraction levels. The process model needs to capture the

important events that impact actual flow of material through each entity, whereas the

decision module is interested in the current overall state across the entities of a process.

Process models are well suited for the use of object-oriented approaches, whereas

planning data sets could be the Cartesian product of data elements across many physical

objects. This implies that data needs to be transformed across sets of different

cardinality. For example, a decision model may need to know how much material is

currently available across all inventories and process lines, whereas the process model

considers each process and inventory as a separate entity. Sets of data originating from

specific physical objects need to be transformed into different views for the decision

model.

For this work, linear programming is being used for the decision models. A linear

program (LP) is a form of mathematical optimization that has been applied successfully

to a wide range of planning applications (Hopp and Spearman 1996; Chopra and Meindl

2001). The purpose of LP is to find the best answer when many exist. Linear

programming employs search techniques to find an answer from a set of many different

possibilities. Models described in linear programming consist of an objective function, a

set of constraints, a set of cost variables, and a set of decision variables (Wu and

Coppins 1981). The LP model relationships must all be linear.

In Figure 5, the standard form for the LP formalism is shown (Moré and Wright

1993). This can be expressed as: minimize c*x subject to the constraints A*x =b, and x

 24

≥0. The linear program is solved for the decision variables x. An LP modeler would

develop an objective function with cost values and a set of constraint equations with

constant coefficients.

The coefficients for the cost vector c, constraint matrix A, and the constant vector

b are all supplied as initial state values. Some or all of these could be supplied from

DEVS outputs depending on the type of problems under consideration. The inputs to an

LP consist of an initial state populated into the coefficients for the cost vector c,

constraint matrix A, and the constant vector b. The outputs of the LP model would be the

set of decision variables x.

The protocol for an LP is to find the best answer for a given initial state.

Different algorithms exist that an LP formulation can be directly mapped to and then

solved for. Two of the most popular algorithms are simplex and interior point. While the

algorithms are not part of the formalism, they provide an efficient methodology for

finding the answer to the set of equations. The formalism is the mathematical symbols

and the meaning behind them (i.e., the syntax and semantics). The syntax is the algebraic

specification. The semantics is the protocol that defines the meaning of the syntax.

 25

min{c* x: A* x = b, x≥0)
where:
x ∈ ℜn×1
c ∈ ℜn×1

b ∈ ℜm×1
A ∈ ℜm×n

c is a vector of cost coefficients
x is a vector of decision variables (unknowns)
b is a vector of known constants
A is the constraint matrix

Figure 5. LP Formalism

The process models must be able to model stochastic data flows. DES has been

demonstrated as a good choice for modeling complex manufacturing processes (Law and

Kelton 1999). Many prominent discrete event modeling paradigms, such as the Discrete

Event System Specification (DEVS) (Zeigler, Praehofer et al. 2000), can be used to

model dynamic systems. DEVS allows modelers to describe discrete as well as

continuous dynamics in terms of discrete-event models. Complex models can be

hierarchically constructed from atomic and coupled models using well-defined interfaces

and couplings. This formalism uses mathematical set theory and provides a framework to

support model development with well-defined structural and behavioral specifications

and model simulation. The DEVS framework has been extended with object-oriented

abstraction, encapsulation, and modularity and hierarchy concepts and constructs (Zeigler

and Sarjoughian 1997).

 26

An atomic model specifies input variables and ports, output variables and ports,

state variables, internal and external state transitions, confluence function, and time

advance functions. This type of model is a stand-alone component capable of

autonomous and reactive behavior with well-defined concepts of causality and timing.

They can also handle multiple inputs and generate multiple outputs.

A coupled model description specifies its constituents (atomic and coupled

models) and their interactions via ports and couplings (Wymore 1993). A coupled model

can be composed from a finite number of atomic and other coupled models

hierarchically. Due to its inherent component-based support for model composition, this

framework lends itself to simple, efficient software environments such as DEVSJAVA

(ACIMS 2002). Atomic and coupled models have sound causality, concurrency, and

timing properties that are supported by various simulation protocols in distributed or

stand-alone computational settings.

Figure 6 and Figure 7 show the generic parallel DEVS atomic and coupled model

specifications (Zeigler, Praehofer et al. 2000). Atomic and coupled models provide basic

components for describing component-based hierarchical models. In an atomic model,

input and output ports and messages ((InPort, X), (OutPort, Y)) are used to specify the

structure. The behavior of an atomic model is specified in terms of the state variables (S)

and functions. A model can have autonomous and reactive behaviors by defining internal

transition function (δint) external transition function (δext), and confluent function (δconf).

 27

The output function (λ) allows the models to send out messages. The time

advanced function (ta) captures the timing of the atomic model. The confluent function

can be used for modeling simultaneous internal events and external events.

Atomic Model = <X, S, Y, δint, δext, δconf, λ, ta>

 where:

o X is the set of input values
o S is a set of states
o Y is the set of output values
o δint is the internal state function
o δext is the external state function
o δconf is the confluent function
o λ is the output function
o ta is the time advance function

Figure 6. Parallel DEVS Atomic Model Formalism

A coupled model is composed of one or more atomic or coupled models. The

structural specification of a coupled model includes input and output ports (with

messages), a set of components, and its coupling information. A coupled model does not

have direct behaviors. Its behavior is based on the message exchanges between itself and

its components as well as message exchanges among the coupled model components.

The components of a coupled model can be connected using three types of couplings

referred to as external input coupling (EIC), external output coupling (EOC), and internal

coupling (IC). Figure 8 illustrates a DEVS coupled model with the EIC, EOC, and IC

couplings labeled.

 28

Coupled Model = 〈 X, Y, D, { Md | d ∈ D }, EIC, EOC, IC〉

 where

o X = {(p,v) | p ∈ IPorts, v ∈ Xp } is the set of input ports and values
o Y = {(p,v) | p ∈ OPorts, v ∈ Yp } is the set of output ports and values
o D is the set of the component names
o d ∈D, Md = 〈 Xd , Yd , S , δext , δint , δconf , λ , ta 〉 is a parallel model

with
o Xd = {(p,v) | p ∈ IPortsd, v ∈ Xp }
o Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp }

 external input couplings:

o EIC ⊆ { ((N, ipN), (d, ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ Iportsd } connect
external inputs to component inputs

 external output couplings:

o EOC ⊆ { ((d, opd), (N, opN)) | opN ∈  OPorts, d ∈ D, opd ∈  Oportsd }
connect component outputs to external outputs

o internal couplings:
o IC ⊆ { ((a, opa), (b, ipb)) | a, b ∈ D, opa ∈  OPortsa, ipb ∈ Iportsb }

connect component outputs to component inputs
o Note: no direct feedback loops are allowed,
o ((d, opd), (e, ipd)) ∈ IC implies d ≠ e.

Figure 7. Parallel DEVS Coupled Model Formalism

 29

Input port

Output port

Atomic
Model 1

Atomic
Model 2

Atomic
Model 3

Coupled Model 1

Coupled Model 2

EIC
EOCIC

IC EOC

EIC
Input port

Output port

Atomic
Model 1
Atomic
Model 1

Atomic
Model 2

Atomic
Model 3

Coupled Model 1

Coupled Model 2

EIC
EOCIC

IC EOC

EIC

Figure 8. Coupled Models in DEVS

Pictorially, Figure 9 describes the semantics of the DEVS simulation specification.

An external event xj arrives at the input port while the atomic model is in state s0. The

model enters a new state s1 which is generated by the external state transition function.

The state s1 is dependant on the time elapsed since s0, the s0 state values, and the external

event xj. Next, an internal event occurs when the ta for state s1 has elapsed. An output

event yk is sent to the output port with the values associated with state s1. The internal

transition function then immediately puts the model into state s2.

 30

•sn = state
•e = elasped time
•ta(s) = time advance value for state s
•x = external event
•y = output event

Input
port

Output
port

x y

s0

s1

ta(s1)

s1 = ƒextTransition(e,s0,xj)

s1

s2 = ƒintTransition(s1)

s2
e

DEVS Atomic Model

xj yk

•sn = state
•e = elasped time
•ta(s) = time advance value for state s
•x = external event
•y = output event

Input
port

Output
port

xx yy

s0

s1

ta(s1)

s1 = ƒextTransition(e,s0,xj)

s1

s2 = ƒintTransition(s1)

s2
e

DEVS Atomic Model

xj yk

Figure 9. DEVS Semantics

While the DEVS formalism may be used for optimization, its theory is not well

suited to support linear programming or other optimization modeling approaches in

which general mathematical equations specify constraints among decision variables

(Godding, Sarjoughian et al. 2003). Instead, DEVS (and more generally, systems theory)

is concerned with describing the structure and behavior of a system in terms of

components and simulating those components for a period of time.

Given these complexities of modeling the Semiconductor Supply Chain Network,

a feasible multi-formalism modeling approach would need to support the methodological

development of complex interdependent decision and process models, a flexible interface

to enable the modeling of different types of data transforms, a flexible way to model the

interaction frequency, and the use of high performance execution engines.

 31

2.5 Summary

This research has been focused on developing a methodology where the

interactions between inherently different classes of models can be described as a model.

To carry out this research, it was important to have two disparate modeling formalisms

and a rich application domain. Modeling semiconductor manufacturing supply-chain

systems are demanding for existing simulation and optimization approaches and tools.

The multi-modeling approach used for semiconductor supply chains in this work

has been a valuable tool in evaluating how a planning algorithm performs against a large

set of expected values that evolve over a simulation. It has also worked well for tuning a

controller to the dynamics seen in semiconductor supply networks. This research was not

concerned with how to develop optimization or simulation models, but rather how to

leverage existing approaches in these areas and then develop a science to integrate these

models to bring about a semantically consistent execution.

Consequently, in this work, we look at composing LP and DEVS formalisms in

semantically consistent manner that enables correct multi-model behavior when executed.

The science of the KIB theory has been expanded and demonstrated on LP and DEVS

supply chain network models. Other related work shows KIB theory to be powerful for

different kinds of modeling formalisms and application domains. Based on the advances

described in this work for composing optimization and simulation formalisms, the

development of a KIB can be extended to other research. For example, simulation

optimization is concerned with combining the two to create a new class of optimization

algorithms. The work presented here can offer basic concepts and capabilities for

 32

modeling the types of interactions required for the combined execution of the models.

However, how to develop simulation and optimization models and how they coordinate

would be the work of domain experts. The KIB could facilitate the modeling of the

interactions between the two to support the simulation optimization research.

3 APPROACH

An approach is required to describe different parts of a system in well-suited

modeling formalisms. Such a case can be made for optimization and discrete event

simulation for planning and manufacturing problems. LPs are a type of optimization that

have been applied successfully to solve many types of operations research problems.

There are several well known scalable algorithms that can easily be realized on a

computer. DEVS is another well known formalism for describing discrete event

simulations. DEVS has shown itself to be good for modeling dynamic systems. Each of

these formalisms works well for its intended use. For example, DES does not fit well for

solving optimization problems and LP is ill suited for simulating component-based

process flows. These formalisms both have a distinct specification language and

supporting protocols for defining the semantics. The protocols can be implemented in

efficient computing algorithms. A common optimization algorithm for LPs is the

simplex solver and an efficient algorithm exists for the DEVS abstract simulator.

In our case, where we want to develop models using both LP’s for planning

algorithms and DEVS for manufacturing models, we need an approach that supports the

composition of the differing model specifications and the interoperability of their

protocols. Figure 10 illustrates the approach we take through the use of a knowledge

interchange broker (KIB) (Godding, Sarjoughian et al. 2004; Sarjoughian and Huang

2005; Sarjoughian, Huang et al. 2005; Huang and Sarjoughian 2006; Godding,

Sarjoughian et al. 2007; Huang, Sarjoughian et al. 2007; Mayer and Sarjoughian 2007;

Huang 2008). Two basic concepts shown in Figure 10 are:

 34

• KIB supports both model composability and execution interoperability

through its own specification and protocol. The arrows between the model

specifications and execution protocols indicate there is a direct relation

between the two. Each specification defines the class of models that can

be described and the protocol defines a scheme under which the models

can be executed.

o Model composability is supported via a KIB model specification.

This specification enables a modeler to stipulate how data is

mapped and transformed between the LP and DEVS model

specifications. The KIB model specification enables semantic

consistency across the LP and DEVS model specifications.

o Execution interoperability is supported through the KIB execution

protocol. This execution protocol ensures correct data and control

synchronization between the LP and DEVS protocols.

• Data mappings and transformations supported in the KIB must be further

specified to handle modeling and execution of complex application

domains such as semiconductor supply/demand network.

 35

Execution
Interoperability

Constraint
Model

Specification

LP

LP
Solver

Protocol

DEVS

DEVS
Simulator
Protocol

Event Model
Specification

KIB
Model

Specification

KIB
Execution
Protocols

KIBDEVS/LP

Model
Composability Initial States

Decision Variable Values
Event Timings
State Values

Writing Initial States
Start Commands

Reading Decision
Variable Values

Listening for Events
Sending Events

Reading and Writing
State Values

Planning

Supply Network Domain to be Modeled

ManufacturingData and
Synchronization

Optimization
Modeling

KIB
Modeling

Simulation
Modeling

Execution
Interoperability

Constraint
Model

Specification

LP

LP
Solver

Protocol

DEVS

DEVS
Simulator
Protocol

Event Model
Specification

KIB
Model

Specification

KIB
Execution
Protocols

KIBDEVS/LP

Model
Composability Initial States

Decision Variable Values
Event Timings
State Values

Writing Initial States
Start Commands

Reading Decision
Variable Values

Listening for Events
Sending Events

Reading and Writing
State Values

Planning

Supply Network Domain to be Modeled

ManufacturingData and
Synchronization

Optimization
Modeling
Optimization
Modeling

KIB
Modeling
KIB
Modeling

Simulation
Modeling
Simulation
Modeling

Figure 10. LP/DEVS KIB

3.1 Supply Chain Network Domain Model

A conceptual representation for partitioning a supply chain network system is

illustrated in Figure 11. There is the planning and manufacturing systems, the data that

flows between them, and the manner in which they are synchronized.

Planning

Domain to be Modeled

ManufacturingData and
Synchronization

Figure 11. Supply Chain Network Partitioning

The planning system model includes the decision algorithms that will determine

how much material manufacturing should build in a predefined time period. This time

period usually coincides with some time interval such as work shifts, days, and weeks.

 36

The manufacturing system model represents a physical segment of the supply

chain network. The level of detail to model is in part determined by what level of

planning is being modeled. For example, it could be modeled at a facility level for how

much to start into a factory, or at manufacturing segments between points where material

is stored for inventory planning. In both the planning and manufacturing case, the level

of detail to specify is determined by the modelers and the actual problems they need to

study.

An important piece to consider when partitioning these models is to determine the

inputs and outputs for each type and how their execution will synchronize with the

others. We need to consider how to map the output data from one model into the input of

the other and if there is a transformation required to address a mismatch in the granularity

or representation of the data. The frequency one model runs in relation to the other

should also be determined. Specifically these things need to be addressed:

1. The data flows between the models and the data granularity.

2. How the execution of the models will be synchronized.

3.1.1 Supply chain network Domain Model Data Example

A minimal supply chain network shown in Figure 12 illustrates a possible

integration for a Manufacturing Segment with an Assembly Starts Planner. The assembly

starts planner looks at how much material is in the manufacturing segment and calculates

what to begin for the next interval or period. In this example, the quantity of work in

progress (WIP) in the assembly line is sent from Manufacturing Segment to the

 37

Assembly Starts Planner as an input. The WIP quantity data from the Manufacturing

Segment needs to undergo a transformation defined as function g(mo,t) where mo, t is the

manufacturing output at the beginning of period t. The Assembly Starts Planner will use

the transformed WIP data to generate a schedule of what to start in the assembly line.

The Assembly Starts Planner output needs to undergo the transformation f(po, t) before

being input into the Manufacturing Segment. The transformations are formulated below:

• mi,t = f(po, t) where

o mi,t = manufacturing instructions received at end of period t for

what to do in period t+1.

o po, t = planning output at the end of period t.

• pi,t = g(mo, t) where

o pi, t = planning input at the end of period t.
o mo,t = manufacturing output at the end of period t.

 38

Objectives

Assembly Starts Planner

Manufacturing Segment

InventoryInventory Assembly
line

Assembly
line

release
quantity

Work
In Process (WIP)

semi-
finished
goods

finished
goods

Cost functions
Projected

Values
Constraints

Planning Input : piPlanning Output : po

Manufacturing Output : moManufacturing Input : mi

f(po,t) g(mo,t)
Integration
Data Models

Objectives

Assembly Starts Planner

Manufacturing Segment

InventoryInventory Assembly
line

Assembly
line

release
quantity

Work
In Process (WIP)

semi-
finished
goods

finished
goods

Cost functions
Projected

Values
Constraints

Planning Input : piPlanning Output : po

Manufacturing Output : moManufacturing Input : mi

f(po,t) g(mo,t)
Integration
Data Models

Figure 12. Domain Mapping and Transform Specification

This simple model illustrates how data mapping and transforms could be

specified. This model could be expanded such that the functions have multiple inputs

and/or outputs and also take into account historical values. The timing aspect will be

addressed in the next section.

 39

3.1.2 Supply chain network Domain Model Synchronization Example

Now we must consider how the models can be synchronized. A straightforward

approach for synchronizing the planning and manufacturing components is shown in

Figure 13. In this scheme, first the manufacturing runs for some period of time. At the

end of the manufacturing period, the output data from the manufacturing model is input

to the function g(mo,t). Second, the function g(mo,t) transforms the data as input to the

planning policy. Third, the planning policy creates a new set of instructions for the

manufacturing process. These instructions are then sent to the f(po,t) function which

stores and transforms the data as input to the manufacturing process. Even though the

same time instant t is used for g(mo,t) and f(po,t), the executions for g and f are ordered.

This cycle would continue for the duration of the model execution.

3. Planning policy
-Execute solver at modeled time
intervals.
-Send out results

1. Manufacturing Process
-Run for modeled time interval
-Output state changes while executing
-Wait for the next set of instructions
from planning

current and
past states

state
changes

current and
future

instructions

Starts
schedule

4. f(po,t)
-Store instructions
-Transform data
-Send instructions to
manufacturing

2. g(mo,t)
-Store state changes from
manufacturing model
-Transform data
-Send state to planning

3. Planning policy
-Execute solver at modeled time
intervals.
-Send out results

1. Manufacturing Process
-Run for modeled time interval
-Output state changes while executing
-Wait for the next set of instructions
from planning

current and
past states

state
changes

current and
future

instructions

Starts
schedule

4. f(po,t)
-Store instructions
-Transform data
-Send instructions to
manufacturing

2. g(mo,t)
-Store state changes from
manufacturing model
-Transform data
-Send state to planning

Figure 13. Supply Chain Network Simple Model of Synchronization

 40

The synchronization requirement can have a significant impact on the complexity

of the KIB. The types of synchronization needed between the different models can be

considered to constrain what must be supported by the KIB specification. In the

sequential case, a protocol shown in Figure 13 would only need to be supported. This

sequential protocol can have a fixed execution frequency, though it can easily be changed

to allow different execution frequencies. It is also possible to have an asynchronous

execution scheme.

The requirements specified in the domain model largely determine what must be

supported in the KIB. In our problem description in Chapter 2, we identified the need of

experiments using different planning frequencies (hourly, weekly, ...) for a manufacturing

process frequency. This means the KIB specification must support the change of

frequency of one model execution in relation to the other. It also creates the requirement

that time be introduced into the transformation functions.

The experiments show that the ability to specify the models to execute at different

frequencies is very powerful. For example, a manufacturing simulation can be created

that reports its hourly state. Experiments could be run to evaluate how a 12 hour

schedule performs versus a daily schedule by specifying the planning policy to execute

once every 12 or 24 hour intervals, respectively.

3.2 Supply chain network DEVS/LP KIB

The KIB enables a conceptual model to be partitioned and then modeled into

distinct pieces. In our example shown in Figure 10, the supply chain network is

partitioned into planning and manufacturing parts and a data and synchronization model

 41

that connects the two. Each of these components needs to be mapped into their

respective formalism. This is an area in which the KIB can be very powerful. Experts

from each of the areas (planning and manufacturing) can be leveraged to reuse existing

models or create new ones using best known approaches. These models can then be

composed together into a semantically consistent multi-model using the KIB integration

model. The KIB facilitates experimentation and simulation of different ways of doing

this. Some actual industry case studies showing this are in the experiments section

(Chapter 5).

As alluded above, to support this type of multi-formalism model composability, a

number of capabilities must be provided. The capabilities required to support the LP /

DEVS KIB will be described.

3.2.1 Formalism Composability with LP and DEVS

Modeling theory must be considered at the formalism level to enable the creation

of composable models. The LP and DEVS formalisms are distinct and in general are

targeted for special classes of problems. LP models are developed to find a good or

optimal solution when many exist. DEVS models are developed to simulate behavior of

a system composed of many independent parts with well-defined interactions over some

time period.

The LP specification uses a mathematical algebraic modeling language that is

comprised of an objective function, a set of constraints, and a set of variables. The LP is

a static model in which a fixed initial state is used as the starting point for finding an

 42

optimal solution. The search for the optimal solution is directed by an objective function

and set of constraints. The solution is populated into decision variables that can be read

after the search is complete.

The DEVS specification defines a set of states, input and output events, state

transition functions, an output function, and a time advance function to describe the

dynamics of a system. The DEVS specification explicitly accounts for time. The state

values are available through external events and can be observed at any instant during the

simulation execution.

To enable composability across these two types of models, we must ensure that

the semantics of data and synchronization are consistent. This requires the mapping and

transformation of algebraic LP data to and from the DEVS dynamic system specification

language. For synchronization, the static solves of an LP must be coordinated with the

dynamic execution of a simulator in a way that is semantically consistent with the

intended behavior of the multi-model.

3.2.2 DEVS/LP KIB Formalism

A KIB for composing DEVS/LP formalisms would need to enable a consistent

composition of both the specifications and execution protocols. This type of an approach

would need to consider the execution protocols of the formalisms, how to transform the

data between the two, and then enable the correct coordination between each of the

execution protocols and data transformations. Figure 14 illustrates the DEVS and LP

 43

data protocols, the data transformation, and the KIB synchronization that would need to

be supported.

The LP reads an initial state of values, performs a solve function, and outputs

results. The DEVS model has an internal control loop that manages the state transition,

time advance, and output functions. The DEVS input and output are received via

external events from coupled models. The KIB would need to coordinate the execution

of LP solves with input and output events from the DEVS model and execute the data

transformation functions at the correct time instances. The KIB would also need to

continue the execution and coordination of the models for the duration of the composed

multi-model. This implies that multiple runs of the LP may need to be coordinated with

one single run of the DEVS simulation. For example, if the composed multi-model was

set up to run a supply chain network for one week with a new schedule generated at the

beginning of each day, the LP would need to run seven times to create a schedule for

each individual day, while the DEVS model would need to simulate seven days of

manufacturing. The KIB must coordinate the LP solves such that the initial state

supplied is what the DEVS state is at the logical simulation time corresponding to the

beginning of each day.

 44

Output
Events

Input
Events

DEVS
Protocol

Iterative
Steps

(transitions)

LP
Protocol

Single
Solve

fn(LPo,p)

gk(DEVSo,p)
Read initial
data values

Output
Decision
variables

KIB
Control

Loop
KIB LP
State

LP
input
state

LP
output
state

LP Out
Data

fn In fn Out

gk In

LP In
Data

KIB DEVS
State

DEVS
output
state

DEVS
input
state

DEVS
Input

Commands

DEVS
Output

Coordinates transforms, LP
commands, and DEVS events

gk Out

KIB

Output
Events

Input
Events

DEVS
Protocol

Iterative
Steps

(transitions)

LP
Protocol

Single
Solve

fn(LPo,p)

gk(DEVSo,p)
Read initial
data values

Output
Decision
variables

KIB
Control

Loop
KIB LP
State

LP
input
state

LP
output
state

LP Out
Data

fn In fn Out

gk In

LP In
Data

KIB DEVS
State

DEVS
output
state

DEVS
input
state

DEVS
Input

Commands

DEVS
Output

Coordinates transforms, LP
commands, and DEVS events

gk Out

KIB
Figure 14. LP/DEVS KIB Interfaces and Protocols

Any given KIB approach to enable multi-formalism composition must address the

following four items: data mapping, synchronization, timing, and concurrency between

the models (Sarjoughian and Huang 2005). For the DEVS/LP KIB formalism in this

research, they have been addressed as follows.

Data mapping is accomplished through state interfaces and transformation

functions. The I/O for each of the modeling formalisms are mapped to and from a KIB

interface state model. The transformation functions operate on one interface state model

to generate content for the other interface state model. Each of the models interfaces and

its associated mappings to and from the data transform functions can be modeled in the

KIB specification.

 45

Synchronization is supported through sequential execution of LP, KIB, and DEVS

and is handled by the sync variable. Everything has to happen on time period boundaries,

which is determined by when the sync variable changes value. To support interval-based

sequential execution, the KIB model uses time intervals or periods. The time interval

boundaries are determined by when a data variable changes value. This variable is called

the sync variable. It is configurable and can be set to any variable that is output from the

DEVS model. For this KIB, the DEVS is the only logical model to provide the sync

variable. When the sync variable changes, a state transition in the KIB control model is

called. At the start of each period, the data transformations, LP solves, and sending of

DEVS events can occur.

Timing refers to data mappings and transformation consuming logical time. The

data mappings just mentioned occur instantaneously (i.e., zero logical time) as compared

with the DEVS state transition functions that consume some finite logical time period.

Concurrency refers to the KIB model executing in parallel with the LP and DEVS

models. The KIB does not perform any of the actions concurrently since it serializes data

transformations, DEVS events, and LP solves. Data transformations and LP solves are

“blocking synchronous calls”. The DEVS event handler for external KIB events has also

been implemented as a blocking call. The simulation cannot continue until the KIB

returns response to the event.

 46

3.2.2.1 Model Specification

A LP/DEVS model specification enables defining the LP and DEVS interface

inputs and outputs, the data transformation functions, and their synchronization (see

Figure 14). The LP/DEVS model specification can be partitioned into five different

areas. They are:

1. The specification of the LP input and output interface model
2. The specification of the DEVS input and output interface model
3. The specification of the LP DEVS transformations
4. The specification of the DEVS LP transformations
5. The specification of a KIB synchronization model.

3.2.2.1.1 Interface Model Specifications

The interface model specification enables the definition of which input and output

data can be read and written for each interface. The KIB has a state model for each that

can store current and previous values. The interface specification allows the modeler to

specify which data elements to read and write from each model, what the data structure

is, and how much historical data state to track (e.g., the modeler may want to keep track

of the last seven values of material leaving the warehouse if they are going to configure a

transformation that aggregates the last seven days into a weekly value). The KIB creates

a set of state values for each data element (e.g. array entries or data fields from data

objects) for current and historical values.

The LP input interface data model specifies the names and structure of the LP

input data variables. The modeler could choose data being supplied from the DEVS LP

transformations or they can hard code values in the KIB specification. For LP output, the

 47

model would provide the names and structures of the decision variables the modeler

needs to supply to the LP DEVS transformations.

For LP solvers these types of interfaces would typically be named matrices

specifications. Each of the matrices would have a name and dimension. Each value in

the matrices would map to a set of time ordered LP interface state values. If the KIB is

interfacing to an optimization implementation that supports the OPL (Hentenryck 1999)

language, the modeler may choose to specify the interface using data structures supported

by this language.

The LP input and output interfaces can be described as:

SLPOutputInterface ⊆ x

where SLPOutputInterface is the set of LP output data configured to go into KIB LP
interface state model. The LP output data can be a set of the values x.
The decision variable values (Figure 5).

SLPInputInterface ⊆ c or b

where SLPInputInterface is the set of KIB output data configured to go into LP solver.
The input would be either c: the cost coefficients, or b: the set of constant values
(Figure 5).

The DEVS interface specification enables the modeler to define which events to

send and receive from the simulation. The specification also enables the data structure to

be modeled to match the data object structure contained within the events. Each data

element within the data object can be a state value in the DEVS interface state within the

KIB. The set of allowable states that could be configured in the DEVS interface model

would be:

 48

SDevsOutputInterface ⊆Y

where SDevsOutputInterface is the set of DEVS output data configured to go into KIB
DEVS interface state model. This output would be contained within the output
events Y from the DEVS simulation (Figure 6).

SDevsInputInterface ⊆ X

where SDevsInputInterface is the set of KIB output data configured to go into DEVS
Semiconductor Supply Chain Network simulation. The data could be elements of
X: the allowable input values to the DEVS simulation (Figure 6).

3.2.2.1.2 Transformation Specifications

The transform specifications enable the modeler to define how to map and

transform data between the models. The transforms can read the state from one of the

KIB interface state models (LP interface state or DEVS interface state in Figure 14) and

write it to the other interface state model. The modeler can specify a data transform

function and the input and output mappings to that transform. In Figure 14, the output of

the DEVS interface state is made available to the LP interface state via function

gk(DEVSo,t). Conversely, the LP output state is made available to the DEVS input state

via function fn(LPo,t).

The LP DEVS transformations are defined as:

fnout = fn(LPo,t) :
LPo,t ⊆ SLPOutputInterfaceStates and fnout ⊆ SDEVSInputInterfaceStates

The DEVS LP transformations are defined as:

gkout = gk(DEVSo,t):
DEVSo,t ⊆ SDEVSOutputInterfaceState and gkout ⊆ SLPInputInterfaceStates

 49

3.2.2.1.3 KIB Synchronization Model Specification

The KIB synchronization specification enables the LP or DEVS model frequency

to be a multiple of the other, (e.g., the simulation model can run 24 cycles to every 1 LP

cycle if the simulation is running hourly and the LP is running daily). A single LP

iteration is one execution of the solver. For the DEVS model, the KIB requires a

definition of what constitutes a DEVS iteration. For the KIB, this is accomplished by

requiring the modeler to specify a DEVS synchronization data variable. The KIB will

increment its DEVS cycle count when this variable is updated by an external DEVS

event. The KIB maintains two cycle counters, the LP cycle counter and the DEVS cycle

counter. They are denoted as:

KIBDEVSCycleCount
KIBLPCycleCount

KIBLPCycleCount will increment on each completed LP solve
KIBDEVSCycleCount will increment each time the KIBDEVSSyncEvent occurs
The KIBDEVSSyncEvent will occur when the synchronization data element changes.

The KIB model specification requires a synchronization data element be defined.

The KIB synchronization element must be an element of the DEVS output data elements

defined in the DEVS interface specification.

The KIB synchronization specification allows the modeler to define when the LP

solver is called or when events are sent to DEVS using the KIBLPCycleCount and

KIBDEVSCycleCount variables. The specification also allows the configuration of when data

transform functions are called using the cycle count variables.

 50

The execution frequency can be configured with the cycle count variables. (e.g. if

there was a transform that should only update the LP data weekly, and the simulation was

running hourly, you could model the data transform to execute once every 168 (hours in 7

days) cycle counts.

3.2.2.2 Protocol Specification

The protocol captures the behavior and semantics consistent with the LP/DEVS

Model Specification. Figure 15 illustrates a system design for a Semiconductor Supply

Chain Network LP/DEVS KIB. We will use this illustration to describe the protocol

formulation.

DEVS Event
Listener

K
I
B

D
E
V
S

S
t
a
t
e

K
I
B

L
P

S
t
a
t
e

Results
Listener

gk(DEVSo,t)

fn(LPo,t)

KIB Control

gk(DEVSo,t)gk(DEVSo,t)

fn(LPo,t)fn(LPo,t)

18.
Outbound
Events

1.Inbound
Events

16.Request
State

15. Send DEVS Events

7.Initiate
Solve

10. Solve Command
With Initial State

11. Solve
Results

8.Request
State

3.State Event
Occurrence

5.Get
State

12.Update
State

9.Get
State

2.Update
State

17.Get
State

DEVS Event
Sender6. DEVS LP

Transform

4.
Request
State

14.
LP DEVS
Transform

Solve
Initiator

13. Solve Complete

DEVS Event
Listener

K
I
B

D
E
V
S

S
t
a
t
e

K
I
B

D
E
V
S

S
t
a
t
e

K
I
B

L
P

S
t
a
t
e

K
I
B

L
P

S
t
a
t
e

Results
Listener

gk(DEVSo,t)

fn(LPo,t)

KIB Control

gk(DEVSo,t)gk(DEVSo,t)

fn(LPo,t)fn(LPo,t)

18.
Outbound
Events

1.Inbound
Events

16.Request
State

15. Send DEVS Events

7.Initiate
Solve

10. Solve Command
With Initial State

11. Solve
Results

8.Request
State

3.State Event
Occurrence

5.Get
State

12.Update
State

9.Get
State

2.Update
State

17.Get
State

DEVS Event
Sender6. DEVS LP

Transform

4.
Request
State

14.
LP DEVS
Transform

Solve
Initiator

13. Solve Complete

Figure 15. Semiconductor Supply Chain Network LP/DEVS KIB System Design

Input and output arrive at the KIB from the LP and DEVS models. The KIB

sends and receives data from the LP via the Solve initiator and Results Listener shown in

 51

Figure 15. Input and output to the DEVS model is via the Event Sender and Event

Listener. For both models, the receiving components (i.e. Results Listener and Event

Listener) can update the internal state of the KIB when events or results occur. The

sending components (i.e. Solve Initiator and Event Sender) are initiated from the KIB

control component. The KIB control component can initiate four different types of

actions. They are LP solve, DEVS event, DEVS LP transformation function, and

LP DEVS transformation function. The LP/DEVS KIB Model Specification is used to

define how the KIB coordinates these actions.

3.2.2.3 KIB Control Model

The Semiconductor Supply Chain Network KIB control has an internal cycle

counter that increments when the synchronization data element updates. The data

element is updated using push pull logic. When an event is received from the DEVS

model, the DEVS event listener updates the KIB DEVS state, which in turn notifies the

KIB control component. The KIB control then pulls the new value from the KIB DEVS

state.

The KIB synchronization model must define a synchronization data element,

which can be any data element configured in the LP or DEVS interface specifications. It

is up to the modeler to make sure the appropriate data signal is configured. For our

DEVS Semiconductor Supply Chain Network models, we have a clock event that outputs

at the end of each day. This is what has been configured in the KIB as a synchronization

event. When the synchronization data element updates, the KIB control model will

 52

increment its cycle counter and start a new control cycle. The control cycle is

configurable to which actions take place and their order of execution. In Figure 16, the

different types of control loops are shown.

1. Initiate
DEVS LP
transforms

2. Call
LP Solve

5. Send DEVS
Events

4. Initiate
LP DEVS
transforms

3. Read
Results

Increment
Cycle
Count

Wait
For
Sync
Event

Execute
Control

Sequence

Cycle Count
Mod

Execution
frequency = 0?

Initiate Action

Done

Yes
No

KIB Main
Loop

Default KIB Control Sequence
(Configurable)

Logic for
Configurable
Actions

•Transform functions
•LP Solves
•Events to DES

Solve
InitiatedNo Solve

Initiated

event

sync event

start sequence

start

next step

next
step

next step

finished
1. Initiate

DEVS LP
transforms

2. Call
LP Solve

5. Send DEVS
Events

4. Initiate
LP DEVS
transforms

3. Read
Results

Increment
Cycle
Count

Wait
For
Sync
Event

Execute
Control

Sequence

Cycle Count
Mod

Execution
frequency = 0?

Initiate Action

Done

Yes
No

KIB Main
Loop

Default KIB Control Sequence
(Configurable)

Logic for
Configurable
Actions

•Transform functions
•LP Solves
•Events to DES

Solve
InitiatedNo Solve

Initiated

event

sync event

start sequence

start

next step

next
step

next step

finished

Figure 16. Default KIB Control Logic

First, there is the main control loop. This loop waits for a synchronization event

to occur, then the cycle count is incremented, after which the control sequence is started.

After the control sequence completes, it goes back to the wait for sync event. The wait

for sync event would be supported by arrows (1,2,3,4,5) in Figure 15. An external DEVS

 53

event would update the KIB DEVS state (arrows 1 and 2). The KIB DEVS state would

notify the KIB control component of a state change (arrow 3). The KB control would

check if the data element to update the cycle count changed (arrows 4 and 5).

The control sequence is started at the end of the KIB main control loop. This is

default which could be overwritten in the KIB control model specification (see Figure 15

and Figure 16). The ordering of when to execute solves, initiate transform functions, and

send events are configurable by the KIB models.

The numbering in Figure 15 corresponds to the default control loop. In this

scenario, first, the DEV LP transformation functions are initiated (arrow 6). There may

be multiple occurrences of these functions, each of which can be configured to execute

on every nth cycle. Second, the LP solve is initiated (arrow 7); it may be initiated every

time or at some lower frequency multiple. If no solve is initiated, the control loop jumps

to step 4, otherwise it proceeds to step 3. If a solve was initiated, the initial state from the

KIB LP state model needs to be read (arrow 8,9), followed by a call to the LP solver

(arrow 10). Then the control loop waits for the results (arrow 11) and reads them into the

KIB state model (arrow 12). The KIB control is notified that the solve is complete

(arrow 13). Next, the LP DEVS transformation functions are initiated (arrow 14). And

finally DEVS events are sent out (arrows 15,16,17,18).

The data transformation functions and LP solves are configurable actions. The

logic for configurable actions is shown in Figure 16. For the Semiconductor Supply

Chain Network DEVS/LP KIB, they can be configured to execute on every cycle, or

some lower frequency multiple. (e.g. If cycles are occurring every hour and updates are

 54

only needed once a day, the configurable action can be modified to execute once every 24

cycles).

The LP/DEVS KIB protocol for the class of Semiconductor Supply Chain Network

models is defined as follows:

Initialization

1. At initialization, the DEVS model reports the initial state of the supply
chain network topology.

2. The KIB executes the DEVS LP function(s) for writing the initial DEVS
output state into the LP initial state.

3. The KIB initiates an LP solve.
4. The LP generates the initial future schedules for the DEVS model to use.
5. The KIB executes the LP DEVS function(s) to write the LP schedule to

the DEVS model.

Control Loop

6. KIB waits for DEVS to update its output state (arrows 1 and 2 in Figure
15).

7. The KIB examines DEVS output state and DEVS/LP control model
frequency to determine if any DEVS LP should be executed. It executes
all functions that are scheduled (arrows 3,4,5,and 6 in Figure 15).

8. The KIB checks if an LP solve should be initiated by performing the
configurable action check illustrated in Figure 16. If true, the KIB
initiates an LP solve and waits for the results before going to the next step
(arrows 7,8,9,10,11,12,and 13 in Figure 15), otherwise, proceed to next
step.

9. KIB looks at simulation output state and control model to determine which
LP DEVS functions to execute (arrow 14 in Figure 15).

10. KIB sends events to the simulation which will enable it to complete
another interval (arrows 15,16,17,18 in Figure 15).

11. Go to beginning of control loop – step 6.

What makes this protocol specific to our Semiconductor Supply Chain Network

models is:

 55

• The initialization protocol requiring the DEVS model to report the initial

state before starting anything. Other types of problem domains may need

the solver to run first.

• Control is only being synchronized on the DEVS state. The control could

be generalized based on the LP state synchronization.

• The LP solve and transformation functions run at time boundaries on a

DEVS iteration.

3.2.2.3.1 Protocol Execution

Two types of external occurrences can initiate internal KIB actions, an external

event from the DEVS model or the completion of a solve from the LP model. The

algorithm for the occurrence of an external DEVS event is:

On DEVS event

1. Execute DEVS state update transition function.

• This function will update the DEVS state if the event was modeled in the
model specification file (arrows 1,2 in Figure 15).

2. Update time advance.

• Check if state updates meet model configuration requirements to update
KIB time advance (arrows 3,4,5 in Figure 15).

3. Execute DEVS LP data transformation function.

• This function will iterate through all the DEVS LP transforms
configured in the model specification and execute it if their time advance
= current KIB control cycle (arrow 6 in Figure 15).

4. Execute check solve function.

 56

 Check if time advance for solve = current KIB cycle
 If TimeAdvance = current KIB cycle

• Execute the LP initiate solve function (arrows 7,8,9 in Figure 15).

o This function populates an LP coefficient model using current
states from the KIB LP State model.

o Send command to solver with LP coefficients (10 in Figure 15).

 Else

• Execute LP DEVS transforms transition

o This function will iterate through all the LP DEVS transforms
configured in the model specification and execute it if their time
advance = current KIB cycle (arrow 14 in Figure 15).

• Send update events to DEVS

o Will create events scheduled to be sent at the current time to the
DEVS model using the current KIB DEVS state (arrows 15,16,17
in Figure 15).

o Send the events to the DEVS model at the proper time (arrow 18 in
Figure 15).

The algorithm for when an LP solve completes:

On LP solve complete event (13 in Figure 15).

1. Execute LP DEVS transform transition function.

• This function will iterate through all the LP DEVS transforms
configured in the model specification and execute it if their time advance
= current KIB cycle time (arrow 14 in Figure 15).

2. Send update events to DEVS

• Will create events scheduled to be sent at the current time to the DEVS
model using the current states from the KIB DEVS state model (arrows
15,16,17 in Figure 15).

• Send the events to the DEVS model (arrow 18 in Figure 15).

 57

A software design class diagram showing basic software components and their

relationships highlighting the interactions among the major KIB components can be

found in Chapter 6.

While developing the DEVS/LP protocol, some parts may be modified based on

the LP planning and DEVS manufacturing models. For initialization, it will be assumed

an initial state already exists. This choice is implementation specific and therefore may

be redefined based on different requirements. For configuration of KIB, it will be

assumed that either model state can be used to initiate KIB control actions.

It is also assumed that the DEVS simulation will wait for KIB to send events. In

order for DEVS models to support this, they would need to have an atomic or a coupled

model that listens for external events outside of DEVS. This would require the

implementation of a DEVS model that can communicate externally from the DEVS

implementation. The external communications would need to be enabled using

interoperability techniques for interfacing with the KIB.

Likewise, interoperability techniques would be required for connecting a KIB

implementation to an LP solver. The right and left boundaries of Figure 15 is where

connections to the KIB implementation via interoperability techniques would be required.

3.3 DEVS/LP Model Specification

A Semiconductor Supply Chain Network LP/DEVS KIB enabled the composition

specification of LP/DEVS models and experiments described previously. The formalism

follows the methodology described in the previous section.

 58

The specification consists of:

1. Model interfaces in terms of their native data structures.
2. Interface relationships using mapping and transform functions.
3. Model synchronization in terms of how each will be executed in relation to

the other.

3.3.1 Mapping and Transform Example

For this section we will use the example problem shown in Figure 17. A small

semiconductor manufacturing topology consisting of two fabrication factories, two

assembly warehouses, and two semiconductor Assembly Test (AT) sites are being

controlled by a wafer shipping decision system. The factories can ship their products to

the two assembly warehouses. Material from the warehouses can be released into

semiconductor assembly tests. The amount and timing of the product released from the

assembly warehouses is determined by schedules of what to start from the associated

assembly test site.

Wafer Shipping Decision System
What warehouse to send products from the factories

Control

Manufacturing

Factories
Warehouses

Instructions
State

Material Flow

Assembly
Warehouse 2

Assembly
Warehouse 1

Fabrication
Plant 2

Fabrication
Plant 1

Shipping
Assembly

Ship 1

Ship 2

Ship 3

Ship 4

AT1

AT2

Wafer Shipping Decision System
What warehouse to send products from the factories

Control

Manufacturing

Factories
Warehouses

Instructions
State

Material Flow

Assembly
Warehouse 2

Assembly
Warehouse 1

Fabrication
Plant 2

Fabrication
Plant 1

Shipping
Assembly

Ship 1

Ship 2

Ship 3

Ship 4

AT1

AT2

Figure 17. Example Problem

 59

A controller is connected to make decisions on routing material leaving the

fabrication plants. The objective of the controller is to keep the warehouse inventory

within upper and lower control limits. Input states to the controller are the product that

was shipped, warehouse inventory levels, forecasted builds of the fabrication plants, and

forecasted starts from the assembly test sites. The output of the controller are commands

that dictate the quantity of each product to be shipped from a given fabrication factory to

the assembly test warehouses. The output commands need to specify what product to

release, where it should be shipped, and the quantity.

The manufacturing topology can report how much WIP is in the fabrication

plants, how much material is in shipment and how much inventory is in the warehouses,

as well as the planned starts for the assembly warehouses. The data system reports the

material states in terms of lots. A lot is a batch of units that are processed together in the

manufacturing flow. A lot has a certain quantity of units of a particular product. We can

define a lot structure as follows:

Lot Structure

 Name: Unique identifier

 ProductName: String

 Quantity: Integer

The controller would need to output a matrix of quantities for each factory that

specifies how much to release of each product and where it should be shipped. For the

model shown in Figure 17, there would be two output matrices, one for each factory.

 60

 An example of how this matrix could look is shown below (1). The matrix is a

3 n× vector that specifies a product number, a destination warehouse number, and a

quantity where n is the number of product and destination combinations.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

n

n

n

QQ
DD
PP

...

...

...

1

1

1

 (1)

The product number is mapped to one of the products built by the factory. The

destination number specifies which warehouse the material should be shipped to and the

quantity specifies how much.

3.3.1.1 Data Transforms

The control model requires data to be input in terms of units. For some types of

data such as factory shipments, the quantity of product that leaves must be aggregated

over a controller interval. For example, if the controller interval is one day, the quantities

from all lots that left the factory in the previous day would be aggregated into a single

value for input into the controller on the start of the current day. The value is calculated

as shown in equation (2):

∑
∈

=
tdpLotsOutlot

quantitylotdpf
,,

),((2)

where p ∈ products, d ∈ destinations, previousControlTime < t ≤
currentControlTime.

Product

Destination

 61

If the controller interval is daily and the manufacturing model runs hourly, the

controller instructions need to be disaggregated. For the mapping of the controller release

to the simulation, let’s assume that the value needs to be divided equally over each of the

simulation time intervals. For example, if the simulation is running at an hourly

granularity and the controller is generating instructions once a day, the controller

instruction would be divided by 24. In general, the disaggregation could be more

complex, but for illustration this simplified algorithm will be used. The equation for the

equally divided disaggregation is:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗=

sf
cf

crdpg qdp ,,),((3)

where g(p,d) is factory release quantity for product p going to destination d, cr is
controller release quantity, cf is controller frequency, and sf is simulation
frequency.

3.3.1.2 Mapping between Vectors and Events

We must now consider how the data and control will be transferred between the

two formalisms. For the discrete event simulation, we must read and write events to a

running simulation. For the controller, we must populate input variables, initiate a solver

run, and then read the output variables.

Suppose the simulation is running at hourly granularity and the controller is

generating instructions once a day using the format shown in (1). Also assume that each

factory can build two products and there are two possible destinations for each product.

The LP modeler could write the equations in a manner that would format the output as

shown in (4). The top row specifies product numbers, the middle row denotes the

 62

destinations, and the bottom row indicates the quantity to release. Each column defines

three values: product, destination, and quantity.

Factory1Ships =
1 1 2 2
1 2 1 2

1000 1000 500 250

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4)

The controller output instruction needs to be mapped to simulation input events,

which have the following structure:

ReleaseEvent(

 SimulationPort,

 Data(product, destination, quantity))

The simulation port specifies where the event should be directed. The data has

three elements: what product this event is for, which destination warehouse the product

should be shipped to, and the quantity to transport.

To accomplish the mapping and transforms, we need to first consider which entity

the controller output matrix is for. Since the name of the matrix is Factory1Ships,

we can assume it is for factory1. This must be explicitly mapped in the KIB

integration model. The controller output matrices with name Factory1Ships will be

mapped to DES events going to the release input port for factory1. Next, each column of

the matrix needs to be transformed into simulation input events. Each matrix element

[column i, row j] is a positive scalar value (e.g., Factory1Ships [0,2]=1000). We will

 63

work through the first column in matrix (4). This column shows that 1000 units of

product 1 should be sent to warehouse 1. Let’s assume that both the controller and

simulation use the same number scheme for products and destinations. Since the

controller is running once a day and the simulator hourly, we will need to generate 24

simulation events for each hour of the simulation on the day under consideration. The

quantity will need to be transformed using equation (3). The transformed quantity value

for the first column in (4) would be 1000 * 1/24. The simulation data event values in the

24 generated events would be: data(1,1,1000/24). The mapping between structures would

look like:

ReleaseEvent(Factory1ReleasePort,

Data(Factory1Ships[0,0],

 Factory1Ships[1,0],

 g(Factory1Ships[0,0],

 Fatory1Ships(1,0])))

Referring back to section 3.3, the specification consists of model interfaces,

interface relationships, and the synchronization model.

 64

3.3.2 Model Interfaces

This part of the specification enables the modeler to identify the names and data

structures of the available input and output data to each of the models. All the data

structures required for the interfaces need to be specified.

3.3.2.1 DEVS interface specification

Data of interest from a DEVS model is contained within external events received

from atomic or coupled models. Depending on the implementation of the simulator and

interface, the states could be read and written during a running simulation or the written

states could be populated as an initial state to the simulation, the simulation run for one

time period, and output states read at the end of the time period. Either way, the same

elements must be modeled.

It is also important to specify at what time instant the state is read or written. For

the Semiconductor Supply Chain Network LP/DEVS formalism, the timing of when to

read or write a state is determined by the KIB Control model (see Figure 16). This will

be discussed in more detail below.

 For our formalism we need to map all the data associated with a DEVS external

event. An external event is tied to an input or output port on an atomic or coupled model,

has a name, can contain data, and happens at a specific time instant. Table 1 shows how

these data elements are mapped into the KIB Data Model. The mappings are

configurable in the model specification that the KIB provides. The DEVS port and event

 65

names are mapped to a single message name in the KIB. If the port and event names

differ, then a multi-part message name is required.

DEVS Data Elements KIB Data Model
Type of Port (input or output) Direction: Input or Output

Model (atomic or coupled) Module Name
Port Name

Event Name
Data Name

Time of occurrence Timestamp
Data Object Structure Data type specification

Table 1. DEVS Data Element Mappings to KIB Elements

The mapping into the KIB specifies all the data elements that are available to be

populated with values while the models are being executed. When the models are

executed, the external events received from the DEVS model has each of its data

elements mapped into an instance of a KIB DEVS state value. The control will

determine how many historical records are stored for recurring events of the same type in

the KIB DEVS state.

3.3.2.2 LP interface specification

An LP model has an initial state populated with data values and a set of variables that can

be read as output or written to as input. Inputs, outputs, and state variables can be multi-

dimensional arrays with values constrained to positive real numbers.

The mapping between the LP data elements to the KIB data model is shown in

Table 2. The data can be input for the LP (initial state) or output (decision variables).

The LP has no mapping to the KIB module name since it is not a component-based

 66

specification. All LP data variables could be placed into a single module or logically

grouped by the modeler. The name of the vector or matrix maps to the KIB data name.

The time of the solve maps to the KIB timestamp field and the matrix or vector definition

is stated in the data type specification.

LP Data Elements KIB Data Model
Type of Parameter: Initial state(input) or

decision variable (output)
Direction: Input or Output

N/A Module Name
Matrix or Vector name Data Name

Solve Time Timestamp
Matrix or vector bounds definition Data type specification

Table 2. LP Data Element Mappings to KIB Elements

3.3.3 Interface Relationships

Three different items must be modeled in the interface relationship:

1. Mapping: specifies which LP input states map to the DEVS output states

and vise versa.

2. Transforms: specifies what function to apply to the data being written

from one model output to the other’s input.

3. Timing: specifies when the data should be read from one model output,

transformed, and written to the other model input.

Mapping: KIB interface output variables can be assigned to transformation

function inputs. Similarly, transformation function outputs can be assigned to KIB

interface inputs.

 67

The timestamp on the output is written by the KIB control when an event arrives

or when a solve completes. The timestamp on the input data (this is input to the external

model from the KIB) is written when the KIB sends an event or calls the solver. A

timestamp from the output can be configured to be written to the input. If an output

timestamp is mapped to the input timestamp, this means the input should occur

simultaneously with the output.

For mapping, the data variables are addressed by the values in the Module Name

and Data Name fields. Data values in the Module Name, Data Name, Timestamp, and

Data fields can also be mapped to transformation inputs (see Table 1 and Table 2). Some

rules for mappings:

• Output variables must always be mapped to transformation function

inputs.

• Transformation function outputs can only be mapped to input variables.

• Transformation functions can have 1 to n inputs.

• Transformation functions can have 1 to n outputs.

Transformation: The transformation logic enables the interface to transform one

model-type data representation to another model-type data representation. Data can be

scaled, have primitive type conversions applied, be selected from multiple values, and be

aggregated or disaggregated.

The set of available values from the source model for the transformation are all

the current and historical data values in the KIB state associated with the source model.

 68

Transform Types:

• Scaling: multiplier applied to value

• Type Conversions: Integers to Floats, Floats to Integers, Strings to

Number, Numbers to Strings

• Value Select: Minimum, Maximum, Oldest, Newest

• Aggregation: Mean, Median, Sum

• Disaggregation: Division, Netting (only 2 for Semiconductor Supply

Chain Network)

Scaling: Many times, a planning algorithm may be modeled using calculations in

kilo units, or mega units. In this case, if the data originating from the simulation is in

terms of actual units, the quantities will need to be divided by 103 or 104 respectively.

Correspondingly, the data from the planning algorithm will need to be multiplied as well.

Type Conversions: The LP will always require positive real number input.

However, the DES can use Reals, Integers, or Strings. Type conversions may be

required.

Selections: A single value is selected from a set of possible values. Some

common types of selections are minimum value, maximum value, oldest, and newest.

Selections can have a time dependent attribute. Figure 18 shows a case in which the

indexed value to reference in an array is dependent on current logical time. The example

shown could happen if the LP generates a schedule once a day for the next three eight-

hour shifts. The corresponding values are then passed into the DEVS model when the

logical time for the next shift start occurs.

 69

X0,0

X0,1

X0,2

Output values
at time t

Value to use at t+1

LP DEVS

Value to use at t+2

Value to use at t+3

X0,0

X0,1

X0,2

X0,0

X0,1

X0,2

Output values
at time t

Value to use at t+1

LP DEVS

Value to use at t+2

Value to use at t+3

Figure 18. Time Dependant Mapping

Aggregation: Aggregation is a class of transforms that calculates a single value

from a set of multiple values. Figure 19 depicts different ways in which data can be

aggregated, including across current values, across historical values, or both. The

number of historical values available is dependent upon how often the model is being

synchronized in relation to the other model. For example, if the simulation is giving

hourly updates and the LP is giving daily plans, there will be 24 simulation data records

available on every LP run. It should be noted that although arbitrary operations can be

carried out on matrices in terms of time and data, only a subset of these operations are

logically well defined. In particular, aggregation across time periods must be ensured to

be consistent with the KIB protocol.

 70

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

Aggregation across
historical values

Aggregation across
current values

Aggregation across
current and historical values

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

t

t-1

t-2

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

x, x, x
x, x, x
x, x, xx, x, x

x, x, x
x, x, x

x, x, x
x, x, x
x, x, x

t

t-1

t-2

Aggregation across
historical values

Aggregation across
current values

Aggregation across
current and historical values

Figure 19. Types of Data Aggregation

Disaggregation: A common application for disaggregation in our Semiconductor

Supply Chain Network domain is how to break down a planning schedule into lower

granularity buckets. For example, how would a weekly schedule value be divided into

daily starts schedules? Disaggregation algorithms can be modeled to do this. A very

simple algorithm would divide the weekly schedule by seven. In reality, this type of

schedule disaggregation could cause problems if manufacturing was building multiple

products and the setup time for switching to a particular product was long.

Other approaches known as netting algorithms can be used. Netting simply adds

or subtracts the over and under builds from the previous time period. Whether the netting

is put in the interface function or in the models themselves should be a modeler’s choice.

Disaggregation could also be tied closely with timing. Take the example in which

the LP is creating a new schedule once a week, the simulation is modeled to run on daily

schedules and the actual execution of the simulation is at an hourly granularity. The LP

 71

schedule would need to be divided by seven to get a daily value, then that daily value

would need to be sent to the simulation once every 24 hours.

Timing: The timing of when to execute the data transform functions is

configurable. The default timing is to execute the transform once every DEVS/LP cycle.

However, the execution can be configured to only run one time every n cycles, where the

value of n can be modeled.

When the synchronization frequency is changed, it will impact when the data

between the models will be sent and the aggregation/disaggregation data transformations

executed. For example, if running the controller daily and simulation hourly, the quantity

of material in all the lots that have left the factory in the last 24 hours need to be summed

up. If the control frequency is changed to once a shift (8 hours), then we would only need

to sum the material over the last shift. Conversely for the factory release commands, in

the daily control cycle, 24 events would need to be sent. In the once a shift control

scenario, only eight events were sent per control cycle. Figure 20 illustrates the data

transform considerations of running a daily solve against an hourly simulation.

Interval 1

Interval2

Simulation
Events

Discrete Event
Simulation

f(p,d)

g(p,d)

MPC
Controller

ct

Days Hours

ct + 1 st + 24

stInterval 1

Interval2

Simulation
Events

Discrete Event
Simulation

f(p,d)

g(p,d)

MPC
Controller

ct

Days Hours

ct + 1 st + 24

st

Figure 20. Transforms over Different Time Scales

 72

3.3.4 Synchronization Model

The synchronization model allows the specification of when to run the LP model

in relation to the DEVS model. The models can run in frequency multiples of each other.

For example, if the simulation is running hourly, the LP could also run hourly, once every

2 hours, once every 3 hours, and so on.

Synchronization is supported through a data value received from one or the other

models. The specification allows the definition of which variable to use, and when to

execute each model based on changes of this data variable. This scheme requires that one

of the data values received by either the LP or DEVS model be used for execution

synchronization.

For example, if the DEVS model had a data variable named iteration number, the

KIB could be configured to update its cycle counter every time the DEVS iteration

number changed. The KIB could also be modeled to execute either of the models on

multiples based on this data variable being updated. If we wanted the LP to generate a

new plan daily, it could be set to run once every 24 times the DEVS iteration number

changed.

Any of the data transformation functions can be modeled to run on multiples of

the KIB cycle count. DEVS LP transformation functions can be executed on every

KIB cycle or on some multiple of that cycle.

 73

3.3.5 Transformation Functions For the LP/DEVS KIB

The transformation functions have been categorized into two types. There are

data mapping transformations and data value transformation functions. The data

mapping transformation functions enable complex data types (arrays, objects, sets) to be

mapped to different complex or simple (integer, float, string) data types. The data value

transformation functions can change the values within the data elements.

The inputs and outputs to data mapping transformation functions can be single or

multi valued. By default, data mapping transformation functions will not change data

values; it will only copy the data from one data structure type to another. However, data

mapping transformation and data value transformation functions can be combined in one

interface relationship. For example, the data mapping transformation function that copies

an array to an unordered set could include a data value transformation function that scales

each value before writing it to the set data structure.

In the following two sections, we will describe the mapping and data

transformation functions needed to implement our DEVS/LP KIB.

3.3.6 Data Mapping Transformation Functions

UnorderedSetToArray: This mapping copies an unordered set of tuples to an

ordered array. One of the data fields in the set must be specified as an index field. The

transform uses the index data values to carry out the ordering.

ArrayToUnorderedSet: An array of values is copied to a set of unordered tuples.

The array index value can be copied to a set tuple field if the array is part of the structure,

 74

then the other fields in the structure will be copied as well. For example, if you have a

structure that contains a field for a product name and another field that contains an array

of n values, a set can be created with n tuples where each contains the product name, one

of the array values, and the index for that array value. The starting value for the index can

is customizable.

ArrayValueToVariable: This mapping copies a specific array value to a single

variable. The array index needs to be specified. Also, if the array is part of a structure, a

key field with its matching data value can be indicated. An example of such would be a

structure that contains a product name and an array of values. The array entry 3 of

productX could be specified so it will be written to this variable.

VariableToArrayValue: This mapping copies a variable value to a specific array

entry. An index number needs to be denoted. Also, a key entry can be specified for arrays

that are contained within a structure.

SetFieldValueToVariable: This mapping copies a specific field value to a single

variable. A key field needs be specified to determine which tuple from a set to use. For

example, if a set of tuples each contain a product name and quantity value, and the

quantity for productx needed to be copied to variablex,, the product name needs to defined

as key to distinguish from other product name, quantity tuples.

VariableToSetFieldValue: This transform copies a variable to specific field in a

set tuple. The field name in the tuple must be specified along with a key value.

 75

Copy: The values of the fields from one model are copied into variables in the

other model. The names do not need to match, merely the data type. For example,

integers can only be copied to integer fields.

Copy Exactly: The structure and data is copied to an identical structure in the

other model. Names of variables and their values are maintained in the transfer.

3.3.7 Data Value Transformation Functions

This section lists the data transformations provided by the KIB modeling

language.

FloatToInteger: This transforms the data value from float to integer. A rounding

algorithm of floor, ceiling, or round must be specified.

IntegerToFloat: Converts an integer value to a float.

AssignValue: Assigns a value that is configured in the KIB model to a data field.

This is a static value that cannot change during the execution.

Aggregations (Mean, Median, Min, Max, Sum): These transforms aggregate

multiple values into a single value. The aggregation can be for all values in the current

time period or for multiple time periods. If data values are in arrays, the aggregation can

return an array where the entries are aggregated from multiple arrays.

Disaggregation: Different types of disaggregation can be supported. A general

purpose disaggregation is to divide the source value into equal target values. The design

of the KIB enables extensions for customized disaggregation algorithms.

 76

Scale: Multiplication or division operations can be specified to scale the data

values.

3.4 Control Schemes

The KIB is required to support a synchronization model that enables the KIB

control to run in multiples of the simulation. Experiments were designed with daily,

shiftly, and hourly control with a simulation that could run at an hourly granularity. The

KIB configuration model allows the execution of either model to run in multiples of the

other.

To provide this capability, the KIB must coordinate the timing of simulation

input/output events with the solver execution. It also needs to execute

aggregation/disaggregation transforms across the correct time intervals. The ability to

adjust the aggregation/disaggregation of data based on execution frequency is a key

enabler of experimentation at different control frequencies. For example, if trying daily

control against hourly data requires the aggregation of all events that occurred over the

last 24 hours of logical simulation time. If trying shiftly (eight-hour shifts) control, then

only aggregate over the last eight hours for logical simulation time.

A modulo function is used to model when solves and data transforms are to occur.

A frequency number can be configured against one of the cycle counts. If the module

returns zero, then the action will take place. The specification is as follows:

 77

Execution Frequency for X = Xef

Control Algorithm:

If (Xef Modulo CycleCount = zero)
 Take action
Else
 Do nothing.

Where Cycle Count in (KIBDEVSCycleCount, KIBLPCycleCount)

3.5 KIB Specification Implementation in XML

An implementation of the KIB specification was created using XML. The XML

language provides the capability to create a structured language that is easy to parse and

store in computer memory using off-the-shelf software tools. A KIB implementation was

created that could read this XML language, which was used to support the case studies

described in Chapter 5.

We will illustrate the LP/DEVS KIB XML modeling language using the Supply

chain network model illustrated in Figure 17 and the example described in 3.3.1. The

model in Figure 17 depicts status messages being sent from the fabrication, assembly

warehouse, and AT entities to the planning model. The planning model sends commands

back down to the fabrication entities.

Our XML implementation requires that an LP/DEVS KIB model be a “well

formed” XML document. Any KIB implementation can then use standard XML tools to

parse the contents of the model. Since the model must be a well formed XML document,

it requires a root element. We have defined the root element as: <KIBMODEL>. The

opening and closing tags of this model would be:

 78

<KIBMODEL>

….

</KIBMODEL>

The LP/DEVS KIB modeling language provides a hierarchy that allows the model

to be decomposed into modules. Within each of the modules, the interfaces for each of

the models can be specified along with the relationships between them. The module tags

give the modeler an option to separate the KIB model into logical parts. The opening tag

for a module specification is:

<MODULE_SPECIFICATION name = “entity_name”>

 A KIB model requires a minimum of two modules, one for specifying the data

interfaces, mappings, and transforms and another to specify the control synchronization.

However, the modeler may want to use many more modules to keep the model easy to

understand. A logical set of modules to model for the example Supply chain network

problem Figure 17 is shown below in Example 1.

 <KIBMODEL>
 <MODULE_SPECIFICATION Name="FABRICATION_1">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="FABRICATION_2">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="ASY_WH_1">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="ASY_WH_2">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="AT1">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="AT2">…</MODULE_SPECIFICATION>
 <MODULE_SPECIFICATION Name="Sync">…</MODULE_SPECIFICATION>
 </KIBMODEL>

Example 1. High Level Module Specification for the KIB Model

In this example, we have created seven different modules. There is a module

corresponding to each of the entities that send and receive messages to the planning

 79

model and an additional “sync” module. We will define the data interfaces and

transformations for the entity modules. For the sync entity, we will define how the LP

and DEVS models are synchronized.

At the next level there are interface specifications and interface relationships.

How these are specified within KIB modules are shown in Example 2. There are the

DEVS and LP interfaces along with the interface relationship. The XML tags are shown

in Example 2.

<MODULE_SPECIFICATION Name="ASY_WH1">
<LPINTERFACE>…</LPINTERFACE>
<DEVSINTERFACE>…</DEVSINTERFACE>
<INTERFACE_RELATIONSHIP>…<INTERFACE_RELATIONSHIP>
</MODULE_SPECIFICATION>

Example 2. Specification for a Module

The DEVSINTERFACE and LPINTERFACE defines the input and output data

available to the KIB from the DEVS and LP models. The interface relationship defines

the mappings and transforms available. An example of an input and output DEVS

interface for the FABRICATION_1 specifications is shown in Example 3.

<MODULE_SPECIFICATION Name="FABRICATION_1">
<DEVSINTERFACE>
<DataInput Name="Release_FABRICATION1">
 <Type>
 Collection,Record,

Key:String:product,
Int:Quantity,
Key:String:Destination

 </Type>
 </DataInput>
…
<DataOutput Name="Outs_FABRICATION1">
 <Type>
 Collection,Record,

 80

Key:String:product,
Key:String:Destination,
Int:Quantity

</Type>
 </DataOutput>
 </DEVSINTERFACE>
…
</MODULE_SPECIFICATION>

Example 3. DEVS Input and Output Variable Definitions

The variables have a name and a type string. The name is used to map the data

variable to the corresponding DEVS event. The KIB implementation needs to provide a

way to map this name to an input or output event in the DEVS model. The

implementation we have created requires the name to have the syntax: EventName_Port.

So the input in Example 3 maps to an event named Release and goes to the Fabrication1

port.

The type string specifies the data structure for the variable name. The modeler

would match this name and type to the actual data name and type coming from the DEVS

model interface.

For this implementation, the type definition is not specified in XML; rather, it is

specified as a token separated string. Tokens are separated by the comma character, and

attributes of tokens are separated by the colon character. The type definition specifies the

data structure of values being exchanged; the actual values are filled in when the models

are executed. The names of the fields must match the I/O names from the associated

DEVS model.

 81

In Example 3, the type definition for the output variable Outs_Fabrication1

specifies it is a collection of records. The collection tag defines that multiple instances of

this record can be received for the same time interval. The record contains two string

fields with names of product and destination; both are defined as “Key” fields. The key

tag specifies the fields to use for determining the distinct instances of values. In this case,

if two received values have different product names or destination names, they are

different types of messages coming from the simulation. If two messages are received

that have the same product and destination name, then it is the same type of message with

ordered values. The last message received has the most recent value. For example, if

two messages were received for product1 with the destination going to ASY_WH_1, then

these are both considered two different values for the same status message. The

definition also includes an Integer field with a name of quantity.

A similar definition for the LP interface is shown in Example 4. This example

shows an input variable named FABRICATION_Actual_Released and output named

FABRICATION_Releases. The type definitions show both the inputs and outputs having

arrays with dimensions of three rows and four columns. This is a configuration of the

interface model for the mapping and transform example described in section 3.3.1.

<LPINTERFACE>
<Data Input name ="FABRICATION_Actual_Released">
 <Type>Float:ActualOuts[3,4]</Type>
</DataInput>

 …
<DataOutput Name="FABRICATION_Releases">

<Type>Float:FactoryShips[3,4]</Type>
 </DataOutput>

 </LPINTERFACE>

Example 4. LP Input and Output KIB Variable Definitions

 82

Next the Interface relationships define the mapping and transforms. Example 5

shows the DEVS to LP mapping for the actual out messages from the fabrication plants.

This transformation corresponds to equation (2) in section 3.3.1.1. The quantities of all

lots leaving the factory need to be summed across the time period to input into the LP

model.

The DEVS LP mapping first defines the variables to use from the LP and DEVS

interfaces using the XML tags <LPNAME> and <DEVSNAME>. This mapping must

contain an output variable from the DEVS model and an input to the LP.

The data transformation specification first defines which transform to use and the

input and output mappings to and from the transform. In Example 5, the transform is to

sum all values. The input to the transform is the quantity data field from the DEVS

variable name Outs_Fabrication1 in which the destination fields match the value of

‘ASY_WH1’ and the product field matches ‘Product1’. If multiple records are received

with matching product and destination values, the quantities are summed. The output of

the transformation is written to the LP data input array variable ActualOuts. The quantity

is written to row 3, column 1. The transform also writes the value 1 to row 1, column 1

which corresponds to the product number. The value 1 is also written to row 2, column 1

which corresponds to destination 1. A second transform is configured to map the

simulation output to the LL input array values corresponding to product 1 destination 2.

Similar mappings would be configured for product 2.

 83

<DEVSLPMAP>
 <LPNAME>FABRICATION_Actual_Released</LPNAME>
 <DEVSNAME>Outs_FABRICATION1</DEVSNAME>

 <DATA_TRANSFORMATION> SUM:ALLVALUES,

quantity:Field:Destination=ASY_WH1:Field:Product=Product1
ActualOuts[3,1]:ActualOuts[1,1]=1:ActualOuts[2,1]=1

</DATA_TRANSFORMATION>

</DEVSLPMAP>

…

<DEVSLPMAP>
 <LPNAME>FABRICATION_Actual_Released</LPNAME>
 <DEVSNAME>Outs_FABRICATION1</DEVSNAME>

 <DATA_TRANSFORMATION> SUM:ALLVALUES,

quantity:Field:Destination=ASY_WH2:Field:Product=Product1
ActualOuts[3,2]:ActualOuts[1,2]=1:ActualOuts[2,2]=2

 </DATA_TRANSFORMATION>
</DEVSLPMAP>

Example 5. DEVS to LP Interface Relationship for Product 1

Example 6 shows the LP DEVS transform corresponding to equation (3) in

section 3.3.1.1. A single release value is read from the LP solve and then divided into

equal buckets. The divisor is determined by the frequency of the DEVS model in relation

to the LP model. For the XML specification, this frequency is defined in the KIB control

module, which will be described later.

The LP DEVS relationship shown in Example 6 first defines the input and

output variables. These must be configured in the LP and DEVS interface specifications.

Next the data transformation is configured. For this model, there is a disaggregation

configured. Elements from the LP FactoryShips array are mapped to DEVS inputs. For

product1 with the destination ASY_WH1, the row 3 column 1 entry from the

 84

FactoryShips array is used. The corresponding configuration for ASY_WH2 is shown in

the second LPDEVSMAP specification.

<LPDEVSMAP>

 <LPNAME>FABRICATION_Releases</LPNAME>
 <DEVSNAME>Release_FABRICATION1</DEVSNAME>

 <DATA_TRANSFORMATION>

 Disaggreagate_equal_values:Round,
 FactoryShips[3,1],
 quantity:Field:Destination=ASY_WH1:Field:Product=Product1

 </DATA_TRANSFORMATION>
</LPDEVSMAP>

…

<LPDEVSMAP>
 <LPNAME>FABRICATION_Releases</LPNAME>
 <DEVSNAME>Release_FABRICATION1</DEVSNAME>

 <DATA_TRANSFORMATION>

 Disaggreagate_equal_values:Round,
 FactoryShips[3,2],

 quantity:Field:Destination=ASY_WH2:Field:Product=Product1

 </DATA_TRANSFORMATION>
</LPDEVSMAP>

Example 6. LP to DEVS Interface Relationship for Product1

Example 7 shows a KIB control specification for a DEVS/LP configuration.

First, the controlling model is defined. This is the model that provides the data value to

synchronize the KIB execution. Second, the KIB module name and KIB variable name is

defined. In Example 7, a variable named sync with a field named value from the module

named synchronization is used. This variable must be defined in the DEVS interface

since the controlling model is DEVS. Next, the execution sequence is defined. The

 85

sequence defines the order of model solves and data transformations. Then the control

type is defined. This model defines a periodic control in which 24 DEVS cycles run to

each individual LP cycle. This models the hourly simulation run with daily solves.

<KIBCONTROL>
 <CONTROLLING_MODEL>DEVS</CONTROLLING_MODEL>
 <MODULENAME>Synchronization</MODULENAME>
 <VARIABLENAME>SYNC:value</VARIABLENAME>
 <EXECUTIONSEQUENCE>

DEVS,DEVSLP,LPSOLVE,LPDEVS
</EXECUTIONSEQUENCE>

 <CONTROLTYPE>Periodic:DEVSCYCLES:24</CONTROLTYPE>
 </KIBCONTROL>

Example 7. KIB Control Specification

4 MULTI-FORMALISM SUPPLY CHAIN NETWORK MODELING

An approach for creating the conceptual Semiconductor Supply Chain Network

models will be described. Then a methodology is shown on how the conceptual model

can be decomposed into a suitable planning and manufacturing multi-model for mapping

into KIB LP/DEVS multi-formalism models.

The conceptual model describes representations for the supply chain network

topology and product routings. The topology includes the actual physical entities that

make up the production and logistics facilities within the supply chain network. These

would typically be the factories, warehouses, and shipping links within the supply chain

network. The product routings define how material flows through the network to become

a finished good. It starts as raw material and leaves as the finished product. The

different ways that products can flow through the facilities is considered the set of

possible product routes.

At different steps through the product routing, the material changes into different

intermediate products. Which intermediate product the material becomes can either be

by an explicit decision or by the results of product quality from a stochastic

manufacturing process. In semiconductor manufacturing, product output can be of

varying qualities due to the complex physics involved in making the final product.

Yields are generally stochastic and supply planning is done using expected values which

are determined through advanced process monitoring and statistical analysis.

 87

In our multi-modeling approach we separate the stochastic processing yields from

the explicit decisions. The stochastic processing dynamics will be modeled as the

manufacturing processes and the decision points will utilize planning algorithms.

When the conceptual supply chain network models are separated into planning

and manufacturing components, a specification is needed to describe how the model

components will interact and what data they will share. Specifically, what will the

planning frequency be, what types of data will be sent, and what granularity should there

be. This is not dissimilar to problems corporate enterprises must address with

communications between their manufacturing and planning systems.

4.1 Supply chain network Topology

A prototyped semiconductor supply chain network topology is shown in Figure

21. The supply chain network consists of a raw silicon warehouse (siWh), two

fabrication plants (Fab1, Fab2), two wafer inventories (WI1, WI2), two assembly test

sites (AssemblyTest1, AssemblyTest2), two semi-finished goods inventories (SFGI1,

SFGI2), two finishing lines (Finish1, Finish2), two components warehouses (CW1,

CW2), one geographical warehouse (GEO), four customers (Cust1, Cust2, Cust3, Cust4)

and shipping links connecting entities to the different geographies. This is a

representative subset of what would be seen in an actual semiconductor manufacturing

supply chain network.

The siWH provides raw silicon wafers to the fabrication plants (fabs). There is a

single warehouse that can ship the wafers to either of the fabs. The fabs put the actual

micro-electronic circuitry onto the wafers. Product leaving the fabs can be shipped to

 88

either of the wafer inventories. From the wafer inventory, the product can be released

into an assembly test process. In this process, the wafers are cut into die, and the die are

put into packages. There can be different types of packages; this topology illustrates

package type A or B. After packaging, the material goes through a testing process to

determine the electrical characteristics of the product. The characteristics determine

which finished products it can be configured to. After leaving the assembly test process,

the material can flow into a semi-finished inventory point. The semi finished product can

be released into the finish process in which the product is set to its final configuration and

packaged. The finished product flows into the component warehouse where the finished

goods are stored. From the components warehouse, the products can be shipped to the

geographical warehouse or to customers.

The arrows in Figure 21 illustrate shipping links between entities in different

geographies. This model shows that shipping is required from the siWH to the fabs, from

the fabs to the assembly/test/finish facilities, and from the components warehouses to the

Geo warehouse or customers. The geographical regions can be anywhere in the world.

This model shows that customer 1 and customer 2 can be supplied from the Geo

warehouse. Customer 3 and customer 4 can be supplied from the components warehouse

number 2. This model represents a scenario in which the siWh, fabs, assembly/test sites,

and customers are in different geographies around the world.

Figure 21 illustrates a product P2 going into the Fab1 and leaving as either

product P4 or P5. Similarly for Fab 2, the product goes in as product P3 and can leave as

 89

product P6 or P7. Products P4, P5, P6, and P7 are intermediate products. More details

on intermediate products will be given in the next section.

Fab1Fab1

ADI1ADI1
Assembly

Test1

Package A,B

Assembly
Test1

Package A,B

SFGI1SFGI1 Finish1Finish1 CW1CW1
GEOGEO

Fab2Fab2

ADI2ADI2
Assembly

Test2

Package B,C

Assembly
Test2

Package B,C
SFGI2SFGI2 Finish2Finish2 CW2CW2

Cust 1Cust 1

Cust 2Cust 2

Cust 3Cust 3

Cust 4Cust 4

SiWH
P1

SiWH
P1

Inventory points

Manufacturing Line

Shipping Line

Customers

P2

P3

P4
P5

P6
P7

Fab1Fab1

ADI1ADI1
Assembly

Test1

Package A,B

Assembly
Test1

Package A,B

SFGI1SFGI1 Finish1Finish1 CW1CW1
GEOGEO

Fab2Fab2

ADI2ADI2
Assembly

Test2

Package B,C

Assembly
Test2

Package B,C
SFGI2SFGI2 Finish2Finish2 CW2CW2

Cust 1Cust 1

Cust 2Cust 2

Cust 3Cust 3

Cust 4Cust 4

SiWH
P1

SiWH
P1

Inventory points

Manufacturing Line

Shipping Line

Customers

P2

P3

P4
P5

P6
P7

Figure 21. Supply Chain Network Topology

The delay times, capacities, and stochastic distributions for all the entities will be

configurable parameters in the simulation. Some important characteristics of a

semiconductor supply chain network are:

• Delay times for the fabrication plants can be 6-12 weeks

• Delay times for the assembly/test can be 2-4 weeks

 90

• The fabrication plants and assembly test plants are usually capacity

constrained. (i.e. bottlenecks).

Shipping times vary based on distance, method, and delay through customs in

different countries. For example, air, sea, and ground shipping all have different delays.

4.2 Product routing

A representative product routing corresponding to the topology in Figure 21 is

shown in Figure 22. This product routing has mappings for 30 different products (P1-

P30). The product routing can be read starting with unfinished products at the top to

finished products at the bottom of Figure 22. Products located at the top are further away

from being finished than products closer to the bottom. Raw silicon (P1) is stored at the

start of the network and eight finished products (P23-P30) can leave. All other products

are intermediate levels created at different manufacturing or assembly steps. P1 is raw

silicon that is received from a raw materials supplier. The finished goods P23-P30 are

also designated as FG1-FG8. These are the finished products ready to be shipped to the

end customer. Products P8-P12 have a package identifier tied to them. This is the type

of package the semiconductor die is combined with during the assembly step (e.g.

Laptop, Desktop, or Server package).

Horizontal lines have been added to indicate where products change names by a

decision or a stochastic physical process. The solid horizontal lines in the product

routing are points where the next product type is determined by a control decision from

the decision layer. The dashed horizontal lines show where product split is determined

by a stochastic distribution in the manufacturing or assembly process.

 91

Raw Silicon
P1

P2 P3

P4

Pkg A
P8

P5 P6 P7

Pkg C
P10

Pkg B
P9

Pkg C
P11

Pkg B
P12

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

FG1
P23

FG3
P25

FG4
P26

FG5
P27

FG6
P28

FG6
P28

FG7
P29

FG4
P26

FG8
P30

FG2
P24

Decision
Which fab prod to build

Simulation
How product splits

Decision Which pkg

Simulation
How prod yields

Decision
How to configure

FG1
P23

FG3
P25

FG4
P26

FG5
P27

FG6
P28

FG7
P29

FG8
P30

FG2
P24

Raw Silicon
P1

P2 P3

P4

Pkg A
P8

P5 P6 P7

Pkg C
P10

Pkg B
P9

Pkg C
P11

Pkg B
P12

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

FG1
P23

FG3
P25

FG4
P26

FG5
P27

FG6
P28

FG6
P28

FG7
P29

FG4
P26

FG8
P30

FG2
P24

Decision
Which fab prod to build

Simulation
How product splits

Decision Which pkg

Simulation
How prod yields

Decision
How to configure

FG1
P23

FG3
P25

FG4
P26

FG5
P27

FG6
P28

FG7
P29

FG8
P30

FG2
P24

Figure 22. Product Routing

To clarify, the dashed diagonal line, as seen connecting P13 to P24 in Figure 22,

indicates that P13 can be configured to different products. That is, P13 can be used to

make P23 or P24. Similarly, the dashed lines for P15, P17, P19, and P21 indicate they

can be configured to different products. The solid line, like the one connecting P13 to

P23, is the default value assignment.

4.3 Mapping of Product Routing onto the Topology

The relation of the product routings to the supply chain network is shown in

Figure 23. It can be seen from Figure 21 and Figure 22 that there are dependencies

between the product routing and the supply chain network topology configuration.

 92

Products change names as they flow through the supply chain network. Raw Silicon (P1)

changes to P2 or P3 as soon as it enters a fab. Products arriving at inventory points do

not change names, but can change when they are released to manufacturing, such as P4

becoming P8. The specification of what products can be built in the fabrication plant and

which packages are supported in assembly test determines the different routings that the

intermediate products can take, as illustrated in Figure 23. For example, Figure 23

illustrates P5 can be put into package B or C. If P5 is shipped to WI2, it can be used to

make P9 or P10. If P5 is shipped to WI1, it can only be used for P9 since AssemblyTest1

does not support package C. Similarly, since P7 can only be placed in package B, it can

only be used to make P12 regardless of which Assembly/Test site it is sent to.

Raw Silicon
P1

Fab1

P4

Pkg A
P8

P5 P7

Pkg B
P9

P23 P25 P26 P26 P30P24

Pkg B
P12

P2

P4 P5

Assy/
Test1

P13 P14 P15 P16 P21 P22

P13 P14 P15 P16 P21 P22

P13 P14 P15 P16 P21 P22

SFGI1

WI1

Finish1

Fab2

P5

Pkg B
P9

P6 P7

Pkg C
P10

P25 P27 P28 P28 P29P26

Pkg B
P12

P3

P6 P7

Assem/
Test2

P15 P17 P18 P19 P20 P22

P15 P16 P17 P18 P19 P20

P15 P16 P17 P18 P19 P20

SFGI2

WII2

Finish2

Pkg C
P11

P21 P22

P21P16

P26 P30

P21 P22

Raw Silicon
P1

Fab1

P4

Pkg A
P8

P5 P7

Pkg B
P9

P23 P25 P26 P26 P30P24

Pkg B
P12

P2

P4 P5

Assy/
Test1

P13 P14 P15 P16 P21 P22

P13 P14 P15 P16 P21 P22

P13 P14 P15 P16 P21 P22

SFGI1

WI1

Finish1

Fab2

P5

Pkg B
P9

P6 P7

Pkg C
P10

P25 P27 P28 P28 P29P26

Pkg B
P12

P3

P6 P7

Assem/
Test2

P15 P17 P18 P19 P20 P22

P15 P16 P17 P18 P19 P20

P15 P16 P17 P18 P19 P20

SFGI2

WII2

Finish2

Pkg C
P11

P21 P22

P21P16

P26 P30

P21 P22

Figure 23. Product Routing Mapped onto the Topology

 93

4.4 Control inputs

A set of decisions were shown by the horizontal solid lines in Figure 22. The

mappings of these decisions to control inputs into the topology are shown in Figure 24.

Five major categories of decisions are shown.

Fab1Fab1
WI1WI1 Assem

Test1
Assem
Test1 SFGI1SFGI1 Finish1Finish1 CWCW

GEOGEO

Fab2Fab2 WI2WI2 Assem
Test2

Assem
Test2 SFGI2SFGI2 Finish2Finish2 CWCW

Cust 1Cust 1

Cust 2Cust 2

Cust 3Cust 3

Cust 4Cust 4

SiWHSiWH

How much
silicon to start.
What product
should it be (P4-
P6)

How much
material to release
from ADI/TRDI.
What package
should it be put in

Which WI
To ship
material to

How much
material to release
from SFGI. What
speed should it be
set to.

How much
material to release
and where to ship.

Fab1Fab1
WI1WI1 Assem

Test1
Assem
Test1 SFGI1SFGI1 Finish1Finish1 CWCW

GEOGEO

Fab2Fab2 WI2WI2 Assem
Test2

Assem
Test2 SFGI2SFGI2 Finish2Finish2 CWCW

Cust 1Cust 1

Cust 2Cust 2

Cust 3Cust 3

Cust 4Cust 4

SiWHSiWH

How much
silicon to start.
What product
should it be (P4-
P6)

How much
material to release
from ADI/TRDI.
What package
should it be put in

Which WI
To ship
material to

How much
material to release
from SFGI. What
speed should it be
set to.

How much
material to release
and where to ship.

Figure 24. Supply Chain Network Control Inputs

The first set of decisions involves how much material to start and what to build in

the fabs. The control input is connected to the silicon warehouse and the command sent

to it would specify how much raw silicon to release to each fab and include an instruction

of which product should be built.

 94

The next set of decisions specifies where the fab should ship its material. The

control will be connected to the end of the fab. This control signal will need some type

of translation. The decision algorithm will not have exact knowledge of what is finishing

on any given day in the fab due to the stochastic processes. The factory will need to

handle cases when the decision algorithm asks more products to be shipped than what is

available. For example, assume that Fab1 has built 9,000 units of P4 and 11,000 units of

P5. Also, assume that the decision algorithm is expecting 10,000 units of each to be

built; it sends a command to ship 5,000 units of P4 to WI1 and 5,000 units of P5 to WI2.

How should the physical simulation interpret this command? There could be a set of

default rules (e.g. always meet the WI1 request first and send everything else to WI2).

Or the command could be converted into a percent split (e.g. Send 50% to WI1 and 50%

to WI2). How this is handled will be specific to the scenario and the modeler’s

responsibility to specify.

In our case studies, this was handled two different ways. First, there is a

dependency on how material flows in semiconductor manufacturing process. The

manufacturing process modeled the flow of material as discrete batches of units also

known as lots. The units in a lot are of a single product type. The quantity of units in a

lot is stochastic and based on the manufacturing yields. This is because yield losses

happen on a lot-by-lot basis at each processing step. Lots are not divided when they are

shipped between entities. Let’s assume the scenario as:

1. The average lot size is 500 units

 95

2. The planning algorithm asked to release 500 units to WI1 and 2,000 units

to WI2.

3. The factory only has four lots of sizes 300, 600, 500, and 400.

The first method for releasing lots used a round-robin algorithm. The lots are

released one at a time to each entity until they run out. In the above scenario, the 300

unit-lot would be released to WI1, the 600-unit lot to WI2, the 500-unit lot to WI1, and

the 400-unit lot to WI2. In this case, the results have a significant mismatch from the

planning instructions. WI1 received 800 units and WI2 1,000 units. The second method

allowed the planning algorithm to send a priority. If the planning algorithm sent priority

for WI2, then all four lots would have been sent to WI2 resulting in an inventory of 1,800

units.

The third set of decisions shown in Figure 24 relates to how much material to

release from the WI warehouses into the assembly lines and which products to build. The

control input to the simulation would need to specify how much of a particular product to

release, and what it should be assembled into. The fourth set of decisions shown in

Figure 24 specifies how much product to release out of SFGI.

The fifth set of decisions shown in Figure 24 concerns how much material to ship

from the CW and Geo warehouses. These decisions are tied to the logistics portion of the

supply chain network. All products in these warehouses are finished goods and can be

shipped directly to the customer. The command to the simulation would be where to ship

and if the product is being shipped to customer, the order ID that is being filled. The

 96

order ID is necessary to track customer service levels (how well are the orders being

filled on time).

4.5 Summary

The product routings shown in Figure 22 identify the tree of intermediate

products. Each product change is determined by an explicit decision or the result of a

stochastic process. The explicit decisions identify the outputs required of the planning

algorithms and the stochastic product splits identify where simulation models should be

built. The product mappings combined with the topology shown in Figure 23 provide a

good conceptual model of the product routing through supply chain network entities.

This provides a view of the relations between the possible product routings through the

supply chain network facilities.

5 CASE STUDIES

In this chapter we will show a number of case studies to exemplify the utility of

the KIB for both theoretical and real world problems. A set of theoretical experiments

are run to validate the simulation, LP optimization, and the KIB. After completing the

theoretical experiments, the environment was used at Intel Corporation for three different

sets of real world supply chain network studies with differing tangents of complexities.

We ran the theoretical set of experiments to show that the KIB works correctly,

the dynamics of the simulation reproduces the expected behavior, and the linear programs

can be used to generate the starts schedules. The KIB enables interesting experiments of

the dynamics between the LP optimization and simulation models. The experiments also

enable observation and validation of the correct behavior of the composed models.

For the second category of experiments, the environment is extended to work with

planning models developed with a commercial Honeywell MPC controller. There is a

significant increase in complexity for the KIB, planning, and manufacturing models. The

size must scale to the topologies seen in real-world multi-geography supply chain

networks. The KIB provides an environment that enables a timely implementation of

MPC control technology into a discrete manufacturing supply chain network. This is an

area in which MPC technology has not been previously used in a commercial setting.

The KIB enabled the development and validation of the MPC commercial controller

using the previously developed supply chain network simulation. It also provided the

potential to obtain understanding of the dynamics of the simulated and studied problems.

 98

The MPC controller performed to design when moved from the simulation environment

into production.

The KIB and simulation environment were then used to evaluate how a

Honeywell MPC controller could be utilized in the latter half of the semiconductor

assembly manufacturing process to support build-to-order scenarios. These experiments

required modeling the complex product mappings inherent in semiconductor assembly

and test operations. The environment had to be extended to support the composition of

MPC models running in conjunction with LP optimizations. The MPC controller would

not scale to support the number of variables required to enable the thousands of possible

product combinations, therefore an LP optimization was introduced to optimize the

mapping selection. This set of experiments increased the scaling requirements for

product mappings to handle the real world combinations seen by Intel Corporation. The

KIB facilitated experimentation in solving these problems by providing a flexible ‘model

based’ integration environment and enabled reuse of validated simulation and MPC

models. The KIB helped avoid significant software development efforts by providing an

environment that supported model composability across three different modeling

formalisms.

The third set of industrial experiments introduced models requiring scalability in

modeling both the topology and product mapping. The KIB environments enabled the

simulation based development of the largest controller ever created by the Honeywell

application suite. The KIB environment was used for early requirements

gathering/analysis, controller development, and end user customer validation. The KIB

 99

facilitated the experimental test-bed required for the development and validation of such

a complex controller. The fact that the customers trusted the approach enough for user

validation and that the project met its timeline targets, the value and utility of using KIB

theory towards multi-modeling with disparate modeling formalisms was shown.

5.1 Theoretical Experiments:

A set of experiments that build upon each other has been formulated to show the

utility of the KIB. Two base cases were devised to validate the models before different

scenarios were executed. The experiments and their parameters are shown in Table 3.

The first set of experiments demonstrated the behavior of the composed model with no

stochastic behavior. For experiment 1a, the customer produced a sinusoidal demand

signal as input. The TPT of manufacturing was 11 days and the yield was 100%. There

was one customer, and the simulation and planning solver ran once every time period.

For experiments 1b and 1c, an additional customer has been added. They both

use the non-stochastic setup. In experiment 1b, the planning and solver algorithm run

every time period. In experiment 1c, the solver only runs once every seven simulation

periods. The results of experiment 1c show the impact of planning weekly rather than

daily and how the KIB enables this type of experimentation.

 100

Experiment
Number

Experiment
Description

Demand
Input

Finish
TPT

Finish
Yield

Number
of

Customers

Plan /
Sim run

ratio
1a Non-

Stochastic
Base Case

Sine Mean
750 ± 150

11 days 100% 1 1:1
Daily
plan

1b Two
Customers

Sine Mean
750 ± 150

11 days 100% 2 1:1
Daily
plan

1c Weekly
Planning

Sine Mean
750 ± 150

11 days 100% 2 1:7
Weekly

plan
2a Stochastic

Base Case
Sine Mean
750 ± 150
Uniform
(±10%)

Mean
Tri

(9,10,12)
days

Mean
Tri

(80%,
90%,
95%)

1 1:1
Daily
plan

2b Optimistic
Data

Sine Mean
750 ± 150
Uniform
(±10%)

Min
Tri

(9,10,12)
days

Max
Tri

(80%,
90%,
95%)

1 1:1
Daily
plan

2c Pessimistic
Data

Sine Mean
750 ± 150
Uniform
(±10%)

Max
Tri

(9,10,12)
days

Min
Tri

(80%
,90%
,95%)

1 1:1
Daily
plan

Table 3. Theoretical Experiment Scenarios

The second group of experiments adds stochastic behavior. The customer

generates a demand where each point of the sinusoidal demand may vary by uniform

distribution ±10%. The TPT of manufacturing is configured as a triangular distribution

with lower and upper limits of 9 and 12, and mode of 10. The yield of manufacturing is

configured as a triangular distribution with min and max values of 80% and 95% and

 101

mode of 90%. In experiment 2a, the mean value of TPT and Yield is sent to the decision

solver at each time period.

Experiments 2b and 2c demonstrate that the KIB can be used to change what data

is sent between the decision and physical models. There is a mismatch in how the

decision and simulation models represent yield and TPT data. The decision model

requires one aggregated value for the yield and TPT from each product. The simulation

generates a different value for every lot that is started into the manufacturing line. There

needs to be an aggregation of the value for the decision model. The KIB supports this

aggregation and enables flexible experimentation. For our base stochastic experiment

(#2a), we have used the mean value. For the optimistic experiment (#2b), we have

reported the minimum TPT value and the maximum yield. For the pessimistic model

(#2c), we have reported the reverse, which are the maximum TPT and the minimum

yield.

5.1.1 Environment

The KIB has been demonstrated on a set of experiments that, first, shows

consistent behavior between the composed models and, second, illustrates the capabilities

of the KIB. The composed model has 3 distinct components, the DES of the physical

process, the KIB for the interactions, and the LP decision control module. The physical

DES models a hypothetical supply chain network topology and its material flows. The

LP models the decision algorithms required for calculating starts and ships to meet

customer demand. The KIB models the transformations required between the physical

 102

and decision models. A view of the major components of each model and how they are

connected is shown in Figure 25.

Finish
Manufacturing

Process

Wafer
Inventory

Finished
Product

Inventory

Shipping

Customer 2

DEVS Models

Inventory
Process

Ship
Customer

KIB Models

Release
Message

Starts
Data Set

LP Demand
Set

Mean
(YldLot1+Lotn)

Mean
(TptLot1+Lotn)

Q WIP
Set

Q Inventory
Set

Inventory

Inventory

Q Ship Set

LP Models

Revenues

Penalties

Lot Data
TPT / Yield

WIP[1..n]

Demand[1..n]

Demand[1..n]

In transit

In transit

Mass
balance

Constraints
Qt=Qint-1+Qt-1-Qoutt-1

Mfg
Constraints
St < Capacity

Objective
Max (profit)

Release
Message

Customer 1

Shipping

Sync
Function

f(x2)

f(x1)

f(x3)

f(x4)

g(x1)

f(x5)

f(x6)

Finish
Manufacturing

Process

Wafer
Inventory

Finished
Product

Inventory

Shipping

Customer 2

DEVS Models

Inventory
Process

Ship
Customer

Inventory
Process

Ship
Customer

KIB Models

Release
Message

Starts
Data Set

LP Demand
Set

Mean
(YldLot1+Lotn)

Mean
(TptLot1+Lotn)

Q WIP
Set

Q Inventory
Set

Inventory

Inventory

Q Ship Set

LP Models

Revenues

Penalties

Lot Data
TPT / Yield
Lot Data

TPT / Yield

WIP[1..n]

Demand[1..n]

Demand[1..n]

In transit

In transit

Mass
balance

Constraints
Qt=Qint-1+Qt-1-Qoutt-1

Mfg
Constraints
St < Capacity

Objective
Max (profit)

Release
Message

Customer 1

Shipping

Sync
Function

f(x2)

f(x1)

f(x3)

f(x4)

g(x1)

f(x5)

f(x6)

Figure 25. Environment Topology

The decision LP algorithms were developed using the ILOG OPL studio

application (ILOG 2005). The DES was modeled and implemented using DEVSJAVA

with semiconductor supply chain network extensions (ACIMS 2002). The KIB was

implemented using JAVA and enables the modeling of transformations between LP and

DES formalisms using XML.

 103

5.1.1.1 KIB Modeling

The Semiconductor Supply Chain Network LP/DEVS formalism modeling

language described in Chapter 3 provides the basis of the modeling definitions. The

implementation described in Chapter 6 using XML for structuring the models has been

used for this set of experiments. The KIB mappings and transforms that needed to be

modeled are shown in Figure 25. The lot-based events from the simulation needed to be

mapped and transformed into the array-based inputs to the LP. In turn, the LP array-

based outputs had to be mapped into the lot-based events to the simulation.

The mappings to and from the models are shown in Table 4. These give details of

the structures shown in Figure 25.

5.1.1.1.1 Transformations:

f(x1): TPT: Input is the set of throughput values for each lot that left the

manufacturing entity in the last n simulation periods. The output is the mean of these

values for each product. The last n simulation periods correspond to all values since the

last time the transformation had been executed (e.g. if the simulation is running hourly

and the transform is occurring daily to support daily solves, there will be values for the

last 24 simulation runs).

f(x2): Yield: Input is the set of yield values for each lot that left the

manufacturing entity in the n simulation periods. The output is the mean of these values

for each product.

 104

f(x3): WIP: Input is an array of values for each product. Each entry in the array

corresponds to the material currently in a segment of the manufacturing process. Output

is mapped to a set of vector inputs. Each vector corresponds to each product.

f(x4): Inventory: Input is set of lot objects. The lot objects have fields for

product type and quantity. The output is mapped to a vector, each entry corresponding to

a different product.

f(x5): Shipping: Input is an array of values for each product. Each entry in the

array corresponds to the material currently in a segment of shipping (e.g. on the plane, in

customs, etc.) Output is mapped to a set of vector inputs. Each vector corresponds to

each product.

f(x6): Demand: Input is a set of vectors; each vector contains the current and

future orders for a given product at a given customer. Output is a multi-dimensional

array.

g(x1): Releases: Input is a multi-dimensional matrix corresponding to which

product to release, how much to release, and the product’s destination. The output is a

set of command objects to the simulation.

 105

KIB
LP LP

Structure
Mapping DEVSJAVA

Structure

DEVS

DEVS LP
Field to Set

Lot Records Wafer
Inventory

Inventory Set

Set of

Vectors

DEVS LP
Field to Set

List of Lot
Objects

Finished Product
Inventory

TPT Data Single
Vector

DEVS LP

List of
Status

Objects

Manufacturing TPT
Data

Yield Data Single
Vector

DEVS LP

List of
Status

Objects

Manufacturing Yield
Data

WIP Set of
Vectors

DEVS LP

List of
Arrays

Manufacturing WIP

Shipping Set of
Vectors

DEVS LP

List of
Arrays

In transit Data

DEVS LP

List of
Arrays

Customer 1 Demand Demand Set of
Vectors

DEVS LP

List of
Arrays

Customer 2 Demand

Starts Multi-
dimension

Array

LP DEVS

List of
Command

Objects

Finished Inventory
Releases

Table 4. Table of KIB Mappings

5.1.1.2 DES Modeling

The simulation models partition the supply chain network into factories,

inventories, shipping, and customers. This follows the approach researched in (Godding,

Sarjoughian et al. 2003); factories model capacity, yield, and cycle time and can change

product names. When material arrives at a factory, it will either leave at some later time

determined by the TPT configuration or it will be lost through defective yields. The TPT

and yields can be configured as a constant number or it can be assigned via stochastic

 106

distribution. Capacity is modeled as an input constraint. The simulation will never start

more than what the manufacturing line has capacity to process. In these experiments,

capacity has been set sufficiently high to not impact behavior. Factories can report their

work in progress (WIP), what was actually output (AO), and what the TPT and yields

were for the product actually built. These messages specify the values for each product.

WIP can contain multiple values corresponding to different sections of the factory. For

example, if WIP is configured to report material in two time buckets, the first bucket

reports what is in the first half of the factory and the second reports what is in the other

half.

Inventories are holding points for material. Material that arrives at an inventory

will not leave until commanded by an external release message. Inventories have a one

day TPT for arriving material. That is, anything that arrives on a given day will not be

available for release until the following day. Material released from inventory is

immediately started in the next connected entity. Release commands sent to inventory

points must specify the product, quantity, and destination of the material. The release can

optionally specify what the target product should be. Inventories can report the

beginning on hand (BOH) inventory level and the AO for each product.

 Shipping is used to model the time delays and yield loss of material. Shipping is

similar to factories; however, it does not change product attributes. Shipping can report

what is in transit (similar to the manner in which WIP is reported), and the AO for each

product.

 107

Customers generate orders and consume the finished product. When a customer

receives product, they subtract it from their outstanding orders, filling the oldest first.

Customers report what their current backlogs are and their projected orders over a

predefined planning horizon. The customers have a window in which they cannot cancel

orders without penalty. Outside this window they are free to change their orders. The

simulations can apply a random distribution to orders outside this cancellation period.

The material flow through the simulation is lot based, as are the TPT time and

yields assigned. A lot can contain one or more discrete units of material. Their sizes are

determined by a configuration parameter that controls the maximum quantity allowed.

For example, if an inventory is configured to have a maximum lot size of 10 and a release

command is received specifying that 1,500 be sent out, then 150 lots of size 10 would be

output.. If 1501 units are started, then 151 lots would be output with the last containing

only one unit. If yield loss is configured to be 80%, and lot size is 10, then two units

would be subtracted from each.

The TPT times for each lot are assigned when entering manufacturing. At each

cycle, the process time of the lot is incremented. If the process time is equal to the TPT

time, the lot is scheduled to leave at the beginning of the next time period. The lot size

has an impact on the behavior of TPT. If maximum lot size is equal to 1,000 and a

quantity of 1,000 is started, there is only one TPT assigned to the material being

processed. However, if the size is set to 100, the random TPT will be assigned to 10

different lots, which will in effect distribute the amount of material that leaves early

versus late across the 10 lots.

 108

The time when yield loss is taken is configurable. It can occur during any step of

the manufacturing process. The yield loss time impacts the data reported to the decision

algorithm. If yield loss is taken in the middle of the process, the decision model will see

reduced WIP in the latter half. If it is taken when the material is output, the decision

model will see reduced quantity of material in the AO message. In our experiments, the

yield loss occurs at the end of the process right before the material is output.

5.1.1.2.1 Simulation Messages

There simulation has a single input command, which is a release command input

to the inventories. The format of the release is:

• ReleaseI = Quantity of material to release out of inventory at beginning of
day. This material will arrive in the next entity downstream on the same
day.

All status messages are reported at the end of the day. A summary of status

messages reported by the simulation available for use in the decision layer is given

below:

Factories

• WIPF = StartsBeginningOfDay + WIPBeginningOfDay-OutsEndOfDay

• AOF = OutsEndOfDay

• TPTF = ActualTpT[1..NumberLots]Outs

• YieldF = ActualYield[1..NumberLots] Outs

• Inventories

 109

• BOHI = ArrivedBeginningOfDay-1 + BOHBeginningOfDay-OutsBeginningOfDay

• AOI = OutsBeginningOfDay

Shipping

• IntransS = StartsBeginningOfDay + IntransBeginningOfDay-OutsEndOfDay

• OutsS = OutsEndOfDay

Customers

• Backlog = UnfilledOrdersEndOfDay

• ForecastDemand = OrdersDue[tEndOfDay+1 ..tPlanningHorizon]

The actual outs (AOI) message for inventories is slightly different than factories

and shipping. All three entities are reporting what actually left for the day; however, for

inventories it is the quantity that left at the beginning of the day instead of at the end. It

corresponds to the release quantities calculated for the day from the decision model (LP).

The release commands are sent to inventories at the beginning of day, which is then

immediately output to the connected entity. Factories and shipping report what was

actually built or shipped at the end of day.

A timing diagram of when input and output events are sent and received from the

KIB are shown in Figure 26. The five important simulation interface timing states are

shown in the top half of Figure 26. The bottom half shows the queuing design of the

simulation base supply chain network entities. The dotted arrows show the timing

relations of the interface states and material moving between the internal queues.

 110

tbi
Beginning

Of
Interval

tei
End
Of
Interval

End of Interval
Internal
Material

Movement

Beginning
Of Interval
Internal
Material

Movement

Processing

tbi + ∆2 tei – (∆3+∆4)

Release
Instructions
From KIB

Status
Messages
To KIB

-Wait for
Instructions

-Cross entity
Material
Movement

End Of Interval
Status

Reporting

tei - ∆4

∆2

Simulation KIB Interface States
• Wait for Instructions / Cross entity material movement: The simulation is waiting for external release

commands for all inventories. Simulation also moves all material from departure queues into the
arrival queues of connected entities.

• Beginning of Interval Material Movement: All material in arrival queue at beginning of Interval is
started into the process queue.

• End of Interval Material Movement: All material that has completed processing at the end of interval
is moved into the departure queue.

• End of Interval status reporting: The states of all queues are reported.

Base Supply Network Entity

Process Queue
Material stays in here
for the configured
TPT of the entity.

Departing Queue
Material moved into
this queue after
processing complete

Arrival Queue
Material arrives in
this queue from
upstream entities

ArrivalQ ProcessQ ProcessQ DepartureQ

KIB Interface Timing

∆1 ∆3 ∆4

tbi + ∆1tbi
Beginning

Of
Interval

tei
End
Of
Interval

End of Interval
Internal
Material

Movement

Beginning
Of Interval
Internal
Material

Movement

Processing

tbi + ∆2 tei – (∆3+∆4)

Release
Instructions
From KIB

Status
Messages
To KIB

-Wait for
Instructions

-Cross entity
Material
Movement

End Of Interval
Status

Reporting

tei - ∆4

∆2

Simulation KIB Interface States
• Wait for Instructions / Cross entity material movement: The simulation is waiting for external release

commands for all inventories. Simulation also moves all material from departure queues into the
arrival queues of connected entities.

• Beginning of Interval Material Movement: All material in arrival queue at beginning of Interval is
started into the process queue.

• End of Interval Material Movement: All material that has completed processing at the end of interval
is moved into the departure queue.

• End of Interval status reporting: The states of all queues are reported.

Base Supply Network Entity

Process Queue
Material stays in here
for the configured
TPT of the entity.

Departing Queue
Material moved into
this queue after
processing complete

Arrival Queue
Material arrives in
this queue from
upstream entities

ArrivalQ ProcessQ ProcessQ DepartureQ

KIB Interface Timing

∆1 ∆3 ∆4

tbi + ∆1

Figure 26. KIB Input and Output DEVSJAVA Timing Diagram

The simulation based supply chain network entities have an internal event at the

end of each interface state. After the ‘End of Interval Status Reporting’ event, the entity

transitions back the ‘Wait for Instructions / Cross entity Material Movement state’.

The first state: ‘Wait for Instructions / Cross entity material movement’ starts at

the beginning of Interval. First, the simulation starts all material that arrived from the

previous interval. Second, the simulation waits to receive all external events from the

KIB for inventory release commands. Third, the material quantities specified in release

 111

commands is moved from inventories to the connected entities. The duration of this state

should be a very small delta and is defined as Δ1. The next simulation state is ‘Beginning

of Day Internal Material Movement’. In this state, all material is moved from the arrival

queues to the processing queue. Then the model transitions to the processing state.

Material stays in this state for the duration of the entities TPT time. The TPT time can be

calculated from a random distribution. The yield loss is taken during the processing time.

At the end of processing, material is moved into the departure queue at the ‘End of

Interval Internal Material Movement’ state. This state duration should also be very small

and is defined as Δ3. At the end of the day, the status of the entity is reported to the KIB.

The status includes the state of all material in the three queues.

5.1.1.3 LP Decision Algorithm

The LP model has an objective function to maximize profit. Revenue is generated

when orders are filled. Costs are assigned to manufacturing, inventory holding, and

shipping. In addition, penalty costs are assigned for meeting orders late, shipping too

much to the customer, and for daily changes in factory starts commonly referred to as

thrashing. The objective function is:

Maximize(profit)

Where

Profit = revenue –costs

Revenue = orders filled

Costs = Material Cost + Inventory holding Cost + Factory Thrash penalty

 112

The LP optimizes for a set of solutions over a predefined planning time horizon.

The time horizon is determined from the demand input vector received which was

generated by the customer entity in the simulation and then transformed and provided as

input to the LP via the KIB. The demand vector contains entries corresponding to

number orders that need to be shipped starting from the current time to some horizon in

the future. For example, assume the vector for productA from customer1 is received:

Demand Vector = <100,200,100,500>

Also assume that the KIB has been modeled to send the LP daily values for

demand. The demand vector would specify that 100 units are due today, 200 on the next

day, and so on. The time horizon the LP would solve over would be 4, the next four

days.

A set of mass balance constraints have been modeled in the LP to enforce

physical constraints when the solver populates the solution set. The mass balance

constraints contain a set of values for each time period out to the end of the planning

horizon. If the time horizon was 4, there would be four sets of values in the solution set.

Examples of mass balance equations for finish manufacturing are shown in Equation 1.

Assumptions:

The time horizon is k time periods
There are n different products

Variable Definition

• FinishStarts[1..k,1..n]
• FinishWIP[1..k,1..n]
• FinishOuts[1..k,1..n]
• FinishTPT[1..n]

 113

• FinishYield[1..n]

(1) FinishWIPp(t=1) = f(x3) =
 = KIB transformation of DEVs simulation WIP data (see Figure 25)

(2) FinishWIPpt = FinishStartsp(t-1) + FinishWIPp(t-1) – FinishOutsp(t-1) :
1 < t ≤ k, 1 ≤ p ≤ n

(3) FinishTPTp = f(x1) = KIB transformation DEVS TPT data :
 1 ≤ p ≤ n

(4) FinishYieldp = f(x2) = KIB transformation DEVS yield data :
1 ≤ p ≤ n

(5) FinishOutspt = FinishWIPp(t=1) / FinishTPTp * FinishYieldp:
1 ≤ t ≤ FinishTPTp,1 ≤ p ≤ n

(6) FinishOutspt = FinishStartspt-FinishTPTpt * FinishYieldp :
 FinishTPTp < t ≤ k: 1 ≤ p ≤ n

Equation 1. LP Finish Manufacturing Mass Balance Constraints

The equations for FinishWIP, FinishTPT, FinishYield, and FinishOuts are shown.

FinishWIP has to be modeled as two equations. The first equation (1) populates the

initial state for WIP. The value is supplied by the KIB transform function f(x3) shown in

Figure 25. The second equation (2) defines how the remaining values for future time

periods can be populated.

The FinishTPT and FinishYield vectors will be populated by the KIB transform

functions f(x1) and f(x2) for each product from the simulation. These values are

constants in the LP (i.e. there are no unknowns for TPT and Yield).

 114

For FinishOuts there are also two equations. The first equation (5) defines what

the FinishOuts values will be in time periods between 1 and the TPT value for each

product, which was populated in (4). This equation defines that an equal amount of

material will leave FinishManufacturing for the first time periods within the TPT. For

example, assume the FinishTPT value for productA is 3. Also assume that the WIP value

for t = 1 supplied by the KIB = 1200. The FinishOuts value for time periods 1 through 3

would be 400 * FinishYield. For time periods beyond the TPT, equation (6) is used.

This equation defines TPT to be equal to what the starts were at the time period minus the

TPT time. Following through with the previous example, the FinishOuts for time period

4 would be equal to the FinishStarts at time period 1.

The unknowns in the constraints are the FinishWIP values for 1 < t ≤ k,

FinishOuts for 1 < t ≤ k, and the FinishStarts for all t. The LP will populate the

unknowns with values for the optimal solution when a solve is initiated. The LP projects

a starts schedule for finish manufacturing and a ship schedule to the customers. This

projection is what is sent to the simulation as release commands through the KIB

transform function g(x1) in Figure 25.

5.1.2 Non-Stochastic Base Model Results

The first set of experimental data was collected against a non-stochastic base

model. The demand input, data messages, and the topology for the LP, KIB, and

simulation models are shown in Figure 27. The topology for the simulation model

includes a die inventory, a finish manufacturing line, a finished inventory, a shipping

 115

link, and one customer. The die inventory has an infinite supply providing the input

material for the simulation. The throughput time is 11 days for finish manufacturing, one

day for Finish Warehouse, and two days for shipping. There is no yield loss and the TPT

values are constant. The demand input is a sinusoidal with a mean of 750 and varies +/-

150 in each cycle. The output results are shown in Figure 28 and Figure 29.

Finish
Manufacturing

Finish
WH Ship

Semi
Finish
WH

600

750

900

1 11 21 31 41 51

KIB

Demand

Customer

Discrete Event Simulation

LP Decision Algorithm

Finish
Starts

Shipping
Starts

Orders
Filled

Finish
BOH

Finish
Outs

Instructions

State

11Days 1Day 2Days

TPT Times

Figure 27. Base Model

In Figure 28, the Finish starts data are compared to FinishOuts. The measured

TPT time is 11 days as expected. This starts pattern is the results of the LP algorithm

discussed earlier. The conflicting goal of minimizing inventory and minimizing factory

thrash has caused the oscillating pattern.

 116

740

742

744

746

748

750

752

754

1 6 11 16 21 26 31 36 41 46 51 56 61

Finish Starts

Finish Outs

11 Day Manufacturing TPT

D
ie

 q
ua

nt
ity

Days
Figure 28. Base Model Finish Starts versus Finish Outs

The results in Figure 29 show that the LP is successfully commanding the

simulation to build material ahead of time in the Finish Warehouse while meeting all

demand on time. It can also be seen that shipping is working correctly. Orders are

reported filled three days after material is started in shipping. Shipping has a two day

delay, so material started at beginning of day one, will arrive at customer at beginning of

day 3.

 117

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45 50 55 60

Finish Starts

Finish Outs

CW Inventory

Shipping
Starts
Customer
Orders Filled
Customer
Demand

Orders Filled
= Demand

LP build ahead
into CW

3 day TPT: Shipping
Starts to Order Filled

Finish Starts and
out see Fig 328

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45 50 55 60

Finish Starts

Finish Outs

CW Inventory

Shipping
Starts
Customer
Orders Filled
Customer
Demand

Orders Filled
= Demand

LP build ahead
into CW

3 day TPT: Shipping
Starts to Order Filled

Finish Starts and
out see Fig 328

D
ie

 q
ua

nt
ity

Days
Figure 29. Base Model Non-Stochastic Results

5.1.3 Two Customers Daily Plan

The setup for two customer demand is shown in Figure 30. One additional

customer has been added from which product can be shipped out of the Finished

Warehouse. The demand input to the LP for both customers is the same. A new demand

message transform configuration needed to be added to the KIB integration model for

 118

supporting the additional customer. The LP and simulation models were updated

accordingly. No software changes were required to support the new interface.

Finish
Manufacturing

Finish
WH Ship

Semi
Finish
WH

600

750

900

1 11 21 31 41 51

KIB

Demand
Same for
Both Customers

Customer1

Discrete Event Simulation

LP Decision Algorithm

Finish
Starts

Shipping
Starts

Orders
Filled

Finish
BOH

Finish
Outs

Instructions

State

11Days 1Day 2Days

TPT Times

Customer2
Ship

Figure 30. Two Customer Experiment Setup

The output of these experiments is shown in Figure 31. The results are similar to

those described for the base case. The major difference is twice the material is being

started and building up in the finished inventory. This is expected since demand must be

met for both customers. The KIB enabled the configuration of release commands to

include multiple destinations to the simulation and for the simulation to provide data for

multiple shipping and customer entities.

 119

250

750

1250

1750

2250

2750

3250

3750

4250

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Finish Starts Finish Outs
CW Inventory Shipping Starts
Orders Filled Customer Demands

LP Builds ahead
inventory to meet both

customer demands

D
ie

 q
ua

nt
ity

Days
Figure 31. Two Customers, No Stochastic, Daily Plan Results

5.1.4 Two Customers Weekly Plan

The data results for running a weekly plan is shown in Figure 32. It can be seen

in these plots that customer 1 is regularly missing orders. This was not expected since

the LP looks 32 days ahead with a perfect forecast. Further analysis determined the cause

of why orders are being missed. Recall the mass balance constraints the LP used for the

FinishManufacturing (See section 5.1.1.3). The LP divides the total quantity of WIP in

manufacturing by the TPT time for the projection of what is leaving in the first 11 days

 120

(TPT time). If more material resides in the back half of the factory (i.e. leaving earlier),

the LP will incorrectly calculate less material is leaving. In this simulation run, the LP

did not account that there was enough arriving at the FinishWarehouse to meet demand

four days out when the FinishManufacturing line was not linearly loaded. To correct this

problem, the LP would either need to use a more detailed model of the

FinishManufacturing line or the LP needs to keep an inventory buffer to compensate for

error. It would be straight forward from interface perspective to experiment with

different levels of detail in the data models sent to the LP. The KIB allows the number of

WIP time buckets sent to LP to be easily configured. The impact on LP performance

with the extra data constraints would need to be considered with such analysis.

0

500

1000

1500

2000

2500

3000

3500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Customer1 orders
filled lateCustomer Demand

Finished Inventory
build ahead

Finish Starts vs.
Finish outs

0

500

1000

1500

2000

2500

3000

3500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Customer1 orders
filled lateCustomer Demand

Finished Inventory
build ahead

Finish Starts vs.
Finish outs

D
ie

 q
ua

nt
ity

Days
Figure 32. Two Customers with Weekly Plan Results

 121

A conclusion that can be drawn from this experiment is that there is a dependency

existing between the LP input data model and the frequency of the plan. If the plan is run

at a lower frequency, it needs a more accurate model of what will happen during that

planning cycle to produce good output. If an accurate data model cannot be obtained,

then the error will need be buffered, which could be accomplished by holding inventory.

5.1.5 Stochastic base model results

The base stochastic model is illustrated in Figure 33. For this set of experiments

the ideal sinusoidal demand signal has been replaced by noisy demand. In addition,

triangular distributions have been used to generate the random values for yield and TPT.

The distribution parameters for the yield are: 80% for lower limit, 90% for the mode, and

95% for the upper limit. The parameters for TPT are: 9 days for lower limit, 10 days as

the mode, and 12 days for the upper limit.

 122

Finish
Manufacturing

Finish
WH Ship

Semi
Finish
WH

KIB

Demand

Customer

Discrete Event Simulation

LP Decision Algorithm

Finish
Starts

Shipping
Starts

Orders
Filled

Finish
BOH

Finish
Outs

Instructions

State

11Days 1Day 2Days

TPT Times

500

750

1000

1 11 21 31 41 51

Figure 33. Base Stochastic Model

An analysis of the simulated yield results is shown in Figure 34. The simulation

was run five times, and for each run, the total units in and out of FinishManufacturing

were collected and graphed. The expected yield of the simulation would be the mean of

the triangular distribution which is 1/3*(80+90+95) = 88.33%. The maximum deviation

is on the second run in which the actual simulated yield is 0.89% lower than the expected

yield of 88.33%. Closer observation of run 2 also shows that the LP decision algorithm

was making up for the extra yield loss by starting more material.

 123

0

10000

20000

30000

40000

50000

60000

Starts vs. Outs per Experiment Run

N
um

be
r

Un
its

80%

81%

82%

83%

84%

85%

86%

87%

88%

89%

90%

Y
ie

ld
 P

er
ce

nt
ag

e

Starts 50863 51564 51098 51176 51240

Outs 45129 45089 45134 45202 45120

Yield % 88.73% 87.44% 88.33% 88.33% 88.06%

1 2 3 4 5

Yield = 88.73%

Units
In

Units
Out

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Yield = 87.44% Yield = 88.33% Yield = 88.33% Yield = 88.06%

Units
In

Units
Out

Units
In

Units
Out

Units
In

Units
Out

Units
In

Units
Out

Figure 34. Stochastic Yield Analysis over 5 Experiment Runs

An analysis of the simulated TPT results is shown in Figure 35. This is based on

the same five experiments used for the yield analysis. The TPT was configured as a

triangular distribution with parameters: 9, 10, and 12. TPT times in the simulation are

rounded up to the next discrete integer values. For the simulations, there would be three

different TPT values: 10, 11, and 12. Their expected frequency would be 33.33% for

TPT of 10, 50% for TPT of 11, and 16.67% for TPT of 12 (See Figure 36).

 124

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number Lots For Each TPT Value per Experiment Run

P
er

ce
nt

 N
um

be
r L

ot
s

TPT = 12 664 708 659 689 712

TPT = 11 2083 2134 2155 2114 2124

TPT = 10 1468 1390 1424 1421 1391

1 2 3 4 5

TPT = 10
Expected
value
33.3%

TPT=11
Expected
value
50.0%

TPT=12
Expected
value
16.7%

34.83%

49.42%

15.75%

32.85%

50.43%

16.73% 15.55%

50.85%

33.60%

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

16.31%

50.05%

33.64%

16.84%

50.25%

32.91%

Figure 35. Stochastic TPT Analysis over 5 Experiment Runs

9 10 11 12

TPT=10
33.33%

TPT=12
16.67%

TPT=11
50%

Figure 36. Expected TPT Distribution

The segments of the bars are the percentage of lots that had TPT of 10, 11, and 12

respectively. It can be seen that the results shown in Figure 35 were consistently close to

the expected values of 33.33%, 50%, and 16.67%.

 125

Additional analysis has been performed on a single point for one of the

experiments. A plot of FinishStarts versus FinishOuts can be seen in Figure 37. There is

a peak for finish starts at t = 21. The corresponding peak in outs is at t = 32.

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46 51 56 61

Finish
Starts
Finish Outs

Time

Quantity

t=32,q=1068

t=21,q=1531

t=22,q=793

t=20,q=911

400

600

800

1000

1200

1400

1600

1 6 11 16 21 26 31 36 41 46 51 56 61

Finish
Starts
Finish Outs

Time

Quantity

t=32,q=1068

t=21,q=1531

t=22,q=793

t=20,q=911

These two points validated to
be within 0.66 % from

expected value

Figure 37. Stochastic Base Case Finish Starts versus Outs

An analysis of what the expected value of outs would be at t = 32 is shown in Table 5.

The difference of the actual value from the calculated value is off by seven units or

0.66%.

 126

Start Time Quantity Started Total Expected
Quantity Out

(88.33% yield)

Expected
Percent out

at t=32

Expected
Quantity Out at

t=32
T=20 911 804 33.33% 268
T=21 1531 1352 50.00% 676
T=22 793 700 16.67% 117

 Total 1061

Table 5. Expected Finish Outs at t=32 for Stochastic Base Case

In further analysis every point was compared to the expected value. The average

error across for each discrete point was ±6-8% in 10 simulation runs. The daily errors

can be attributed to the discreet flow of lots and TPT times. The overall results were

acceptable as shown in Figure 34 and Figure 35. The daily errors canceled each other out

as positive and negative values.

In Figure 38, it can be seen that the LP is pre-staging material FinishInventory as

expected. It was also able to successfully meet all orders on time. From these results, we

can conclude the simulation, LP, and KIB performed as expected.

 127

400

600

800

1000

1200

1400

1600

1800

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

CW Inventory

Shipping Starts

Customer Orders
Filled
Customer Demand

All orders filled on time.
orders = demand

LP Build ahead in
CW inventory

D
ie

 q
ua

nt
ity

Days
Figure 38. Base Stochastic Order Fulfillment Performance

5.1.6 Optimistic Model Results

For the optimistic experiment, we changed the DEVS LP data transformation

configuration in the KIB to pass the best values from the simulation for TPT and Yield.

This required a simple configuration change in the KIB model. The transforms were

changed from MEAN to MIN for TPT and from MEAN to MAX for yield.

This experiment used the same initial data set and input demand as the base

stochastic model. The results of the experiment are shown in Figure 39. It can be seen

 128

that orders were being missed consistently after time period 26. Up to this period, the

initial inventory was being depleted from FinishWarehouse as can be seen in Figure 40.

These are the results expected; since the LP is receiving data that the process has lower

yield loss and shorter TPT’s than the actual average values. A shortage of material being

built in this scenario is expected.

400

500

600

700

800

900

1000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Customer Orders Filled

Customer Demand

Orders consistently
being missed after

time period 26.

D
ie

 q
ua

nt
ity

Days
Figure 39. Optimistic Orders Filled versus Demand

 129

400

900

1400

1900

2400

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

CW Inventory

Shipping Starts

Initial CW Inventory
quickly depleted

Shipping Starts = CW
inventory Everything is

being shippedD
ie

 q
ua

nt
ity

Days

Figure 40. Optimistic CW versus Shipping Starts

5.1.7 Pessimistic Model Results

The pessimistic model reports the worse case values of TPT and yield from the

simulation to the decision model. For this experiment, the data transformation for TPT

was set to the MAX value obtained from the simulation, and the yield was set to the

MIN. The results are shown in Figure 41. For this experiment, all orders were filled on

time. However, the inventory built up to almost twice as much as the base case. The LP

decision model consistently recommended more material than what was required. The

 130

values the LP used for TPT and yield loss were larger than the actual average. However,

it can be seen that the inventory leveled off instead of constantly rising. The LP ended up

buffering enough inventories to compensate for the longer TPT’s and bigger yield losses.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

CW Inventory
Customer Orders Filled
Customer Demand

All Orders
met on time

Inventory builds
~2x the base

stochastic caseD
ie

 q
ua

nt
ity

Days

Figure 41. Pessimistic Model

5.2 Industrial Models

For the next category of case studies, the KIB environment was expanded to work

on some actual supply chain network problems at Intel Corporation. The implementation

used in the previous experiments was extended to integrate to the commercial Honeywell

 131

Profit SuiteTM set of controller applications. This application enables the use of model

predictive control (MPC) as the optimizer to use for finding solutions.

5.2.1 Logistics Model

The first model can be classified as a logistics model. The MPC controller is used

to calculate shipping schedules for products leaving the fabrication plants to assembly

sites. The assembly sites vary in the products they can build and how they are supplied.

Some of the assembly sites are company owned and the others are sub-contracted. There

is an objective to keep the company-owned sites fully utilized and to minimize use of

sub-contractors. However, sub-contractors provide a critical service of supplying extra

capacity to cover demand upswings. The sub-contractors only have a finite amount of

capacity. Different companies bid on the capacity to meet their assembly requirements.

The capacity needs to be secured via contracts. If not enough capacity is secured, the

company risks losing orders. If there is too much capacity, then money is also lost.

5.2.1.1 Integrating the Honeywell Controller application

The KIB environment requires updates in two areas. First, at the software level, a

connection needed to be made with the Honeywell application. Second, at the model

composability level, the KIB synchronization model capabilities had to be extended to

work with the Honeywell optimization models and solvers. The Honeywell solvers were

based on model predictive control (Camacho and Bordons 1995).

 132

5.2.1.1.1 Model Composability with Honeywell

The KIB synchronization model needed to be extended to support the execution

model of the Honeywell Controller. MPC models were utilized. The input and output to

these models use single valued variables. The existing modeling for data mapping and

transforms could be used for the data composition models. However, the MPC model

had a different type of execution control loop for synchronization (see Figure 42). The

MPC models run at discrete time steps with its own synchronization variable that needs

to be toggled to tell the controller when to start the next step. A new variable was added

for MPC synchronization. The KIB synchronization model could include this variable

for specifying when data could be read and written and when a new controller cycle

should be started.

Output
Events

Input
Events

DEVS
Protocol

Iterative
Control
Loop

MPC
Protocol

fn(MPCo,t)

gk(DEVSo,t)
Input
Values

Outputs

KIB
Control

Loop
MPC

Interface

MPC
input
state

MPC
output
state

Out
Data

fn In fn Out

gk In

LP In
Data

DEVS
Interface

DEVS
output
state

DEVS
input
state

DEVS In
Events

DEVS Out
Events

Coordinates transforms, LP
commands, and DEVS events

gk Out

KIB

Discrete
Time

Steps

Output
Events

Input
Events

DEVS
Protocol

Iterative
Control
Loop

MPC
Protocol

fn(MPCo,t)

gk(DEVSo,t)
Input
Values

Outputs

KIB
Control

Loop
MPC

Interface

MPC
input
state

MPC
output
state

Out
Data

fn In fn Out

gk In

LP In
Data

DEVS
Interface

DEVS
output
state

DEVS
input
state

DEVS In
Events

DEVS Out
Events

Coordinates transforms, LP
commands, and DEVS events

gk Out

KIB

Discrete
Time

Steps

Figure 42. MPC Control Loops

 133

5.2.1.1.2 Interoperability with Honeywell

The Honeywell controller supported the OPC standard (Iwanitz and Lange 2006)

for connectivity. OPC provides a set of specification to support interoperability between

industrial automation applications. It is built on top of Microsoft’s DCOM protocol and

the set of standard libraries is provided by the OPC foundation.

These libraries were utilized to support interoperability between the Honeywell

application and the KIB. This was a straightforward implementation that only required a

onetime development effort. Once the interoperability connection was made, the KIB

capabilities supporting model composability between the controller and simulation

models were available.

5.2.1.2 Sort to ADI Logistics Shipping Model Topology

The real world supply chain network topology is shown in Figure 43. For

simplicity, shipping components are depicted as arrows. This topology has three

factories, 27 shipping lanes, nine warehouses, and nine assembly sites. Each of the

fabrication plants can produce up to 15 different products.

 The MPC was implemented using the Honeywell Profit SuiteTM set of

applications. The DES had been developed using the DEVSJAVA simulation

environment.

The MPC controller design required a different model instance for each product

built from the fabrication plants. This resulted in 15 different product controllers that

needed to run concurrently. The product controllers were coordinated using a dynamic,

 134

real-time optimizer. This optimizer provided both dynamic coordination and steady-state

optimization to the underlying 15 control applications.

A separate simulation model was connected to each of the product controllers,

resulting in a distributed simulation. That is, each of the 15 controllers had a designated

simulation model. Each simulation matched the topology shown in Figure 43, but had

different stochastic distributions configured to match each of the products characteristics

for the supply and demand forecast vectors.

The KIB had to coordinate the execution of the 15 different simulations, 15

different controllers, and one dynamic, real-time optimizer. It also needed to map and

transform the data between each of the simulation and controller models.

Fabrication 1

Fabrication 2

Fabrication 3

WH1

WH3

WH4

WH5

WH6

WH7

WH8

WH9

WH2

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT9

AT8
Worldwide
Shipping

Fabrication 1

Fabrication 2

Fabrication 3

WH1

WH3

WH4

WH5

WH6

WH7

WH8

WH9

WH2

AT1

AT2

AT3

AT4

AT5

AT6

AT7

AT9

AT8
Worldwide
Shipping

Figure 43. Supply Chain Network Topology

 135

5.2.1.3 Product Routing

The product routing in this model was very simple. Products did not change

names from the output of a fabrication plant to the input of an assembly test site.

Products leaving a fabrication plant could go to any assembly site. Therefore, product to

destination was a 1:1 mapping in this model. In Figure 43, a product leaving any of the

three fabrication plants would maintain its characteristics and have the same name in any

of the assembly test (AT) sites.

5.2.1.4 Simulation Scalability Concerns

The topology shown in Figure 43 required a simulation model with 64 supply

chain network entities. The simulation model had three lot generators supplying the

fabrication plants with simulated material, three fabrication plants, three end of

fabrication inventory points, 27 shipping lanes, nine assembly warehouses, and nine

assembly test lines. This simulation was run at a daily interval over one quarter

(approximately 90 days). In addition, 15 instances had to be run in parallel to

accommodate the controller design. This was the largest model run to date and we

encountered scalability issues in the data collection for historical analysis. The

simulation was setup to run 12 weeks of simulated time but was using all the available

memory after simulating a few days. More efficient methods of logging the results had to

be implemented. A design was put in that would log everything to disk every 10

intervals. This gave an acceptable performance. The simulation runtime was around 15

minutes for a full 90-day run.

 136

5.2.1.5 KIB modeling

The KIB model enabled the mapping and transformation of data between each of

the 64 simulation entities to over 200 input and output variables to the controller. The

controller required single-valued variables, whereas the simulation enabled data models

of object collections. The DEVS interface specification could be modeled much more

compactly than that Honeywell MPC interface. For the DEVS interface, a few lines of

specification for a collection-based structure could define the data interface to a single

simulation module, whereas many variable specifications were required for the MPC.

The only KIB scalability concern was the size of the XML integration models.

The overhead of running the KIB models was negligible in comparison to the simulation

and controller. The controller required the most computing resources taking up to 10-15

seconds per solver iteration.

The KIB model ended up being 1300 lines of XML with our current design. The

current XML editors on the market enable a fairly straight forward editing environment.

However, visual modeling tools that can support the DEVS/MPC KIB modeling

formalism would be much more powerful in enabling capabilities for syntax checking

and model integrity.

5.2.1.6 Controller Development Approach

The goal of the simulation environment was to enable the development and

validation of the controller prior to putting it in production. Although this kind of

simulation-based design is common practice, the use of the KIB enabled experiments and

 137

engineering of the complex interactions between discrete manufacturing processes and

controller. A two-step iterative process was devised (Figure 44).

Simulation of
physical

supply network

KIB data
transformation

models

Data
Automation

toolkits
Controller

Simulation of
physical

supply network

KIB data
transformation

models

Physical
supply network

Corporate Data
Systems

Data
Automation

toolkits
Controller

Controller

Real world components

Simulation environment iteration 2

Simulation environment iteration 1

Simulation of
physical

supply network

KIB data
transformation

models

Data
Automation

toolkits
Controller

Simulation of
physical

supply network

KIB data
transformation

models

Physical
supply network

Corporate Data
Systems

Data
Automation

toolkits
Controller

Controller

Real world components

Simulation environment iteration 2

Simulation environment iteration 1

Figure 44. Simulation Iterations versus Real World

First, the KIB model generated data that was directly read and written into the

controller variables. Second, the KIB model was revised to generate data in the same

manner as the enterprise data systems. The production data automation toolkits would be

developed against simulated data feeds.

The real world components section of Figure 44 shows the physical systems we

needed to work with. There is the physical supply chain network, the corporate data

systems that capture current states and information about the physical systems, some data

automation software to transform the data into the format required by the controller, and

the actual controller system.

The first iteration of experiments supported the development of the controller.

Realistic stochastic simulations were run and validated against historical data. The

controller was then developed and integrated with these simulations using the KIB. This

 138

stage of simulation supported the development of the controller and its required data

interfaces. Base issues were worked out, such as scalability and controller design.

In iteration 2, the KIB was changed to output data to the controller in a format

that matches the corporate data systems. The production data automation toolkits were

developed during this iteration. The same simulation of the physical models was used;

however, the KIB data output to the MPC was different. This enabled testing and

development of the production data automation toolkits for the controller.

After the two iterations of development, the controller and associated data

automation toolkits were put into the production configuration.

5.2.1.7 Findings

5.2.1.7.1 KIB Benefits

The KIB enabled the development and experimentation of the MPC controller

against the existing simulation environment. In particular, it facilitated the research and

development for using MPC technology on an actual supply chain network discrete

manufacturing problem. In the first experimental runs, it was found that the initial design

for sending the supply and demand forecasts to the model would not work. The KIB

enabled experimentation with several approaches by allowing different transformations

of the data supplied from the simulation. First, the experiments involved sending data of

differing granularity depending on how close in time it was (e.g. the first seven values of

a supply forecast may be what is coming in the next seven days, the next three values

could be what was coming in the following weeks). It was found that discrete values did

 139

not work well. Therefore, the next set of experiments transformed the data into rolling

averages (e.g. the first three values could be the hourly value and the next seven could be

average daily for each week). That was the final design used by the controller.

The KIB also provided a test bed in which the data interfaces could be changed to

simulate what was in actual production. This enabled the design and development of a

production controller that could drop into the existing data systems.

5.2.1.7.2 Supply chain network Experimental Findings

On the first simulation/controller runs, it was found there would be scalability

issues with the controller design and the simulation. Although each of the models ran OK

in standalone mode, the integration highlighted invalid assumptions each had made about

the other system. The controller had to be changed into a hierarchical design where

separate instances controlled each product. Performance tuning had to be executed on the

simulation to manage the large numbers of active simulation entities. Changes also had to

be made in the simulation to correctly model the manner in which discrete lots are

shipped from the factory. It was found this was an important behavior to simulate for the

controller. The discrete nature of lot-sizing errors had impacts on how the controller

needed to be tuned.

In the second iteration, we changed KIB models to exactly reproduce how data is

sent and received from the production data systems. This resulted in development of the

data automation toolkits prior to plugging the controller into production. The KIB

enabled experimentation and refinement of the aggregation needed for forecast vectors. It

 140

also highlighted invalid assumptions as to how data is provided from internal company

systems versus subcontractors. The KIB provided a quick and efficient way to do

experimentation with many different types of aggregation strategies.

Data Plots in Figure 45 show actual data results for one product in one of the

controlled warehouses. The plot depicts the inventory target upper and lower limits along

with the actual inventory. The objective is to keep the inventory between the limits. The

limits are based on future demand forecasts. The first portion of the graph shows how

inventory tracked in regards to the limits when the shipping was under manual control.

Multiple planners were coordinating the shipping schedules from the fabrication plants to

the assembly warehouses. The second portion of the graph starting at day 98 illustrates

the performance under automated MPC control. The controller is performing the job of

multiple planners while maintaining inventory at acceptable levels. This was the same

controller that was developed and validated using the KIB simulation environment.

Controlled Inventory

Upper Limit

Lower Limit

Actual Inventory

Manual Control Automated MPC Control

Days

Units

Controlled Inventory

Upper Limit

Lower Limit

Actual Inventory

Manual Control Automated MPC Control

Days

Units

Figure 45. Manual vs. MPC Performance

 141

5.2.1.7.3 Results

The MPC models and production data automation toolkits worked as designed on

the first production run. This was a significant accomplishment since it was the first time

MPC was used in an actual production instance of a discrete semiconductor

manufacturing problem.

The controller design worked with a daily update to the shipping signals. The

supply and forecast vectors needed daily granularity for the first few days and then could

use weekly buckets for the next few weeks. When the controller was plugged into

production, it was able to automatically keep inventory within limits at all warehouses as

well as the current manual processes could.

The team that developed the controller and simulation comprised of three

engineers, two senior control engineers, and one software/simulation engineer. Projects

of this scale typically take more resources. Without the KIB modeling approach, the

ability to experiment with different control frequencies and data sources would have been

limited or impossible within the time constraints. More time for the simulation or a less

robust controller put in at start of production would have been required.

5.2.2 Multi-Solver Experiments: MPC and LP

The next experiments evaluated how to design an MPC for controlling the builds

out of a semi-finished inventory into a finished goods warehouse. Material in the semi-

finished inventory can be set to different final configurations. The configuration may be

specific to a particular customer, or it can be configured with a general set of

 142

characteristics to match a certain type of product demand. The objective of the controller

is to only build enough finished goods to meet actual customer orders. The controller

must consider the available supply in the semi-finished goods, the time to process

through finish, and the short term demands from the customers to generate build

schedules. Due to the variability of customer demands and incoming supply, the

controller is set up to maintain a buffer of finished goods. The controller works to keep

the buffer within an upper and lower control limit.

The topology of the manufacturing line is simple; however, the product routings

are complex. Each of the different types of semi-finish goods can make a subset of the

finished goods. For example, assume there are three types of semi-finish goods. Assume

Type1 can make products A, B, and C, type 2 can make products A and B, and Type 3

can make products B and C. Assume there is a high demand for products A and C, but

only semi-finished goods of type 1 and 3 are being produced. If too much of semi-

finished good type 1 was used building product C not enough would be left to meet

product A demand. In this model, there were 111 semi-finished good product types with

716 possible combinations. Because of the complex routings, an LP was added to reduce

the number of control variables needed by the MPC. The LP optimizes the selection of

semi-finish goods to meet the finished good output schedules generated by the MPC.

 143

5.2.2.1 Model Description

5.2.2.1.1 Topology

The integrated model topology is shown in Figure 46. This model requires the

integration of LP, MPC, and simulations models. The KIB was extended to support the

integration of all three using the existing logic.

SFGI
BOH

Simulation Model

Finish ProcessSemi-Finish
Inventory

Finish
Inventory

TPT yield capacity

Actual historical CW
Ship outs used as
CW release Input

Actual Historical
Test Outs Used
As Input

LP Bin
Optimizer

MPC Inventory Optimization
L1 Quantities to Build

SFGI
AO

g(y1)

g(y2) Finish
WIP

Orders
Schedules

CW
BOHSFGI

Releases

Finish
Starts

Finish
Load

Demand
Forecast

vector

Warehouse
Inventory

Product
Build

Schedules

ƒ(x3) ƒ(x4) ƒ(x7)ƒ(x5)

CW
AO

Warehouse
Ship outs

ƒ(x6)

Customer

SFGI
BOH

SFGI
Inventory

ƒ(x2)ƒ(x1)

KIB

Build
Schedules

SFGI
Starts

Actual historical
customer order data

SFGI
BOH

Simulation Model

Finish ProcessSemi-Finish
Inventory

Finish
Inventory

TPTTPT yieldyield capacity

Actual historical CW
Ship outs used as
CW release Input

Actual Historical
Test Outs Used
As Input

LP Bin
Optimizer

MPC Inventory Optimization
L1 Quantities to Build

SFGI
AO

g(y1)

g(y2) Finish
WIP

Orders
Schedules

CW
BOHSFGI

Releases

Finish
Starts

Finish
Load

Demand
Forecast

vector

Warehouse
Inventory

Product
Build

Schedules

ƒ(x3) ƒ(x4) ƒ(x7)ƒ(x5)

CW
AO

Warehouse
Ship outs

ƒ(x6)

Customer

SFGI
BOH

SFGI
Inventory

ƒ(x2)ƒ(x1)

KIB

Build
Schedules

SFGI
Starts

Actual historical
customer order data

Figure 46. Multi-Solver Topology

The simulation models a portion of the final processes in semiconductor

manufacturing. This includes a semi-finished inventory, the finish processes, the finish

warehouse (CW), and a customer. The simulation has three historical data files for input.

The first file provides actual historical data on incoming supply to the semi-finished

 144

inventory. The second file provides actual ship data to the customer, and the third

provides actual order data.

The controller objective was to create release schedules to keep enough supply in

the FinishWarehouse to support shipments to the customer. The simulation modeled the

stochastic yield and throughput time of the FinishProcess.

The MPC controller gets data on customer order forecast, what was shipped to a

customer in the last interval, the quantities of semi-finished WIP, and the inventory of

finished materials. From this, it calculates which finished goods should be built at each

time MPC control interval. The semi-finished inventory could have 111 different

products. Out of these products, 15 different types of finished goods could be built.

These semi-finished materials can only build subsets of the finished goods. Overall,

there were 716 possible combinations. The MPC controller modeling strategy used for

these kinds of supply chain network problems would have required 716 different

dependant variables. The controller would not easily scale to that size. To simplify the

control design, a simple LP optimization was created that could use the MPC schedule

and make an optimal selection of semi-finish material to support.

5.2.2.1.2 Product Routing

Figure 47 illustrates the complexity of the product routing possibilities for this

problem set. For the simulation, the semi-finished inventory would output BOH and AO

values for the 111 different products. It could accept release commands that specify

which of the 111 products to use for making one of the nine target finish products. The

 145

finish process could output WIP values for the 15 finish products as well as the finish

warehouse and customer.

Finished Goods
•9 finished products

716 valid
combinations

Semi-Finished Goods
•111 Semi-Finished products

Finished Goods
•9 finished products

716 valid
combinations

Semi-Finished Goods
•111 Semi-Finished products

Figure 47. Product Routing Complexity

The controller, solver, and KIB transformation models would need to work with

the same number of products. The large number product routing combinations is the

most difficult level of complexity in this set of experiments.

 146

5.2.2.2 KIB Multi-Solver synchronization model extensions

The KIB needed to be extended in this set of experiments to support two solvers.

The data interfaces and transform functions were already in place from the previous

experiments. The ability to synchronize the MPC, LP and simulation execution did not

exist. The KIB control modeling language and underlying execution algorithm needed to

be extended.

The data flows that needed to be supported for this set of experiments are shown

in Figure 48. The simulation, LP, and MPC could read and write their associated states

in the KIB. The transformations that needed to be supported are a subset of all possible

transforms. The data transformations that needed to be modeled were determined by how

the models needed to be synchronized. The logical flow of the composed model is: 1) the

simulation runs creating a new state for input to the solvers, 2) the MPC calculates how

much of each finished product needs to be started from semi-finished goods inventory

(SFGI), and 3) the LP solver selects which semi-finished products should be used to

support the MPC schedules. The LP also needs the quantities of each semi-finished good

that is currently available, so it needs this data from the simulation. The LP output then

goes to the simulation. This implies that data transformations need to happen from

simulation to MPC (DEVS MPC), MPC to LP (MPC LP), simulation to LP

(DEVS LP), and then LP to simulation (LP DEVS).

 147

Simulation

MPC

LP
Interface

State

MPC Interface
State

Simulation
Interface State

Simulation
To MPC

Transforms
LP

MPC to LP
Transforms

LP to
Simulation
Transforms

Simulation
To LP

Transforms

KIB

Simulation

MPC

LP
Interface

State

MPC Interface
State

Simulation
Interface State

Simulation
To MPC

Transforms
LP

MPC to LP
Transforms

LP to
Simulation
Transforms

Simulation
To LP

Transforms

KIB

Figure 48. Data Flows in the Composed Multi-Model

Figure 49 shows the model synchronization that needed to be supported for this

set of experiments. It is an iterative loop coordinating when to do the data transforms and

when to execute the solver and simulation models. First, the simulation runs; second, the

simulation to MPC transformations are executed. Third, the MPC solver is run; fourth,

the MPC output is transformed to LP input. Fifth, the simulation output is transformed to

LP input. Sixth, the LP solve is run; and finally, the output of the LP is transformed into

simulation data input.

 148

1. Run Simulation 2. Simulation to
MPC transforms

4. MPC to LP
Transforms

5. Simulation to
LP Transforms

7. LP to Simulation
Transforms

3. Run MPC
Solver

6. Run LP
Solve

1. Run Simulation 2. Simulation to
MPC transforms

4. MPC to LP
Transforms

5. Simulation to
LP Transforms

7. LP to Simulation
Transforms

3. Run MPC
Solver

6. Run LP
Solve

Figure 49. Control Flow of the Composed Multi-Model

The simulation to LP transformation in Figure 49 could have been configured

anytime after step 1 and the composed model would have executed correctly. The

transformation was designated as step 5 to make the synchronization model easy to

follow. This is pointed out to emphasize the flexibility of the KIB control modeling. The

KIB modeling language was extended to enable the specification of when the models and

data transformations were executed. The specification is a sequential order of actions to

take place.

5.2.2.3 Experiments

The experimental model and environment was illustrated in Figure 46. The

simulation scenarios would be driven by using actual historical data for incoming supply

and for outgoing CW warehouse ship-outs. These scenarios would represent a historical

 149

snapshot of actual supply/demand conditions. There was an initial iteration of simulation

runs that used historical semi-finish inventory releases to validate the models. The

simulations models were validated to match the behavior of the finish manufacturing

lines. After this validation, all remaining experiments used the outputs of the solvers for

generating the release commands to the semi-finished inventory.

The historical data used for input was for 90 days at an hourly granularity. Each

file had 2,160 data points. The simulation would run at an hourly interval. The solvers

could be run at any hourly multiple. The experiments were run using hourly or daily

control. Many of the data inputs needed to be input at daily or weekly granularity.

The metrics used to determine the solvers performance would be a measurement

of inventory levels and customer order response. The inventory levels in the semi-

finished and finished warehouses would be recorded for each simulation iteration. The

difference between the due date and the time each customer order was filled would be

tracked. The success of the solvers would be a measurement of their performance

meeting orders on time compared to historical results. The solvers need to match

customer service levels while at the same time use supply as well or better than what was

achieved historically. The criterion for measuring how supply was utilized was based on

how well the controller kept finish inventory levels at a minimum while maintaining

customer service levels.

In the initial experiment runs, the controller was given a perfect demand forecast

from the customer entity in the simulation. This enabled the development of the

controller against an ideal case. After the controller was performing as expected,

 150

stochasticity was added to the customer demand. The error from actual demand

increased farther out in time.

As the controller development progressed, it was found there were several

important data inputs that needed to be tuned. First, how the demand forecast is sent to

the controller and second, how to specify inventory limits and how often to update them.

For the demand forecast, there were tradeoffs involving sending actual values, sending

rolling averages over segments of the forecast horizon, and the granularity of the

segments. For the inventory limits, it was determined the controller worked better when

limits were specified as a function of demand. For example: Setting the finished goods

lower limit as a sum of orders in the next two weeks and the upper limit as the sum of

orders in the next three weeks made the timing of how often to update the limits critical.

If limits were updated too frequently, the controller would become unstable; if time

between updating limits was too long, customer service levels suffered. Many

experiment runs were performed to find the best operating regions of demand forecast

and inventory limits settings.

5.2.2.4 Findings

The objective for this set of experiments was to determine the viability of using

MPC for semi-finished goods scheduling. The multi-formalism modeling environment

enabled the development of the controller against data sets of the scale seen in actual

manufacturing. It enables the discovery of data requirements, different methods for

configuring the controller, and the scale of the real world problems.

 151

5.2.2.4.1 Simulation Scalability Concerns

The simulation needed to be redesigned in several areas to address performance

issues. The large number of products and number of simulation iterations required

increased runtimes from less than 15 minutes to over 3 hours. The large number of

product combinations exponentially increased the number of entities required to be sent

on the data and control ports on each simulation interval. For the data ports, the

simulation would send a separate lot entity out each port at the end of each interval. For

the semi-finished inventory, this meant hundreds (up to 716) could be sent at each hour.

Each one of these messages generated an external event on the connected port. For data,

this was always a single port. For the control messages, a separate status message was

sent out for each product. For semi-finished inventory, this mapped to 111 BOH

messages and up to 716 AO messages per simulated hour. Each of these messages

generated an external event on connected ports. For the control messages, this meant an

external event generated for all entities in the simulation. Since the lot and status

messages occur at the same logical time instant, the message count was reduced by

consolidating the data going to the same destination into a single container message.

Using this strategy, the worse case message count was reduced by a factor of 716, the

number of product mappings. The run times decreased from hours to minutes for a full

2,160 hour run.

The other scalability problem encountered was the size of the simulation output

files. Many of the files exceeded one million lines. Previously, all offline data analysis

 152

had been accomplished using Microsoft Excel, which has a file limit of 64,000 lines.

Offline tools had to be created to summarize the data in an easily analyzable format.

5.2.2.4.2 Data input for controller

The previously described experiments were invaluable for determining the

requirements to build a MPC solution for final product configuration. MPC had not been

applied to an industrial application in semiconductor supply chain domain before. The

experiments highlighted the upper bound of allowable control variables in the current

MPC implementation. The KIB test bed allowed experimentation using a hybrid solution

with an independent LP to address the limit on control variables.

Two important areas were researched by the MPC engineers, how to set inventory

control limits and how to pass a demand forecast on discrete process flows with

characteristics seen in semiconductor manufacturing.

5.2.2.4.3 KIB Benefits

The KIB provided a test bed that enabled many different controller designs to be

tested against a single validated simulation. The KIB facilitated experiments using

different controller frequencies, data aggregation algorithms, and data feeds. There was a

onetime setup and validation on the simulation. The KIB insulated changes to the

simulation by providing the modeling capability to match the semantics and control with

the LP and MPC models.

 153

In addition, the effort to try multi-level solves was simplified by the KIB. Small

extensions were made to existing capabilities. This one-time effort supported many

iterations of control design development.

5.2.2.4.4 Data results

A small example of data results from these experiments is shown in Figure 50.

This figure illustrates inventory levels on a product historically compared to levels using

MPC control. The historical data is what was actually seen using the current production

processes. The simulated inventory levels are what were seen using the MPC and LP

solvers to manage semi-finished releases. There are also upper, lower, and mid-limit

values shown. The objective is to keep the inventory as close to the mid-level limit as

possible. As seen in Figure 50, the historical data far exceeded the limits around 50% of

the time. These experiments show that MPC may be a good fit for these types of

problems. The assumption made is that the simulated demand forecast errors were good

enough to represent the errors actually seen. A second round of simulations is planned

for the future using the real demand forecasts from day-to-day when the production

control environment was generating starts. This will give a more realistic comparison as

to how the MPC control would perform during actual production.

 154

D

ie
 q

ua
nt

ity

Time

Figure 50. Simulated Control versus Actual Historical

5.2.3 Current Work

A new set of experiments are being run that combines the previous two models.

The new models require the complex logistics seen in the first industrial case study and a

product mapping hierarchy almost as complex as the second industrial case study. The

same KIB and simulation environment are being used. The data and models are

confidential so they cannot be described. The results from using the KIB and simulation

environment are promising.

The KIB enabled enhancements made to the commercial controller to be tested

prior to being put into production. The resulting enhanced MPC is the largest

 155

commercial controller of this type ever put into production. The end users are confident

enough with the data results provided by the KIB test bed to use it for pre-production

controller validation.

6 SYSTEM AND KIB DESIGN

This chapter will describe the design and implementation of the KIB environment

created to demonstrate the multi-formalism methodology and enable the Semiconductor

Supply Chain Network experiments. First, the software applications and how they were

integrated with the KIB will be described. Next, the architecture of the LP/DEVS KIB

and the design approach taken for enabling interoperability while supporting model

composability will be explained. Then details of the KIB software design will be shown

in UML. Finally, there will be discussion on specific Semiconductor Supply Chain

Network modeling concerns for integrating DEVS, LP, and KIB models.

6.1 Software Application Architecture

The software applications used to run the experiments in Chapter 5 were ILOG

OPL Studio for modeling and executing LP’s (ILOG 2008), Honeywell Profit Suite

(Honeywell 2008) for modeling and executing MPC’s, DEVSJAVA for modeling and

executing DEVS simulations, and the KIB implementation described in this chapter. The

applications and how they are connected is illustrated in Figure 51. The applications are

connected to the KIB using various protocols chosen because they are directly supported

by existing implementations of the applications.

 157

DEVS
Models

Simulation
Engine

DEVSJAVA

MPC
Models

MPC
Solver

Honeywell
Profit Suite

KIB Execution
Engine

KIB Models

KIB
Implementation

OPL
Models

CPLEX
Solver

ILOG
OPL Studio

Java
Messages JNI OPCJava

MessagesJNIOPC

DEVS
Models

Simulation
Engine

DEVSJAVA

DEVS
Models

Simulation
Engine

DEVSJAVA

MPC
Models

MPC
Solver

Honeywell
Profit Suite

MPC
Models

MPC
Solver

Honeywell
Profit Suite

KIB Execution
Engine

KIB Models

KIB
Implementation

KIB Execution
Engine

KIB Models

KIB
Implementation

OPL
Models

CPLEX
Solver

ILOG
OPL Studio

OPL
Models

CPLEX
Solver

ILOG
OPL Studio

Java
Messages JNI OPCJava

MessagesJNIOPC

Figure 51. Software Application Architecture

The DEVSJAVA application connects to the KIB through JAVA messages. The

DEVSJAVA and KIB implementations can call each other directly through JAVA

messages and ports. This is because the KIB and DEVSJAVA are both implemented in

JAVA and for this KIB implementation they share the same process space. The KIB was

designed for an easy separation using JAVA RMI, but was not necessary for any of the

experiments or case studies. This would become a necessity if using a different

simulation environment was desired.

The KIB communicates to the OPL Studio application through JNI. OPL studio

includes a JNI API with its commercially available product. This interface allows an

external application to directly populate initial states into an OPL model, execute a solve,

and read the results.

The communication to the Honeywell controller is executed through a protocol

known as OPC (Iwanitz and Lange 2006). OPC is an interoperability protocol

 158

maintained by a standards committee for the process control industry. OPC provides a

standard way to send and receive data and alarms from equipment sensors and process

controllers. The OPC protocol is built on top of DCOM. Standards compliant DCOM

libraries are available (OPC-Foundation 2008).

The KIB has been implemented in a straightforward manner to enable

connectivity to many different protocols so experimentation can leverage existing

environments supporting various types of modeling. There are advantages to leveraging

existing implementations. First, the existing implementations have been optimized to

work very well within their domain from both performance and usability aspects.

Second, there is an existing group of experts that know how to use the environments.

And third, the existing models that had previously been developed can be reused.

6.2 Interoperability Approach

The purpose of this KIB implementation is to create an environment that enables

the development and validation of different Semiconductor Supply Chain Network

control models against accurate simulations. We would like the environment to be easily

extended to a variety of modeling tools utilized in the industry. Since the different

planning and simulation tools that exist today use a variety of API’s to enable

interoperability, the KIB needs to have a flexible implementation to enable adaptability.

It is common practice for the approach shown in Figure 52 to be used for

interoperability for enterprise planning and execution applications. Organizations using

groups of experts develop a standard message structure to use for communicating

between applications. An example found today for supply chain network and enterprise

 159

systems would be OAGIS (OAGIS 2008). This approach has many benefits for the

integration of large software applications in which the application suppliers may come

from many different vendors. It eases the integration efforts by having applications

communicate to one standard message protocol. This approach requires all applications

that need to interoperate communicate use this standard. Model composability

mismatches need to be addressed within each application. In Figure 52, this

composability would need to be addressed within the message transform logic layer.

Standard
Message
Format

Common Interoperability Approach

M
es

sa
ge

 T
ra

ns
fo

rm
 L

og
ic

M
es

sa
ge

 T
ra

ns
fo

rm
 L

og
ic

C
om

m
un

ic
at

io
n

P
ro

to
co

l
A

da
pt

er

Communication Bus

C
om

m
un

ic
at

io
n

P
ro

to
co

l
A

da
pt

er

M
od

el
in

g
A

pp
lic

at
io

n
A

M
od

el
in

g
A

pp
lic

at
io

n
B

Focus is on developing
common message format
that applications share.
Commonly modeled via

IDL or XML.

Software integration of message semantics to
application usage. Usually hard coded custom
development effort. Changes in messages
usually require extension using generic fields

Software integration of message bus. Many
time provided by application. E.g. DCOM,
sockets, JNI, etc. If application does not
support, custom SW development

Changes in message interface requires software changes in
both modeling applications

Standard
Message
Format

Common Interoperability Approach

M
es

sa
ge

 T
ra

ns
fo

rm
 L

og
ic

M
es

sa
ge

 T
ra

ns
fo

rm
 L

og
ic

C
om

m
un

ic
at

io
n

P
ro

to
co

l
A

da
pt

er

Communication Bus

C
om

m
un

ic
at

io
n

P
ro

to
co

l
A

da
pt

er

M
od

el
in

g
A

pp
lic

at
io

n
A

M
od

el
in

g
A

pp
lic

at
io

n
B

Focus is on developing
common message format
that applications share.
Commonly modeled via

IDL or XML.

Software integration of message semantics to
application usage. Usually hard coded custom
development effort. Changes in messages
usually require extension using generic fields

Software integration of message bus. Many
time provided by application. E.g. DCOM,
sockets, JNI, etc. If application does not
support, custom SW development

Changes in message interface requires software changes in
both modeling applications

Figure 52. Industry Standards Approach to Interoperability

 160

In the environment being implemented for our KIB, we do not want to change any

of the applications being connected. Rather than trying to enforce a single

interoperability standard across all applications, a generic adapter class is created that can

connect to a particular protocol and then expose the data to the KIB interfaces. The KIB

transform specification can then address any mismatches in the data.

The approach taken for implementation of the KIB is shown in Figure 53. Since

we are looking at the integration of models and require the interactions and data

exchanged between them to be flexible, we have developed an architecture that allows

data to be sent from the applications in their native form and the transforms between the

two are modeled in the KIB.

This approach requires an adapter to be built that can communicate with each

modeling application. In this way, existing techniques are used to solve the

interoperability. The KIB is used to enable model composability through its modeling

layer above the interoperability.

 161

KIB Approach

Modeling
Application A

Modeling
Application B

M
es

sa
ge

 B
us

 A
da

pt
er

M
es

sa
ge

 B
us

 A
da

pt
er

Transform
Models

Transform Engine

Messages sent from
application using its native
bus and message format.

Focus is on developing
transformation modeling

language. Could use XML
or other syntax.

KIB Approach

Modeling
Application A

Modeling
Application B

M
es

sa
ge

 B
us

 A
da

pt
er

M
es

sa
ge

 B
us

 A
da

pt
er

Transform
Models

Transform Engine

Messages sent from
application using its native
bus and message format.

Focus is on developing
transformation modeling

language. Could use XML
or other syntax.

Figure 53. KIB Approach to Interoperability

If two different applications use the same interoperability technique and they are

supporting the same type of modeling formalism, the adapter could be reused.

6.3 KIB Software Architecture

The main components for the implementation of the DEVS/LP KIB architecture

are shown in Figure 54. This figure illustrates the KIB configuration for connecting to

OPL Studio and DEVSJAVA. The KIB is made up of custom adapters (OPL Adapter,

DEVS Adapter), the Generic Interface, Execution Module, a Data TransformEngine, a

Model File Reader, and a Data Store.

The Execution Module coordinates the initialization and the control of all the

other KIB components. It is the first component to be loaded when the KIB application

 162

is started. It coordinates the execution by reading the Control Model from the Data Store

and receiving Sync Events from the KIB generic interface. The Control Model is loaded

into the Data Store when the KIB XML file is read.

The Data TransformEngine module performs the data transformations between

the models. The transformations to be used for each variable are modeled in the KIB

XML file. Transformations are performed whenever instructed by the Execution

Module. The Data TransformEngine will read the current state from one formalism state

model and transform the data to the correct representation for the other. The input and

output variables to use is also configured in the KIB XML file.

The Generic Interface can read and write the state data from the Data Store and

then supply this data to the adapter module. The Generic Interface can supply the KIB

ExecutionEngine with Sync Events. There is a Generic Interface instantiated for each

custom adapter. Which KIB generic interface supplies the Sync Event is determined by

the Control Model.

. The custom adapters are written for each type of formalism and interoperability

protocol the KIB needs to interface with. A different adapter has been implemented for

both OPL Studio and DEVSJAVA.

The Data Store holds state data from the LP and DEVS models in generic data

structures. Each of the formalisms has its own storage area. The Data TransformEngine

can move this data between the storage areas using transforms modeled in the KIB model

file. The Data Store schema is set at initialization from the KIB model file. Data values

are written to the Data Store when the different models start executing.

 163

KIB

KIB
Execution

Engine

OPL
Adapter

DEVS
Adapter

KIB Data
Transform

Engine

OPL
Studio JNI Java

Msgs

DEVS
Java

Data Store
Model

File Reader

KIB
Generic
Interface

KIB
Generic
Interface

KIB

KIB
Execution

Engine

OPL
Adapter

DEVS
Adapter

KIB Data
Transform

Engine

OPL
Studio JNI Java

Msgs

DEVS
Java

Data Store
Model

File Reader

KIB
Generic
Interface

KIB
Generic
Interface

Figure 54. DEVS/LP KIB Architecture

The model file reader reads the XML KIB model configuration file at startup and

keeps a representation in the Data Store. The KIB Data TransformationEngine uses these

models to transform data during execution; the LP and DEVS interfaces utilize the model

to map the generic representation of data to the specialized format required for the

formalism.

6.4 KIB Implementation

The top level class diagrams for the KIB package is shown in Figure 55. The KIB

is separated into the following classes: ExecutionEngine, TransformEngine,

ModelFileReader, and the InterfaceConfigs, which includes composition of other classes.

The details of each class will be described and then some sequence diagrams will be

shown to illustrate their interactions.

 164

-initializeKIB()
-executeAction()
-initiateTransform()
-initiateModelAction()
+syncEventOccured()

-interfaceHandles
-currentAction

Execution Engine

+TransformData()

TransformEngine

+LoadModel()

Model File Reader

+getControlModel()
+setControlModel()
+updateSyncValue()
+getTransformConfig()
+setTransformConfig()

-externalInterfaces
-controlModel

InterfaceConfigs

+getStateValues()
+setStateValues()
+getInterfaceConfig()
+setInterfaceConfig()

-Name
-Formalism
-Adapater

GenericInterface

+getSyncValue()
+setSyncValue()
+getNextAction()
+setControlConfig()
+getControlConfig()
+callExecutionEngine()

-syncDataValue
-actions

Control Model

1
1

1

1..*

1
1

CustomAdapter

+GetValue()
+SetValue()

Data Store

+ReadData()
+WriteData()
+runExecution()
+InitializeConnection()
+CloseConnection()

«interface»
InterfaceAdapter

Figure 55. Main KIB Classes

6.4.1 InterfaceConfigs

The InterfaceConfigs class maintains the configurations and state values for each

of the external KIB interfaces. This class is a composition that includes a collection of

externalKIBinterfaces and a Control Model. Each of the GenericInterfaces includes a

customAdapter to implement the InterfaceAdapter interface.

 165

The InterfaceConfigs class has two private attributes. They are references to the

GenericInterfaces and the Control Model. These attributes can be set by the

setControlConfig and setInterfaceConfig methods.

Attributes

• GenericInterfaces.

o Type: Collection GenericInterfaces.

o Description: Reference to the active GenericInterfaces instantiated

when the KIB XML model was loaded by the ModelFileReader.

• controlModel

o Type: ControlModel

o Description: Reference to the Control Model. Value populated

when the KIB XML model was loaded by the ModelFileReader.

Methods

• getControlModel: Returns reference to the Control Model

• setControlModel: Sets the Control Model to object passed in

• updateSyncValue: Updates the sync value in the Control Model

• getTransformConfig: Returns the transformation configurations between

the interfaces.

• setTransformConfig: Sets the transformation configurations.

 166

6.4.2 GenericInterfaces

The GenericInterfaces class defines the interface to one of the connected

applications supporting the development and execution of a formalism model (e.g. DEVS

or LP). The interface provides the latest state values sent or received to the application in

the generic KIB format. The interface adapter communicates with the GenericInterface

through method calls.

Attributes

• name

o Type: String

o Description: Used to name the interface. The InterfaceConfigs

class uses the name to identify the sending and receiving

GenericInterfaces for the transformations.

• Formalism

o Type: String

o Description: Name of the model the interface supports

• Adapter

o Type: InterfaceAdapter

o Description: Reference to the adapter assigned to this

GenericInterface

Methods

• getStateValues: Returns the current state values

 167

• setStateValues: Sets the state values to what was passed in

• getInterfaceConfig: Returns the configuration of the interface. This

includes input and output variables, the variable type definitions.

• setInterfaceConfig: Sets the interfactConfig to the object passed in. This

method is called by the KIB Model File Reader. The interface

configuration is read from the XML file.

6.4.3 ControlModel

The Control Model class is used by ExecutionEngine to track the current state and

supply the next one. The current state includes the value of the synchronization variable,

the model execution frequency configuration, and the next control action that should be

performed.

Attributes

• syncDataValue

o Type: Object, details of which is defined by the KIB model

o Description: Maintains the value of the synchronization variable

• actions

o Type: Circular List of Strings

o Description: Defines the order and sequence of actions for the

ExecutionEngine. The sequence is defined in the KIB XML

model.

 168

Methods

• getSyncValue: Returns the current value of the synchronization variable

• setSyncValue: Sets the sync variable to the value passed in.

• getNextAction: Returns the next action that should be performed. This

would be either data transformation or the schedule model execution.

• getControlConfig: Returns the control configuration.

• setControlConfig: Sets the current control configuration to the value

passed in. The control configuration is read from the KIB XML file.

• callExecutionEngine: Private method. Calls the ExecutionEngine when

the sync variable changes value.

6.4.4 InterfaceAdapter

The InterfaceAdapter interface must be implemented by the custom adapter. For

OPL Studio a custom adapter was created that could communicate over JNI and call

OPL’s methods defined in their API. For Honeywell, a custom adapter was created that

could communicate via OPC. For DEVSJAVA, a custom adapter was implemented that

could communicate directly via Java methods.

Attributes

• name

o Type: String

o Description: Name of the adapter

 169

Methods

• readData: Used to read data from the external model. Customized to

work with the application protocol.

• writeData: Used to write data to the external model.

• runIteration: Run an iteration of the model. For DEVS, this would be

one simulation iteration as defined by the model. For LP, this would be

the initialization of a solve. For Honeywell, this would be a new iteration

of an MPC solve.

• initializeConnection: Initializes connection with the external application.

Performs all the low level methods required by the protocol.

• closeConnection: Closes out the connection with the external application.

6.4.5 ExecutionEngine

The ExecutionEngine coordinates the control across all other objects at runtime.

The ExecutionEngine is also implemented as the main class. It instantiates all the other

KIB objects at runtime.

Attributes

• interafaceHandles:

o Type: InterfaceAdapter

o Description: Reference to the interface adapters. Communicates

directly to the adapters for commanding them to read, write, or

perform an execution.

 170

• currentAction

o Type: String

o Description: The current action being executed. Can be

transforms or instructions to send to the external applications.

Methods

• Initialize: Private method called at startup. Instantiates all objects and

request the initial state from the first model to be scheduled for execution.

• executeAction: Private method called when starting a new action.

• initiateTransform: Private method to call the TransformEngine.

• initiateModelAction: Call method on interface adapter objects.

• syncEventOccurred: Method called when a sync data variable changes.

Starts a new cycle of actions.

6.4.6 TransformEngine

The TransformEngine performs the data transformations. It reads the input state

from the source model and writes the transformed data to the destination model. It is

called by the ExecutionEngine.

Attributes: none

Methods

• transformData: Performs the data transformation. A parameter specifies

the source and destination models. This method will lookup the

 171

transformation configurations, determine if it is time to perform transform,

read source data, transform the data, and write to destination.

6.4.7 KIBModelReader

Attributes: none

Methods

• loadModel: Loads the XML KIB model into the InterfaceConfigs objects.

This method is only called at startup time. It reads the XML KIB model

and then calls the setInterfaceModel, setControlModel, and setTransform

model methods on the GenericInterfaces, the ControlModel, and the

TranformEngine classes.

6.4.8 Data Store

This class function is to store the state data and KIB models into data structures

that are accessible to the other KIB objects. Data elements are set and retrieved by String

name.

Attributes: none

Methods

• GetValue: Gets a value from the Data Store.

• Set Value: Sets a value in the Data Store.

 172

6.4.9 Initialization Sequence Diagram

A sequence diagram for the KIB initialization is shown in Figure 56. This

initialization is coordinated by the ExecutionEngine object. At startup, the

ExecutionEngine first instantiates the TransformEngine, the ModelFileReader, and the

InterfaceConfigs objects. Next, it calls the ModelFileReader to load the XML KIB File.

The ModelFileReader then parses the XML KIB file and writes the InterfaceConfigs

object. The InterfaceConfigs object then instantiates each GenericInterface, which in

turn instantiates the CustomAdapter. After that is complete, the InterfaceConfigs stores

the interface models read by the ModelFileReader into each of the GenericInterface

objects. When this is complete, the ExecutionEngine is notified that the interfaces have

been initialized. The ExecutionEngine will then ask for the initial state from the first

model configured in the Control Model configuration, which is done through

communication to the interface adapter. After the initial state is populated, the interface

adapter notifies the ExecutionEngine that it is complete. The ExecutionEngine then gets

the first control action and the main loop of control is started as described in Chapter 3.

 173

Figure 56. Use Case Sequence Diagram for Initialization

6.4.10 Sequence Diagram for Execution initiated by Sync Event

The sequence diagram in Figure 57 illustrates what happens when a Sync Event

occurs. See Chapter 3 for details on how this occurs. The Sync Event can transpire when

the state data is updated from an external model. The Sync Event is based on some data

changing from the external model. Which data is used for this is configured in the KIB

XML model. In this sequence diagram, the state data is first updated to the

GenericInterface object, which notifies the InterfaceConfigs that the state update is

complete. The InterfaceConfigs notifies the ControlModel that data was updated. Once

the ControlModel detects that the sync data was updated, it notifies the ExecutionEngine

 174

that a Sync Event occurred. The ExecutionEngine asks the ControlModel for the next

action to perform. In this scenario, the ControlModel returns a next transform action.

The ExecutionEngine initiates a transform by calling the TransformEngine, which then

gets the configurations and input data from the GenericInterface object. The transform

configuration specifies which external interface to get data from by the transform request.

E.g. if it was a DEVS LP transform, the next action supplied to the ExecutionEngine

would have been ‘DEVSLP’, which it would pass to the TransformEngine.

The TransformEngine then performs the transformations and updates the states on

the GenericInterface object. After the transform is complete, the ExecutionEngine then

requests the next action. This continues until all actions have been completed in the

control sequence. After they are completed, the ExecutionEngine will wait for the next

Sync Event.

 175

Figure 57. Use Case Sequence Diagram for Action Initiated by a Sync Event

7 CONCLUSIONS

A methodology was developed for composing multi-formalism DEVS/LP models.

DEVS and LP are two very different modeling formalisms with distinct execution

protocols. The DEVS formalism is well-suited for modeling and simulating system

behavior. The LP formalism can quickly find optimal answers when models are

abstracted to constraints and objective functions. There is a lot of research on how to

solve a large variety of problems using the two different formalisms for their specialized

domains. There is also existing research on the value of combining LP models with

simulation models (Hung and Leachman 1996); however, this has been accomplished

previously in ad-hoc ways that only support point solutions with little integration

flexibility at the modeling level. The methodology enables the LP and DEVS formalisms

to be composed into a semantically consistent multi-model via a KIB.

A KIB was designed and implemented to support the DEVS/LP multi-formalism

modeling methodology. It was then demonstrated on a class of semiconductor

manufacturing supply chain network problems. LP’s were developed to optimize

planning schedules and DEVS simulations were created to reproduce the semiconductor

manufacturing behavior. The KIB was used to enable the composition of the two. The

KIB enabled the models to be developed independently using domain experts in each

area. Techniques for developing the LP’s followed practices developed by specialists in

planning operations. Similarly, practices developed by experts in semiconductor

manufacturing simulation were used for creating the DEVS models. The mismatches in

semantics between the I/O across the models, the differences in the formalism modeling

 177

structures, and the coordination of the two at execution time were solved by the KIB

model. The KIB allowed for experiments in the integration of these models by

highlighting the mismatch between the models and the difficulties in synchronizing data

and control between them. Items such as planning frequency and how to aggregate and

disaggregate data between the LP and DEVS models were straightforward to model in

the KIB. That is, it explicitly provided visibility to the integration issues and a capability

to methodologically develop robust and scalable design solutions.

 The software design of the KIB enabled existing implementations of LP and

DEVS application development suites to be integrated. Specifically, it integrated the

OPL studio and DEVSJAVA applications. Models written in these two development

environments could easily be composed into multi-models by use of the KIB. This

enabled the use of well-known high performance environments for modeling the LP and

DEVS components. This also enabled expertise to be leveraged that already existed for

creating models in these environments. The KIB enabled the correct execution and

coordination of the LP and DEVS models.

The KIB was first demonstrated on a set of representative semiconductor supply

chain network problems. LP’s were developed to generate starts schedules into a

manufacturing line; DEVS simulations of the manufacturing lines were developed to

execute the instructions and simulate the resulting states. The outcomes of these

experiments showed the multi-formalism environment worked correctly and also enabled

the observation of manufacturing behavior under different integration scenarios.

 178

The KIB was then extended to work with a commercial Honeywell controller

application that used MPC for optimization. This type of application had not been

previously used for semiconductor discrete manufacturing problems. The sequential

control scheme and transformations for the DEVS/LP implementation were reused when

integrating with the Honeywell applications. Real world models were developed at the

actual scale seen at Intel Corporation. The simulation models matched the physical

topologies and market variability, whereas the planning models matched the product

mixes and demand forecasts. The KIB enabled a rapid prototyping and development of

these controllers prior to production. It also enabled the discovery of data integration

requirements, experimentation with different control frequencies, and experimentation

with data aggregation and disaggregation algorithms. This resulted in a controller that

worked within tolerances on first implementation into a multi-billion dollar production

line. The KIB played an important role in accomplishing this in less than a year.

The scenarios the KIB was demonstrated on were for a particular class of

semiconductor supply network problems. These experiments focused on evaluating

planning and controller algorithms against simulations generating expected values seen in

semiconductor manufacturing. The KIB enabled optimization and simulation models to

be combined. This KIB could be applied to other domains such as simulation

optimization to enable the modeling of data interactions and the coordinated execution

between the simulation and optimization models. However, how the simulations,

optimizations, and their interactions were modeled would be at the discretion of the

expert in the field.

 179

7.1 Future Work

The KIB methodology could be used as an enabler for integrating existing models

via a composition model. This could be beneficial for large existing simulation and

planning models that have many man years of investment in development and validation.

Composability across these models could be supported using similar techniques to what

was developed here. The KIB methodology would enable the data semantics, data

timing, and coordination of control to be specified in an integration model.

Another future research area would be the application of the KIB across different

domains. Areas other than semiconductor supply chain network problems could benefit

from the decomposition of the domain model into multi-formalism models. Simulation

Optimization was mentioned as a potential area in Chapter 2. Currently, there is ongoing

related research in socio-ecological systems looking at the integration of cellular

automata with agent-based models. This research requires work on how to conceptually

decompose the models in the domain, identify which formalisms are best suited for the

different parts, and compose the selected formalisms.

The semiconductor supply chain network problems studied in this exposition

work well with serialized coordination. However, if models are computationally

intensive, it could be beneficial to use a coordination scheme that supports the concurrent

execution on distributed machines. Other types of coordination could involve

asynchronous and non-sequential events.

There are also several areas where the KIB design could be enhanced. Visual

modeling tools for the KIB XML files could provide a more intuitive modeling interface.

 180

Automation could be created to enforce constraints to help assure consistent modeling.

For example, automation could look at the available interfaces on the LP or DEVS

models and then automatically detect the data structure and available I/O variables.

Modelers would be constrained to specify only valid interface elements. This type of

automation would require detailed knowledge of the formalisms and the interfaces of

implemented models. Visualization of KIB execution could also provide insight into

how the different models are interacting during execution. This could be useful for

optimizing interfaces for performance or to gain insight into how the coordination across

the models is actually impacting the overall behavior.

The KIB could be expanded to look at different dimensions in the Semiconductor

Supply chain network domain. The multi-formalism models implemented in this work

support the experimentation of tactical planning algorithms against manufacturing

simulations. Tactical planning involves the creation of day to day manufacturing

schedules to meet a forecasted demand. There is also a strategic planning component

which looks further into the future. The KIB could be extended to coordinate multi-level

planning algorithms and manufacturing simulations. Tactical and Strategic planning

models work across different time horizons and generally use dissimilar data types and

internal execution schemes. This would require the KIB to coordinate two different

planning algorithms and maybe different formalisms with a simulation. Another research

area is extending the KIB to work with multiple simulations. A possible scenario would

use different simulations for manufacturing flows and market demand. The KIB would

 181

then need to be able to support multi-models in the same formalism as well as multiple

formalisms.

REFERENCES

ACIMS (2002). DEVSJAVA software. Tucson, AZ. 2002.

Buschmann, F., R. Meunier, et al. (1996). Pattern-Oriented Software Architecture
Volume 1:A System of Patterns, John Wiley and Sons.

Camacho, E. F. and C. Bordons (1995). Model Predictive Control in the Process Industry.
New York3-540-19924-1, Springer.

Chopra, S. and P. Meindl (2001). Chapter 5: Aggregate Planning in a Supply Chain.
Supply Chain Management: Strategy, Planning, and Operation. Upper Saddle
River, NJ, Prentice-Hall: 101-120.

CORBA (2005). CORBA Basics. Needham, MA, OMG. 2005.

Dahmann, J., M. Salisbury, et al. (1999). HLA and Beyond: Interoperability Challenges.
Fall 1999 Simulation Interoperability Workshop, Orlando, FL: pp. Paper No. 99F-
SIW-073.

Davis, P. K. and R. H. Anderson (2004). Improving the Composability of Department of
Defense Models and Simulations. Santa Monica, CA, RAND Corporation.

de Lara, J. and H. Vangheluwe (2002). ATOM3: A tool for multi-formalism and meta-
modelling. European Joint Conference on Theory and Practice of Software
(ETAPS), Fundamental Approaches to Software Engineering (FASE), Grenoble,
France: pp. 174-188.

Dijkstra, E. W. (1976). A Discipline of Programming. Upper Saddle River, Prentice-Hall.

Firby, R. J. and W. Fitzgerald (1999). The RAP System Language Manual, Version 2.0.
Evanston, IL, Neodesic Corporation.

Fishwick, P. A. (1995). Simulation Model Design and Execution: Building Digital
Worlds. New Jersey, Prentice Hall.

 183

Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems. New York, NY,
John Wiley and Sons, Inc.

Gartland, K., G. Godding, et al. (June 30, 2000). Scheduler/Dispatcher User
Requirements. International Sematech. Technology Transfer #00063966A-TR.

Godding, G. and K. Kempf (2001). A modular, scalable approach to modeling and
analysis of semiconductor manufacturing supply chains. SIMPOI/POMS IV, Sao
Paulo: pp. 1000-1007.

Godding, G., H. S. Sarjoughian, et al. (2003). Semiconductor Supply Network
Simulation. 2003 the Winter Simulation Conference, New Orleans, LA: pp. 1593-
1601.

Godding, G., H. S. Sarjoughian, et al. (2004). Multi-Formalism Modeling Approach for
Semiconductor Supply/Demand Networks. 2004 Winter Simulation Conference,
Washington, D.C.: pp. 232-239.

Godding, G., H. S. Sarjoughian, et al. (2007). Application of combined discrete-event
simulation and optimization models in semiconductor enterprise manufacturing
systems. Proceedings of Winter Simulation Conference, Washington DC, USA:
pp. 1729-1736.

Hentenryck, P. V. (1999). The OPL Optimization Programming Language. Cambridge,
MA, The MIT Press.

Honeywell (2008). Profit Suite, http://hpsweb.honeywell.com/Cultures/en-
US/Products/ControlApplications/AdvancedControlOptimization/ProfitSuite/defa
ult.htm.

Hopp, W. J. and M. L. Spearman (1996). Chapter 16: Aggregate and Workforce
Planning. Factory Physics: Foundations of Manufacturing Management. New
York, McGraw Hill: 502-553.

Huang, D. (2008). Composable Modeling and Distributed Simulation Framework for
Discrete Supply-Chain Systems with Predictive Control. Computer Science
Engineering Department, Ph.D Thesis, Arizona State University, Tempe, AZ.

 184

Huang, D. and H. S. Sarjoughian (2006). Experiment Analysis of Hybrid Discrete Event
Simulation with Model Predictive Control for Semiconductor Supply Chain
Systems. Winter Simulation Conference, Monterey, CA: pp. 1863-1870.

Huang, D., H. S. Sarjoughian, et al. (2007). "Simulation of semiconductor manufacturing
supply-chain systems with DEVS, MPC, and KIB." The Special Issues of IEEE
Transactions on Semiconductor Manufacturing(accepted under revision).

Hung, Y.-F. and R. C. Leachman (1996). "A Production Planning Methodology for
Semiconductor Manufacturing Based on Iterative Simulation and Linear
Programming Calculations." IEEE Transactions on Semiconductor Manufacturing
9(2): 257-269.

IEEE (2000). IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Framework and rules. IEEE Std 1516-2000: i-22.

IEEE (2001). IEEE Standard for Modeling and Simulation (M & S) High Level
Architecture (HLA) - Federate Interface Specification. IEEE Std 1516.1-2000: i-
467.

ILOG (2005). ILOG OPL Studio. ILOG Corp., CA. 2005.

ILOG (2008). ILOG OPL Studio. ILOG Corp., CA,
http://www.ilog.com/products/oplstudio/. 2008.

Iwanitz, F. and J. Lange (2006). OPC - Fundamentals, Implementation and Application,
Huthig Fachverlag.

Kasputis, S. and H. C. Ng (2000). Composable Simulations. 2000 Winter Simulation
Conference, Orlando, FL: pp. 1577-1584.

Kempf, K. (2004). Control-Oriented Approaches To Supply Chain Management In
Semiconductor Manufacturing. IEEE American Control Conference, Boston, MA:
pp. 4563-4576.

 185

Kempf, K., K. Knutson, et al. (2001). Fast Accurate Simulation of Physical Flows in
Demand Networks. 2001 International Conference on Semiconductor
Manufacturing Operational Modeling and Simulation, Seattle, WA: pp. 111-116.

Knutson, K., J. Fowler, et al. (2001). Modeling and Analysis of Material Flows in
Complex Supply Networks. SIMPOI/POMS IV, Sao Paulo, Brazil: pp. 1123-
1131.

Law, A. M. and W. D. Kelton (1999). Simulation Modeling and Analysis. New York,
NY, McGraw-Hill.

Mayer, G. and H. S. Sarjoughian (2007). Complexities of simulating a hybrid agent-
landscape model using multi-formalism composability. Agent-Directed
Simulation, Spring Simulation Multiconference, Norfolk VA, USA: pp. 161-168.

Mayer, G., H. S. Sarjoughian, et al. (2006). Simulation modeling for human community
and agricultural landuse. Agent-Directed Simulation, Spring Simulation
Multiconference, Huntsville, AL: pp. 65-72.

Moré, J. and S. Wright (1993). Optimization Software Guide. Philadelphia, PA, Society
for Industrial and Applied Mathematics (SIAM).

Mosterman, P. J. and H. Vangheluwe (2004). "Computer Automated Multi-Paradigm
Modeling: An Introduction." Simulation 80(9): 433-450.

Müller, J. P. (1996). The Design of Intelligent Agents: A Layered Approach, Springer.

OAGIS (2008). The Open Applications Group Integration Specification,
http://www.ibm.com/developerworks/xml/library/x-oagis/.

OPC-Foundation (2008). OPC Standards, http://www.opcfoundation.org. 2008.

Platt, D. S. (2003). Introducing Microsoft .NET. Redmond, WA, Microsoft Press.

 186

Prähofer, H. (1991). Systems Theoretic Foundations for Combined Discrete Continuous
System Simulation. Institute of Systems Science, Department of Systems Theory
and Information Engineering. Linz, Austria, Johannes Kepler University.

Rardin, R. L. (2000). Optimization in Operations Research, Prentice Hall, Inc. Upper
Saddle River, NJ 07458.

Sarjoughian, H. S. (2006). Model Composability. Proceedings of the Winter Simulation
Conference, Monterey CA, USA: pp. 149-158.

Sarjoughian, H. S. and D. Huang (2005). A Multi-Formalism Modeling Composability
Framework: Agent and Discrete-Event Models. Proceedings of the 2005 Ninth
IEEE International Symposium on Distributed Simulation and Real-Time
Applications, Montreal, Canada: pp. 249-256.

Sarjoughian, H. S., D. Huang, et al. (2005). Hybrid discrete event simulation with model
predictive control for semiconductor supply-chain manufacturing. Proceedings of
Winter Simulation Conference, Orlando FL, USA: pp. 256-266.

Sarjoughian, H. S. and J. Plummer (2002). Design and Implementation of a Bridge
between RAP and DEVS. Tempe, AZ, Computer Science and Engineering,
Arizona State University: 1-38.

Sarjoughian, H. S. and B. P. Zeigler (2000). "DEVS and HLA: Complementary
Paradigms for Modeling and Simulation?" Transactions of the Society for
Modeling and Simulation International 17(4): 187-197.

Singh, R. K., H. S. Sarjoughian, et al. (2004). Design of Scalable Simulation Models for
Semiconductor Manufacturing Processes. Summer Computer Simulation
Conference, San Jose, CA: pp. 235-240.

Vangheluwe, H. and J. de Lara (2002). Meta-Models are Models Too. 2002 Winter
Simulation Conference, San Diego, CA: pp. 597-605.

Vangheluwe, H. and J. d. Lara (2004). Computer Automated Multi-Paradigm Modelling
for Analysis and Design of Traffic Networks. Proceedings of 2004 Winter
Simulation Conference, Washington, D.C.: pp. 249-258.

 187

Wang, W. (2006). Model Predictive Control Strategies for Supply Chain Management in
Semiconductor Manufacturing. Department of Chemical and Materials
Engineering, Ph.D Thesis, Arizona State University, Tempe, AZ.

Wang, W., D. Rivera, et al. (2007). "Model predictive control strategies for supply chain
management in semiconductor manufacturing." International Journal of
Production Economics 107(1): 56-77.

Wu, N. and R. Coppins (1981). Linear Programming and Extensions. New York, NY,
McGraw-Hill.

Wymore, A. W. (1993). Model-based Systems Engineering: An Introduction to the
Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of
System Design. Boca Raton, CRC Press.

Zeigler, B. P. and T. I. Oren (1986). Multifacetted, Multiparadigm Modelling
Perspectives: Tools for the 90's. 1986 Winter Simulation Conference,
Washington, D.C.: pp. 708-712.

Zeigler, B. P., H. Praehofer, et al. (2000). Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. New
York, NY, Academic Press.

Zeigler, B. P. and H. S. Sarjoughian (1997). Object-Oriented DEVS. 11th SPIE, Orlando,
Florida: pp. 100-111.

