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ABSTRACT 

 

There is a rapidly growing demand to model and simulate complex large-scale  

distributed systems and to collaboratively share geographically dispersed data assets and 

computing resources to perform such distributed simulation with reasonable 

communication and computation resources. Interest management schemes have been 

studied in the literature. In this dissertation we propose an interest-based quantization 

scheme that is created by combining a quantization scheme and an interest management 

scheme. We show that this approach provides a superior solution to reduce message 

traffic and network data transmission load. 

As an environmental platform for data distribution management, we extended the 

DEVS/HLA distributed modeling and simulation environment. This environment allows 

us to study interest-based quantization schemes in order to achieve effective reduction of 

data communication in distributed simulation. In this environment, system modeling is 

provided by the DEVS (Discrete Event System Specification) formalism and supports 

effective modeling based on hierarchical and modular object-oriented technology. 

Distributed simulation is performed by a highly reliable facility using the HLA (High 

Level Architecture). The extended DEVS/HLA environment, called DEVS/GDDM 

(Generic Data Distribution Management), provides a high level abstraction to specify a 

set of interest-based quantization schemes.  

This dissertation presents a performance analysis of centralized and distributed 

configurations to study the scalability of the interest-based quantization schemes. These 
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results illustrate the advantages of using space-based quantization in reducing both 

network load and overall simulation execution time. A real world application, relating to 

ballistic missiles simulation, demonstrates the operation of the DEVS/GDDM 

environment. Theoretical and empirical results of the ballistic missiles application show 

that the space-based quantization scheme, especially with predictive and multiplexing 

extensions, is very effective and scalable due to reduced local computation demands and 

extremely favorable communication data reduction with a reasonably small potential for 

error. This realistic case study establishes that the DEVS/GDDM environment can 

provide scalable distributed simulation for practical, real-world applications. 
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1 INTRODUCTION 

 

Distributed systems approaches are being applied to a growing variety of systems 

including process control and manufacturing, military command and control, 

transportation management, and so on. To model and simulate these distributed systems, 

the development of a distributed modeling and simulation environment has drawn the 

attention of many modeling and simulation researchers [10, 44, 47]. Distributed 

simulation is characterized by numerous interactive data exchanges among multiple 

simulation entitie s over a network. Thus, in order to provide a reliable answer in 

reasonable time with limited communication and computation resources, a methodology 

for reducing the interactive data exchanges is required in a distributed modeling and 

simulation environment. In this dissertation, a novel, interest-based quantization scheme 

is proposed to promote the effective reduction of data communication in a distributed 

simulation environment. 

The DEVS/GDDM (Generic Data Distribution Management) modeling and  

simulation environment was developed in order to perform complex and large-scale 

distributed modeling and simulation with reasonable communication and computation 

resources with the interest-based quantization scheme. In the DEVS/GDDM 

environment, system modeling is provided by the DEVS (Discrete Event System 

Specification) formalism and the distributed simulation is performed by the HLA (High 

Level Architecture) Interface. The scalability of the interest-based quantization scheme is 

investigated in a pursuer/evader example testbed; and through a real application (e.g. 
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multiple ballistic missiles), the usefulness of the DEVS/GDDM environment is 

demonstrated. 

 

1.1 Modeling formalisms 

 

For discrete event system modeling and simulation, Zeigler [1] provides the 

system formalisms and the corresponding system theoretic framework. The provided 

system formalisms are the Differential Equation System Specification (DESS), 

Qualitative System Specification (QSS), the Discrete Time System Specification (DTSS), 

and the Discrete Event System Specification (DEVS). Figure 1.1 depicts the System 

Specification Formalisms. 
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Figure 1.1 System Specification Formalisms  

 

In order to connect these various levels of specification and work across them, 

Zeigler [1] suggests a homomorphism concept and develops the DEVS models related to 

the homomorphism concept. A system modeler can develop a valid simplified 

homomorphic (lumped) model of a complex (base) model with the homomorphism 

concept. While a specified attribute of a base model is mapped to that of a lumped model, 

the behavior of the lumped model’s attribute mapped to that of the base model is 

reflected by the behavior of the attribute of the base model with a certain condition 

provided by the homomorphism concept.  
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1.2 Agent-based system 

 

An agent-based system is a working system based on autonomous software and/or 

hardware components (agents) that cooperate to perform tasks. The agent-based system 

includes agents and environments within an environment. An agent is a system 

component with the capability of perception, decision, and mobility. Also, an agent is 

autonomous since it has the ability to generate its own goals and the inbuilt desires (or 

preferences) determined by the agent system developer. The environment indicates the 

computational system which any agent inhabits. An environment can contain a particular 

agent and can include other agents whose environments are disjointed or partially 

overlapped with it. The desires or goals of the autonomous agent are sensitive to the 

current state of both the agent and the environment. An agent can effectively change 

states of a given environment or other environments by moving from one part of the 

environment to a part of the other environment. For example, if an agent moves a bomb 

from one environment to another environment, the topology of both the environments is 

thereby changed.  

In an agent-based system, effective communication plays a important role. There 

are three kinds of communications: environment-to-environment, environment-to-agent, 

and agent-to-agent. To perform the communications, an agent generates any output event 

and receives any external input. Without the external input event to the autonomous 

agent, the agent can produce the output event in response to the autonomous process 
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within the agent. When the agent receives the input event, it then changes its states, 

desires or goals. 

The agent-based system gives great promise in advancing a new technology for 

developing complex system which has been blocked by the limitation of current 

development tools and methodologies. In this case, the agent-based system is especially 

appropriate in applications where independently developed components inter-operate 

with each other in a heterogeneous environment (e.g. telecommunications, business 

modeling, control of mobile robots, and military simulations [2, 3]). The agent-based 

system, which includes many agents within an environment or many environments, is 

called multi-agent system. Generally, multi-agent system is extremely complex [4], so 

that the verification of the multi-agent system is difficult. Simulation plays a key role in 

the development of the complex multi-agent system [5, 6, 7, 8]. The use of simulation 

facilitates the replication of results in the multi-agent system with a very difficult or 

impossible-fielded system.  

The main problem of the simulation of multi-agent systems is that the simulation 

requires a lot of computation resources. Actually, each agent is a complex system to 

perform its own right (e.g. sensing, planning, movement, and so on), and many agents 

investigate the behavior of the other agents and the states of many environments. These 

behaviors of the multi-agents system require a lot of computation resources. Therefore, 

the solution to limited computation resources is to apply a high degree of parallelism in a 

multi-agent system.  
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In a recent study, as the network technology to perform the effective data 

communication has been advanced, most of the multi-agent system designers or 

researchers noticed the multi-agent system distributing the agents over a network of 

processors interacting via some various communication protocols. This distributed 

simulation of the multi-agent system has the same concept of a high degree of parallelism 

in order to reduce the computation resources required.  

Meanwhile, a lot of communication resources are also required to perform the 

distributed simulation of a multi-agent system in order to exchange the data among 

agents of distributed hosts over a network. Most applications of the multi-agent system 

are the network-based applications, and the developer and the researcher of the multi-

agent system have to solve the problem that is caused by a large amount of 

communication resources adding a burden to the computation resource shortage problem. 

Actually, telecommunications, computer games, and military simulation applications are 

typical multi-agent applications which need very interactive data communication over a 

network. In the multi-agent system, as the number of agents increases, the message 

exchanges among agents distributed in network end-hosts may increase quadratically, so 

that the numerous messages over a network cause the problem of scalability of a multi-

agent distributed simulation. In this dissertation, in order to execute the complex, multi-

agent distributed simulation with reasonable communication and computation resources, 

several message traffic reduction schemes are considered. 
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1.3 Distributed Simulation and its Environment 

 

The demand for distributed simulation is rapidly growing to support a simulation 

of defense and industrial systems that are getting more complex and distributed in their 

computational infrastructure. Distributed simulation supports many practical application 

domains that require reliable communication linkage among multiple, geographically 

separated systems. In addition, through a distributed simulation, we can expect to 

improve computing power, access more memory, provide high scalability, and lower the 

simulation cost. Also, such a distributed simulation can share geographically dispersed 

data assets and computing resources collaboratively; thus, it can execute those complex 

simulations. 

To support distributed computing, several software developments for distributed 

processes running on machines to interact across a network have been developed. The 

software development is called “middleware.” Middleware provides communication 

across heterogeneous platforms and performs interoperability based on client/server 

architectures. Through the integration of heterogenous platforms, middleware provides 

efficient, cost-effective, flexible, and extensive information sharing. Most public 

middlewares are the High Level Architecture (HLA) [9, 10] of the Department of 

Defense (DoD), the Common Object Request Broker Architecture (CORBA) [11, 12] of 

the Object Management Group (OMG), and the Distributed Component Object Model 

(DCOM) [13] of the Microsoft company. 
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The middleware designed specially for a distributed simulation is the HLA. HLA 

is a technical architecture for DoD simulations and defines the functional elements, 

interfaces, and design rules needed to achieve a proper interaction of simulations in a 

federation or among multiple federations. There are two types of communication in HLA:  

attribute updating and interaction communication. Attribute updating is communication 

between an object in a federate and an object in another federate. Interaction 

communication is a non-persistent and time-stamped communication between two 

federates.  

HLA also has two major components: the Object Model Template (OMT) and the 

RunTime Infrastructure (RTI). The OMT is a format to represent the information 

required by the HLA object model. RTI is a software component of HLA. RTI 

coordinates the interactions among the simulations of a federation and performs a basic 

mechanism for initializing, directing, and controlling the flow of data exchange among 

simulations. RTI provides services commonly required by simulation systems. These 

services include time management, ownership, objects, federations, data declaration, and 

data distribution. With the standard format of the OMT described by a simulation 

developer, RTI performs the attribute and interaction communications across different 

platforms. 

 

 

 

 



 

24

1.4 Message Traffic Reduction Scheme 

 

Recent ly, distributed systems approaches are being noticed for a growing variety 

of systems including process control and manufacturing, military command and control, 

transportation management, and so on. Such distributed systems are complex and large in 

their size. In fact, in order to model and simulate these complex and large-scale 

distributed systems, the development of a large-scale distributed modeling and simulation 

environment entities has drawn the attention of many modeling and simulation 

researchers.  

In general, a large-scale distributed simulation requires achievement of real-time 

linkage among multiple and geographically distant systems, and thus has to execute 

complex large-scale simulation and to share geographically dispersed data assets and 

computing resources collaboratively. However, large-scale distributed simulations are 

characterized by numerous interactive data exchanges among simulation entities 

distributed between computers networked together. In the worst case, each entity 

interacts with all the others so that as the number of entities increases (e.g. the message 

exchanges may increase quadratically, greatly limiting the scalability of distributed 

simulation approaches). The methodology to support the reduction of the interactive 

messages among simulation entities is called a “message traffic reduction scheme”. It is 

the goal of a message traffic reduction scheme that a large-scale distributed simulation is 

performed with reasonable communication and computation resources. To perform a 

message traffic reduction scheme reliably, flexibility and efficiency are required. 
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Flexibility does not indicate anything specific to any particular problem domain or 

technology, but rather indicates being general in nature. Efficiency requires the scaling of 

simulations from very small to very large along many dimensions including numbers of 

the simulated objects, complexity of interactions, fidelity of representations, and 

computational/network resources.  

 

1.5 Quantization Theory 

 

The Quantization theory [14, 15] is based on modeling formalism and system 

homomorphisms. As Figure 1.2 illustrates, a continuous trajectory with a finite number of 

values in a finite time interval is approximated. In order to obtain a discrete time system 

approximation, discretization of the time base is needed with a finite time interval. The 

finite number of values is then calculated from the partition of the trajectory into a finite 

number of segments (each of which has a finite computation). The partition of the 

trajectory with the finite number of values provides a way to quantize the value space, 

which is partitioned in every D interval (quantum), and the time space is partitioned in 

every T interval (time interval). 
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Figure 1.2 Time discretization and Quantization 

 

In discrete event systems, we sample the time values at every quantum interval 

(D), use discrete values with continuous time, and send the quantum levels out after the 

sampled time interval. This is called the quantization based on the quantum D.  

In a real application, the state trajectory is represented by the crossings of an 

equally spaced set of boundaries separated by the quantum interval (D). Using 

quantization, we checks a threshold crossing of output value of a sender whenever an 

output event occurs and sends the output value to a receiver only when the threshold 

crossing occurs. The effect of quantization is to reduce the number of messages 

exchanged between sender and receiver. We can expect to save the communication data 

and the computation of the receiver from the reduced messages through the message 

reduction. Considered with the scalability of a system, the quantization increases system 
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performance in various ways such as decreasing overall execution time or allowing a 

larger number of entities to be performed. In chapter 2, the actually realized quantization 

scheme is introduced as one of the message traffic reduction schemes. 

 

1.6 Object-oriented Design 

 

Object-orientation technology allows a particular system to be encapsulated by a 

system modeler and provides a common interface of the encapsulated system to the rest 

of the whole system.  That is abstraction capability of the object-orientation technology. 

The DEVS/GDDM environment, based on the object-orientation technology and the 

DEVS formalism [1], has a portability of models across platforms at a high level of 

abstraction. Such portability enable s a model to be developed and verified in a platform, 

and then easily ported across distributed platforms. Because the DEVS formalism is 

expressed as a collection of objects and their interactions with the details of the 

implementation hidden within the objects, and any DEVS component is shielded from the 

environment which provides any services to the DEVS component. 

In the DEVS/GDDM environment based on the DEVS formalism, a system 

modeler can build a DEVS model in a hierarchical and modular fashion. Each DEVS 

model at a certain level of the  DEVS hierarchy can see its one-level lower models and its 

one- level upper level models and the coupling among models of upper and lower level is 

considered in its modular fashion. The coupling in DEVS formalism allows two DEVS 

model (sender and receiver) to be coupled, then delivers a DEVS message from a sender 
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to a receiver model. This high level DEVS modeling provides the maintainability and 

reusability of a DEVS model in the DEVS/GDDM environment. 

 

1.7 Dissertation Organization 

 

Chapter 2 presents the discrete event system formalism and reviews existing 

message traffic reduction schemes. Chapter 3 presents the space-based quantization 

scheme as a more efficient means of message traffic reduction, and discusses the 

scalability of space-based quantization schemes in a distributed simulation. The 

DEVS/HLA-Interface is introduced and its functions are illustrated in chapter 4. Chapter 

5 introduces the DEVS/GDDM simulation environment which uses the interest-based 

quantization scheme and discusses the network load reduction methods supported by this 

environment.  In chapter 6, the DEVS predictive integrator model is developed as a basis 

for the predictive quantization scheme. Chapter 7 and chapter 8 present real world 

applications and show how the space-based quantization scheme is applied to these 

applications. The conclusion is in chapter 9. 
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2 BACKGROUND 

 

2.1 Discrete Event System Formalism 

 

The discrete event system specification (DEVS) is a formalism for the discrete 

event systems [1]. The DEVS formalism consists of two parts, base and coupled models.  

A basic model of a standard DEVS is a structure: 

M = <X, S, Y, ? int, ? ext, ?con, ? , ta> 

Where   

  X : set of external input events;  

  S : a set of sequential states;  

  Y : a set of outputs;  

  ? int: S  ?    S : internal transition function  

  ? ext : Q ?  Xb   ?    S : external transition function  

Xb  is a set of bags over elements in X, 

         (where ? ext(s,e,?  ) = (s,e));  

  ? con : S ?  Xb   ?    S : confluent transition function;  

  ?  : S  ?    Yb : output function generating external events at the output; 

  ta : S   ?    Real : time advance function; 

     Where Q = { (s,e) | s ?  S, 0 ?  e ?  ta(s) }, and e is the elapsed time since 

last state transition 
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Two major activities involved in coupled models are specifying its component models 

and defining the couplings, which create the desired communication links. 

DN = <X, Y, D, {MI}, {II}, {ZI,j}>  

Where  

 X : set of external input events;  

Y : a set of outputs;  

D is a set of components names;  

  for each I in D,  

      MI is a component model 

      II is the set of influencees for I  

for each j in II,  

     ZI,j is the I-to-j output translation function 

A coupled model contains the following information 

- the set of components  

- for each component, its influencees  

- the set of input ports through which external events are received  

- the set of output ports through which external events are sent  

- the coupling specification consisting of 

- the external input coupling connects the input ports of the coupled to one or more of 

the input ports of the components 
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- the external output coupling connects the output ports of the components to one or 

more of the output ports of the coupled model 

- internal coupling connects output ports of components to input ports of other 

components 

 

2.2 Message Traffic Reduction Scheme 

 

In this section, we provide an overview of the major message traffic reduction 

techniques, which are currently used in most entity-based virtual simulations. These 

techniques include dead-reckoning, interest management, Data Distribution Management 

(DDM) of HLA, and quantization. 

 

2.2.1 Dead-Reckoning Scheme 

 

As a scheme to reduce the number of state update messages, the dead-reckoning 

scheme is widely employed in distributed simulations [28, 29]. The state update messages 

are exchanged among each simulated entity to maintain the accurate state of the other 

remote simulated entities. Each federate maintains accurate information (position, 

velocity, acceleration) of its own simulated entity’s movement with a high fidelity model. 

Also, each federate includes the dead-reckoning (inaccurate) models of all simulated 

entities including that of its own entity. As the simulation time passes, the states of dead-

reckoning models are updated by working the second-order extrapolation with the last 
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updated message. The anticipated position of a simulated dead-reckoning entity is 

calculated by the second-order extrapolation below: 

 

 

2
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( ), ( ), ( )X t Y t Z t are the position coordinates of a simulated entity at time t. 

( ), ( ), ( )Vx t Vy t Vz t  and ( ), ( ) , ( )Ax t Ay t Az t are the x, y, z components of the velocity vector 

and the acceleration vector at time t and ( ), ( ), ( )X t t Y t t Z t t? ? ?V V V are the new 

coordinates predicted at tV time unit from time t. 

When the state of a simulated entity changes, the state of the high fidelity model 

of the simulated entity is updated and is compared to the state of the corresponding dead-

reckoning model. If the position/acceleration of the dead-reckoning model of the 

simulated entity deviate from the exact position/acceleration of the high fidelity model of 

the simulated entity by more than a threshold value, the simulated entity creates a new 

message and sends it to the other remote federates. The remote federates, which receive 

the new message, correct the state of the corresponding dead-reckoning model and begin 

the new second-order extrapolation with the new position/acceleration.  In the dead-

reckoning scheme, reduction of the data issued by dead-reckoning models plays a role of 

a message traffic reduction scheme. 
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2.2.2 Interest Management 

 

The interest management technique [32] was proposed as a method to avoid  

broadcast communication among agents. Generally, the interest management technique is 

a message filtering mechanism to enable execution with the reasonable communication 

and computation resources in real-time large-scale simulations. Interest management is 

based on interest expression between pairs of sender and receiver agents. The receiver 

agent expresses the interest to an attribute of the sender agent and the sender agent sends 

the value of the attribute interested to the receiver agent. The interest expression 

expresses a subset of all data exchanges of the all attributes of the sender agent. The 

expression of an attribute can be changed as the simulation time passes. As the number of 

agents and the number of the attributes in the agents increase, the interest expression may 

become complicated. A special entity to manage the interest expression and to enable the 

effective data exchange between a sender and a receiver agent pair is called the “interest 

manager”. 

Recently, several interest management techniques has been proposed and studied. 

In most application systems, IP multicast addressing [33, 34] is an example of the interest 

management technique. A multicast group is an example of the interest expression and is 

defined for each message transferred.  

 

2.2.3 Data Distribution Management (DDM) of HLA 
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HLA provides the DDM service as an example of the interest management. In the 

DDM, the interest expression works with regions in a multi-dimensional parameter space. 

The multi-dimensional coordinate system is call the “routing space” and the routing space 

is subdivided into a predefined array of fixed sized cells. Each cell is assigned to a 

multicast group [36]. The DDM [37, 38, 39] service of HLA constitutes an interest-based 

message traffic reduction scheme. This service tries to filter out irrelevant data among 

federates. Each federate expresses the interest for the data to be sent and received by 

defining publication region and subscription region in the routing space. When a sender’s 

publication region overlaps a receiver’s subscription region, the RTI (RunTime 

Infrastructure), an implementation of the HLA specification, establishes network 

connectivity between the federates and makes data communication available. 

Communication overhead from region change notification due to moving agents 

negatively impacts the efficiency of the DDM filtering mechanism [36]. The efficiency is 

expressed by comparing the amount of useful data transmission compared to the total 

amount of data transmission including region change notifications.  

 

2.2.4 Quantization schemes 

 

Quantization, which is based on the quantization theory [14, 15], is an approach to 

distributed logical simulation in which the value space is quantized and trajectories are 

represented by the crossings of a set of thresholds. This is an alternative to the common 

approach which discretizes the time base of a continuous trajectory to obtain a finite 
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number of equally spaced sampled values over time.  In distributed simulation, a 

quantizer checks for threshold crossings whenever an output event occurs and sends this 

value across to a receiver thereby reducing the number of messages exchanged among 

federates in a federation. In this section, we introduce three quantization schemes: 1) the 

baseline mechanism for quantization, called non-predictive quantization, 2) the more 

advanced form of quantization, called predictive qunatization, and 3) an approach to 

packaging individual data bits into a large message packet, called multiplexed predictive 

quantization. 

 

2.2.4.1 Non-predictive Quantization 
 

As Figure 2.1 illustrates, the non-predictive quantization [41, 42] applies when a 

sender component is updating a receiver component on a numerical, real-valued, state 

variable, which is a dynamically changing attribute. In the non-predictive approach, a 

quantizer is applied to the sender’s output, which checks for threshold (boundary) 

crossings whenever a change in the variable occurs.  Only when such a crossing occurs, a 

new value of the variable is sent across the network to the receiver. The non-predictive 

quantization reduces the number of messages sent  (not their size) and incurs some local 

computation at the sender. 
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S e n d e r R e c e i v e r

Q u a n t i z e r

 

Figure 2.1 Non-Predictive Quantization 

 

2.2.4.2 Predictive Quantization 
 

As Figure 2.2 illustrates, a more efficient form of quantization is predictive 

quantization [40, 41, 42], where the sender employs a model to predict the next boundary 

crossing and the time this crossing will occur. Since the next boundary crossing is either 

one above or one below the last recorded boundary, the sender need not send the full 

floating point (double word) value to the receiver, so that it sends a one-bit message at 

crossings. The one-bit message represents whether the next higher or next lower 

boundary has been reached. In the predictive quantization approach, the main advantage 

over non-predictive quantization is that both the number of messages and their size can 

be reduced. A second advantage is that discrete event prediction can also greatly reduce 

the sender’s state transition computation execution time and frequency if simple 

predictive models are used. 
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Figure 2.2 Predictive Quantization 

 

2.2.4.3 Multiplexing Predictive Quantization 
 

In simulations with a large number of entities, there will be many entities assigned 

to each federate. As Figure 2.3 illustrates, sender and receiver federates encapsulate a 

large number of similar component models. Each of these components has a predictive 

quantizer to produce a one-bit output of a variable. Then, at each event time, several 

components will be crossing their boundaries (a component is called active at a given 

event time if it has a boundary crossing at that time). The multiplexer encodes the joint 

output of the active components of the sender federate into a single message.  

At the receiver federate, the de-multiplexer decodes the multiplexed packet in 

inverse fashion using a set of ghost components in a one-to-one correspondence with the 

sending components. There are two types of multiplexing: fixed and variable. Figure 2.3 

illustrates the implementation of the fixed multiplexing predictive quantization [46, 57]. 
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In fixed multiplexing, each pair of bits is examined. If the first bit of the source indicates 

active, then the receiver updates the appropriate variable of the counterpart (ghost) with 

the predefined quantum size, and increments the saved value of the tracked variable by 

the quantum in the direction (+1/-1) indicated by the second bit. Of course, sending and 

receiving federates must know the shared value of the quantum size and be informed of 

the new value should it be changed. In variable multiplexing, introduced in this 

dissertation, the size of the encoding message is directly related to the number of active 

components. 

 

 

Figure 2.3 Implementation of the fixed multiplexed predictive quantization scheme  
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Table 2.1 Specialization of multiplexing and quantization schemes 

 
Predictive Dimension  

Scheme Non-predictive 
quantization 

(send real value: 64 
bit) 

Predictive 
quantization 

Non-multiplexing 
quantization 

(1 message per  output 
at a time instant)) 

Non-predictive 
quantization 

Predictive 
quantization 

 
Multiplexing 
Dimension 

Multiplexing 
quantization 

(1 message for all 
component outputs at a 

time instant) 

Multiplexing non-
predictive quantiza tion 

Multiplexing 
predictive 

quantization 
(fixed, variable) 

 

Table 2.1 shows the specializations of the multiplexing predictive quantization scheme 

using multiplexing and predictive quantization dimensions.  
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Table 2.2 Network load (bandwidth) requirements for fixed multiplexing and 

quantization schemes 

(SOH : the number of overhead bits for a packet; SD: the non-quantized data bit size ; Npair:  

the number of component pairs; a: the ratio of active components) 

 

Scheme # bits required 
for Npair 

Ratio to Non-predictive 
quantization for large 
Npair 

Ratio for Npair 
=1000 
SOH   = 160 bits 
SD  = 64 bits 

Non-predictive quantization a Npair (SOH  + 
SD) 

1 1 

Predictive quantization 
(non-multiplexing) 

a Npair (SOH  +  
1) 

(SOH  +  1) / (SOH  + SD) 0.74 

Fixed multiplexing non-
predictive quantization 

(SOH  + SD * 
Npair) 

SD /a (SOH  + SD) 0.28/a 

Fixed multiplexing predictive 
quantization 

(SOH  + 2 Npair) 2 /a (SOH  + SD) .0096/a 

 

Table 2.2 analyzes network load requirements for the four combinations of fixed 

multiplexing and quantization types. It computes the ratio of the message size needed for 

a multiplexed predictive quantization to the number of bits needed for a non-multiplexed 

quantization with the same number of component pairs. Non-multiplexing cases send a 

fraction a of (larger) messages at each global event, while fixed multiplexing cases 

always send the same number of bits. From the table, we see that fixed multiplexing has 

high potential for data load reduction provided that a is high enough. However, since 

activity may not always be very high in arbitrary simulations, we introduced the above-

mentioned variable multiplexing approach.   
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In this dissertation, we will discuss the influence of variation of a (activity ratio) 

in the variable multiplexing and the effectiveness of both fixed and variable multiplexing. 

In addition, the relationship between a and a time granule  size will also be discussed. The 

time granule concept was introduced in [46] to enable boundary crossings within a time 

interval to be considered simultaneous. 
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3 SPACE-BASED QUANTIZATION SCHEME 

 

3.1 Space-based quantization scheme 

 

The space-based quantization scheme is created by combining the quantization 

scheme with an interest management scheme for monitoring the spatial encounters 

among agents. In the non-quantized spatial encounter monitoring scheme, there is only 

one critical distance to specify the communication relationship between two agents and, 

at any time, this holds or does not hold in all-or-none fashion. In contrast, in the space-

based quantization scheme, there can be more than one critical distance between two 

agents thus allowing communication in a more tunable fashion. A quantum is assigned to 

each distance range created by the critical distances. The quantum size determines the 

rule for transferring or discarding messages from sender agent to receiver agent, and this 

rule is called a “filtering policy”. Figure 3.1 compares the change of quantum sizes based 

on the distance for the conventional spatial monitoring scheme and its space-based 

quantization extension. In the conventional approach there are, in effect, two quantum 

sizes: zero and infinity, corresponding to regions of interest or non-interest. The extended 

approach allows multiple quantum sizes thereby allowing communication frequency to be 

controlled as a smoother function of distance, as illustrated in Figure 3.2. 
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Figure 3.1 Change of quantum sizes based on the distance between Spatial 

Monitoring Scheme and Space-based Quantization Scheme 
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Figure 3.2 Space-based Quantization Scheme 

 

In this dissertation, although we use the RTI for data communication among 

federates, we implement the space-based quantization scheme without using the DDM 

routing service of HLA. There are four disadvantages of the DDM in applying the space-

based quantization scheme. First, DDM allows data to be exchanged among federates 

only in all-or-none fashion. There is no computation of the degree of overlap between 

publication and subscription regions. The second disadvantage, as noted before, is the 

large communication overhead required to notify the RTI of a region update whenever an 

agent moves. A third limitation is that  the circular-shaped region necessary for the space-

based quantization is not supported directly by RTI. The RTI supports the specification of 

only rectangular-shaped regions. To make a circular-shaped region, more complex areas 

must be defined by collecting multiple extents within a region. Unfortunately, the use of 



 

45

multiple extents has a negative impact on system performance. Alternatively, retaining 

the smallest rectangular bounding region of a circular region, one can employ a two-layer 

filtering approach. In this approach, a federate must use additional information to discern 

if messages transferred with rectangular-shaped region are applicable or not. This 

approach also demands additional computation for the second filtering. The fourth 

disadvantage is the fact that many regions are created when multiple agents are assigned 

to one federate. A region is associated with one “Interaction” or one attribute of an 

“Object” which is used for communication between a pair of agents that respectively 

exist in separate federates. As the numbers of agents within federates increase, the 

number of regions that need to be created increases quadratically, heavily consuming 

local memories of the federates.  For these reasons we did not employ the  DDM routing 

service to implement the communication management data system working with the 

space-based quantization scheme. 

 

3.2 Space manager 

 

In the space-based quantization scheme defined here, the space manager provides 

filtering of the data communicated among agents. The main objective for using the space 

manager is the reduction of the data to be processed by the receiving agents as well as the 

data actually sent over the network. The space manager includes a spatial encounter 

monitor and a coupling operator.  An agent perceives other agents using size and motion 
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detectors and decides its direction and speed based on this perception. Figure 3.3 

illustrates an object model diagram of space manger and agents. 

 

Figure 3.3 Object model diagram of Space Manger and agents 

 

The spatial encounter monitor maintains objects, called “tuples,” to express the 

information for pairs of agents required to determine distance and assign new quantum 

values. The attributes of a tuple object include agent identities and their positions, 

distance between the agents, quantum sizes, connection information, etc. Employing 

position updates from agents, the spatial encounter monitor determines the spatial 

relationship among agents by calculating their separation distances. Using these spatial 

relationships, the spatial encounter monitor determines the connection information among 

agents. With this connection information, the coupling operator changes the coupling 

specification supported by DEVS modeling. However, unlike conventional schemes, the  
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space manager does not transmit spatial relationships to agents.  Instead, the coupling 

operator of the space manager directly performs the filtering operation by adding or 

removing the couplings (network connections) among agents. Figure 3.4 illustrates the 

coupling operation supported by the DEVS modeling formalism. In Figure 3.4(a), a 

coupling exists between the “out” output port of component A and “in” input port of 

component B due to the coupling specification shown. In Figure 3.4(b), the coupling 

specification of Figure 3.4(a) is removed from the coupling specification. Adding a 

connection from the  “out” output port of component A to the “in” input  port of 

component C is performed by a new coupling as illustrated in Figure 3.4(c). 

 

 

Figure 3.4 Coupling operation in DEVS Modeling 
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Updating agents’ positions leads to communication overhead. Deciding 

connection information between agents leads to computation overhead. Both 

communication and computation overheads influence the performance of data 

management using the space manager. However, we will show that the reduction of 

communication data and agents’ local computations made possible by the space manager 

can significantly outweigh the communication and computation overheads of the space 

manager.  

 

3.3 Scalability of the space-based quantization scheme 

 

To model and simulate a large-scale distributed system, we use the DEVS/HLA 

distributed simulation environment.  DEVS/HLA is an HLA-compliant modeling and 

simulation environment that supports high- level federation development and execution 

using the DEVS formalism. The formalism provides a well-defined concept of system 

modularity and component coupling, which is supported and managed by the 

DEVS/HLA distributed simulation environment. We will discuss this support in more 

detail later. A large-scale distributed simulation is implemented in the DEVS/HLA 

distributed simulation environment using several local computers. Several federates are 

assigned to a local machine. A group of agents is assigned to a federate. In this 

dissertation, two approaches to supporting the scalability of the space-based quantization 

scheme in a large-scale distributed simulation are introduced.  These approaches are 
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based on a centralized global space manager and distributed schemes based on local 

space managers. 

 

3.3.1 Global Space Manager 

 

With the global space manager, a fixed group of agents is assigned to each 

federate. The global space manager itself resides in a separate federate. All agents send 

their position updates to the global space manager over a network. The global space 

manager uses these position updates to determine the connection information among 

agents, which it then sends to the agent-holding federates. Each such federate has a 

coupling operator that adds or removes the coupling between agents, between federate 

input and agent input, and between federate output and agent output using the connection 

information from the global space manager. Through this coupling operator, traffic 

message filtering among federates and among agents in the same federate is achieved.  

With the global space manager approach, there are two kinds of communication 

overhead. The first type of overhead results from the position update of each agent to the 

global space manager.  The second type of overhead results from the distribution of 

connection information, as determined by the global space manager, to each coupling 

operator on each federate. Figure 3.5 shows the architecture of the global space manager 

approach with the pursuer/evader model in the DEVS/HLA distributed simulation 

environment. The global space manger is assigned to a particular federate. A fixed 
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number of pursuer agents is assigned to each pursuer federate and a fixed number of 

evader agents is assigned to each evader federate. 

 

 

Figure 3.5 Architecture of the Global Space Manager Approach 

 

3.3.2 Local Space Manager 

 

With the local space manager approach, one local space manager and a number of 

agents are assigned to each federate. Each local space manager receives position 

information from local agents within the same federate and from external agents in other 

federates. It uses the updated positions to determine the connection information, which it 
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then employs to directly perform coupling operations in each federate. In contrast with 

the global space manager approach, the local space manager does not pass on the 

connection information to each federate. Nevertheless, it has a larger communication 

overhead than the global space manager approach because the positions of all agents in 

each local space manager in each federate must be updated. Figure 3.6 shows the 

architecture of the local space manager approach with the pursuer-evader model in the 

DEVS/HLA distributed simulation environment. Each local space manager is assigned to 

a federate.  A number of pursuer agents is assigned to each pursuer federate, and a 

number of evader agents is assigned to each evader federate.  The load balancing problem 

for both the global space manager and local space manager approaches is discussed in 

detail in the next section. 
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Figure 3.6 Architecture of the Local Space Manager Approach 

 

3.3.3 Load balancing of Global and Local Space Manager Approaches 

 

A federate and a computer have a limitation of CPU and memory usage. In large-

scale distributed simulation, as the number of agents simulated increases, a certain 

number of agents has to be assigned to available federates and available computers. A 

computer can include several federates. The number of federates assigned to a computer 

depends on available physical and virtual memory of the computer and the computation 

load assigned to each federate. A federate can include a certain number of agents. For the 

pursuer/evader, we have found that 40 is the maximum number of agents that can be 
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assigned to a federate. Table 3.1 shows the load balancing approach used to assign agents 

to federates. Each federate includes the same maximum number of agents. As the number 

of agents increases, the number of federates almost exponentially increases. In Table 3.1, 

a “+1” refers to the global space manager federate. There is a limitation to the load 

balancing applied in this approach. The global space manager federate can have a 

memory shortage problem since the number of tuples it employs increases quadratically 

with the total number of agents.  Further its computation of the connection information 

and its distribution also increase quadratically as total number of agents increases. 

 

Table 3.1 Load balancing in the Global Space Manager Approach 

 
Total # of Agents 40 80 160 320 

# of federates 1 2 + 1 4 + 1 8 + 1 

# of Agents 

in a federate 

40 40 40 40 

 

Table 3.2 shows the load balancing strategy used to assign agents to federates in 

the local space manager approach. As the number of agents increases, the number of 

agents that can be assigned to each federate decreases.  This is so, since the local space 

manager on each federate has to handle a quadratically increasing number of tuple 

objects. Therefore, a larger number of federates is needed for this approach compared 

with the global space manager. 
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Table 3.2 Load balancing in the Local Space Manager Approach 

Total # of Agents 40 80 160 320 

# of federates 1 2 8 32 

# of Agents 

in a federate 

40 40 20 10 

 

3.3.4 Analysis of message traffic reduction in Global and Local Space Manager 

Approaches 

 

We expect both global and local space manager approaches to work well and to 

efficiently reduce message traffic in a large-scale distributed simulation. In this section, 

we will discuss the advantages and disadvantages of each approach and how they 

influence performance. The performance of the two approaches depends on the 

communication and computation overhead required to perform message traffic reduction 

among agents. There are two types of communication overhead. The first occurs as a 

result of position updates from each agent to the space manager.  The second type of 

overhead results from the distribution of connection information, which is computed by 

the space manager, to the coupling operator on each federate. To reduce overhead, 

distribut ion of connection information is performed only when the connection 

information changes. The global space manager approach incurs both types of 

communication overhead. The first type of communication overhead is relatively small 
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because position update messages are transferred to the global space manager in a 

separate federate. However, the second type of communication overhead is very large 

because messages bearing connection information have to be transferred from the global 

space manager to the coupling operator in each federate. In contrast, in the local space 

manager approach the second type of communication overhead does not exist. However, 

the first type of communication overhead is larger in the local space manager approach 

because position update messages must be transmitted to each local space manager in 

each federate. Table 3.3 analyzes the message traffic reduction and the conditions under 

which we can expect performance improvement in the two approaches. For this analysis, 

we assume two conditions as follows: 

 

a. There is no communication between pairs of pursuers or evaders. 

b. The only communication is messages from pursuers to evaders. 

 

These conditions focus on the inter-federate communication in a distributed 

simulation. Accordingly, there is no communication among agents in the same federate 

and only pursuer-to-evader inter- federate communication. As Table 3.3 shows, in the 

system without a space manager in operation, in a single global state transition the 

number of messages passed is N*(N-1)/2, since a message is broadcast to all other agents 

(N is the number of agents). In the systems with space manager, Overall Filtering Rate 

(OFR) and Connection Change Rate (CCR) are the critical factors to influence the 

performance in terms of the number of messages passed.  Let  
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         FRS: Filtering Rate at Sender federate 

         FRR: Filtering Rate at Receiver federate 

         H: Number of Agents to which a message does not have to be transferred 

 

OFR is calculated as: 

 

OFR = FRS + FRR                                                                                      (3.1) 

Average of OFR = OFR / Number of messages sent                                  (3.2) 

FRS = H / (N/2), when FRR = 0                                                                  (3.3) 

FRR = H / (N/2), when FRS = 0                                                                  (3.4) 

 

As Equation (3.3) and (3.4) show FRS and FRR cannot simultaneous ly exist when 

a message from a sender is transmitted. If FRS > 0, then FRR = 0 (and vice verse). 

Therefore, in Table 3.3, we use the average of OFR calculated by Equation (3.2) to 

calculate the number of messages passed.  H varies with three factors -- the number of 

agents, the critical distances for ordered pairs of agents, and the spatial distribution of 

agents.  As the same number of agents is more spatially dispersed with fewer close 

encounters (i.e., with a greater “mean free path”) we can expect that the messages 

exchange requirements diminish and so H (the number of non-recepients)  increases.  

Conversely, under crowded conditions,  H decreases.  CCR is calculated as: 
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CCR = L / OC = L / N*(1 + N/2)                                                                  (3.5) 

Overall Connections (OC) 

= Connections corresponding to Filtering at Sender federate 

+ Connections corresponding to Filtering at Receiver federate 

= N + N2/2 = N*(1 + N/2)                                                                              (3.6) 

 

Overall Connections (OC) is the number of connections changeable and is 

calculated by Equation (3.6). OC varies with two factors -- the number of agents, number 

of quantum sizes employed. Equation (3.6) indicates the OC when the number of 

quantum sizes are two, such as zero and infinity. L is the number of connections actually 

changed and grows with the number of agents (N) and number of quantum sizes because 

L is a subset of OC. L mainly depends on a change in quantum size, which requires a 

change in coupling in the implementation we discuss here.  
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Table 3.3 Analysis of Message Traffic Reduction  

(N: Number of Agents, M: Number of Federates, OFR: Overall Filtering Rate, CCR: 

Connection Changing Rate) 

Approaches Number of messages 

passed 

Coefficient of N2 as 

 N ??  

Condition for 

message traffic 

reduction 

NO 

Space Manager 

 

N*(N-1) / 2 

 

1 / 2 

 

Global 

Space Manager 

N + (CCR)* (N)*(1 + N/2) 

+ (1 – OFR) * N*(N-1)/2 

CCR/2 

+ (1 – OFR)/2 

CCR 

+ (1 – OFR) < 1 

Local 

Space Manager 

N * (M-1) 

+ (1 – OFR) * N*(N-1)/2 

 

(1 – OFR)/2 

As (N/M) ?? , 

(1 – OFR) < 1 

 

The analysis in Table 3.3 reveals that, especially for large numbers of agents 

encapsulated into federates, we should expect the greatest message reduction to come 

from the local space manager approach. Figure 3.7 compares the computation time of the 

two approaches. With both approaches, computation overhead is necessary to regulate the 

connection information among agents in a space manager. The global space manager has 

a larger computation load than that of a local space manager because it must regulate the 

connection information among all agents in all federates. This large computation load 

causes a bottleneck problem. While the global space manager calculates the data, 

computation of agents within the other federates is delayed and, therefore, the logical 

time of the other federates is not advanced. The output operation time required for the 

distribution of connection information messages to the other federates exacerbates the 
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bottleneck problem. In contrast, when there is a local space manager in each federate, the 

computation load is reduced because each local space manager regulates the connection 

information only for those agents within its own federate. With the local space manager 

approach, the connection computation is divided up and pieces are assigned to local space 

managers for concurrent processing. In addition to the advantage of load partitioning, no 

output operation time is required for the distribution of connection information messages 

to each federate using the local space manager.   

 

 

Figure 3.7 Concurrent processing in the local space manager approach 
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4 DEVS/HLA-INTERFACE 

 

4.1 HLA-Interface 

 

General purpose object-oriented HLA-Interface was developed at Lockheed 

Martin Space Systems’ Advanced Simulation Center [58]. The HLA-Interface is 

complementary to the HLA/RTI, which is the standard DMSO HLA implementation. 

This HLA-Interface automates the declaration of HLA classes and the registration of all 

HLA objects.  It also performs all the calls and callbacks to and from HLA. 

Figure 4.1 shows the HLA-Interface layered structure. The HLA-Interface 

supports the modeling and simulation of the non-DEVS (general) models as well as the 

DEVS models.  Non DEVS models directly access the functions of the HLA-Interface 

layer and takes a part in a distributed simulation on the HLA-Interface layer. To construct 

and simulate DEVS models, the DEVS/HLA-Interface layer is provided. The 

DEVS/HLA-Interface layer was developed by separating the HLA components out from 

the DEVS components in the DEVS/HLA distributed simulation engine developed at The 

University of Arizona. Then the separated HLA components were included into the 

HLA-Interface layer.  
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Figure 4.1 HLA-Interface layered structure  

 

4.2 DEVS/HLA-Interface Environment 

 

In the DEVS/HLA-Interface environment, a developer defines DEVS models in 

the DEVS model layer on top of the DEVS/HLA-Interface layer. To develop an HLA 

federate in the DEVS model layer, the developer creates a specified federate component, 

which is the top DEVS component in each federate. As Figure 4.2 shows, the top DEVS 

component in the DEVS model layer can access all methods in the Federate class of the 

DEVS/HLA-Interface layer which is hidden to the DEVS model developer.  
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The Federate class of the DEVS/HLA-Interface layer supports functions which 

allow it to connect to the HLA_Federate class in the HLA-Interface layer. The 

HLA_Federate class in turn provides services to work a distributed simulation of the 

HLA-Interface layer. The HLA-Interface layer is responsible for the inter- federate 

communications (RTI interaction and attribute communications) that transfer data to and 

from the DEVS/HLA-Interface layer. 

 

 

Figure 4.2 DEVS/HLA-Interface layered modeling 
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4.3 RTI communications 

 

The attribute communication and the interaction communication are the two types 

of communications by provided the HLA-Interface layer. Figure 4.3 shows how the 

attribute communication performs in the DEVS/HLA-Interface layer and the HLA-

Interface layer. In the sender federate, the attribute value of the attributeList component 

in the DEVS/HLA-Interface layer is transferred to the AttributeList component in the 

HLA-Interface layer and, using the updateAttributeValues() function, the value is sent to 

the RTI executive.  

In the receiver federate, using the reflectAttributeValues() function, the 

appropriate callbacks from RTI are automated. To invert the sender’s process, the 

received attribute value is transferred from the AttributeList component in the HLA-

Interface layer to the attributeList of DEVS/HLA-Interface layer. For the DEVS time 

management in distributed simulation, the attribute communication and the quantizer 

component in the DEVS/HLA-Interface layer were used [50, 51]. The quantizer checks 

whether the simulation time advance has crossed over a certain time unit or not. If the 

simulation time has crossed, the quantizer sends the time value from the attributeList 

component in the DEVS/HLA-Interface layer to the AttributeList component in the 

HLA-Interface layer.  
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Figure 4.3 Attribute communication in the DEVS/HLA-Interface layer and the 

HLA-Interface layer 

 

Figure 4.4 illustrates how the interaction communication works in the 

DEVS/HLA-Interface layer and the HLA-Interface layer. In the sender federate, the 

HLA_Interaction Interface component in the DEVS/HLA-Interface layer receives DEVS 

messages from DEVS models, extracts the data value from the DEVS message, and sends 

the data value to the HLA-Interface layer. In the HLA-Interface layer, with the 

SendInteraction() function, the data value from the DEVS message is sent to the RTI 

executive. In the receiver federate, the callbacks from RTI are automated with the 



 

65

ReceiveInteraction() function. Conversely in the sender federate, the received data value 

is transferred from the HLA-Interface layer to the DEVS/HLA-Interface layer, in which a 

DEVS message with the received data value is created and transferred to the upper layer. 

The data communication, among the DEVS components distributed in federates, works 

with this interaction communication. 

 

 

Figure 4.4 Interaction communication in the DEVS/HLA-Interface layer and the 

HLA-Interface layer 
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4.4 The upgraded DEVS/HLA-Interface Environment 

 

The HLA-Interface developed at Lockheed Martin Space Systems’ Advanced 

Simulation Center was implemented with C++. In this dissertation, the HLA-Interface 

was integrated to Java using code translated from the C++ code. Also, the Java-based 

DEVS/HLA-Interface environment upgrades the DEVS/HLA-Interface environment in 

C++ [58]. The upgraded DEVS/HLA-Interface includes three main differences from the 

DEVS/HLA-Interface with C++. These differences are user interface, data casting, and 

class hierarchy as described next. 

 

4.4.1 User Interface 

 

The HLA_Federate class, in the HLA-Interface layer in C++, has the 

communication protocol services to define inter-federate communications (interaction 

and attribute communications). However, the DEVS model developer cannot access the 

communication protocol services of the HLA_Federate class in the HLA-Interface layer. 

Therefore the DEVS model developer uses only the previously defined DEVS/HLA 

interaction and attribute communications for distributed simulation. In order to 

compensate for the disadvantage of the DEVS/HLA-Interface in C++, we allow the 

DEVS model developer to define and to set up the interaction and the attribute 

communications in the top DEVS component in the DEVS model layer. Thus, the DEVS 

model developer can access the communication protocol functions (for the interaction 
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and the attribute communications ) in the DEVS model layer. Thus, the DEVS/HLA-

Interface in Java provides an easier user interface than the DEVS/HLA-Interface in C++. 

Figure 4.5 and Figure 4.6 compare the definition and setup of interaction and attribute 

communications for the two DEVS/HLA-Interface environments. 

 

 

Figure 4.5 The definition and setup of interaction and attribute communications in 

the DEVS/HLA-Interface environment in C++ 

 



 

68

 

Figure 4.6 The definition and setup of interaction and attribute communications in 

the DEVS/HLA-Interface environment in Java 

 

Furthermore, in the DEVS/GDDM environment to be introduced in the next 

chapter, the DEVS model developer does not ever have to define interaction and attribute 

communications. That is the developer needs only work with DEVS models. The 

DEVS/GDDM environment takes the inter- federate connection information from DEVS 

models and automatically defines and sets up interaction and attribute communications. 

Figure 4.7 illustrates the definition and  setup of interaction and  attribute communications 

in the DEVS/GDDM environment. 
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Figure 4.7 The definition and setup of interaction and attribute communications in 

the DEVS/GDDM environment 

 

4.4.2 Data Casting 

 

In the DEVS model layer in the sender federate, a sender agent (a DEVS model) 

outputs a DEVS message. A DEVS message includes data values of any type (double, 

float, integer, string, etc.).  In the HLA-Interface layer in C++, the data value from the 

DEVS message is cast into its data type and is sent to RTI for interaction communication. 

To do exact by the same data type casting in the HLA-Interface layer, the type of the 

received data from the upper layer has to be previously known. Otherwise, an additional 
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operation to know the type of received data is needed and thus causes the overhead of 

system computation in the HLA-Interface layer. The same problem occurs in the HLA-

Interface layer in the receiver federate. The type of the data value received from RTI 

callback function is unknown; therefore the additional operation to know the type of 

received data is needed in the HLA-Interface layer in the receiver federate. Figure 4.8 

illustrates the data casting necessary to perform the RTI interaction communication in the 

DEVS/HLA-Interface environment in C++. 

 

 

Figure 4.8 Data casting in the DEVS/HLA-Interface environment in C++ 
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To fix this data casting problem, Java enabled byte stream data casting is used in 

the new HLA-Interface layer. In a sender federate we take any type of data value from a 

DEVS message and cast it into the byte stream. The byte stream is then transferred to 

RTI using interaction communication.  

Figure 4.9 illustrates the data casting of the RTI interaction communication in the 

DEVS/HLA-Interface environment with Java. At the HLA-Interface layer in the receiver 

federate, the byte stream received from the RTI callback function enters into the entity 

object. The entity object is a general object that can contain any type of data value of 

DEVS messages. The DEVS message, which includes the entity object, is transferred to 

the upper layer. A receiver agent (a DEVS model) in the DEVS model layer receives the 

DEVS message, which includes the entity object (with byte stream), and casts the byte 

stream into the exact data type since both sender and receiver DEVS models know the 

exact data type sent and received. Byte stream data casting, in the DEVS/HLA-Interface 

environment with Java, provides data transparency between the HLA-Interface layer and 

the RTI, and obviates the additional operation for casting the exact data type.  
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Figure 4.9 Data casting in the DEVS/HLA-Interface environment with Java 

 

4.4.3 Data structure and Container sub- layer class hierarchy 

 

The HLA-Interface layer has its own data structure (e.g., Element, Set, etc.) to 

support its class development and the functions of the classes of the HLA-Interface layer. 

The DEVS/HLA-Interface layer has a container sub- layer to support the DEVS modeling 

[59, 60]. In order to connect the data structure of the HLA-Interface layer to the container 

sub- layer of the Java-based DEVS/HLA-Interface layer, we made the top class (Entity 

class) of the data structure of the HLA-Interface layer inherit the top class (entity class) 

of the container sub-layer of the DEVS/HLA-Interface layer. Figure 4.10 illustrates the 
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class hierarchy of the  data structure and the container sub- layer. Using the polymorphism 

in this class hierarchy, classes in the DEVS/HLA-Interface layer or the HLA-Interface 

layer can be developed using both the data structure and the container sub- layer. 

 

 

Figure 4.10 Class hierarchy of the data structure of the HLA-Interface layer and the 

container sub-layer of the DEVS/HLA-Interface layer 

 

4.5 Summary of DEVS/HLA-Interface environment 

 

We introduced a general purpose object-oriented HLA-Interface developed at 

Lockheed Martin. The HLA-Interface includes the DEVS/HLA-Interface environment 
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(extended from the DEVS/HLA developed by the University of Arizona) that allows to 

model and simulate DEVS models distributed at multiple federates over network. In this 

dissertation, we upgraded the Java-based DEVS/HLA-Interface environment from the 

DEVS/HLA-Interface environment in C++. The upgraded DEVS/HLA-Interface 

environment provides more useful user interface and efficient implementation (by 

changing data casting and class hierarchy). 

In next chapter, using the upgraded DEVS/HLA-Interface environment, we will 

create the DEVS/GDDM modeling and simulation environment that provides GDDM 

(Generic Data Distribution Management) services in distributed simulation. The 

upgraded DEVS/HLA-Interface environment supports the system modeling facility 

(based on DEVS formalism) and the distributed simulation facility (using HLA) of the 

DEVS/GDDM environment. 
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5 DEVS GENERIC DATA DISTRIBUTION MANAGEMENT (GDDM) 

ENVIRONMENT 

 

5.1 Motivation 

 

A large-scale, distributed simulation is characterized by numerous interactive data 

exchanges among simulation entities dispersed among computers that are networked 

together. The deve lopment of message traffic reduction schemes to reduce the interactive 

messages among simulation entities has drawn the attention of many researchers as one 

means of achieving greater scalability. At present, with increasing demand for distributed 

simulation, message traffic reduction schemes for distributed simulation with reasonable 

communication and computation resources are needed more and more.  

The major message traffic reduction schemes proposed for improved 

communication data management are the quantization scheme and interest management 

scheme. The quantzation scheme has two types: non-predictive and predictive. The 

interest management scheme includes the spatial encounter prediction scheme and the 

Data Distribution Management (DDM) service of High Level Architecture (HLA).  

The Data Distribution Management (DDM) service of HLA tries to filter out 

irrelevant data among federates. However, as mentioned in chapter 3, the DDM of HLA 

has several disadvantages, which inhibits applying modeling and simulation to a large of 

variety of problems.  
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In this dissertation, we developed the DEVS/GDDM simulation environment that 

uses the interest-based quantization scheme (which combines the quantization scheme 

and the interest management scheme) and performs the effective message filtering 

between senders and receivers. This environment overcomes the disadvantages of DDM 

of HLA and performs a distributed simulation with reasonable communication and 

computation resources. Figure 5.1 illustrates how message filtering between senders and 

receivers is supported by the DEVS/GDDM simulation environment. 

 

 

Figure 5.1 Message Filtering between senders and receivers  
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5.2 DEVS/GDDM Structure 

 

As Figure 5.2 shows, the DEVS/GDDM environment, implemented as the upper 

layer of the DEVS/HLA-Interface layer, supports a portability of models across platforms 

at a high level of abstraction. Thus, DEVS models, based on object-oriented design, can 

be developed and reused on the DEVS/GDDM layer; and they can easily be ported across 

distributed platforms. Figure 5.3 summarizes the roles of each layer in DEVS/GDDM 

layered structure. The roles of the DEVS/HLA-Interface and the HLA-Interface layers 

were discussed in chapter 4. The only difference is that the DEVS/GDDM layer replaces 

the roles of the DEVS/HLA-Interface layer (setup of attribute and interaction 

communications) and adds DEVS/GDDM component specifications. It also supports 

more simple user modeling in the DEVS model layer. 



 

78

 

Figure 5.2 DEVS/GDDM layered structure 
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Figure 5.3 Roles in each layer of the DEVS/GDDM layered structure  

 

Communication and data exchange among DEVS components distributed in 

multiple federates are supported by the DEVS/GDDM environment. The DEVS/GDDM 

layer takes the DEVS coupling information from DEVS models, automatically defines 

the HLA interaction communications using this coupling information, and performs 

HLA/RTI communications. Therefore the DEVS/GDDM environment provides a 

friendly user interface, and the developer only defines models on the DEVS model layer. 

Figure 5.4 illustrates the HLA interaction communication setting provided by the 

DEVS/GDDM environment. 
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Figure 5.4 HLA Interaction communication setting in the DEVS/GDDM 

environment 

 

5.3 DEVS/GDDM Components 

 

To perform the interest-based quantization scheme in the DEVS/GDDM 

environment, several components are developed in this dissertation. The major 

components are initializer, space manager, and message handler. 

The initializer allows a model developer to model any application easily. The 

initializer gets information from an application model needed to implement the interest-
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based quantization scheme of the DEVS/GDDM environment. This information includes 

the number of agents, how they are distributed in the separate federates, and the coupling 

information among agents. The initializer creates the other DEVS/GDDM components 

(space manager and message handler) and creates the couplings between the user DEVS 

model as well as the other DEVS/GDDM components, and the couplings among all 

DEVS/GDDM components. Thus, the initializer sets up the message communication 

among all DEVS/GDDM components and the user model.  

As Figure 5.4 illustrates, the coordinator federate takes the coupling information 

from the DEVS top model and sends it to the FederateGDDM components in the other 

federates. Each FederateGDDM component includes an initalizer component. Using this 

coupling information, the initializer creates the HLA interaction communications that are 

supported by the DEVS/HLA-Interface layer. Therefore DEVS modeling in the 

DEVS/GDDM environment is not different from DEVS modeling in the DEVS/JAVA 

[62] or in the DEVS/CORBA [61] environments. This means that the DEVS/GDDM 

environment provides DEVS modeling transparency with respect to other DEVS-based 

environments. 

The space manager is the main component in the DEVS/GDDM layer. In order to 

work out the proper quantum size to allocate to sender and receiver agent pair s, the space 

manager has two sub-components: the tuple and the decision-maker. The tuple 

component maintains the data for deciding the proper quantum size allocations. This data 

is application dependent and may vary during run time.  



 

82

In the pursuer/evader model that will be discussed in the chapter 7, the data for 

deciding the quantum size are the distances between sender and receiver agents. The 

tuple component receives and updates the data for deciding the quantum size from the 

agent as it changes its own attributes. For example, in the pursuer/evader model, 

whenever any agent changes its position, the space manager must collect the updated 

position and re-compute the distances between agents. Using the updated position of the 

tuple component, the decision-maker component determines the exact quantum size for 

all sender and receiver pairs. To make this decision, the decision-maker component 

employs a quantum decision table, which specifies how quantum sizes are related to data 

values in the tuple component. Using the quantum decision table, the decision-maker 

finds the new quantum sizes, and the space manager then sends the new sizes to the 

filtering components. These are the message handlers and user model components. Figure 

5.5 illustrates the component diagram in DEVS/GDDM layer and the data flow among 

DEVS/GDDM components. 
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Figure 5.5 Component diagram in DEVS/GDDM layer 

 

The message handler collects the output messages from a user model and 

distributes the received messages to the proper user models in the other federates. The 

DEVS/GDDM environment supports three methods employed by the interest-based 

quantization scheme. These are non-predictive, predictive, and multiplexing interest-

based quantization. To perform the three methods, the message handlers in the 

DEVS/GDDM layer have the functions for performing quantization (non-predictive and 

predictive) and multiplexing. The message handler is specialized into several types: non-

predictive, sender predictive, receiver predictive, sender multiplexing, and receiver de-

multiplexing. The non-predictive message handler performs non-predictive quantization.  
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The sender predictive and the receiver predictive message handlers perform the 

predictive quantization. The sender multiplexing and the receiver de-multiplexing 

message handlers are used for the multiplexing. Another role of the message handler is to 

reduce the number of, and efficiently utilize the HLA interaction communications. This 

role can increase the scalability of DEVS/GDDM environment.  

Figure 5.6 illustrates the information flow from users and their DEVS models to 

the DEVS/GDDM layer. The initializer gets the coupling information from a user model. 

The user informs the space manager the quantum decision table, the quantized variables, 

and the chosen interest-based quantization method. The message handler also gets the 

message type (e.g. message dimensions) from the user. 
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Figure 5.6 Information flow from the user and DEVS models to DEVS/GDDM layer 
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5.4 DEVS/GDDM Flow of Execution 

Figure 5.7 illustrates the DEVS/GDDM flow of execution. 

 
Figure 5.7 DEVS/GDDM Flow of Execution 

 
Initializing    

Initializing sets up the environment needed to perform the interest-based 

quantization scheme in the DEVS/GDDM environment. In this initializing step, the 

couplings among the DEVS models and the DEVS/GDDM components are created and 

the HLA interaction communications are setup between the DEVS/GDDM layers in the 

different federates. The space manager then collects the initial information from all 

agents needed to decide the initial quantum sizes. For example, it collects the initial 

positions of all agents. 
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Data Gathering 

During simulation, the space manager gathers the data for deciding proper 

quantum sizes among sender and receiver pairs.  

 

Deciding Quantum Size 

As the data for deciding quantum sizes changes, the decision-maker finds the new 

quantum sizes from the quantum decision table.  

 

Quantum Size Changed? 

The space manager checks whether the current quantum size is different from the 

old quantum size. If the quantum size is changed, the flow follows the “YES” direction. 

If the quantum size is not changed, the flow follows the “NO” direction. If there is a 

“NO” direction flow, the execution goes back to the Date Gathering. 

 

Filtering Rate Change 

When the filtering component for quantization receives the new quantum size 

from the space manager, it changes the internal quantum size. Thus, its message filtering 

rate is changed and execution goes back to the Date Gathering phase and continues. 
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5.5 Interest-based Quantization Scheme in DEVS/GDDM 

 

The DEVS/GDDM environment supports three methods performed by the 

interest-based quantization scheme. These are non-predictive, predictive, and 

multiplexing interest-based quantization. 

 

5.5.1 Non-predictive Interest-based Quantization Method 

 

The non-predictive interest-based quantization method filters the output messages 

of the sender agent by using a non-predictive message handler which includes the 

quantizers. The output message from the sender agent can contain multi-dimensional 

values (x, y, …). For example, if the output message represents the position in space, the 

three-dimensional values (x, y, z) are contained within the message. In order for the 

quantizer to quantize multi-dimensional values, it has several types of quantizers related 

to the dimensions. Thus, DEVS/GDDM layer includes distinct quantizers that support 

quantization of different dimensional messages. Figure 5.8 illustrates the operation of the 

non-predictive interest-based quantization method. 

Recall that order to perform the non-predictive interest-based quantization method, 

the space manager collects the data from the sender and receiver agents to decide the 

quantum size. A certain quantum size is specified for each sender and receiver pair. The 

data for deciding the quantum size for each sender and receiver pair depends on each 

application. For example, in the pursuer and evader model, the space manager collects the 
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positions of the pursuer and the evader and uses the distance between the pursuer and the 

evader to decide the quantum size for the pursuer and evader pair. After deciding, the 

space manager checks whether the decided quantum size has changed or not. If the 

decided quantum size has changed, it is sent to the proper quantizer assigned to the 

proper sender agent from the space manager. When the quantizer receives the new 

quantum size, it changes to the new quantum size and changes its filtering rate.  

 

 

Figure 5.8 Operation of the Non-Predictive Interest-based Quantization method 

 

5.5.2 Predictive Interest-based Quantization Method 
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The predictive interest-based quantization method, based on the predictive 

quantization discussed in chapter 2, filters the messages in the sender agent itself. To 

perform the predictive interest-based quantization method, a sender agent has a model to 

perform the predictive quantization. In this dissertation, the DEVS predictive integrator is 

used as the model for the predictive quantization. In the DEVS predictive integrator, the 

next crossing of the boundary is predicted, and the input value and the time step are 

variables. In contract, in order to calculate the output value in a simple integrator (such as 

a DTSS integrator), the varying input value is multiplied into a fixed time step. Chapter 6 

discusses the DEVS predictive integrator in depth. Figure 5.9 illustrates the operation of 

the predictive interest-based quantization method. 

 

Figure 5.9 Operation of the Predictive Interest-based Quantization method 
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In the conventional predictive filtering method, a fixed quantum size is used to 

perform the predictive quantization. The predictive interest-based quantization method 

allows the space manager to change the quantum size. In predictive filtering, the message 

size can be reduced tremendously since both sender and receiver agents know the current 

quantum size, therefore, the sender agent sends only –1/+1 value and the receiver agent 

generates the original value of the sender agent using the –1/+1 value  and the current 

quantum size. Hence, the data bit of the one-dimensional message is only one bit for a 

sender and receiver pair.  

The DEVS/GDDM environment supports the communication of the message that 

contains the multi-dimensional values. In the DEVS/GDDM layer, a sender predictive 

message handler sends –1, 0, and +1 values for each dimension to a receiver predictive 

message handler. Note that 0 is needed since a sender may not have crossed a threshold at 

the time of sending the message. As the number of the message dimensions increases, the 

number of message alternatives, which are represented with –1, 0, and +1 values, also 

increases. The number of message alternatives is calculated by: 

 

Number of message alternatives = 3D                D = 1,2,3,…… ( # of Dimensions) 
 

For example, when a message has three-dimensional values, the number of 

message alternatives is twenty-seven. The twenty-seven message alternatives can be 

represented within five bits (5 > log2 27). An encoder component in the DEVS/GDDM 

layer maps a message alternative to a unique bit pattern. In the receiver federate, a 

decoder inverts the received data bits into the corresponding proper message alternative. 
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The DEVS/GDDM layer includes a variety of encoders and decoders that support the 

encoding and decoding of the multi-dimensional message alternatives.  

 

5.5.3 Multiplexing Interest-based Quantization Method 

 

As the number of sender and receiver pairs in federates increases, the number of 

messages communicated among federates increases quite quadratically. The 

DEVS/GDDM environment supports the multiplexing interest-based quantization method 

to reduce the messages and data exchanged among many sender and receiver pairs. The 

multiplexing interest-based quantization method is then extended from the predictive  

interest-based quantization method. To perform this multiplexing interest-based 

quantization method, the DEVS/GDDM layer has sender multiplexer and receiver de-

multiplexer components.  

The sender multiplexer gathers the messages output from the sender agents at the 

same event time, encodes the data values from the messages, multiplexes the encoded 

bits into a large message, and sends the large message to a receiver de-multiplexer in 

some other receiver federates. The receiver de-multiplexer then separates the multiplexed 

message to smaller messages (using de-multiplexer), decodes the encoded bits to the 

original data values, and distributes the messages (including the original data values) to 

the proper receiver agents. Through this multiplexing method, a large number of data bits 

can be saved as the number of sender and receiver pairs increases. Moreover, many HLA 

interactions can be reduced to only one HLA interaction. To exchange the message 
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between a sender and receiver pair between two different federates, one HLA interaction 

is needed. As the number of the sender and receiver pairs increases, the number of the 

HLA interactions for the increased pairs also increases. The increased number of the 

HLA interactions causes memory and computation overhead in HLA/RTI 

communication. By reducing the number of HLA interactions, the multiplexing method 

in DEVS/GDDM environment is more effective in a large-scale distributed simulation.  

Figure 5.10 illustrates the operation of the multiplexing interest-based quantization 

method. 

 

 

Figure 5.10 Operation of the Multiplexing Interest-based Quantization method 
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5.5.3.1 Fixed and Variable Multiplexing 

 

There are two types of multiplexing interest-based quant ization methods: fixed 

and variable. In fixed multiplexing, the multiplexed message size is constant while in 

variable multiplexing the size varies with the number of active senders. 

 

 

Figure 5.11 Implementation of the fixed multiplexing using the predictive 

quantization 

 (SOH : the number of overhead bits for a packet; SQ: the quantized and encoded data bit 

size; Npair : the number of pair components; a: the ratio of active components) 
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Figure 5.11 illustrates the implementation of the fixed multiplexing using the 

predictive quantization. The fixed multiplexer collects the encoded bits and the active bits 

from each encoder. The encoded bits are the bits required to represent the message 

dimension alternatives. Let SQ be the number of the encoded bits. Then by: 

 

                         SQ = 
2

* 3logD? ?
? ?

                D = 1,2,3,…… ( # of Dimensions). 

                               
                              = 1.7* D? ?? ?  
 

For example, if a message has three-dimensional values in the predictive 

quantization, five bits (log2 33   < 5 = SQ ) are required to represent the message dimension 

alternatives. The active bit indicates whether a sender is active or inactive. An active 

sender is one that has a boundary crossing at a given event time and generates an output 

event. A receiver de-multiplexer checks the active bit of each sender and sends the 

encoded bits of active senders to the respective decoders. In fixed multiplexing, for any 

global state transition of a sender federate at any given event time, the network loading is 

fixed and calculated by: 

 

Network bandwidth requirement for fixed multiplexing 

                           = SOH + Npair * (SQ +1) (bits) 

 

However, the bits assigned for inactive senders can be wasted in fixed 

multiplexing. The fixed receiver de-multiplexer knows which sender sends certain 
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encoded bits since the bit  stream order in the multiplexed bits with fixed size follows a 

fixed ordering of the senders. Therefore, the additional bits representing which sender 

sends are not needed.  

 

 

Figure 5.12 Implementation of the variable multiplexing using the predictive 

quantization 

( SOH : the number of overhead bits for a packet;  SQ: the quantized and encoded data bit 

size;  SL: the encoded data bit size  for sender ID; Npair : the number of pair components; 

a: the ratio of active components) 

 

As Figure 5.12 illustrates, in variable multiplexing using predictive quantization, 

the variable sender multiplexer only collects the encoded bits from active senders. At a 
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given event time, the number of active senders varies and the number of transmitted data 

bits is not fixed. Different from fixed multiplexing, additional bits (SL) are needed to 

represent active senders. The number of data bits for an active sender is calculated by 

adding the additional bits (log2 Npair < SL) and the encoded bits (SQ). Usually, a is less 

than 1 since all senders are not active senders at any given event time. The network 

loading for any global state transition of a sender federate using variable multiplexing is: 

 

Network bandwidth requirement using variable multiplexing 
 
                       = SOH + a* Npair * (SQ + SL) (bits) 
 

Figure 5.13 illustrates how the network bandwidth requirement in fixed and 

variable multiplexing depends on the ratio of active senders. For a low ratio of active 

senders, the variable multiplexing requires a small network bandwidth and is more 

effective than the fixed multiplexing. However, as the ratio of active senders increases, 

the network bandwidth requirement in variable multiplexing also increases; thus, when 

there is a high ratio of active senders, the fixed multiplexing is more effective. The 

crossover value (ac) represents the ratio of active senders at the intersection point 

between the two lines. It separates the effectiveness of the two multiplexing schemes. At 

the intersection point, both fixed and variable multiplexing methods have the same 

network bandwidth requirement. When a is less than ac, we can say that variable 

multiplexing is more effective than fixed multiplexing. 
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Figure 5.13 Network bandwidth requirement in fixed and variable multiplexing by 

varying the ratio (a) of active senders  
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Table 5.1 shows how the value of ac is dependent on the number of message 

dimensions (D) and the number of component pairs. 

Table 5.1 Analysis of ratio (ac) of active senders at the intersection point 

 
Scheme # bits required for Npair ac ac 

for D = 3, 
Npair = 80 

Fixed 
Multiplexing 
(Predictive 
quantization) 
 

SOH + Npair * (SQ +1) 

Variable 
Multiplexing 
(Predictive 
quantization) 

SOH + a* Npair * (SQ + SL) 
 

(SQ +1) 
/ (SQ + SL) 
 

 
0.78 

 
 

When the required network bandwidth needed to perform both fixed and variable 

multiplexing schemes is the same, ac is calculated by:  

 
ac = (SQ +1) / (SQ + SL) 

 
where    
 

SQ = 1.7* D? ?? ?
                D = 1,2,3,…… ( # of Dimensions) 

 

                        SL = 
2

log pairN? ?
? ?  

 
 
The crossover value, ac, approaches 
 

ac  ?   SQ  / SL = 1.7* D? ?? ? / 2
log pairN? ?

? ?  

 
for  1 << Npair  and SQ << SL 
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When D (number of dimensions) is 3 and Npair is 80, ac is 0.78. As Figure 5.13 

shows, the high ac indicates that there is a wider range in which variable multiplexing 

requires less network bandwidth than that of fixed multiplexing. Figure 5.14 illustrates 

how ac varies with the number of message dimensions (D) and the number of component 

pairs (Npair). Note that ac increases as D increases, and ac decreases as Npair increases. 

Decreasing ac indicates that fixed multiplexing acquires a wider effectiveness interval 

than variable multiplexing. However, ac changes slowly as varying Npair since it is 

proportional of log2 Npair . As the number of pairs approaches infinity, fixed multiplexing 

is always preferred. 

 

 
Figure 5.14 Variation of ac in varying # of Dimensions and # of Component pairs  
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5.6 DEVS/GDDM Class Hierarchy 

 

In implementing the DEVS/GDDM simulation environment on the DEVS/HLA-

Interface layer, we have extensively used the object-orientation property of inheritance 

from DEVS object-oriented classes. This inheritance hierarchy is depicted in Figure 5.15. 

To realize the space manager, initializer, and message handler component classes, we 

implemented them as extensions of the Atomic class in the DEVS/HAL-Interface layer. 

The message handler has different types depending on the non-predictive, predictive  

quantization, or multiplexing methods performed in the DEVS/GDDM modeling and 

simulation environment. The FederateGDDM class was implemented as an extension of 

the Digraph class.  
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Figure 5.15 DEVS/GDDM class hierarchy 

 

Within the DEVS/GDDM components, several inert or passive components are 

characterized (e.g. tuple, distance, decision maker, quantizer, message dimension, 

encoder, and decoder). To implement these DEVS/GDDM-specific passive components, 

we extended the DEVS entity class to create the needed classes in the same fashion as the 

DEVS container class library. Figure 5.16 illustrates the inheritance hierarchy for these 

passive DEVS/GDDM components. 
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Figure 5.16 DEVS/GDDM container class hierarchy 

 

5.7 User Interface of DEVS/GDDM 

 
A developer defines a coupled model which includes all DEVS models simulated 

in a federate, and constructs a FederateGDDM component (the top DEVS component in a 

federate) containing the user model. Also, the developer defines a top DEVS model as 

usual. However, this top DEVS model is not directly used in simulation since it provides 

only the couplings among the DEVS models distributed in separate federates to the 

DEVS/GDDM environment. Using the coupling information from the top DEVS model, 

the DEVS/GDDM environment connects the federates together via the HLA interaction 
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communication. In subsequent sections, actual examples of the user interface in the 

DEVS/GDDM environment are introduced with two models: Projectile/Earth, 

Projectile/Missile. 

 

5.7.1 Projectile/Earth model  

 

A projectile model sends its position updates to an earth model. The earth model 

then uses the projectile position to calculate three parameters: gravity, atmosphere 

velocity, and atmosphere density. The projectile model needs the three parameters to 

calculate its next position, so that the three parameters are sent from the earth model to 

the projectile model. Figure 5.17 illustrates the passing of these attributes (position, 

gravity, atmosphere velocity, and atmosphere density) between the earth and projectile 

models, and the implementation codes of the top model of projectile/earth model in 

DEVS/GDDM environment. The FederateGDDM component of the projectile federate 

includes its own user model, which is the projectile DEVS component. The 

FederateGDDM component of the earth federate includes the earth DEVS component as 

its user model. 
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Figure 5.17 Implementation of the Top model of Projectile/Earth model in the 

DEVS/GDDM environment 
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Figure 5.18 Implementation of the Projectile and Earth Federates in the 

DEVS/GDDM environment 

 

In order to quantize the attributes passed between the projectile and the earth 

federates shown in Figure 5.18, a user chooses one of the methods supported by the 

DEVS/GDDM environment. The method for quantization includes non-predictive and 

predictive quantizations, and the method for multiplexing includes non-multiplexing and 

multiplexing. Therefore, the user can take one of the four combinations provided from 

the quantization and multiplexing methods. In Figure 5.18, considering the position 

attribute passed between the projectile and the earth federates, the user chooses the 

predictive quantization and non-multiplexing method and provides the information to the 
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environment to perform the method. The information includes a position quantum table, a 

position dimension, and initial values of position. For the gravity attribute, the user 

chooses the non-predictive quantization and non-multiplexing method.  

 

 

Figure 5.19 Data passing between the Projectile and Earth Federates in the 

DEVS/GDDM environment 

 

A sender predictive message handler is used to perform the predictive 

quantization and non-multiplexing method. The sender predictive message handler has 

two sub-components (converter and encoder) which make the encoded bits (SQ: five bits 
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for three dimensions (5 > log 2 33)) that are passed to the receiver federate. The converter 

maps double precision position values (x, y, z) to integer values ( , ,x y zg g g ), where 

? ? , ,1,0,1 x y zg g g? ? , and the encoder converts the integer values to the encoded five 

bits. The receiver predictive message handler has two sub-components (decoder and 

recover) which change the encoded five bits to the original double precision position 

values (x, y, z). The decoder changes the encoded five bits into the integer values 

( , ,x y zg g g ), and the recover component changes the integer values ( , ,x y zg g g ) to the 

original double precision position values (x, y, z). In order to perform the non-predictive 

quantization and non-multiplexing method for the gravity attribute, the quantizer in the 

non-predictive message handler quantizes the gravity values and sends the double 

precision gravity values (x, y, z). For the rest of the attributes  (atmosphere velocity and 

atmosphere velocity), no quantization method is provided. Figure 5.19 illustrates data 

passing between the projectile and earth federates in the DEVS/GDDM environment. 

 

5.7.2 Projectile/Missile model  

 
The projectile/missile model shows how the predictive quantization and 

multiplexing method performs in the DEVS/GDDM environment. In the 

projectile/missile model, a projectile sends its position updates to a specified missile (not 

another missiles), so that, in order to reduce the data bit for passing the attribute 

dependant to projectile/missile pairs, the predictive quantization and multiplexing method 
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is used. Figure 5.20 and Figure 5.21 illustrates the implementation codes of the 

projectile/missile model in DEVS/GDDM environment. 

 

Figure 5.20 Top model codes of Projectile/Missile model in the DEVS/GDDM 

environment 
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Figure 5.21 Projectile and Missile Federates’ codes of Projectile/Missile model in the 

DEVS/GDDM environment 

 

In the implementation of the projectile/missile model, a user models the multi-

projectile model, which includes many projectile models. The user puts the multi-

projectile model as a user model into the FederateGDDM component in the projectile 

federate. For the position attribute passed from the projectile federate to the missile 

federate, the user chooses the predictive quantization and multiplexing method and 

informs the position quantum table, the position dimension, and the number of projectiles 

to the DEVS/GDDM environment. 
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The message (ID, x, y, z) from each projectile includes the projectile ID with the 

three dimensional position values. The sender multiplexer has three sub-components 

(converter, encoder, and multiplexer) to pass a multiplexed message to the missile 

federate. The converter changes the double precision values (ID, x, y, z) to integer values 

(ID, , ,x y zg g g ); and the encoder changes the integer position values to a properly 

encoded bits (SQ: five bits for three dimensions (5 > log 2 33)) and changes the projectile 

ID to a properly encoded bits (SL). For example, if the number of projectiles is eighty, 

seven bits (7 > log 2 80) are needed to represent the projectile ID. The multiplexer 

receives the encoded bits (SQ and SL), makes a large multiplexed message, and sends it to 

the missile federate. The receiver de-multiplexer has three sub-components (de-

multiplexer, decoder and recover) to make the original double precision values (ID, x, y, 

z) from the multiplexed message. The de-multiplexer separates from the multiplexed 

message to each encoded bits (SQ and SL). The decoder changes the encoded bits (SQ and 

SL) to the integer values (ID, , ,x y zg g g ), and the recover component changes the integer 

values (ID, , ,x y zg g g ) to the original double precision values (ID, x, y, z). Figure 5.22 

illustrates data passing between the projectile and missile federates in the DEVS/GDDM 

environment. 
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Figure 5.22 Data passing between the Projectile and Missile Federates in the 

DEVS/GDDM environment 
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6 DEVS PREDICTIVE INTEGRATOR 

 

A theoretical and empirical study of the advantages of predictive quantization 

over non-predictive quantization is provided in [40, 43].  Using the predictive 

quantization, Zeigler [51] developed an example model (DEVS predictive integrator). 

The DEVS predictive integrator basically performs, as illustrated in Figure 6.1, linear 

extrapolation. The time to the next boundary crossing is the quantum size divided by the 

input (derivative). The boundary is predicted either to be one up or one down according 

to the sign of the derivative. When an input event is received, the state is updated using 

the old input before recalculating the predicted crossing, which provides an important 

correction for error reduction. A DEVS predictive integrator accepts DEVS input 

segments and produces quantized output. 

 

X
Y

dY/dT = X

nD

(n-1)D

X>0

X<0

D

ta(nD) = |D/X|

(n+1)D

nD

D

ta(q) =  ((n+1)D-q)/X

e

X>0

X<0
q

nD

ta(q) =  (nD-q)/X 

?

 

Figure 6.1 DEVS Predictive Integrator 
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DEVS representation of the DEVS predictive integrator is the following: 

 

                        M = (X, Y, S, ?ext, ? int, ? , ta). 

 

where  X = Y = R  and  S = R ?  R?  I and 

 

?? ?ext ((q,x,n),e,x’) = (q+x*e,x’, n)       

 

?? ? int(q, x, n) = (nD + D*sign(x), x, n+ sign(x) )       

 

?? ?con ((q,x,n), x’) = (nD + D*sign(x), x’, n+ sign(x)) 

 

?? ?  (q,x) = nD + D*sign(x) 

 

??  ta(q,x,n)  = ((n+1)D - q)/x,   if  x > 0 and  (n+1)D - q > 0 

                            =  (nD - q)/x,        if  x < 0 and   nD - q  < 0 

                            = |D/x|   if   x ??0 and none of the above 

                            = ? ??????otherwise (i.e., x = 0) 

  

As Figure 6.1 illustrates, if we are on a boundary, the time advance computation 

merely divides D by the current input x (the derivative or slope). If we reach the upper 

boundary (n+1)D or lower boundary (n –1)D, we output and update the state accordingly. 

As long as the input remains the same, the time to cross the successive boundaries 

((n+1)D  or (n-1)D ) will be the same. When a new input is received, we update the state 
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using the old input and the elapsed time. From this new state (q), the new time to reach 

either the upper or lower boundary is computed. 

 

6.1 DEVS Representation with Hysteresis of DEVS Predictive Integrator  

 

The necessity of hysteresis  in a Quantized-State System (QSS) is presented by 

Kofman [56]. Without hysteresis  of the quantized variable, a QSS can perform an infinite 

number of state transitions at the same time or within a finite time interval. At first 

glance, the DEVS predictive integrator does not include hysteresis and might suffer from 

the problem of an infinite number of transitions in a finite interval, called illegitimacy 

[27]. Actually, the DEVS predictive integrator developed by Zeigler [43, 51] includes the 

hysteresis properties discussed by Kofman. In this section, we express the hysteresis  

within the DEVS formalism. The operation of the DEVS predictive integrator with 

DEVS representation including the hysteresis is the following: 

 

                        M = (X, Y, S, ?ext, ? int, ?con,?? , ta). 

 

where  X = Y = R  and  S = R ?  R ?  I , a typical state (q, x, n) ?  S represents the 

integrator state, q, stored input x, and multiple of quantum, n. 

 

?? ?ext ((q,x,n),e,x’) = (q+x*e,x’, n)       

 

?? ? int(q, x, n) = (nD + D*sign(x), x, n+ sign(x) )       
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?? ?con ((q,x,n), x’) = (nD + D*sign(x), x’, n+ sign(x)) 

 

?? ?  (q,x) = nD + D*sign(x) 

 

??  ta(q, nD,x,n)  = ((n+1)D - q)/x,   if  x > 0 and  q > nD  

                                  =  (nD - q)/x,         if  x > 0 and   q <  nD  

                                  =  D /x,                 if  x > 0 and    q = nD 

 

                                  = (q - nD )/x,         if  x < 0 and    q > nD  

                                  = (q – (n-1)D )/x,   if  x < 0 and    q <  nD 

                                  =   | ?  /x | ,            if  x < 0 and    q = nD 

 

                                  = ? ??????otherwise (i.e., x = 0) 
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       (a) when increasing state direction                         (b) when decreasing state direction 

Figure 6.2 Operation of the DEVS Predictive Integrator with Hysteresis 

 
In Figure 6.2, nD indicates the current state boundary since n is the index of a 

current boundary and D is a certain quantum size. Here, (n-1)D and (n+1)D indicate next 

state boundaries reached from the current state (nD); and ?   indicates the width of the 

hysteresis window and is the same as the quantum size (D).  

In implementation, in order to indicate the direction of the state transition, we 

used lowerBound and nextLowerBound variables. The lowerBound (n) is the boundary 

index of the current state (nD) and the nextLowerBound (n-1 or n+1) is the boundary 

index of the next state ((n-1)D or (n+1)D). The values of lowerBound and 
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nextLowerBound variables indicate the direction of state transition. For example, when 

lowerBound is 1 and nextLowerBound is 2, the direction of state transition increases. 

When lowerBound is 2 and nextLowerBound is 1, the direction of state transition 

decreases.  

Hysteresis is used when the DEVS predictive integrator receives decreasing 

derivative as its input (e.g. input value is less than zero (X<0)) in increasing state 

direction. As Figure 6.2(a) illustrates, in order to process an input of decreasing 

derivative with hysteresis when the state transition direction is increasing, there are two 

operations for changing the direction of the state transition: The first is to make 

nextLowerBound the same as lowerBound; and the second is to assign nextLowerBound 

for indicating the new direction (decreasing state direction from decreasing derivative) 

and to calculate the next state value (by subtracting the width of the hysteresis window 

(?) from the current state boundary value (nD)). These two operations are performed at 

the same time and the changed lowerBound and nextLowerBound indicate the new 

direction of state transition. The output value of the DEVS predictive integrator is related 

to the new direction of state transition and is calculated by multiplying the changed 

nextLowerBound and the quantum (D). Figure 6.2(b) illustrates the operation of the 

DEVS predictive integrator when it receives increasing or decreasing derivative as its 

input in decreasing state direction, and the DEVS predictive integrator does not 

hysteresis. 
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6.2 Kofman’s DEVS Predictive Integrator with Hysteresis 

 

Using hysteresis, Kofman modified the DEVS predictive integrator developed by 

Zeigler [43]. In this dissertation, we modeled the Kofman’s DEVS integrator [56] using 

the DEVS formalism. The operation of the Kofman’s DEVS integrator with DEVS 

representation including hysteresis is the following: 

 

The DEVS representation is the following: 

 

                        M = (X, Y, S, ?ext, ? int,?? , ta). 

 

where  X = Y = R  and  S = R ?  R?  I and 

 

?? ?ext ((q,x,n),e,x’) = (q+x*e, x’, n)       

 

?? ? int(q, x, n) = (q’, x, n+ sign(x) )       

where 

q’  = (n+1)D, if x>0 

     = nD- ? ,   if x<0 

 

?? ?  (q,x) = nD + D*sign(x) 

 

?? ta(q,nD,x,n)  = ((n+1)D - q)/x,           if  x > 0  

                           =  ( q – (nD - ?  ) )/|x|,     if  x < 0  

                               = ? ???????????????????????????????otherwise (i.e., x = 0) 
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            (a) when increasing derivative             (b) when decreasing derivative 

Figure 6.3 Operation of Kofman’s DEVS Integrator with Hysteresis 

 

Figure 6.3 illustrates how the Kofman’s DEVS integrator uses the hysteresis. Like 

in the original DEVS predictive integrator, the hysteresis is used when the Kofman’s 

DEVS integrator has decreasing derivative as its input (e.g. input value is less than zero 

(X<0)). In the implementation of the Kofman’s DEVS integrator, we use the 

Actual_index (n) which indicates the boundary index of current state (nD). Without 

indicating the direction of state transition, the Actual_index only indicates the current 

state boundary.  
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As Figure 6.3(b) illustrates, the Kofman’s DEVS integrator receives an input of 

decreasing derivative and uses the hysteresis to calculate the next state value by 

subtracting the width of the hysteresis window (?) from the current state value (nD). 

Unlike the original DEVS predictive integrator, the Kofman’s DEVS integrator does not 

consider the direction of state transition; thus it needs only one operation for calculating 

the next state value and the time advance value for next event with the hysteresis. The 

next state value and the next time advance value of Kofman’s DEVS integrator are only 

related to the current input value. If the current input value is greater than zero, the 

Actual_index is increased by one. If the current input value is less than zero, the 

Actual_index is decreased by one. The output value is calculated by multiplying the 

increased or decreased Actual_index and the quantum (D). Figure 6.3(a) illustrates the 

operation of Kofman’s DEVS integrator when it receives increasing derivative as its 

input, and Kofman’s DEVS integrator does not hysteresis. 

 

6.3 Experimentation and Results 

 

In order to illustrate the qualities of the DEVS predictive integrator with 

hysteresis, we chose a second order stiff system as a simulation example. The stiff system 

includes at least one integrator that frequently changes the direction of the state transition. 

Since hysteresis is only used when the direction of the state transition of a quantized 

variable changes, the stiff system is the proper example needed to show the operation of 
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the DEVS predictive integrator with hysteresis. The second order stiff system is 

represented: 

  

 
.

1 2

1
Lx x?  

.

2 1 2

1 R
U

C Lx x x? ? ?  

                                                               
2

1
y

L x?                                      (6.1) 

 

where L is 0.01, U is 100, C is 0.01, and R is 100. 

 

The analytical solution of the second order stiff system is below:  

 

                                                      1000010000
( ) ( )

9999
t ty t e e? ?? ?                   (6.2) 

 

The error from this simulation was evaluated by comparing the simulation results 

to the analytical solution of (6.2). 
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Figure 6.4 Component Diagram of Second Order Stiff System 

 

To simulate the second order stiff system, we modeled the DEVS components: 

DEVS predictive integrator, adder, and transducer. The second order stiff system includes 

two DEVS predictive integrators, which generate x1 and x2. The DEVS predictive 

integrator is modeled by the DEVS predictive integrator representation in section 6.1. 

Also, we modeled the second order stiff system, which uses the Kofman’s DEVS 

integrators modeled from the DEVS representations of section 6.2. The adder component 

collects the output values from the two integrators (which generates x1 and x2) and makes 

the derivative for the integrator that outputs 
2x . The transducer component gathers the 

output values of the second order stiff system and shows occurred error. Figure 6.5 shows 
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the simulation result of the second order stiff system using the DEVS predictive 

integrators. 

 

 

Figure 6.5 Output trajectory of the second order stiff system using the DEVS 

Predictive Integrators  

 

In order to validate the second order stiff system using the DEVS Predictive 

Integrators, we investigated the error trajectory between the value from the stiff system 

simulation and the exact value of y(t) in (6.2). Figure 6.6 shows the error trajectory of the 

second order stiff system using DEVS Predictive Integrators.  The greatest error was less 

than 10-2, or 1.0 (%) of maximum value. After the simulation time is 3.498976, the state 
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value of the integrator that outputs 
2x  is below its quantum size (10-4); therefore, the error 

is bounded within 10-2 , which is calculated by: 

                                                          2
2

1
10y

L x ?? ?  

where L is 0.01.  

 

Figure 6.6 Error trajectory of the second order stiff system using the DEVS 

Predictive Integrators (Quantum sizes - X1: 10-2 , X2: 10-4 ) 

 

In order to compare the quality between the DEVS predictive integrator and the 

Koffman’s integrator, we checked the error of the simulation time when the value of y(t) 

in (6.2) was equal to 1.000 (exact value). Figure 6.7 illustrates the error check point to 

check the error of the simulation time, which is computed as: 
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Error = tapp – 9.2*10-4 

 where tapp : approximated time to exact time (9.2*10-4 ) for varying quantum sizes. 

  

 

Figure 6.7 Error Check Point in Second Order Stiff System 

 

In simulation, the hysteresis value (?) is equal to the quantum size (D). Figure 

6.8 illustrates the errors from the DEVS predictive integrator and from the Kofman’s 

DEVS integrator for varying quantum sizes.  As the quantum sizes of the integrators of 

the second order stiff system increase, the incurred error also increases. Both the original 

DEVS predictive integrator and the Kofman’s DEVS integrator show the same accuracy. 
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Figure 6.9 illustrates the number of internal transitions from the DEVS predictive 

integrator and from the Kofman’s DEVS integrator in varying quantum sizes. When 

small quantum sizes are used, internal transitions from the Kofman’s DEVS integrator 

are less than those from the DEVS predictive integrator. 

 

 

Figure 6.8 Error from the original DEVS predictive integrator and the Kofman’s 

DEVS integrator in varying quantum sizes 
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Figure 6.9 Internal transitions from the original DEVS predictive integrator and 

Kofman’s DEVS integrator in varying quantum sizes 

 

6.4 Discussion 

 

Considering hysteresis, we compared the qualities of the original DEVS 

predictive integrator and Kofman’s DEVS integrator. In simulation of the second order 

stiff system example, the errors (for varying the quantum sizes) of the two integrators 

(DEVS predictive integrator and Kofman’s DEVS integrator) were not much different. 

Both integrators perform with the same accuracy, however the number of internal 

transitions of the original DEVS predictive integrator is greater than those of the 
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Kofman’s DEVS integrator. When the direction of the state transition is changed, the 

original DEVS predictive integrator needs two internal transitions to perform hysteresis; 

meanwhile, only one internal transition is needed for the Kofman’s DEVS integrator. 

Since the second order stiff system frequently changes the direction of the state transition, 

the second order stiff system simulation shows the difference in the number of internal 

transitions of the two integrators (the DEVS predictive integrator and the Kofman’s 

DEVS integrator). However, in many real-world applications, the change of the direction 

of the state transition does not occur frequently.  
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7 PURSUER-EVADER MODEL 

 

In order to evaluate the performance of the space-based quantization scheme in a 

distributed simulation environment, we introduce the pursuer-evader model and a 

federation executing on the DEVS/HLA distributed simulation environment. The 

federation contains two types of agents, pursuers and evaders, which move and interact 

with each other in a bounded region of two-dimensional space. There are two types of 

federates, pursuer federates and evader federates.  Each pursuer federate contains an 

arbitrary number of pursuers while each evader federate contains an arbitrary number of 

evaders.  Pursuers and evaders bounce in elastic fashion off the walls of the region in 

which they are confined.  The pursuers chase evaders that come within close proximity 

and shoot at those within a smaller range. The evaders run away from pursuers they 

“notice” at some distance and freeze when detecting any within a closer range. Figure 7.1 

illustrates the operation of the pursuer-evader model.  
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Figure 7.1 Pursuer-Evader Model 

 

7.1 Distance-Dependent Sensitivity of Vision 

 

Perception abilities of pursuers and evaders are modeled with a simple approach 

to distance-dependent sensitivity of vision. The ease with which one agent can detect 

another depends upon the latter’s projection on the former’s hypothetical retina. The 

projection is defined as the size of the agent divided by the distance between the two 

agents. The projection must be larger than a threshold value to be perceived.  Since, in 

our model, a pursuer is bigger than an evader, with the same threshold on the projection, 

an evader can see a pursuer better than a pursuer can see an evader.  Critical distance, D, 

is defined as the size divided by a threshold of projection. As Figure 7.2 illustrates, there 

are two critical distances, Dsee and Dnotice, corresponding to two thresholds for seeing and 
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noticing. An evader can detect the pursuer within Dnotice of evader and can see the pursuer 

within Dsee of evader (and vice versa). 

 

 

Figure 7.2 Modeling Distance-dependent Sensitivity of Vision in the Pursuer-Evader 

Model 

 

At any moment, with this distance-dependent sensitivity, an evader may exist in 

one of four states, “move”, “run away”, “freeze”, or “dead”. These states change in 

response to the evader’s perception of the pursuers which is a function of the distance 

between each pursuer and the evader. Figure 7.3 illustrates a state transition diagram for 

the evader. 
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 When a pursuer comes within the critical range, Dnotice, of an evader, the evader can 

detect the pursuer. At this point, the evader switches to the “run away” state and runs 

away from the pursuer. However, if a pursuer comes within the critical Dsee range, the 

evader can “see” the pursuer and changes to the “freeze” state. In the “freeze” state, the 

evader does not move hence does not output any position update messages. The evader 

changes from the “freeze” state to the “move” state when all pursuers are out of  range 

determined by the critical Dsee distance. The “freeze” state was introduced to provide 

interesting interactions. It can be used to keep the pursuers from quickly eliminating the 

evaders, thereby enabling long simulation runs. 

 

 

Figure 7.3 State Transition Diagram for Evader 
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7.2 Space-based Quantization with Distance-Dependent Sensitivity of Vision 

 

The space-based quantization scheme is applied to the operation of the 

pursuer/evader model with distance-dependent sensitivity of vision. This scheme uses 

two critical distances, Dsee and Dnotice, which are determined by distance-dependent 

sensitivity of vision. Figure 7.4 illustrates how a quantum size is assigned according to 

the distance between pursuer and evader. In Figure 7.4(a), three quantum sizes are used 

with the two values of distance,  Dsee and Dnotice. Two quantum sizes are used in Figure 

7.4(b) and Figure 7.4(c). Note that filtering of messages is greater with the assignment of 

Figure 7.4(c) than that of Figure 7.4(b).  
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Figure 7.4 Assigning quantum sizes based on the distance 
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Figure 7.5 Assigning quantum sizes based on the message direction and the distance 

 

As Figure 7.2 shows, we have to consider four critical distances: the respective 

values, Dsee and Dnotice of pursuers and evaders.  Figure 7.5 illustrates the assignment of 

quantum sizes with these four distances. Figure 7.5(a) illustrates the quantum size 

assignment for messages being transmitted from pursuer to evader while Figure 7.5(b) 

considers messages from evader to pursuer. In Figure 7.5(a), three quantum sizes are 

assigned, using a quantum size of 10 for distances between Dsee and Dnotice of evader. Dsee 

and Dnotice of evader are bigger than Dsee and Dnotice of pursuer respectively, since a 

pursuer is bigger than an evader.  Thus perception is not symmetric: an evader can 

perceive a pursuer better than that pursuer can perceive it. In Figure 7.5(b) we assigned 

only two quantum sizes for greater message reduction. In this example, the pursuer 

cannot see the evader outside the range of 10 units. Therefore, quantum size 10 is 
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replaced by quantum size infinity. Of course, more quantum sizes with the space-based 

quantization scheme can be employed. The number of quantum sizes assigned is very 

dependent to each application.  

 

7.3 Filtering operation 

 

In this section we provide more detail on the filtering operations performed by the 

space manager with the pursuer/evader model in the DEVS/HLA distributed simulation 

environment. In the DEVS/HLA distributed simulation environment, there are two types 

of filtering operations. The first type is the filtering at sender federate. When a pursuer 

has a message to be transferred, if all evaders are too far from the pursuer, the space 

manager decides that the message from the pursuer does not need to be transferred and 

blocks the message. The space manger operates in the same manner when the message 

originates from an evader. This type of filtering blocks HLA inter- federate messages 

from entering a network. In a distributed simulation, network delay is a critical factor of 

system performance. By blocking a message from entering a network, filtering at sender 

federate can prevent the communication overhead that results from network delay.  

Therefore, with filtering at sender federate, we can greatly reduce system execution time 

as a result of network message reduction in a distributed simulation. 

The second type of filtering operation is the filtering at receiver federate. When a 

pursuer has a message to be transferred, if some evaders are close by and some evaders 

are far away, the message has to be released outside the pursuer federate without filtering. 
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The space manager decides, according to the distance between the evaders and the 

pursuer, which evaders can receive the message and blocks the message to those evaders 

that are far from the pursuer. The filtering operation works in the same manner when the 

evader sends a message. This filtering operation filters DEVS messages, which are for 

communication within a federate. Figure 7.6 illustrates the two types of filtering 

operations controlled by the global or the local space managers in the DEVS/HLA 

distributed simulation environment. 

 

 

Figure 7.6 Filtering operations  
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In this dissertation, the direct filtering scheme supported by DEVS modeling and 

simulation is introduced and applied to these two types of filtering operation. In most 

conventional filtering schemes, each agent directly filters the message traffic. For 

example, with the spatial encounter prediction of the Joint MEASURE architecture [44], 

the space model sends the spatial relationship to each agent, and each agent performs the 

filtering operation. However, in the direct filtering operation, the space manager directly 

performs the filtering operation by changing the coupling specification supported by 

DEVS modeling, but does not inform the spatial relationship to each age nt. With this 

coupling specification, a message can be transferred to any model. Each model can 

change the message transfer path among the models by adding or removing the coupling 

specification. With the space manager, the direct filtering is applied to these two types of 

filtering operations in the DEVS/HLA distributed simulation. With filtering at sender 

federate, the space manager performs direct filtering by changing the coupling 

specification between the sender agent’s output and the output of the sender federate. 

With filtering at the receiver federate, the space manager performs direct filtering by 

changing the coupling specification between the receiver agent’s input and the input of 

the receiver federate.   
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7.4 Experiment and Results 

 

7.4.1 Effect of the Space-based Quantization Scheme 

 

To evaluate the performance of the space-based quantization scheme, we 

developed the pursuer and evader DEVS/HLA models in two federates in the 

DEVS/HLA distributed simulation environment. One federate included pursuer 

DEVS/HLA models. The other federate had evader DEVS/HLA models. Each federate 

had its own local space manager. Each local space manager receives position updates 

from pursuers and evaders and performs the message filtering between pursuers and 

evaders. Whether or not message filtering is performed depends on the distance between 

pursuers and evaders. If pursuers and evaders are close together, message filtering may 

not be performed. Message traffic reduction is chosen as the performance measure of this 

experiment because, through message traffic reduction, the data to be processed by the 

receiving agents is reduced, as is the data actually sent over a network.  

To represent the effect of the space-based quantization scheme, three different 

experimental conditions are introduced. In the first condition, there is no space manager. 

Messages are broadcast to all agents without the space manager operation. In the second 

condition, the space manager operation is used with two distance ranges. In this 

experimental condition, the distance between any two agents is stratified as two ranges, 

“close” and “far”, so that two different quantum sizes exist. If close, the quantum is 1 and 

the message can be transferred. If far, the quantum is Infinity and the message cannot be 
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transferred. In the third condition, the space manager operation is used with three 

distance ranges. In this condition, the distance between any two agents is stratified as 

three ranges, “close”, “middle” and “far.” If “close” or “far”, a message is transferred or 

filtered in the same manner as in the second condition. On the other hand, if the range is 

“middle,” the quantum is 10 and the filtering operation follows a filtering policy with 

distance-dependent sensitivity of vision in the pursuer-evader model. In middle distance 

range, a pursuer transmits its position update to an evader.  The evader notices the 

pursuer and runs away. However, because the evader does not transmit its position update 

to the pursuer, the pursuer does not notice the evader. Through message filtering in the 

middle range, evaders can “run away” from pursuers. With this filtering policy, message 

communication depends on the direction of the message. When a pursuer has a message 

to be transferred, if the distance range between the pursuer and the evader is in the middle, 

the message can be transferred. However, when an evader has a message to be transferred, 

if the distance range between pursuer and evader is in the middle, the message cannot be 

transferred. Thus, assigning quantum size follows Figure 7.5.  

Figure 7.7 shows the effect of the space-based quantization scheme on message 

traffic. The figure compares the number of transferred messages as a function of different 

space dimens ions in the three experimental conditions. In this experiment, the total 

number of agents is fixed and the space dimension varies. With a fixed number of agents, 

the space dimension (size of bounding region) is a critical factor in comparing the 

number of messages because the filtering operation of the space manager is based on the 

distance among agents. As the space dimension increases, the space manager filters more 
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messages among agents with the distance-dependent sensitivity of vision in the pursuer-

evader model. In the first condition (i.e. no space manager), as the space dimension 

increases, the number of messages transferred increases because the distances between 

pursuer and evader are skewed toward smaller values and many evaders stay in the 

“freeze” state. In the “freeze” state, the evader does not move and does not transfer any 

messages. Thus, as the space dimension increases, evaders have more messages to be 

transferred. This contrasts with performance in the second and third conditions (i.e. space 

manager with two distance ranges and space manager with three distance ranges, 

respectively). Here, as the space dimension increases, the number of messages transferred 

decreases because the space manager operation is based on the distances among agents. 

These results support the assertion that the space-based quantization scheme proposed 

and developed in this dissertation is an efficient means of message traffic reduction.   

As illustrated in Figure 7.7, there is more reduction in message traffic when there 

are three distance ranges than when there are only two. In the former condition, the 

distance between pursuer and evader is more stratified than in the latter condition. Three 

different quantum sizes are assigned to these three distance ranges. The quantum sizes 1, 

10, and Infinity are assigned to the close, middle and far distance ranges, respectively. If 

the quantum size is 1 or 10, when an agent crosses over the boundary of the area assigned 

for that quantum size, the agent transfers a message.  However, if the quantum size is 

Infinity, the agent does not transfer a message. The existence of the middle distance in 

the third condition permits the application of distance-dependent sensitivity of vision in 

the pursuer-evader model, which in turn results in greater message traffic reduction.  It 
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should be noted that the greatest benefit of the triple-quantum scheme occurs in the close 

encounter range where evaders are likely to have more pursuer detections of the “notice” 

kind than when their “mean free path” becomes large.  

 

 

Figure 7.7 Traffic Message Reduction with the Space-based Quantization Scheme  

 

Figure 7.8 shows the filtering rates of the different filtering types at sender and 

receiver federates. As stated previously, as the space dimension increases, the overall 

filtering rate increases. The overall filtering rate consists of filtering rates at the sender 

federate as well as filtering rates at the receiver federate. The filtering rate at sender 

federate shows how many HLA messages between federates are filtered through a 

network. The filtering rate at receiver federate shows how many DEVS messages within 

a federate are filtered. By reducing the network delay, network message reduction more 
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effectively decreases execution time in a large-scale distributed simulation than does non-

network message reduction. At smaller space dimensions, the filtering rate at receiver is 

higher than the filtering rate at sender. However, at larger space dimensions, the filtering 

rate at sender increases further. In effect, as the space dimension increases, the increased 

filtering rate at sender improves system performance by decreasing execution time. 

 

 

Figure 7.8 Filtering Rates with Filtering operations  
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7.4.2 Global and Local Space Manager Approaches 

 

To evaluate the performance of the global and local space manager approaches in 

terms of the scalability of the space-based quantization in a large-scale distributed 

simulation, we applied the heavy load test, using over one hundred agents, to three 

different systems in the DEVS/HLA distributed simulation environment. In the first 

system, messages are broadcast to agents without the space manager operation. The 

second system filters messages among agents using the global space manager approach. 

The third system filters the messages using the local space manager approach. 1 

 

7.4.2.1 Message Traffic Reduction Using Global and Local Space Manager Approaches 

 

In this section, we compare the performance of global and local space manager 

approaches in terms of message traffic reduction and discuss the reasons underlying the 

different performance of the two approaches. Figure 7.9 illustrates the number of 

transferred messages, including the overhead messages, in these two approaches as well 

as the number of messages broadcast to all agents without the space manager operation. 

This figure also shows the 99 (%) confidence interval of the number of messages passed. 

As Figure 7.9 shows, both approaches greatly reduce message traffic with the space 

manager operation. As the number of agents increases, the local space manager approach 

                             
1 Each condition was executed with 5 replications and the averages were significantly 
different at the 99% confidence level [45]. 
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reduces the number of messages more than the global space manager approach. Figure 

7.10 shows the net message reduction using both approaches. The net message reduction 

is calculated by subtracting the overhead messages from the total number of messages 

transferred. The overhead messages in the global space manager approach are for 

position updates of agents to the global space manager and for distributing the connection 

information decided by the global space manager to each coupling operator on each 

federate. The overhead messages in the local space manager approach are for position 

updates of agents to each local space manager on each federate.  Because the overhead 

messages that distribute the connection information in the global space manager approach 

are more numerous than the overhead messages for position updates of agents to each 

local space manager, the net message reduction of the local space manager approach 

increases much more than that of global space manager approach as the number of agents 

increases. 
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Figure 7.9 Message Traffic Reduction using Global and Local Space Manager 

approaches 
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Figure 7.10 Net message traffic reduction using global and local space manager 

approaches 

 

7.4.2.2 The Effect of the Space-Based Quantization in Global and Local Space Manager 

Approaches 

 

In this section, we compare the performance of the global and local space 

manager approaches with the space-based quantization scheme. With this scheme, the 

distance between pursuer and evader is stratified, so that the quantum sizes related to the 

stratified distance are chosen. In this experiment, two and three quantum sizes are chosen 

and each quantum size depends on the distance between pursuer and evader.  

Figure 7.11 shows the effect of the space-based quantization scheme when it is 

applied to the global space manager approach. Figure 7.12 shows the effect on message 

traffic reduction when it is applied to the local space manager approach. As the number 
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of agents increases, the space-based quantization scheme reduces more messages when 

three quantum sizes are chosen than when only two quantum sizes are chosen. 

Furthermore, the effect of space-based quantization on message traffic is greatest when 

the space-based quantization scheme is applied to the local space manager approach.   

 

 

Figure 7.11 Message Traffic Reduction with the Space-based Quantization Scheme 

in Global Space Manager approach 
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Figure 7.12 Message Traffic Reduction with the Space-based Quantization Scheme 

in Local Space Manager approach 

 

7.4.2.3 Influence of Network Delay and Computation Load in Global and Local Space 

Manager Approaches 

 

In this section we analyze how network delay and computation load influence 

system performance using system execution time as a performance measure. In order to 

analyze the influence of network delay in Window NT machines connected via a 10 Base 

T Ethernet network, we designed the experiment in such a way that there was a holding 

time before a message was sent from a simulation component output. This message 

holding time represented the network delay that occurs prior to a message being 

transferred over a network and the implementation of the message holding time operation 

is added in the DEVS/HLA simulation engine. In order to analyze the influence of system 
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computation time, we assigned a certain computation time to receiving agents. The 

system computation time represents the computation time originating from agents and the 

space manager. 

Figure 7.13 illustrates the influence of network delay and computation load on 

system execution time in three system experiments including no space manager, the 

global space manager, and the local space manager. The execution time of the system 

operated without the space manager increases with a high slope as the network delay 

increases. The execution time of the system using the local space manager approach 

increases with a small slope. In the system using the global space manager approach, the 

system execution time increases with a somewhat higher slope than that of the local space 

manager approach. In all three systems, system execution time from network delay 

depends on the number of messages passed. The difference in performance of the three 

systems in terms of network delay would be clearer at the network saturation point.  

In the very low network delay range, the difference noted between the 

performances of the system operated without the space manager and the system with the 

global space manager was less remarkable, although fewer messages were passed in the 

system using the global space manager than when no space manager was used. This is 

because, in the very low network delay range, the system execution time from network 

delay is very low. It, therefore, follows that the system execution time is due primarily to 

system computation time. The system computation time mainly results from the 

computation overhead of the global space manager approach, which is fairly high. 

However, the computation overhead of the local space manager is still low. Also, in the 
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very low network delay range, the local space manager approach has the lower system 

execution time than that when no space manager was used since the message reduction 

from the local space manager approach causes the reduced computation time of the 

receiver agents. 

The computation time of the system operated without the space manager increases 

with a high slope as the agent computation time increases. The large number of messages 

broadcast among agents in this system causes a large local data processing time by the 

message-receiving agents, thus it increases the system computation time with a high 

slope. The computation time of the system using the local space manager approach 

increases with a low slope. In the system using the global space manager approach, the 

system computation time increases with a relatively higher slope than that of the local 

space manager approach. With both approaches, the local data processing time by the 

receiving agents is significantly reduced by the message filtering operation of the space 

manager though the computation overhead for the space manager operation exists. The 

system using the global space manager approach encounters a “bottleneck” during 

computation of the global space manager. However, the local space manager approach 

solves this problem using concurrent processing, which decreases computation overhead 

for the space manager. 

In the very low agent computation range, the computation time of the system 

using the global space manager approach is not much different from that of the system 

operated without the space manager. This is because, in this range, the computation 

overhead of the global space manager is still fairly high although the local data 
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processing time by the receiving agents is very low. In this range, the computation time 

of the system using the local space manager approach is still low. To summarize, Figure 

7.13 shows that as both network delay and computation load increase, the execution 

times of these three systems with no space manager, global space manager, and local 

space manager, increase with orderly different slopes. The best performance was 

accomplished by the local space manager approach proposed in this dissertation as both 

network delay and computation load increase. 

 

 

Figure 7.13 Influence of Network Delay and Computation Load 
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8 PROJECTILE/MISSILE APPLICATION 

 

8.1 Projectile/Missile Application Overview 

 

In this dissertation, a real application (projectile/missile) working in a real-world 

environment is used to evaluate the performance of the DEVS/GDDM environment. This 

application uses the geocentric-equatorial coordinate system [54, 55]. The projectile is a 

ballistic flight and accounts for gravitational effects, drag, and the motion of the rotation 

of the earth relative to it. A missile is assigned a projectile, and it follows its projectile 

until it hits its projectile. In modeling the projectile/missile application, there are two 

main models: projectile and missile. The projectile model is the model of a sphere of 

uniform density following a ballistic trajectory. This model begins at an initial position 

with an initial velocity, moves, and stops until it meets a missile. The missile model is the 

model of the same sphere of the projectile, and it begins at a certain initial position and a 

certain initial velocity, which are different from those of the projectile model. The missile 

model follows the projectile model assigned to it. When the missile model is close to the 

assigned projectile model within a certain distance, it stops and we consider the missile 

hits its projectile. 
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8.2 Projectile/Missile Modeling 

 

The projectile model includes three sub-models: acceleration model, velocity 

model, and position model. The acceleration model uses parameters (e.g. gravity, 

atmosphere velocity, atmosphere density, etc.) to generate the acceleration values. The 

earth model calculates these parameters using the position values of the projectile model. 

For the real implementation of the velocity and the position models, the integrator model 

is developed. The integrator model has two types: the DTSS integrator and the DEVS 

predictive integrator. The velocity model receives the acceleration input from the 

acceleration model, and the position model receives the velocity input from the velocity 

model. Finally, the position model generates three dimensional position values of the 

projectile and sends them to both the earth model and the missile model.  

The missile model includes two sub-models: the velocity generator model and the 

position model. The velocity generator model receives the position update message from 

the projectile model, and it generates the velocity values and sends them to the position 

model. The position model (an integrator model) receives the velocity values and 

generates the three dimensional missile position values. As the simulation time is 

advanced, the position of the missile model gradually becomes closer to the position of 

the projectile model.  

To realize the projectile/missile application in the DEVS/GDDM environment 

proposed in this dissertation, we made four systems to perform the case study with the 

projectile/missile application: The first system is a basic system, which is not applied by 



 

156

the interest-based quantization scheme of the DEVS/GDDM environment; The second 

system uses the non-predictive interest-based quantization scheme. The third system 

employs the predictive interest-based quantization scheme; and the multiplexing method 

is included in the fourth system.  

In the basic system, there are two federates; the projectile federate and the missile 

federate. The projectile federate includes the projectile models, and the missile federate 

includes the missile models. In the basic system, the DTSS integrators are used for the 

velocity and the position models in the projectile model, as well as for the position model 

in the missile model. The position model of the projectile model in the projectile federate 

sends the three dimensional position double values (x, y, z) to the missile federate in a 

fixed step time due to the fact that the DTSS integrators are used. The results from the 

basic system are the standard results for evaluating the performance of the DEVS/GDDM 

environment. The system with the non-predictive interest-based quantization scheme is 

supported by the non-predictive interest-based quantization method of the DEVS/GDDM 

environment, and the high level modeling of the system in the DEVS model layer is the 

same as that of the basic system.  Figure 8.1 and Figure 8.2 illustrate the component 

diagram of the projectile and of missile models in the basic system, as well as the second 

system using the non-predictive interest-based quantization scheme. 
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Figure 8.1 Component diagram of the projectile model in the basic system and the 

second system using the non-predictive interest-based quantization scheme 
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Figure 8.2 Component diagram of the missile model in the basic system and the 

second system using the non-predictive interest-based quantization scheme 

 

8.2.1 Predictive Interest-based Quantization scheme 

 

To reduce the tremendous data bits communicated between the projectile model 

and the missile model with only reasonable error, we made the third system which 

utilized the predictive interest-based quantization scheme of the DEVS/GDDM 

environment. In order to apply to this predictive interest-based quantization scheme, the 

DEVS predictive integrators are used for the velocity and position models in the 

projectile and the missile models. The third system includes the projectile and the missile 

federates which are the same as the basic system. The position model in the projectile 
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model sends the three dimensional position integer values, such as (-1, 0, 1), to the 

velocity generator model in the missile model. To generate the velocity of the missile 

model, the velocity generator model needs the current position values of the projectile 

model; thus, it calculates the current position values of the projectile model by 

multiplying the input integer values and the current quantum size and by adding the 

multiplied result to the old position values.  

To avoid error of the projectile position values in the missile model, the current 

quantum size in the missile model should be the same as the current quantum size in the 

projectile model. The current quantum size is decided by the space manager in the 

DEVS/GDDM environment, and it is distributed to both the projectile model and the 

missile model. In the third system, by sending the integer values (not the double values) 

from the projectile federate to the missile federate, the inter- federate communication data 

bits are tremendously reduced. To save more of the data bits, the three dimensional 

position integer values, such as (-1, 0, 1), are not transferred directly, and only five (5 > 

log2 33) data bits representing the three dimensional integer values are sent. Therefore, 

the encoder, which changes the three dimensional integer values to the five data bits, is 

needed and supported by the DEVS/GDDM environment.  

In order to change the received five data bits to the exact three dimensional 

integer values in the missile federate, the decoder is supported by the DEVS/GDDM 

environment. Also, the position model of the projectile model sends the five data bits to 

the space manager in the DEVS/GDDM environment. The space manager needs the 

decoder to decode the five data bits to the exact three dimensional integer values and 
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generates the position values of the projectile model as the velocity generator in the 

missile model does. Figure 8.3 and Figure 8.4 illustrates the component diagram of the 

projectile and missile models in the third system using the predictive interest-based 

quantization scheme of the DEVS/GDDM environment. 

 

 

Figure 8.3 Component diagram of the projectile model in the third system using the 

predictive interest-based quantization scheme of the DEVS/GDDM environment 
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Figure 8.4 Component diagram of the missile model in the third system using the 

predictive interest-based quantization scheme of the DEVS/GDDM environment 

 

8.2.1.1 The methods to reduce the error in the systems using the DEVS predictive 

integrators  

 

In the third system using the predictive interest-based quantization scheme, error 

occurs due to using the DEVS predictive integrators (not DTSS integrators) in the 

projectile/missile application. To reduce this error, three methods are applied to this 

system. The first method is to use a smoother model, which can reduce the error from the 

multi-dimensional output values of the DEVS predictive integrator with each different 
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unfixed time advance. The velocity model and the position model output s with variable 

time advance in the projectile model since these models are developed with DEVS 

predictive integrators. Also, because the positions of the projectile and the missile are 

three dimensional, the position values of the DEVS predictive integrator are outputted 

with each variable time advance for each dimension. The earth model generates the 

gravity, atmosphere density, etc., with all three dimensional position values at a same 

time. The position values, outputted with each different variable time advance, include 

the old values and current values at a given event time. The use of the old values of the 

projectile position in the earth model causes the error.  

In this third system, the smoother model receives, keeps, and updates the three 

dimensional position values outputted from the DEVS predictive integrator with each 

different variable time advance for each dimension until the fixed time step of the DTSS 

integrator is advanced. When the fixed time step advance of the DTSS integrator comes, 

the smoother model outputs the three dimensional position values to the earth model. By 

using the smoother model, the error caused by the use of the old values of the projectile 

position can be reduced. Figure 8.5 illustrates the component diagram of the projectile 

model in the third system using the smoother model. 
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Figure 8.5 Component diagram of the projectile in the third system using the 

smoother model. 

 

The second method for reducing error, which occurs due to using the DEVS 

predictive integrator, is to use the standard quantum size which decides the message 

filtering rate in the DEVS predictive integrator. In the predictive quantization theory, the 

standard quantum size provides the same accuracy as that caused by the time step (h) of a 

DTSS integrator. Figure 8.6 illustrates the relationship of standard quantum size and the 

time step (h) of a DTSS integrator. 
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Figure 8.6 Standard Quantum Size  (D) and Time Step (h) of a DTSS integrator. 

 

The standard quantum size  is calculated by multiplying the step time (h) and the 

maximum absolute derivative of the DTSS integrator, which is the maximum input of the 

DTSS integrator. In the basic system, the time step (h) of the DTSS integrator is fixed. 

The DTSS integrators, working in the basic system, have three dimensional maximum 

absolute derivatives. Therefore, we have three dimensional standard quantum sizes. 

When this method for using the standard quantum size is applied, the space manager in 

the DEVS/GDDM environment decides the multiple factor for multiplying to the 

standard quantum size rather than deciding the actual quantum size. Thus, the quantum 

decision table includes the multiple factors related to the distances between the projectile 

model and the missile model. In initializing time, the standard three dimensional quantum 
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sizes are given to the DEVS predictive integrators. Each DEVS predictive integrator in 

the projectile model generates its own three dimensional quantum sizes by multiplying 

the multiple factor and the standard three dimensional quantum sizes. Simultaneously, the 

velocity generator model in the missile model gets the standard three dimensional 

quantum sizes of the projectile model’s position model in the initializing time, and the 

velocity generator model calculates its three dimensional quantum sizes by multiplying 

the multiple factor from the space manager and the standard three dimensional quantum 

sizes in run time.  

Table 8.1 and Table 8.2 show the maximum absolute derivatives and the standard 

quantum sizes in the velocity and position models when the step time (h) of DTSS 

integrators of the velocity and position models is 0.01. The maximum absolute 

derivatives and the standard quantum sizes include three dimensions and have their 

values which indicate x, y, and z directions.  

 
Table 8.1 Maximum absolute derivatives and the standard quantum sizes in velocity 

model (h = 0.001) 

 X direction Y direction Z direction 
Maximum absolute 
derivative 

4.878143177E-5 0.030262613307 9.799137940 

Standard Quantum Size  
(D = h * Maximum 
absolute derivative) 

4.87E-8 0.0000302626133 0.0097991379 

 
Table 8.2 Maximum absolute derivatives and the standard quantum sizes in position 

model (h = 0.001) 

 X direction Y direction Z direction 
Maximum absolute 
derivative 

1.698550814E-4 10.0 98.77168099258 

Standard Quantum Size  
(D = h * Maximum 
absolute derivative) 

1.69E-7 0.01 0.0987 
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The third method to reduce the error in the third system is to remove the error 

incurred when the DEVS predictive integrator receives a new quantum size from the 

space manager in the DEVS/GDDM environment and generates the new output values 

(not the pre-scheduled output values). To avoid this error with the new quantum size, the 

position model of the projectile model sends the actual position double-precision values 

(not encoded small data bits) to the velocity generator model in the missile model and to 

the space manager in the DEVS/GDDM environment. When the velocity generator model 

in the missile model receives the actual position values and the new quantum size from 

space manager, it updates the current position values of the projectile model and stores 

the new quantum sizes for subsequent use. Also, the space manager in the DEVS/GDDM 

environment receives the actual position values and updates its representation of position 

values of the projectile model.  

 

8.2.2 Mutiplexing Interest-based Quanitzation Scheme 

 

As the number of projectile model and the missile model pairs in federates 

increases, the number of messages communicated among federates increases also 

significantly. To perform the multiplexing interest-based quantization scheme for 

reducing message traffic of the increased pairs, two components (e.g. sender multiplexer 

and receiver de-multiplexer components) are used in DEVS/GDDM environment.  

The sender multiplexer gathers the messages outputted from the sender agents 

within a time granule into a large message, which is sent to the receiver de-multiplexer in 
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the other receiver federate. The receiver de-multiplexer separates the large multiplexed 

message to the  small-unmultiplexed messages and distributes the small messages to the 

proper receiver agents. As the number of sender and receiver pairs increases, through this 

multiplexing interest-based quantization scheme, tremendous communication bits can be 

saved. Moreover, by using this multiplexing interest-based quantization scheme, many 

HLA interactions are reduced to only one HLA Interaction. To exchange the message 

between sender and receiver pair in two different federates, one HLA interaction is 

needed. As the number of sender and receiver pairs increases, the number of the HLA 

interactions for the increased pairs also increases if the multiplexing interest-based 

quantization scheme is not used; therefore, the number of the increased HLA interactions 

causes memory and the computation overhead in HLA/RTI communication. By reducing 

the number of HLA interactions, the multiplexing interest-based quantization scheme is 

more effective in a large-scale distributed simulation. 

In order to analyze the performance of the multiplexing interest-based 

quantization scheme, we investigated the ratio of the number of bits needed for the 

multiplexing predictive quantization to the number of bits needed for the non-

multiplexing, non-predictive quantization with the same number of components. The 

analysis is given in Table 8.3 where we consider all six combinations of quantization 

(non-predictive and predictive) and multiplexing (fixed and variable). The fixed and 

variable multiplexing schemes were discussed in chapter 5. 
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Table 8.3 Network bandwidth requirement for quantization and multiplexing 

schemes  

( SOH : the number of overhead bits for a packet (160 bits);  SD: the non-quantized data bit 

size (64*3 bits for double precision real numbers for three dimensions); SQ: the quantized 

and encoded data bit size (5 bits for three dimensions (log2 33   < 5 = SQ ));  SL: the 

encoded data bit size  for sender ID (10 bits for 1000 Npair (log2 1000   < 10 = SQ )); Npair : 

the number of pair components (1000), a: the ratio of active components). 

 
Scheme # bits required for 

Npair 
Ratio to Non-
predictive 
quantization 
for large Npair  

Ratio for 
Npair =1000 
SOH=160 bits 
SD=64*3bits  
SQ= 5 bits 
SL= 10 bits 

Non-predictive quantization aNpair (SOH  + SD)   1   1  
Predictive quantization (non- 
       multiplexed) 

aNpair (SOH  + SQ)   (SOH  + SQ) / 
(SOH  + SD) 

0.46 

Multiplexing 
non-predictive 
quantization  
              

(SOH+Npair(SD+1)) (SD  + 1)  
/ a(SOH +SD) 

0.54/a Fixed 
Multiplexing 

Multiplexing 
predictive 
quantization 

(SOH+Npair(SQ+1)) (SQ+1)  
/ a(SOH +SD) 

0.017/a 

Multiplexing 
non-predictive 
quantization  
              

(SOH+aNpair(SD+SL)) (SD  + SL)   
/ (SOH  + SD) 

0.57 Variable 
Multiplexing 

Multiplexing 
predictive 
quantization 

(SOH+aNpair(SQ+SL)) (SQ  + SL)   
/ (SOH  + SD) 

0.034 

 

The predictive quantization without multiplexing performs 46 (%) reduction in 

network load relative to non-predictive quantization. In the multiplexing non-predictive 

quantiza tion scheme, the reduction (approx. 54(%)/a) is performed by combining the 

actual double value outputs into one message. Greater advantage is obtained from the 
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multiplexing predictive quantization, which combines the encoded data bit size (5 bits for 

three dimensional data of message and 10 bits for sender ID) per component into one 

message. When the fixed multiplexing predictive quantization scheme is used, in order to 

reduce the bit sending ratio below 10 (%), at least 17 (%) active components are required. 

For variable multiplexing predictive quantization, the reduction ratio is 3.4 %. 

 

Table 8.4 Network bandwidth requirement for fixed and variable multiplexing 

schemes with varying  a (a: the ratio of active components) 

 
Scheme Ratio for 

Npair  =1000 
SOH=160 bits 
SD=64*3bits 
SQ= 5 bits 
SL= 10 bits 

a = 0.6 a = 0.5 a = 0.4 a = 0.1 

Multiplexing 
non-
predictive 
quantization  
              

0.54/a > 1.0 > 1.0 > 1.0 > 1.0 Fixed 
Multiplexing 

Multiplexing 
predictive 
quantization 

0.017/a 0.028 0.034 0.0425 0.17 

Multiplexing 
non-
predictive 
quantization  
              

0.57 0.57 0.57 0.57 0.57 Variable 
Multiplexing 

Multiplexing 
predictive 
quantization 

0.034 0.034 0.034 0.034 0.034 

 

In order to compare both fixed and variable multiplexing predictive quantization 

schemes with varying a, Table 8.4 is extended from Table 8.3. Table 8.4 shows the 

effectiveness of both fixed and variable multiplexing with different a value in a specified 
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case of Table 8.3. If a is greater than ac (in Figure 5.13), the fixed multiplexing 

predictive quanitzation is more effective. In this case, ac is 0.5 (
2

1.7* ( 3)
log 1000

D ?
? ) and 

determines the effectiveness of the fixed and variable multiplexing predictive 

quantization schemes.  

 

8.3 Experimentation and Results 

 

8.3.1 The Effect of Predictive Interest-based Quanitzation  Scheme 

 

To evaluate the performance of the predictive filtering approach supported by the 

DEVS/GDDM environment, we developed the projectile/missile system using the 

predictive interest-based quantization scheme. The DEVS predictive integrators were 

used in the system and we performed the predictive interest-based quantization scheme  

by changing the quantum size related to the distance between the missile and its assigned 

projectile. In the basic system, the DTSS integrators are used and the interest-based 

quantization scheme is not used, so that the basic system is considered the standard 

system in which no error occurs. 

To evaluate the performance of the predictive interest-based quantization scheme, 

we developed two federates: projectile and missile. The projectile in the projectile 

federate sends the position update message, which includes the encoded bits (5 bits for 

three dimensions) and HLA packet overhead (160 bits), to the missile. The missile in the 
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missile federate sends the same size data bits as the projectile’s position update message  

data bits to the space manager as Figure 8.7 illustrates.  

This experiment compares the total passed data bits and the error incurred 

between the basic system and the system using the predictive interest-based quantization 

scheme. The error is defined as the difference between the projectile positions in these 

two systems. The total passed data bits indicate the data bits that a missile receives from 

the projectile and that the space manager receives from the missile as Figure 8.7 shows. 

The overhead data bits sent to the space manage are needed to perform for a quantum 

decision operation of the predictive interest-based quantization scheme. Thus, these 

overhead bits were included in the total passed data bits. Figure 8.7 illustrates the total 

passed data bits using the predictive interest-based quantization scheme. 
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Figure 8.7 Data bits passing including the overhead data bits in the system applied 

by the predictive interest-based quantization scheme. 

 

Table 8.5 shows the error trajectory of the system, which uses the predictive 

interest-based quantization scheme, in varying range of the multiplying factors of the 

standard quantum sizes. As the simulation time increases, the error decreases because the 

multiplying factor of the standard quantum sizes decreases. As Table 8.5 shows, while 

the multiplying factor varies from 40 to 1, the error decreases significantly. 
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Table 8.5 Error (%) Trajectory for varying range of multiplying factors of the 

standard quantum sizes 

 
     Simulation           
             Time 
 
Range of 
Multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.16 0.08 0.04 0.05 0.02 
20 ~ 1.0 0.36 0.05 0.11 0.07 0.10 
40 ~ 1.0 1.87 0.40 0.12 0.13 0.10 
 
 

Table 8.6 illustrates ratio trajectory of passed data bits in resulting from different 

ranges of multiplying factors of the standard quantum sizes. The ratio of passed data bits 

is calculated by: 

 

Ratio of passed data bits =   

passed data bits when using the predictive interest-based quantization scheme / 

passed data bits when no quantization is used 

 

As the simulation time increases, the ratio of passed data bits increases because 

the multiplying factor of the standard quantum sizes decreases. In other words, as the 

multiplying factors of the standard quantum sizes increases, the passed data bits decrease 

significantly when using predictive interest-based quantization scheme.  
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Table 8.6 Ratio trajectory of passed data bits for varying range of multiplying 

factors of the standard quantum sizes (predictive interest-based quantization vs. No 

quantization 

 

     Simulation   
             Time 
 
Range of 
multiplying 
factor 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.054 0.056 0.060 0.066 0.082 
20 ~ 1.0 0.033 0.034 0.036 0.039 0.048 
40 ~ 1.0 0.017 0.017 0.018 0.019 0.023 
 
 

8.3.2 The Effect of the Multiplexing Interest-based Quantization Scheme 

 

To evaluate the performance of the multiplexing interest-based quantization 

scheme, we made the non-multiplexing and the multiplexing systems with this 

projectile/missile application. These systems include two federates: projectile and 

missile. Each federate is assigned to a different computer and the experimental computers 

are connected in a LAN environment.  

Figure 8.8 illustrates the non-multiplexing system. The system includes a certain 

number of projectile and missile pairs in the projectile and the missile federates. Each 

projectile model sends its position update message, which includes the encoded five data 

bits (for three dimensions) and HLA packet message overhead (160 bits), to its assigned 

missile. Also, each missile model sends its position update message (same size data bits 

as projectile’s position message data bits) to the space manager in the projectile federate.  
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Figure 8.8 Non-multiplexing system in the projectile/missile application 

 
Figure 8.9 illustrates the component diagram of the multiplexing system. The 

projectile federate includes the multi-projectile component, which contains a certain 

number of the projectiles. The sender multiplexer in the projectile federate gathers the 

messages (including the encoded five data bits) from the projectiles at the same time, 

makes a large multiplexed message, and sends the multiplexed message to the receiver 

de-multiplexer in the missile federate. The receiver de-multiplexer in the missile federate 

separates the multiplexed message into small, unmultiplexed messages and distributes the 

small messages to the proper missiles. The sender multiplexer in the missile federate 

gathers the messages from the missiles at the same time and sends the multiplexed 
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message to the receiver de-multiplexer in the projectile federate. The space manager in 

DEVS/GDDM layer of the projectile federate side receives the missile position update 

messages from the receiver de-multiplexer and directly receives the projectile position 

update messages from the projectiles. 

 

 

 

Figure 8.9 Multiplexing system in the projectile/missile application 

 

In order to evaluate the performance of the multiplexing interest-based 

quantization scheme in the real projectile/missile application, we extracted the results, 

which are based on the analysis of the ratio of the message size needed for the 
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multiplexing predictive quantization to the number of bits needed for the non-

multiplexing quantization at the Table 8.3 in section 8.2.  

In this experimentation of the multiplexing interest-based quantization scheme, 

the boundary crossings within a certain time granule are considered simultaneous. As the 

time granule increases, the error occurred from the time granule increases. We 

investigated the error trajectory with varying time granule, where the multiplying factor 

varies from 10 to 1. 

 
Table 8.7 Error (%) Trajectory with Varying Time Granule (Range of multiplying 

factors (10 ~ 1.0)) 

 

     Simulation        
             Time 
 
Time Granule 

1.0 3.0 5.0 7.0  9.0 

0.01 3.79 4.38 5.87 4.20 4.55 
0.001 0.16 0.27 0.64 0.11 0.13 
0.0005 0.16 0.08 0.08 0.07 0.13 
0.0001 0.16 0.02 0.04 0.05 0.10 
 
 

As Table 8.7 shows, when the time granule is 0.01, the error is large. While the 

time granule is below than 0.001, the error is below 1.0 (%) and is reasonably small 

acceptable error. 

As we discussed in chapter 5, the ratio (a) of active components separates the 

effectiveness of the fixed and variable multiplexing schemes. The ratio (a) of active 

components is dependent on the time granule and the multiplying factor of the standard 

quantum size. We investigated the trajectory of the ratio (a) of active components with 
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varying time granule. As Table 8.8 and Table 8.9 show, as the time granule increases, the 

ratio (a) also increases. As the multiplying factor of the standard quantum size decreases, 

the ratio (a) also increases. 

 
 
Table 8.8 Trajectory of the ratio (a) of active components (Time Granule: 0.001)  

 

     Simulation  
         Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.191 0.208 0.249 0.317 0.409 
20 ~ 1.0 0.133 0.142 0.158 0.201 0.316 
40 ~ 1.0 0.124 0.122 0.125 0.142 0.269 
 
 
Table 8.9 Trajectory of the ratio (a) of active components (Time Granule: 0.0001)  

 

     Simulation  
           Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.116 0.116 0.117 0.117 0.120 
20 ~ 1.0 0.116 0.114 0.116 0.117 0.117 
40 ~ 1.0 0.115 0.113 0.116 0.117 0.117 
 
 

To see the effectiveness of both fixed and variable multiplexing schemes in 

varying the ratio (a) of active components, we calculated the network bandwidth 

requirement (using Table 8.3) of both fixed and variable multiplexing schemes using the 

trajectories of the ratio (a) of active components in Table 8.8 and Table 8.9.  Table 8.10 
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and Table 8.11 show the trajectory of ratio of passed data bits between the fixed and 

variable multiplexing schemes in a varying time granule. The ratio of passed data bits is 

calculated by: 

 
passed data bits when using variable multiplexing 

Ratio of passed data bits
passed data bits when using fixed multiplexing

?  

 

As we discussed in chapter 5, when the component pair number is 80, the ratio 

(ac) of active components needed to separate the effectiveness between fixed and variable 

multiplexing schemes is 0.78. In the projectile/missile application, since the maximum 

value of the ratio (a) of active components is 0.409, the variable multiplexing scheme 

requires less network bandwidth than that of the fixed multiplexing scheme. As the 

multiplying factor increases and the time granule decreases, both the ratio (a) of active 

components and the network bandwidth requirement of the variable multiplexing scheme 

decrease; therefore, the ratio of the passed data bits between variable and fixed 

multiplexing schemes decreases in Table 8.10 and Table 8.11. The decreased ratio of the 

passed data bits indicates that the variable scheme is more effective than the fixed 

multiplexing in Table 8.10 and Table 8.11. 
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Table 8.10 Trajectory of ratio of passed data bits (variable/fixed multiplexing) 

(Time Granule: 0.001, Component pairs: 80)  

 

     Simulation  
           Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.536 0.561 0.623 0.725 0.862 
20 ~ 1.0 0.449 0.463 0.487 0.552 0.724 
40 ~ 1.0 0.430 0.430 0.436 0.461 0.652 
 
 
Table 8.11 Trajectory of ratio of passed data bits (variable/fixed multiplexing) 

(Time Granule: 0.0001, Component pairs: 80)  

 

     Simulation    
          Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.424 0.424 0.425 0.426 0.431 
20 ~ 1.0 0.423 0.419 0.423 0.423 0.426 
40 ~ 1.0 0.422 0.419 0.422 0.423 0.425 
 

Here, we can decide an optimal time granule. As we see in Table 8.7, while the 

time granule is below than 0.001, the error is below 1.0 (%). We consider that an error 

below 1.0 (%) satisfies a reasonable error tolerance. To investigate the variation of the 

network bandwidth requirement in a varying time granule, we provide the trajectory of 

the ratio of the passed data bits between two time granules (0.001 vs 0.0001) in Table 

8.12 and Table 8.13. All ratios of the passed data bits between two time granules (0.001 
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vs 0.0001) are less than 1.0, and less network bandwidth is required when the time 

granule is 0.001 than is  required when the time granule is 0.0001. As the multiplying 

factor of the standard quantum size decreases, the ratio of the passed data bits between 

two time granules (0.001 vs 0.0001) decreases and the difference of the two network 

bandwidth requirements increases. When the fixed multiplexing scheme is used, the 

difference of two network bandwidth requirements (between two time granules (0.001 vs 

0.0001)) increases more than when the variable multiplexing scheme is used. Therefore, 

when the time granule is 0.001, we can save the network bandwidth requirement with a 

reasonable error tolerance using both fixed and variable multiplexing schemes. 

 
Table 8.12 Trajectory of ratio of passed data bits in fixed multiplexing (Time 

granule: 0.001 vs 0.0001) 

 

     Simulation             
           Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.623 0.571 0.501 0.432 0.379 
20 ~ 1.0 0.923 0.803 0.743 0.647 0.551 
40 ~ 1.0 0.951 0.911 0.915 0.842 0.706 
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Table 8.13 Trajectory of ratio of passed data bits in variable multiplexing (Time 

granule: 0.001 vs 0.0001) 

 

     Simulation  
        Time 
 
Range of 
multiplying 
factors 

1.0 3.0 5.0 7.0  9.0 

10 ~ 1.0 0.789 0.754 0.731 0.669 0.639 
20 ~ 1.0 0.978 0.890 0.856 0.800 0.744 
40 ~ 1.0 0.982 0.950 0.959 0.917 0.837 
 

In order to evaluate the actual system execution performance of the multiplexing 

interest-based quantization scheme, we compared the passed data bits and the system 

execution time of a non-predictive quantization system, a predictive quantization system 

and a multiplexing predictive quantization system.  

As Figure 8.10 shows, the multiplexing predictive quantization system greatly 

reduces the passed data bits compared to the non-predictive and predictive quantization 

systems with varying the multiplying factors. As the range of the multiplying factors 

increases, the passed data bits decrease in all systems (e.g. the non-predictive and 

predictive quantization systems and the multiplexing predictive quantization system). The 

multiplexing predictive quantization system greatly reduces the passed data bits more 

than both the non-predictive and predictive quantization systems. Compared to the non-

predictive and predictive quantization systems, the predictive quantization system shows 

more reduction of passed data bits due to the theoretical advantages of predictive 
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quantization (i.e., both the number of messages and their size can be reduced over non-

predictive quanitzation). 

Figure 8.11 illustrates how much the multiplexing predictive quantization system 

saves the system execution time by comparing non-predictive and predictive quantization 

systems. The non-predictive quantization system is a discrete time system and includes a 

lot of local computations based on the system’s use of DTSS integrators. Meanwhile, 

predictive quantization and multiplexing predictive quantization systems are discrete 

event systems which tremendously reduce those local computations since the systems use 

the DEVS integrators. 

The saving of system execution time between the non-predictive quantization 

system and the predictive quantization system demonstrates the effect of the reduction of 

network bandwidth and of the big local computation that the DTSS integrators cause. In 

order to get the result of system execution time, we experimented with Windows NT 

machines connected via a 10 Base T Ethernet network which has less network delay than 

that of WAN. In experimenting in WAN, we expect lowering the system execution time 

by reducing of network bandwidth. The reduction of the system execution time between 

the predictive quantization system and the multiplexing predictive quantization system 

demonstrates the effect of the reduction of network bandwidth in compensating the local 

computation overhead for multiplexing.  
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Figure 8.10 Passed data bits for varying multiplying factors in a non-predictive 

quantization system, a predictive quantization system, and a multiplexing predictive 

quantization system (Component pairs: 40)  
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Figure 8.11 System execution time for varying multiplying factors in a non-

predictive quantization system, a predictive quantization system, and a multiplexing 

predictive quantization system (Component pairs: 40)  

 

Figure 8.12 shows the passed data bits of three systems (a non-predictive 

quantization system, a predictive quantization system, and a multiplexing predictive 

quantization system) for varying numbers of component pairs. As the number of 

component pairs increases, the passed data bits of the non-predictive and predictive 

quantization systems increase significantly, and the multiplexing predictive quantization 

system tremendously reduces the passed data bits. Compared to two non-multiplexing 

systems (non-predictive quantization system and predictive quantization system), the 
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predictive quantization system shows more reduction of the passed data bits than that of 

the non-predictive quanitzation system. 

Figure 8.13 illustrates the variation of the system execution time of the three 

systems in varying the number of component pairs. In the predictive quantization and the 

multiplexing predictive quantization systems, as the number of component pairs increases, 

the system execution time increases slowly and proportionally to the passed data bits. 

However, the system execution time in the non-predictive quantization system increases 

in an exponential manner due to saturation of network transmission. 

 

 

Figure 8.12 Passed data bits for varying numbers of component pairs  in a non-

predictive quantization system, a predictive quantization system, and a multiplexing 

predictive quantization system 
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Figure 8.13 System execution time  for varying numbers of component pairs  in a 

non-predictive quantization system, a predictive quantization system and a 

multiplexing predictive quantization system 

 

The results of the passed data bits and the system execution time in a non-predictive 

quantization system, a predictive quantization system, and a multiplexing predictive 

quantization system show that the multiplexing predictive quantization scheme is very 

effective in saving the inter- federate data and actual system execution time in a 

distributed simulation. 
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9 CONCLUSION 

 

9.1 Contribution 

 

9.1.1 Interest-based Quantization Scheme 

 

Distributed simulation supports many practical application domains, such as 

process control and manufacturing, military command and control, transportation 

management, and so on, that require reliable communication linkage among multiple, 

geographically distributed systems. With a large number of communicating entities in 

such distributed systems, however, execution time of a distributed simulation sharply 

increases due to message exchanges increasing quadratically with the number of 

communicating entities. Both network data load and delay among communicating entities 

determine how large-scale distributed systems can be modeled and simulated in a 

reasonable execution time. Under limited communication resources, reducing message 

traffic among communicating entities is an approach to increase the scalable execution of 

large-scale distributed simulations.  

We investigated message traffic reduction schemes, such as quantization and 

interest management, DDM of HLA, that have been proposed for reliable distributed 

simulation within reasonable execution time. Each message traffic reduction scheme 

requires understanding of the semantic and dynamic characteristics of the application to 
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tune their parameters for effective filtering with acceptable error. The interest-based 

quantization scheme that we proposed in this dissertation, was established by combining 

the quantization scheme and the interest management scheme. This scheme allows for the 

stratification of the degree of interest for a communication-specified attribute and thereby 

controls the update exchange frequency of the attribute based on the time-varying 

distance between communicating entities in distributed simulations. The distance in any 

suitable space, which is not just physical space, controls the size of the quantum 

governing communication of a specified attribute. In contrast, the HLA DDM works the 

only all-or-none interest scheme underlying the HLA routing space. In this sense, the 

interest-based quantization scheme can be viewed as a generalization of the all-or-none 

interest scheme of HLA DDM. 

To support the scalability improvement of the interest-based quantization scheme, 

we presented two approaches: the global space manager approach and the local space 

manager approach. With these two approaches, the workload of agents is efficiently 

balanced and concurrently processed in distributed processors. Therefore, the systems 

that employed these two approaches demonstrated a greater performance in terms of 

saving system communication and computation time than the system that did not use any 

space manager operation. When the two approaches were compared, the local space 

manager approach was shown to reduce system communication and computation more 

than the global space manager approach. This is because, unlike the global space 

manager approach, the local space manager approach reduces the amount of 

communication overhead and solves the problem of computation bottleneck. The 
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analytical and empirical results from the pursuer/evader example in chapter 3 and chapter 

7 demonstrated the effectiveness of the interest-based quantization scheme in reducing 

both message traffic and overall simulation execution time. Those results include the 

inevitable presence of communication and computation overheads for monitoring the 

communication condition for a specified attribute among communicating entities and for 

filtering the messages among communicating entities.   

As a means to discover more efficient approaches of the interest-based 

quantization, we investigated the interest-based predictive quantization and the interest-

based multiplexing predictive quantization approaches, applied those approaches to the 

projectile/missile application with realistic three dimensional dynamics, and analyzed the 

network bandwidth requirement for those approaches. In the interest-based predictive 

quantization approach, the predictive quantization’s advantage for reducing both the 

number of messages and their size is added to the interest-based quantization. As a result, 

the approach greatly reduced network bandwidth within a reasonably small error.  

For simulation with a large number of projectile/missile pairs, we applied the 

multiplexing approach to the interest-based predictive quantization. In order to 

compensate for the disadvantage of the fixed multiplexing approach at low active 

components, the variable multiplexing approach was discussed in this dissertation, and 

the effectiveness for reduction of the network bandwidth requirement of both fixed and 

variable multiplexing approaches was analyzed in varying message dimensions and 

simulated component pairs. In experimenting with the projectile/missile application, we 

investigated the variation of a (ratio of active component) and the effectiveness of both 
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fixed and variable multiplexing in varying quantum sizes and time granules. This 

research on effectiveness of both fixed and variable multiplexing is an improvement over 

the previous multiplexing approach, in which only fixed multiplexing is discussed with a 

fixed time granule and a fixed a (ratio of active component: a=1) [46, 57]. The analytical 

and experimental results from projectile/missile application in chapter 8 showed that the 

multiplexing predictive quantization scheme was very effective in saving the inter-

federate data transmission and actual system execution time in a distributed simulation.  

 

9.1.2 DEVS/GDDM Environment 

 

Both the quantization scheme and the interest management scheme are very 

effective message traffic reduction schemes, especially in a large-scale distributed 

simulation. The DEVS/GDDM environment, provided in this dissertation, uses the 

interest-based quantization scheme to take advantage of both schemes, so that the 

DEVS/GDDM environment gives greater promise for simulation performance. Also, 

since the DEVS/GDDM environment compensates for the disadvantages of DDM of 

HLA mentioned earlier, the DEVS/GDDM environment  points in a good direction for 

modifying DDM of HLA as a means to obtain further message traffic reduction. 

The DEVS/GDDM environment supports a variety of message traffic reduction 

methods (non-predictive interest-based quantization, predictive interest-based 

quantization, and multiplexing interest-based quantization). Thus, a simulation designer 
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can choose from the message reduction schemes provided by DEVS/GDDM environment  

according to the need of each different application. 

The DEVS/GDDM environment is an HLA-compliant modeling and simulation 

environment. While the HLA-Interface layer supports the interoperation at the simulation 

level, the DEVS/GDDM layer supports the modeling level features inherited from DEVS, 

which has a generic dynamic system formalism with a well defined concept of 

modularity and coupling of components. The high level modeling paradigm based on the 

DEVS formalism reduces the level of complexity for a model designer to construct 

models in a hierarchical modular fashion and improves the maintenance, reusability, and 

modifiability of models. The DEVS/GDDM environment is supported by the four 

libraries; container, DEVS, DEVS/HLA-Interface, and HLA-Interface. Through the 

container library, an object can be stored, retrieved, and organized. The DEVS library 

provides methods for the DEVS formalism. The DEVS/HLA-Interface layer supports 

interface methods between the DEVS and the HLA-Interface layers. The HLA-Interface 

layer supplies the simulation-friendly methods, which encapsulates all the complex 

details of HLA connectivity, so that the DEVS/GDDM environment provides the ease 

and effectiveness for modeling to a model developer. In general, to work the HLA/RTI 

based distributed simulation, the model developer has to know and use the HLA/RTI 

functions. In DEVS/GDDM environment, a model developer does not have to know the 

HLA/RTI functions and only develops the DEVS models. 

As we have discussed, the DEVS/GDDM modeling and simulation environment 

employs:  
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-    Sound system theories based on the DEVS formalism 

- Highly efficient message traffic reduction scheme called the interest based quantization 

scheme  

- Reliable distributed simulation with reasonably small error 

- Flexibility for a simulation designer to make a choice out of methods supported by the 

interest-based quantization scheme according to each specific application 

- Ease and effectiveness for modeling from the hierarchical and modular object-

oriented technology and high level modeling paradigm 

- Friendly user interface in which a user develops only DEVS models 

- Encapsulation mechanism to hide all the complex details of HLA connectivity 

from a simulation designer in the HLA-Interface layer 

- Highly reliable interoperation facility among federates using HLA/RTI 

 

9.2 Future Work 

 

9.2.1 Extension of DEVS/GDDM environment for a Non-Paired Application 

 

In future research, the multiplexing predictive quantization scheme of the 

DEVS/GDDM environment can be extended for a non-paired application, in which an 

agent broadcasts its message to all other agents in the same federate or in other federates. 

In this section, we will discuss a prototype of an extended multiplexing predictive 
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quantization scheme in a non-paired application by extending the message’s data format 

and the space manager. 

 

9.2.1.1 Extension of message’s data format  

 

In a non-paired application, multiple quantum sizes are assigned to the multiple 

pairs between a sender and multiple receivers. The sender outputs each message which 

has each data value quantized with a particular quantum size. Therefore, in order to 

perform an extended multiplexing predictive quantization, a message’s data format 

should be extended to include a Quantum ID to represent quantum size. For example, if 

the message includes three dimensional position values, the message’s data format is: 

  

                                                (ID, QID, x, y, z)  

 

where ID is an agent identification number and QID is a quantum size identification 

number.  

 

QID presents what quantum size the data value is quantized with. Using QID, the  

extended multiplexing predictive quantization scheme routes the message (which has a 

certain QID) to the exact receiver specified by the quantum sizes of sender/receiver pairs. 

Figure 9.1 illustrates the message passing between two federates (federate1 and 

federate2) in a non-paired application using the extended message’s data format (ID, QID, 
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x, y, z). The message passing is performed by the sender multiplexer and the receiver de-

multiplexer.  

 

 

Figure 9.1 Message passing between two federates in a Non-Paired Application 
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Figure 9.2 Detailed Description of message passing in a Non-Paired Application 

 

Figure 9.2 illustrates a detailed description of the message passing in a non-paired 

application. An agent sends its messages including double precision values (ID, QID, x, y, 

z) quantized with different quantum sizes to the sender multiplexer. The sender 

multiplexer has three sub-components (converter, encoder, and multiplexer) to pass a 

multiplexed message to the receiver federate. The converter changes the double precision 

values (ID, QID, x, y, z) to integer values (ID, QID, , ,x y zg g g ), where 

? ? , ,1,0,1 x y zg g g? ? , and the encoder changes the integer position values to the 

encoded five bits (SQ = 5 > log 2 33 ; for three dimensions). The encoder also changes the 

agent ID to properly encoded bits (SL), and changes the Quantum ID to properly encoded 
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bits (SM). For example, if the number of quantum sizes is five, three bits (3 > log 2 5) are 

needed to represent a Quantum ID. The multiplexer receives the encoded bits (SL, SM, and  

SQ), creates a large, multiplexed message, and sends it to the receiver federate. The 

receiver de-multiplexer has three sub-components (de-multiplexer, decoder and recover) 

to recover the original double precision values (ID, QID, x, y, z) from the multiplexed 

message. The de-multiplexer separates from the multiplexed message to each encoded 

bits (SL, SM, and SQ). The decoder changes the encoded bits to the integer values (ID, QID, 

, ,x y zg g g ), and the recover component converts these integer values to the original 

double precision values (ID, QID, x, y, z). The receiver de-multiplexer outputs the 

messages, including double precision values (ID, QID, x, y, z), through different output 

ports related to each Quantum ID.  

 

9.2.1.2 Extended Space Manager 
 

To perform the multiplexing predictive quantization scheme in a non-paired 

application, the role of the space manager needs to be extended. The space manger must 

make the exact connections between the output ports (related to each Quantum ID) of the 

receiver de-multiplexer and the input ports of agents in receiver federate. As Figure 9.2 

illustrates, an agent outputs each message which contains each data value quantized with 

each quantum size and each message includes the Quantum ID for presenting its quantum 

size. Each output port of the receiver de-multiplexer is assigned to each Quantum ID and 

a message (which has a certain Quantum ID) should be outputted through the exact 
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output port assigned to the Quantum ID of the message. The space manager has to know 

the quantum sizes pertaining between a sender agent and multiple receiver agents and 

control the connections between each output port (assigned to each quantum size ) of the 

receiver de-multiplexer and the input ports of multiple receiver agents. 

Two approaches related to scalability of space manager operation and their 

comparison with results were discussed in chapter 3 and chapter 7. These approaches are 

based on a centralized global space manager and distributed schemes based on local 

space managers. For a non-paired application, we prefer the distributed approach 

assigning each local space manager in a different federate due to the advantages over the 

centralized approach with the global space manager. The distributed approach reduces the 

computation load because each local space manager controls the connections only for 

those agents within its own federate and the connection computation (to know quantum 

sizes) is divided up and those pieces are assigned to local space managers for concurrent 

processing.  

 

9.2.2 Extension of DEVS/GDDM environment for real-time distributed simulation 

 

This DEVS/GDDM environment and the interest-based quantization scheme can 

be applied to a real- time distributed simulation. This DEVS/GDDM environment can 

help to overcome the time constraint requirements in real-time distributed simulation 

involving humans and/or hardware in the loop. Also, the theoretical and empirical results 

we obtained for global and local versions of the space manager will be tested for 
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scalability in real-time distributed simulation. The point of future work is how to extend 

the DEVS/GDDM environment to a real-time distributed simulation and to real-time 

execution infrastructures. 
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APPENDIX A. SMOOTHER MODEL 

 

The smoother model is developed to connect a DEVS component and a DTSS 

component. The behavior of the smoother model is based on the coupling of DEVS to 

DTSS, which indicates a coupling of an output of a DEVS component to an input of a 

DTSS component. In this coupling, we define the output event value of the DEVS 

component occurred prior to the state transition of the DTSS component as the input 

event at the next state transition of the DTSS component. 

In this dissertation, a DEVS component generates three dimensional output events 

with each variable time advance. A DTSS component receives the three dimensional 

input events from the DEVS component and operates in the same time. The smoother 

model is a connector between the DEVS component and DTSS component and it plays a 

role to reduce error caused by different state time advances between DEVS and DTSS. 

A Parallel DEVS representation [27] for the smoother model follows.  This 

representation is provided using the “Parallel DEVS with Ports” formalism. 

 

DEVSsmoother = < X, Y, S, ?int, ?ext, ?conf, ? , ta >, where 

 

InPorts = {“in1”, “in2”, “in3”} 
OutPorts = {“out”} 
X = {(ini , xi ) | i = 1,2,3, xi ?  R} 
Y = { (“out”, (x1,x2,x3) ) 
S = { “active”, “passive” x Y x R0

+  } 
?
? ext( (“active”,(x1,x2,x3),? ), e,(“ini”,xi’)) = (“active”,( 1, 2, 3x x x ),? -e),? ?
?
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?

?
where ( 1, 2, 3x x x ) = (x1’,x2,x3) if i =1 
                             = (x1,x2’,x3) if i =2 
                             = (x1,x2,x3’) if i =3?
?

?
? int(“passive”,(x1,x2,x3),? ) = (“passive”,(x1,x2,x3), ? )  
? int(“active”,(x1,x2,x3),? ) = (“active”,(x1,x2,x3), ? t)                           
                          
where ? t = time step 
?
? conf(s,ta(s),x) = ? ext(? int(s),0,x) 
?
?  (“active”,(x1,x2,x3),? )  =   (“out”, (x1,x2,x3)) 
 
ta(“active”,(x1,x2,x3),? ) = ?  
ta(“passive”,(x1,x2,x3),? ) = ?  

 

Figure Appendix A.1 illustrates the discrete time segment trajectory given by the parallel 

DEVS representation for the smoother model. 
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Figure Appendix A.1 Discrete Event Time Segments for Smoother model 
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APPENDIX B. PROJECTILE and EARTH MODELS 

 
B.1 Projectile Model 

 

The projectile model is a (relatively) simple model of a sphere of uniform density 

following a ballistic trajectory.  It begins at some initial position with an initial velocity 

and falls until it hits the surface of the Earth, at which point it stops. 

 

B1.1 Formal Description 

 
Inputs 
 
ag(x) – Acceleration due to gravity at our position 
ve(x)  – Inertial velocity of the atmosphere at our position 
p(x) – Atmospheric density at our current position 
 
State variables and outputs 
 
x – Position 
v – Velocity 
a – Acceleration 
 
Parameters  
 
C – Coefficient of drag 
m – mass 
A – cross sectional area 
 
Behavior specification 
 
x’ = v 
v’ = a 
r = v - va(x)   
a = -0.5 C A p(x) |r| r / m + ag(x) 
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B.1.2 Program code for Projectile model 

 
Projectile Model 
 
public class Projectile { 
 
/// Position (m) 
private  VectorD x; 
/// Integrator for variable x 
private  trap_integ xinteg; 
/// Velocity (m/s) 
 private  VectorD v; 
/// Integrator for velocity 
private  trap_integ vinteg; 
/// Acceleration (m/s^2) 
private  VectorD a; 
 
/// Velocity of the atmosphere (m/s) 
private  VectorD va; 
/// Acceleration due to gravity (m/s^2) 
private  VectorD ag; 
/// Density of the atmosphere (kg/m^3) 
private  double p; 
 
/// Mass of the projectile (kilograms) 
private  double m; 
/// Drag coefficient (dimensionless) 
private  double C; 
/// Area of cross section in direction of flight (m^2) 
private  double A; 
 
/** 
Create a projectile with the parameters m (mass in kilgrams), C, (drag coefficient), 
A (cross sectional area in meters) 
and initial conditions x0 (initial position in meters) and v0 (initial velocity in meters/s) 
*/ 
 
public Projectile (double m, double C, double A, VectorD x0,  VectorD v0) { 
   this.m = m; 
   this.C = C; 
   this.A = A; 
   this.x = x0; 
   this.v = v0; 
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   p = 0.0; 
      a = new VectorD(0.001,0,0); 
     va = new VectorD(0.,0,0); 
     ag = new VectorD(0,0,-9.80665); 
     xinteg = new trap_integ(x0); 
     vinteg = new trap_integ(v0); 
} 
 
// Compute a single state change with time advance dt. 
// Convention is internal transition, then external transition. 
/// Compute the next state using timestep dt (i.e. state at time t + dt) 
 
public void delta (double dt) { 
// Compute the position and velocity after dt time units based on acceleration 
// up to current time 
 
x.plus( xinteg.integ (v, dt)); 
v.plus( vinteg.integ (a, dt)); 
 
// Compute acceleration for next state transition 
 
VectorD r = new VectorD(v); 
 r.minus(va); 
//a = (-0.5 * C * A * p * r.mag () * r / m) + ag; 
 r.times(-0.5 * C * A * p * r.mag ()); 
 r.divideBy(m); 
 r.plus(ag); 
 a = r; 
} 
 
/// Set the atmospheric density (apply the p(x) input).  Units are kg/m^3 
public  void setDensity (double p) { this.p = p; } 
/// Set the acceleration due to gravity (apply the ag(x) input).  Units are m/s^2 
public  void setAcclGrav ( VectorD ag) { this.ag = ag; } 
/// Set the atmospheric velocity (apply the va(x) input).  Units are m/s 
public void setAtmoTangVel ( VectorD va) { this.va = va; } 
/// Get the position of the projectile.  Units are meters 
public   VectorD getPos ()  { return x; } 
/// Get the velocity of the projectile.  Units are m/s 
public  VectorD getVel ()  { return v; } 
/// Get the acceleration of the projectile.  Units are m/s^2 
public  VectorD getAccl ()  { return a; } 
 
} 
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public class trap_integ{ 
protected VectorD xlast; 
 
 /// Create an integrator whose intial state is (0,0,0) 
public trap_integ(){ } 
 
/// Create and set the initial state 
public trap_integ (VectorD x0) { this.xlast = x0; } 
 
/// Set the integrators initial state 
 
public void init (VectorD x0) { this.xlast = x0; } 
 
// Single step trapezoidal integration 
 
private double trap (double x, double y, double dt) { 
return (dt * (Math.min (x, y) + Math.abs (x - y) / 2.0)); 
} 
 
public VectorD integ (VectorD x, double dt){ 
VectorD results = new VectorD(); 
results.x = trap (xlast.x, x.x, dt); 
results.y = trap (xlast.y, x.y, dt); 
results.z = trap (xlast.z, x.z, dt); 
xlast = x; 
return results; 
 
} 
} 
 
Acceleration Model 
 
public class instantAccelFn extends Atomic{ 
 
/// Velocity (m/s) 
private VectorD velocity; 
/// Velocity of the atmosphere (m/s) 
private VectorD AtmoTangVel; 
/// Acceleration due to gravity (m/s^2) 
private VectorD accelGravity; 
/// Density of the atmosphere (kg/m^3) 
private double density; 
/// Mass of the projectile (kilograms) 
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private double m; 
/// Drag coefficient (dimensionless) 
private double C; 
/// Area of cross section in direction of flight (m^2) 
private double A; 
// stop projectile when hits ground 
private boolean hitGround = false; 
 
public instantAccelFn(String name, double mm, double CC, double AA){ 
 
super(name); 
inports.add("velocity"); 
inports.add("Gravity"); 
inports.add("AtmoDensity"); 
inports.add("AtmoTangVel"); 
inports.add("hitGround"); 
 
m = mm; 
C = CC; 
A = AA; 
initialize(); 
} 
 
 
public void initialize() { 
accelGravity = new VectorD(0,0,0); 
AtmoTangVel = new VectorD(0,0,0); 
super.initialize(); 
} 
 
public void  deltext(double e, message x) { 
 
Continue(e); 
for (int i=0; i< x.get_length();i++) 
   if (message_on_port(x,"velocity",i)) { 
      entity ent = x.get_val_on_port("velocity",i); 
      velocity  = (VectorD)ent; 
      sigma = 0; 
   } 
   else if (message_on_port(x,"Gravity",i)) { 
      entity ent = x.get_val_on_port("Gravity",i); 
      accelGravity  = (VectorD)ent; 
      sigma = 0; 
   } 
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   else if (message_on_port(x,"AtmoDensity",i)) { 
      entity ent = x.get_val_on_port("AtmoDensity",i); 
      density  = ((doubleEnt)ent).getv(); 
      sigma = 0; 
 
   } 
   else if (message_on_port(x,"AtmoTangVel",i)) { 
      entity ent = x.get_val_on_port("AtmoTangVel",i); 
      AtmoTangVel  = (VectorD)ent; 
      sigma = 0; 
 
   } 
   else if (message_on_port(x,"hitGround",i)) { 
      hitGround = true; 
      sigma = 0; 
   } 
 
} 
 
public void  deltint() { 
 
phase = "hitGround: " + hitGround; 
sigma = INFINITY; 
 
} 
 
public VectorD acceleration() { /// Acceleration (m/s^2) 
 
if (hitGround) return new VectorD(0,0,0); 
VectorD r = new VectorD(velocity); 
r.minus(AtmoTangVel); 
//a = (-0.5 * C * A * p * r.mag () * r / m) + ag; 
r.times(-0.5 * C * A * density * r.mag ()); 
r.divideBy(m); 
r.plus(accelGravity); 
return r; 
 
} 
 
public message out( ) { 
message m = new message(); 
m.add(make_content("out", acceleration())); 
return m; 
} 



 

209

 
} 
 
DEVS Predictive Integrator for Velocity and Position Models 
 
public class DEVSGenInt extends Atomic{ 
 
protected double old_inp,inp,quantum,position,initialPosition; 
protected int lowerBound, nextLowerBound, input_nextLowerBound; 
protected boolean positiveRestriction = false; 
 
 
public DEVSGenInt(String  name, double Quantum, double Position){ 
super(name); 
 
inports.add("in"); 
inports.add("setQuantum"); 
inports.add("stop"); 
 
quantum = Quantum; 
initialPosition = Position; 
initialize(); 
} 
 
public void initialize(){ 
 
     inp = 1; 
     position = initialPosition; 
     super.initialize(); 
     lowerBound = (int)Math.floor(position/quantum); 
     nextLowerBound = lowerBound; 
     hold_in("doReset",0.01); 
} 
 
public int signOf(double x){ 
    if (x == 0) return 0; 
    else if (x > 0) return 1; 
    else return -1; 
} 
 
public void setInp(double buf){ 
    inp = buf; 
} 
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public void timeAdvance(double diff){ 
    sigma = Math.abs(diff/inp); 
} 
 
public void update(double e){ 
 
    position = position + e *inp; 
 
    if ((inp > 0 && position > nextLowerBound*quantum)|| 
             (inp < 0 && position < nextLowerBound*quantum)) 
             { 
               position = nextLowerBound*quantum; 
 //   System.out.println(get_name() + " INPUT VIOLATION"); 
             } 
} 
 
public void computeIntNextPosition(){ 
 
      lowerBound = nextLowerBound; 
      nextLowerBound = lowerBound + signOf(inp); 
      timeAdvance(signOf(inp)*quantum); 
 
      if (inp ==  0) 
         System.out.println(get_name()+ "ERROR: input can't be zero"); 
 
} 
 
public void computeExtNextPosition(){ 
 
      if (inp ==  0) 
           sigma = Double.POSITIVE_INFINITY; 
      else{ 
        if (inp  < 0){ 
            if (nextLowerBound > lowerBound) {  
                nextLowerBound = lowerBound; 
            } 
            if (nextLowerBound < lowerBound) {  
                nextLowerBound = lowerBound-1; 
            } 
 
        } 
 
        else { //if (inp > 0) 
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           if (nextLowerBound > lowerBound) {  
                nextLowerBound = lowerBound+1; 
           } 
           if (nextLowerBound < lowerBound) {  
                nextLowerBound = lowerBound; 
           } 
 
        } 
 
  phase = "" + position; 
 
timeAdvance(nextLowerBound*quantum - position); 
 
      } 
} 
 
public void deltcon(double e,message x) 
{ 
 deltint(); 
 deltext(0,x); 
} 
 
public void  deltext(double e,message   x) 
{ 
  Continue(e); 
 for (int i=0; i< x.get_length();i++) 
  if (message_on_port(x,"in",i)){ 
       entity ent = x.get_val_on_port("in",i); 
       phase = "" + position; 
       doubleEnt f = (doubleEnt)ent; 
       setInp(f.getv() ); 
       update(e); 
       computeExtNextPosition(); 
 
 
    } 
 
 
 for (int i=0; i< x.get_length();i++) 
  if (message_on_port(x,"setQuantum",i)){ 
       entity ent = x.get_val_on_port("setQuantum",i); 
       quantum = ((doubleEnt)ent).getv(); 
 
       lowerBound = (int)Math.floor(position/quantum);  
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       nextLowerBound = lowerBound; 
 
       lowerBound = nextLowerBound; 
       nextLowerBound = lowerBound + signOf(inp);   
 
       update(e); 
       computeExtNextPosition(); 
 
  } 
  else if (message_on_port(x,"stop",i)) 
      passivate(); 
 
} 
 
public void  deltint( ) 
{ 
position = nextLowerBound*quantum; 
phase = "" + position; 
computeIntNextPosition(); 
} 
 
public message    out( ) 
{ 
int N_Quantum = nextLowerBound - lowerBound; 
 
message   m = new message(); 
 
if (N_Quantum != 0) { 
m.add(make_content("out",  new doubleEnt(nextLowerBound*quantum))); 
} 
 
return m; 
} 
 
} 
 

B.2 Earth Model 

 

The earth model consists of three sub-models; an atmospheric model, a gravity 

model, and a motion model.  The atmospheric model uses lookup tables based on the 
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1976 atmospheric modeling standard.  The gravity model is a simple force model based 

on a spherical Earth.  The entire system rotates (i.e. objects attached to the earth and the 

atmosphere have a rotational velocity about  (0,0,0)). 

 

B.2.1 Formal Description 

 
Inputs 
 
x – A point at which to compute values for the system outputs. 
 
Outputs 
 
p(x) – Atmospheric density at position x 
ve(x) – Rotational velocity of the earth at a position x 
va(x) – Rotation velocity of the atmosphere at a position x 
ag(x) – Acceleration due to gravity at position x 
 
Parameters  
 
Re – mean equatorial radius 
w – rotational velocity 
m – gravitational parameter 
 
Behavior specification 
 
ag(x) = -m / |x |3 
 
v = w ?  x 
 
where w is a vector (0, 0, w) and x is a position in the plane of the equator.  That is, x = 

(x, y, 0). In this simple model, we let ve(x) = va(x).  That is, the inertial velocity of the 

atmosphere at a position x is equal to the inertial velocity of a point attached to the earth 

at position x. 
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B.2.2 Program code for Earth model 

 
public class Earth { 
 
public static final double mu = 3.986012E14; 
public static final double w = 7.292115856E-5; 
public static final double R = 6378145; 
 
/// Create the Earth () 
public Earth () { } 
 
/// Compute the atmospheric density (kg/m^3) at position x (m) 
public static double getAtmoDensity (VectorD x) { 
double rho = atmo76.computeRho (x.mag() - R); 
return rho; 
} 
 
//// Compute the acceleration induced by gravity (m/s^2) at position x (m) 
public static VectorD getGravity ( VectorD x) { 
 
// (-mu * x / pow (x.mag (), 3)); 
VectorD X = new VectorD(x); 
X.times(-mu); 
X.divideBy(Math.pow (x.mag (), 3)); 
return X; 
} 
 
/// Compute the tangential velocity (m/s) at position x 
public static VectorD getEarthTangVel (VectorD x) { 
VectorD X= new VectorD(x.x, x.y, 0.0); 
VectorD W = new VectorD(0.0, 0.0, w); 
return W.cross(X); 
} 
 
/// Compute the tangential velocity (m/s) of the atmosphere at position x (m) 
public static VectorD getAtmoTangVel ( VectorD x){ 
return getEarthTangVel (x); 
} 
} 
 
/** 
This class computes properties of the 1976 U.S. Standard Atmosphere 
*/ 
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public class atmo76 { 
 
// sea- level mean molecular weight of air (kg/mol) 
public static final double m0 = 28.9644; 
// acceleration due to gravity (m/s^2) 
public static final double g0 = 9.80665; 
// radius of the Earth (m) 
public static final double r0 = 6356766.0; 
// gas constant (N m K / kmol) 
public static final double rstar = 8314.32; 
 
// This array of constants was not documented in the original listing 
public static final double pb [] = 
   { 101325.0, 22632.06468902076, 5474.889006665066, 
     868.0187719024579, 110.9063215028894, 66.93888345713616, 
     3.956421275130599, 0.3733836885098447 }; 
 
// This array of constants was not documented in the original listing 
public static final double tmb [] = 
   { 288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946 }; 
 
// This array of constants was not documented in the original listing 
public static final double altb [] = 
   { 0.0, 11000.0, 20000.0, 32000.0, 47000.0, 51000.0, 71000.0, 
     84852.0, 91000.0, 110000.0, 120000.0, 1000000.0 }; 
 
// This array of constants was not documented in the original listing 
public static final double lmb [ ] = 
   { -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002 }; 
 
/** 
Compute the atmospheric density at z meters above the Earth's surface. 
i.e. If (0,0,0) is the center of the Earth in your coordinate system, 
the altitude above the Earth's surface is (z - r0) meters. 
Returns density (kg/m^3). 
*/ 
public static double computeRho (double alt) { 
 
// atmospheric density 
double rho = 0.0; 
 
// geopotential altitude above sea level (m) 
double h = r0 * alt / (r0 + alt); 
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int ib = 0; 
 
while ((h > altb[ib+1]) && (ib < 8)) ib++; 
 
// temporary values 
double delalt = 0.0; 
// molecular-scale temperature (K) 
double tm = 0.0; 
// atmospheric pressure 
double p = 0.0; 
 
if (h <= altb[7]) { 
   delalt = Math.max (-5.0, h - altb[ib]); 
   tm = tmb[ib] + lmb[ib]*delalt; 
   if (lmb[ib] == 0.0) p = pb[ib] * Math.exp(-g0*m0*delalt/rstar/tmb[ib]); 
   else p = pb[ib] * Math.pow(tmb[ib]/(tmb[ib] + lmb[ib]*delalt),g0*m0/rstar/lmb[ib]); 
   rho = p*m0/rstar/tm; 
   } 
else if (alt <= altb[8]) { 
   rho = 2.860e-6; 
   } 
else if (alt <= altb[9]) { 
   rho = 9.708e-8; 
   } 
else if (alt <= altb[10]) { 
   rho = 2.222e-8; 
   } 
else if (alt <= altb[11]) { 
   rho = 3.561e-15; 
   } 
else if (alt > altb[11]) { 
   rho = 0.0; 
   } 
 
return rho; 
 
} // end of function computeRho 
 
} // end of class atmo76 
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