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ABSTRACT

There is a rapidly growing demand to model and simulate complex large-scae
distributed systems and to collaboratively share geographically dispersed data assets and
computing resources to perform such distributed simulation with reasonable
communication and computation resources. Interest management schemes have been
studied in the literature. In this dissertation we propose an interest-based quantization
scheme that is created by combining a quantization scheme and an interest management
scheme. We show that this approach provides a superior solution to reduce message
traffic and network data transmission load.

As an environmenta platform for data distribution management, we extended the
DEVSHLA distributed modeling and simulation environment. This environment allows
us to study interest-based quantization schemes in order to achieve effective reduction of
data communication in distributed simulation. In this environment, system modeling is
provided by the DEVS (Discrete Event System Specification) formalism and supports
effective modeling based on hierachical and modular object-oriented technology.
Distributed ssimulation is performed by a highly reliable facility using the HLA (High
Level Architecture). The extended DEVS/HLA environment, called DEVSGDDM
(Generic Data Distribution Management), provides a high level abstraction to specify a
set of interest-based quantization schemes.

This dissertation presents a performance anaysis of centralized and distributed

configurations to study the scalability of the interest-based quantization schemes. These
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results illustrate the advantages of using space-based quantization in reducing both
network load and overall simulation execution time. A real world application, relating to
ballistic missiles simulation demonstrates the operation of the DEVSGDDM
environment. Theoretical and empirical results of the ballistic missiles application show
that the space-based quantization scheme, especially with predictive and multiplexing
extensions, is very effective and scalable due to reduced local computation demands and
extremely favorable communication data reduction with a reasonably small potential for
error. This redlistic case study establishes that the DEVS/GDDM environment can

provide scalable distributed simulation for practical, rea-world applications.
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1 INTRODUCTION

Distributed systems approaches are being applied to a growing variety of systems
including process control and manufacturing, military command and control,
transportation management, and so on. To model and simulate these distributed systems,
the development of a distributed modeling and simulation environment has drawn the
atention of many modeling and simulation researchers [10, 44, 47]. Distributed
simulation is characterized by numerous interactive data exchanges among multiple
smulation entities over a network. Thus, in order to provide a reliable answer in
reasonable time with limited communication and computation resources, a methodol ogy
for reducing the interactive data exchanges is required in a distributed modeling and
simulation environment. In this dissertation, a novel, interest-based quantization scheme
is proposed to promote the effective reduction of data communication in a distributed
simulation environment.

The DEVS/GDDM (Generic Data Distribution Management) modeling and
simulation environment was developed in order to perform complex and large-scale
distributed modeling and simulation with reasonable communication and computation
resources with the interest-based quantization scheme. In the DEVS/GDDM
environment, system modeling is provided by the DEVS (Discrete Event System
Specification) formalism and the distributed ssmulation is performed by the HLA (High
Level Architecture) Interface. The scalability of the interest-based quantization schemeis

investigated in a pursuer/evader example testbed; and through a real application (e.g.
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multiple ballistic missiles), the usefulness of the DEVS/GDDM environment is

demonstrated.

1.1 Modeling formalisms

For discrete event system modeling and simulation, Zeigler [1] provides the
system formalisms and the corresponding system theoretic framework. The provided
system formalisms are the Differentiad Equation System Specification (DESS),
Qualitative System Specification (QSS), the Discrete Time System Specification (DTSS),
and the Discrete Event System Specification (DEVS). Figure 1.1 depicts the System

Specification Formalisms.



18

i Simulator:

Simulator: s
/—\\ Numerical Solvers -~ _‘:‘_,—"\— Pattern Matching
& Integrators : Evaluator
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DESS model: Q5SS model:
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a T Algorithm
..... L N
System \ / System \E /
DTSS model: DEYS model:
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state at next event
DTSS: difference equations DEVS: discrete events

Figure 1.1 System Specification Formalisms

In order to connect these various levels of specification and work across them,
Zeigler [1] suggests a homomorphism concept and develops the DEV'S models related to
the homomorphism concept. A system modeler can develop a valid smplified
homomorphic (lumped) model of a complex (base) model with the homomorphism
concept. While a specified attribute of a base model is mapped to that of a lumped modedl,
the behavior of the lumped model’s attribute mapped to that of the base model is
reflected by the behavior of the attribute of the base model with a certain condition

provided by the homomorphism concept.



19

1.2 Agent-based system

An agent-based system is a working system based on autonomous software and/or
hardware components (agents) that cooperate to perform tasks. The agent-based system
includes agents and environments within an environment. An agent is a System
component with the capability of perception, decision, and mobility. Also, an agent is
autonomous since it has the ability to generate its own goals and the inbuilt desires (or
preferences) determined by the agent system developer. The environment indicates the
computational system which any agent inhabits. An environment can contain a particular
agent and can include other agents whose environments are digointed or partialy
overlapped with it. The desires or goas of the autonomous agent are sensitive to the
current state of both the agent and the environment. An agent can effectively change
states of a given environment or other environments by moving from one part of the
environment to a part of the other environment. For example, if an agent moves a bomb
from one environment to another environment, the topology of both the environments is
thereby changed.

In an agent-based system, effective communication plays a important role. There
are three kinds of communications. environment-to-environment, environment-to-agent,
and agent-to-agent. To perform the communications, an agent generates any output event
and receives any external input. Without the external input event to the autonomous

agent, the agent can produce the output event in response to the autonomous process
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within the agent. When the agent receives the input event, it then changes its states,
desires or goals.

The agent-based system gives great promise in advancing a new technology for
developing complex system which has been blocked by the limitation of current
development tools and methodologies. In this case, the agent-based system is especially
appropriate in applications where independently developed components inter-operate
with each other in a heterogeneous environment (e.g. telecommunications, business
modeling, control of mobile robots, and military smulations [2, 3]). The agent-based
system, which includes many agents within an environment or many environments, is
caled multi-agent system. Generaly, multi-agent system is extremely complex [4], so
that the verification of the multi-agent system is difficult. Simulation plays a key role in
the development of the complex multi-agent system [5, 6, 7, 8]. The use of simulation
facilitates the replication of results in the multi-agent system with a very difficult or
impossible- fielded system.

The main problem of the smulation of multi-agent systems is that the simulation
requires a lot of computation resources. Actualy, each agent is a complex system to
perform its own right (e.g. sensing, planning, movement, and so on), and many agents
investigate the behavior of the other agents and the states of many environments. These
behaviors of the multi-agents system require a lot of computation resources. Therefore,
the solution to limited computation resources is to apply a high degree of parallelismin a

multi-agent system.
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In a recent study, as the network technology to perform the effective data
communication has been advanced, most of the multi-agent system designers or
researchers noticed the multi-agent system distributing the agents over a network of
processors interacting via some various communication protocols. This distributed
simulation of the multi-agent system has the same concept of a high degree of parallelism
in order to reduce the computation resources required.

Meanwhile, a lot of communication resources are aso required to perform the
distributed simulation of a multi-agent system in order to exchange the data among
agents of distributed hosts over a network. Most applications of the multi-agent system
are the network-based applications, and the developer and the researcher of the multi-
agent system have to solve the problem that is caused by a large amount of
communication resources adding a burden to the computation resource shortage problem.
Actually, telecommunications, computer games, and military simulation applications are
typical multi-agent applications which need very interactive data communication over a
network. In the multi-agent system, as the number of agents increases, the message
exchanges among agents distributed in network end-hosts may increase quadratically, so
that the numerous messages over a network cause the problem of scalability of a multi-
agent distributed simulation In this dissertation in order to execute the complex, multi-
agent distributed simulation with reasonable communication and computation resources,

several message traffic reduction schemes are considered.
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1.3 Distributed Simulation and its Environment

The demand for distributed smulation is rapidly growing to support a smulation
of defense and industrial systems that are getting more complex and distributed in their
computational infrastructure. Distributed simulation supports many practical application
domains that require reliable communication linkage among multiple, geographically
separated systems. In addition, through a distributed ssmulation, we can expect to
improve computing power, access more memory, provide high scaability, and lower the
simulation cost. Also, such a distributed simulation can share geographically dispersed
data assets and computing resources collaboratively; thus, it can execute those complex
simulatiors.

To support distributed computing, several software developments for distributed
processes running on machines to interact across a network have been developed. The
software development is called “middieware.” Middleware provides communication
across heterogeneous platforms and performs interoperability based on client/server
architectures. Through the integration of heterogenous platforms, middleware provides
efficient, cost-effective, flexible, and extensive information sharing. Most public
middlewares are the High Level Architecture (HLA) [9, 10] of the Department of
Defense (DoD), the Common Object Request Broker Architecture (CORBA) [11, 12] of
the Object Management Group (OMG), and the Distributed Component Object Model

(DCOM) [13] of the Microsoft company.
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The middleware designed specially for a distributed ssmulation is the HLA. HLA
is a technical architecture for DoD simulations and defines the functional elements,
interfaces, and design rules needed to achieve a proper interaction of simulations in a
federation or among multiple federations. There are two types of communication in HLA:
attribute updating and interaction communication. Attribute updating is communication
between an object in a federate and an object in another federate. Interaction
communication is a nonpersistent and time-stamped communication between two
federates.

HLA also has two major components: the Object Model Template (OMT) and the
RunTime Infrastructure (RTI). The OMT is a format to represent the information
required by the HLA object modd. RTI is a software component of HLA. RTI
coordinates the interactions among the simulations of a federation and performs a basic
mechanism for initializing, directing, and controlling the flow of data exchange among
simulations. RTI provides services commonly required by simulation systems. These
services include time management, ownership, objects, federations, data declaration, and
data distribution. With the standard format of the OMT described by a simulation
developer, RTI performs the attribute and interaction communications across different

platforms.
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1.4 Message Traffic Reduction Scheme

Recently, distributed systems approaches are being noticed for a growing variety
of systems including process control and manufacturing, military command and control,
transportation management, and so on. Such distributed systems are complex and large in
their size. In fact, in order to model and simulate these complex and large-scale
distributed systems, the development of a large-scale distributed modeling and simulation
environment entities has drawn the attention of many modeling and simulation
researchers.

In general, a large-scale distributed simulation requires achievement of real-time
linkage among multiple and geographically distant systems, and thus has to execute
complex large-scale simulation and to share geographically dispersed data assets and
computing resources collaboratively. However, large-scae distributed simulations are
characterized by numerous interactive data exchanges among simulation entities
distributed between computers networked together. In the worst case, each entity
interacts with all the others so that as the number of entities increases (e.g. the message
exchanges may increase quadratically, greatly limiting the scalability of distributed
simulation approaches). The methodology to support the reduction of the interactive
messages among simulation entities is called a “message traffic reduction scheme”. It is
the goal of a message traffic reduction scheme that a large-scale distributed simulation is
performed with reasonable communication and computation resources. To perform a

message traffic reduction scheme reliably, flexibility and efficiency are required.
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Flexibility does not indicate anything specific to any particular problem domain or
technology, but rather indicates being general in nature. Efficiency requires the scaling of
simulations from very small to very large along many dimensions including numbers of
the simulated objects, complexity of interactions, fidelity of representations, and

computational/network resources.

1.5 Quantization Theory

The Quantization theory [14, 15] is based on modeling formalism and system
homomorphisms. As Figure 1.2 illustrates, a continuous trajectory with a finite number of
valuesin a finite time interval is approximated. In order to obtain a discrete time system
approximation, discretization of the time base is needed with a finite time interval. The
finite number of values is then calculated from the partition of the trgjectory into afinite
number of segments (each of which has a finite computation). The partition of the
tragjectory with the finite number of values provides a way to quantize the value space,
which is partitioned in every D interval (quantum), and the time space is partitioned in

every T interval (time interval).
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Figure 1.2 Time discretization and Quantization

In discrete event systems, we sample the time values at every quantum interval
(D), use discrete values with continuous time, and send the quantum levels out after the
sampled time interval. Thisis caled the quantization based on the quantum D.

In a rea application, the state trajectory is represented by the crossings of an
equally spaced set of boundaries separated by the quantum interval (D). Using
guantization, we checks a threshold crossing of output value of a sender whenever an
output event occurs and sends the output value to a recelver only when the threshold
crossing occurs. The effect of quantization is to reduce the number of messages
exchanged between sender and receiver. We can expect to save the communication data
and the computation of the receiver from the reduced messages through the message

reduction. Considered with the scalability of a system, the quantization increases system
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performance in various ways such as decreasing overall execution time or alowing a
larger number of entities to be performed. In chapter 2, the actually realized quantization

scheme is introduced as one of the message traffic reduction schemes.

1.6 Object-oriented Design

Object-orientation technology allows a particular systemto be encapsulated by a
system modeler and provides a common interface of the encapsulated system to the rest
of the whole system. That is abstraction capability of the object-orientation technology.
The DEVSGDDM environment, based on the object-orientation technology and the
DEVS formaism [1], has a portability of models across platforms at a high level of
abstraction Such portability enables a model to be developed and verified in a platform,
and then easily ported across distributed platforms. Because the DEVS formalism is
expressed as a collection of objects and their interactions with the details of the
implementation hidden within the objects, and any DEV S component is shielded from the
environment which provides any services to the DEV'S component.

In the DEVS/GDDM environment based on the DEVS formalism, a system
modeler can build a DEVS model in a hierarchical and modular fashion. Each DEVS
model at a certain level of the DEVS hierarchy can see its one-level lower models and its
one-level upper level models and the coupling among models of upper and lower level is
congidered in its modular fashion The coupling in DEVS formalism alows two DEVS

model (sender and receiver) to be coupled, then delivers a DEVS message from a sender
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to areceiver modd. This high level DEVS modeling provides the maintainability and

reusability of a DEVS model in the DEVS/GDDM environment.

1.7 Dissertation Organization

Chapter 2 presents the discrete event system formalism and reviews existing
message traffic reduction schemes. Chapter 3 presents the space-based quantization
scheme as a more efficient means of message traffic reduction, and discusses the
scalability of space-based quantization schemes in a distributed simulation The
DEVSHLA-Interface is introduced and its functions are illustrated in chapter 4. Chapter
5 introduces the DEVS/GDDM simulation environment which uses the interest-based
quantization scheme and discusses the network load reduction methods supported by this
environment. In chapter 6, the DEV S predictive integrator model is developed as a basis
for the predictive quantization scheme. Chapter 7 and chapter 8 present real world
applications and show how the space-based quantization scheme is applied to these

applications. The conclusion isin chapter 9.



29

2 BACKGROUND

2.1 Discrete Event System Formalism

The discrete event system specification (DEVYS) is a formalism for the discrete
event systems [1]. The DEV S formalism consists of two parts, base and coupled models.
A basic model of astandard DEVSis a structure:

M=<X,SY, ?int ?extsy 2con, 2, t&>
Where
X : set of external input events,
S aset of sequential states;
Y : aset of outputs;
?in: S ? S:internd transition function
%20i:Q?XP ? S:external transition function
XP isaset of bags over elementsin X,
(where ?e(s,6,? ) = (S,€));
20n:S? X" 2 S: confluent transition function;
?2:S7? YP: output function generating external events at the outpui;
ta:S ? Red : time advance function;
WheeQ={(se)|s? S, 0?e?tas) }, and e is the elapsed time since

last state transition
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Two magjor activities involved in coupled models are specifying its component models
and defining the couplings, which create the desired communication links.
DN =<X, Y, D, {M}, {I},{Z;}>
Where
X : set of external input events;
Y : aset of outputs;
D isaset of components names;
foreach | inD,
M, is a component model
l) is the set of influencees for |
foreachjinl,,
Z,jisthel-to-j output translation function
A coupled model contains the following information
- the set of components
- for each component, its influencees
- theset of input ports through which external events are received
- the set of output ports through which external events are sent
- the coupling specification consisting of
- the external input coupling connects the input ports of the coupled to one or more of

the input ports of the components
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- the external output coupling connects the output ports of the components to one or
more of the output ports of the coupled model

- internal coupling connects output ports of components to input ports of other

components

2.2 Message Traffic Reduction Scheme

In this section, we provide an overview of the mgor message traffic reduction
techniques, which are currently used in most entity-based virtua smulations. These
techniques include dead-reckoning, interest management, Data Distribution Management

(DDM) of HLA, and quantization.

2.2.1 Dead-Reckoning Scheme

As a scheme to reduce the number of state update messages, the dead-reckoning
scheme is widely employed in distributed simulations [28, 29]. The state update messages
are exchanged among each simulated entity to maintain the accurate state of the other
remote simulated entities. Each federate maintains accurate information (position,
velocity, acceleration) of its own simulated ertity’s movement with a high fidelity model.
Also, each federate includes the dead-reckoning (inaccurate) models of al simulated
entities including that of its own entity. As the simulation time passes, the states of dead-

reckoning models are updated by working the second-order extrapolation with the last
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updated message. The anticipated position of a simulated dead-reckoning entity is

calculated by the second-order extrapolation below:

X(t2Vt) 2 X (t) 2Vx(t)Vt ? 0.5Ax(t)Mt?
Y (t2Vt) 2 Y(t) ?2Vy(t)\t ? 0.5Ay(t)t?
Z(t?Vt) ? Z(t) ?Vz(t)t ? 0.5Az(t)Wt?

X(t),Y(t),Z(t) are the position coordinates of a smulated entity at time t.
VX(t), W(t),Vz(t) and AXx(t), Ay(Y) , Az(t) are the X, y, z components of the velocity vector
and the acceleration vector a time t and X(t ?W),Y(t ?M),Z(t ?\t) are the new
coordinates predicted at Vit time unit from time t.

When the state of a simulated entity changes, the state of the high fidelity model
of the simulated entity is updated and is compared to the state of the corresponding dead-
reckoning model. If the position/acceleration of the dead-reckoning model of the
simulated entity deviate from the exact position/acceleration of the high fidelity model of
the smulated entity by more than a threshold value, the simulated entity creates a new
message and sends it to the other remote federates. The remote federates which receive
the new message, correct the state of the corresponding dead-reckoning model and begin
the new second-order extrapolation with the new position/acceleration In the dead-
reckoning scheme, reduction of the data issued by dead-reckoning models plays a role of

a message traffic reduction scheme.
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2.2.2 Interest Management

The interest management technique [32] was proposed as a method to avoid
broadcast communication among agents. Generally, the interest management technique is
a message filtering mechanism to enable execution with the reasonable communication
and computation resources in rea-time large-scale simulations. Interest management is
based on interest expression between pairs of sender and receiver agents. The receiver
agent expresses the interest to an attribute of the sender agent and the sender agent sends
the value of the attribute interested to the receiver agent. The interest expression
expresses a subset of al data exchanges of the all attributes of the sender agent. The
expression of an attribute can be changed as the simulation time passes. As the number of
agents and the number of the attributes in the agents increase, the interest expression may
become complicated. A special ertity to manage the interest expression and to enable the
effective data exchange between a sender and a receiver agent pair is caled the “interest
manager”.

Recently, severa interest management techniques has been proposed and studied.
In most application systems, |P multicast addressing [33, 34] is an example of the interest
management technique. A multicast group is an example of the interest expression and is

defined for each message transferred.

2.2.3 Data Distribution Management (DDM) of HLA
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HLA provides the DDM service as an example of the interest management. In the
DDM, the interest expression works with regions in a multi-dimensional parameter space.
The multi-dimensional coordinate system is call the “routing space” and the routing space
is subdivided into a predefined array of fixed sized cells. Each cell is assigned to a
multicast group [36]. The DDM [37, 38, 39] service of HLA constitutes an interest-based
message traffic reduction scheme. This service tries to filter out irrelevant data among
federates. Each federate expresses the interest for the data to be sent and received by
defining publication region and subscription region in the routing space. When a sender’s
publication region overlaps a recelver’'s subscription region, the RTI (RunTime
Infrastructure), an implementation of the HLA specification, establishes network
connectivity between the federates and makes data communication available.
Communication overhead from region change notification due to moving agents
negatively impacts the efficiency of the DDM filtering mechanism [36]. The efficiency is
expressed by comparing the amount of useful data transmission compared to the total

amount of data transmission including region change notifications.

2.2.4 Quantization schemes

Quantization, which is based on the quantization theory [14, 15], is an approach to
distributed logical smulation in which the value space is quantized and trgjectories are
represented by the crossings of a set of thresholds. This is an aternative to the common

approach which discretizes the time base of a continuous tragjectory to obtain a finite



35

number of equally spaced sampled values over time. In distributed simulation, a
guantizer checks for threshold crossings whenever an output event occurs and sends this
value across to a receiver thereby reducing the number of messages exchanged among
federates in a federation. In this section, we introduce three quantization schemes: 1) the
baseline mechanism for quantization, called non-predictive quantization, 2) the more
advanced form of quantization, called predictive qunatization, and 3) an approach to
packaging individual data bits into a large message packet, called multiplexed predictive

guantization

2.24.1 Non-predictive Quantization

As Figure 2.1 illustrates, the nonpredictive quantization [41, 42] applies when a
sender component is updating a receiver component on a numerical, real-valued, state
variable, which is a dynamically changing attribute. In the non-predictive approach, a
guantizer is applied to the sender’'s output, which checks for threshold (boundary)
crossings whenever a change in the variable occurs. Only when such a crossing occurs, a
new value of the variable is sent across the network to the receiver. The non-predictive
guantization reduces the number of messages sent (not their size) and incurs some local

computation at the sender.
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Figure 2.1 Non-Predictive Quantization

2.2.4.2 Predictive Quantization

As Figure 2.2 illustrates, amore efficient form of quantization is predictive
guantization [40, 41, 42], where the sender employs a model to predict the next boundary
crossing and the time this crossing will occur. Since the next boundary crossing is either
one above or one below the last recorded boundary, the sender need not send the full
floating point (double word) value to the receiver, so that it sends a one-bit message at
crossings. The one-bit message represents whether the next higher or next lower
boundary has been reached. In the predictive quantization approach, the main advantage
over non-predictive quantization is that both the number of messages and their size can
be reduced. A second advantage is that discrete event prediction can also greatly reduce
the sender's state transition computation execution time and frequency if simple

predictive models are used.
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Figure 2.2 Predictive Quantization

2.2.4.3 Multiplexing Predictive Quantization

In ssimulations with a large number of entities, there will be many entities assigned
to each federate. As Figure 2.3 illustrates, sender and receiver federates encapsulate a
large number of similar component models. Each of these components has a predictive
guantizer to produce a one-bit output of a variable. Then at each event time, several
components will be crossing their boundaries (a component is called active at a given
event time if it has a boundary crossing at that time). The multiplexer encodes the joint
output of the active components of the sender federate into a single message.

At the receiver federate, the de-multiplexer decodes the multiplexed packet in
inverse fashion weing a set of ghost components in a one-to-one correspondence with the
sending components. There are two types of multiplexing: fixed and variable. Figure 2.3

illustrates the implementation of the fixed multiplexing predictive quantization [46, 57].
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In fixed multiplexing, each pair of bitsis examined. If the first bit of the source indicates
active, then the recelver updates the appropriate variable of the counterpart (ghost) with
the predefined quantum size, and increments the saved value of the tracked variable by
the quantum in the direction (+1/-1) indicated by the second bit. Of course, sending and
receiving federates must know the shared value of the quantum size and be informed of
the new value should it be changed. In variable multiplexing, introduced in this

dissertation, the size of the encoding message is directly related to the number of active

components
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Figure 2.3 Implementation of the fixed multiplexed predictive quantization scheme



Table 2.1 Specialization of multiplexingand quantization schemes
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Predictive Dimension

time instant)

Scheme Non-predictive Predictive

guantization guantization
(send redl value: 64
bit)

Non-multiplexing Non-predictive Predictive

Multiplexing quantization quantization quantization
Dimension (1 message per output
at atime instant))

Multiplexing Multiplexing nort Multiplexing

quantization predictive quantization predictive
(1 message for all quantization

component outputs at a (fixed, variable)

Table 2.1 shows the specidizations of the multiplexing predictive quantization scheme

using multiplexing and predictive quantization dimensions.
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Table 2.2 Network load (bandwidth) requirements for fixed multiplexing and

guantization schemes

(Son : the number of overhead bits for a packet; Sp: the non-quantized data bit size; Npair:

the number of component pairs; a: the ratio of active components)

guantization

Scheme #bitsrequired | Ratio to Non-predictive | Ratio for Npair
for Npair guantization for large =1000
Npajr Son = 160 bits
S =64 bits
Non-predictive quantization a Npair (Son + 1 1
S)
Predictive quantization a Npair (Son + Son+1)/(Sow+S) |0.74
(non- multiplexing) 1)
Fixed multiplexing non (Son +S* S/a(Son + ) 0.28/a
predictive quantization Npair)
Fixed multiplexing predictive (Son +2Npair) | 2/a(Son + S) .0096/a

Table 2.2 analyzes network load requirements for the four combinations of fixed

multiplexing and quantization types. It computes the ratio of the message size needed for

a multiplexed predictive quantization to the number of bits needed for a non multiplexed

guantization with the same number of component pairs Non-multiplexing cases send a

fraction a of (larger) messages at each globa event, while fixed multiplexing cases

always send the same number of bits. From the table, we see that fixed multiplexing has

high potential for data load reduction provided that a is high enough. However, since

activity may not always be very high in arbitrary ssimulations, we introduced the above-

mentioned variable multiplexing approach.
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In this dissertation, we will discuss the influence of variation of a (activity ratio)

in the variable multiplexing and the effectiveness of both fixed and variable multiplexing.
In addition, the relationship between a and atime granule size will also be discussed. The
time granule concept was introduced in [46] to enable boundary crossings within a time

interval to be considered simultaneous.
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3 SPACE-BASED QUANTIZATION SCHEME

3.1 Space-based quantization scheme

The space-based quantization scheme is created by combining the quantization
scheme with an interest management scheme for monitoring the spatial encounters
among agents. In the non-quantized spatial encounter monitoring scheme, there is only
one critical distance to specify the communication relationship between two agents and,
at any time, this holds or does not hold in al-or-none fashion. In contrast, in the space-
based quantization scheme, there can be more than one critical distance between two
agents thus allowing communication in a more tunable fashion. A quantum is assigned to
each distance range created by the critical distances. The quantum size determines the
rule for transferring or discarding messages from sender agent to receiver agent, and this
ruleis caled a*“filtering policy”. Figure 3.1 compares the change of quantum sizes based
on the distance for the conventional spatial monitoring scheme and its space-based
guantization extension. In the conventional approach there are, in effect, two quantum
sizes: zero and infinity, corresponding to regions of interest or non-interest. The extended
approach allows multiple quantum sizes thereby allowing communication frequency to be

controlled as a smoother function of distance, as illustrated in Figure 3.2.
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Figure 3.2 Space-based Quantization Scheme

In this dissertation, although we use the RTI for data communication among
federates, we implement the space-based quantization scheme without using the DDM
routing service of HLA. There are four disadvantages of the DDM in applying the space-
based quantization scheme. First, DDM allows data to be exchanged among federates
only in al-or-none fashion. There is no computation of the degree of overlap between
publication and subscription regions. The second disadvantage, as noted before, is the
large communication overhead required to notify the RTI of aregion update whenever an
agent moves. A third limitation is that the circular-shaped region necessary for the space-
based quartization is not supported directly by RTI. The RTI supports the specification of
only rectangular-shaped regions. To make a circular-shaped region, more complex areas

must be defined by collecting multiple extents within a region. Unfortunately, the use of
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multiple extents has a negative impact on system performance. Alternatively, retaining
the smallest rectangular bounding region of a circular region, one can employ atwo-layer
filtering approach. In this approach, a federate must use additional information to discern
if messages transferred with rectangular-shaped region are applicable or not. This
approach also demands additional computation for the second filtering. The fourth
disadvantage is the fact that many regions are created when multiple agents are assigned
to one federate. A region is associated with one “Interaction” or one attribute of an
“Object” which is used for communication between a pair of agents that respectively
exist in separate federates. As the numbers of agents within federates increase, the
number of regions that need to be created increases quadratically, heavily consuming
local memories of the federates. For these reasons we did not employ the DDM routing
service to implement the communication management data system working with the

space-based quantization scheme.

3.2 Space manager

In the space-based quantization scheme defined here, the space manager provides
filtering of the data communicated among agents. The main objective for using the space
manager is the reduction of the data to be processed by the receiving agents as well as the
data actually sent over the network. The space manager includes a spatia encounter

monitor and a coupling operator. An agent perceives other agents using size and motion
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detectors and decides its direction and speed based on this perception. Figure 3.3

illustrates an object model diagram of space manger and agents.

Space Manager | ‘
\
Coupling Agent
Operator
Size Motion
connection i%ormation deteOtOI dftector
Spatial < position ypdate Movement |
Encounter —
Monitor [

Figure 3.3 Object model diagram of Space Manger and agents

The spatial encounter monitor maintains objects, called “tuples,” to express the
information for pairs of agents required to determine distance and assign new guantum
values. The attributes of a tuple object include agent identities and their positions,
distance between the agents, quantum sizes, connection information, etc. Employing
position updates from agents, the spatial encounter monitor determines the spatial
relationship among agents by calculating their separation distances. Using these spatial
relationships, the spatial encounter monitor determines the connection information among
agents. With this connection information, the coupling operator changes the coupling

specification supported by DEVS modeling. However, unlike conventional schemes, the
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gpace manager does not transmit spatial relationships to agents. Instead, the coupling
operator of the space manager directly performs the filtering operation by adding or
removing the couplings (network connections) among agents. Figure 3.4 illustrates the
coupling operation supported by the DEVS modeling formalism. In Figure 3.4(a), a
coupling exists between the “out” output port of component A and “in” input port of
component B due to the coupling specification shown. In Figure 3.4(b), the coupling
specification of Figure 3.4(a) is removed from the coupling specification. Adding a
connection from the “out” output port of component A to the “in” input port of

component C is performed by a new coupling as illustrated in Figure 3.4(c).

Set of Coupling specification : (a) { ((A,*“out™), (B, “in™))}

& { )
(€ { (A, “out”), (C,"in")) }

ABC ABC
A ot in B Remove AR B
Coupling
C C
() (b)
ABC
A B
out
© _ Add
" C Coupling

Figure 3.4 Coupling operation in DEVS Modeling
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Updating agents positions leads to communication overhead. Deciding
connection information between agents leads to computation overhead. Both
communication and computation overheads influence the performance of data
management using the space manager. However, we will show that the reduction of
communication data and agents local computations made possible by the space manager
can significantly outweigh the communication and computation overheads of the space

manager.

3.3 Scalahility of the space-based quantization scheme

To mode and simulate a large-scale distributed system, we use the DEVS/HLA
distributed ssimulation environment. DEVS/HLA is an HLA-compliant modeling and
simulation environment that supports high-level federation development and execution
using the DEV'S formalism. The formalism provides a well-defined concept of system
modularity and component coupling, which is supported and managed by the
DEVSHLA distributed ssimulation environment. We will discuss this support in more
detail later. A large-scale distributed simulation is implemented in the DEVSHLA
distributed ssimulation environment using severa local computers. Severa federates are
assigned to a local machine. A group of agents is assigned to a federate. In this
dissertation, two approaches to supporting the scalability of the space-based quantization

scheme in a large-scale distributed simulation are introduced. These approaches are
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based on a centralized global space manager and distributed schemes based on local

space managers.

3.3.1 Globa Space Manager

With the global space manager, a fixed group of agents is assigned to each
federate. The global space manager itself resides in a separate federate. All agents send
their position updates to the global space manager over a network. The globa space
manager uses these position updates to determine the connection information among
agents, which it then sends to the agent-holding federates. Each such federate has a
coupling operator that adds or removes the coupling between agents, between federate
input and agent input, and between federate output and agent output using the connection
information from the global space manager. Through this coupling operator, traffic
message filtering among federates and among agents in the same federate is achieved.

With the global space manager approach, there are two kinds of communication
overhead. The first type of overhead results from the position update of each agent to the
globa space manager. The second type of overhead results from the distribution of
connection information, as determined by the global space manager, to each coupling
operator on each federate. Figure 3.5 shows the architecture of the globa space manager
approach with the pursuer/evader model in the DEVS/HLA distributed simulation

environment. The global space manger is assigned to a particular federate. A fixed
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number of pursuer agents is assigned to each pursuer federate and a fixed number of

evader agents is assigned to each evader federate.

Pursuer Pursuer Evader Evader
federate 1 federate N federate 1 federate N
Coupling Coupling Coupling Coupling
Operator Operator Operator Operator
(G Y
Pursuer Pursuer Evader Evader

DEVS/HLA

Global Space
Manager federate

Figure 3.5 Architecture of the Global Space Manager Approach

3.3.2 Loca Space Manager

With the local space manager approach, one local space manager and a number of
agents are assigned to each federate. Each local space manager receives position
information from local agents within the same federate and from external agents in other

federates. It uses the updated positions to determine the connection information, which it
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then employs to directly perform coupling operations in each federate. In contrast with
the global space manager approach, the local space manager does not pass on the
connection information to each federate. Nevertheless, it has a larger communication
overhead than the global space manager approach because the positions of all agents in
each local space manager in each federate must be updated. Figure 3.6 shows the
architecture of the local space manager approach with the pursuer-evader modd in the
DEVSHLA distributed simulation environment. Each local space manager is assigned to
a federate. A number of pursuer agents is assigned to each pursuer federate, and a
number of evader agents is assigned to each evader federate. The load balancing problem
for both the global space manager and local space manager approaches is discussed in

detail in the next section.
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Figure 3.6 Architecture of the Local Space Manager Approach

3.3.3 Load balancing of Global and Loca Space Manager Approaches

A federate and a computer have a limitation of CPU and memory usage. In large-
scale distributed simulation, as the number of agents simulated increases, a certain
number of agents has to be assigned to available federates and available computers. A
computer can include several federates. The number of federates assigned to a computer
depends on available physical and virtual memory of the computer and the computation
load assigned to each federate. A federate can include a certain number of agents. For the

pursuer/evader, we have found that 40 is the maximum number of agents that can be
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assigned to a federate. Table 3.1 shows the load balancing approach used to assign agents
to federates. Each federate includes the same maximum number of agents. As the number
of agents increases, the number of federates almost exponentially increases. In Table 3.1,
a “+1” refers to the global space manager federate. There is a limitation to the load
balancing applied in this approach. The global space manager federate can have a
memory shortage problem since the number of tuples it employs increases quadratically
with the total number of agents. Further its computation of the connection information

and its distribution also increase quadratically as total number of agents increases.

Table 3.1 Load balancing in the Global Space Manager Approach

Total # of Agents 40 80 160 320
# of federates 1 2+1 4+1 8+1
# of Agents 40 40 40 40
in a federate

Table 3.2 shows the load balancing strategy used to assign agents to federates in
the local space manager approach. As the number of agents increases, the number of
agents that can be assigned to each federate decreases. This is so, since the local space
manager on each federate has to handle a quadratically increasing number of tuple
objects. Therefore, a larger number of federates is needed for this approach compared

with the global space manager.



Table 3.2 Load balancing in the Local Space Manager Approach

Total # of Agents 40 80 160 320
# of federates 1 2 8 32
# of Agents 40 40 20 10

in a federate

3.34 Anaysis of message traffic reduction in Global and Local Space Manager

Approaches

We expect both global and local space manager approaches to work well and to
efficiently reduce message traffic in a large-scale distributed simulation. In this section,
we will discuss the advantages and disadvantages of each approach and how they
influence performance. The performance of the two approaches depends on the
communication and computation overhead required to perform message traffic reduction
among agents. There are two types of communication overhead. The first occurs as a
result of position updates from each agent to the space manager. The second type of
overhead results from the distribution of connection information, which is computed by
the space manager, to the coupling operator on each federate. To reduce overhead,
distribution of connection information is performed only when the connection
information changes. The global space manager approach incurs both types of

communication overhead. The first type of communication overhead is relatively small
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because position update messages are transferred to the global space manager in a
separate federate. However, the second type of communication overhead is very large
because messages bearing connection information have to be transferred from the global
space manager to the coupling operator in each federate. In contrast, in the local space
manager approach the second type of communication overhead does not exist. However,
the first type of communication overhead is larger in the local space manager approach
because position update messages must be transmitted to each local space manager in
each federate. Table 3.3 anayzes the message traffic reduction and the conditions under
which we can expect performance improvement in the two approaches. For this analysis,

we assume two conditions as follows:

a. Thereisno communication between pairs of pursuers or evaders.

b. The only communication is messages from pursuers to evaders.

These conditions focus on the inter-federate communication in a distributed
simulation. Accordingly, there is no communication among agents in the same federate
and only pursuer-to-evader inter-federate communication. As Table 3.3 shows, in the
system without a space manager in operation, in a single globa state transition the
number of messages passed is N*(N-1)/2, since a message is broadcast to all other agents
(N is the number of agents). In the systems with space manager, Overdl Filtering Rate
(OFR) and Connection Change Rate (CCR) are the critical factors to influence the

performance in terms of the number of messages passed. Let
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FRS: Filtering Rate at Sender federate

FRR: Filtering Rate at Recelver federate

H: Number of Agentsto which a message does not have to be transferred

OFR is calculated as;

OFR = FRS + FRR (3.1)
Average of OFR = OFR / Number of messages sent (3.2
FRS=H/(N/2), when FRR=0 (3.3
FRR = H / (N/2), when FRS=0 (3.4)

As Equation (3.3) and (3.4) show FRS and FRR cannot simultaneously exist when
a message from a sender is transmitted. If FRS > 0O, then FRR = 0 (and vice verse).
Therefore, in Table 3.3, we use the average of OFR calculated by Equation 3.2) to
calculate the number of messages passed. H varies with three factors -- the number of
agents, the critical distances for ordered pairs of agents, and the spatial distribution of
agents. As the same number of agents is more spatially dispersed with fewer close
encounters (i.e., with a greater “mean free path’) we can expect that the messages
exchange requirements diminish and so H (the number of nonrecepients) increases.

Conversely, under crowded conditions, H decreases. CCR is calculated as:



57
CCR=L/OC=L/N*(1+N/2) (3.5)
Overall Connections (OC)
= Connections corresponding to Filtering at Sender federate
+ Connections corresponding to Filtering at Receiver federate

=N + N?%2=N*(1+ N/2) (3.6)

Overall Connections (OC) is the number of connections changeable and is
calculated by Equation (3.6). OC varies with two factors-- the number of agents, number
of gquantum sizes employed. Equation (3.6) indicates the OC when the number of
guantum sizes are two, such as zero and infinity. L is the number of connections actually
changed and grows with the number of agents (N) and number of quantum sizes because
L is a subset of OC. L mainly depends on a change in quantum size, which requires a

change in coupling in the implementation we discuss here.
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Table 3.3 Analysis of Message Traffic Reduction
(N: Number of Agents, M: Number of Federates, OFR: Overall Filtering Rate, CCR:

Connection Changing Rate)

Approaches Number of messages Coefficient of N as | Condition for

passed N? ? message traffic
reduction

NO

Space Manager | N*(N-1) /2 1/2

Global N + (CCR)* (N)*(1+ N/2) | CCR/2 CCR

Space Manager | + (1-OFR) * N*(N-1)/2 | +(1-OFR)/2 +(1-OFR)<1

Local N* (M-1) As(N/M) ? 2,

Space Manager | + (1-OFR) * N*(N-1)/2 | (1-OFR)/2 (1-OFR)<1

The analysis in Table 3.3 revedls that, especialy for large numbers of agents
encapsulated into federates, we should expect the greatest message reduction to come
from the local space manager approach. Figure 3.7 compares the computation time of the
two approaches. With both approaches, computation overhead is necessary to regulate the
connection information among agents in a space manager. The global space manager has
a larger computation load than that of a local space mareger because it must regulate the
connection information among all agents in al federates. This large computation load
causes a bottleneck problem. While the global space manager calculates the data,
computation of agents within the other federates is delayed and, therefore, the logical
time of the other federates is not advanced. The output operation time required for the

distribution of connection information messages to the other federates exacerbates the
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bottleneck problem. In contrast, when there is alocal space manager in each federate, the
computation load is reduced because each local space manager regulates the connection
information only for those agents within its own federate. With the local space manager
approach, the connection computation is divided up and pieces are assigned to local space
managers for concurrent processing. In addition to the advantage of load partitioning, no
output operation time is required for the distribution of connection information messages

to each federate using the local space manager.

Computation time Output Operation time

for all federates for message distribution
\ | |
ﬁ 0@ /HT\ H
— - - s Computation time of
J | ‘ | | U H Time
(lobal space manager
Hﬂ Computation time of
Time  Local space manager
0 time

Computation time of
Local space manager
in cach federate

00

Figure 3.7 Concurrent processing in the local space manager approach
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4 DEVSHLA-INTERFACE

4.1 HLA-Interface

General purpose object-oriented HLA-Interface was developed at Lockheed
Martin Space Systems Advanced Simulation Center [58]. The HLA-Interface is
complementary to the HLA/RTI, which is the standard DMSO HLA implementation.
This HLA-Interface automates the declaration of HLA classes and the registration of all
HLA objects. It also performsall the calls and callbacks to and from HLA.

Figure 4.1 shows the HLA-Interface layered structure. The HLA-Interface
supports the modeling and simulation of the nonDEV S (general) models as well as the
DEVS models. Non DEVS models directly access the functions of the HLA-Interface
layer and takes a part in a distributed simulation on the HLA-Interface layer. To construct
and smulate DEVS models, the DEVSHLA-Interface layer is provided. The
DEVSHLA-Interface layer wes developed by separating the HLA components out from
the DEV' S components in the DEVS/HLA distributed simulation engine developed at The
University of Arizona. Then the separated HLA components were included into the

HLA-Interface layer.
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DEVS Models

Non DEVS
Models

DEVS/HILA-Interface

HILA-Interface

RTI

Figure4.1 HL A-Interface layered structure

42 DEVSHLA-Interface Environment

In the DEV S/HLA-Interface environment, a developer defines DEVS models in
the DEVS model layer on top of the DEVSHLA-Interface layer. To develop an HLA
federate in the DEVS model layer, the developer creates a specified federate component,
which is the top DEV'S component in each federate. As Figure 4.2 shows, the top DEVS
component in the DEVS model layer can access all methods in the Federate class of the

DEVS/HLA-Interface layer whichis hidden to the DEVS model developer.
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The Federate class of the DEVSHLA-Interface layer supports functions which

allow it to connect to the HLA Federate class in the HLA-Interface layer. The
HLA_Federate class in turn provides services to work a distributed simulation of the
HLA-Interface layer. The HLA-Interface layer is responsible for the inter-federate
communicatiors (RT! interaction and attribute communicatiors) that transfer data to and

from the DEV S/HLA-Interface layer.

Top DEVS component : Top DEVS component : DEVS Model
Federate A Federate B 1 ayer
DEVS/
Federate Federate HLA-Interface layer

HLA-Interface
HLA Federate HLA Federate layer

RTI

Figure 4.2 DEVSHLA-Interface layered modeling
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4.3 RTI communications

The attribute communication and the interaction communication are the two types
of communications by provided the HLA-Interface layer. Figure 4.3 shows how the
attribute communication performs in the DEVSHLA-Interface layer and the HLA-
Interface layer. In the sender federate, the attribute value of the attributelList comporent
in the DEVSHLA-Interface layer is transferred to the Attributelist component in the
HLA-Interface layer and, using the updateAttributeVaues() function, the value is sent to
the RTI executive.

In the receiver federate, using the reflectAttributeVaues() function, the
appropriate callbacks from RTI are automated. To invert the sender’s process, the
received attribute value is transferred from the AttributeList component in the HLA-
Interface layer to the attributeList of DEVS/HLA-Interface layer. For the DEVS time
management in distributed simulation, the attribute communication and the quantizer
component in the DEVS/HLA-Interface layer were used [50, 51]. The quantizer checks
whether the simulation time advance has crossed over a certain time unit or rot. If the
simulation time has crossed, the quantizer sends the time value from the attributelist
component in the DEVSHLA-Interface layer to the Attributelist component in the

HLA-Interface layer.



Sender Federate Receiver Federate
quantizer DEVS/
HLA-Interface
layer

Figure 4.3 Attribute communication in the DEVSHLA-Interface layer and the

HLA-Interface layer

Figure 4.4 illustrates how the interaction communication works in the
DEVSHLA-Interface layer and the HLA-Interface layer. In the sender federate, the
HLA_Interaction Interface component in the DEVSHLA-Interface layer receivesDEVS
messages from DEV S models, extracts the data value from the DEV S message, and sends
the data value to the HLA-Interface layer. In the HLA-Interface layer, with the
SendInteraction() function, the data value from the DEVS message is sent to the RTI

executive. In the receiver federate, the callbacks from RTI are automated with the
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Receivelnteraction() function. Conversely in the sender federate, the received data value
istransferred from the HLA-Interface layer to the DEV S/HLA-Interface layer, in which a
DEV S message with the received data value is created and transferred to the upper layer.
The data communication, among the DEV'S components distributed in federates, works

with this interaction communication.

Sender Federate Receiver Federate

DEVS Model

layer

| !

RTI

HLA-Interface

layer

Figure 4.4 Interaction communication in the DEVSHLA-Interface layer and the

HLA-Interface layer
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4.4 The upgraded DEV S/HLA-Interface Environment

The HLA-Interface developed at Lockheed Martin Space Systems’ Advanced
Simulation Center was implemented with C++. In this dissertation, the HLA-Interface
was integrated to Java using code trandated from the C++ code. Also, the Java-based
DEVS/HLA-Interface environment upgrades the DEV S/HLA-Interface environment in
C++ [58]. The upgraded DEV S/HL A-Interface includes three main differences from the
DEVSHLA-Interface with C++. These differences are user interface, data casting, and

class hierarchy as described next.

441 User Interface

The HLA_Federate class, in the HLA-Interface layer in C++, has the
communication protocol services to define inter-federate communications (interaction
and attribute communications). However, the DEVS model developer cannot access the
communication protocol services of the HLA_Federate class in the HLA-Interface layer.
Therefore the DEVS modd developer uses only the previously defined DEVS/HLA
interaction and attribute communications for distributed simulation. In order to
compensate for the disadvantage of the DEVSHLA-Interface in C++, we alow the
DEVS modd developer to define and to set up the interaction and the attribute
communications in the top DEV S component in the DEVS model layer. Thus, the DEVS

model developer can access the communication protocol functions (for the interaction
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and the attribute communications) in the DEVS mode layer. Thus, the DEVS/HLA-

Interface in Java provides an easier user interface than the DEVS/HLA-Interface in C++.

Figure 4.5 and Figure 4.6 compare the definition and setup of interaction and attribute

communications for the two DEV SHL A-Interface environments.

‘Top DEVS component. DEVS Model

layer

HI.A Federate Hidden to user

Fixed :
Interaction Communications
Attribute Communications

Figure 4.5 The definition and setup of interaction and attribute communicationsin

the DEVSHLA -Interface environment in C++
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Top DEVS component DEVS Mode

layer

DEVS developer can define and add :
Interaction Communications
Attribute Communications

HILA Federate Hidden to user

Figure 4.6 The definition and setup of interaction and attribute communicationsin

the DEVSHLA-I nterface environment in Java

Furthermore, in the DEVS/GDDM environment to be introduced in the next
chapter, the DEVS model developer does not ever have to define interaction and attribute
communications. That is the developer needs only work with DEVS models. The
DEVS/GDDM environment takes the inter-federate connection information from DEVS
models and automatically defines and sets up interaction and attribute communications.
Figure 4.7 illustrates the definition and setup of interaction and attribute communications

in the DEVS/GDDM environment.
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_ DEVS Model

layer
Connection
Information
Hidden to user
DEVS/GDDM

Automatically define and add :
Interaction Communications
Attribute Communications

Figure 4.7 The definition and setup of interaction and attribute communicationsin

the DEVS/GDDM environment

4.4.2 DataCasting

In the DEV'S nodel layer in the sender federate, a sender agent (a DEVS model)
outputs a DEVS message. A DEV'S message includes data values of any type (double,
float, integer, string, etc.). In the HLA-Interface layer in C++, the data value from the
DEVS message is cad into its data type and is sent to RTI for interaction communication.
To do exact by the same data type casting in the HLA-Interface layer, the type of the

received data from the upper layer has to be previously known. Otherwise, an additional
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operation b know the type of received data is needed and thus causes the overhead of
system computation in the HLA-Interface layer. The same problem occurs in the HLA-
Interface layer in the receiver federate. The type of the data value received from RTI
callback function is unknown; therefore the additional operation to know the type of
received data is needed in the HLA-Interface layer in the recelver federate. Figure 4.8
illustrates the data casting necessary to perform the RTI interaction communication in the

DEVSHLA-Interface environment in C++.

Sender Federate Receiver Federate
Data Casting
(String, double, int, etc)
Should know
Data Casting Type

Data Casting
(String, double, int, etc.)

RTI Call RTI Callback

RTI

Figure 4.8 Data casting in the DEVS/HL A-Interface environment in C++
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To fix this data casting problem, Java enabled byte stream data casting is used in
the new HLA-Interface layer. In a sender federate we take any type of data value from a
DEVS message and cast it into the byte stream. The byte stream is then transferred to
RTI using interaction communication.

Figure 4.9 illustrates the data casting of the RTI interaction communication in the
DEV SHLA-Interface environment with Java. At the HLA-Interface layer in the receiver
federate, the byte stream received from the RTI callback function enters into the entity
object. The entity object is a general object that can contain any type of data value of
DEVS messages. The DEV S message, which includes the entity object, is transferred to
the upper layer. A receiver agent (a DEVS model) in the DEVS model layer receives the
DEVS message, which includes the entity object (with byte stream), and casts the byte
stream into the exact data type since both sender and receiver DEVS models know the
exact data type sent and received. Byte stream data casting, in the DEV S/HLA-Interface
environment with Java, provides data transparency between the HLA-Interface layer and

the RTI, and obviates the additional operation for casting the exact data type.
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Sender Federate Receiver Federate
Data Casting
(Byte Stream)
Byte Stream
Data Casting
Data Casting
(Byte Stream)
RTI Call RTI Callback

RTI

Figure 4.9 Data casting in the DEV S/HL A-Interface environment with Java

4.4.3 Datastructure and Container sub-layer class hierarchy

The HLA-Interface layer has its own data structure (e.g., Element, Set, etc.) to
support its class development and the functions of the classes of the HLA-Interface layer.
The DEVS/HLA-Interface layer has a container sub-layer to support the DEV S modeling
[59, 60]. In order to connect the data structure of the HLA-Interface layer to the container
sub-layer of the Java-based DEV S/HLA-Interface layer, we made the top class (Entity
class) of the data structure of the HLA-Interface layer inherit the top class (entity class)

of the container sub-layer of the DEVSHLA-Interface layer. Figure 4.10 illustrates the
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class hierarchy of the data structure and the container sub-layer. Using the polymorphism
in this class hierarchy, classes in the DEVS/HLA-Interface layer or the HLA-Interface

layer can be developed using both the data structure and the container sub-layer.

Cnity
e

Data structures Containers
for HLA-Interface for DEVS/HLA-Interface
(Element, Set. Etc.) (container, set. Ete.)

Figure 4.10 Class hierarchy of the data structure of the HL A-Interfacelayer and the

container sub-layer of the DEVS/HLA-Interface layer

45 Summary of DEV S/HLA-Interface environment

We introduced a general purpose object-oriented HLA-Interface developed at

Lockheed Martin. The HLA-Interface includes the DEVSHLA-Interface environment
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(extended from the DEVS/HLA developed by the University of Arizona) that allows to
model and ssimulate DEV'S models distributed at multiple federates over network. In this
dissertation, we upgraded the Java-based DEV S/HLA-Interface environment from the
DEVSHLA-Interface environment in C++. The upgraded DEVSHLA-Interface
environment provides more useful user interface and efficient implementation (by
changing data casting and class hierarchy).

In next chapter, using the upgraded DEV S/HLA-Interface environment, we will
create the DEVS/GDDM modeling and simulation environment that provides GDDM
(Generic Data Distribution Management) services in distribbed simulation. The
upgraded DEVS/HLA-Interface environment supports the system modeling facility
(based on DEV'S formalism) and the distributed ssimulation facility (using HLA) of the

DEVS/GDDM environment.
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5 DEVSGENERIC DATA DISTRIBUTION MANAGEMENT (GDDM)

ENVIRONMENT

5.1 Motivation

A large-scale, distributed simulation is characterized by numerous interactive data
exchanges among simulation entities dispersed among computers that are networked
together. The development of message traffic reduction schemes to reduce the interactive
messages among Simulation entities has drawn the attention of many researchers as one
means of achieving greater scalability. At present, with increasing demand for distributed
simulation, message traffic reduction schemes for distributed simulation with reasonable
communication and computation resources are needed more and more.

The magor message traffic reduction schemes proposed for improved
communication data management are the quantization scheme and interest management
scheme. The quantzation scheme has two types. nonpredictive and predictive. The
interest management scheme includes the spatial encounter prediction scheme and the
Data Distribution Management (DDM) service of High Level Architecture (HLA).

The Data Distribution Management (DDM) service of HLA tries to filter out
irrdlevant data among federates. However, as mentioned in chapter 3, the DDM of HLA
has several disadvantages, which inhibits applying modeling and smulation to a large of

variety of problems.



76

In this dissertation, we developed the DEVS/GDDM simulation environment that

uses the interest-based quantization scheme (which combines the quantization scheme
and the interest management scheme) and performs the effective message filtering
between senders and receivers. This environment overcomes the disadvantages of DDM
of HLA and performs a distributed ssimulation with reasonable communication and
computation resources. Figure 5.1 illustrates how message filtering between senders and

receivers is supported by the DEVS/GDDM simulation environment.

DEVS/
GDDM

- - 5 Message — & | Recewver
_ Filtering

Figure 5.1 Message Filtering between senders and receivers
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5.2 DEVSGDDM Structure

As Figure 5.2 shows, the DEVS/GDDM environment, implemented as the upper
layer of the DEV S/HLA-Interface layer, supports a portability of models across platforms
at a high level of abstraction. Thus, DEVS models, based on object-oriented design, can
be developed and reused on the DEVS/GDDM layer; and they can easily be ported across
distributed platforms. Figure 5.3 summarizes the roles of each layer in DEVS/GDDM
layered structure. The roles of the DEVS/HLA-Interface and the HLA-Interface layers
were discussed in chepter 4. The only difference is that the DEVSGDDM layer replaces
the roles of the DEVS/HLA-Interface layer (setup of attribute and interaction
communications) and adds DEVS/GDDM component specifications. It also supports

more simple user modeling in the DEV'S model layer.



DEVS Model

DEVS/GDDM

DEVS/HLA-Interface

HLA-Interface

Network

Figure 5.2 DEVS/GDDM layered structure
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Create models DEVS Model
Add models as components Layer
Add coupling

Add GDDM component specification

Create GDDM components DEVS/GDDM
Add couplings Layer

Setup attnbute communication
Setup interaction communication

o DEVS/
Initialize models
Initialize time management parameter HLA-Interface Layer
Create RTI Ambassador HLA-Interface
Create/join Federation Executive Layer

Figure 5.3 Rolesin each layer of the DEVSGDDM layered structure

Communication and data exchange among DEVS components distributed in
multiple federates are supported by the DEVS/GDDM environment. The DEVS/GDDM
layer takes the DEVS coupling information from DEVS models, automatically defines
the HLA interaction communications using this coupling information and performs
HLA/RTI communications. Therefore the DEVS/GDDM environment provides a
friendly user interface, and the developer only defines models on the DEV'S moddl layer.
Figure 5.4 illustrates the HLA interaction communication setting provided by the

DEVS/GDDM environment.



80

TopModel
DEVS Model
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UserModel : federate A UserModel : federate B
Coupling
Information
L 2 DEVS/GDDM Layer

Coordinator federate

li ‘l :Hidden to user

FederateGDDM :Federate A FederateGDDM :Federate B

Automatically define and add:
Interaction Communications

Figure 54 HLA Interaction communication setting in the DEVSGDDM

environment

5.3 DEVS/GDDM Components

To peform the interest-based quantization scheme in the DEVS/GDDM
environment, several components are developed in this dissertation The major
components are initializer, space manager, and message handler.

The initializer allows a model developer to model any application easily. The

initializer gets information from an application model needed to implement the interest-
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based quantization scheme of the DEVS/GDDM environment. This information includes
the number of agents, how they are distributed in the separate federates, and the coupling
information among agents. The initializer creates the other DEVS/GDDM components
(space manager and message handler) and creates the couplings between the user DEVS
model as well as the other DEVS/GDDM components, and the couplings among all
DEVS/GDDM components. Thus, the initializer sets up the message communication
among al DEVSGDDM components and the user mode!.

As Figure 5.4 illustrates, the coordinator federate takes the coupling information
from the DEV'S top model and sends it to the FederateGDDM components in the other
federates. Each FederateGDDM component includes an initalizer component. Using this
coupling information, the initializer creates the HLA interaction communications that are
supported by the DEVS/HLA-Interface layer. Therefore DEVS modeling in the
DEVS/GDDM environment is not different from DEVS modeling in the DEVS/JAVA
[62] or in the DEVS/CORBA [61] environments. This means that the DEVSGDDM
environment provides DEV'S modeling transparency with respect to other DEV S-based
environments.

The space manager is the main component in the DEVSGDDM layer. In order to
work out the proper quantum size to allocate to sender and receiver agent pairs, the space
manager has two sub-components. the tuple and the decisionmaker. The tuwle
component maintains the data for deciding the proper quantum size alocations. This data

is application dependent and may vary during run time.
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In the pursuer/evader model that will be discussed in the chapter 7, the data for
deciding the quantum size are the distances between sender and receiver agents. The
tuple component receives and updates the data for deciding the quantum size from the
agent as it changes its own attributes For example, in the pursuer/evader model,
whenever any agent changes its position, the space manager must collect the updated
position and re-compute the distances between agents Using the updated position of the
tuple component, the decision-maker component determines the exact quantum size for
al sender and receiver pairs. To make this decision, the decison maker component
employs a quantum decision table, which specifies how quantum sizesare related to data
values in the tuple component. Using the quantum decision table, the decision maker
finds the new quantum sizes, and the space manager then sends the new sizes to the
filtering components. These are the message handlers and user model components. Figure
5.5 illustrates the component diagram in DEVSGDDM layer and the data flow among

DEVS/GDDM components.
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Figure 5.5 Component diagram in DEVS/GDDM layer

The message handler collects the output messages from a user model and
distributes the received messages to the proper user models in the other federates. The
DEVS/GDDM environment supports three methods employed by the interest-based
guantization scheme. These are non-predictive, predictive, and multiplexing interest-
based quantization To perform the three methods, the message handlers in the
DEVS/GDDM layer have the functions for performing quantization (non-predictive and
predictive) and multiplexing. The message handler is specialized into several types. non
predictive, sender predictive, receiver predictive, sender multiplexing, and receiver de-

multiplexing. The non-predictive message handler performs nonpredictive quantization.
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The sender predictive and the recelver predictive message handlers perform the
predictive quantization. The sender multiplexing and the receiver de-multiplexing
message handlers are used for the multiplexing. Another role of the message handler isto
reduce the number of, and efficiently utilize the HLA interaction communications. This
role can increase the scalability of DEVSGDDM environment.

Figure 5.6 illustrates the information flow from users and their DEVS models to
the DEVS/GDDM layer. The initializer gets the coupling information from a user model.
The user informs the space manager the quantum decision table, the quantized variables,
and the chosen interest-based quantization method. The message handler also gets the

message type (e.g. message dimensions) from the user.
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Figure 5.6 Information flow from the user and DEVS modelsto DEVS/GDDM layer
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Figure 5.7 illustrates the DEVSGDDM flow of execution.
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Figure 5.7 DEVS/GDDM Flow of Execution

Initializing
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Initializing sets up the environment needed to perform the interest-based

guantization scheme in the DEVS/GDDM environment. In this initializing step, the

couplings among the DEV'S models and the DEVS/GDDM components are created and

the HLA interaction communications are setup between the DEVS/GDDM layers in the

different federates. The space manager then collects the initial information from all

agents needed to decide the initial quantum sizes. For example, it collects the initia

positions of all agents.
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Data Gathering

During simulation, the space manager gathers the data for deciding proper

guantum sizes among sender and receiver pairs.

Deciding Quantum Size

As the data for deciding quantum sizes changes, the decision maker finds the new

guantum sizes from the quantum decision table.

Quantum Size Changed?

The space manager checks whether the current quantum size is different from the
old quantum size. If the quantum size is changed, the flow follows the “YES” direction.
If the quantum size is not changed, the flow follows the “NQO” direction. If there is a

“NO” direction flow, the execution goes back to the Date Gathering.

Filtering Rate Change

When the filtering component for quantization receives the new quantum size
from the space manager, it changes the internal quantum size. Thus, its message filtering

rate is changed and execution goes back to the Date Gathering phase and continues.
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5.5 Interest-based Quantization Schemein DEVS/GDDM

The DEVS/GDDM environment supports three methods performed by the
interest-based quantization scheme. These are nonpredictive, predictive, and

multiplexing interest-based quantization

55.1 Non-predictive Interest-based Quantization Method

The non-predictive interest-based quantization method filters the output messages
of the sender agent by using a non-predictive message handler which includes the
quantizers. The output message from the sender agent can contain multi-dimensional
values (X, Y, ...). For example, if the output message represents the position in space, the
three-dimensional values (X, y, z) are contained within the message. In order for the
guantizer to quantize multi-dimensional values, it has severa types of quantizers related
to the dimensions. Thus, DEVS/GDDM layer includes distinct quantizers that support
quantization of different dimensional messages. Figure 5.8 illustrates the operation of the
non predictive interest-based quantization method.

Recall that order to perform the non predictive interest-based quantization method,
the space manager collects the data from the sender and receiver agents to decide the
guantum size. A certain quantum size is specified for each sender and receiver pair. The
data for deciding the quantum size for each sender and receiver pair depends on each

application. For example, in the pursuer and evader model, the space manager collects the
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positions of the pursuer and the evader and uses the distance between the pursuer and the
evader to decide the quantum size for the pursuer and evader pair. After deciding, the
space manager checks whether the decided quantum size has changed or not. If the
decided quantum size has changed, it is sent to the proper quantizer assigned to the
proper sender agent from the space manager. When the quantizer receives the new

guantum size, it changes to the new quantum size and changes its filtering rate.

DEVS Model Layer
UgerModel
Input |
Non-predictive MessaTs DEVS/GDDM Layer
Message Handler
o (Juantizer
{MMessage Dimension 1)
Space _ (Juantizer
Manager (Message Dimension 2) >
Output
Qubarttum 8 Messages
. @
Siz7e
> Quantizer

(IVessage Dimension IN)

Figure 5.8 Operation of the Non-Predictive | nter est-based Quantization method

5.5.2 Predictive Interest-based Quantization Method
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The predictive interest-based quantization method, based on the predictive
quantization discussed in chapter 2, filters the messages in the sender agent itself. To
perform the predictive interest-based quantization method, a sender agent has a model to
perform the predictive quantization. In this dissertation, the DEV S predictive integrator is
used as the model for the predictive quantization. In the DEV'S predictive integrator, the
next crossing of the boundary is predicted, and the input value and the time step are
variables. In contract, in order to calculate the output value in a simple integrator (such as
a DTSS integrator), the varying input value is multiplied into a fixed time step. Chapter 6
discusses the DEV S predictive integrator in depth. Figure 5.9 illustrates the operation of

the predictive interest-based quantization method.

DEVS Model Layer
UserModel: UserModel:
—»
Federate A Federate B
Sender Predictive Input Receiver Predictiyje
Qulantum | Message Handler | Messages Message Handler
Si7e
Fncoder Decoder
(Message Dimension 1) (Message Dimension 1)
Space Encoder Encoded bits Decoder
(Message Dimension 2)| | — (Message Dimension 2)
Manager
® Output ®
o Messages ]
& @
DEVS/GDDM
Lﬂyer Encoder Decoder
Message Dimension N) Message Dimension N)

Figure 5.9 Operation of the Predictive | nter est-based Quantization method
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In the conventional predictive filtering method, a fixed quantum size is used to
perform the predictive quantization. The predictive interest-based quantization method
allows the space manager to change the quantum size. I n predictive filtering, the message
Sze can be reduced tremendously since both sender and receiver agents know the current
guantum size, therefore, the sender agent sends only —1/+1 value and the receiver agent
generates the origina value of the sender agent using the —1/+1 value and the current
guantum size. Hence, the data bit of the one-dimensiona message is only one bit for a
sender and recelver pair.

The DEVS/GDDM environment supports the communication of the message that
contains the multi-dimensional values. In the DEVSGDDM layer, a sender predictive
message handler sends —1, 0, and +1 values for each dimensionto a receiver predictive
message handler. Note that O is needed since a sender may not have crossed a threshold at
the time of sending the message. As the number of the message dimensions increases, the
number of message aternatives, which are represented with -1, 0, and +1 values, also

increases The number of message aternatives is calculated by:

Number of message aternatives = 3° D=123,...... (# of Dimensions)

For example, when a message has three-dimensioral values, the number of
message aternatives is twenty-seven The twenty-seven message alternatives can be
represented within five bits (5 > log 27). An encoder component in the DEVSGDDM
layer maps a message aternative to a unique bit pattern. In the receiver federate a

decoder inverts the received data bits into the corresponding proper message aternative.
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The DEVS/GDDM layer includes a variety of encoders and decoders that support the

encoding and decoding of the multi-dimensional message alternatives.

5.5.3 Multiplexing Interest-based Quantization M ethod

As the number of sender and receiver pairs in federates increases, the number of
messages communicated among federates increases quite quadratically. The
DEVS/GDDM environment supports the multiplexing interest-based quantization method
to reduce the messages and data exchanged among many sender and receiver pairs. The
multiplexing interest-based quantization method is then extended from the predictive
interest-based quantization method. To perform this multiplexing interest-based
guantization method, the DEVS/GDDM layer has sender multiplexer and receiver de-
multiplexer components.

The sender multiplexer gathers the messages output from the sender agents at the
same event time, encodes the data values from the messages, multiplexes the encoded
bits into a large message, and sends the large message to a receiver de-multiplexer in
some other receiver federates. The receiver de-multiplexer then separates the multiplexed
message to smaller messages (using de-multiplexer), decodes the encoded bits to the
origina data values, and distributes the messages (including the original data values) to
the proper receiver agents. Through this multiplexing method, a large number of data bits
can be saved as the number of sender and receiver pairs increases. Moreover, many HLA

interactions can be reduced to only one HLA interaction. To exchange the message
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between a sender and receiver pair between two different federates, one HLA interaction
is needed. As the number of the sender and receiver pairs increases, the number of the
HLA interactions for the increased pairs also increases. The increased number of the
HLA interactions causes memory and computation overhead in HLA/RTI
communication. By reducing the number of HLA interactions, the multiplexing method
in DEVS/GDDM environment is more effective in a large-scale distributed simulation.
Figure 5.10 illustrates the operation of the multiplexing interest-based quantization

method.

UserModel: UserModel:
Federate A DEVS Model Federate B
ry Layer
Input DEVS/GDDM
Messgges Layer
Quantum i Sender Receiver |
Rk Multiplexer Multiplexer -
Encoder 1
Space Encoder 2 Multiplexed bits |Decoder 2|
e @ Demultipl ]
; emultiplexer
® [Multiplexer Output ®
® Messages @
Encoder N

Figure5.10 Operation of the M ultiplexing I nter est-based Quantization method
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There are two types of multiplexing interest-based quantization methods. fixed

and variable. In fixed multiplexing, the multiplexed message size is constant while in

variable multiplexing the size varies with the number of active senders.

Sender 1

Sender 2

@ ee

Render N

Sender Federate

E S tits Sender

S bits

Receiver Federate

D|
SopsenD)

Fixed Fixed
Receiver
Multiplexer De-Multiplexer S Q/bl“/'
|| Predictive-quantizatign :/
| Sar N ot D) Gjts) |
) - o
o L]
SQ bits
E : Encoder
D : Deceder

Receiver 1

Receiver 2

Receiver N

Figure 5.11 Implementation of the fixed multiplexing using the predictive

guantization

(Son : the number of overhead hits for a packet; Sy: the quantized and encoded data bit
Sze; Npair - the number of pair components; a: the ratio of active components)
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Figure 5.11 illustrates the implementation of the fixed multiplexing using the
predictive quantization. The fixed multiplexer collects the encoded bits and the active bits
from each encoder. The encoded bits are the bits required to represent the message

dimension alternatives. Let S, be the number of the encoded bits. Thenby:

S= P> Iog233 D=123,...... (#of Dimensions).

= 4.7 D9

For example, if a message has three-dimensional values in the predictive
quantization, five bits (log 32 <5 = Sy ) arerequired to represent the message dimension
aternatives. The active bit indicates whether a sender is active @ inactive. An active
sender is one that has a boundary crossing at a given event time and generates an output
event. A receiver de-multiplexer checks the active bit of each sender and sends the
encoded bits of active senders to the respective decoders. Infixed multiplexing, for any
global state transition of a sender federate at any given event time, the network loading is

fixed and calculated by:

Network bandwidth requirement for fixed multiplexing

= Sor+ Noair * (So +1) (bits)

However, the bits assigned for inactive senders can be wasted in fixed

multiplexing. The fixed receiver de-multiplexer knows which sender sends certain
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encoded bits since the bit stream order in the multiplexed bits with fixed size follows a
fixed ordering of the senders. Therefore, the additional bits representing which sender

sends are not needed.

Sender Federate Receiver Federate
Variable Variable
Sender 1 ‘S__Q bits Sender Receiver . "@ Receiver 1
.. Multiplexer De-Multiplexer S bits

a S bitg @ Receiver 2
Sender 2 Q/'

asc%isgzngr Predictive-quantiza tioz;):
Son™( aNpm.r*(SQ+S D) (bits)

® : > °
® H
©
@
©
Sqbifs S g bis
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Sender N E Receiver N
E : Encoder
D : Decoder

Figure 5.12 Implementation of the variable multiplexing using the predictive

guantization

( Son : the number of overhead bits for a packet; Sy: the quantized and encoded data bit
sze; S : the encoded data bit size for sender ID; Npair : the number of pair components,

a: the ratio of active components)

As Figure 5.12 illustrates, in variable multiplexing using predictive quantization,

the variable sender multiplexer only collects the encoded bits from active senders. At a
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given event time, the number of active senders varies and the number of transmitted data
bits is not fixed. Different from fixed multiplexing, additional bits (§ ) are needed to
represent active senders. The number of data bits for an active sender is calculated by
adding the additional bits (Iogx Npair < S) and the encoded bits (S). Usually, a is less
than 1 gnce all senders are not active senders at any given event time. The network

loading for any global state transition of a sender federate using variable multiplexing is.

Network bandwidth requirement using variable multiplexing

= SoH + @* Npair * (&g +§) (bits)

Figure 5.13 illustrates how the network bandwidth requirement in fixed and
variable multiplexing depends on the ratio of active senders. For a low ratio of active
senders, the variable multiplexing requires a small network bandwidth and is more
effective than the fixed multiplexing. However, as the ratio of active senders increases,
the network bandwidth requirement in variable multiplexing also increases, thus, when
there is a high ratio of active senders, the fixed multiplexing is more effective. The
crossover value (a;) represents the ratio of active senders at the intersection point
between the two lines. It separates the effectiveness of the two multiplexing schemes. At
the intersection point, both fixed and variable multiplexing methods have the same
network bandwidth requirement. When a is less than a;, we can say that variable

multiplexing is more effective than fixed multiplexing.
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Figure5.13 Network bandwidth requirement in fixed and variable multiplexing by

varying theratio (a) of active senders
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Table 5.1 shows how the value of a. is dependent on the number of message

dimensions (D) and the number of component pairs.

Table 5.1 Analysisof ratio (ac) of active senders at the inter section point

Scheme # bits required for Npair ac ac
for D=3,
Npair = 80

Fixed Son+ Noair * (S +1) (S +1)
Multiplexing [ (So+9) 0.78
(Predictive

quantization)

Variable Son + @ Npair * (S9+ 9)
Multiplexing
(Predictive

quantization)

When the required network bandwidth needed to perform both fixed and variable

multiplexing schemes is the same, a; is calculated by:

8= (+) /(S +9)

where

S=2.7*D?% D=123,...... (# of Dimensions)
S.= J0Q Nar2
The crossover value, a., approaches

a ? So/s=27D2/ JOQ,Nwmi3

for 1<<Npir ald S <<§
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When D (number of dimensions) is 3 and Npair is 80, ac is 0.78. As Figure 5.13
shows, the high a; indicates that there is a wider range in which variable multiplexing
requires less network bandwidth than that of fixed multiplexing. Figure 5.14 illustrates
how a; varies with the number of message dimensions (D) and the number of component
pairs (Npair). Note that ac increases as D increases, and a. decreases as Npair iNCreases.
Decreasing a indicates that fixed multiplexing acquires a wider effectiveness interval
than variable multiplexing. However, a; changes slowly as varying Npar Since it is
proportional of log Npair . As the number of pairs approaches infinity, fixed multiplexing

isaways preferred.

¢, © Ratio of active senders
for same effectiveness
d, of fixed and variable multiplexing

D : # of Dimensions

D N, ... # of component pairs

pair

10g2Npa.ir

Figure5.14 Variation of a;in varying # of Dimensions and # of Component pairs
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5.6 DEVS/GDDM Class Hierarchy

In implementing the DEVS/GDDM simulation environment on the DEVS/HLA-
Interface layer, we have extensively used the object-orientation property of inheritance
from DEV S object-oriented classes. This inheritance hierarchy is depicted in Figure 5.15.
To redlize the space manager, initializer, and message handler component classes, we
implemented them as extensions of the Atomic class in the DEVS/HAL-Interface layer.
The message handler has different types depending on the non-predictive, predictive
guantization, or multiplexing methods performed in the DEVS/GDDM modeling and
simulation environment. The FederateGDDM class was implemented as an extension of

the Digraph class.
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Figure5.15 DEVSGDDM class hierarchy
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Within the DEVS/GDDM components, several inert or passive components are

characterized (e.g. tuple, distance, decision maker, quantizer, message dimension,

encoder, and decoder). To implement these DEV SGDDM-specific passive components,

we extended the DEV Sentity class to create the needed classes in the same fashion as the

DEVS container class library. Figure 5.16 illustrates the inheritance hierarchy for these

passive DEVSGDDM components.
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Figure5.16 DEVS/GDDM container class hierarchy

5.7 User Interface of DEVS/GDDM
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A developer defines a coupled model which includes all DEVS models smulated

in afederate, and constructs a FederateGDDM component (the top DEV S component in a

federate) containing the user model. Also, the developer defines a top DEVS model as

usual. However, this top DEVS model is not directly used in simulation since it provides

only the couplings among the DEVS models distributed in separate federates to the

DEVS/GDDM environment. Using the coupling information from the top DEV'S mode,

the DEVS/GDDM environment connects the federates together via the HLA interaction
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communication. In subsequent sections, actual examples of the user interface in the
DEVS/GDDM environment are introduced with two models. Projectile/Earth,

Projectile/Missile.

5.7.1 Projectile/Earth model

A projectile model sends its position updates to an earth model. The earth model
then uses the projectile position to calculate three parameters. gravity, atmosphere
velocity, and atmosphere density. The projectile model needs the three parameters to
calculate its next position, so that the three parameters are sent from the earth model to
the projectile model. Figure 5.17 illustrates the passing of these attributes (position,
gravity, atmosphere velocity, and atmosphere density) between the earth and projectile
models, and the implementation codes of the top model of projectile/earth model in
DEVS/GDDM environment. The FederateGDDM component of the projectile federate
includes its own user model, which is the projectiie DEVS component. The

FederateGDDM component of the earth federate includes the earth DEV'S component as

its user model.
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Sample code for a Top Model

Digraph Projectile = new Projectile("Projectile™);

Digraph Earth = new Earth(“Earth");

add(Projectile);

add(Farth);

add_coupling(Projectile,"position™, Earth,"position");
add_coupling(Earth," Gravity“, Projectile, “Gravity");
add_coupling(Earth,“AtmoTangVel “, Projectile, “AtmoTangVel ");
add_coupling(Earth,“AtmoDensity”, Projectile,“AtmoDensity ");

FederateGDDM FederateGDDM
(Earth federate) (Projectile federate)

&

position updates
User model Gravity updates User model

(Earth) (Projectile)

¥

¥

AtmoTangVel updates

hd

AtmoDensity updates

Figure 5.17 Implementation of the Top model of Projectile/Earth mode in the

DEVS/GDDM environment
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position_quantum_table.txt
Sample code for Earth federate Quantum size: 0.1 0.3 0.6 09 10

Distance : 6379145 6380145 6381145 6382145 6383145
x0 = §0,0, 6379145

Digraph usermodel = new Earth("Earth™);
Federate myFederate
=new FederateGDDNM("'FederateEarth™, userModel);

myFederate.add QuantumTable(“p osition”,”position_quantum_table.txt™)
myFederate.addDimension(“p osition”, 3)
myFederate.chooseMethod(“position”,”predictive-quantization”, “non-multiplexing™)
myFederate.iInputInitial(“p osition”, x0);

myFederate.add QuantumT able(“Gravity”,” Gravity_quanitum_table.txt”)

myFederate.addDimension(“Gravity”, 3)
myFederate.chooseMethod(“Gravity”,”non-predictive-quantization™, “non-multiplexing™)

Sample code for Projectile federate

Gravity quantum_table.txt
Digraph usermodel = new Projectile("Proj ectile'"); Quantum size : 0.01 0.03 0.06 0.09 0.1

Federate myFederate Gravity : 1 3 8 o 10

=new FederateGDDM("FederateProjectile’, userivodel);

myFederate.addQuantumT able(“p osition”,”position_quantum_table.txt™)
myFederate.addDimension(*“p osition™, 3)
myFederate.chooseMethod(*“position”,”predictive-quantization”, “non-multiplexing™)

myFederate.inputnitial(“p osition”, x0);

myFederate.add QuantumTable(“ Gravity”,” Gravity_quantum_table.txt™)
myFederate.addDimension(“Gravity”, 3)
myFederate.chooseNethod(“Gravity”,”non-predictive-quantization”, “non-multiplexing”)

Figure 5.18 Implementation of the Projectile and Earth Federates in the

DEVS/GDDM environment

In order to quantize the attributes passed between the projectile and the earth
federates shown in Figure 5.18, a user chooses one of the methods supported by the
DEVS/GDDM environment. The method for quantization includes nonpredictive and
predictive quantizatiors, and the method for multiplexing includes non multiplexing and
multiplexing. Therefore, the user can take one of the four combinations provided from
the quantization and multiplexing methods. In Figure 5.18, considering the position
attribute passed between the projectile and the earth federates, the user chooses the

predictive quantization and non-multiplexing method and provides the information to the
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environment to perform the method. The information includes a position quantum table, a
position dimension, and initia values of position. For the gravity attribute, the user

chooses the non-predictive quantization and non- multiplexing method.

FederateGDDM FederateGDDM
{Earth federate) (Projectile federate)
AtmoTangVel updates v
{(No Quantization)
AtmoDensity updates v
{No Quantization)
Receiver Predictive Sender Predictive
Message Handler Message Handler
x. 3 z) (gx’gy’gz ) Encoded bifs (g":g}’:gz ) Xy 1) . )
Earth (8¢ (=5) hith) Projectile
> Recover |4 | Decoder > Encoder |4 Konver ter] <
(position) (position) (position) (position)

position updates
(Predictive (Quantization)

Non-Predictive
Message Handler
Quantizer .y, 2) -
(Gravity) Gravity updates
(Non-predictive Quantization)

Figure 5.19 Data passing between the Projectile and Earth Federates in the

DEVS/GDDM environment

A sender predictive message handler is used to perform the predictive
guantization and nonmultiplexing method. The sender predictive message handler has

two sub-components (converter and encoder) which make the encoded bits (S: five bits
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for three dimensions (5 > log » 3%)) that are passed to the receiver federate. The converter

maps double precision position values (x, y, z) to integer values ( 9,9, 9,), where

¥?1,0,17? 0x.9,.9,, and the encoder converts the integer values to the encoded five

bits. The receiver predictive message handler has two sub-components (decoder and
recover) which change the encoded five bits to the origina double precision position

values (X, y, z). The decoder changes the encoded five bits into the integer values

(9x.9,.9,), and the recover component changes the integer values ( 9, 9, 9,) to the

original double precision position values (x, y, 2). In order to perform the nonpredictive
guantization and non-multiplexing method for the gravity attribute, the quantizer in the
non-predictive message handler quantizes the gravity values and sends the double
precision gravity values (X, y, z). For the rest of the attributes (atmosphere velocity and
atmosphere velocity), no quantization method is provided. Figure 5.19 illustrates data

passing between the projectile and earth federates in the DEVS/GDDM environment.

5.7.2 Projectile/Missile model

The projectile/missile model shows how the predictive quantization and
multiplexing method performs in the DEVSGDDM environment. In the
projectile/missile model, a projectile sends its position updates to a specified missile (not
another missiles), so that, in order to reduce the data bit for passing the attribute

dependant to projectile/missile pairs, the predictive quantization and multiplexing method



is used. Figure 5.20 and Figure 5.21 illustrates the implementation codes of

projectile/missile model in DEVS/GDDM environment.

Sample code for a Top Model

Digraph Multi-Projectile = new Multi-Projectile(" Multi-Projectile');
Digraph Multi- Missile = new Multi-Missile(“ Multi-Missile™);

add(Multi-Projectile);
add(Multi-Missile);

add_coupling(Multi-Projectile," position", Multi-Missile," position');

FederateGDDM
(Projectile federate)

User model
(Multi-

position updates

FederateGDDM
(Missile federate)

Projectile)

hd

User model
(Multi-
Missile)
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the

Figure 5.20 Top modd codes of Projectile/Missile model in the DEVSGDDM

environment
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Sample code for Projectile federate

Digraph usermodel = new Multi-Projectile('" Multi-Projectile');
Federate myFederate
=new FederateGDDM("FederateProjectile”, userM odel);

» o

myFederate.addQuantumT able(“position”,”position_quantum_table.txt”)

myFederate.addDimension(“position™,3) ;
myFederate.chooseMethod(“position”,”predictive-quantization”, “multiplexing”)
myFederate.chooseNumOfAgent(80) ;

Sample code for Missile federate

Digraph usermodel = new Multi-Missile(" Multi-Missile™);
Federate myFederate

=new FederateGDDM("FederateMissile", userModel);

»

myFederate.addQuantumT able(“position”,”position quantum_table.txt”)
myFederate.addDimension(“position™,3)

) "o

myFederate.chooseMethod(“position”,”predictive-quantization”, “multiplexing™)

myFederate.chooseNumOfAgent(80) ;

Figure5.21 Projectile and Missile Federates' codes of Projectile/Missile model in the

DEVS/GDDM environment

In the implementation of the projectile/missile model, a user models the multi-
projectile model, which includes many projectile models. The user puts the multi-
projectile model as a user model into the FederateGDDM component in the projectile
federate. For the position attribute passed from the projectile federate to the missile
federate, the user chooses the predictive quantization and multiplexing method and
informs the position quantum table, the position dimension, and the number of projectiles

to the DEVS/GDDM environment.
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The message (ID, X, y, z) from each projectile includes the projectile ID with the
three dimensional position values. The sender multiplexer has three sub-components
(converter, encoder, and multiplexer) to pass a multiplexed message to the missile

federate. The converter changes the double precision values (1D, X, vy, 2) to integer values

(ID, 94,9,.9,); and the encoder changes the integer position values to a properly

encoded bits (S: five bits for three dimensions (5 > log 2 3%) and changes the projectile
ID to a properly encoded bits (§ ). For example, if the number of projectiles is eighty,
seven bits (7 > log 2 80) are needed to represent the projectile ID. The multiplexer
receives the encoded bits (So and ), makes a large multiplexed message, and sends it to
the missile federate. The receiver de-multiplexer has three sub-components (de-
multiplexer, decoder and recover) to make the original double precision vaues (1D, X, Y,
z) from the multiplexed message. The de-multiplexer separates from the multiplexed

message to each encoded hits (S and §). The decoder changes the encoded bits (Sp and
S) to the integer values (1D, 9, 9,.9,), and the recover component changes the integer

vaues (ID, 94 9, 9,) to the original double precision values (ID, x, y, z). Figure 5.22

illustrates data passing between the projectile and missile federates in the DEVS/GDDM

environment.
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Figure 5.22 Data passing between the Projectile and Missile Federates in the

DEVS/GDDM environment
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6 DEVSPREDICTIVE INTEGRATOR

A theoretical and empirical study of the advantages of predictive quantization
over nonpredictive quantization is provided in [40, 43]. Usng the predictive
guantization Zeigler p1] developed an example model (DEVS predictive integrator).
The DEVS predictive integrator basically performs, as illustrated in Figure 6.1, linear
extrapolation. The time to the next boundary crossing is the quantum size divided by the
input (derivative). The boundary is predicted either to be one up or one down according
to the sign of the derivative. When an input event is received, the state is updated using
the old input before recalculating the predicted crossing, which provides an important
correction for error reduction. A DEVS predictive integrator accepts DEVS input

segments and produces quantized output.

X
- 2 | I
dY /dT = X

e N t4a) = ((n+1)D-g)/X
D />O
o ’ > X<0
ta(nD) = |D/X]| nD
e’ \ nD
X<0 tq) = (nD-q)/X
(n-1)D

Figure 6.1 DEVS Predictive I ntegrator
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DEV S representation of the DEV S predictive integrator is the following:

M= (XY, S ?ext, ?int, ?, td).
where X=Y=Rand S=R?R? | axd
?7? ?ext ((Qx,n),eX) = (g+x*eXx, n)
?? ?int(9, X, n) = (D + D*sign(x), X, n+ sign(x) )
?7? ?con ((Q.x,n), X) = (D + D*sign(x), X', n+ sign(x))
?? ?(9,X) = nD + D*sign(x)
?? ta(gx,n) = ((n+1)D -q)/x, if x>0and (n+1)D-gq>0
= (nD - g)/x, if x<O0and nD-q <0
= |D/x| if x?® and none of the above

= ? 7therwise (i.e., x = 0)

As Figure 6.1 illustrates, if we are on a boundary, the time advance computation
merely divides D by the current input x (the derivative or slope). If we reach the upper
boundary (n+1)D or lower boundary (n —1)D, we output and update the state accordingly.
As long as the input remains the same, the time to cross the successive boundaries

((n+1)D or (n-1)D ) will be the same. When a new input is received, we update the state
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using the old input and the elapsed time. From this new state (q), the new time to reach

either the upper or lower boundary is computed.

6.1 DEVSRepresentation with Hysteresis of DEV S Predictive Integrator

The necessity of hysteresis in a Quantized-State System (QSS) is presented by
Kofman [56]. Without hysteresis of the quantized variable, a QSS can perform an infinite
number of state transitions at the same time or within a finite time interval. At first
glance, the DEV'S predictive integrator does not include hysteresis and might suffer from
the problem of an infinite number of transitions in a finite interval, called illegitimacy
[27]. Actually, the DEV'S predictive integrator developed by Zeigler [43, 51] includes the
hysteresis properties discussed by Kofman. In this section, we express the hysteresis
within the DEVS formalism. The operation of the DEVS predictive integrator with

DEV S representation including the hysteresis is the following:

M= (X! Y, S ?ext, ?int, ?Con,?! ta)

whee X = Y= R and S= R?R?I, atypica state (g, x, n) ? S represents the
integrator state, g, stored input x, and multiple of quantum, n.

?7? ?ext ((g.x,N),eX) = (g+x*ex, n)

?? ?int(9, x, n) = (nD + D*sign(x), x, n+ sign(x) )
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?? ?con ((g.x,n), X') = (D + D*sign(x), X', n+ sign(x))

?7? ?(g,X) = nD + D*sign(x)

?? ta(g, nD,x,n) = (n+1)D - g)/x, if x>0and q> nD
(nD - g)/x, if x>0ad g< nD

D /x, if x>0and g=nD

= (q-nD)/x, if x<0and gq>nD
= (q-(n-1)D)/x, if x<O0and g< nD
= | ?/Kx], if x<0and q=nD

= ? 7therwise (i.e., x = 0)



ta(q) = ( (n+1)D-q J’X

(m+1)D |
nD
ta(q)=(q - nD)
g
{n-1)D
tainD)= & /X

(&) when increasing state direction
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ta(nD) = D /X

{n+1)D

=
o
\ a(@)=(nD-q)/X
q
D /

X=0

¥

(n-1)D

ta(q) = (q - (n-1)D }/X

(b) when decreasing state direction

Figure 6.2 Operation of the DEVS Predictive Integrator with Hysteresis

In Figure 6.2, nD indicates the current state boundary since n is the index of a

current boundary and D is a certain quantum size. Here, (n-1)D and (n+1)D indicate next

state boundaries reached from the current state (nD); and ? indicates the width of the

hysteresis window and is the same as the quantum size (D).

In implementation, in order to indicate the direction of the state transition, we

used lowerBound and nextLowerBound variables. The lowerBound (n) is the boundary

index of the current state (nD) and the nextLowerBound (n-1 or n+1) is the boundary

index of the next state ((t1)D or (n+1)D). The values of lowerBound and
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nextLowerBound variables indicate the direction of state transition. For example, when
lowerBound is 1 and nextLowerBound is 2, the direction of state transition increases.
When lowerBound is 2 and nextLowerBound is 1, the direction of state transition
decreases.

Hysteresis is used when the DEVS predictive integrator receives decreasing
derivative as its input (e.g. input vaue is less than zero (X<0)) in increasing state
direction. As Figure 6.2(a) illustrates, in order to process an input of decreasing
derivative with hysteresis when the state transition direction is increasing, there are two
operations for changing the direction of the state transition: The first is to make
nextLowerBound the same as lowerBound; and the second is to assign nextLowerBound
for indicating the new direction (decreasing state direction from decreasing derivative)
and to calculate the next state value (by subtracting the width of the hysteresis window
(?) from the current state boundary value (nD)). These two operations are performed at
the same time and the changed lowerBound and nextLowerBound indicate the new
direction of state transition. The output value of the DEV S predictive integrator is related
to the new direction of state transition and is calculated by multiplying the changed
nextLowerBound and the quantum (D). Figure 6.2(b) illustrates the operation of the
DEVS predictive integrator when it receives increasing or decreasing derivative as its
input in decreasing state direction, and the DEVS predictive integrator does not

hysteresis.
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6.2 Kofman's DEVS Predictive Integrator with Hysteresis

Using hysteresis, Kofman modified the DEV'S predictive integrator developed by
Zeigler [43]. In this dissertation, we modeled the Kofman's DEVS integrator [56] using

the DEVS formalism. The operation of the Kofman's DEVS integrator with DEVS

representation including hysteresis is the following:

The DEV S representation is the following:
M= (XY, S ?ext, ?int,?, ta).
whee X=Y=Rand S=R?R? | ad
?7? ?ext ((Qx,N),eX) = (g+x*e X, n)

7? Olnt(q1 X, n) = (q,’ X, n+ S|gn(x) )

where
g = (n+1)D,ifx>0

nD-"?, if x<0

?? ?(9,X) = nD + D*sign(x)

?7? ta(g,nD,x,n) = ((n+1)D - g)/x, if x>0

(q—(nD - 7))/,

=?

if x<O

therwise (i.e., x = 0)




ta(q) = ( (n+1)D-q )X

{nt1)D f

(&) when increasing derivative
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(n+t1)D

\
Ao

ta(q) = (q-(nD - £))/|X|

(b) when decreasing derivative

Figure 6.3 Operation of Kofman'sDEVS I ntegrator with Hysteresis

Figure 6.3 illustrates how the Kofman's DEV'S integrator uses the hysteresis. Like

in the origina DEV'S predictive integrator, the hysteresis is used when the Kofmari's

DEVS integrator has decreasing derivative as its input (e.g. input value is less than zero

(X<0)). In the implementation of the Kofman's DEVS integrator, we use the

Actua_index (n) which indicates the boundary index of current state (nD). Without

indicating the direction of state transition, the Actua_index only indicates the current

state boundary.
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As Figure 6.3(b) illustrates, the Kofmaris DEV'S integrator receives an input of
decreasing derivative and uses the hysteresis to calculate the next state value by
subtracting the width of the hysteresis window (?) from the current state value (nD).
Unlike the origina DEV S predictive integrator, the Kofman's DEVS integrator does not
consider the direction of state transition; thus it needs only one operation for calculating
the next state value and the time advance value for next event with the hysteresis. The
next state value and the next time advance value of Kofmaris DEVS integrator are only
related to the current input value. If the current input value is greater than zero, the
Actua_index is increased by one. If the current input value is less than zero, the
Actual_index is decreased by one. The output value is calculated by multiplying the
increased or decreased Actual_index and the quantum (D). Figure 6.3(a) illustrates the
operation of Kofmaris DEV'S integrator when it receives increasing derivative as its

input, and Kofman's DEV'S integrator does not hysteress.

6.3 Experimentationand Results

In order to illustrate the qualities of the DEVS predictive integrator with
hysteresis, we chose a second order stiff systemas a simulation example. The stiff system
includes at least one integrator that frequently changes the direction of the state transition.
Since hysteresis is only used when the direction of the state transition of a quantized

variable changes, the stiff system is the proper example needed to show the operation of
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the DEVS predictive integrator with hysteresis. The second order siff system is

represented:

: 1
Xl?EXZ
' 1 R

1
y?IX2

whereL is0.01, U is100, C is0.01, and Ris 100.

The analytical solution of the second order stiff system is below:

10000 (e’?t " ?10000'[)

t)?
ye) 9999

(6.1)

(6.2)

The error from this ssmulation was evaluated by comparing the simulation results

to the analytical solution of (6.2).
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Figure 6.4 Component Diagram of Second Order Stiff System
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To smulate the second order stiff system, we modeled the DEVS components:

DEVS predictive integrator, adder, and transducer. The second order stiff system includes

two DEVS predictive integrators, which generate x; and x». The DEVS predictive

integrator is modeled by the DEVS predictive integrator representation in section 6.1.

Also, we modeled the second order stiff system, which uses the Kofman's DEVS

integrators modeled from the DEV S representations of section 6.2. The adder component

collects the output values from the two integrators (which generates x; and x2) and makes

the derivative for the integrator that outputs y,. The transducer component gathers the

output values of the second order stiff system and shows occurred error. Figure 6.5 shows



124

the simulation result of the second order stiff system using the DEVS predictive

integrators.

1.0

0.8

0.6

Output

0.4

0.2 7

0.0
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0 1 2 3 4 5 6
Simulation Time

Figure 6.5 Output trajectory of the second order stiff systemusing the DEVS
Predictive Integrators

In order to \alidate the second order stiff system using the DEVS Predictive
Integrators, we investigated the error tragjectory between the value from the stiff system
simulation and the exact value of y(t) in (6.2). Figure 6.6 shows the error trajectory of the
second order stiff systemusing DEV S Predictive Integrators. The greatest error was less

than 102, or 1.0 (%) of maximum value. After the simulation time is 3.498976, the state
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vaueof the integrator that outputs X, is below its quantum size (10%); therefore, the error

is bounded within 10 , which is calculated by:
y? % X,?10%

whereL is0.01.

0.010

0.008

0.006

Error

0.004

0.002

0.000

T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 35
Simulation Time

Figure 6.6 Error trajectory of the second order stiff systemusing the DEVS
Predictive I ntegrators (Quantum sizes- X1: 102, X2: 10%)

In order to compare the quality between the DEV'S predictive integrator and the
Koffman's integrator, we checked the error of the simulation time when the value of y(t)
in (6.2) was equa to 1.000 (exact value). Figure 6.7 illustrates the error check point to

check the error of the simulation time, which is computed as:
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Error = tapp —9.210*

where typ : approximated time to exact time (9.2* 10 ) for varying quantum sizes.

¥

r Check Point
1.0 ——

10000 : 10000t

y(t)zw(e_ e )

0.0 t=92*10* 10.0

Figure6.7 Error Check Point in Second Order Stiff System

In simulation, the hysteresis value (?) Is equa to the quantum size (D). Figure
6.8 illustrates the errors from the DEVS predictive integrator and from the Kofmaris
DEVS integrator for varying quantum sizes. As the quantum sizes of the integrators of
the second order tiff system increase, the incurred error aso increases. Both the originad

DEVS predictive integrator and the Kofmari s DEVS integrator show the same accuracy.
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Figure 6.9 illustrates the number of internal transitions from the DEVS predictive
integrator and from the Kofman's DEVS integrator in varying quantum sizes. When
small quantum sizes are used, interna transitions from the Kofman's DEV'S integrator

are less than those from the DEV S predictive integrator.

Error
a
6.28%10
B—H
DEVS Predictive Integrator
G 8=
5.61%10* | Kofman’s DEVS Integrator
4.02%104 +
X1:10* X1 : 5%102 X1:10!
X2:10* X2: 5%104 X2:10°3

Quantum sizes for X1 and X2 Integrators

Figure 6.8 Error from the original DEVS predictive integrator and the Kofman's

DEVSintegrator in varying quantum sizes
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Figure 6.9 Internal transitions from the original DEVS predictive integrator and

Kofman's DEVSintegrator in varying quantum sizes
6.4 Discussion

Considering hysteresis, we compared the qualities of the origina DEVS
predictive integrator and Kofmari s DEV'S integrator. In simulation of the second order
stiff system example, the errors (for varying the quantum sizes) of the two integrators
(DEVS predictive integrator and Kofmani's DEV'S integrator) were not much different.
Both integrators perform with the same accuracy, however the number of interna

transitions of the origina DEVS predictive integrator is greater than those of the
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Kofman's DEVS integrator. When the direction of the state transition is changed, the
original DEV S predictive integrator needs two interna transitions to perform hysteresis;
meanwhile, only one interna transition is needed for the Kofmaris DEVS integrator.
Since the second order stiff system frequently changes the direction of the state transition,
the second order stiff system simulation shows the difference in the number of interna
transitions of the two integrators (he DEVS predictive integrator and the Kofman's
DEVS integrator). However, in many real-world applicatiors, the change of the direction

of the state transition does not occur frequently.
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7 PURSUER-EVADER MODEL

In order to evaluate the performance of the space-based quantization scheme in a
distributed simulation environment, we introduce the pursuer-evader model and a
federation executing on the DEVSHLA distributed simulation environment. The
federation contains two types of agents, pursuers and evaders, which move and interact
with each other in a bounded region of two-dimensional space. There are two types of
federates, pursuer federates and evader federates. Each pursuer federate contains an
arbitrary number of pursuers while each evader federate contains an arbitrary number of
evaders. Pursuers and evaders bounce in elastic fashion off the walls of the region in
which they are confined. The pursuers chase evaders that come within close proximity
and shoot at those within a smaller range. The evaders run away from pursuers they
“notice” at some distance and freeze when detecting any within a closer range. Figure 7.1

illustrates the operation of the pursuer-evader model.
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Figure 7.1 Pursuer-Evader M odel

7.1 Distance-Dependent Sensitivity of Vision

Perception abilities of pursuers and evaders are modeled with a simple approach
to distance-dependent sensitivity of vision. The ease with which one agent can detect
another depends upon the latter’s projection on the former’s hypothetical retina. The
projection is defined as the size of the agent divided by the distance between the two
agents. The projection must be larger than a threshold value to be perceived. Since, in
our model, a pursuer is bigger than an evader, with the same threshold on the projection,
an evader can see a pursuer better than a pursuer can see an evader. Ciritical distance, D,
is defined as the size divided by a threshold of projection. As Figure 7.2 illustrates, there

are two critical distances, Die ad Dnotice, COrresponding to two thresholds for seeing and



132

noticing. An evader can detect the pursuer within Dygtice Of evader and can see the pursuer

within Dee Of evader (and vice versa).

e threshold
size I
< > Projection = size / distance
D : distance D = size / threshold of Projection

sees nlotices
|

O \ |

I |
evader ) 3CC3
notices

Agent is noticed if D <D Agentis seenif D <D _,

Figure 7.2 Modeling Distance-dependent Sensitivity of Vision in the Pursuer-Evader

M odel

At any moment, with this distance-dependent sensitivity, an evader may exist in
one of four states, “move’, “run away”, “freeze’, or “dead”. These states change in
response to the evader’s perception of the pursuers which is a function of the distance
between each pursuer and the evader. Figure 7.3 j||ustrates a state transition diagram for

the evader.
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When a pursuer comes within the critical range, Dytice, Of an evader, the evader can
detect the pursuer. At this point, the evader switches to the “run away” state and runs
away from the pursuer. However, if a pursuer comes within the critical Dee range, the
evader can “se€” the pursuer and changes to the “freeze” state. In the “freeze’ state, the
evader does not move hence does not output any position update messages. The evader
changes from the “freeze’ state to the “move” state when all pursuers are out of range
determined by the critical Die distance. The “freeze” state was introduced to provide
interesting interactions. It can be used to keep the pursuers from quickly eliminating the

evaders, thereby enabling long simulation runs.

d : distance between
pursuer and evader

freeze

D, tice ¢ Distance at which

evader can notice a pursuer

F 3

D,,. : Distance at which

evader can see a pursuer

Sge see

d>=D

notice

Figure 7.3 State Transition Diagram for Evader
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7.2  Space-based Quantization with Distance-Dependent Sensitivity of Vision

The space-based quantization scheme is applied to the operation of the
pursuer/evader model with distance-dependent sensitivity of vision. This scheme uses
two critical distances, Dse ad Dnoiice, Which are determined by distance-dependent
sensitivity of vision. Figure 7.4 illustrates how a quantum size is assigned according to
the distance between pursuer and evader. In Figure 7.4(a), three quantum sizes are used
with the two values of distance, Dsee ad Dpotice. TWO quantum sizes are used in Figure
7.4(b) and Figure 7.4(c). Note that filtering of messages is greater with the assignment of

Figure 7.4(c) than that of Figure 7.4(b).
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Figure 7.5 Assigning quantum sizes based on the message dir ection and the distance

As Figure 7.2 shows, we have to consider four critical distances: the respective
values, Dyge and Dpotice Of pursuers and evaders. Figure 7.5 illustrates the assignment of
guantum sizes with these four distances. Figure 7.5(a) illustrates the quantum size
assignment for messages being transmitted from pursuer to evader while Figure 7.5(b)
considers messages from evader to pursuer. In Figure 7.5(a), three quantum sizes are
assigned, using a quantum size of 10 for distances between Dsee and Digtice Of evader. Dse
and Dpoiice Of evader are bigger than Dse and Dpoiice Of pursuer respectively, since a
pursuer is bigger than an evader. Thus perception is not symmetric: an evader can
perceive a pursuer better than that pursuer can perceive it. In Figure 7.5(b) we assigned
only two quantum szes for greater message reduction. In this example, the pursuer

cannot see the evader outside the range of 10 units. Therefore, quantum size 10 is
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replaced by quantum size infinity. Of course, more quantum sizes with the space-based
quantization scheme can be employed. The number of quantum sizes assigned is very

dependent to each application.

7.3 Filtering operation

In this section we provide more detail on the filtering operations performed by the
gpace manager with the pursuer/evader model in the DEVS/HLA distributed simulation
environment. In the DEVS/HLA distributed simulation environment, there are two types
of filtering operations. The first type is the filtering at sender federate. When a pursuer
has a message to be transferred, if al evaders are too far from the pursuer, the space
manager decides that the message from the pursuer does not need to be transferred and
blocks the message. The space manger operates in the same manner when the message
originates from an evader. This type of filtering blocks HLA inter-federate messages
from entering a network. In a distributed simulation, network delay is a critical factor of
system performance. By blocking a message from entering a network, filtering at sender
federate can prevent the communication overhead that results from network delay.
Therefore, with filtering at sender federate, we can greatly reduce system execution time
as aresult of network message reduction in a distributed simulation.

The second type of filtering operation is the filtering at receiver federate. When a
pursuer has a message to be transferred, if some evaders are close by and some evaders

are far away, the message has to be released outside the pursuer federate without filtering.
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The space manager decides, according to the distance between the evaders and the
pursuer, which evaders can receive the message and blocks the message to those evaders
that are far from the pursuer. The filtering operation works in the same manner when the
evader sends a message. This filtering operation filters DEVS messages, which are for
communication within a federate. Figure 7.6 illustrates the two types of filtering
operations controlled by the global or the local space managers in the DEVS/HLA

distributed simulation environment.

Filtering at Filtering at
sender federate receiver federate
Global Space
Manager Federate
Pursuer Federate Evader Federate
Local Space Local Space
Manager > “ Manager
v
Pursuer ¥ | HLA HlA Evader
pprt \ port
Pursuer ——| HLA HILA Evader
pprt poxt
Pursuer o ALA HEA Evader
port pgrt

Figure 7.6 Filtering oper ations
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In this dissertation, the direct filtering scheme supported by DEV'S modeling and
simulation is introduced and applied to these two types of filtering operation. In most
conventional filtering schemes, each agent directly filters the message traffic. For
example, with the spatial encounter prediction of the Joint MEASURE architecture [44],
the space model sends the spatial relationship to each agent, and each agent performs the
filtering operation. However, in the direct filtering operation, the space manager directly
performs the filtering operation by changing the coupling specification supported by
DEVS modeling, but does not inform the spatial relationship to each agent. With this
coupling specification, a message can be transferred to any model. Each model can
change the message transfer path among the models by adding or removing the coupling
gpecification. With the space manager, the direct filtering is applied to these two types of
filtering operations in the DEVSHLA distributed ssimulation. With filtering at sender
federate, the space manager performs direct filtering by changing the coupling
specification between the sender agent’s output and the output of the serder federate.
With filtering at the receiver federate, the space manager performs direct filtering by
changing the coupling specification between the receiver agent’s input and the input of

the receiver federate.
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7.4 Experiment and Results

7.4.1 Effect of the Space-based Quantization Scheme

To evaluate the performance of the space-based quantization scheme, we
developed the pursuer and evader DEVSHLA models in two federates in the
DEVSHLA distributed simulation environment. One federate included pursuer
DEVSHLA models. The other federate had evader DEVSHLA models. Each federate
had its own local space manager. Each local space manager receives position updates
from pursuers and evaders and performs the message filtering between pursuers and
evaders. Whether or not message filtering is performed depends on the distance between
pursuers and evaders. If pursuers and evaders are close together, message filtering may
not be performed. Message traffic reduction is chosen as the performance measure of this
experiment because, through message traffic reduction, the data to be processed by the
receiving agentsis reduced, as is the data actually sent over a network.

To represent the effect of the space-based quantization scheme, three different
experimental conditions are introduced. In the first condition, there is no space manager.
Messages are broadcast to all agents without the space manager operation. In the second
condition, the space manager operation is used with two distance ranges. In this
experimental cordition, the distance between any two agents is stratified as two ranges,
“close” and “far”, so that two different quantum sizes exist. If close, the quantum is 1 and

the message can be transferred. If far, the quantum is Infinity and the message cannot be
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transferred. In the third condition, the space manager operation is used with three
distance ranges. In this condition, the distance between any two agents is stratified as
three ranges, “close’, “middle” and “far.” If “close” or “far”, a message is transferred or
filtered in the same manner as in the second condition. On the other hand, if the range is
“middle,” the quantum is 10 and the filtering operation follows a filtering policy with
distance-dependent sensitivity of vision in the pursuer-evader model. In middle distance
range, a pursuer transmits its position update to an evader. The evader notices the
pursuer and runs away. However, because the evader does not transmit its position update
to the pursuer, the pursuer does not notice the evader. Through message filtering in the
middle range, evaders can “run away” from pursuers. With this filtering policy, message
communication depends on the direction of the message. When a pursuer has a message
to be transferred, if the distance range between the pursuer and the evader isin the middle,
the message can be transferred. However, when an evader has a message to be transferred,
if the distance range between pursuer and evader is in the middle, the message cannot be
transferred. Thus, assigning quantum size follows Figure 7.5.

Figure 7.7 shows the effect of the space-based quantization scheme on message
traffic. The figure compares the number of transferred messages as a function of different
gpace dimensions in the three experimental conditions. In this experiment, the total
number of agents is fixed and the space dimension varies. With a fixed number of agents,
the space dimension (size of bounding region) is a critical factor in comparing the
number of messages because the filtering operation of the space manager is based on the

distance among agents. As the space dimension increases, the space manager filters more
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messages among agents with the distance-dependent sensitivity of vision in the pursuer-
evader model. In the first condition (i.e. no space manager), as the space dimension
increases, the number of messages transferred increases because the distances between
pursuer and evader are skewed toward smaller values and many evaders stay in the
“freeze” state. In the “freeze” state, the evader does not move and does not transfer any
messages. Thus, as the space dimension increases, evaders have more messages to be
transferred. This contrasts with performance in the second and third conditions (i.e. space
manager with two distance ranges and space manager with three distance ranges,
respectively). Here, as the space dimension increases, the number of messages transferred
decreases because the space manager operation is based on the distances among agents.
These results support the assertion that the space-based quantization scheme proposed
and developed in this dissertation is an efficient means of message traffic reduction.
Asiillustrated in Figure 7.7, there is more reduction in message traffic when there
are three distance ranges than when there are only two. In the former condition, the
distance between pursuer and evader is more stratified than in the latter condition. Three
different quantum sizes are assigned to these three distance ranges. The quantum sizes 1,
10, and Infinity are assigned to the close, middle and far distance ranges, respectively. If
the quantum sizeis 1 or 10, when an agent crosses over the boundary of the area assigned
for that quantum size, the agent transfers a message. However, if the quantum size is
Infinity, the agent does not transfer a message. The existence of the middle distance in
the third condition permits the application of distance-dependent sensitivity of vision in

the pursuer-evader model, which in turn results in greaster message traffic reduction. It
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should be noted that the greatest benefit of the triple-quantum scheme occurs in the close
encounter range where evaders are likely to have more pursuer detections of the “notice”

kind than when their “mean free path” becomes large.
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Figure 7.7 Traffic Message Reduction with the Space-based Quantization Scheme

Figure 7.8 shows the filtering rates of the different filtering types at sender and
receiver federates. As stated previoudy, as the space dimension increases, the overall
filtering rate increases. The overal filtering rate consists of filtering rates at the sender
federate as well as filtering rates at the receiver federate. The filtering rate at sender
federate shows how many HLA messages between federates are filtered through a
network. The filtering rate at receiver federate shows how many DEV S messages within

a federate are filtered. By reducing the network delay, network message reduction more
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effectively decreases execution time in a large-scale distributed simulation than does non
network message reduction. At smaller space dimensions, the filtering rate at receiver is
higher than the filtering rate at sender. However, at larger space dimensions, the filtering
rate at sender increases further. In effect, as the space dimension increases, the increased

filtering rate at sender improves system performance by decreasing execution time.
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Figure 7.8 Filtering Rates with Filtering operations
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7.4.2 Globa and Loca Space Manager Approaches

To evaluate the performance of the global and local space manager approaches in
terms of the scalability of the space-based quantization in a large-scale distributed
simulation, we applied the heavy load test, using over one hundred agents, to three
different systems in the DEVS/HLA distributed simulation environment. In the first
system, messages are broadcast to agents without the space manager operation. The
second system filters messages among agents using the global space manager approach.

The third system filters the messages using the local space manager approach.*

7.4.2.1 Message Traffic Reduction Using Global and Local Space Manager Approaches

In this section, we compare the performance of global and local space manager
approaches in terms of message traffic reduction and discuss the reasons underlying the
different performance of the two approaches. Figure 7.9 illustrates the number of
transferred messages, including the overhead messages, in these two approaches as well
as the number of messages broadcast to all agents without the space manager operation.
This figure also shows the 99 (%) confidence interval of the number of messages passed.
As Figure 7.9 shows, both approaches greatly reduce message traffic with the space

manager operation. As the number of agents increases, the local space manager approach

! Each condition was executed with 5 replications and the averages were significantly
different at the 99% confidence level [45].
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reduces the number of messages more than the global space manager approach. Figure
7.10 shows the net message reduction using both approaches. The net message reduction
is calculated by subtracting the overhead messages from the total number of messages
transferred. The overhead messages in the globa space manager approach are for
position updates of agents to the global space manager and for distributing the connection
information decided by the global space manager to each coupling operator on each
federate. The overhead messages in the local space manager approach are for position
updates of agents to each local space manager on each federate. Because the overhead
messages that distribute the connection information in the global space manager approach
are more numerous than the overhead messages for position updates of agents to each
local space manager, the net message reduction of the local space manager approach
increases much more than that of global space manager approach as the number of agents

increases.



147

Mo S
24 Sobal SM
Local Sk

E
-
‘% at
P
Hea
B
B
o
&
b
% 15
k-]
£
=

2 E-]

o 3 . . . . . . |
20 Lol =] (=] 1 120 140 1E0 180
Mumber of Agoris

Figure 7.9 Message Traffic Reduction using Global and Local Space Manager

approaches



SUMMMMY
=
2 | 250000
=
=
B | 200000
B
B LU
2
] LLULILL | By
=
£ S0000
.

] 40 =id 16d)

# of Agents

= Nt Messape

Reduction in
Global SM
Net Message
Reduction in
Laocal SV

148

Figure 7.10 Net message traffic reduction using global and local space manager

approaches

7.4.2.2 The Effect of the Space-Based Quantization in Global and Local Space Manager

Approaches

In this section, we compare the performance of the global and local space

manager approaches with the space-based quantization scheme. With this scheme, the

distance between pursuer and evader is stratified, so that the quantum sizes related to the

stratified distance are chosen. In this experiment, two and three quantum sizes are chosen

and each quantum size depends on the distance between pursuer and evader.

Figure 7.11 shows the effect of the space-based quantization scheme when it is

applied to the global space manager approach. Figure 7.12 shows the effect on message

traffic reduction when it is applied to the local space manager approach. As the number
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of agents increases, the space-based quantization scheme reduces more messages when
three quantum sizes are chosen than when only two quantum sizes are chosen.
Furthermore, the effect of space-based quantization on message traffic is greatest when

the space-based quantization scheme is applied to the local space manager approach.
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7.4.2.3 Influence of Network Delay and Computation Load in Globa and Local Space

Manager Approaches

In this section we analyze how network delay and computation load influence
system performance using system execution time as a performance measure. In order to
analyze the influence of network delay in Window NT machines connected via a 10 Base
T Ethernet network, we designed the experiment in such a way that there was a holding
time before a message was sent from a simulation component output. This message
holding time represented the network delay that occurs prior to a message being
transferred over a network and the implementation of the message holding time operation

is added in the DEVSHLA simulation engine. In order to analyze the influence of system
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computation time, we assigned a certain computation time to receiving agents. The
system computation time represents the computation time originating from agents and the
space manager.

Figure 7.13 illustrates the influence of network delay and computation load on
system execution time in three system experiments including no space manager, the
globa space manager, and the local space manager. The execution time of the system
operated without the space manager increases with a high slope as the network delay
increases. The execution time of the system using the local space manager approach
increases with a small dope. In the system using the global space manager approach, the
system execution time increases with a somewhat higher slope than that of the local space
manager approach. In al three systems, system execution time from network delay
depends on the number of messages passed. The difference in performance of the three
systems in terms of network delay would be clearer at the network saturation point.

In the very low network delay range, the difference noted between the
performances of the system operated without the space manager and the system with the
global space manager was less remarkable, although fewer messages were passed in the
system using the global space manager than when no space manager was used. This is
because, in the very low network delay range, the system execution time from network
delay is very low. It, therefore, follows that the system execution time is due primarily to
system computation time. The system computation time mainly results from the
computation overhead of the global space manager approach, which is fairly high.

However, the computation overhead of the local space manager is still low. Also, in the
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very low network delay range, the local space manager approach has the lower system
execution time than that when no space manager was used since the message reduction
from the local space manager approach causes the reduced computation time of the
receiver agents.

The computation time of the system operated without the space manager increases
with a high slope as the agent computation time increases. The large number of messages
broadcast among agents in this system causes a large local data processing time by the
message-receiving agents, thus it increases the system computation time with a high
dope. The computation time of the system using the loca space manager approach
increases with a low slope. In the system using the global space manager approach, the
system computation time increases with a relatively higher slope than that of the local
space manager approach. With both approaches, the local data processing time by the
receiving agents is significantly reduced by the message filtering operation of the space
manager though the computation overhead for the space manager operation exists. The
system using the global space manager approach encounters a “bottleneck” during
computation of the global space manager. However, the local space manager approach
solves this problem using concurrent processing, which decreases computation overhead
for the space manager.

In the very low agent computation range, the computation time of the system
using the global space manager approach is not much different from that of the system
operated without the space manager. This is because, in this range, the computation

overhead of the global space manager is still fairly high athough the local data
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processing time by the receiving agents is very low. In this range, the computation time
of the system using the local space manager approach is till low. To summarize, Figure
7.13 shows that as both network delay and computation load increase, the execution
times of these three systems with no space manager, globa space manager, and local
Space manager, increase with orderly different slopes. The best performance was
accomplished by the local space manager approach proposed in this dissertation as both

network delay and computation load increase.
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8 PROJECTILE/MISSILE APPLICATION

8.1 Projectile/Missile Application Overview

In this dissertation, a real application (projectile/missile) working in a real-world
environment is used to evaluate the performance of the DEVS/GDDM environment. This
application uses the geocentric-equatorial coordinate system [54, 55]. The projectileis a
ballistic flight and accounts for gravitational effects, drag, and the motion of the rotation
of the earth relative to it. A missile is assigned a projectile, and it follows its projectile
until it hits its projectile. In modeling the projectile/missile application, there are two
main models: projectile and missile. The projectile model is the model of a sphere of
uniform density following a ballistic trgjectory. This model begins at an initia position
with an initial velocity, moves, and stops until it meetsa missile. The missile modd is the
model of the same sphere of the projectile, and it begins at a certain initial position and a
certain initial velocity, which are different from those of the projectile model. The missile
model follows the projectile model assigned to it. When the missile model is close to the
assigned projectile model within a certain distance, it stops and we consider the missile

hits its projectile.
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8.2 Projectile/Missile Modeling

The projectile model includes three sub-models. acceleration model, velocity
model, and position model. The acceleration model uses parameters (e.g. gravity,
atmosphere velocity, atmosphere density, etc.) to generate the acceleration values. The
earth model calculates these parameters using the position values of the projectile model.
For the real implementation of the velocity and the position models, the integrator model
is developed. The integrator model has two types. the DTSS integrator and the DEVS
predictive integrator. The velocity model receives the acceleration input from the
acceleration model, and the position model receives the velocity input from the velocity
model. Finaly, the position model generates three dimensional position values of the
projectile and sends them to both the earth model and the missile mode!.

The missile model includes two sub-models: the velocity generator model and the
position model. The velocity generator model receives the position update message from
the projectile model, and it generates the velocity values and sends them to the position
model. The position model (an integrator model) receives the velocity values and
generates the three dimensional missile position values. As the simulation time is
advanced, the position of the missile model gradually becomes closer to the position of
the projectile model.

To redlize the projectile/missile application in the DEVS/GDDM environment
proposed in this dissertation, we made four systems to perform the case study with the

projectile/missile application: The first system is abasic system, which is not applied by



156

the interest-based quantization scheme of the DEVS/GDDM environment; The second
system uses the nonpredictive interest-based quantization scheme. The third system
employs the predictive interest-based gquantization scheme; and the multiplexing method
is included in the fourth system.

In the basic system, there are two federates; the projectile federate and the missile
federate The projectile federate includes the projectile models, and the missile federate
includes the missile models. In the basic system, the DTSS integrators are used for the
velocity and the position models in the projectile model, as well as for the position model
in the missile model. The position model of the projectile model in the projectile federate
sends the three dimensional position double values (X, y, z) to the missile federate in a
fixed step time due to the fact that the DTSS integrators are used. The results from the
basic system are the standard results for evaluating the performance of the DEVS/GDDM
environment. The system with the nonpredictive interest-based quantization scheme is
supported by the nonpredictive interest-based quantization method of the DEVS/GDDM
environment, and the high level modeling of the system in the DEVS model layer is the
same as that of the basic system. Figure 8.1 and Figure 8.2 illustrate the component
diagram of the projectile and of missile models in the basic system, as well as the second

system using the nonpredictive interest-based quantization scheme.
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Figure 8.1 Component diagram of the projectile mode in the basic system and the

second system using the non-predictive inter est-based quantization scheme
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Figure 8.2 Component diagram of the missile model in the basic system and the

second system using the non-predictive inter est-based quantization scheme

8.2.1 Predictive Interest-based Quantization scheme

To reduce the tremendous data bits communicated between the projectile model

and the missle modd with only reasonable error, we made the third system which

utilized the predictive interest-based quantization scheme of the DEVSGDDM

environment. In order to apply to this predictive interest-based quantization scheme, the

DEVS predictive integrators are used for the velocity and position models in the

projectile and the missile models. The third system includes the projectile and the missile

federates which are the same as the basic system. The position model in the projectile



159

model sends the three dimensional position integer values, such as (-1, 0, 1), to the
velocity generator model in the missile model. To generate the velocity of the missile
model, the velocity generator model needs the current position values of the projectile
model; thus, it calculates the current position values of the projectile model by
multiplying the input integer values and the current quantum size and by adding the
multiplied result to the old position values.

To avoid error of the projectile position values in the missile model, the current
guantum size in the missile model should be the same as the current quantum size in the
projectile model. The current quantum size is decided by the space manager in the
DEVS/GDDM environment, and it is distributed to both the projectile model and the
missile model. In the third system, by sending the integer values (not the double values)
from the projectile federate to the missile federate, the inter-federate communication data
bits are tremendously reduced. To save more of the data bits, the three dimensional
position integer values, such as (-1, 0, 1), are not transferred directly, and only five (5 >
log 3%) data bits representing the three dimensional integer values are sent. Therefore,
the encoder, which changes the three dimensional integer values to the five data bits, is
needed and supported by the DEVS/GDDM environment.

In order to change the received five data bits to the exact three dimensiona
integer values in the missile federate, the decoder is supported by the DEVS/GDDM
environment. Also, the position model of the projectile model sends the five data bits to
the space manager in the DEVS/GDDM environment. The space manager needs the

decoder to decode the five data bits to the exact three dimensional integer values and
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generates the position values of the projectile model as the velocity generator in the

missile model does. Figure 8.3 and Figure 8.4 illustrates the component diagram of the

projectile and missile models in the third system using the predictive interest-based

guantization scheme of the DEVS/GDDM environment.
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Figure 8.3 Component diagram of the projectile model in the third system using the

predictive inter est-based quantization scheme of the DEVS/GDDM environment
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predictive inter est-based quantization scheme of the DEVS/GDDM environment

8.2.1.1 The methods to reduce the error in the systems using the DEVS predictive

integrators

In the third system using the predictive interest-based quantization scheme, error
occurs due to using the DEVS predictive integrators (not DTSS integrators) in the
projectile/missile application To reduce this error, three methods are applied to this
system. The first method is to use a smoother model, which can reduce the error from the

multi-dimensional output values of the DEVS predictive integrator with each different
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unfixed time advance The velocity model and the position model outputs with variable
time advance in the projectile model since these models are developed with DEVS
predictive integrators. Also, because the positions of the projectile and the missile are
three dimensional, the position values of the DEVS predictive integrator are outputted
with each variable time advance for each dimension. The earth model generates the
gravity, atmosphere density, etc., with all three dimensional position values at a same
time. The position values, outputted with each different variable time advance, include
the old values and current values at a given event time. The use of the old values of the
projectile position in the earth model causes the error.

In this third system, the smoother model receives, keeps, and updates the three
dimensional position values outputted from the DEVS predictive integrator with each
different variable time advance for each dimension until the fixed time step of the DTSS
integrator is advanced. When the fixed time step advance of the DTSS integrator comes,
the smoother mode outputs the three dimensional position values to the earth model. By
using the smoother model, the error caused by the use of the old values of the projectile
position can be reduced. Figure 8.5 illustrates the component diagram of the projectile

model in the third system using the smoother model.
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The second method for reducing error, which occurs due to using the DEVS
predictive integrator, is to use the standard quantum size which decides the message
filtering rate in the DEV'S predictive integrator. In the predictive quantization theory, the
standard quantum size provides the same accuracy as that caused by the time step (h) of a
DTSS integrator. Figure 8.6 illustrates the relationship of standard quantum size and the

time step (h) of a DTSS integrator.
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Figure 8.6 Standard Quantum Size (D) and Time Step (h) of a DTSSintegrator.

The standard quantum size is calculated by multiplying the step time (h) and the
maximum absol ute derivative of the DTSS integrator, whichis the maximum input of the
DTSS integrator. In the basic system, the time step (h) of the DTSS integrator is fixed.
The DTSS integrators, working in the basic system have three dimensional maximum
absolute derivatives. Therefore, we have three dimensiona standard quantum sizes.
When this method for using the standard quantum size is applied, the space manager in
the DEVS/GDDM environment decides the multiple factor for multiplying to the
standard quantum size rather than deciding the actual quantum size. Thus, the quantum
decision table includes the multiple factors related to the distances between the projectile

model and the missile moddl. Ininitializing time, the standard three dimensiona quantum
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sizes are given to the DEVS predictive integrators. Each DEV'S predictive integrator in
the projectile model generates its own three dimensional quantum sizes by multiplying
the multiple factor and the standard three dimensional quantum sizes. Simultaneoudly, the
velocity generator model in the missile model gets the standard three dimensional
guantum sizes of the projectile model’s position model in the initidlizing time, and the
velocity generator model calculates its three dimensional quantum sizes by multiplying
the multiple factor from the space manager and the standard three dimensional quantum
szesinruntime.

Table 8.1 and Table 8.2 show the maximum absolute derivatives and the standard
guantum sizes in the velocity and position models when the step time (h) of DTSS
integrators of the velocity and position models is 0.01. The maximum absolute
derivatives and the standard quantum sizes include three dimensions and have their

values which indicate x, y, and z directions.

Table 8.1 Maximum absolute derivatives and the standard quantum sizesin velocity
model (h = 0.001)

X direction Y direction Z direction
Maxi mum absolute 4.878143177E-5 0.030262613307 9.799137940
derivative
Standard Quantum Size | 4.87E-8 0.0000302626133 0.0097991379
(D =h* Maximum
absolute derivative)

Table 8.2 Maximum absolute derivatives and the standard quantum sizesin position
model (h = 0.001)

X direction Y direction Z direction
Maximumabsolute 1.698550814E-4 10.0 98.77168099258
derivative
Standard Quantum Size | 1.69E-7 0.01 0.0987
(D =h* Maximum
absolute derivative)
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The third method to reduce the error in the third system is to remove the error
incurred when the DEVS predictive integrator receives a new quantum size from the
gpace manager in the DEVSGDDM environment and generates the new output values
(not the pre-scheduled output values). To avoid this error with the new quantum size, the
position model of the projectile model sends the actual position double-precision values
(not encoded small data bits) to the velocity generator model in the missile model and to
the space manager in the DEVSGDDM environment. When the velocity generator model
in the missile model receives the actual position values and the new quantum size from
space manager, it updates the current position values of the projectile model and stores
the new quantum sizes for subsequent use. Also, the space manager in the DEVSGDDM
environment receives the actual position values and updates its representation of position

values of the projectile model.

8.2.2 Mutiplexing Interest-based Quanitzation Scheme

As the number of projectile model and the missile model pairs in federates
increases, the number of messages communicated among federates increases also
significantly. To perform the multiplexing interest-based quantization scheme for
reducing message traffic of the increased pairs, two components (e.g. sender multiplexer
and receiver de- multiplexer components) are used in DEVS/GDDM environment.

The sender multiplexer gathers the messages outputted from the sender agents

within a time granule into a large message, which is sent to the receiver de- multiplexer in
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the other receiver federate. The receiver de-multiplexer separates the large multiplexed
message to the small-unmultiplexed messages and distributes the small messages to the
proper receiver agents. As the number of sender and receiver pairs increases, through this
multiplexing interest-based quantization scheme, tremendous communication bits can be
saved. Moreover, by using this multiplexing interest-based quantization scheme, many
HLA interactions are reduced to only one HLA Interaction. To exchange the message
between sender and receiver pair in two different federates, one HLA interaction is
needed. As the number of sender and receiver pairs increases, the number of the HLA
interactions for the increased pairs also increases if the multiplexing interest-based
guantization scheme is not used; therefore, the number of the increased HLA interactiors
causes memory and the computation overhead in HLA/RTI communication. By reducing
the number of HLA interactions, the multiplexing interest-based quantization scheme is
more effective in a large-scale distributed simulation.

In order to analyze the performance of the multiplexing interest-based
guantization scheme, we investigated the ratio of the number of bits needed for the
multiplexing predictive quantization to the number of bits needed for the non
multiplexing, non-predictive quantization with the same number of components. The
analysis is given in Table 8.3 where we consider all six combinations of quantization
(non-predictive and predictive) and multiplexing (fixed and variable). The fixed and

variable multiplexing schemes were discussed in chapter 5.
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Table 8.3 Network bandwidth requirement for quantization and multiplexing
schemes

( Son : the number of overhead bits for a packet (160 bits); Sp: the non-quantized data bit
Sze (64* 3 hits for double precision real numbers for three dimensions); S: the quantized
and encoded data bit size (5 bits for three dimensions (logg 3° < 5= S));, S the
encoded data bit size for sender ID (10 bits for 1000 Npair (I0g 1000 < 10 = K3)); Npair :

the number of pair components (1000), a: the ratio of active components).

Scheme # bits required for | Ratio to Non- | Ratio for
Npgair predictive Npgair =1000
quantization Son=160 bits
for large Npair Sp=64* 3bits
So= 5 hits
S =10 hits
Non-predictive quanti zation aNpair (Son + ) 1 1
Predictive quantization (non- aNpair (Son + Sg) (Son + &)/ | 046
multiplexed) (Son +Sp)

Fixed Multiplexing (Son+Npair(S+ 1)) (S5 +1) 0.54/a
Multiplexing non-predictive !/ a(Son +Sp)

quantization

Multiplexing (Son*+Noair (S9+1)) (St 0.017/a

predictive ! a(Son +Sp)

guantization
Variable Multiplexing (SontaNy (S55+9)) (S5 +9) 0.57
Multiplexing non-predictive !/ (Son +So)

quantization

Multiplexing (Son+aNuir (So+S)) (So +9) 0.034

predictive ! (Son +S)

quantization

The predictive quantization without multiplexing performs 46 (%) reduction in
network load relative to non-predictive quantization. In the multiplexing non-predictive
guantization scheme, the reduction (approx. 54(%)/a) is performed by combining the

actual double value outputs into one message. Greater advantage is obtained from the
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multiplexing predictive quantization which combines the encoded data bit size (5 bits for
three dimensional data of message and 10 bits for sender 1D) per component into one
message. When the fixed multiplexing predictive quantization scheme is used, in order to
reduce the bit sending ratio below 10 (%), at least 17 (%) active components are required.

For variable multiplexing predictive quantization, the reduction ratio is 3.4 %.

Table 8.4 Network bandwidth requirement for fixed and variable multiplexing

schemeswith varying a (a: theratio of active components)

Scheme Ratio for a=06 a=05 a=04 a=0.1
Npajr =1000
Sor=160 bits
Sp=64* 3bits
So= 5 hits
S =10 bits
Fixed Multiplexing | 0.54/a >10 > 10 >1.0 >1.0
Multiplexing | non-
predictive
guantization
Multiplexing | 0.017/a 0.028 0.034 0.0425 0.17
predictive
quantization
Variable Multiplexing | 0.57 0.57 0.57 0.57 0.57
Multiplexing | non-
predictive
guantization
Multiplexing | 0.034 0.034 0.034 0.034 0.034
predictive
quantization

In order to compare both fixed and variable multiplexing predictive quantization
schemes with varying a, Table 8.4 is extended from Table 8.3. Table 8.4 shows the

effectiveness of both fixed and variable multiplexing with different a value in a specified
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case of Table 8.3. If a is greater than a; (in Figure 5.13), the fixed multiplexing

* D(?
predictive quanitzation is more effective. In this case, acis 0.5 (?w) and
log,1000

determines the effectiveness of the fixed and variable multiplexing predictive

guantization schemes.

8.3 Experimentation and Results

8.3.1 The Effect of Predictive Interest-based Quanitzation Scheme

To evaluate the performance of the predictive filtering approach supported by the
DEVS/GDDM environment, we developed the projectile/missile system using the
predictive interest-based quantization scheme. The DEVS predictive integrators were
used in the system and we performed the predictive interest-based quantization scheme
by changing the quantum size related to the distance between the missile and its assigned
projectile. In the basic system, the DTSS integrators are used and the interest-based
guantization scheme is not used, so that the basic system is considered the standard
system inwhich no error occurs.

To evaluate the performance of the predictive interest-based quantization scheme,
we developed two federates: projectile and missile. The projectile in the projectile
federate sends the position update message, which includes the encoded bits (5 bits for

three dimensions) and HLA packet overhead (160 bits), to the missile. The missile in the
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missile federate sends the same size data bits as the projectile’ s position update message
data bits to the space manager as Figure 8.7 illustrates.

This experiment compares the total passed data bits and the error incurred
between the basic system and the system using the predictive interest-based quantization
scheme. The error is defined as the difference between the projectile positions in these
two systems. The total passed data bits indicate the data bits that a missile receives from
the projectile and that the space manager receives from the missile as Figure 8.7 shows.
The overhead data bits sent to the space manage are needed to perform for a quantum
decison operation of the predictive interest-based quantization scheme. Thus, these
overhead bits were included in the total passed data bits. Figure 8.7 illustrates the total

passed data bits using the predictive interest-based quantization scheme.
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Figure 8.7 Data bits passing including the overhead data bits in the system applied

by the predictive inter est-based quantization scheme.

Table 8.5 shows the error trgjectory of the system, which uses the predictive
interest-based quantization scheme, in varying range of the multiplying factors of the
standard quantum sizes. As the simulation time increases, the error decreases because the
multiplying factor of the standard quantum sizes decreases. As Table 8.5 shows, while

the multiplying factor varies from 40 to 1, the error decreases significantly.
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Table8.5Error (%) Trajectory for varying range of multiplying factors of the

standard quantum sizes

Simulation 1.0 3.0 5.0 7.0 9.0
Time

Range of
Multiplying
factors
10~1.0 0.16 0.08 0.04 0.05 0.02
20~1.0 0.36 0.05 0.11 0.07 0.10
40~1.0 1.87 0.40 0.12 0.13 0.10

Table 8.6 illustrates ratio trgjectory of passed data bits in resulting from different
ranges of multiplying factors of the standard quantum sizes. The ratio of passed data bits

is calculated by:

Ratio of passed data bits=
passed data bits when using the predictive interest-based quantization scheme /

passed data bits when no quantization is used

As the simulation time increases, the ratio of passed data bits increases because
the multiplying factor of the standard quantum sizes decreases. In other words, as the
multiplying factors of the standard quantum sizes increases, the passed data bits decrease

significantly when using predictive interest-based quantization scheme.
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Table 8.6 Ratio trajectory of passed data bits for varying range of multiplying
factors of the standard quantum sizes (predictive interest-based quantization vs. No

guantization

Simulation 1.0 3.0 5.0 7.0 9.0
Time

Range of
multiplying
factor
10~1.0 0.054 0.056 0.060 0.066 0.082
20~1.0 0.033 0.034 0.036 0.039 0.048
40~1.0 0.017 0.017 0.018 0.019 0.023

8.3.2 The Effect of the Multiplexing Interest-based Quantization Scheme

To evaluate the performance of the multiplexing interest-based quantization
scheme, we made the non-multiplexing and the multiplexing systems with this
projectile/missile application. These systens include two federates: projectile and
missile. Each federate is assigned to a different computer and the experimental computers
are connected in aLAN environment.

Figure 8.8 illustrates the nor multiplexing system. The system includes a certain
number of projectile and missile pairs in the projectile and the missile federates. Each
projectile model sends its position update message, which includes the encoded five data
bits (for three dimensions) and HLA packet message overhead (160 bits), to its assigned
missile. Also, each missile model sends its position update message (same size data bits

as projectile’ s position message data bits) to the space manager in the projectile federate.
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Figure 8.8 Non-multiplexing system in the projectile/missile application
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Figure 8.9 illustrates the component diagram of the multiplexing system. The

projectile federate includes the multi-projectile component, which contains a certain

number of the projectiles. The sender multiplexer in the projectile federate gathers the

messages (including the encoded five data bits) from the projectiles at the same time,

makes a large multiplexed message, and sends the multiplexed message to the receiver

de-multiplexer in the missile federate. The receiver de-multiplexer in the missile federate

separates the multiplexed message into small, unmultiplexed messages and distributes the

small messages to the proper missiles. The sender multiplexer in the missile federate

gathers the messages from the missiles a the same time and sends the multiplexed
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message to the receiver de-multiplexer in the projectile federate. The space manager in
DEVS/GDDM layer of the projectile federate side receives the missile position update
messages from the receiver de-multiplexer and directly receives the projectile position

update messages from the projectiles.

Missile Federate Projectile Federate

Multi-Missiles Multi-Projectiles

F 3

DEV]S Model layer

DEVE/GDDM |ayer

Position update

Receiver |_ ( Large size message) Sender
Multiplexer - Multiplexer -
Ovefhead :
h Posifion update b
Sender (Lafge size message) || Receiver o Space
Multiplexer Multiplexer Manager

Figure 8.9 Multiplexing system in the projectile/missile application

In order to evaluate the performance of the multiplexing interest-based
guantization scheme in the real projectile/missile application, we extracted the results,

which are based on the analysis of the ratio of the message size needed for the
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multiplexing predictive quantization to the number of bits needed for the non
multiplexing quantization at the Table 8.3 in section 8.2.

In this experimentation of the multiplexing interest-based quantization scheme,
the boundary crossings within a certain time granule are considered simultaneous. As the
time granule increases, the error occurred from the time granule increases. We
investigated the error trajectory with varying time granule, where the multiplying factor

varies from 10 to 1.

Table8.7 Error (%) Trajectory with Varying Time Granule (Range of multiplying
factors (10 ~ 1.0))

Simulation 1.0 3.0 5.0 7.0 9.0
Time
Time Granule
0.01 3.79 4.38 5.87 4.20 4,55
0.001 0.16 0.27 0.64 0.11 0.13
0.0005 0.16 0.08 0.08 0.07 0.13
0.0001 0.16 0.02 0.04 0.05 0.10

As Table 8.7 shows, when the time granule is 0.01, the error is large. While the
time granule is below than 0.001, the error is below 1.0 (%) and is reasonably small
acceptable error.

As we discussed in chapter 5, the ratio (@) of active components separates the
effectiveness of the fixed and variable multiplexing schemes. The ratio @) of active
components is dependent on the time granule and the multiplying factor of the standard

guantum size. We investigated the trajectory of the ratio (@) of active components with
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varying time granule. As Table 8.8 and Table 8.9 show, as the time granule increases, the
ratio (a) also increases. As the multiplying factor of the standard quantum size decreases,

theratio (a) aso increases.

Table8.8 Trajectory of theratio (a) of active components(Time Granule: 0.001)

Simulation 10 3.0 5.0 7.0 9.0

Time
Range of
multiplying
factors
10~1.0 0.191 0.208 0.249 0.317 0.409
20~1.0 0.133 0.142 0.158 0.201 0.316
40~1.0 0.124 0.122 0.125 0.142 0.269

Table8.9 Trajectory of theratio (a) of active components(Time Granule: 0.0001)

Simulation 1.0 3.0 5.0 7.0 9.0

Time

Range of

multiplying

factors

10~10 0.116 0.116 0.117 0.117 0.120

20~1.0 0.116 0.114 0.116 0.117 0.117

40~1.0 0.115 0.113 0.116 0.117 0.117

To see the effectiveness of both fixed and variable multiplexing schemes in
varying the ratio (a) of active components, we caculated the network bandwidth
requirement (using Table 8.3) of both fixed and variable multiplexing schemes using the

trgjectories of the ratio (a) of active componentsin Table 8.8 and Table 8.9. Table 8.10



179

and Table 8.11 show the trgjectory of ratio of passed data bits between the fixed and
variable multiplexing schemes in a varying time granule. The ratio of passed data bits is
calculated by:

7 passed data bits when using variable multiplexing
" passed data bits when using fixed multiplexing

Ratio of passed data bit

As we discussed in chapter 5, when the component pair number is 80, the ratio
(ac) of active components needed to separate the effectiveness between fixed and variable
multiplexing schemes is 0.78. In the projectile/missile application, since the maximum
value of the ratio (@) of active components is 0.409, the variable multiplexing scheme
requires less network bandwidth than that of the fixed multiplexing scheme. As the
multiplying factor increases and the time granule decreases, both the ratio @) of active
components and the network bandwidth requirement of the variable multiplexing scheme
decrease; therefore, the ratio of the passed data bits between variable and fixed
multiplexing schemes decreases in Table 8.10 and Table 8.11. The decreased ratio of the
passed data bits indicates that the variable scheme is more effective than the fixed

multiplexing in Table 8.10 and Table 8.11.
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Table 8.10 Trajectory of ratio of passed data bits (variable/fixed multiplexing)
(Time Granule: 0.001, Component pairs: 80)

Simulation 1.0 3.0 5.0 7.0 9.0

Time

Range of

multiplying

factors

10~10 0.536 0.561 0.623 0.725 0.862

20~1.0 0.449 0.463 0.487 0.552 0.724

40~1.0 0.430 0.430 0.436 0.461 0.652

Table8.11 Trajectory of ratio of passed data bits (variable/fixed multiplexing)
(Time Granule: 0.0001, Component pairs. 80)

Simulation 1.0 3.0 5.0 7.0 9.0

Time

Range of

multiplying

factors

10~1.0 0.424 0.424 0.425 0.426 0.431

20~1.0 0.423 0.419 0.423 0.423 0.426

40~1.0 0.422 0.419 0.422 0.423 0.425

Here, we can decide an optimal time granule. As we seein Table 8.7, while the

time granule is below than 0.001, the error is below 1.0 (%). We consider that an error

below 1.0 (%) satisfies a reasonable error tolerance. To investigate the variation of the

network bandwidth requirement in a varying time granule, we provide the tragjectory of

the ratio of the passed data bits between two time granules (0.001 vs 0.0001) in Table

8.12 and Table 8.13. All ratios of the passed data bits between two time granules (0.001
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vs 0.0001) are less than 1.0, and less network bandwidth is required when the time

granule is 0.001 than is required when the time granule is 0.0001. As the multiplying

factor of the standard quantum size decreases, the ratio of the passed data bits between

two time granules (0.001 vs 0.0001) decreases and the difference of the two network

bandwidth requirements increases. When the fixed multiplexing scheme is used, the

difference of two network bandwidth requirements (between two time granules (0.001 vs

0.0001)) increases more than when the variable multiplexing scheme is used. Therefore,

when the time granule is 0.001, we can save the network bandwidth requirement with a

reasonable error tolerance using both fixed and variable multiplexing schemes.

Table8.12 Trajectory of ratio of passed data bitsin fixed multiplexing (Time

granule: 0.001 vs 0.0001)

Simulation 1.0 3.0 5.0 7.0 9.0

Time

Range of

multiplying

factors

10~1.0 0.623 0.571 0.501 0.432 0.379

20~1.0 0.923 0.803 0.743 0.647 0.551

40~1.0 0.951 0.911 0.915 0.842 0.706
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Table8.13 Trajectory of ratio of passed data bitsin variable multiplexing (Time
granule: 0.001 vs 0.0001)

Simulation 1.0 3.0 5.0 7.0 9.0
Time

Range of
multiplying
factors
10~1.0 0.789 0.754 0.731 0.669 0.639
20~1.0 0.978 0.890 0.856 0.800 0.744
40~1.0 0.982 0.950 0.959 0.917 0.837

In order to evaluate the actual system execution performance of the multiplexing
interest-based quantization scheme, we compared the passed data bits and the system
execution time of a non-predictive quantization system, a predictive quantization system
and a multiplexing predictive quantization system.

As Figure 8.10 shows the multiplexing predictive quantization system greatly
reduces the passed data bits compared to the non-predictive and predictive quantization
systems with varying the multiplying factors. As the range of the multiplying factors
increases, the passed data bits decrease in al systems (e.g. the non-predictive and
predictive quantization systems and the multiplexing predictive quantization system). The
multiplexing predictive quantization system greatly reduces the passed data bits more
than both the non-predictive and predictive quantization systems. Compared to the non
predictive and predictive quantization systems, the predictive quantization system shows

more reduction of passed data bits due to the theoretica advantages of predictive
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guantization (i.e., both the number of messages and their size can be reduced over non
predictive quanitzation).

Figure 8.11 illustrates how much the multiplexing predictive quantization system
savesthe system execution time by comparing non-predictive and predictive quantization
systems. The nonpredictive quantization systemis a discrete time system and includes a
lot of local computations based on the systen’s use of DTSS integrators. Meanwhile,
predictive quantization and multiplexing predictive quantization systems are discrete
event systems which tremendously reduce those local computations since the systems use
the DEV S integrators.

The saving of system execution time between the non-predictive quantization
system and the predictive quantization system demonstrates the effect of the reduction of
network bandwidth and of the big local computation that the DTSS integrators cause. In
order to get the result of system execution time, we experimented with Windows NT
machines connected viaa 10 Base T Ethernet network which has less network delay than
that of WAN. In experimenting in WAN, we expect lowering the system execution time
by reducing of network bandwidth. The reduction of the system execution time between
the predictive quantization system and the multiplexing predictive quantization system
demonstrates the effect of the reduction of network bandwidth in compensating the local

computation overhead for multiplexing.
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Figure 8.10 Passed data bits for varying multiplying factors in a non-predictive
guantization system, a predictive quantization system, and a multiplexing predictive

guantization system (Component pairs. 40)
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Figure 8.12 shows the passed data bits of three systems (a non-predictive

guantization system, a predictive quantization system and a multiplexing predictive

guantization system) for varying numbers of component pairs. As the number of

component pairs increases, the passed data bits of the nonpredictive and predictive

guantization systems increase significantly, and the multiplexing predictive quantization

system tremendously reduces the passed data bits. Compared to two nonmultiplexing

systems (nonpredictive quantization system and predictive quantization system), the
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predictive quantization system shows more reduction of the passed data bits than that of

the nonpredictive quanitzation system.

Figure 8.13 illustrates the variation of the system execution time of the three

systems in varying the number of component pairs. In the predictive quantization and the

multiplexing predictive quantization systems, as the number of component pairs increases,

the system execution time increases slowly and proportionally to the passed data bits.

However, the system execution time in the non-predictive quantization system increases

in an exponential manner due to saturation of network transmission.
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Figure 8.12 Passed data bits for varying numbers of component pairs in a non

predictive quantization system, a predictive quantization system, and a multiplexing

predictive quantization system
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Figure 8.13 System execution time for varying numbers of component pairsin a
non-predictive quantization system, a predictive quantization system and a

multiplexing predictive quantization system

The results of the passed data bits and the system execution time in a non-predictive
guantization system, a predictive quantization system, and a multiplexing predictive
guantization system show that the multiplexing predictive quantization scheme is very
effective in saving the inter-federate data and actual system execution time in a
distributed simulation.
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9 CONCLUSION

9.1 Contribution

9.1.1 Interest-based Quantization Scheme

Distributed simulation supports many practical application domains, such as
process control and manufacturing, military command and control, transportation
management, and so on, that require reliable communication linkage among multiple,
geographically distributed systems. With a large number of communicating entities in
such distributed systems, however, execution time of a distributed simulation sharply
increases due to message exchanges increasing quadratically with the number of
communicating entities. Both network data load and delay among communicating entities
determine how large-scale distributed systems can be modeled and smulated in a
reasonable execution time. Under limited communication resources, reducing message
traffic among communicating entities is an approach to increase the scalable execution of
large-scale distributed simulations.

We investigated message traffic reduction schemes, such as quantization and
interest management, DDM of HLA, that have been proposed for reliable distributed
simulation within reasonable execution time. Each message traffic reduction scheme

requires understanding of the semantic and dynamic characteristics of the application to
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tune their parameters for effective filtering with acceptable error. The interest-based
guantization scheme that we proposed in this dissertation, was established by combining
the quantization scheme and the interest management scheme. This scheme allows for the
stratification of the degree of interest for a communication-specified attribute and thereby
controls the update exchange frequency of the attribute based on the time-varying
distance between communicating entities in distributed simulations. The distance in any
suitable space, which is not just physical space, controls the size of the quantum
governing communicationof a specified attribute. In contrast, the HLA DDM works the
only all-or-none interest scheme underlying the HLA routing space. In this sense, the
interest-based quantization scheme can be viewed as a generaization of the all-or-none
interest scheme of HLA DDM.

To support the scalability improvement of the interest-based quantization scheme,
we presented two approaches. the global space manager approach and the local space
manager approach. With these two approaches, the workload of agents is efficiently
balanced and concurrently processed in distributed processors. Therefore, the systems
that employed these two approaches demonstrated a greater performance in terms of
saving system communication and computation time than the system that did not use any
Space manager operation. When the two approaches were compared, the local space
manager approach was shown to reduce system communication and computation more
than the global space manager approach. This is because, unlike the global space
manager approach, the local space manager approach reduces the amount of

communication overhead and solves the problem of computation bottleneck. The
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analytical and empirical results from the pursuer/evader example in chapter 3 and chapter
7 demonstrated the effectiveness of the interest-based quantization scheme in reducing
both message traffic and overall smulation execution time. Those results include the
inevitable presence of communication and computation overheads for monitoring the
communication condition for a specified attribute among communicating entities and for
filtering the messages among communicating entities.

As a means to discover more efficient approaches of the interest-based
guantization we investigated the interest-based predictive quantization and the interest-
based multiplexing predictive quantization approaches, applied those approaches to the
projectile/missile application with realistic three dimensional dynamics, and analyzed the
network bandwidth requirement for those approaches. In the interest-based predictive
guantization approach, the predictive quantization's advantage for reducing both the
number of messages and their size is added to the interest-based quantization. As a result,
the approach greatly reduced network bandwidth within a reasonably small error.

For simulation with a large number of projectile/missile pairs, we applied the
multiplexing approach to the interest-based predictive quantization. In order to
compensate for the disadvantage of the fixed multiplexing approach at low active
components, the variable multiplexing approach was discussed in this dissertation, and
the effectiveness for reduction of the network bandwidth requirement of both fixed and
variable multiplexing approaches was analyzed in varying message dimensions and
simulated component pairs. In experimenting with the projectile/missile application, we

investigated the variation of a (ratio of active component) and the effectiveness of both
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fixed and variable multiplexing in varying quantum sizes and time granules. This
research on effectiveness of both fixed and variable multiplexing is an improvement over
the previous multiplexing approach, in which only fixed multiplexing is discussed with a
fixed time granule and a fixed a (ratio of active component: a=1) [46, 57]. The analytical
and experimental results from projectile/missile application in chapter 8 showed that the
multiplexing predictive quantization scheme was very effective in saving the inter-

federate data transmission and actual system execution time in a distributed simulation

9.1.2 DEVSGDDM Environment

Both the quantization scheme and the interest management scheme are very
effective message traffic reduction schemes, especialy in a large-scale distributed
simulation. The DEVS/GDDM environment, provided in this dissertation, uses the
interest-based quantization scheme to take advantage of both schemes, so that the
DEVS/GDDM environment gives greater promise for simulation performance. Also,
since the DEVS/GDDM environment compensates for the disadvantages of DDM of
HLA mentioned earlier, the DEVS/GDDM environment points in a good direction for
modifying DDM of HLA as a means to obtain further message traffic reduction.

The DEVS/GDDM environment supports a variety of message traffic reduction
methods (nonpredictive interest-based quantization, predictive interest-based

guantization, and multiplexing interest-based quantization). Thus, a simulation designer
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can choose from the message reduction schemes provided by DEVS/GDDM environment
according to the need of each different application.

The DEVS/GDDM environment is an HLA-compliant modeling and simulation
environment. While the HLA-Interface layer supports the interoperation at the simulation
level, the DEVS/GDDM layer supports the modeling level features inherited from DEV'S,
which has a generic dynamic system formalism with a well defined concept of
modularity and coupling of components. The high level modeling paradigm based on the
DEVS formaism reduces the level of complexity for a model designer to construct
models in a hierarchical modular fashion and improves the maintenance, reusability, and
modifiability of models. The DEVS/GDDM environment is supported by the four
libraries; container, DEVS, DEVS/HLA-Interface, and HLA-Interface. Through the
container library, an object can be stored, retrieved, and organized. The DEVS library
provides methods for the DEVS formaism. The DEVS/HLA-Interface layer supports
interface methods between the DEV S and the HLA-Interface layers. The HLA-Interface
layer supplies the simulation-friendly methods, which encapsulates all the complex
details of HLA connectivity, so that the DEVS/GDDM environment provides the ease
and effectiveness for modeling to a model developer. In general, to work the HLA/RTI
based distributed smulation, the model developer has to know and use the HLA/RTI
functions. In DEVS/GDDM environment, a model developer does not have to know the
HLA/RTI functions and only develops the DEV'S models.

As we have discussed, the DEVS/GDDM modeling and simulation environment

employs:
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- Sound system theories based on the DEV S formalism

- Highly efficient message traffic reduction scheme called the interest based quantization
scheme

- Rédiable distributed simulation with reasonably small error

- Fexibility for a smulation designer to make a choice out of methods supported by the

interest-based quantization scheme according to each specific application

- Ease and effectiveness for modeling from the hierarchical and modular object-
oriented technology and high level modeling paradigm

- Friendly user interface in which a user develops only DEV'S models

- Encapsulation mechanism to hide all the complex details of HLA connectivity
from a simulation designer in the HLA-Interface layer

- Highly reliable interoperation facility among federates using HLA/RTI

9.2 Future Work

9.21 Extension of DEVS/GDDM environment for a Nor+Paired Application

In future research, the multiplexing predictive quantization scheme of the
DEVS/GDDM environment can be extended for a nonpaired application, in which an
agent broadcasts its message to all other agents in the same federate or in other federates.

In this section, we will discuss a prototype of an extended multiplexing predictive



194

guantization scheme in a non-paired application by extending the message' s data format

and the space manager.

9.2.1.1 Extension of message' s data format

In a nonpaired application, multiple quantum sizes are assigned to the multiple
pairs between a sender and multiple receivers. The sender outputs each message which
has each data value quantized with a particular quantum size. Therefore, in order to
perform an extended multiplexing predictive quantization a message’'s data format
should be extended to include a Quantum ID to represent quantum size. For example, if

the message includes three dimensional position values, the message’ s data format is:

(ID, QID, %, Y, 2)

where ID is an agent identification number and QID is a quantum size identification

number.

QID presents what quantum size the data value is quantized with. Using QID, the
extended multiplexing predictive quantization scheme routes the message (which has a
certain QID) to the exact receiver specified by the quantum sizes of sender/receiver pairs.
Figure 9.1 illustrates the message passing between two federates (federatel and

federate?) in a non-paired application using the extended message’s data format (1D, QID,
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X, Y, 2). The message passing is performed by the sender multiplexer and the receiver de-

multiplexer.
FederateGDDM FederateGDDM
(Federate 1) (Federate 2)
position updates
(Extended Multiplexing Predictive
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Figure 9.1 M essage passing between two federatesin a Non-Paired Application
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Figure 9.2 illustrates a detailed description of the message passing in a nonpaired

application. Anagent sends its messages including double precision values (1D, QID, X, v,

Z) quantized with different quantum sizes to the sender multiplexer. The sender

multiplexer has three sub-components (converter, encoder, and multiplexer) to pass a

multiplexed message to the receiver federate. The converter changes the double precision

vaues (ID, QID, x, y, 2z) to integer vaues (ID, QID, 9,9,9, ), where

7?1,0,17? 0,.9,0,, and the encoder changes the integer position values to the

encoded five bits (So = 5> log » 3%; for three dimensions). The encoder also changes the

agent 1D to properly encoded bits (S.), and changes the Quantum 1D to properly encoded
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bits (Su). For example, if the number of quantum sizes is five, three bits (3 > log » 5) are
needed to represent a Quantum I1D. The multiplexer receives the encoded bits (S, Su, and
Sy), creates a large, multiplexed message, and sends it to the receiver federate. The
receiver de-multiplexer has three sub-components (de- multiplexer, decoder and recover)
to recover the original double precision values (ID, QID, X, y, z) from the multiplexed
message. The de-multiplexer separates from the multiplexed message to each encoded

bits (S, Su, and Sy). The decoder changes the encoded bits to the integer values (1D, QID,
0x.9,.9;,), and the recover component converts these integer values to the original

double precision values (ID, QID, X, y, z). The receiver de-multiplexer outputs the
messages, including double precision values (ID, QID, X, vy, z), through different output

ports related to each Quantum ID.

9.2.1.2 Extended Space Manager

To perform the multiplexing predictive quantization scheme in a nonpaired
application, the role of the space manager needs to be extended. The space manger must
make the exact connections between the output ports (related to each Quantum ID) of the
receiver de-multiplexer and the input ports of agents in receiver federate. As Figure 9.2
illustrates, an agent outputs each message which contains each data value quantized with
each quantum size and each message includes the Quantum ID for presenting its quantum
size. Each output port of the receiver de-multiplexer is assigned to each Quantum ID and

a message (which has a certain Quantum 1D) should be outputted through the exact
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output port assigned to the Quantum ID of the message. The space manager has to know
the quantum sizes pertaining between a sender agent and multiple receiver agents and
control the connections between each output port (assigned to each quantum size) of the
receiver de-multiplexer and the input ports of multiple receiver agents.

Two approaches related to scalability of space manager operation and their
comparison with results were discussed in chapter 3 and chapter 7. These approaches are
based on a centralized global space manager and distributed schemes based on local
space managers. For a nonpaired application, we prefer the distributed approach
assigning each local space manager in a different federate due to the advantages over the
centralized approach with the global space manager. The distributed approach reduces the
computation load because each local space manager controls the connections only for
those agents within its own federate and the connection computation (to know quantum
sizes) is divided up and those pieces are assigned to local space managers for concurrent

processing.

9.2.2 Extension of DEVS/IGDDM environment for real-time distributed simulation

This DEVS/GDDM environment and the interest-based quantization scheme can
be applied to a real-time distributed simulation. This DEVS/GDDM environment can
help to overcome the time constraint requirements in real-time distributed simulation
involving humans and/or hardware in the loop. Also, the theoretical and empirical results

we obtained for global and local versions of the space manager will be tested for
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scalability in rea-time distributed simulation. The point of future work is how to extend
the DEVS/GDDM environment to a real-time distributed simulation and to real-time

execution infrastructures.
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APPENDIX A. SMOOTHER MODEL

The amoother model is developed to connect a DEVS component and a DTSS
component. The behavior of the smoother model is based on the coupling of DEVS ©
DTSS, which indicates a coupling of an output of a DEVS component to an input of a
DTSS component. In this coupling, we define the output event value of the DEVS
component occurred prior to the state transition of the DTSS component as the input
event at the next state transition of the DTSS component.

In this dissertation, a DEV S component generates three dimensional output events
with each variable time advance. A DTSS component receives the three dimensional
input events from the DEV'S component and operates in the same time. The smoother
model is a connector between the DEV'S component and DTSS component and it plays a
role to reduce error caused by different state time advances between DEVS and DTSS.

A Parallel DEVS representation [27] for the smoother model follows. This

representation is provided using the “Paralel DEV S with Ports’ formalism.

DEVSSfT]OOther =< X1 Y’ S’ ?int! ’?eXh ?COnf! ?! ta>1 Whae

InPorts = {*in1”, “in2”, “in3"}

OutPorts = {“out”}

X={(@n,%)]i=123x? R}

Y ={ (“out”, (x1,x2,x3) )

S={ “active’, “passive’ X Y x Ry }

-

2ea( (“active’ ,(x1,x2,x3),? ), &,(“in",x")) = (“active’,( XL, X2, x3),? -€),? ?
5
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?
?
where (X1, X2, x3) = (x1' x2,x3) if i =1
=(x1x2 x3)ifi =2
=(x1x2x3) if i =3?
?
?

2in(“passive’,(x1,x2,x3),? ) = (“passive’,(x1,x2,x3), ? )
?2in(“active”,(x1,x2,x3),? ) = (“active”,(x1,x2,x3), ?t)

where ?t =time step
?

?conf(StA(S),X) = ?ext (?int(9),0,X)
?
? (factive”,(x1,x2,x3),? ) = (“out”, (x1,x2,x3))

ta(“ active”,(x1,x2,x3),? ) = ?
ta(“passive’ ,(x1,x2,x3),? ) = ?

Figure Appendix A.1 illustrates the discrete time segment trajectory given by the parallel

DEV S representation for the smoother model.
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APPENDIX B. PROJECTILE and EARTH MODELS

B.1 Projectile Model

203

The projectile model is a (relatively) simple model of a sphere of uniform density

following a ballistic trajectory. It begins at some initial position with aninitia velocity

and falls until it hits the surface of the Earth, at which point it stops.

B1.1 Formal Description

I nputs

ag(x) — Acceleration due to gravity at our position
Ve(X) — Inertial velocity of the atmosphere at our position
p(x) — Atmospheric density at our current position

State variables and outputs

X — Position
v —Velocity
a—Acceleration

Parameters
C — Coefficient of drag
m— mass

A — cross sectional area

Behavior specification

X =V
vV =a
r=V-VyX)

a=-05CAp(x)|r|r/ m+ ag(x)



B.1.2 Program code for Projectile model

Projectile Model

public class Projectile {

/Il Position (m)

private VectorD Xx;

/Il Integrator for variable x
private trap_integ xinteg;
Il Velocity (m/s)

private VectorD v;
/Il Integrator for velocity

private trap_integ vinteg;
/Il Acceleration (m/s2)

private VectorD a;

/Il Velocity of the atmosphere (m/s)
private VectorD va;

/Il Acceleration due to gravity (m/s'2)
private VectorD ag;

[/l Density of the atmosphere (kg/m"3)
private double p;

/Il Mass of the projectile (kilograms)

private double m;

/Il Drag coefficient (dimensionless)

private double C;

/Il Area of cross section in direction of flight (m"2)
private double A;

/**

Create a projectile with the parameters m (mass in kilgrams), C, (drag coefficient),

A (cross sectional areain meters)

and initial conditions x0 (initial position in meters) and vO (initial velocity in meters/s)
*/

public Projectile (double m, double C, double A, VectorD x0, VectorD vO0) {
thism=m;
this.C = C;
thisA = A;
this.x = x0;
this.v = V0,
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p=0.0;
a= new VectorD(0.001,0,0);
va = new VectorD(0.,0,0);
ag = new VectorD(0,0,-9.80665);
xinteg = new trap_integ(x0);
vinteg = new trap_integ(v0);
}

/I Compute a single state change with time advance dt.
/I Convention is internal transition, then external transition.
/Il Compute the next state using timestep dt (i.e. state at timet + dt)

public void delta (double dt) {
/I Compute the position and velocity after dt time units based on acceleration
Il up to current time

x.plus( xinteg.integ (v, dt));
v.plus( vinteg.integ (a, dt));

/I Compute acceleration for next state transition

VectorD r = new VectorD(v);

r.minus(va);

la=(-05* C* A* p* rmag () * r/ m) + ag;
rtimes(-0.5* C* A* p* r.mag ());

r.divideBy(m);

r.plus(eg);

a=r;

}

/Il Set the atmospheric density (apply the p(x) input). Units are kg/m"3
public void setDensity (double p) { this.p=p; }

/Il Set the acceleration due to gravity (apply the ag(x) input). Units are m/s"2
public void setAcclGrav ( VectorD ag) { thisag = ag; }

Il Set the atmospheric velocity (apply the va(x) input). Units are m/s
public void setAtmoTangVe ( VectorD va) { thisva=va; }
/I Get the position of the projectile. Units are meters

public VectorD getPos () { return x; }
/I Get the velocity of the projectile. Units are m/s
public VectorD getve () { returnv; }

Il Get the acceleration of the projectile. Units are m/s"2
public VectorD getAccl () { return g }

}



public class trap_integ{
protected VectorD xlast;

/Il Create an integrator whose intia state is (0,0,0)
public trap_integ(){ }

/] Create and set the initial state
public trap_integ (VectorD x0) { thisxlast = x0; }

/Il Set the integrators initial state
public void init (VectorD x0) { thisxlast = x0; }
/I Single step trapezoidal integration

private double trap (double x, double y, double dt) {
return (dt * (Math.min (x, y) + Math.abs (x - y) / 2.0));
}

public VectorD integ (VectorD x, double dt){
VectorD results = new VectorD();

results.x = trap (xlast.x, x.x, dt);

results.y = trap (xlast.y, x.y, dt);

results.z = trap (xlast.z, x.z, dt);

xlast = X;

return results;

}
}

AccelerationModel

public class instantAccel Fn extends Atomic{

/Il Velocity (m/s)

private VectorD velocity;

/Il Ve ocity of the atmosphere (m/s)
private VectorD AtmoTangVel;

/Il Acceleration due to gravity (m/s*2)
private VectorD accel Gravity;

/Il Dengity of the atmosphere (kg/m"3)
private double density;

/Il Mass of the projectile (kilograms)
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private double m;

/I Drag coefficient (dimensionless)

private double C;

/Il Area of cross section in direction of flight (m"2)
private double A;

/I stop projectile when hits ground

private boolean hitGround = false;

public instantAccel Fn(String name, double mm, double CC, double AA){

super(name);
inports.add("velocity");
inports.add(" Gravity");
inports.add("AtmoDensity");
inports.add("AtmoTangVe");
inports.add("hitGround");

m=mm;
C=CC;
A =AA;
initialize();
}

public void initialize() {

accelGravity = new VectorD(0,0,0);
AtmoTangVe = new VectorD(0,0,0);
super.initialize();

}

public void deltext(double e, message x) {

Continue(e);
for (int i=0; i< x.get_length();i++)
if (message _on_port(x,"velocity",i)) {
entity ent = x.get_val_on_port("velocity",i);
velocity = (VectorD)ent;
sigma=0;
}
elseif (message_on_port(x,"Gravity",i)) {
entity ent = x.get_val_on_port("Gravity",i);
accelGravity = (VectorD)ent;
sigma=0;

}
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else if (message_on_port(x,"AtmoDensity”,i)) {
entity ent = x.get_val_on_port("AtmoDensity",i);
density = ((doubleEnt)ent).getv();
sigma=0;

}

elseif (message on_port(x,"AtmoTangVe",i)) {
entity ent = x.get_val_on_port("AtmoTangVe",i);
AtmoTangVel = (VectorD)ent;
sigma=0;

}

elseif (message_on_port(x,"hitGround",i)) {
hitGround = true;
sigma=_0;

}

}
public void deltint() {

phase = "hitGround: " + hitGround,;
sigma= INFINITY;

}

public VectorD acceleration() { /// Acceleration (m/s"2)

if (hitGround) return new VectorD(0,0,0);
VectorD r = new VectorD(velocity);
r.minus(AtmoTangVel);

lla=(-05*C* A*p*rmag () * r/ m) + ag;
rtimes(-0.5* C* A * density * r.mag ());
r.divideBy(m);

r.plus(accel Gravity);

return r;

}

public message out( ) {

message m = new message();
m.add(make_content("out", acceleration()));
return m;

}

208



}

DEVS Predictive Integrator for Velocity and Position Models

public class DEV SGenlint extends Atomic{

protected double old_inp,inp,quantum,position,initial Position;
protected int lowerBound, nextLowerBound, input_nextL owerBound,;
protected boolean positiveRestriction = false;

public DEV SGeniInt(String name, double Quantum, double Position){
super(name);

inports.add("in");
inports.add(" setQuantum”);
inports.add("stop");

guantum = Quantum;
initial Position = Position;
initialize();

}

public void initialize(){

inp=1;
position = initialPosition;
super.initialize();
lowerBound = (int)Math.floor(position/quantum);
nextLowerBound = lowerBound;
hold_in("doReset",0.01);

}

public int signOf(double x){
if (x==0) return 0;
elseif (x > 0) return 1;
elsereturn -1;

}

public void setlnp(double buf){
inp = buf;
}
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public void timeAdvance(double diff){
sigma = Math.abs(diff/inp);
}

public void update(double e){

position = position + e *inp;

if ((inp >0 && position > nextL owerBound* quantum)||
(inp < 0 && position < nextL owerBound* quantum))

{

position = nextL owerBound* quantum,
/I System.out.printin(get_name() + " INPUT VIOLATION");

}

public void computel ntNextPosition(){
lowerBound = nextL owerBound;
nextLowerBound = lowerBound + signOf(inp);

timeA dvance(signOf (inp)* quantum);

if inp==0)

System.out.printin(get_name()+ "ERROR: input can't be zero");

}

public void computeExtNextPosition(){

if inp==0)
sigma = Double.POSITIVE_INFINITY;
el se{
if (inp <0){
if (nextLowerBound > lowerBound) {
nextL owerBound = lowerBound,;
}
if (nextLowerBound < lowerBound) {
nextLowerBound = lowerBound-1;

}

}
dse{ /lif (inp> 0)
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if (nextLowerBound > lowerBound) {
nextLowerBound = lowerBound+1,
}

if (nextLowerBound < lowerBound) {
nextLowerBound = lowerBound;
}

}
phase ="" + position;

timeA dvance(nextL owerBound* quantum - position);

}
}

public void deltcon(double e message x)

{
deltint();
deltext(0,x);

}

public void deltext(double e message x)
{
Continue(e);
for (int i=0; i< x.get_length();i++)
if (message_on_port(x,"in",i)){
entity ent = x.get_val_on_port("in",i);
phase="" + position;
doubleEnt f = (doubleEnt)ent;
setinp(f.getv() );
update(e);
computeExtNextPosition();

for (int i=0; i< x.get_length();i++)

if (message_on_port(x,"setQuantum”,i)){
entity ent = x.get_val_on_port("setQuantum”,i);
guantum = ((doubleEnt)ent).getv();

lowerBound = (int)Math.floor(position/quantum);
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nextL owerBound = lowerBound:;

lowerBound = nextL owerBound;
nextLowerBound = lowerBound + signOf(inp);

update(e);
computeExtNextPosition();

}
elseif (message on_port(x,"stop”,i))
passivate();

}

public void deltint()
{

position = nextL owerBound* quantum,
phase ="" + position;
computel ntNextPosition();

}

public message out()
{

int N_Quantum = nextLowerBound - lowerBound;

message m = new message();
if (N_Quantum !=0) {
m.add(make_content("out”, new doubleEnt(nextL owerBound* quantum)));

}

return m;

}
}

B.2 Earth Model

The earth model consists of three sub-models; an atmospheric model, a gravity

model, and a motion model. The atmospheric model uses lookup tables based on the
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1976 atmospheric modeling standard. The gravity model is a smple force model based
on a spherical Earth. The entire system rotates (i.e. objects attached to the earth and the

atmosphere have arotationa velocity about (0,0,0)).

B.2.1 Formal Description

I nputs

X — A point at which to compute values for the system outputs.

Outputs

p(x) — Atmospheric density at position x

Ve(X) — Rotational velocity of the earth at a position x

Va(X) — Rotation velocity of the atmosphere at a position x

ag(x) — Acceleration due to gravity at position x

Parameters

Re — mean equetoria radius

w — rotational velocity

m— gravitational parameter

Behavior specification

ag(x) =-m/ x[’

V=w?X

where wis a vector (0, 0, w) and x is a position in the plane of the equator. That is, X =
(x,y, 0). In this simple model, we let ve(X) = v4(X). That is, the inertial velocity of the
atmosphere at a position x is equal to the inertia velocity of a point attached to the earth

at position X.
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B.2.2 Program code for Earth model

public class Earth {

public static final double mu = 3.986012E14;
public static final double w = 7.292115856E-5;
public static final double R = 6378145;

/I Create the Earth ()
public Earth () { }

/Il Compute the atmospheric density (kg/m”3) at position x (m)
public static double getAtmoDensity (VectorD x) {

double rho = atmo76.computeRho (x.mag() - R);

return rho;

}

I/l Compute the acceleration induced by gravity (m/s*2) at position x (m)
public static VectorD getGravity ( VectorD x) {

/I (-mu* x/ pow (x.mag (), 3));
VectorD X = new VectorD(x);
X.times(-mu);
X.divideBy(Math.pow (x.mag (), 3));
return X;

}

/Il Compute the tangentia velocity (m/s) at position x
public static VectorD getEarthTangVel (VectorD x) {
VectorD X= new VectorD(x.x, X.y, 0.0);

VectorD W = new VectorD(0.0, 0.0, w);

return W.cross(X);

}

/Il Compute the tangential velocity (m/s) of the atmosphere at position x (m)
public static VectorD getAtmoTangVel ( VectorD x){
return getEarthTangVe (X);

}
}

/**

This class computes properties of the 1976 U.S. Standard Atmosphere
*/
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public class atmo76 {

I sea-level mean molecular weight of air (kg/mol)
public static final double mO = 28.9644;

/I acceleration due to gravity (m/s"2)

public static final double g0 = 9.80665;

I radius of the Earth (m)

public static final double rO = 6356766.0;

Il gas constant (N m K / kmol)

public static final double rstar = 8314.32;

/I This array of constants was not documented in the origina listing
public static final double pb [] =
{ 101325.0, 22632.06468902076, 5474.889006665066,
868.0187719024579, 110.9063215028894, 66.93888345713616,
3.956421275130599, 0.3733836885098447 } ;

/I This array of constants was not documented in the original listing
public static final doubletmb [] =
{ 288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946 } ;

/I This array of constants was not documented in the origina listing
public static final double altb [] =
{ 0.0, 11000.0, 20000.0, 32000.0, 47000.0, 51000.0, 71000.0,
84852.0, 91000.0, 110000.0, 120000.0, 1000000.0};

/I Thisarray of constants was not documented in the original listing
public static final doubleImb [ ] =
{ -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002 };

/**

Compute the atmospheric density at z meters above the Earth's surface.
i.e. If (0,0,0) isthe center of the Earth in your coordinate system,

the dtitude above the Earth's surface is (z - r0) meters.

Returns density (kg/m"3).

*/

public static double computeRho (double alt) {

/[ amospheric density
double rho = 0.0;

/I geopotential altitude above sea level (m)
doubleh=r0* at/ (rO + at);



intib=0;
while ((h > atb[ib+1]) && (ib < 8)) ib++;

[l temporary values

double delalt = 0.0;

/I molecular-scale temperature (K)
double tm = 0.0;

/I atmaospheric pressure

double p =0.0;

if (h<=atb[7]) {
delalt = Math.max (-5.0, h - atb[ib]);
tm = tmb[ib] + Imb[ib]* delalt;
if (Imb[ib] ==0.0) p = pb[ib] * Math.exp(-g0* m0* delalt/rstar/tmbJ[ib]);
else p = pb[ib] * Math.pow(tmb[ib]/(tmb[ib] + Imb[ib]* delalt),g0* mO/rstar/Imblib]);
rho = p*mO/rstar/tm;

}
elseif (at <= atb[8]) {
rho = 2.860e-6;

}

elseif (at <= alth[9]) {
rho =9.708e-8;
}

elseif (at <= altb[10]) {
rho = 2.222e-8;

}
elseif (at <= altb[11]) {
rho = 3.561e-15;

}
dseif (at > altb[11]) {
rho = 0.0;

}

return rho;
} // end of function computeRho

} // end of class amo76

216



217
REFERENCES

[1] Bernard P. Zeigler, “Theory of Modeling and Simulation,” New York: John Wiley,
1976.

[2] Jeffrey Bradshaw, Ed., Software Agents, AAAI Press, Menlo Park, CA, 1997.

[3] N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,” in Agent
Technology: foundations, Application, Markets, N. R. Jennings and M. Wooldridge,
Eds., pp. 3-28. Springer-Verlag, 1998.

[4] John Anderson, “A generic distributed ssimulation system for intelligent agent design
and evaluation,” in Proceedings of the Tenth Conference on Al, Simulation and Planning,
AlS-2000, Hessam S. Sarjoughian, Francois E. Cellier, Michael M. Marefat, and Jerzy
W. Rozenblit, Eds. March 2000, pp. 36-44, Society for computer Simulation
International .

[5] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe, “Trial by
firee Understanding the design requirements for agents in complex environment,: Al
Magazine, vol. 10, no. 3, pp. 32-48, Fall 1989.

[6] Martha E. Pollack and Marc Ringuette, “Introducing the tile-world: experimentally
evaluating agent architectures,” in Proceedings of the Ninth National Conference on
Artificial Intelligence, 1990, pp. 183-189.

[7] Thomas A. Montgomery and Edmund H. Durfee, “Using MICE to study intelligent
dynamic coordination,” in Proceedings of the Second International Conference on Tools
for Artificia Intelligence. 1990, pp. 438-444, IEEE

[8] S. M. Atkin, D. L. Westbrook, P. R. Cohen, and G. D. Jorstad., “AFS and HAC:
Domain general agent simulation and control.,” in Software Tools for Developing
Agents: Papers from the 1998 Workshop. 1998, number Technical Report WS-98-10, pp.
89-96, AAAI Press

[9] Defense, D.o., High Level Architecture Interface Specification, Version 1.0, Defense
Modeling and Simulation Organization, 1996, http://msis.dmso.mil

[10] Defense, D.o., Draft Sandard For Modeling and Smulation (M&S) High Level
Architecture(HLA) - Federate Interface Specification, Draft 1, . 1998

[11] “CORBA Overview”
http://ww.infosys.tuwien.ac.at/Research/Corba/ OM G/arch2.htm#446864




218

[12] OMG, “Comparing ActiveX and CORBA/IIOP,”
http://www.omg.org/news/activex.html

[13] Ecoscope, “Is DCOM Truly The Object Of Middleware's Desire?”
http://techweb.cmp.com/nc/813/813r12.html

[14] Zeigler, B.P., DEVS Theory of Quantization, . 1998, DARPA Contract N6133997K -
0007: ECE Dept., UA, Tucson, AZ.

[15] Zeigler, B.P. and JS. Lee. Theory of Quantized Systems. Formal Basis for
DEVSHLA Distributed Smulation Environment. in Enabling Technology for Smulation
Sience(ll), SPIE AeoroSense 98. 1998. Orlando, FL.

[16] Software Technology, “Middleware”
http://www.sal .cmu.edu/technol ogy/str/descriptions/middleware body.html

[17] Voge, “WWW and Java Threat or Chalenge to CORBA?
http://www.dstc.edu.cu/AU/staff/andres-vogel/papers/mws96/paper.html

[18] “Choosing between CORBA and DCOM,”
http://www.cerfnet.com/~mpcline/Corba- FA Q/corba-and-dcom.html

[19] Magic, “DCOM and CORBA,” http://www.magic-sw.be/wited.htm

[20] T. Brando, “Comparing DCE and CORBA/”
http://www.mitre.org/research/domis/reports DCEVCORBA .html

[21] Bernard P. Zeigler, “Multifacetted Modelling and Discrete Event Simulation,”
London: Academic Press, 1984.

[22] Bernard P. Zeigler, “Object-Oriented Simulation with Hierarchical, Modular
Models: Intelligent Agents and Endomorphic Systems,” San Diego, CA: Academic press,
1990.

[23] Y oonkeon Moon, “High Performance Simulation Based Optimization Environment:
Modeling Spatialy Distributed Large Scale Ecosystems,” Ph.D. Dissertation, The
University of Arizona, Tucson, Arizona, 1996.

[24] Bernard P. Zeigler, Y. Moon, D. Kim, and JG. Kim, “C++ DEVS: A High
Performance Modeling and Simulation Environment,” 29" Hawaii International
Conference on System Sciences, Jan. 1996.

[25] Bernard. P. Zeigler, “The Support for Hierarchical Modular Component-based
Model Construction in DEVS/HLA,” in SIW. 1999. Orlando, FL.



219

[26] Bernard. P. Zeigler and D. Kim. Design of High Level Modelling / High
Performance Smulation Environments in 10th Workshop on Parallel and Distributed
Smulation. 1996. Philadelphia.

[27] Bernard. P. Zeigler, H. Praehofer, and T.G. Kim, Theory of Modeling and
Smulation. 2 ed. 1999, New York, NY: Academic Press

[28] Lin, C. 1994a. Study on the network load in distributed interactive simulation. In
Proceeding of the AIAA on Flight Simulation Technologies.

[29] Lin, C. 1994b. The performance assessment of the dead-reckoning algorithm in DIS.
In Proceedings of the 10th DIS Workshop on Standards for the Interoperability of
Distributed Simulation, March.

[30] BASSIOUNI, M., CHIU, M., AND GARNSEY, M. 1993. “Real-time data filtering
in the gateways of wide area aimulation networks,” In 15th Interservice / Industry
Training Systems Conference (I/1TSC), Dec., 891-900.

[31] BASSIOUNI, M., WILLIAMS, H., AND LOPER, M. 1991. “Intelligent filtering
algorithms for real-time networked simulators,” In Proceedings of IEEE Conference on
Systems, Man and Cybernetics, 309-314.

[32] Katherine L. Morse, “Interest management in large scale distributed simulations,”
Tech. Rep. 96-127, Department of Information and Computer Science, University of
Cdlifornia, Irvine, 1996.

[33] Katherine L. Morse, Lubomir Bic, Michael Dillencourt, and Kevin Tsai, “Multicast
grouping for dynamic data distribution management,” in Proceeding of the 31% Society
and Computer Simulation Conference (SCSC”99), 1999.

[34] J. Saville, “Interest Management: Dynamic group multicasting using mobile java
policies,” in Proceedings of the 1997 Fall Simulation Interoperability Workshop, 1997,
number 97F-SIW-020.

[35] A. Berached, M. Beheshti, O. Sirisaengtaksin, and A. Dekorvin, “Alternative
approaches to multicast group alocation in HLA data distribution,” in Proceeings of the
1998 Spring Simulation Interoperability Workshop 1998.

[36] High Level Architecture Run-Time Infrastructure Programmer’s Guide 1.3 Version
3, 1998 DMSO

[37] Nico Kuijpers, et a. Applying Data Distribution Management and Ownership
Management Services of the HLA Interface Specification. in SIW. 1999. Orlando, FL



220

[38] Boukerche and A. Roy "A Dynamic Grid-Based Multicast Algorithm for Data
Distribution Management" 4th IEEE Distributed Simulation and Real Time Application,
2000.

[39] Gary Tan et. a. "A Hybrid Approach to Data Distribution Management”, 4th IEEE
Distributed Simulation and Real Time Application, August 2000.

[40] Zeigler, B.P., et al. Bandwidth Utilization/Fidelity Tradeoffs in Predictive
Filtering. in SW. 1999. Orlando, FL

[41] Zeigler, B.P., DEVS Theory of Quantization, . 1998, DARPA Contract N6133997K -
0007: ECE Dept., UA, Tucson, AZ.

[42] Zeigler, B.P. and JS. Lee. Theory of Quantized Systems. Formal Basis for
DEVSHLA Distributed Smulation Environment. in Enabling Technology for Smulation
Science(ll), SPIE AeoroSense 98. 1998. Orlando, FL

[43] Bernard. P. Zeigler, Hyup Cho, J.S. Lee, Y.K. Cho and Hessam Sarjoughian, et al.
Predictive Contract Methodology and Federation Performance. in SS\W. 1999. Orlando,
FL.

[44] Hall, SB. and B.P. Zeigler. Joint Measure: Distributed Smulation Issues In a
Mission Effectiveness Analytic Smulator. in SW. 1999. Orlando, FL.

[45] Averill M. Law, and W. David Kelton. Smulation Modeling and Analysis, 1982.
McGraw-Hill, Inc.

[46] Bernard P. Zeigler, Hyup J. Cho, Jeong G. Kim, Hessam Sarjoughian, and Jong S.
Lee, “Quantizationbased filtering in distributed simulation : experiments and analysis”
in Journal of Parallel and Distributed Computing, March 2001.

[47] Bassiouni, M.A., et al., Performance and Reliability Analysis of Relevance Filtering
for Scalable Distributed Interactive Smulation. ACM Trans. on Model. and Comp. Sim.
(TOMACS), 1997. 7(3): p. 293-331

[48] Bassiouni, M.A., et al., Relevance Filtering for distributed Interactive Smulation.
Journal of Computer Systems Science and Engineering, Volume 13, 1998.

[49] Logan, B., and Theodoropoulos, G. Dynamic Interest Management in the
Distributed simulation of Agent-based systems Al, Simulation & Planning In High
Autonomy Systems, Tucson, AZ, 2000.



221

[50] Bernard. P. Zeigler, George Ball, Hyup Cho, and J.S. Lee, “Implementation of the
DEVS Formaism over the HLA/RTI: Problems and Solutions,” Simulation
Interoperation Workshop(SIW), June. 1999. Orlando, FL.

[51] Bernard. P. Zeigler, George Ball, Hyup Cho, J.S. Lee, and Hessam Sarjoughian,
“The DEVSHLA Distributed Smulation Environment And Its Support for Predictive
Filtering,” DARPA Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.

[52] G. Wainer, and B.P. Zeigler. “Experimental Results of Timed Cell-DEVS
Quantization.” Al and Simulation, AIS 2000, Tucson, AZ.

[53] Bernard. P. Zeigler, H. Sarjoughian, and H. Praehofer, “Theory of Quantized
Systems: DEVS Simulation of Perceiving Agents.” J. Sys. & Cyber, Vol. 16, No. 1,
2000.

[54] Roger R. Bate, Donald D. Mueller, Jerry E. White, Fundamentals of Astrodynamics,
Dover Publications, New York, 1971

[55] Erwin Kreyszig, Advanced Engineering Mathematics: Seventh Edition, John
Wiley& Sonsinc, New York, 1993.

[56] Ernesto Kofman, Sergio Junco, “Quantized-State Systems, a DEVS Approach for
Continuous System Simulation”, Transactions of SCS, 2001

[57] Hyup J. Cho, “Discrete Event System Homomorphism: Design and Implementation
of Quantization-Based Distributed Simulation Environment,” Dissertation, University of
Arizona, May 1999.

[58] S.B. Hall, S. M. Venkatesan, D.B. Wood, H. S. Sarjoughian, B.P. Zeigler, “Object
Oriented HLA Interface Design for Military Simulations.”

[59] Bernard P. Zeigler, OBJECTS & SYSTEMS Principled Design with Implementation
in C++ and Java, 1997 Springer-Verlag New York Inc.

[60] Doohwan Kim and Bernard P. Zeigler, “Efficient Implementation of Parallel
Container Classes for High Performance Simulation.”

[61] Y. K. Cho, B.P. Zeigler, H.J. Cho, H.S. Sarjoughian, S. Sen “Design Considerations
for Distributed Real-Time DEVS” Al and Simulation, AIS 2000, Tucson, AZ.

[62] Daryl R. Hild, “Discrete Event System Specification (DEVS) / Distributed Object
Computing (DOC) Modeling and Simulation,” Dissertation, University of Arizona,
March 2000.



