

SPACE-BASED DATA MANAGEMENT

FOR HIGH PERFORMANCE DISTRIBUTED SIMULATION

By

Jong Sik Lee

 Copyright ? Jong Sik Lee 2001

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2001

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at the University of Arizona and is deposited in the University Library

to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the copyright holder.

SIGNED:

4

ACKNOWLEDGEMENTS

I thank my advisor Bernard P. Zeigler for having provided me with much needed

support and guidance in the Ph.D. program. Besides my advisor, I would like to thank the

rest of my dissertation committee: Ralph Martinez and Salim Hariri for their helpful

comments, suggestions and encouragement during the course of writing this dissertation.

A special thanks goes to the people at the AIS Lab, Hessam S. Sarjoughian,

Young Kwan Cho, and Sunwoo Park. They were always available to talk about my ideas

and to ask me good questions to help me think through my problems.

Most of all, my parent, brother, and sister are the ones who have been with me

and I always remember their constant love and great support for me. Also, I thank my

friends in Korea whose friendship and care helped me.

This research was supported by grants from the DARPA Contract N6133997K-

0007 and partially supported by National Science Foundation Grant: "DEVS as a Formal

Modeling Framework for Scaleable Enterprise Design" and by Lockheed Martin Space

System Grant: “Object Oriented HLA Interface Design for Military Simulations.”

5

TABLE OF CONTENTS

LIST OF FIGURES………………………………….…………………….. 7
LIST OF TABLES…….………………………………………………….. 12
ABSTRACT….……………………………….………………….……….. 14

1 INTRODUCTION... 16
1.1 Modeling formalisms ... 17
1.2 Agent-based system... 19
1.3 Distributed Simulation and its Environment ... 22
1.4 Message Traffic Reduction Scheme .. 24
1.5 Quantization Theory.. 25
1.6 Object-oriented Design .. 27
1.7 Dissertation Organization.. 28

2 BACKGROUND... 29

2.1 Discrete Event System Formalism... 29
2.2 Message Traffic Reduction Scheme .. 31

3 SPACE-BASED QUANTIZATION SCHEME................................... 42

3.1 Space-based quantization scheme .. 42
3.2 Space manager ... 45
3.3 Scalability of the space-based quantization scheme .. 48

4 DEVS/HLA-INTERFACE... 60

4.1 HLA-Interface.. 60
4.2 DEVS/HLA-Interface Environment .. 61
4.3 RTI communications ... 63
4.4 The upgraded DEVS/HLA-Interface Environment ... 66
4.5 Summary of DEVS/HLA-Interface environment .. 73

5 DEVS GENERIC DATA DISTRIBUTION MANAGEMENT
 (GDDM) ENVIRONMENT.. 75

5.1 Motivation.. 75
5.2 DEVS/GDDM Structure .. 77

6

TABLE OF CONTENTS ? Continued

5.3 DEVS/GDDM Components .. 80
5.4 DEVS/GDDM Flow of Execution... 86
5.5 Interest-based Quantization Scheme in DEVS/GDDM....................................... 88
5.6 DEVS/GDDM Class Hierarchy... 101
5.7 User Interface of DEVS/GDDM ... 103

6 DEVS PREDICTIVE INTEGRATOR.. 113

6.1 DEVS Representation with Hysteresis of DEVS Predictive Integrator 115
6.2 Kofman’s DEVS Predictive Integrator with Hysteresis 119
6.3 Experimentation and Results ... 121
6.4 Discussion.. 128

7 PURSUER-EVADER MODEL.. 130

7.1 Distance-Dependent Sensitivity of Vision... 131
7.2 Space-based Quantization with Distance-Dependent Sensitivity of Vision...... 134
7.3 Filtering operation ... 137
7.4 Experiment and Results ... 140

8 PROJECTILE/MISSILE APPLICATION... 154

8.1 Projectile/Missile Application Overview .. 154
8.2 Projectile/Missile Modeling... 155
8.3 Experimentation and Results ... 170

9 CONCLUSION... 188

9.1 Contribution... 188
9.2 Future Work ... 193

APPENDIX A. SMOTHER MODEL………………………….….…...…200

APPENDIX B. PROJECTILE AND EARTH MODELS………..….....…203

 B.1 Projectile Model……………………………………………………………… 203

 B.2 Earth Model...………………………………………………………………… 213

REFERENCES.………………………………………………………….. 217

7

LIST OF FIGURES

Figure 1.1 System Specification Formalisms ... 18

Figure 1.2 Time discretization and Quantization.. 26

Figure 2.1 Non-Predictive Quantization... 36

Figure 2.2 Predictive Quantization ... 37

Figure 2.3 Implementation of the fixed multiplexed predictive quantization scheme 38

Figure 3.1 Change of quantum sizes based on the distance between Spatial

 Monitoring Scheme and Space-based Quantization Scheme 43

Figure 3.2 Space-based Quantization Scheme .. 44

Figure 3.3 Object model diagram of Space Manger and agents 46

Figure 3.4 Coupling operation in DEVS Modeling .. 47

Figure 3.5 Architecture of the Global Space Manager Approach 50

Figure 3.6 Architecture of the Local Space Manager Approach 52

Figure 3.7 Concurrent processing in the local space manager approach.......................... 59

Figure 4.1 HLA-Interface layered structure.. 61

Figure 4.2 DEVS/HLA-Interface layered modeling ... 62

Figure 4.3 Attribute communication in the DEVS/HLA-Interface layer

 and the HLA-Interface layer .. 64

Figure 4.4 Interaction communication in the DEVS/HLA-Interface layer

 and the HLA-Interface layer .. 65

Figure 4.5 The definition and setup of interaction and attribute communications

 in the DEVS/HLA-Interface environment in C++.. 67

Figure 4.6 The definition and setup of interaction and attribute communications

 in the DEVS/HLA-Interface environment in Java .. 68

Figure 4.7 The definition and setup of interaction and attribute communications

 in the DEVS/GDDM environment .. 69

Figure 4.8 Data casting in the DEVS/HLA-Interface environment in C++ 70

Figure 4.9 Data casting in the DEVS/HLA-Interface environment with Java 72

8

LIST OF FIGURES ? Continued

Figure 4.10 Class hierarchy of the data structure of the HLA-Interface layer

 and the container sub-layer of the DEVS/HLA-Interface layer..................... 73

Figure 5.1 Message Filtering between senders and receivers ... 76

Figure 5.2 DEVS/GDDM layered structure.. 78

Figure 5.3 Roles in each layer of the DEVS/GDDM layered structure 79

Figure 5.4 HLA Interaction communication setting in the DEVS/GDDM

 environment ... 80

Figure 5.5 Component diagram in DEVS/GDDM layer .. 83

Figure 5.6 Information flow from the user and DEVS models to DEVS/GDDM

 layer... 85

Figure 5.7 DEVS/GDDM Flow of Execution... 86

Figure 5.8 Operation of the Non-Predictive Interest-based Quantization method 89

Figure 5.9 Operation of the Predictive Interest-based Quantization method.................... 90

Figure 5.10 Operation of the Multiplexing Interest-based Quantization method 93

Figure 5.11 Implementation of the fixed multiplexing using the predictive

 quantization.. 94

Figure 5.12 Implementation of the variable multiplexing using the predictive

 quantization.. 96

Figure 5.13 Network bandwidth requirement in fixed and variable multiplexing

 by varying the ratio (a) of active senders .. 98

Figure 5.14 Variation of ac in varying # of Dimensions and # of Component pairs....... 100

Figure 5.15 DEVS/GDDM class hierarchy .. 102

Figure 5.16 DEVS/GDDM container class hierarchy... 103

Figure 5.17 Implementation of the Top model of Projectile/Earth model

 in the DEVS/GDDM environment .. 105

Figure 5.18 Implementation of the Projectile and Earth Federates

 in the DEVS/GDDM environment .. 106

9

LIST OF FIGURES ? Continued

Figure 5.19 Data passing between the Projectile and Earth Federates

 in the DEVS/GDDM environment .. 107

Figure 5.20 Top model codes of Projectile/Missile model

 in the DEVS/GDDM environment .. 109

Figure 5.21 Projectile and Missile Federates’ codes of Projectile/Missile model

 in the DEVS/GDDM environment .. 110

Figure 5.22 Data passing between the Projectile and Missile Federates

 in the DEVS/GDDM environment .. 112

Figure 6.1 DEVS Predictive Integrator... 113

Figure 6.2 Operation of the DEVS Predictive Integrator with Hysteresis...................... 117

Figure 6.3 Operation of Kofman’s DEVS Integrator with Hysteresis 120

Figure 6.4 Component Diagram of Second Order Stiff System 123

Figure 6.5 Output trajectory of the second order stiff system

 using the DEVS Predictive Integrators ... 124

Figure 6.6 Error trajectory of the second order stiff system using the DEVS

 Predictive Integrators (Quantum sizes - X1: 10-2 , X2: 10-4) 125

Figure 6.7 Error Check Point in Second Order Stiff System.. 126

Figure 6.8 Error from the original DEVS predictive integrator

 and the Kofman’s DEVS integrator in varying quantum sizes 127

Figure 6.9 Internal transitions from the original DEVS predictive integrator

 and Kofman’s DEVS integrator in varying quantum sizes............................ 128

Figure 7.1 Pursuer-Evader Model... 131

Figure 7.2 Modeling Distance-dependent Sensitivity of Vision

 in the Pursuer-Evader Model .. 132

Figure 7.3 State Transition Diagram for Evader... 133

Figure 7.4 Assigning quantum sizes based on the distance .. 135

10

LIST OF FIGURES ? Continued

Figure 7.5 Assigning quantum sizes based on the message direction

 and the distance .. 136

Figure 7.6 Filtering operations.. 138

Figure 7.7 Traffic Message Reduction with the Space-based Quantization Scheme 143

Figure 7.8 Filtering Rates with Filtering operations ... 144

Figure 7.9 Message Traffic Reduction using Global

 and Local Space Manager approaches.. 147

Figure 7.10 Net message traffic reduction using global

 and local space manager approaches .. 148

Figure 7.11 Message Traffic Reduction with the Space-based Quantization

 Scheme in Global Space Manager approach ... 149

Figure 7.12 Message Traffic Reduction with the Space-based Quantization

 Scheme in Local Space Manager approach ... 150

Figure 7.13 Influence of Network Delay and Computation Load 153

Figure 8.1 Component diagram of the projectile model in the basic system

 and the second system using the non-predictive interest-based

 quantization scheme ... 157

Figure 8.2 Component diagram of the missile model in the basic system

 and the second system using the non-predictive interest-based

 quantization scheme ... 158

Figure 8.3 Component diagram of the projectile model in the third system

 using the predictive interest-based quantization scheme

 of the DEVS/GDDM environment ... 160

Figure 8.4 Component diagram of the missile model in the third system

 using the predictive interest-based quantization scheme

 of the DEVS/GDDM environment ... 161

11

LIST OF FIGURES ? Continued

Figure 8.5 Component diagram of the projectile in the third system

 using the smoother model. ... 163

Figure 8.6 Standard Quantum Size (D) and Time Step (h) of a DTSS integrator. 164

Figure 8.7 Data bits passing including the overhead data bits in the system

 applied by the predictive interest-based quantization scheme. 172

Figure 8.8 Non-multiplexing system in the projectile/missile application..................... 175

Figure 8.9 Multiplexing system in the projectile/missile application............................. 176

Figure 8.10 Passed data bits for varying multiplying factors in a non-

 predictive quantization system, a predictive quantization system,

 and a multiplexing predictive quantization system

 (Component pairs: 40) ... 184

Figure 8.11 System execution time for varying multiplying factors in a non-

 predictive quantization system, a predictive quantization system,

 and a multiplexing predictive quantization system

 (Component pairs: 40) ... 185

Figure 8.12 Passed data bits for varying numbers of component pairs in a non-

 predictive quantization system, a predictive quantization system,

 and a multiplexing predictive quantization system...................................... 186

Figure 8.13 System execution time for varying numbers of component pairs

 in a non-predictive quantization system, a predictive quantization

 system and a multiplexing predictive quantization system......................... 187

Figure 9.1 Message passing between two federates in a Non-Paired Application......... 195

Figure 9.2 Detailed Description of message passing in a Non-Paired Application........ 196

Figure Appendix A.1 Discrete Event Time Segments for Smoother model................... 202

12

LIST OF TABLES

Table 2.1 Specialization of multiplexing and quantization schemes 39

Table 2.2 Network load (bandwidth) requirements for fixed multiplexing

 and quantization schemes ... 40

Table 3.1 Load balancing in the Global Space Manager Approach 53

Table 3.2 Load balancing in the Local Space Manager Approach................................... 54

Table 3.3 Analysis of Message Traffic Reduction.. 58

Table 5.1 Analysis of ratio (ac) of active senders at the intersection point....................... 99

Table 8.1 Maximum absolute derivatives and the standard quantum sizes

 in velocity model (h = 0.001).. 165

Table 8.2 Maximum absolute derivatives and the standard quantum sizes

 in position model (h = 0.001)... 165

Table 8.3 Network bandwidth requirement for quantization

 and multiplexing schemes ... 168

Table 8.4 Network bandwidth requirement for fixed and variable multiplexing

 schemes with varying a (a: the ratio of active components).......................... 169

Table 8.5 Error (%) Trajectory for varying range of multiplying factors

 of the standard quantum sizes ... 173

Table 8.6 Ratio trajectory of passed data bits for varying range of multiplying

 factors of the standard quantum sizes (predictive interest-based

 quantization vs. No quantization... 174

Table 8.7 Error (%) Trajectory with Varying Time Granule

 (Range of multiplying factors (10 ~ 1.0))... 177

Table 8.8 Trajectory of the ratio (a) of active components (Time Granule: 0.001) 178

Table 8.9 Trajectory of the ratio (a) of active components (Time Granule: 0.0001) 178

Table 8.10 Trajectory of ratio of passed data bits (variable/fixed multiplexing)

 (Time Granule: 0.001, Component pairs: 80)... 180

13

LIST OF TABLES ? Continued

Table 8.11 Trajectory of ratio of passed data bits (variable/fixed multiplexing)

 (Time Granule: 0.0001, Component pairs: 80)... 180

Table 8.12 Trajectory of ratio of passed data bits in fixed multiplexing

 (Time granule: 0.001 vs 0.0001) ... 181

Table 8.13 Trajectory of ratio of passed data bits in variable multiplexing

 (Time granule: 0.001 vs 0.0001) ... 182

14

ABSTRACT

There is a rapidly growing demand to model and simulate complex large-scale

distributed systems and to collaboratively share geographically dispersed data assets and

computing resources to perform such distributed simulation with reasonable

communication and computation resources. Interest management schemes have been

studied in the literature. In this dissertation we propose an interest-based quantization

scheme that is created by combining a quantization scheme and an interest management

scheme. We show that this approach provides a superior solution to reduce message

traffic and network data transmission load.

As an environmental platform for data distribution management, we extended the

DEVS/HLA distributed modeling and simulation environment. This environment allows

us to study interest-based quantization schemes in order to achieve effective reduction of

data communication in distributed simulation. In this environment, system modeling is

provided by the DEVS (Discrete Event System Specification) formalism and supports

effective modeling based on hierarchical and modular object-oriented technology.

Distributed simulation is performed by a highly reliable facility using the HLA (High

Level Architecture). The extended DEVS/HLA environment, called DEVS/GDDM

(Generic Data Distribution Management), provides a high level abstraction to specify a

set of interest-based quantization schemes.

This dissertation presents a performance analysis of centralized and distributed

configurations to study the scalability of the interest-based quantization schemes. These

15

results illustrate the advantages of using space-based quantization in reducing both

network load and overall simulation execution time. A real world application, relating to

ballistic missiles simulation, demonstrates the operation of the DEVS/GDDM

environment. Theoretical and empirical results of the ballistic missiles application show

that the space-based quantization scheme, especially with predictive and multiplexing

extensions, is very effective and scalable due to reduced local computation demands and

extremely favorable communication data reduction with a reasonably small potential for

error. This realistic case study establishes that the DEVS/GDDM environment can

provide scalable distributed simulation for practical, real-world applications.

16

1 INTRODUCTION

Distributed systems approaches are being applied to a growing variety of systems

including process control and manufacturing, military command and control,

transportation management, and so on. To model and simulate these distributed systems,

the development of a distributed modeling and simulation environment has drawn the

attention of many modeling and simulation researchers [10, 44, 47]. Distributed

simulation is characterized by numerous interactive data exchanges among multiple

simulation entitie s over a network. Thus, in order to provide a reliable answer in

reasonable time with limited communication and computation resources, a methodology

for reducing the interactive data exchanges is required in a distributed modeling and

simulation environment. In this dissertation, a novel, interest-based quantization scheme

is proposed to promote the effective reduction of data communication in a distributed

simulation environment.

The DEVS/GDDM (Generic Data Distribution Management) modeling and

simulation environment was developed in order to perform complex and large-scale

distributed modeling and simulation with reasonable communication and computation

resources with the interest-based quantization scheme. In the DEVS/GDDM

environment, system modeling is provided by the DEVS (Discrete Event System

Specification) formalism and the distributed simulation is performed by the HLA (High

Level Architecture) Interface. The scalability of the interest-based quantization scheme is

investigated in a pursuer/evader example testbed; and through a real application (e.g.

17

multiple ballistic missiles), the usefulness of the DEVS/GDDM environment is

demonstrated.

1.1 Modeling formalisms

For discrete event system modeling and simulation, Zeigler [1] provides the

system formalisms and the corresponding system theoretic framework. The provided

system formalisms are the Differential Equation System Specification (DESS),

Qualitative System Specification (QSS), the Discrete Time System Specification (DTSS),

and the Discrete Event System Specification (DEVS). Figure 1.1 depicts the System

Specification Formalisms.

18

Figure 1.1 System Specification Formalisms

In order to connect these various levels of specification and work across them,

Zeigler [1] suggests a homomorphism concept and develops the DEVS models related to

the homomorphism concept. A system modeler can develop a valid simplified

homomorphic (lumped) model of a complex (base) model with the homomorphism

concept. While a specified attribute of a base model is mapped to that of a lumped model,

the behavior of the lumped model’s attribute mapped to that of the base model is

reflected by the behavior of the attribute of the base model with a certain condition

provided by the homomorphism concept.

19

1.2 Agent-based system

An agent-based system is a working system based on autonomous software and/or

hardware components (agents) that cooperate to perform tasks. The agent-based system

includes agents and environments within an environment. An agent is a system

component with the capability of perception, decision, and mobility. Also, an agent is

autonomous since it has the ability to generate its own goals and the inbuilt desires (or

preferences) determined by the agent system developer. The environment indicates the

computational system which any agent inhabits. An environment can contain a particular

agent and can include other agents whose environments are disjointed or partially

overlapped with it. The desires or goals of the autonomous agent are sensitive to the

current state of both the agent and the environment. An agent can effectively change

states of a given environment or other environments by moving from one part of the

environment to a part of the other environment. For example, if an agent moves a bomb

from one environment to another environment, the topology of both the environments is

thereby changed.

In an agent-based system, effective communication plays a important role. There

are three kinds of communications: environment-to-environment, environment-to-agent,

and agent-to-agent. To perform the communications, an agent generates any output event

and receives any external input. Without the external input event to the autonomous

agent, the agent can produce the output event in response to the autonomous process

20

within the agent. When the agent receives the input event, it then changes its states,

desires or goals.

The agent-based system gives great promise in advancing a new technology for

developing complex system which has been blocked by the limitation of current

development tools and methodologies. In this case, the agent-based system is especially

appropriate in applications where independently developed components inter-operate

with each other in a heterogeneous environment (e.g. telecommunications, business

modeling, control of mobile robots, and military simulations [2, 3]). The agent-based

system, which includes many agents within an environment or many environments, is

called multi-agent system. Generally, multi-agent system is extremely complex [4], so

that the verification of the multi-agent system is difficult. Simulation plays a key role in

the development of the complex multi-agent system [5, 6, 7, 8]. The use of simulation

facilitates the replication of results in the multi-agent system with a very difficult or

impossible-fielded system.

The main problem of the simulation of multi-agent systems is that the simulation

requires a lot of computation resources. Actually, each agent is a complex system to

perform its own right (e.g. sensing, planning, movement, and so on), and many agents

investigate the behavior of the other agents and the states of many environments. These

behaviors of the multi-agents system require a lot of computation resources. Therefore,

the solution to limited computation resources is to apply a high degree of parallelism in a

multi-agent system.

21

In a recent study, as the network technology to perform the effective data

communication has been advanced, most of the multi-agent system designers or

researchers noticed the multi-agent system distributing the agents over a network of

processors interacting via some various communication protocols. This distributed

simulation of the multi-agent system has the same concept of a high degree of parallelism

in order to reduce the computation resources required.

Meanwhile, a lot of communication resources are also required to perform the

distributed simulation of a multi-agent system in order to exchange the data among

agents of distributed hosts over a network. Most applications of the multi-agent system

are the network-based applications, and the developer and the researcher of the multi-

agent system have to solve the problem that is caused by a large amount of

communication resources adding a burden to the computation resource shortage problem.

Actually, telecommunications, computer games, and military simulation applications are

typical multi-agent applications which need very interactive data communication over a

network. In the multi-agent system, as the number of agents increases, the message

exchanges among agents distributed in network end-hosts may increase quadratically, so

that the numerous messages over a network cause the problem of scalability of a multi-

agent distributed simulation. In this dissertation, in order to execute the complex, multi-

agent distributed simulation with reasonable communication and computation resources,

several message traffic reduction schemes are considered.

22

1.3 Distributed Simulation and its Environment

The demand for distributed simulation is rapidly growing to support a simulation

of defense and industrial systems that are getting more complex and distributed in their

computational infrastructure. Distributed simulation supports many practical application

domains that require reliable communication linkage among multiple, geographically

separated systems. In addition, through a distributed simulation, we can expect to

improve computing power, access more memory, provide high scalability, and lower the

simulation cost. Also, such a distributed simulation can share geographically dispersed

data assets and computing resources collaboratively; thus, it can execute those complex

simulations.

To support distributed computing, several software developments for distributed

processes running on machines to interact across a network have been developed. The

software development is called “middleware.” Middleware provides communication

across heterogeneous platforms and performs interoperability based on client/server

architectures. Through the integration of heterogenous platforms, middleware provides

efficient, cost-effective, flexible, and extensive information sharing. Most public

middlewares are the High Level Architecture (HLA) [9, 10] of the Department of

Defense (DoD), the Common Object Request Broker Architecture (CORBA) [11, 12] of

the Object Management Group (OMG), and the Distributed Component Object Model

(DCOM) [13] of the Microsoft company.

23

The middleware designed specially for a distributed simulation is the HLA. HLA

is a technical architecture for DoD simulations and defines the functional elements,

interfaces, and design rules needed to achieve a proper interaction of simulations in a

federation or among multiple federations. There are two types of communication in HLA:

attribute updating and interaction communication. Attribute updating is communication

between an object in a federate and an object in another federate. Interaction

communication is a non-persistent and time-stamped communication between two

federates.

HLA also has two major components: the Object Model Template (OMT) and the

RunTime Infrastructure (RTI). The OMT is a format to represent the information

required by the HLA object model. RTI is a software component of HLA. RTI

coordinates the interactions among the simulations of a federation and performs a basic

mechanism for initializing, directing, and controlling the flow of data exchange among

simulations. RTI provides services commonly required by simulation systems. These

services include time management, ownership, objects, federations, data declaration, and

data distribution. With the standard format of the OMT described by a simulation

developer, RTI performs the attribute and interaction communications across different

platforms.

24

1.4 Message Traffic Reduction Scheme

Recent ly, distributed systems approaches are being noticed for a growing variety

of systems including process control and manufacturing, military command and control,

transportation management, and so on. Such distributed systems are complex and large in

their size. In fact, in order to model and simulate these complex and large-scale

distributed systems, the development of a large-scale distributed modeling and simulation

environment entities has drawn the attention of many modeling and simulation

researchers.

In general, a large-scale distributed simulation requires achievement of real-time

linkage among multiple and geographically distant systems, and thus has to execute

complex large-scale simulation and to share geographically dispersed data assets and

computing resources collaboratively. However, large-scale distributed simulations are

characterized by numerous interactive data exchanges among simulation entities

distributed between computers networked together. In the worst case, each entity

interacts with all the others so that as the number of entities increases (e.g. the message

exchanges may increase quadratically, greatly limiting the scalability of distributed

simulation approaches). The methodology to support the reduction of the interactive

messages among simulation entities is called a “message traffic reduction scheme”. It is

the goal of a message traffic reduction scheme that a large-scale distributed simulation is

performed with reasonable communication and computation resources. To perform a

message traffic reduction scheme reliably, flexibility and efficiency are required.

25

Flexibility does not indicate anything specific to any particular problem domain or

technology, but rather indicates being general in nature. Efficiency requires the scaling of

simulations from very small to very large along many dimensions including numbers of

the simulated objects, complexity of interactions, fidelity of representations, and

computational/network resources.

1.5 Quantization Theory

The Quantization theory [14, 15] is based on modeling formalism and system

homomorphisms. As Figure 1.2 illustrates, a continuous trajectory with a finite number of

values in a finite time interval is approximated. In order to obtain a discrete time system

approximation, discretization of the time base is needed with a finite time interval. The

finite number of values is then calculated from the partition of the trajectory into a finite

number of segments (each of which has a finite computation). The partition of the

trajectory with the finite number of values provides a way to quantize the value space,

which is partitioned in every D interval (quantum), and the time space is partitioned in

every T interval (time interval).

26

T 2T 3T 5T4T 6T

2D

D

3D

5D

4D

Value (Quantum)

Time

Figure 1.2 Time discretization and Quantization

In discrete event systems, we sample the time values at every quantum interval

(D), use discrete values with continuous time, and send the quantum levels out after the

sampled time interval. This is called the quantization based on the quantum D.

In a real application, the state trajectory is represented by the crossings of an

equally spaced set of boundaries separated by the quantum interval (D). Using

quantization, we checks a threshold crossing of output value of a sender whenever an

output event occurs and sends the output value to a receiver only when the threshold

crossing occurs. The effect of quantization is to reduce the number of messages

exchanged between sender and receiver. We can expect to save the communication data

and the computation of the receiver from the reduced messages through the message

reduction. Considered with the scalability of a system, the quantization increases system

27

performance in various ways such as decreasing overall execution time or allowing a

larger number of entities to be performed. In chapter 2, the actually realized quantization

scheme is introduced as one of the message traffic reduction schemes.

1.6 Object-oriented Design

Object-orientation technology allows a particular system to be encapsulated by a

system modeler and provides a common interface of the encapsulated system to the rest

of the whole system. That is abstraction capability of the object-orientation technology.

The DEVS/GDDM environment, based on the object-orientation technology and the

DEVS formalism [1], has a portability of models across platforms at a high level of

abstraction. Such portability enable s a model to be developed and verified in a platform,

and then easily ported across distributed platforms. Because the DEVS formalism is

expressed as a collection of objects and their interactions with the details of the

implementation hidden within the objects, and any DEVS component is shielded from the

environment which provides any services to the DEVS component.

In the DEVS/GDDM environment based on the DEVS formalism, a system

modeler can build a DEVS model in a hierarchical and modular fashion. Each DEVS

model at a certain level of the DEVS hierarchy can see its one-level lower models and its

one- level upper level models and the coupling among models of upper and lower level is

considered in its modular fashion. The coupling in DEVS formalism allows two DEVS

model (sender and receiver) to be coupled, then delivers a DEVS message from a sender

28

to a receiver model. This high level DEVS modeling provides the maintainability and

reusability of a DEVS model in the DEVS/GDDM environment.

1.7 Dissertation Organization

Chapter 2 presents the discrete event system formalism and reviews existing

message traffic reduction schemes. Chapter 3 presents the space-based quantization

scheme as a more efficient means of message traffic reduction, and discusses the

scalability of space-based quantization schemes in a distributed simulation. The

DEVS/HLA-Interface is introduced and its functions are illustrated in chapter 4. Chapter

5 introduces the DEVS/GDDM simulation environment which uses the interest-based

quantization scheme and discusses the network load reduction methods supported by this

environment. In chapter 6, the DEVS predictive integrator model is developed as a basis

for the predictive quantization scheme. Chapter 7 and chapter 8 present real world

applications and show how the space-based quantization scheme is applied to these

applications. The conclusion is in chapter 9.

29

2 BACKGROUND

2.1 Discrete Event System Formalism

The discrete event system specification (DEVS) is a formalism for the discrete

event systems [1]. The DEVS formalism consists of two parts, base and coupled models.

A basic model of a standard DEVS is a structure:

M = <X, S, Y, ? int, ? ext, ?con, ? , ta>

Where

 X : set of external input events;

 S : a set of sequential states;

 Y : a set of outputs;

 ? int: S ? S : internal transition function

 ? ext : Q ? Xb ? S : external transition function

Xb is a set of bags over elements in X,

 (where ? ext(s,e,?) = (s,e));

 ? con : S ? Xb ? S : confluent transition function;

 ? : S ? Yb : output function generating external events at the output;

 ta : S ? Real : time advance function;

 Where Q = { (s,e) | s ? S, 0 ? e ? ta(s) }, and e is the elapsed time since

last state transition

30

Two major activities involved in coupled models are specifying its component models

and defining the couplings, which create the desired communication links.

DN = <X, Y, D, {MI}, {II}, {ZI,j}>

Where

 X : set of external input events;

Y : a set of outputs;

D is a set of components names;

 for each I in D,

 MI is a component model

 II is the set of influencees for I

for each j in II,

 ZI,j is the I-to-j output translation function

A coupled model contains the following information

- the set of components

- for each component, its influencees

- the set of input ports through which external events are received

- the set of output ports through which external events are sent

- the coupling specification consisting of

- the external input coupling connects the input ports of the coupled to one or more of

the input ports of the components

31

- the external output coupling connects the output ports of the components to one or

more of the output ports of the coupled model

- internal coupling connects output ports of components to input ports of other

components

2.2 Message Traffic Reduction Scheme

In this section, we provide an overview of the major message traffic reduction

techniques, which are currently used in most entity-based virtual simulations. These

techniques include dead-reckoning, interest management, Data Distribution Management

(DDM) of HLA, and quantization.

2.2.1 Dead-Reckoning Scheme

As a scheme to reduce the number of state update messages, the dead-reckoning

scheme is widely employed in distributed simulations [28, 29]. The state update messages

are exchanged among each simulated entity to maintain the accurate state of the other

remote simulated entities. Each federate maintains accurate information (position,

velocity, acceleration) of its own simulated entity’s movement with a high fidelity model.

Also, each federate includes the dead-reckoning (inaccurate) models of all simulated

entities including that of its own entity. As the simulation time passes, the states of dead-

reckoning models are updated by working the second-order extrapolation with the last

32

updated message. The anticipated position of a simulated dead-reckoning entity is

calculated by the second-order extrapolation below:

2

2

2

() () () 0.5 ()

() () () 0.5 ()

() () () 0.5 ()

X t t X t Vx t t Ax t t

Y t t Y t Vy t t Ay t t

Z t t Z t Vz t t Az t t

? ? ? ?

? ? ? ?

? ? ? ?

V V V

V V V

V V V

(), (), ()X t Y t Z t are the position coordinates of a simulated entity at time t.

(), (), ()Vx t Vy t Vz t and (), () , ()Ax t Ay t Az t are the x, y, z components of the velocity vector

and the acceleration vector at time t and (), (), ()X t t Y t t Z t t? ? ?V V V are the new

coordinates predicted at tV time unit from time t.

When the state of a simulated entity changes, the state of the high fidelity model

of the simulated entity is updated and is compared to the state of the corresponding dead-

reckoning model. If the position/acceleration of the dead-reckoning model of the

simulated entity deviate from the exact position/acceleration of the high fidelity model of

the simulated entity by more than a threshold value, the simulated entity creates a new

message and sends it to the other remote federates. The remote federates, which receive

the new message, correct the state of the corresponding dead-reckoning model and begin

the new second-order extrapolation with the new position/acceleration. In the dead-

reckoning scheme, reduction of the data issued by dead-reckoning models plays a role of

a message traffic reduction scheme.

33

2.2.2 Interest Management

The interest management technique [32] was proposed as a method to avoid

broadcast communication among agents. Generally, the interest management technique is

a message filtering mechanism to enable execution with the reasonable communication

and computation resources in real-time large-scale simulations. Interest management is

based on interest expression between pairs of sender and receiver agents. The receiver

agent expresses the interest to an attribute of the sender agent and the sender agent sends

the value of the attribute interested to the receiver agent. The interest expression

expresses a subset of all data exchanges of the all attributes of the sender agent. The

expression of an attribute can be changed as the simulation time passes. As the number of

agents and the number of the attributes in the agents increase, the interest expression may

become complicated. A special entity to manage the interest expression and to enable the

effective data exchange between a sender and a receiver agent pair is called the “interest

manager”.

Recently, several interest management techniques has been proposed and studied.

In most application systems, IP multicast addressing [33, 34] is an example of the interest

management technique. A multicast group is an example of the interest expression and is

defined for each message transferred.

2.2.3 Data Distribution Management (DDM) of HLA

34

HLA provides the DDM service as an example of the interest management. In the

DDM, the interest expression works with regions in a multi-dimensional parameter space.

The multi-dimensional coordinate system is call the “routing space” and the routing space

is subdivided into a predefined array of fixed sized cells. Each cell is assigned to a

multicast group [36]. The DDM [37, 38, 39] service of HLA constitutes an interest-based

message traffic reduction scheme. This service tries to filter out irrelevant data among

federates. Each federate expresses the interest for the data to be sent and received by

defining publication region and subscription region in the routing space. When a sender’s

publication region overlaps a receiver’s subscription region, the RTI (RunTime

Infrastructure), an implementation of the HLA specification, establishes network

connectivity between the federates and makes data communication available.

Communication overhead from region change notification due to moving agents

negatively impacts the efficiency of the DDM filtering mechanism [36]. The efficiency is

expressed by comparing the amount of useful data transmission compared to the total

amount of data transmission including region change notifications.

2.2.4 Quantization schemes

Quantization, which is based on the quantization theory [14, 15], is an approach to

distributed logical simulation in which the value space is quantized and trajectories are

represented by the crossings of a set of thresholds. This is an alternative to the common

approach which discretizes the time base of a continuous trajectory to obtain a finite

35

number of equally spaced sampled values over time. In distributed simulation, a

quantizer checks for threshold crossings whenever an output event occurs and sends this

value across to a receiver thereby reducing the number of messages exchanged among

federates in a federation. In this section, we introduce three quantization schemes: 1) the

baseline mechanism for quantization, called non-predictive quantization, 2) the more

advanced form of quantization, called predictive qunatization, and 3) an approach to

packaging individual data bits into a large message packet, called multiplexed predictive

quantization.

2.2.4.1 Non-predictive Quantization

As Figure 2.1 illustrates, the non-predictive quantization [41, 42] applies when a

sender component is updating a receiver component on a numerical, real-valued, state

variable, which is a dynamically changing attribute. In the non-predictive approach, a

quantizer is applied to the sender’s output, which checks for threshold (boundary)

crossings whenever a change in the variable occurs. Only when such a crossing occurs, a

new value of the variable is sent across the network to the receiver. The non-predictive

quantization reduces the number of messages sent (not their size) and incurs some local

computation at the sender.

36

S e n d e r R e c e i v e r

Q u a n t i z e r

Figure 2.1 Non-Predictive Quantization

2.2.4.2 Predictive Quantization

As Figure 2.2 illustrates, a more efficient form of quantization is predictive

quantization [40, 41, 42], where the sender employs a model to predict the next boundary

crossing and the time this crossing will occur. Since the next boundary crossing is either

one above or one below the last recorded boundary, the sender need not send the full

floating point (double word) value to the receiver, so that it sends a one-bit message at

crossings. The one-bit message represents whether the next higher or next lower

boundary has been reached. In the predictive quantization approach, the main advantage

over non-predictive quantization is that both the number of messages and their size can

be reduced. A second advantage is that discrete event prediction can also greatly reduce

the sender’s state transition computation execution time and frequency if simple

predictive models are used.

37

S e n d e r

R e c e i v e r
(t1,1) (t2,1) (t3,1)

t1 t2 t3

Figure 2.2 Predictive Quantization

2.2.4.3 Multiplexing Predictive Quantization

In simulations with a large number of entities, there will be many entities assigned

to each federate. As Figure 2.3 illustrates, sender and receiver federates encapsulate a

large number of similar component models. Each of these components has a predictive

quantizer to produce a one-bit output of a variable. Then, at each event time, several

components will be crossing their boundaries (a component is called active at a given

event time if it has a boundary crossing at that time). The multiplexer encodes the joint

output of the active components of the sender federate into a single message.

At the receiver federate, the de-multiplexer decodes the multiplexed packet in

inverse fashion using a set of ghost components in a one-to-one correspondence with the

sending components. There are two types of multiplexing: fixed and variable. Figure 2.3

illustrates the implementation of the fixed multiplexing predictive quantization [46, 57].

38

In fixed multiplexing, each pair of bits is examined. If the first bit of the source indicates

active, then the receiver updates the appropriate variable of the counterpart (ghost) with

the predefined quantum size, and increments the saved value of the tracked variable by

the quantum in the direction (+1/-1) indicated by the second bit. Of course, sending and

receiving federates must know the shared value of the quantum size and be informed of

the new value should it be changed. In variable multiplexing, introduced in this

dissertation, the size of the encoding message is directly related to the number of active

components.

Figure 2.3 Implementation of the fixed multiplexed predictive quantization scheme

39

Table 2.1 Specialization of multiplexing and quantization schemes

Predictive Dimension

Scheme Non-predictive
quantization

(send real value: 64
bit)

Predictive
quantization

Non-multiplexing
quantization

(1 message per output
at a time instant))

Non-predictive
quantization

Predictive
quantization

Multiplexing
Dimension

Multiplexing
quantization

(1 message for all
component outputs at a

time instant)

Multiplexing non-
predictive quantiza tion

Multiplexing
predictive

quantization
(fixed, variable)

Table 2.1 shows the specializations of the multiplexing predictive quantization scheme

using multiplexing and predictive quantization dimensions.

40

Table 2.2 Network load (bandwidth) requirements for fixed multiplexing and

quantization schemes

(SOH : the number of overhead bits for a packet; SD: the non-quantized data bit size ; Npair:

the number of component pairs; a: the ratio of active components)

Scheme # bits required
for Npair

Ratio to Non-predictive
quantization for large
Npair

Ratio for Npair
=1000
SOH = 160 bits
SD = 64 bits

Non-predictive quantization a Npair (SOH +
SD)

1 1

Predictive quantization
(non-multiplexing)

a Npair (SOH +
1)

(SOH + 1) / (SOH + SD) 0.74

Fixed multiplexing non-
predictive quantization

(SOH + SD *
Npair)

SD /a (SOH + SD) 0.28/a

Fixed multiplexing predictive
quantization

(SOH + 2 Npair) 2 /a (SOH + SD) .0096/a

Table 2.2 analyzes network load requirements for the four combinations of fixed

multiplexing and quantization types. It computes the ratio of the message size needed for

a multiplexed predictive quantization to the number of bits needed for a non-multiplexed

quantization with the same number of component pairs. Non-multiplexing cases send a

fraction a of (larger) messages at each global event, while fixed multiplexing cases

always send the same number of bits. From the table, we see that fixed multiplexing has

high potential for data load reduction provided that a is high enough. However, since

activity may not always be very high in arbitrary simulations, we introduced the above-

mentioned variable multiplexing approach.

41

In this dissertation, we will discuss the influence of variation of a (activity ratio)

in the variable multiplexing and the effectiveness of both fixed and variable multiplexing.

In addition, the relationship between a and a time granule size will also be discussed. The

time granule concept was introduced in [46] to enable boundary crossings within a time

interval to be considered simultaneous.

42

3 SPACE-BASED QUANTIZATION SCHEME

3.1 Space-based quantization scheme

The space-based quantization scheme is created by combining the quantization

scheme with an interest management scheme for monitoring the spatial encounters

among agents. In the non-quantized spatial encounter monitoring scheme, there is only

one critical distance to specify the communication relationship between two agents and,

at any time, this holds or does not hold in all-or-none fashion. In contrast, in the space-

based quantization scheme, there can be more than one critical distance between two

agents thus allowing communication in a more tunable fashion. A quantum is assigned to

each distance range created by the critical distances. The quantum size determines the

rule for transferring or discarding messages from sender agent to receiver agent, and this

rule is called a “filtering policy”. Figure 3.1 compares the change of quantum sizes based

on the distance for the conventional spatial monitoring scheme and its space-based

quantization extension. In the conventional approach there are, in effect, two quantum

sizes: zero and infinity, corresponding to regions of interest or non-interest. The extended

approach allows multiple quantum sizes thereby allowing communication frequency to be

controlled as a smoother function of distance, as illustrated in Figure 3.2.

43

Figure 3.1 Change of quantum sizes based on the distance between Spatial

Monitoring Scheme and Space-based Quantization Scheme

44

Figure 3.2 Space-based Quantization Scheme

In this dissertation, although we use the RTI for data communication among

federates, we implement the space-based quantization scheme without using the DDM

routing service of HLA. There are four disadvantages of the DDM in applying the space-

based quantization scheme. First, DDM allows data to be exchanged among federates

only in all-or-none fashion. There is no computation of the degree of overlap between

publication and subscription regions. The second disadvantage, as noted before, is the

large communication overhead required to notify the RTI of a region update whenever an

agent moves. A third limitation is that the circular-shaped region necessary for the space-

based quantization is not supported directly by RTI. The RTI supports the specification of

only rectangular-shaped regions. To make a circular-shaped region, more complex areas

must be defined by collecting multiple extents within a region. Unfortunately, the use of

45

multiple extents has a negative impact on system performance. Alternatively, retaining

the smallest rectangular bounding region of a circular region, one can employ a two-layer

filtering approach. In this approach, a federate must use additional information to discern

if messages transferred with rectangular-shaped region are applicable or not. This

approach also demands additional computation for the second filtering. The fourth

disadvantage is the fact that many regions are created when multiple agents are assigned

to one federate. A region is associated with one “Interaction” or one attribute of an

“Object” which is used for communication between a pair of agents that respectively

exist in separate federates. As the numbers of agents within federates increase, the

number of regions that need to be created increases quadratically, heavily consuming

local memories of the federates. For these reasons we did not employ the DDM routing

service to implement the communication management data system working with the

space-based quantization scheme.

3.2 Space manager

In the space-based quantization scheme defined here, the space manager provides

filtering of the data communicated among agents. The main objective for using the space

manager is the reduction of the data to be processed by the receiving agents as well as the

data actually sent over the network. The space manager includes a spatial encounter

monitor and a coupling operator. An agent perceives other agents using size and motion

46

detectors and decides its direction and speed based on this perception. Figure 3.3

illustrates an object model diagram of space manger and agents.

Figure 3.3 Object model diagram of Space Manger and agents

The spatial encounter monitor maintains objects, called “tuples,” to express the

information for pairs of agents required to determine distance and assign new quantum

values. The attributes of a tuple object include agent identities and their positions,

distance between the agents, quantum sizes, connection information, etc. Employing

position updates from agents, the spatial encounter monitor determines the spatial

relationship among agents by calculating their separation distances. Using these spatial

relationships, the spatial encounter monitor determines the connection information among

agents. With this connection information, the coupling operator changes the coupling

specification supported by DEVS modeling. However, unlike conventional schemes, the

47

space manager does not transmit spatial relationships to agents. Instead, the coupling

operator of the space manager directly performs the filtering operation by adding or

removing the couplings (network connections) among agents. Figure 3.4 illustrates the

coupling operation supported by the DEVS modeling formalism. In Figure 3.4(a), a

coupling exists between the “out” output port of component A and “in” input port of

component B due to the coupling specification shown. In Figure 3.4(b), the coupling

specification of Figure 3.4(a) is removed from the coupling specification. Adding a

connection from the “out” output port of component A to the “in” input port of

component C is performed by a new coupling as illustrated in Figure 3.4(c).

Figure 3.4 Coupling operation in DEVS Modeling

48

Updating agents’ positions leads to communication overhead. Deciding

connection information between agents leads to computation overhead. Both

communication and computation overheads influence the performance of data

management using the space manager. However, we will show that the reduction of

communication data and agents’ local computations made possible by the space manager

can significantly outweigh the communication and computation overheads of the space

manager.

3.3 Scalability of the space-based quantization scheme

To model and simulate a large-scale distributed system, we use the DEVS/HLA

distributed simulation environment. DEVS/HLA is an HLA-compliant modeling and

simulation environment that supports high- level federation development and execution

using the DEVS formalism. The formalism provides a well-defined concept of system

modularity and component coupling, which is supported and managed by the

DEVS/HLA distributed simulation environment. We will discuss this support in more

detail later. A large-scale distributed simulation is implemented in the DEVS/HLA

distributed simulation environment using several local computers. Several federates are

assigned to a local machine. A group of agents is assigned to a federate. In this

dissertation, two approaches to supporting the scalability of the space-based quantization

scheme in a large-scale distributed simulation are introduced. These approaches are

49

based on a centralized global space manager and distributed schemes based on local

space managers.

3.3.1 Global Space Manager

With the global space manager, a fixed group of agents is assigned to each

federate. The global space manager itself resides in a separate federate. All agents send

their position updates to the global space manager over a network. The global space

manager uses these position updates to determine the connection information among

agents, which it then sends to the agent-holding federates. Each such federate has a

coupling operator that adds or removes the coupling between agents, between federate

input and agent input, and between federate output and agent output using the connection

information from the global space manager. Through this coupling operator, traffic

message filtering among federates and among agents in the same federate is achieved.

With the global space manager approach, there are two kinds of communication

overhead. The first type of overhead results from the position update of each agent to the

global space manager. The second type of overhead results from the distribution of

connection information, as determined by the global space manager, to each coupling

operator on each federate. Figure 3.5 shows the architecture of the global space manager

approach with the pursuer/evader model in the DEVS/HLA distributed simulation

environment. The global space manger is assigned to a particular federate. A fixed

50

number of pursuer agents is assigned to each pursuer federate and a fixed number of

evader agents is assigned to each evader federate.

Figure 3.5 Architecture of the Global Space Manager Approach

3.3.2 Local Space Manager

With the local space manager approach, one local space manager and a number of

agents are assigned to each federate. Each local space manager receives position

information from local agents within the same federate and from external agents in other

federates. It uses the updated positions to determine the connection information, which it

51

then employs to directly perform coupling operations in each federate. In contrast with

the global space manager approach, the local space manager does not pass on the

connection information to each federate. Nevertheless, it has a larger communication

overhead than the global space manager approach because the positions of all agents in

each local space manager in each federate must be updated. Figure 3.6 shows the

architecture of the local space manager approach with the pursuer-evader model in the

DEVS/HLA distributed simulation environment. Each local space manager is assigned to

a federate. A number of pursuer agents is assigned to each pursuer federate, and a

number of evader agents is assigned to each evader federate. The load balancing problem

for both the global space manager and local space manager approaches is discussed in

detail in the next section.

52

Figure 3.6 Architecture of the Local Space Manager Approach

3.3.3 Load balancing of Global and Local Space Manager Approaches

A federate and a computer have a limitation of CPU and memory usage. In large-

scale distributed simulation, as the number of agents simulated increases, a certain

number of agents has to be assigned to available federates and available computers. A

computer can include several federates. The number of federates assigned to a computer

depends on available physical and virtual memory of the computer and the computation

load assigned to each federate. A federate can include a certain number of agents. For the

pursuer/evader, we have found that 40 is the maximum number of agents that can be

53

assigned to a federate. Table 3.1 shows the load balancing approach used to assign agents

to federates. Each federate includes the same maximum number of agents. As the number

of agents increases, the number of federates almost exponentially increases. In Table 3.1,

a “+1” refers to the global space manager federate. There is a limitation to the load

balancing applied in this approach. The global space manager federate can have a

memory shortage problem since the number of tuples it employs increases quadratically

with the total number of agents. Further its computation of the connection information

and its distribution also increase quadratically as total number of agents increases.

Table 3.1 Load balancing in the Global Space Manager Approach

Total # of Agents 40 80 160 320

of federates 1 2 + 1 4 + 1 8 + 1

of Agents

in a federate

40 40 40 40

Table 3.2 shows the load balancing strategy used to assign agents to federates in

the local space manager approach. As the number of agents increases, the number of

agents that can be assigned to each federate decreases. This is so, since the local space

manager on each federate has to handle a quadratically increasing number of tuple

objects. Therefore, a larger number of federates is needed for this approach compared

with the global space manager.

54

Table 3.2 Load balancing in the Local Space Manager Approach

Total # of Agents 40 80 160 320

of federates 1 2 8 32

of Agents

in a federate

40 40 20 10

3.3.4 Analysis of message traffic reduction in Global and Local Space Manager

Approaches

We expect both global and local space manager approaches to work well and to

efficiently reduce message traffic in a large-scale distributed simulation. In this section,

we will discuss the advantages and disadvantages of each approach and how they

influence performance. The performance of the two approaches depends on the

communication and computation overhead required to perform message traffic reduction

among agents. There are two types of communication overhead. The first occurs as a

result of position updates from each agent to the space manager. The second type of

overhead results from the distribution of connection information, which is computed by

the space manager, to the coupling operator on each federate. To reduce overhead,

distribut ion of connection information is performed only when the connection

information changes. The global space manager approach incurs both types of

communication overhead. The first type of communication overhead is relatively small

55

because position update messages are transferred to the global space manager in a

separate federate. However, the second type of communication overhead is very large

because messages bearing connection information have to be transferred from the global

space manager to the coupling operator in each federate. In contrast, in the local space

manager approach the second type of communication overhead does not exist. However,

the first type of communication overhead is larger in the local space manager approach

because position update messages must be transmitted to each local space manager in

each federate. Table 3.3 analyzes the message traffic reduction and the conditions under

which we can expect performance improvement in the two approaches. For this analysis,

we assume two conditions as follows:

a. There is no communication between pairs of pursuers or evaders.

b. The only communication is messages from pursuers to evaders.

These conditions focus on the inter-federate communication in a distributed

simulation. Accordingly, there is no communication among agents in the same federate

and only pursuer-to-evader inter- federate communication. As Table 3.3 shows, in the

system without a space manager in operation, in a single global state transition the

number of messages passed is N*(N-1)/2, since a message is broadcast to all other agents

(N is the number of agents). In the systems with space manager, Overall Filtering Rate

(OFR) and Connection Change Rate (CCR) are the critical factors to influence the

performance in terms of the number of messages passed. Let

56

 FRS: Filtering Rate at Sender federate

 FRR: Filtering Rate at Receiver federate

 H: Number of Agents to which a message does not have to be transferred

OFR is calculated as:

OFR = FRS + FRR (3.1)

Average of OFR = OFR / Number of messages sent (3.2)

FRS = H / (N/2), when FRR = 0 (3.3)

FRR = H / (N/2), when FRS = 0 (3.4)

As Equation (3.3) and (3.4) show FRS and FRR cannot simultaneous ly exist when

a message from a sender is transmitted. If FRS > 0, then FRR = 0 (and vice verse).

Therefore, in Table 3.3, we use the average of OFR calculated by Equation (3.2) to

calculate the number of messages passed. H varies with three factors -- the number of

agents, the critical distances for ordered pairs of agents, and the spatial distribution of

agents. As the same number of agents is more spatially dispersed with fewer close

encounters (i.e., with a greater “mean free path”) we can expect that the messages

exchange requirements diminish and so H (the number of non-recepients) increases.

Conversely, under crowded conditions, H decreases. CCR is calculated as:

57

CCR = L / OC = L / N*(1 + N/2) (3.5)

Overall Connections (OC)

= Connections corresponding to Filtering at Sender federate

+ Connections corresponding to Filtering at Receiver federate

= N + N2/2 = N*(1 + N/2) (3.6)

Overall Connections (OC) is the number of connections changeable and is

calculated by Equation (3.6). OC varies with two factors -- the number of agents, number

of quantum sizes employed. Equation (3.6) indicates the OC when the number of

quantum sizes are two, such as zero and infinity. L is the number of connections actually

changed and grows with the number of agents (N) and number of quantum sizes because

L is a subset of OC. L mainly depends on a change in quantum size, which requires a

change in coupling in the implementation we discuss here.

58

Table 3.3 Analysis of Message Traffic Reduction

(N: Number of Agents, M: Number of Federates, OFR: Overall Filtering Rate, CCR:

Connection Changing Rate)

Approaches Number of messages

passed

Coefficient of N2 as

 N ??

Condition for

message traffic

reduction

NO

Space Manager

N*(N-1) / 2

1 / 2

Global

Space Manager

N + (CCR)* (N)*(1 + N/2)

+ (1 – OFR) * N*(N-1)/2

CCR/2

+ (1 – OFR)/2

CCR

+ (1 – OFR) < 1

Local

Space Manager

N * (M-1)

+ (1 – OFR) * N*(N-1)/2

(1 – OFR)/2

As (N/M) ?? ,

(1 – OFR) < 1

The analysis in Table 3.3 reveals that, especially for large numbers of agents

encapsulated into federates, we should expect the greatest message reduction to come

from the local space manager approach. Figure 3.7 compares the computation time of the

two approaches. With both approaches, computation overhead is necessary to regulate the

connection information among agents in a space manager. The global space manager has

a larger computation load than that of a local space manager because it must regulate the

connection information among all agents in all federates. This large computation load

causes a bottleneck problem. While the global space manager calculates the data,

computation of agents within the other federates is delayed and, therefore, the logical

time of the other federates is not advanced. The output operation time required for the

distribution of connection information messages to the other federates exacerbates the

59

bottleneck problem. In contrast, when there is a local space manager in each federate, the

computation load is reduced because each local space manager regulates the connection

information only for those agents within its own federate. With the local space manager

approach, the connection computation is divided up and pieces are assigned to local space

managers for concurrent processing. In addition to the advantage of load partitioning, no

output operation time is required for the distribution of connection information messages

to each federate using the local space manager.

Figure 3.7 Concurrent processing in the local space manager approach

60

4 DEVS/HLA-INTERFACE

4.1 HLA-Interface

General purpose object-oriented HLA-Interface was developed at Lockheed

Martin Space Systems’ Advanced Simulation Center [58]. The HLA-Interface is

complementary to the HLA/RTI, which is the standard DMSO HLA implementation.

This HLA-Interface automates the declaration of HLA classes and the registration of all

HLA objects. It also performs all the calls and callbacks to and from HLA.

Figure 4.1 shows the HLA-Interface layered structure. The HLA-Interface

supports the modeling and simulation of the non-DEVS (general) models as well as the

DEVS models. Non DEVS models directly access the functions of the HLA-Interface

layer and takes a part in a distributed simulation on the HLA-Interface layer. To construct

and simulate DEVS models, the DEVS/HLA-Interface layer is provided. The

DEVS/HLA-Interface layer was developed by separating the HLA components out from

the DEVS components in the DEVS/HLA distributed simulation engine developed at The

University of Arizona. Then the separated HLA components were included into the

HLA-Interface layer.

61

Figure 4.1 HLA-Interface layered structure

4.2 DEVS/HLA-Interface Environment

In the DEVS/HLA-Interface environment, a developer defines DEVS models in

the DEVS model layer on top of the DEVS/HLA-Interface layer. To develop an HLA

federate in the DEVS model layer, the developer creates a specified federate component,

which is the top DEVS component in each federate. As Figure 4.2 shows, the top DEVS

component in the DEVS model layer can access all methods in the Federate class of the

DEVS/HLA-Interface layer which is hidden to the DEVS model developer.

62

The Federate class of the DEVS/HLA-Interface layer supports functions which

allow it to connect to the HLA_Federate class in the HLA-Interface layer. The

HLA_Federate class in turn provides services to work a distributed simulation of the

HLA-Interface layer. The HLA-Interface layer is responsible for the inter- federate

communications (RTI interaction and attribute communications) that transfer data to and

from the DEVS/HLA-Interface layer.

Figure 4.2 DEVS/HLA-Interface layered modeling

63

4.3 RTI communications

The attribute communication and the interaction communication are the two types

of communications by provided the HLA-Interface layer. Figure 4.3 shows how the

attribute communication performs in the DEVS/HLA-Interface layer and the HLA-

Interface layer. In the sender federate, the attribute value of the attributeList component

in the DEVS/HLA-Interface layer is transferred to the AttributeList component in the

HLA-Interface layer and, using the updateAttributeValues() function, the value is sent to

the RTI executive.

In the receiver federate, using the reflectAttributeValues() function, the

appropriate callbacks from RTI are automated. To invert the sender’s process, the

received attribute value is transferred from the AttributeList component in the HLA-

Interface layer to the attributeList of DEVS/HLA-Interface layer. For the DEVS time

management in distributed simulation, the attribute communication and the quantizer

component in the DEVS/HLA-Interface layer were used [50, 51]. The quantizer checks

whether the simulation time advance has crossed over a certain time unit or not. If the

simulation time has crossed, the quantizer sends the time value from the attributeList

component in the DEVS/HLA-Interface layer to the AttributeList component in the

HLA-Interface layer.

64

Figure 4.3 Attribute communication in the DEVS/HLA-Interface layer and the

HLA-Interface layer

Figure 4.4 illustrates how the interaction communication works in the

DEVS/HLA-Interface layer and the HLA-Interface layer. In the sender federate, the

HLA_Interaction Interface component in the DEVS/HLA-Interface layer receives DEVS

messages from DEVS models, extracts the data value from the DEVS message, and sends

the data value to the HLA-Interface layer. In the HLA-Interface layer, with the

SendInteraction() function, the data value from the DEVS message is sent to the RTI

executive. In the receiver federate, the callbacks from RTI are automated with the

65

ReceiveInteraction() function. Conversely in the sender federate, the received data value

is transferred from the HLA-Interface layer to the DEVS/HLA-Interface layer, in which a

DEVS message with the received data value is created and transferred to the upper layer.

The data communication, among the DEVS components distributed in federates, works

with this interaction communication.

Figure 4.4 Interaction communication in the DEVS/HLA-Interface layer and the

HLA-Interface layer

66

4.4 The upgraded DEVS/HLA-Interface Environment

The HLA-Interface developed at Lockheed Martin Space Systems’ Advanced

Simulation Center was implemented with C++. In this dissertation, the HLA-Interface

was integrated to Java using code translated from the C++ code. Also, the Java-based

DEVS/HLA-Interface environment upgrades the DEVS/HLA-Interface environment in

C++ [58]. The upgraded DEVS/HLA-Interface includes three main differences from the

DEVS/HLA-Interface with C++. These differences are user interface, data casting, and

class hierarchy as described next.

4.4.1 User Interface

The HLA_Federate class, in the HLA-Interface layer in C++, has the

communication protocol services to define inter-federate communications (interaction

and attribute communications). However, the DEVS model developer cannot access the

communication protocol services of the HLA_Federate class in the HLA-Interface layer.

Therefore the DEVS model developer uses only the previously defined DEVS/HLA

interaction and attribute communications for distributed simulation. In order to

compensate for the disadvantage of the DEVS/HLA-Interface in C++, we allow the

DEVS model developer to define and to set up the interaction and the attribute

communications in the top DEVS component in the DEVS model layer. Thus, the DEVS

model developer can access the communication protocol functions (for the interaction

67

and the attribute communications) in the DEVS model layer. Thus, the DEVS/HLA-

Interface in Java provides an easier user interface than the DEVS/HLA-Interface in C++.

Figure 4.5 and Figure 4.6 compare the definition and setup of interaction and attribute

communications for the two DEVS/HLA-Interface environments.

Figure 4.5 The definition and setup of interaction and attribute communications in

the DEVS/HLA-Interface environment in C++

68

Figure 4.6 The definition and setup of interaction and attribute communications in

the DEVS/HLA-Interface environment in Java

Furthermore, in the DEVS/GDDM environment to be introduced in the next

chapter, the DEVS model developer does not ever have to define interaction and attribute

communications. That is the developer needs only work with DEVS models. The

DEVS/GDDM environment takes the inter- federate connection information from DEVS

models and automatically defines and sets up interaction and attribute communications.

Figure 4.7 illustrates the definition and setup of interaction and attribute communications

in the DEVS/GDDM environment.

69

Figure 4.7 The definition and setup of interaction and attribute communications in

the DEVS/GDDM environment

4.4.2 Data Casting

In the DEVS model layer in the sender federate, a sender agent (a DEVS model)

outputs a DEVS message. A DEVS message includes data values of any type (double,

float, integer, string, etc.). In the HLA-Interface layer in C++, the data value from the

DEVS message is cast into its data type and is sent to RTI for interaction communication.

To do exact by the same data type casting in the HLA-Interface layer, the type of the

received data from the upper layer has to be previously known. Otherwise, an additional

70

operation to know the type of received data is needed and thus causes the overhead of

system computation in the HLA-Interface layer. The same problem occurs in the HLA-

Interface layer in the receiver federate. The type of the data value received from RTI

callback function is unknown; therefore the additional operation to know the type of

received data is needed in the HLA-Interface layer in the receiver federate. Figure 4.8

illustrates the data casting necessary to perform the RTI interaction communication in the

DEVS/HLA-Interface environment in C++.

Figure 4.8 Data casting in the DEVS/HLA-Interface environment in C++

71

To fix this data casting problem, Java enabled byte stream data casting is used in

the new HLA-Interface layer. In a sender federate we take any type of data value from a

DEVS message and cast it into the byte stream. The byte stream is then transferred to

RTI using interaction communication.

Figure 4.9 illustrates the data casting of the RTI interaction communication in the

DEVS/HLA-Interface environment with Java. At the HLA-Interface layer in the receiver

federate, the byte stream received from the RTI callback function enters into the entity

object. The entity object is a general object that can contain any type of data value of

DEVS messages. The DEVS message, which includes the entity object, is transferred to

the upper layer. A receiver agent (a DEVS model) in the DEVS model layer receives the

DEVS message, which includes the entity object (with byte stream), and casts the byte

stream into the exact data type since both sender and receiver DEVS models know the

exact data type sent and received. Byte stream data casting, in the DEVS/HLA-Interface

environment with Java, provides data transparency between the HLA-Interface layer and

the RTI, and obviates the additional operation for casting the exact data type.

72

Figure 4.9 Data casting in the DEVS/HLA-Interface environment with Java

4.4.3 Data structure and Container sub- layer class hierarchy

The HLA-Interface layer has its own data structure (e.g., Element, Set, etc.) to

support its class development and the functions of the classes of the HLA-Interface layer.

The DEVS/HLA-Interface layer has a container sub- layer to support the DEVS modeling

[59, 60]. In order to connect the data structure of the HLA-Interface layer to the container

sub- layer of the Java-based DEVS/HLA-Interface layer, we made the top class (Entity

class) of the data structure of the HLA-Interface layer inherit the top class (entity class)

of the container sub-layer of the DEVS/HLA-Interface layer. Figure 4.10 illustrates the

73

class hierarchy of the data structure and the container sub- layer. Using the polymorphism

in this class hierarchy, classes in the DEVS/HLA-Interface layer or the HLA-Interface

layer can be developed using both the data structure and the container sub- layer.

Figure 4.10 Class hierarchy of the data structure of the HLA-Interface layer and the

container sub-layer of the DEVS/HLA-Interface layer

4.5 Summary of DEVS/HLA-Interface environment

We introduced a general purpose object-oriented HLA-Interface developed at

Lockheed Martin. The HLA-Interface includes the DEVS/HLA-Interface environment

74

(extended from the DEVS/HLA developed by the University of Arizona) that allows to

model and simulate DEVS models distributed at multiple federates over network. In this

dissertation, we upgraded the Java-based DEVS/HLA-Interface environment from the

DEVS/HLA-Interface environment in C++. The upgraded DEVS/HLA-Interface

environment provides more useful user interface and efficient implementation (by

changing data casting and class hierarchy).

In next chapter, using the upgraded DEVS/HLA-Interface environment, we will

create the DEVS/GDDM modeling and simulation environment that provides GDDM

(Generic Data Distribution Management) services in distributed simulation. The

upgraded DEVS/HLA-Interface environment supports the system modeling facility

(based on DEVS formalism) and the distributed simulation facility (using HLA) of the

DEVS/GDDM environment.

75

5 DEVS GENERIC DATA DISTRIBUTION MANAGEMENT (GDDM)

ENVIRONMENT

5.1 Motivation

A large-scale, distributed simulation is characterized by numerous interactive data

exchanges among simulation entities dispersed among computers that are networked

together. The deve lopment of message traffic reduction schemes to reduce the interactive

messages among simulation entities has drawn the attention of many researchers as one

means of achieving greater scalability. At present, with increasing demand for distributed

simulation, message traffic reduction schemes for distributed simulation with reasonable

communication and computation resources are needed more and more.

The major message traffic reduction schemes proposed for improved

communication data management are the quantization scheme and interest management

scheme. The quantzation scheme has two types: non-predictive and predictive. The

interest management scheme includes the spatial encounter prediction scheme and the

Data Distribution Management (DDM) service of High Level Architecture (HLA).

The Data Distribution Management (DDM) service of HLA tries to filter out

irrelevant data among federates. However, as mentioned in chapter 3, the DDM of HLA

has several disadvantages, which inhibits applying modeling and simulation to a large of

variety of problems.

76

In this dissertation, we developed the DEVS/GDDM simulation environment that

uses the interest-based quantization scheme (which combines the quantization scheme

and the interest management scheme) and performs the effective message filtering

between senders and receivers. This environment overcomes the disadvantages of DDM

of HLA and performs a distributed simulation with reasonable communication and

computation resources. Figure 5.1 illustrates how message filtering between senders and

receivers is supported by the DEVS/GDDM simulation environment.

Figure 5.1 Message Filtering between senders and receivers

77

5.2 DEVS/GDDM Structure

As Figure 5.2 shows, the DEVS/GDDM environment, implemented as the upper

layer of the DEVS/HLA-Interface layer, supports a portability of models across platforms

at a high level of abstraction. Thus, DEVS models, based on object-oriented design, can

be developed and reused on the DEVS/GDDM layer; and they can easily be ported across

distributed platforms. Figure 5.3 summarizes the roles of each layer in DEVS/GDDM

layered structure. The roles of the DEVS/HLA-Interface and the HLA-Interface layers

were discussed in chapter 4. The only difference is that the DEVS/GDDM layer replaces

the roles of the DEVS/HLA-Interface layer (setup of attribute and interaction

communications) and adds DEVS/GDDM component specifications. It also supports

more simple user modeling in the DEVS model layer.

78

Figure 5.2 DEVS/GDDM layered structure

79

Figure 5.3 Roles in each layer of the DEVS/GDDM layered structure

Communication and data exchange among DEVS components distributed in

multiple federates are supported by the DEVS/GDDM environment. The DEVS/GDDM

layer takes the DEVS coupling information from DEVS models, automatically defines

the HLA interaction communications using this coupling information, and performs

HLA/RTI communications. Therefore the DEVS/GDDM environment provides a

friendly user interface, and the developer only defines models on the DEVS model layer.

Figure 5.4 illustrates the HLA interaction communication setting provided by the

DEVS/GDDM environment.

80

Figure 5.4 HLA Interaction communication setting in the DEVS/GDDM

environment

5.3 DEVS/GDDM Components

To perform the interest-based quantization scheme in the DEVS/GDDM

environment, several components are developed in this dissertation. The major

components are initializer, space manager, and message handler.

The initializer allows a model developer to model any application easily. The

initializer gets information from an application model needed to implement the interest-

81

based quantization scheme of the DEVS/GDDM environment. This information includes

the number of agents, how they are distributed in the separate federates, and the coupling

information among agents. The initializer creates the other DEVS/GDDM components

(space manager and message handler) and creates the couplings between the user DEVS

model as well as the other DEVS/GDDM components, and the couplings among all

DEVS/GDDM components. Thus, the initializer sets up the message communication

among all DEVS/GDDM components and the user model.

As Figure 5.4 illustrates, the coordinator federate takes the coupling information

from the DEVS top model and sends it to the FederateGDDM components in the other

federates. Each FederateGDDM component includes an initalizer component. Using this

coupling information, the initializer creates the HLA interaction communications that are

supported by the DEVS/HLA-Interface layer. Therefore DEVS modeling in the

DEVS/GDDM environment is not different from DEVS modeling in the DEVS/JAVA

[62] or in the DEVS/CORBA [61] environments. This means that the DEVS/GDDM

environment provides DEVS modeling transparency with respect to other DEVS-based

environments.

The space manager is the main component in the DEVS/GDDM layer. In order to

work out the proper quantum size to allocate to sender and receiver agent pair s, the space

manager has two sub-components: the tuple and the decision-maker. The tuple

component maintains the data for deciding the proper quantum size allocations. This data

is application dependent and may vary during run time.

82

In the pursuer/evader model that will be discussed in the chapter 7, the data for

deciding the quantum size are the distances between sender and receiver agents. The

tuple component receives and updates the data for deciding the quantum size from the

agent as it changes its own attributes. For example, in the pursuer/evader model,

whenever any agent changes its position, the space manager must collect the updated

position and re-compute the distances between agents. Using the updated position of the

tuple component, the decision-maker component determines the exact quantum size for

all sender and receiver pairs. To make this decision, the decision-maker component

employs a quantum decision table, which specifies how quantum sizes are related to data

values in the tuple component. Using the quantum decision table, the decision-maker

finds the new quantum sizes, and the space manager then sends the new sizes to the

filtering components. These are the message handlers and user model components. Figure

5.5 illustrates the component diagram in DEVS/GDDM layer and the data flow among

DEVS/GDDM components.

83

Figure 5.5 Component diagram in DEVS/GDDM layer

The message handler collects the output messages from a user model and

distributes the received messages to the proper user models in the other federates. The

DEVS/GDDM environment supports three methods employed by the interest-based

quantization scheme. These are non-predictive, predictive, and multiplexing interest-

based quantization. To perform the three methods, the message handlers in the

DEVS/GDDM layer have the functions for performing quantization (non-predictive and

predictive) and multiplexing. The message handler is specialized into several types: non-

predictive, sender predictive, receiver predictive, sender multiplexing, and receiver de-

multiplexing. The non-predictive message handler performs non-predictive quantization.

84

The sender predictive and the receiver predictive message handlers perform the

predictive quantization. The sender multiplexing and the receiver de-multiplexing

message handlers are used for the multiplexing. Another role of the message handler is to

reduce the number of, and efficiently utilize the HLA interaction communications. This

role can increase the scalability of DEVS/GDDM environment.

Figure 5.6 illustrates the information flow from users and their DEVS models to

the DEVS/GDDM layer. The initializer gets the coupling information from a user model.

The user informs the space manager the quantum decision table, the quantized variables,

and the chosen interest-based quantization method. The message handler also gets the

message type (e.g. message dimensions) from the user.

85

Figure 5.6 Information flow from the user and DEVS models to DEVS/GDDM layer

86

5.4 DEVS/GDDM Flow of Execution

Figure 5.7 illustrates the DEVS/GDDM flow of execution.

Figure 5.7 DEVS/GDDM Flow of Execution

Initializing

Initializing sets up the environment needed to perform the interest-based

quantization scheme in the DEVS/GDDM environment. In this initializing step, the

couplings among the DEVS models and the DEVS/GDDM components are created and

the HLA interaction communications are setup between the DEVS/GDDM layers in the

different federates. The space manager then collects the initial information from all

agents needed to decide the initial quantum sizes. For example, it collects the initial

positions of all agents.

87

Data Gathering

During simulation, the space manager gathers the data for deciding proper

quantum sizes among sender and receiver pairs.

Deciding Quantum Size

As the data for deciding quantum sizes changes, the decision-maker finds the new

quantum sizes from the quantum decision table.

Quantum Size Changed?

The space manager checks whether the current quantum size is different from the

old quantum size. If the quantum size is changed, the flow follows the “YES” direction.

If the quantum size is not changed, the flow follows the “NO” direction. If there is a

“NO” direction flow, the execution goes back to the Date Gathering.

Filtering Rate Change

When the filtering component for quantization receives the new quantum size

from the space manager, it changes the internal quantum size. Thus, its message filtering

rate is changed and execution goes back to the Date Gathering phase and continues.

88

5.5 Interest-based Quantization Scheme in DEVS/GDDM

The DEVS/GDDM environment supports three methods performed by the

interest-based quantization scheme. These are non-predictive, predictive, and

multiplexing interest-based quantization.

5.5.1 Non-predictive Interest-based Quantization Method

The non-predictive interest-based quantization method filters the output messages

of the sender agent by using a non-predictive message handler which includes the

quantizers. The output message from the sender agent can contain multi-dimensional

values (x, y, …). For example, if the output message represents the position in space, the

three-dimensional values (x, y, z) are contained within the message. In order for the

quantizer to quantize multi-dimensional values, it has several types of quantizers related

to the dimensions. Thus, DEVS/GDDM layer includes distinct quantizers that support

quantization of different dimensional messages. Figure 5.8 illustrates the operation of the

non-predictive interest-based quantization method.

Recall that order to perform the non-predictive interest-based quantization method,

the space manager collects the data from the sender and receiver agents to decide the

quantum size. A certain quantum size is specified for each sender and receiver pair. The

data for deciding the quantum size for each sender and receiver pair depends on each

application. For example, in the pursuer and evader model, the space manager collects the

89

positions of the pursuer and the evader and uses the distance between the pursuer and the

evader to decide the quantum size for the pursuer and evader pair. After deciding, the

space manager checks whether the decided quantum size has changed or not. If the

decided quantum size has changed, it is sent to the proper quantizer assigned to the

proper sender agent from the space manager. When the quantizer receives the new

quantum size, it changes to the new quantum size and changes its filtering rate.

Figure 5.8 Operation of the Non-Predictive Interest-based Quantization method

5.5.2 Predictive Interest-based Quantization Method

90

The predictive interest-based quantization method, based on the predictive

quantization discussed in chapter 2, filters the messages in the sender agent itself. To

perform the predictive interest-based quantization method, a sender agent has a model to

perform the predictive quantization. In this dissertation, the DEVS predictive integrator is

used as the model for the predictive quantization. In the DEVS predictive integrator, the

next crossing of the boundary is predicted, and the input value and the time step are

variables. In contract, in order to calculate the output value in a simple integrator (such as

a DTSS integrator), the varying input value is multiplied into a fixed time step. Chapter 6

discusses the DEVS predictive integrator in depth. Figure 5.9 illustrates the operation of

the predictive interest-based quantization method.

Figure 5.9 Operation of the Predictive Interest-based Quantization method

91

In the conventional predictive filtering method, a fixed quantum size is used to

perform the predictive quantization. The predictive interest-based quantization method

allows the space manager to change the quantum size. In predictive filtering, the message

size can be reduced tremendously since both sender and receiver agents know the current

quantum size, therefore, the sender agent sends only –1/+1 value and the receiver agent

generates the original value of the sender agent using the –1/+1 value and the current

quantum size. Hence, the data bit of the one-dimensional message is only one bit for a

sender and receiver pair.

The DEVS/GDDM environment supports the communication of the message that

contains the multi-dimensional values. In the DEVS/GDDM layer, a sender predictive

message handler sends –1, 0, and +1 values for each dimension to a receiver predictive

message handler. Note that 0 is needed since a sender may not have crossed a threshold at

the time of sending the message. As the number of the message dimensions increases, the

number of message alternatives, which are represented with –1, 0, and +1 values, also

increases. The number of message alternatives is calculated by:

Number of message alternatives = 3D D = 1,2,3,…… (# of Dimensions)

For example, when a message has three-dimensional values, the number of

message alternatives is twenty-seven. The twenty-seven message alternatives can be

represented within five bits (5 > log2 27). An encoder component in the DEVS/GDDM

layer maps a message alternative to a unique bit pattern. In the receiver federate, a

decoder inverts the received data bits into the corresponding proper message alternative.

92

The DEVS/GDDM layer includes a variety of encoders and decoders that support the

encoding and decoding of the multi-dimensional message alternatives.

5.5.3 Multiplexing Interest-based Quantization Method

As the number of sender and receiver pairs in federates increases, the number of

messages communicated among federates increases quite quadratically. The

DEVS/GDDM environment supports the multiplexing interest-based quantization method

to reduce the messages and data exchanged among many sender and receiver pairs. The

multiplexing interest-based quantization method is then extended from the predictive

interest-based quantization method. To perform this multiplexing interest-based

quantization method, the DEVS/GDDM layer has sender multiplexer and receiver de-

multiplexer components.

The sender multiplexer gathers the messages output from the sender agents at the

same event time, encodes the data values from the messages, multiplexes the encoded

bits into a large message, and sends the large message to a receiver de-multiplexer in

some other receiver federates. The receiver de-multiplexer then separates the multiplexed

message to smaller messages (using de-multiplexer), decodes the encoded bits to the

original data values, and distributes the messages (including the original data values) to

the proper receiver agents. Through this multiplexing method, a large number of data bits

can be saved as the number of sender and receiver pairs increases. Moreover, many HLA

interactions can be reduced to only one HLA interaction. To exchange the message

93

between a sender and receiver pair between two different federates, one HLA interaction

is needed. As the number of the sender and receiver pairs increases, the number of the

HLA interactions for the increased pairs also increases. The increased number of the

HLA interactions causes memory and computation overhead in HLA/RTI

communication. By reducing the number of HLA interactions, the multiplexing method

in DEVS/GDDM environment is more effective in a large-scale distributed simulation.

Figure 5.10 illustrates the operation of the multiplexing interest-based quantization

method.

Figure 5.10 Operation of the Multiplexing Interest-based Quantization method

94

5.5.3.1 Fixed and Variable Multiplexing

There are two types of multiplexing interest-based quant ization methods: fixed

and variable. In fixed multiplexing, the multiplexed message size is constant while in

variable multiplexing the size varies with the number of active senders.

Figure 5.11 Implementation of the fixed multiplexing using the predictive

quantization

 (SOH : the number of overhead bits for a packet; SQ: the quantized and encoded data bit

size; Npair : the number of pair components; a: the ratio of active components)

95

Figure 5.11 illustrates the implementation of the fixed multiplexing using the

predictive quantization. The fixed multiplexer collects the encoded bits and the active bits

from each encoder. The encoded bits are the bits required to represent the message

dimension alternatives. Let SQ be the number of the encoded bits. Then by:

 SQ =
2

* 3logD? ?
? ?

 D = 1,2,3,…… (# of Dimensions).

 = 1.7* D? ?? ?

For example, if a message has three-dimensional values in the predictive

quantization, five bits (log2 33 < 5 = SQ) are required to represent the message dimension

alternatives. The active bit indicates whether a sender is active or inactive. An active

sender is one that has a boundary crossing at a given event time and generates an output

event. A receiver de-multiplexer checks the active bit of each sender and sends the

encoded bits of active senders to the respective decoders. In fixed multiplexing, for any

global state transition of a sender federate at any given event time, the network loading is

fixed and calculated by:

Network bandwidth requirement for fixed multiplexing

 = SOH + Npair * (SQ +1) (bits)

However, the bits assigned for inactive senders can be wasted in fixed

multiplexing. The fixed receiver de-multiplexer knows which sender sends certain

96

encoded bits since the bit stream order in the multiplexed bits with fixed size follows a

fixed ordering of the senders. Therefore, the additional bits representing which sender

sends are not needed.

Figure 5.12 Implementation of the variable multiplexing using the predictive

quantization

(SOH : the number of overhead bits for a packet; SQ: the quantized and encoded data bit

size; SL: the encoded data bit size for sender ID; Npair : the number of pair components;

a: the ratio of active components)

As Figure 5.12 illustrates, in variable multiplexing using predictive quantization,

the variable sender multiplexer only collects the encoded bits from active senders. At a

97

given event time, the number of active senders varies and the number of transmitted data

bits is not fixed. Different from fixed multiplexing, additional bits (SL) are needed to

represent active senders. The number of data bits for an active sender is calculated by

adding the additional bits (log2 Npair < SL) and the encoded bits (SQ). Usually, a is less

than 1 since all senders are not active senders at any given event time. The network

loading for any global state transition of a sender federate using variable multiplexing is:

Network bandwidth requirement using variable multiplexing

 = SOH + a* Npair * (SQ + SL) (bits)

Figure 5.13 illustrates how the network bandwidth requirement in fixed and

variable multiplexing depends on the ratio of active senders. For a low ratio of active

senders, the variable multiplexing requires a small network bandwidth and is more

effective than the fixed multiplexing. However, as the ratio of active senders increases,

the network bandwidth requirement in variable multiplexing also increases; thus, when

there is a high ratio of active senders, the fixed multiplexing is more effective. The

crossover value (ac) represents the ratio of active senders at the intersection point

between the two lines. It separates the effectiveness of the two multiplexing schemes. At

the intersection point, both fixed and variable multiplexing methods have the same

network bandwidth requirement. When a is less than ac, we can say that variable

multiplexing is more effective than fixed multiplexing.

98

Figure 5.13 Network bandwidth requirement in fixed and variable multiplexing by

varying the ratio (a) of active senders

99

Table 5.1 shows how the value of ac is dependent on the number of message

dimensions (D) and the number of component pairs.

Table 5.1 Analysis of ratio (ac) of active senders at the intersection point

Scheme # bits required for Npair ac ac

for D = 3,
Npair = 80

Fixed
Multiplexing
(Predictive
quantization)

SOH + Npair * (SQ +1)

Variable
Multiplexing
(Predictive
quantization)

SOH + a* Npair * (SQ + SL)

(SQ +1)
/ (SQ + SL)

0.78

When the required network bandwidth needed to perform both fixed and variable

multiplexing schemes is the same, ac is calculated by:

ac = (SQ +1) / (SQ + SL)

where

SQ = 1.7* D? ?? ?
 D = 1,2,3,…… (# of Dimensions)

 SL =
2

log pairN? ?
? ?

The crossover value, ac, approaches

ac ? SQ / SL = 1.7* D? ?? ? / 2
log pairN? ?

? ?

for 1 << Npair and SQ << SL

100

When D (number of dimensions) is 3 and Npair is 80, ac is 0.78. As Figure 5.13

shows, the high ac indicates that there is a wider range in which variable multiplexing

requires less network bandwidth than that of fixed multiplexing. Figure 5.14 illustrates

how ac varies with the number of message dimensions (D) and the number of component

pairs (Npair). Note that ac increases as D increases, and ac decreases as Npair increases.

Decreasing ac indicates that fixed multiplexing acquires a wider effectiveness interval

than variable multiplexing. However, ac changes slowly as varying Npair since it is

proportional of log2 Npair . As the number of pairs approaches infinity, fixed multiplexing

is always preferred.

Figure 5.14 Variation of ac in varying # of Dimensions and # of Component pairs

101

5.6 DEVS/GDDM Class Hierarchy

In implementing the DEVS/GDDM simulation environment on the DEVS/HLA-

Interface layer, we have extensively used the object-orientation property of inheritance

from DEVS object-oriented classes. This inheritance hierarchy is depicted in Figure 5.15.

To realize the space manager, initializer, and message handler component classes, we

implemented them as extensions of the Atomic class in the DEVS/HAL-Interface layer.

The message handler has different types depending on the non-predictive, predictive

quantization, or multiplexing methods performed in the DEVS/GDDM modeling and

simulation environment. The FederateGDDM class was implemented as an extension of

the Digraph class.

102

Figure 5.15 DEVS/GDDM class hierarchy

Within the DEVS/GDDM components, several inert or passive components are

characterized (e.g. tuple, distance, decision maker, quantizer, message dimension,

encoder, and decoder). To implement these DEVS/GDDM-specific passive components,

we extended the DEVS entity class to create the needed classes in the same fashion as the

DEVS container class library. Figure 5.16 illustrates the inheritance hierarchy for these

passive DEVS/GDDM components.

103

Figure 5.16 DEVS/GDDM container class hierarchy

5.7 User Interface of DEVS/GDDM

A developer defines a coupled model which includes all DEVS models simulated

in a federate, and constructs a FederateGDDM component (the top DEVS component in a

federate) containing the user model. Also, the developer defines a top DEVS model as

usual. However, this top DEVS model is not directly used in simulation since it provides

only the couplings among the DEVS models distributed in separate federates to the

DEVS/GDDM environment. Using the coupling information from the top DEVS model,

the DEVS/GDDM environment connects the federates together via the HLA interaction

104

communication. In subsequent sections, actual examples of the user interface in the

DEVS/GDDM environment are introduced with two models: Projectile/Earth,

Projectile/Missile.

5.7.1 Projectile/Earth model

A projectile model sends its position updates to an earth model. The earth model

then uses the projectile position to calculate three parameters: gravity, atmosphere

velocity, and atmosphere density. The projectile model needs the three parameters to

calculate its next position, so that the three parameters are sent from the earth model to

the projectile model. Figure 5.17 illustrates the passing of these attributes (position,

gravity, atmosphere velocity, and atmosphere density) between the earth and projectile

models, and the implementation codes of the top model of projectile/earth model in

DEVS/GDDM environment. The FederateGDDM component of the projectile federate

includes its own user model, which is the projectile DEVS component. The

FederateGDDM component of the earth federate includes the earth DEVS component as

its user model.

105

Figure 5.17 Implementation of the Top model of Projectile/Earth model in the

DEVS/GDDM environment

106

Figure 5.18 Implementation of the Projectile and Earth Federates in the

DEVS/GDDM environment

In order to quantize the attributes passed between the projectile and the earth

federates shown in Figure 5.18, a user chooses one of the methods supported by the

DEVS/GDDM environment. The method for quantization includes non-predictive and

predictive quantizations, and the method for multiplexing includes non-multiplexing and

multiplexing. Therefore, the user can take one of the four combinations provided from

the quantization and multiplexing methods. In Figure 5.18, considering the position

attribute passed between the projectile and the earth federates, the user chooses the

predictive quantization and non-multiplexing method and provides the information to the

107

environment to perform the method. The information includes a position quantum table, a

position dimension, and initial values of position. For the gravity attribute, the user

chooses the non-predictive quantization and non-multiplexing method.

Figure 5.19 Data passing between the Projectile and Earth Federates in the

DEVS/GDDM environment

A sender predictive message handler is used to perform the predictive

quantization and non-multiplexing method. The sender predictive message handler has

two sub-components (converter and encoder) which make the encoded bits (SQ: five bits

108

for three dimensions (5 > log 2 33)) that are passed to the receiver federate. The converter

maps double precision position values (x, y, z) to integer values (, ,x y zg g g), where

? ? , ,1,0,1 x y zg g g? ? , and the encoder converts the integer values to the encoded five

bits. The receiver predictive message handler has two sub-components (decoder and

recover) which change the encoded five bits to the original double precision position

values (x, y, z). The decoder changes the encoded five bits into the integer values

(, ,x y zg g g), and the recover component changes the integer values (, ,x y zg g g) to the

original double precision position values (x, y, z). In order to perform the non-predictive

quantization and non-multiplexing method for the gravity attribute, the quantizer in the

non-predictive message handler quantizes the gravity values and sends the double

precision gravity values (x, y, z). For the rest of the attributes (atmosphere velocity and

atmosphere velocity), no quantization method is provided. Figure 5.19 illustrates data

passing between the projectile and earth federates in the DEVS/GDDM environment.

5.7.2 Projectile/Missile model

The projectile/missile model shows how the predictive quantization and

multiplexing method performs in the DEVS/GDDM environment. In the

projectile/missile model, a projectile sends its position updates to a specified missile (not

another missiles), so that, in order to reduce the data bit for passing the attribute

dependant to projectile/missile pairs, the predictive quantization and multiplexing method

109

is used. Figure 5.20 and Figure 5.21 illustrates the implementation codes of the

projectile/missile model in DEVS/GDDM environment.

Figure 5.20 Top model codes of Projectile/Missile model in the DEVS/GDDM

environment

110

Figure 5.21 Projectile and Missile Federates’ codes of Projectile/Missile model in the

DEVS/GDDM environment

In the implementation of the projectile/missile model, a user models the multi-

projectile model, which includes many projectile models. The user puts the multi-

projectile model as a user model into the FederateGDDM component in the projectile

federate. For the position attribute passed from the projectile federate to the missile

federate, the user chooses the predictive quantization and multiplexing method and

informs the position quantum table, the position dimension, and the number of projectiles

to the DEVS/GDDM environment.

111

The message (ID, x, y, z) from each projectile includes the projectile ID with the

three dimensional position values. The sender multiplexer has three sub-components

(converter, encoder, and multiplexer) to pass a multiplexed message to the missile

federate. The converter changes the double precision values (ID, x, y, z) to integer values

(ID, , ,x y zg g g); and the encoder changes the integer position values to a properly

encoded bits (SQ: five bits for three dimensions (5 > log 2 33)) and changes the projectile

ID to a properly encoded bits (SL). For example, if the number of projectiles is eighty,

seven bits (7 > log 2 80) are needed to represent the projectile ID. The multiplexer

receives the encoded bits (SQ and SL), makes a large multiplexed message, and sends it to

the missile federate. The receiver de-multiplexer has three sub-components (de-

multiplexer, decoder and recover) to make the original double precision values (ID, x, y,

z) from the multiplexed message. The de-multiplexer separates from the multiplexed

message to each encoded bits (SQ and SL). The decoder changes the encoded bits (SQ and

SL) to the integer values (ID, , ,x y zg g g), and the recover component changes the integer

values (ID, , ,x y zg g g) to the original double precision values (ID, x, y, z). Figure 5.22

illustrates data passing between the projectile and missile federates in the DEVS/GDDM

environment.

112

Figure 5.22 Data passing between the Projectile and Missile Federates in the

DEVS/GDDM environment

113

6 DEVS PREDICTIVE INTEGRATOR

A theoretical and empirical study of the advantages of predictive quantization

over non-predictive quantization is provided in [40, 43]. Using the predictive

quantization, Zeigler [51] developed an example model (DEVS predictive integrator).

The DEVS predictive integrator basically performs, as illustrated in Figure 6.1, linear

extrapolation. The time to the next boundary crossing is the quantum size divided by the

input (derivative). The boundary is predicted either to be one up or one down according

to the sign of the derivative. When an input event is received, the state is updated using

the old input before recalculating the predicted crossing, which provides an important

correction for error reduction. A DEVS predictive integrator accepts DEVS input

segments and produces quantized output.

X
Y

dY/dT = X

nD

(n-1)D

X>0

X<0

D

ta(nD) = |D/X|

(n+1)D

nD

D

ta(q) = ((n+1)D-q)/X

e

X>0

X<0
q

nD

ta(q) = (nD-q)/X

?

Figure 6.1 DEVS Predictive Integrator

114

DEVS representation of the DEVS predictive integrator is the following:

 M = (X, Y, S, ?ext, ? int, ? , ta).

where X = Y = R and S = R ? R? I and

?? ?ext ((q,x,n),e,x’) = (q+x*e,x’, n)

?? ? int(q, x, n) = (nD + D*sign(x), x, n+ sign(x))

?? ?con ((q,x,n), x’) = (nD + D*sign(x), x’, n+ sign(x))

?? ? (q,x) = nD + D*sign(x)

?? ta(q,x,n) = ((n+1)D - q)/x, if x > 0 and (n+1)D - q > 0

 = (nD - q)/x, if x < 0 and nD - q < 0

 = |D/x| if x ??0 and none of the above

 = ? ??????otherwise (i.e., x = 0)

As Figure 6.1 illustrates, if we are on a boundary, the time advance computation

merely divides D by the current input x (the derivative or slope). If we reach the upper

boundary (n+1)D or lower boundary (n –1)D, we output and update the state accordingly.

As long as the input remains the same, the time to cross the successive boundaries

((n+1)D or (n-1)D) will be the same. When a new input is received, we update the state

115

using the old input and the elapsed time. From this new state (q), the new time to reach

either the upper or lower boundary is computed.

6.1 DEVS Representation with Hysteresis of DEVS Predictive Integrator

The necessity of hysteresis in a Quantized-State System (QSS) is presented by

Kofman [56]. Without hysteresis of the quantized variable, a QSS can perform an infinite

number of state transitions at the same time or within a finite time interval. At first

glance, the DEVS predictive integrator does not include hysteresis and might suffer from

the problem of an infinite number of transitions in a finite interval, called illegitimacy

[27]. Actually, the DEVS predictive integrator developed by Zeigler [43, 51] includes the

hysteresis properties discussed by Kofman. In this section, we express the hysteresis

within the DEVS formalism. The operation of the DEVS predictive integrator with

DEVS representation including the hysteresis is the following:

 M = (X, Y, S, ?ext, ? int, ?con,?? , ta).

where X = Y = R and S = R ? R ? I , a typical state (q, x, n) ? S represents the

integrator state, q, stored input x, and multiple of quantum, n.

?? ?ext ((q,x,n),e,x’) = (q+x*e,x’, n)

?? ? int(q, x, n) = (nD + D*sign(x), x, n+ sign(x))

116

?? ?con ((q,x,n), x’) = (nD + D*sign(x), x’, n+ sign(x))

?? ? (q,x) = nD + D*sign(x)

?? ta(q, nD,x,n) = ((n+1)D - q)/x, if x > 0 and q > nD

 = (nD - q)/x, if x > 0 and q < nD

 = D /x, if x > 0 and q = nD

 = (q - nD)/x, if x < 0 and q > nD

 = (q – (n-1)D)/x, if x < 0 and q < nD

 = | ? /x | , if x < 0 and q = nD

 = ? ??????otherwise (i.e., x = 0)

117

 (a) when increasing state direction (b) when decreasing state direction

Figure 6.2 Operation of the DEVS Predictive Integrator with Hysteresis

In Figure 6.2, nD indicates the current state boundary since n is the index of a

current boundary and D is a certain quantum size. Here, (n-1)D and (n+1)D indicate next

state boundaries reached from the current state (nD); and ? indicates the width of the

hysteresis window and is the same as the quantum size (D).

In implementation, in order to indicate the direction of the state transition, we

used lowerBound and nextLowerBound variables. The lowerBound (n) is the boundary

index of the current state (nD) and the nextLowerBound (n-1 or n+1) is the boundary

index of the next state ((n-1)D or (n+1)D). The values of lowerBound and

118

nextLowerBound variables indicate the direction of state transition. For example, when

lowerBound is 1 and nextLowerBound is 2, the direction of state transition increases.

When lowerBound is 2 and nextLowerBound is 1, the direction of state transition

decreases.

Hysteresis is used when the DEVS predictive integrator receives decreasing

derivative as its input (e.g. input value is less than zero (X<0)) in increasing state

direction. As Figure 6.2(a) illustrates, in order to process an input of decreasing

derivative with hysteresis when the state transition direction is increasing, there are two

operations for changing the direction of the state transition: The first is to make

nextLowerBound the same as lowerBound; and the second is to assign nextLowerBound

for indicating the new direction (decreasing state direction from decreasing derivative)

and to calculate the next state value (by subtracting the width of the hysteresis window

(?) from the current state boundary value (nD)). These two operations are performed at

the same time and the changed lowerBound and nextLowerBound indicate the new

direction of state transition. The output value of the DEVS predictive integrator is related

to the new direction of state transition and is calculated by multiplying the changed

nextLowerBound and the quantum (D). Figure 6.2(b) illustrates the operation of the

DEVS predictive integrator when it receives increasing or decreasing derivative as its

input in decreasing state direction, and the DEVS predictive integrator does not

hysteresis.

119

6.2 Kofman’s DEVS Predictive Integrator with Hysteresis

Using hysteresis, Kofman modified the DEVS predictive integrator developed by

Zeigler [43]. In this dissertation, we modeled the Kofman’s DEVS integrator [56] using

the DEVS formalism. The operation of the Kofman’s DEVS integrator with DEVS

representation including hysteresis is the following:

The DEVS representation is the following:

 M = (X, Y, S, ?ext, ? int,?? , ta).

where X = Y = R and S = R ? R? I and

?? ?ext ((q,x,n),e,x’) = (q+x*e, x’, n)

?? ? int(q, x, n) = (q’, x, n+ sign(x))

where

q’ = (n+1)D, if x>0

 = nD- ? , if x<0

?? ? (q,x) = nD + D*sign(x)

?? ta(q,nD,x,n) = ((n+1)D - q)/x, if x > 0

 = (q – (nD - ?))/|x|, if x < 0

 = ? ???????????????????????????????otherwise (i.e., x = 0)

120

 (a) when increasing derivative (b) when decreasing derivative

Figure 6.3 Operation of Kofman’s DEVS Integrator with Hysteresis

Figure 6.3 illustrates how the Kofman’s DEVS integrator uses the hysteresis. Like

in the original DEVS predictive integrator, the hysteresis is used when the Kofman’s

DEVS integrator has decreasing derivative as its input (e.g. input value is less than zero

(X<0)). In the implementation of the Kofman’s DEVS integrator, we use the

Actual_index (n) which indicates the boundary index of current state (nD). Without

indicating the direction of state transition, the Actual_index only indicates the current

state boundary.

121

As Figure 6.3(b) illustrates, the Kofman’s DEVS integrator receives an input of

decreasing derivative and uses the hysteresis to calculate the next state value by

subtracting the width of the hysteresis window (?) from the current state value (nD).

Unlike the original DEVS predictive integrator, the Kofman’s DEVS integrator does not

consider the direction of state transition; thus it needs only one operation for calculating

the next state value and the time advance value for next event with the hysteresis. The

next state value and the next time advance value of Kofman’s DEVS integrator are only

related to the current input value. If the current input value is greater than zero, the

Actual_index is increased by one. If the current input value is less than zero, the

Actual_index is decreased by one. The output value is calculated by multiplying the

increased or decreased Actual_index and the quantum (D). Figure 6.3(a) illustrates the

operation of Kofman’s DEVS integrator when it receives increasing derivative as its

input, and Kofman’s DEVS integrator does not hysteresis.

6.3 Experimentation and Results

In order to illustrate the qualities of the DEVS predictive integrator with

hysteresis, we chose a second order stiff system as a simulation example. The stiff system

includes at least one integrator that frequently changes the direction of the state transition.

Since hysteresis is only used when the direction of the state transition of a quantized

variable changes, the stiff system is the proper example needed to show the operation of

122

the DEVS predictive integrator with hysteresis. The second order stiff system is

represented:

.

1 2

1
Lx x?

.

2 1 2

1 R
U

C Lx x x? ? ?

2

1
y

L x? (6.1)

where L is 0.01, U is 100, C is 0.01, and R is 100.

The analytical solution of the second order stiff system is below:

 1000010000
() ()

9999
t ty t e e? ?? ? (6.2)

The error from this simulation was evaluated by comparing the simulation results

to the analytical solution of (6.2).

123

Figure 6.4 Component Diagram of Second Order Stiff System

To simulate the second order stiff system, we modeled the DEVS components:

DEVS predictive integrator, adder, and transducer. The second order stiff system includes

two DEVS predictive integrators, which generate x1 and x2. The DEVS predictive

integrator is modeled by the DEVS predictive integrator representation in section 6.1.

Also, we modeled the second order stiff system, which uses the Kofman’s DEVS

integrators modeled from the DEVS representations of section 6.2. The adder component

collects the output values from the two integrators (which generates x1 and x2) and makes

the derivative for the integrator that outputs
2x . The transducer component gathers the

output values of the second order stiff system and shows occurred error. Figure 6.5 shows

124

the simulation result of the second order stiff system using the DEVS predictive

integrators.

Figure 6.5 Output trajectory of the second order stiff system using the DEVS

Predictive Integrators

In order to validate the second order stiff system using the DEVS Predictive

Integrators, we investigated the error trajectory between the value from the stiff system

simulation and the exact value of y(t) in (6.2). Figure 6.6 shows the error trajectory of the

second order stiff system using DEVS Predictive Integrators. The greatest error was less

than 10-2, or 1.0 (%) of maximum value. After the simulation time is 3.498976, the state

125

value of the integrator that outputs
2x is below its quantum size (10-4); therefore, the error

is bounded within 10-2 , which is calculated by:

 2
2

1
10y

L x ?? ?

where L is 0.01.

Figure 6.6 Error trajectory of the second order stiff system using the DEVS

Predictive Integrators (Quantum sizes - X1: 10-2 , X2: 10-4)

In order to compare the quality between the DEVS predictive integrator and the

Koffman’s integrator, we checked the error of the simulation time when the value of y(t)

in (6.2) was equal to 1.000 (exact value). Figure 6.7 illustrates the error check point to

check the error of the simulation time, which is computed as:

126

Error = tapp – 9.2*10-4

 where tapp : approximated time to exact time (9.2*10-4) for varying quantum sizes.

Figure 6.7 Error Check Point in Second Order Stiff System

In simulation, the hysteresis value (?) is equal to the quantum size (D). Figure

6.8 illustrates the errors from the DEVS predictive integrator and from the Kofman’s

DEVS integrator for varying quantum sizes. As the quantum sizes of the integrators of

the second order stiff system increase, the incurred error also increases. Both the original

DEVS predictive integrator and the Kofman’s DEVS integrator show the same accuracy.

127

Figure 6.9 illustrates the number of internal transitions from the DEVS predictive

integrator and from the Kofman’s DEVS integrator in varying quantum sizes. When

small quantum sizes are used, internal transitions from the Kofman’s DEVS integrator

are less than those from the DEVS predictive integrator.

Figure 6.8 Error from the original DEVS predictive integrator and the Kofman’s

DEVS integrator in varying quantum sizes

128

Figure 6.9 Internal transitions from the original DEVS predictive integrator and

Kofman’s DEVS integrator in varying quantum sizes

6.4 Discussion

Considering hysteresis, we compared the qualities of the original DEVS

predictive integrator and Kofman’s DEVS integrator. In simulation of the second order

stiff system example, the errors (for varying the quantum sizes) of the two integrators

(DEVS predictive integrator and Kofman’s DEVS integrator) were not much different.

Both integrators perform with the same accuracy, however the number of internal

transitions of the original DEVS predictive integrator is greater than those of the

129

Kofman’s DEVS integrator. When the direction of the state transition is changed, the

original DEVS predictive integrator needs two internal transitions to perform hysteresis;

meanwhile, only one internal transition is needed for the Kofman’s DEVS integrator.

Since the second order stiff system frequently changes the direction of the state transition,

the second order stiff system simulation shows the difference in the number of internal

transitions of the two integrators (the DEVS predictive integrator and the Kofman’s

DEVS integrator). However, in many real-world applications, the change of the direction

of the state transition does not occur frequently.

130

7 PURSUER-EVADER MODEL

In order to evaluate the performance of the space-based quantization scheme in a

distributed simulation environment, we introduce the pursuer-evader model and a

federation executing on the DEVS/HLA distributed simulation environment. The

federation contains two types of agents, pursuers and evaders, which move and interact

with each other in a bounded region of two-dimensional space. There are two types of

federates, pursuer federates and evader federates. Each pursuer federate contains an

arbitrary number of pursuers while each evader federate contains an arbitrary number of

evaders. Pursuers and evaders bounce in elastic fashion off the walls of the region in

which they are confined. The pursuers chase evaders that come within close proximity

and shoot at those within a smaller range. The evaders run away from pursuers they

“notice” at some distance and freeze when detecting any within a closer range. Figure 7.1

illustrates the operation of the pursuer-evader model.

131

Figure 7.1 Pursuer-Evader Model

7.1 Distance-Dependent Sensitivity of Vision

Perception abilities of pursuers and evaders are modeled with a simple approach

to distance-dependent sensitivity of vision. The ease with which one agent can detect

another depends upon the latter’s projection on the former’s hypothetical retina. The

projection is defined as the size of the agent divided by the distance between the two

agents. The projection must be larger than a threshold value to be perceived. Since, in

our model, a pursuer is bigger than an evader, with the same threshold on the projection,

an evader can see a pursuer better than a pursuer can see an evader. Critical distance, D,

is defined as the size divided by a threshold of projection. As Figure 7.2 illustrates, there

are two critical distances, Dsee and Dnotice, corresponding to two thresholds for seeing and

132

noticing. An evader can detect the pursuer within Dnotice of evader and can see the pursuer

within Dsee of evader (and vice versa).

Figure 7.2 Modeling Distance-dependent Sensitivity of Vision in the Pursuer-Evader

Model

At any moment, with this distance-dependent sensitivity, an evader may exist in

one of four states, “move”, “run away”, “freeze”, or “dead”. These states change in

response to the evader’s perception of the pursuers which is a function of the distance

between each pursuer and the evader. Figure 7.3 illustrates a state transition diagram for

the evader.

133

 When a pursuer comes within the critical range, Dnotice, of an evader, the evader can

detect the pursuer. At this point, the evader switches to the “run away” state and runs

away from the pursuer. However, if a pursuer comes within the critical Dsee range, the

evader can “see” the pursuer and changes to the “freeze” state. In the “freeze” state, the

evader does not move hence does not output any position update messages. The evader

changes from the “freeze” state to the “move” state when all pursuers are out of range

determined by the critical Dsee distance. The “freeze” state was introduced to provide

interesting interactions. It can be used to keep the pursuers from quickly eliminating the

evaders, thereby enabling long simulation runs.

Figure 7.3 State Transition Diagram for Evader

134

7.2 Space-based Quantization with Distance-Dependent Sensitivity of Vision

The space-based quantization scheme is applied to the operation of the

pursuer/evader model with distance-dependent sensitivity of vision. This scheme uses

two critical distances, Dsee and Dnotice, which are determined by distance-dependent

sensitivity of vision. Figure 7.4 illustrates how a quantum size is assigned according to

the distance between pursuer and evader. In Figure 7.4(a), three quantum sizes are used

with the two values of distance, Dsee and Dnotice. Two quantum sizes are used in Figure

7.4(b) and Figure 7.4(c). Note that filtering of messages is greater with the assignment of

Figure 7.4(c) than that of Figure 7.4(b).

135

Figure 7.4 Assigning quantum sizes based on the distance

136

Figure 7.5 Assigning quantum sizes based on the message direction and the distance

As Figure 7.2 shows, we have to consider four critical distances: the respective

values, Dsee and Dnotice of pursuers and evaders. Figure 7.5 illustrates the assignment of

quantum sizes with these four distances. Figure 7.5(a) illustrates the quantum size

assignment for messages being transmitted from pursuer to evader while Figure 7.5(b)

considers messages from evader to pursuer. In Figure 7.5(a), three quantum sizes are

assigned, using a quantum size of 10 for distances between Dsee and Dnotice of evader. Dsee

and Dnotice of evader are bigger than Dsee and Dnotice of pursuer respectively, since a

pursuer is bigger than an evader. Thus perception is not symmetric: an evader can

perceive a pursuer better than that pursuer can perceive it. In Figure 7.5(b) we assigned

only two quantum sizes for greater message reduction. In this example, the pursuer

cannot see the evader outside the range of 10 units. Therefore, quantum size 10 is

137

replaced by quantum size infinity. Of course, more quantum sizes with the space-based

quantization scheme can be employed. The number of quantum sizes assigned is very

dependent to each application.

7.3 Filtering operation

In this section we provide more detail on the filtering operations performed by the

space manager with the pursuer/evader model in the DEVS/HLA distributed simulation

environment. In the DEVS/HLA distributed simulation environment, there are two types

of filtering operations. The first type is the filtering at sender federate. When a pursuer

has a message to be transferred, if all evaders are too far from the pursuer, the space

manager decides that the message from the pursuer does not need to be transferred and

blocks the message. The space manger operates in the same manner when the message

originates from an evader. This type of filtering blocks HLA inter- federate messages

from entering a network. In a distributed simulation, network delay is a critical factor of

system performance. By blocking a message from entering a network, filtering at sender

federate can prevent the communication overhead that results from network delay.

Therefore, with filtering at sender federate, we can greatly reduce system execution time

as a result of network message reduction in a distributed simulation.

The second type of filtering operation is the filtering at receiver federate. When a

pursuer has a message to be transferred, if some evaders are close by and some evaders

are far away, the message has to be released outside the pursuer federate without filtering.

138

The space manager decides, according to the distance between the evaders and the

pursuer, which evaders can receive the message and blocks the message to those evaders

that are far from the pursuer. The filtering operation works in the same manner when the

evader sends a message. This filtering operation filters DEVS messages, which are for

communication within a federate. Figure 7.6 illustrates the two types of filtering

operations controlled by the global or the local space managers in the DEVS/HLA

distributed simulation environment.

Figure 7.6 Filtering operations

139

In this dissertation, the direct filtering scheme supported by DEVS modeling and

simulation is introduced and applied to these two types of filtering operation. In most

conventional filtering schemes, each agent directly filters the message traffic. For

example, with the spatial encounter prediction of the Joint MEASURE architecture [44],

the space model sends the spatial relationship to each agent, and each agent performs the

filtering operation. However, in the direct filtering operation, the space manager directly

performs the filtering operation by changing the coupling specification supported by

DEVS modeling, but does not inform the spatial relationship to each age nt. With this

coupling specification, a message can be transferred to any model. Each model can

change the message transfer path among the models by adding or removing the coupling

specification. With the space manager, the direct filtering is applied to these two types of

filtering operations in the DEVS/HLA distributed simulation. With filtering at sender

federate, the space manager performs direct filtering by changing the coupling

specification between the sender agent’s output and the output of the sender federate.

With filtering at the receiver federate, the space manager performs direct filtering by

changing the coupling specification between the receiver agent’s input and the input of

the receiver federate.

140

7.4 Experiment and Results

7.4.1 Effect of the Space-based Quantization Scheme

To evaluate the performance of the space-based quantization scheme, we

developed the pursuer and evader DEVS/HLA models in two federates in the

DEVS/HLA distributed simulation environment. One federate included pursuer

DEVS/HLA models. The other federate had evader DEVS/HLA models. Each federate

had its own local space manager. Each local space manager receives position updates

from pursuers and evaders and performs the message filtering between pursuers and

evaders. Whether or not message filtering is performed depends on the distance between

pursuers and evaders. If pursuers and evaders are close together, message filtering may

not be performed. Message traffic reduction is chosen as the performance measure of this

experiment because, through message traffic reduction, the data to be processed by the

receiving agents is reduced, as is the data actually sent over a network.

To represent the effect of the space-based quantization scheme, three different

experimental conditions are introduced. In the first condition, there is no space manager.

Messages are broadcast to all agents without the space manager operation. In the second

condition, the space manager operation is used with two distance ranges. In this

experimental condition, the distance between any two agents is stratified as two ranges,

“close” and “far”, so that two different quantum sizes exist. If close, the quantum is 1 and

the message can be transferred. If far, the quantum is Infinity and the message cannot be

141

transferred. In the third condition, the space manager operation is used with three

distance ranges. In this condition, the distance between any two agents is stratified as

three ranges, “close”, “middle” and “far.” If “close” or “far”, a message is transferred or

filtered in the same manner as in the second condition. On the other hand, if the range is

“middle,” the quantum is 10 and the filtering operation follows a filtering policy with

distance-dependent sensitivity of vision in the pursuer-evader model. In middle distance

range, a pursuer transmits its position update to an evader. The evader notices the

pursuer and runs away. However, because the evader does not transmit its position update

to the pursuer, the pursuer does not notice the evader. Through message filtering in the

middle range, evaders can “run away” from pursuers. With this filtering policy, message

communication depends on the direction of the message. When a pursuer has a message

to be transferred, if the distance range between the pursuer and the evader is in the middle,

the message can be transferred. However, when an evader has a message to be transferred,

if the distance range between pursuer and evader is in the middle, the message cannot be

transferred. Thus, assigning quantum size follows Figure 7.5.

Figure 7.7 shows the effect of the space-based quantization scheme on message

traffic. The figure compares the number of transferred messages as a function of different

space dimens ions in the three experimental conditions. In this experiment, the total

number of agents is fixed and the space dimension varies. With a fixed number of agents,

the space dimension (size of bounding region) is a critical factor in comparing the

number of messages because the filtering operation of the space manager is based on the

distance among agents. As the space dimension increases, the space manager filters more

142

messages among agents with the distance-dependent sensitivity of vision in the pursuer-

evader model. In the first condition (i.e. no space manager), as the space dimension

increases, the number of messages transferred increases because the distances between

pursuer and evader are skewed toward smaller values and many evaders stay in the

“freeze” state. In the “freeze” state, the evader does not move and does not transfer any

messages. Thus, as the space dimension increases, evaders have more messages to be

transferred. This contrasts with performance in the second and third conditions (i.e. space

manager with two distance ranges and space manager with three distance ranges,

respectively). Here, as the space dimension increases, the number of messages transferred

decreases because the space manager operation is based on the distances among agents.

These results support the assertion that the space-based quantization scheme proposed

and developed in this dissertation is an efficient means of message traffic reduction.

As illustrated in Figure 7.7, there is more reduction in message traffic when there

are three distance ranges than when there are only two. In the former condition, the

distance between pursuer and evader is more stratified than in the latter condition. Three

different quantum sizes are assigned to these three distance ranges. The quantum sizes 1,

10, and Infinity are assigned to the close, middle and far distance ranges, respectively. If

the quantum size is 1 or 10, when an agent crosses over the boundary of the area assigned

for that quantum size, the agent transfers a message. However, if the quantum size is

Infinity, the agent does not transfer a message. The existence of the middle distance in

the third condition permits the application of distance-dependent sensitivity of vision in

the pursuer-evader model, which in turn results in greater message traffic reduction. It

143

should be noted that the greatest benefit of the triple-quantum scheme occurs in the close

encounter range where evaders are likely to have more pursuer detections of the “notice”

kind than when their “mean free path” becomes large.

Figure 7.7 Traffic Message Reduction with the Space-based Quantization Scheme

Figure 7.8 shows the filtering rates of the different filtering types at sender and

receiver federates. As stated previously, as the space dimension increases, the overall

filtering rate increases. The overall filtering rate consists of filtering rates at the sender

federate as well as filtering rates at the receiver federate. The filtering rate at sender

federate shows how many HLA messages between federates are filtered through a

network. The filtering rate at receiver federate shows how many DEVS messages within

a federate are filtered. By reducing the network delay, network message reduction more

144

effectively decreases execution time in a large-scale distributed simulation than does non-

network message reduction. At smaller space dimensions, the filtering rate at receiver is

higher than the filtering rate at sender. However, at larger space dimensions, the filtering

rate at sender increases further. In effect, as the space dimension increases, the increased

filtering rate at sender improves system performance by decreasing execution time.

Figure 7.8 Filtering Rates with Filtering operations

145

7.4.2 Global and Local Space Manager Approaches

To evaluate the performance of the global and local space manager approaches in

terms of the scalability of the space-based quantization in a large-scale distributed

simulation, we applied the heavy load test, using over one hundred agents, to three

different systems in the DEVS/HLA distributed simulation environment. In the first

system, messages are broadcast to agents without the space manager operation. The

second system filters messages among agents using the global space manager approach.

The third system filters the messages using the local space manager approach. 1

7.4.2.1 Message Traffic Reduction Using Global and Local Space Manager Approaches

In this section, we compare the performance of global and local space manager

approaches in terms of message traffic reduction and discuss the reasons underlying the

different performance of the two approaches. Figure 7.9 illustrates the number of

transferred messages, including the overhead messages, in these two approaches as well

as the number of messages broadcast to all agents without the space manager operation.

This figure also shows the 99 (%) confidence interval of the number of messages passed.

As Figure 7.9 shows, both approaches greatly reduce message traffic with the space

manager operation. As the number of agents increases, the local space manager approach

1 Each condition was executed with 5 replications and the averages were significantly
different at the 99% confidence level [45].

146

reduces the number of messages more than the global space manager approach. Figure

7.10 shows the net message reduction using both approaches. The net message reduction

is calculated by subtracting the overhead messages from the total number of messages

transferred. The overhead messages in the global space manager approach are for

position updates of agents to the global space manager and for distributing the connection

information decided by the global space manager to each coupling operator on each

federate. The overhead messages in the local space manager approach are for position

updates of agents to each local space manager on each federate. Because the overhead

messages that distribute the connection information in the global space manager approach

are more numerous than the overhead messages for position updates of agents to each

local space manager, the net message reduction of the local space manager approach

increases much more than that of global space manager approach as the number of agents

increases.

147

Figure 7.9 Message Traffic Reduction using Global and Local Space Manager

approaches

148

Figure 7.10 Net message traffic reduction using global and local space manager

approaches

7.4.2.2 The Effect of the Space-Based Quantization in Global and Local Space Manager

Approaches

In this section, we compare the performance of the global and local space

manager approaches with the space-based quantization scheme. With this scheme, the

distance between pursuer and evader is stratified, so that the quantum sizes related to the

stratified distance are chosen. In this experiment, two and three quantum sizes are chosen

and each quantum size depends on the distance between pursuer and evader.

Figure 7.11 shows the effect of the space-based quantization scheme when it is

applied to the global space manager approach. Figure 7.12 shows the effect on message

traffic reduction when it is applied to the local space manager approach. As the number

149

of agents increases, the space-based quantization scheme reduces more messages when

three quantum sizes are chosen than when only two quantum sizes are chosen.

Furthermore, the effect of space-based quantization on message traffic is greatest when

the space-based quantization scheme is applied to the local space manager approach.

Figure 7.11 Message Traffic Reduction with the Space-based Quantization Scheme

in Global Space Manager approach

150

Figure 7.12 Message Traffic Reduction with the Space-based Quantization Scheme

in Local Space Manager approach

7.4.2.3 Influence of Network Delay and Computation Load in Global and Local Space

Manager Approaches

In this section we analyze how network delay and computation load influence

system performance using system execution time as a performance measure. In order to

analyze the influence of network delay in Window NT machines connected via a 10 Base

T Ethernet network, we designed the experiment in such a way that there was a holding

time before a message was sent from a simulation component output. This message

holding time represented the network delay that occurs prior to a message being

transferred over a network and the implementation of the message holding time operation

is added in the DEVS/HLA simulation engine. In order to analyze the influence of system

151

computation time, we assigned a certain computation time to receiving agents. The

system computation time represents the computation time originating from agents and the

space manager.

Figure 7.13 illustrates the influence of network delay and computation load on

system execution time in three system experiments including no space manager, the

global space manager, and the local space manager. The execution time of the system

operated without the space manager increases with a high slope as the network delay

increases. The execution time of the system using the local space manager approach

increases with a small slope. In the system using the global space manager approach, the

system execution time increases with a somewhat higher slope than that of the local space

manager approach. In all three systems, system execution time from network delay

depends on the number of messages passed. The difference in performance of the three

systems in terms of network delay would be clearer at the network saturation point.

In the very low network delay range, the difference noted between the

performances of the system operated without the space manager and the system with the

global space manager was less remarkable, although fewer messages were passed in the

system using the global space manager than when no space manager was used. This is

because, in the very low network delay range, the system execution time from network

delay is very low. It, therefore, follows that the system execution time is due primarily to

system computation time. The system computation time mainly results from the

computation overhead of the global space manager approach, which is fairly high.

However, the computation overhead of the local space manager is still low. Also, in the

152

very low network delay range, the local space manager approach has the lower system

execution time than that when no space manager was used since the message reduction

from the local space manager approach causes the reduced computation time of the

receiver agents.

The computation time of the system operated without the space manager increases

with a high slope as the agent computation time increases. The large number of messages

broadcast among agents in this system causes a large local data processing time by the

message-receiving agents, thus it increases the system computation time with a high

slope. The computation time of the system using the local space manager approach

increases with a low slope. In the system using the global space manager approach, the

system computation time increases with a relatively higher slope than that of the local

space manager approach. With both approaches, the local data processing time by the

receiving agents is significantly reduced by the message filtering operation of the space

manager though the computation overhead for the space manager operation exists. The

system using the global space manager approach encounters a “bottleneck” during

computation of the global space manager. However, the local space manager approach

solves this problem using concurrent processing, which decreases computation overhead

for the space manager.

In the very low agent computation range, the computation time of the system

using the global space manager approach is not much different from that of the system

operated without the space manager. This is because, in this range, the computation

overhead of the global space manager is still fairly high although the local data

153

processing time by the receiving agents is very low. In this range, the computation time

of the system using the local space manager approach is still low. To summarize, Figure

7.13 shows that as both network delay and computation load increase, the execution

times of these three systems with no space manager, global space manager, and local

space manager, increase with orderly different slopes. The best performance was

accomplished by the local space manager approach proposed in this dissertation as both

network delay and computation load increase.

Figure 7.13 Influence of Network Delay and Computation Load

154

8 PROJECTILE/MISSILE APPLICATION

8.1 Projectile/Missile Application Overview

In this dissertation, a real application (projectile/missile) working in a real-world

environment is used to evaluate the performance of the DEVS/GDDM environment. This

application uses the geocentric-equatorial coordinate system [54, 55]. The projectile is a

ballistic flight and accounts for gravitational effects, drag, and the motion of the rotation

of the earth relative to it. A missile is assigned a projectile, and it follows its projectile

until it hits its projectile. In modeling the projectile/missile application, there are two

main models: projectile and missile. The projectile model is the model of a sphere of

uniform density following a ballistic trajectory. This model begins at an initial position

with an initial velocity, moves, and stops until it meets a missile. The missile model is the

model of the same sphere of the projectile, and it begins at a certain initial position and a

certain initial velocity, which are different from those of the projectile model. The missile

model follows the projectile model assigned to it. When the missile model is close to the

assigned projectile model within a certain distance, it stops and we consider the missile

hits its projectile.

155

8.2 Projectile/Missile Modeling

The projectile model includes three sub-models: acceleration model, velocity

model, and position model. The acceleration model uses parameters (e.g. gravity,

atmosphere velocity, atmosphere density, etc.) to generate the acceleration values. The

earth model calculates these parameters using the position values of the projectile model.

For the real implementation of the velocity and the position models, the integrator model

is developed. The integrator model has two types: the DTSS integrator and the DEVS

predictive integrator. The velocity model receives the acceleration input from the

acceleration model, and the position model receives the velocity input from the velocity

model. Finally, the position model generates three dimensional position values of the

projectile and sends them to both the earth model and the missile model.

The missile model includes two sub-models: the velocity generator model and the

position model. The velocity generator model receives the position update message from

the projectile model, and it generates the velocity values and sends them to the position

model. The position model (an integrator model) receives the velocity values and

generates the three dimensional missile position values. As the simulation time is

advanced, the position of the missile model gradually becomes closer to the position of

the projectile model.

To realize the projectile/missile application in the DEVS/GDDM environment

proposed in this dissertation, we made four systems to perform the case study with the

projectile/missile application: The first system is a basic system, which is not applied by

156

the interest-based quantization scheme of the DEVS/GDDM environment; The second

system uses the non-predictive interest-based quantization scheme. The third system

employs the predictive interest-based quantization scheme; and the multiplexing method

is included in the fourth system.

In the basic system, there are two federates; the projectile federate and the missile

federate. The projectile federate includes the projectile models, and the missile federate

includes the missile models. In the basic system, the DTSS integrators are used for the

velocity and the position models in the projectile model, as well as for the position model

in the missile model. The position model of the projectile model in the projectile federate

sends the three dimensional position double values (x, y, z) to the missile federate in a

fixed step time due to the fact that the DTSS integrators are used. The results from the

basic system are the standard results for evaluating the performance of the DEVS/GDDM

environment. The system with the non-predictive interest-based quantization scheme is

supported by the non-predictive interest-based quantization method of the DEVS/GDDM

environment, and the high level modeling of the system in the DEVS model layer is the

same as that of the basic system. Figure 8.1 and Figure 8.2 illustrate the component

diagram of the projectile and of missile models in the basic system, as well as the second

system using the non-predictive interest-based quantization scheme.

157

Figure 8.1 Component diagram of the projectile model in the basic system and the

second system using the non-predictive interest-based quantization scheme

158

Figure 8.2 Component diagram of the missile model in the basic system and the

second system using the non-predictive interest-based quantization scheme

8.2.1 Predictive Interest-based Quantization scheme

To reduce the tremendous data bits communicated between the projectile model

and the missile model with only reasonable error, we made the third system which

utilized the predictive interest-based quantization scheme of the DEVS/GDDM

environment. In order to apply to this predictive interest-based quantization scheme, the

DEVS predictive integrators are used for the velocity and position models in the

projectile and the missile models. The third system includes the projectile and the missile

federates which are the same as the basic system. The position model in the projectile

159

model sends the three dimensional position integer values, such as (-1, 0, 1), to the

velocity generator model in the missile model. To generate the velocity of the missile

model, the velocity generator model needs the current position values of the projectile

model; thus, it calculates the current position values of the projectile model by

multiplying the input integer values and the current quantum size and by adding the

multiplied result to the old position values.

To avoid error of the projectile position values in the missile model, the current

quantum size in the missile model should be the same as the current quantum size in the

projectile model. The current quantum size is decided by the space manager in the

DEVS/GDDM environment, and it is distributed to both the projectile model and the

missile model. In the third system, by sending the integer values (not the double values)

from the projectile federate to the missile federate, the inter- federate communication data

bits are tremendously reduced. To save more of the data bits, the three dimensional

position integer values, such as (-1, 0, 1), are not transferred directly, and only five (5 >

log2 33) data bits representing the three dimensional integer values are sent. Therefore,

the encoder, which changes the three dimensional integer values to the five data bits, is

needed and supported by the DEVS/GDDM environment.

In order to change the received five data bits to the exact three dimensional

integer values in the missile federate, the decoder is supported by the DEVS/GDDM

environment. Also, the position model of the projectile model sends the five data bits to

the space manager in the DEVS/GDDM environment. The space manager needs the

decoder to decode the five data bits to the exact three dimensional integer values and

160

generates the position values of the projectile model as the velocity generator in the

missile model does. Figure 8.3 and Figure 8.4 illustrates the component diagram of the

projectile and missile models in the third system using the predictive interest-based

quantization scheme of the DEVS/GDDM environment.

Figure 8.3 Component diagram of the projectile model in the third system using the

predictive interest-based quantization scheme of the DEVS/GDDM environment

161

Figure 8.4 Component diagram of the missile model in the third system using the

predictive interest-based quantization scheme of the DEVS/GDDM environment

8.2.1.1 The methods to reduce the error in the systems using the DEVS predictive

integrators

In the third system using the predictive interest-based quantization scheme, error

occurs due to using the DEVS predictive integrators (not DTSS integrators) in the

projectile/missile application. To reduce this error, three methods are applied to this

system. The first method is to use a smoother model, which can reduce the error from the

multi-dimensional output values of the DEVS predictive integrator with each different

162

unfixed time advance. The velocity model and the position model output s with variable

time advance in the projectile model since these models are developed with DEVS

predictive integrators. Also, because the positions of the projectile and the missile are

three dimensional, the position values of the DEVS predictive integrator are outputted

with each variable time advance for each dimension. The earth model generates the

gravity, atmosphere density, etc., with all three dimensional position values at a same

time. The position values, outputted with each different variable time advance, include

the old values and current values at a given event time. The use of the old values of the

projectile position in the earth model causes the error.

In this third system, the smoother model receives, keeps, and updates the three

dimensional position values outputted from the DEVS predictive integrator with each

different variable time advance for each dimension until the fixed time step of the DTSS

integrator is advanced. When the fixed time step advance of the DTSS integrator comes,

the smoother model outputs the three dimensional position values to the earth model. By

using the smoother model, the error caused by the use of the old values of the projectile

position can be reduced. Figure 8.5 illustrates the component diagram of the projectile

model in the third system using the smoother model.

163

Figure 8.5 Component diagram of the projectile in the third system using the

smoother model.

The second method for reducing error, which occurs due to using the DEVS

predictive integrator, is to use the standard quantum size which decides the message

filtering rate in the DEVS predictive integrator. In the predictive quantization theory, the

standard quantum size provides the same accuracy as that caused by the time step (h) of a

DTSS integrator. Figure 8.6 illustrates the relationship of standard quantum size and the

time step (h) of a DTSS integrator.

164

Figure 8.6 Standard Quantum Size (D) and Time Step (h) of a DTSS integrator.

The standard quantum size is calculated by multiplying the step time (h) and the

maximum absolute derivative of the DTSS integrator, which is the maximum input of the

DTSS integrator. In the basic system, the time step (h) of the DTSS integrator is fixed.

The DTSS integrators, working in the basic system, have three dimensional maximum

absolute derivatives. Therefore, we have three dimensional standard quantum sizes.

When this method for using the standard quantum size is applied, the space manager in

the DEVS/GDDM environment decides the multiple factor for multiplying to the

standard quantum size rather than deciding the actual quantum size. Thus, the quantum

decision table includes the multiple factors related to the distances between the projectile

model and the missile model. In initializing time, the standard three dimensional quantum

165

sizes are given to the DEVS predictive integrators. Each DEVS predictive integrator in

the projectile model generates its own three dimensional quantum sizes by multiplying

the multiple factor and the standard three dimensional quantum sizes. Simultaneously, the

velocity generator model in the missile model gets the standard three dimensional

quantum sizes of the projectile model’s position model in the initializing time, and the

velocity generator model calculates its three dimensional quantum sizes by multiplying

the multiple factor from the space manager and the standard three dimensional quantum

sizes in run time.

Table 8.1 and Table 8.2 show the maximum absolute derivatives and the standard

quantum sizes in the velocity and position models when the step time (h) of DTSS

integrators of the velocity and position models is 0.01. The maximum absolute

derivatives and the standard quantum sizes include three dimensions and have their

values which indicate x, y, and z directions.

Table 8.1 Maximum absolute derivatives and the standard quantum sizes in velocity

model (h = 0.001)

 X direction Y direction Z direction
Maximum absolute
derivative

4.878143177E-5 0.030262613307 9.799137940

Standard Quantum Size
(D = h * Maximum
absolute derivative)

4.87E-8 0.0000302626133 0.0097991379

Table 8.2 Maximum absolute derivatives and the standard quantum sizes in position

model (h = 0.001)

 X direction Y direction Z direction
Maximum absolute
derivative

1.698550814E-4 10.0 98.77168099258

Standard Quantum Size
(D = h * Maximum
absolute derivative)

1.69E-7 0.01 0.0987

166

The third method to reduce the error in the third system is to remove the error

incurred when the DEVS predictive integrator receives a new quantum size from the

space manager in the DEVS/GDDM environment and generates the new output values

(not the pre-scheduled output values). To avoid this error with the new quantum size, the

position model of the projectile model sends the actual position double-precision values

(not encoded small data bits) to the velocity generator model in the missile model and to

the space manager in the DEVS/GDDM environment. When the velocity generator model

in the missile model receives the actual position values and the new quantum size from

space manager, it updates the current position values of the projectile model and stores

the new quantum sizes for subsequent use. Also, the space manager in the DEVS/GDDM

environment receives the actual position values and updates its representation of position

values of the projectile model.

8.2.2 Mutiplexing Interest-based Quanitzation Scheme

As the number of projectile model and the missile model pairs in federates

increases, the number of messages communicated among federates increases also

significantly. To perform the multiplexing interest-based quantization scheme for

reducing message traffic of the increased pairs, two components (e.g. sender multiplexer

and receiver de-multiplexer components) are used in DEVS/GDDM environment.

The sender multiplexer gathers the messages outputted from the sender agents

within a time granule into a large message, which is sent to the receiver de-multiplexer in

167

the other receiver federate. The receiver de-multiplexer separates the large multiplexed

message to the small-unmultiplexed messages and distributes the small messages to the

proper receiver agents. As the number of sender and receiver pairs increases, through this

multiplexing interest-based quantization scheme, tremendous communication bits can be

saved. Moreover, by using this multiplexing interest-based quantization scheme, many

HLA interactions are reduced to only one HLA Interaction. To exchange the message

between sender and receiver pair in two different federates, one HLA interaction is

needed. As the number of sender and receiver pairs increases, the number of the HLA

interactions for the increased pairs also increases if the multiplexing interest-based

quantization scheme is not used; therefore, the number of the increased HLA interactions

causes memory and the computation overhead in HLA/RTI communication. By reducing

the number of HLA interactions, the multiplexing interest-based quantization scheme is

more effective in a large-scale distributed simulation.

In order to analyze the performance of the multiplexing interest-based

quantization scheme, we investigated the ratio of the number of bits needed for the

multiplexing predictive quantization to the number of bits needed for the non-

multiplexing, non-predictive quantization with the same number of components. The

analysis is given in Table 8.3 where we consider all six combinations of quantization

(non-predictive and predictive) and multiplexing (fixed and variable). The fixed and

variable multiplexing schemes were discussed in chapter 5.

168

Table 8.3 Network bandwidth requirement for quantization and multiplexing

schemes

(SOH : the number of overhead bits for a packet (160 bits); SD: the non-quantized data bit

size (64*3 bits for double precision real numbers for three dimensions); SQ: the quantized

and encoded data bit size (5 bits for three dimensions (log2 33 < 5 = SQ)); SL: the

encoded data bit size for sender ID (10 bits for 1000 Npair (log2 1000 < 10 = SQ)); Npair :

the number of pair components (1000), a: the ratio of active components).

Scheme # bits required for

Npair
Ratio to Non-
predictive
quantization
for large Npair

Ratio for
Npair =1000
SOH=160 bits
SD=64*3bits
SQ= 5 bits
SL= 10 bits

Non-predictive quantization aNpair (SOH + SD) 1 1
Predictive quantization (non-
 multiplexed)

aNpair (SOH + SQ) (SOH + SQ) /
(SOH + SD)

0.46

Multiplexing
non-predictive
quantization

(SOH+Npair(SD+1)) (SD + 1)
/ a(SOH +SD)

0.54/a Fixed
Multiplexing

Multiplexing
predictive
quantization

(SOH+Npair(SQ+1)) (SQ+1)
/ a(SOH +SD)

0.017/a

Multiplexing
non-predictive
quantization

(SOH+aNpair(SD+SL)) (SD + SL)
/ (SOH + SD)

0.57 Variable
Multiplexing

Multiplexing
predictive
quantization

(SOH+aNpair(SQ+SL)) (SQ + SL)
/ (SOH + SD)

0.034

The predictive quantization without multiplexing performs 46 (%) reduction in

network load relative to non-predictive quantization. In the multiplexing non-predictive

quantiza tion scheme, the reduction (approx. 54(%)/a) is performed by combining the

actual double value outputs into one message. Greater advantage is obtained from the

169

multiplexing predictive quantization, which combines the encoded data bit size (5 bits for

three dimensional data of message and 10 bits for sender ID) per component into one

message. When the fixed multiplexing predictive quantization scheme is used, in order to

reduce the bit sending ratio below 10 (%), at least 17 (%) active components are required.

For variable multiplexing predictive quantization, the reduction ratio is 3.4 %.

Table 8.4 Network bandwidth requirement for fixed and variable multiplexing

schemes with varying a (a: the ratio of active components)

Scheme Ratio for

Npair =1000
SOH=160 bits
SD=64*3bits
SQ= 5 bits
SL= 10 bits

a = 0.6 a = 0.5 a = 0.4 a = 0.1

Multiplexing
non-
predictive
quantization

0.54/a > 1.0 > 1.0 > 1.0 > 1.0 Fixed
Multiplexing

Multiplexing
predictive
quantization

0.017/a 0.028 0.034 0.0425 0.17

Multiplexing
non-
predictive
quantization

0.57 0.57 0.57 0.57 0.57 Variable
Multiplexing

Multiplexing
predictive
quantization

0.034 0.034 0.034 0.034 0.034

In order to compare both fixed and variable multiplexing predictive quantization

schemes with varying a, Table 8.4 is extended from Table 8.3. Table 8.4 shows the

effectiveness of both fixed and variable multiplexing with different a value in a specified

170

case of Table 8.3. If a is greater than ac (in Figure 5.13), the fixed multiplexing

predictive quanitzation is more effective. In this case, ac is 0.5 (
2

1.7* (3)
log 1000

D ?
?) and

determines the effectiveness of the fixed and variable multiplexing predictive

quantization schemes.

8.3 Experimentation and Results

8.3.1 The Effect of Predictive Interest-based Quanitzation Scheme

To evaluate the performance of the predictive filtering approach supported by the

DEVS/GDDM environment, we developed the projectile/missile system using the

predictive interest-based quantization scheme. The DEVS predictive integrators were

used in the system and we performed the predictive interest-based quantization scheme

by changing the quantum size related to the distance between the missile and its assigned

projectile. In the basic system, the DTSS integrators are used and the interest-based

quantization scheme is not used, so that the basic system is considered the standard

system in which no error occurs.

To evaluate the performance of the predictive interest-based quantization scheme,

we developed two federates: projectile and missile. The projectile in the projectile

federate sends the position update message, which includes the encoded bits (5 bits for

three dimensions) and HLA packet overhead (160 bits), to the missile. The missile in the

171

missile federate sends the same size data bits as the projectile’s position update message

data bits to the space manager as Figure 8.7 illustrates.

This experiment compares the total passed data bits and the error incurred

between the basic system and the system using the predictive interest-based quantization

scheme. The error is defined as the difference between the projectile positions in these

two systems. The total passed data bits indicate the data bits that a missile receives from

the projectile and that the space manager receives from the missile as Figure 8.7 shows.

The overhead data bits sent to the space manage are needed to perform for a quantum

decision operation of the predictive interest-based quantization scheme. Thus, these

overhead bits were included in the total passed data bits. Figure 8.7 illustrates the total

passed data bits using the predictive interest-based quantization scheme.

172

Figure 8.7 Data bits passing including the overhead data bits in the system applied

by the predictive interest-based quantization scheme.

Table 8.5 shows the error trajectory of the system, which uses the predictive

interest-based quantization scheme, in varying range of the multiplying factors of the

standard quantum sizes. As the simulation time increases, the error decreases because the

multiplying factor of the standard quantum sizes decreases. As Table 8.5 shows, while

the multiplying factor varies from 40 to 1, the error decreases significantly.

173

Table 8.5 Error (%) Trajectory for varying range of multiplying factors of the

standard quantum sizes

 Simulation
 Time

Range of
Multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.16 0.08 0.04 0.05 0.02
20 ~ 1.0 0.36 0.05 0.11 0.07 0.10
40 ~ 1.0 1.87 0.40 0.12 0.13 0.10

Table 8.6 illustrates ratio trajectory of passed data bits in resulting from different

ranges of multiplying factors of the standard quantum sizes. The ratio of passed data bits

is calculated by:

Ratio of passed data bits =

passed data bits when using the predictive interest-based quantization scheme /

passed data bits when no quantization is used

As the simulation time increases, the ratio of passed data bits increases because

the multiplying factor of the standard quantum sizes decreases. In other words, as the

multiplying factors of the standard quantum sizes increases, the passed data bits decrease

significantly when using predictive interest-based quantization scheme.

174

Table 8.6 Ratio trajectory of passed data bits for varying range of multiplying

factors of the standard quantum sizes (predictive interest-based quantization vs. No

quantization

 Simulation
 Time

Range of
multiplying
factor

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.054 0.056 0.060 0.066 0.082
20 ~ 1.0 0.033 0.034 0.036 0.039 0.048
40 ~ 1.0 0.017 0.017 0.018 0.019 0.023

8.3.2 The Effect of the Multiplexing Interest-based Quantization Scheme

To evaluate the performance of the multiplexing interest-based quantization

scheme, we made the non-multiplexing and the multiplexing systems with this

projectile/missile application. These systems include two federates: projectile and

missile. Each federate is assigned to a different computer and the experimental computers

are connected in a LAN environment.

Figure 8.8 illustrates the non-multiplexing system. The system includes a certain

number of projectile and missile pairs in the projectile and the missile federates. Each

projectile model sends its position update message, which includes the encoded five data

bits (for three dimensions) and HLA packet message overhead (160 bits), to its assigned

missile. Also, each missile model sends its position update message (same size data bits

as projectile’s position message data bits) to the space manager in the projectile federate.

175

Figure 8.8 Non-multiplexing system in the projectile/missile application

Figure 8.9 illustrates the component diagram of the multiplexing system. The

projectile federate includes the multi-projectile component, which contains a certain

number of the projectiles. The sender multiplexer in the projectile federate gathers the

messages (including the encoded five data bits) from the projectiles at the same time,

makes a large multiplexed message, and sends the multiplexed message to the receiver

de-multiplexer in the missile federate. The receiver de-multiplexer in the missile federate

separates the multiplexed message into small, unmultiplexed messages and distributes the

small messages to the proper missiles. The sender multiplexer in the missile federate

gathers the messages from the missiles at the same time and sends the multiplexed

176

message to the receiver de-multiplexer in the projectile federate. The space manager in

DEVS/GDDM layer of the projectile federate side receives the missile position update

messages from the receiver de-multiplexer and directly receives the projectile position

update messages from the projectiles.

Figure 8.9 Multiplexing system in the projectile/missile application

In order to evaluate the performance of the multiplexing interest-based

quantization scheme in the real projectile/missile application, we extracted the results,

which are based on the analysis of the ratio of the message size needed for the

177

multiplexing predictive quantization to the number of bits needed for the non-

multiplexing quantization at the Table 8.3 in section 8.2.

In this experimentation of the multiplexing interest-based quantization scheme,

the boundary crossings within a certain time granule are considered simultaneous. As the

time granule increases, the error occurred from the time granule increases. We

investigated the error trajectory with varying time granule, where the multiplying factor

varies from 10 to 1.

Table 8.7 Error (%) Trajectory with Varying Time Granule (Range of multiplying

factors (10 ~ 1.0))

 Simulation
 Time

Time Granule

1.0 3.0 5.0 7.0 9.0

0.01 3.79 4.38 5.87 4.20 4.55
0.001 0.16 0.27 0.64 0.11 0.13
0.0005 0.16 0.08 0.08 0.07 0.13
0.0001 0.16 0.02 0.04 0.05 0.10

As Table 8.7 shows, when the time granule is 0.01, the error is large. While the

time granule is below than 0.001, the error is below 1.0 (%) and is reasonably small

acceptable error.

As we discussed in chapter 5, the ratio (a) of active components separates the

effectiveness of the fixed and variable multiplexing schemes. The ratio (a) of active

components is dependent on the time granule and the multiplying factor of the standard

quantum size. We investigated the trajectory of the ratio (a) of active components with

178

varying time granule. As Table 8.8 and Table 8.9 show, as the time granule increases, the

ratio (a) also increases. As the multiplying factor of the standard quantum size decreases,

the ratio (a) also increases.

Table 8.8 Trajectory of the ratio (a) of active components (Time Granule: 0.001)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.191 0.208 0.249 0.317 0.409
20 ~ 1.0 0.133 0.142 0.158 0.201 0.316
40 ~ 1.0 0.124 0.122 0.125 0.142 0.269

Table 8.9 Trajectory of the ratio (a) of active components (Time Granule: 0.0001)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.116 0.116 0.117 0.117 0.120
20 ~ 1.0 0.116 0.114 0.116 0.117 0.117
40 ~ 1.0 0.115 0.113 0.116 0.117 0.117

To see the effectiveness of both fixed and variable multiplexing schemes in

varying the ratio (a) of active components, we calculated the network bandwidth

requirement (using Table 8.3) of both fixed and variable multiplexing schemes using the

trajectories of the ratio (a) of active components in Table 8.8 and Table 8.9. Table 8.10

179

and Table 8.11 show the trajectory of ratio of passed data bits between the fixed and

variable multiplexing schemes in a varying time granule. The ratio of passed data bits is

calculated by:

passed data bits when using variable multiplexing

Ratio of passed data bits
passed data bits when using fixed multiplexing

?

As we discussed in chapter 5, when the component pair number is 80, the ratio

(ac) of active components needed to separate the effectiveness between fixed and variable

multiplexing schemes is 0.78. In the projectile/missile application, since the maximum

value of the ratio (a) of active components is 0.409, the variable multiplexing scheme

requires less network bandwidth than that of the fixed multiplexing scheme. As the

multiplying factor increases and the time granule decreases, both the ratio (a) of active

components and the network bandwidth requirement of the variable multiplexing scheme

decrease; therefore, the ratio of the passed data bits between variable and fixed

multiplexing schemes decreases in Table 8.10 and Table 8.11. The decreased ratio of the

passed data bits indicates that the variable scheme is more effective than the fixed

multiplexing in Table 8.10 and Table 8.11.

180

Table 8.10 Trajectory of ratio of passed data bits (variable/fixed multiplexing)

(Time Granule: 0.001, Component pairs: 80)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.536 0.561 0.623 0.725 0.862
20 ~ 1.0 0.449 0.463 0.487 0.552 0.724
40 ~ 1.0 0.430 0.430 0.436 0.461 0.652

Table 8.11 Trajectory of ratio of passed data bits (variable/fixed multiplexing)

(Time Granule: 0.0001, Component pairs: 80)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.424 0.424 0.425 0.426 0.431
20 ~ 1.0 0.423 0.419 0.423 0.423 0.426
40 ~ 1.0 0.422 0.419 0.422 0.423 0.425

Here, we can decide an optimal time granule. As we see in Table 8.7, while the

time granule is below than 0.001, the error is below 1.0 (%). We consider that an error

below 1.0 (%) satisfies a reasonable error tolerance. To investigate the variation of the

network bandwidth requirement in a varying time granule, we provide the trajectory of

the ratio of the passed data bits between two time granules (0.001 vs 0.0001) in Table

8.12 and Table 8.13. All ratios of the passed data bits between two time granules (0.001

181

vs 0.0001) are less than 1.0, and less network bandwidth is required when the time

granule is 0.001 than is required when the time granule is 0.0001. As the multiplying

factor of the standard quantum size decreases, the ratio of the passed data bits between

two time granules (0.001 vs 0.0001) decreases and the difference of the two network

bandwidth requirements increases. When the fixed multiplexing scheme is used, the

difference of two network bandwidth requirements (between two time granules (0.001 vs

0.0001)) increases more than when the variable multiplexing scheme is used. Therefore,

when the time granule is 0.001, we can save the network bandwidth requirement with a

reasonable error tolerance using both fixed and variable multiplexing schemes.

Table 8.12 Trajectory of ratio of passed data bits in fixed multiplexing (Time

granule: 0.001 vs 0.0001)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.623 0.571 0.501 0.432 0.379
20 ~ 1.0 0.923 0.803 0.743 0.647 0.551
40 ~ 1.0 0.951 0.911 0.915 0.842 0.706

182

Table 8.13 Trajectory of ratio of passed data bits in variable multiplexing (Time

granule: 0.001 vs 0.0001)

 Simulation
 Time

Range of
multiplying
factors

1.0 3.0 5.0 7.0 9.0

10 ~ 1.0 0.789 0.754 0.731 0.669 0.639
20 ~ 1.0 0.978 0.890 0.856 0.800 0.744
40 ~ 1.0 0.982 0.950 0.959 0.917 0.837

In order to evaluate the actual system execution performance of the multiplexing

interest-based quantization scheme, we compared the passed data bits and the system

execution time of a non-predictive quantization system, a predictive quantization system

and a multiplexing predictive quantization system.

As Figure 8.10 shows, the multiplexing predictive quantization system greatly

reduces the passed data bits compared to the non-predictive and predictive quantization

systems with varying the multiplying factors. As the range of the multiplying factors

increases, the passed data bits decrease in all systems (e.g. the non-predictive and

predictive quantization systems and the multiplexing predictive quantization system). The

multiplexing predictive quantization system greatly reduces the passed data bits more

than both the non-predictive and predictive quantization systems. Compared to the non-

predictive and predictive quantization systems, the predictive quantization system shows

more reduction of passed data bits due to the theoretical advantages of predictive

183

quantization (i.e., both the number of messages and their size can be reduced over non-

predictive quanitzation).

Figure 8.11 illustrates how much the multiplexing predictive quantization system

saves the system execution time by comparing non-predictive and predictive quantization

systems. The non-predictive quantization system is a discrete time system and includes a

lot of local computations based on the system’s use of DTSS integrators. Meanwhile,

predictive quantization and multiplexing predictive quantization systems are discrete

event systems which tremendously reduce those local computations since the systems use

the DEVS integrators.

The saving of system execution time between the non-predictive quantization

system and the predictive quantization system demonstrates the effect of the reduction of

network bandwidth and of the big local computation that the DTSS integrators cause. In

order to get the result of system execution time, we experimented with Windows NT

machines connected via a 10 Base T Ethernet network which has less network delay than

that of WAN. In experimenting in WAN, we expect lowering the system execution time

by reducing of network bandwidth. The reduction of the system execution time between

the predictive quantization system and the multiplexing predictive quantization system

demonstrates the effect of the reduction of network bandwidth in compensating the local

computation overhead for multiplexing.

184

Figure 8.10 Passed data bits for varying multiplying factors in a non-predictive

quantization system, a predictive quantization system, and a multiplexing predictive

quantization system (Component pairs: 40)

185

Figure 8.11 System execution time for varying multiplying factors in a non-

predictive quantization system, a predictive quantization system, and a multiplexing

predictive quantization system (Component pairs: 40)

Figure 8.12 shows the passed data bits of three systems (a non-predictive

quantization system, a predictive quantization system, and a multiplexing predictive

quantization system) for varying numbers of component pairs. As the number of

component pairs increases, the passed data bits of the non-predictive and predictive

quantization systems increase significantly, and the multiplexing predictive quantization

system tremendously reduces the passed data bits. Compared to two non-multiplexing

systems (non-predictive quantization system and predictive quantization system), the

186

predictive quantization system shows more reduction of the passed data bits than that of

the non-predictive quanitzation system.

Figure 8.13 illustrates the variation of the system execution time of the three

systems in varying the number of component pairs. In the predictive quantization and the

multiplexing predictive quantization systems, as the number of component pairs increases,

the system execution time increases slowly and proportionally to the passed data bits.

However, the system execution time in the non-predictive quantization system increases

in an exponential manner due to saturation of network transmission.

Figure 8.12 Passed data bits for varying numbers of component pairs in a non-

predictive quantization system, a predictive quantization system, and a multiplexing

predictive quantization system

187

Figure 8.13 System execution time for varying numbers of component pairs in a

non-predictive quantization system, a predictive quantization system and a

multiplexing predictive quantization system

The results of the passed data bits and the system execution time in a non-predictive

quantization system, a predictive quantization system, and a multiplexing predictive

quantization system show that the multiplexing predictive quantization scheme is very

effective in saving the inter- federate data and actual system execution time in a

distributed simulation.

188

9 CONCLUSION

9.1 Contribution

9.1.1 Interest-based Quantization Scheme

Distributed simulation supports many practical application domains, such as

process control and manufacturing, military command and control, transportation

management, and so on, that require reliable communication linkage among multiple,

geographically distributed systems. With a large number of communicating entities in

such distributed systems, however, execution time of a distributed simulation sharply

increases due to message exchanges increasing quadratically with the number of

communicating entities. Both network data load and delay among communicating entities

determine how large-scale distributed systems can be modeled and simulated in a

reasonable execution time. Under limited communication resources, reducing message

traffic among communicating entities is an approach to increase the scalable execution of

large-scale distributed simulations.

We investigated message traffic reduction schemes, such as quantization and

interest management, DDM of HLA, that have been proposed for reliable distributed

simulation within reasonable execution time. Each message traffic reduction scheme

requires understanding of the semantic and dynamic characteristics of the application to

189

tune their parameters for effective filtering with acceptable error. The interest-based

quantization scheme that we proposed in this dissertation, was established by combining

the quantization scheme and the interest management scheme. This scheme allows for the

stratification of the degree of interest for a communication-specified attribute and thereby

controls the update exchange frequency of the attribute based on the time-varying

distance between communicating entities in distributed simulations. The distance in any

suitable space, which is not just physical space, controls the size of the quantum

governing communication of a specified attribute. In contrast, the HLA DDM works the

only all-or-none interest scheme underlying the HLA routing space. In this sense, the

interest-based quantization scheme can be viewed as a generalization of the all-or-none

interest scheme of HLA DDM.

To support the scalability improvement of the interest-based quantization scheme,

we presented two approaches: the global space manager approach and the local space

manager approach. With these two approaches, the workload of agents is efficiently

balanced and concurrently processed in distributed processors. Therefore, the systems

that employed these two approaches demonstrated a greater performance in terms of

saving system communication and computation time than the system that did not use any

space manager operation. When the two approaches were compared, the local space

manager approach was shown to reduce system communication and computation more

than the global space manager approach. This is because, unlike the global space

manager approach, the local space manager approach reduces the amount of

communication overhead and solves the problem of computation bottleneck. The

190

analytical and empirical results from the pursuer/evader example in chapter 3 and chapter

7 demonstrated the effectiveness of the interest-based quantization scheme in reducing

both message traffic and overall simulation execution time. Those results include the

inevitable presence of communication and computation overheads for monitoring the

communication condition for a specified attribute among communicating entities and for

filtering the messages among communicating entities.

As a means to discover more efficient approaches of the interest-based

quantization, we investigated the interest-based predictive quantization and the interest-

based multiplexing predictive quantization approaches, applied those approaches to the

projectile/missile application with realistic three dimensional dynamics, and analyzed the

network bandwidth requirement for those approaches. In the interest-based predictive

quantization approach, the predictive quantization’s advantage for reducing both the

number of messages and their size is added to the interest-based quantization. As a result,

the approach greatly reduced network bandwidth within a reasonably small error.

For simulation with a large number of projectile/missile pairs, we applied the

multiplexing approach to the interest-based predictive quantization. In order to

compensate for the disadvantage of the fixed multiplexing approach at low active

components, the variable multiplexing approach was discussed in this dissertation, and

the effectiveness for reduction of the network bandwidth requirement of both fixed and

variable multiplexing approaches was analyzed in varying message dimensions and

simulated component pairs. In experimenting with the projectile/missile application, we

investigated the variation of a (ratio of active component) and the effectiveness of both

191

fixed and variable multiplexing in varying quantum sizes and time granules. This

research on effectiveness of both fixed and variable multiplexing is an improvement over

the previous multiplexing approach, in which only fixed multiplexing is discussed with a

fixed time granule and a fixed a (ratio of active component: a=1) [46, 57]. The analytical

and experimental results from projectile/missile application in chapter 8 showed that the

multiplexing predictive quantization scheme was very effective in saving the inter-

federate data transmission and actual system execution time in a distributed simulation.

9.1.2 DEVS/GDDM Environment

Both the quantization scheme and the interest management scheme are very

effective message traffic reduction schemes, especially in a large-scale distributed

simulation. The DEVS/GDDM environment, provided in this dissertation, uses the

interest-based quantization scheme to take advantage of both schemes, so that the

DEVS/GDDM environment gives greater promise for simulation performance. Also,

since the DEVS/GDDM environment compensates for the disadvantages of DDM of

HLA mentioned earlier, the DEVS/GDDM environment points in a good direction for

modifying DDM of HLA as a means to obtain further message traffic reduction.

The DEVS/GDDM environment supports a variety of message traffic reduction

methods (non-predictive interest-based quantization, predictive interest-based

quantization, and multiplexing interest-based quantization). Thus, a simulation designer

192

can choose from the message reduction schemes provided by DEVS/GDDM environment

according to the need of each different application.

The DEVS/GDDM environment is an HLA-compliant modeling and simulation

environment. While the HLA-Interface layer supports the interoperation at the simulation

level, the DEVS/GDDM layer supports the modeling level features inherited from DEVS,

which has a generic dynamic system formalism with a well defined concept of

modularity and coupling of components. The high level modeling paradigm based on the

DEVS formalism reduces the level of complexity for a model designer to construct

models in a hierarchical modular fashion and improves the maintenance, reusability, and

modifiability of models. The DEVS/GDDM environment is supported by the four

libraries; container, DEVS, DEVS/HLA-Interface, and HLA-Interface. Through the

container library, an object can be stored, retrieved, and organized. The DEVS library

provides methods for the DEVS formalism. The DEVS/HLA-Interface layer supports

interface methods between the DEVS and the HLA-Interface layers. The HLA-Interface

layer supplies the simulation-friendly methods, which encapsulates all the complex

details of HLA connectivity, so that the DEVS/GDDM environment provides the ease

and effectiveness for modeling to a model developer. In general, to work the HLA/RTI

based distributed simulation, the model developer has to know and use the HLA/RTI

functions. In DEVS/GDDM environment, a model developer does not have to know the

HLA/RTI functions and only develops the DEVS models.

As we have discussed, the DEVS/GDDM modeling and simulation environment

employs:

193

- Sound system theories based on the DEVS formalism

- Highly efficient message traffic reduction scheme called the interest based quantization

scheme

- Reliable distributed simulation with reasonably small error

- Flexibility for a simulation designer to make a choice out of methods supported by the

interest-based quantization scheme according to each specific application

- Ease and effectiveness for modeling from the hierarchical and modular object-

oriented technology and high level modeling paradigm

- Friendly user interface in which a user develops only DEVS models

- Encapsulation mechanism to hide all the complex details of HLA connectivity

from a simulation designer in the HLA-Interface layer

- Highly reliable interoperation facility among federates using HLA/RTI

9.2 Future Work

9.2.1 Extension of DEVS/GDDM environment for a Non-Paired Application

In future research, the multiplexing predictive quantization scheme of the

DEVS/GDDM environment can be extended for a non-paired application, in which an

agent broadcasts its message to all other agents in the same federate or in other federates.

In this section, we will discuss a prototype of an extended multiplexing predictive

194

quantization scheme in a non-paired application by extending the message’s data format

and the space manager.

9.2.1.1 Extension of message’s data format

In a non-paired application, multiple quantum sizes are assigned to the multiple

pairs between a sender and multiple receivers. The sender outputs each message which

has each data value quantized with a particular quantum size. Therefore, in order to

perform an extended multiplexing predictive quantization, a message’s data format

should be extended to include a Quantum ID to represent quantum size. For example, if

the message includes three dimensional position values, the message’s data format is:

 (ID, QID, x, y, z)

where ID is an agent identification number and QID is a quantum size identification

number.

QID presents what quantum size the data value is quantized with. Using QID, the

extended multiplexing predictive quantization scheme routes the message (which has a

certain QID) to the exact receiver specified by the quantum sizes of sender/receiver pairs.

Figure 9.1 illustrates the message passing between two federates (federate1 and

federate2) in a non-paired application using the extended message’s data format (ID, QID,

195

x, y, z). The message passing is performed by the sender multiplexer and the receiver de-

multiplexer.

Figure 9.1 Message passing between two federates in a Non-Paired Application

196

Figure 9.2 Detailed Description of message passing in a Non-Paired Application

Figure 9.2 illustrates a detailed description of the message passing in a non-paired

application. An agent sends its messages including double precision values (ID, QID, x, y,

z) quantized with different quantum sizes to the sender multiplexer. The sender

multiplexer has three sub-components (converter, encoder, and multiplexer) to pass a

multiplexed message to the receiver federate. The converter changes the double precision

values (ID, QID, x, y, z) to integer values (ID, QID, , ,x y zg g g), where

? ? , ,1,0,1 x y zg g g? ? , and the encoder changes the integer position values to the

encoded five bits (SQ = 5 > log 2 33 ; for three dimensions). The encoder also changes the

agent ID to properly encoded bits (SL), and changes the Quantum ID to properly encoded

197

bits (SM). For example, if the number of quantum sizes is five, three bits (3 > log 2 5) are

needed to represent a Quantum ID. The multiplexer receives the encoded bits (SL, SM, and

SQ), creates a large, multiplexed message, and sends it to the receiver federate. The

receiver de-multiplexer has three sub-components (de-multiplexer, decoder and recover)

to recover the original double precision values (ID, QID, x, y, z) from the multiplexed

message. The de-multiplexer separates from the multiplexed message to each encoded

bits (SL, SM, and SQ). The decoder changes the encoded bits to the integer values (ID, QID,

, ,x y zg g g), and the recover component converts these integer values to the original

double precision values (ID, QID, x, y, z). The receiver de-multiplexer outputs the

messages, including double precision values (ID, QID, x, y, z), through different output

ports related to each Quantum ID.

9.2.1.2 Extended Space Manager

To perform the multiplexing predictive quantization scheme in a non-paired

application, the role of the space manager needs to be extended. The space manger must

make the exact connections between the output ports (related to each Quantum ID) of the

receiver de-multiplexer and the input ports of agents in receiver federate. As Figure 9.2

illustrates, an agent outputs each message which contains each data value quantized with

each quantum size and each message includes the Quantum ID for presenting its quantum

size. Each output port of the receiver de-multiplexer is assigned to each Quantum ID and

a message (which has a certain Quantum ID) should be outputted through the exact

198

output port assigned to the Quantum ID of the message. The space manager has to know

the quantum sizes pertaining between a sender agent and multiple receiver agents and

control the connections between each output port (assigned to each quantum size) of the

receiver de-multiplexer and the input ports of multiple receiver agents.

Two approaches related to scalability of space manager operation and their

comparison with results were discussed in chapter 3 and chapter 7. These approaches are

based on a centralized global space manager and distributed schemes based on local

space managers. For a non-paired application, we prefer the distributed approach

assigning each local space manager in a different federate due to the advantages over the

centralized approach with the global space manager. The distributed approach reduces the

computation load because each local space manager controls the connections only for

those agents within its own federate and the connection computation (to know quantum

sizes) is divided up and those pieces are assigned to local space managers for concurrent

processing.

9.2.2 Extension of DEVS/GDDM environment for real-time distributed simulation

This DEVS/GDDM environment and the interest-based quantization scheme can

be applied to a real- time distributed simulation. This DEVS/GDDM environment can

help to overcome the time constraint requirements in real-time distributed simulation

involving humans and/or hardware in the loop. Also, the theoretical and empirical results

we obtained for global and local versions of the space manager will be tested for

199

scalability in real-time distributed simulation. The point of future work is how to extend

the DEVS/GDDM environment to a real-time distributed simulation and to real-time

execution infrastructures.

200

APPENDIX A. SMOOTHER MODEL

The smoother model is developed to connect a DEVS component and a DTSS

component. The behavior of the smoother model is based on the coupling of DEVS to

DTSS, which indicates a coupling of an output of a DEVS component to an input of a

DTSS component. In this coupling, we define the output event value of the DEVS

component occurred prior to the state transition of the DTSS component as the input

event at the next state transition of the DTSS component.

In this dissertation, a DEVS component generates three dimensional output events

with each variable time advance. A DTSS component receives the three dimensional

input events from the DEVS component and operates in the same time. The smoother

model is a connector between the DEVS component and DTSS component and it plays a

role to reduce error caused by different state time advances between DEVS and DTSS.

A Parallel DEVS representation [27] for the smoother model follows. This

representation is provided using the “Parallel DEVS with Ports” formalism.

DEVSsmoother = < X, Y, S, ?int, ?ext, ?conf, ? , ta >, where

InPorts = {“in1”, “in2”, “in3”}
OutPorts = {“out”}
X = {(ini , xi) | i = 1,2,3, xi ? R}
Y = { (“out”, (x1,x2,x3))
S = { “active”, “passive” x Y x R0

+ }
?
? ext((“active”,(x1,x2,x3),?), e,(“ini”,xi’)) = (“active”,(1, 2, 3x x x),? -e),? ?
?

201

?

?
where (1, 2, 3x x x) = (x1’,x2,x3) if i =1
 = (x1,x2’,x3) if i =2
 = (x1,x2,x3’) if i =3?
?

?
? int(“passive”,(x1,x2,x3),?) = (“passive”,(x1,x2,x3), ?)
? int(“active”,(x1,x2,x3),?) = (“active”,(x1,x2,x3), ? t)

where ? t = time step
?
? conf(s,ta(s),x) = ? ext(? int(s),0,x)
?
? (“active”,(x1,x2,x3),?) = (“out”, (x1,x2,x3))

ta(“active”,(x1,x2,x3),?) = ?
ta(“passive”,(x1,x2,x3),?) = ?

Figure Appendix A.1 illustrates the discrete time segment trajectory given by the parallel

DEVS representation for the smoother model.

202

Figure Appendix A.1 Discrete Event Time Segments for Smoother model

203

APPENDIX B. PROJECTILE and EARTH MODELS

B.1 Projectile Model

The projectile model is a (relatively) simple model of a sphere of uniform density

following a ballistic trajectory. It begins at some initial position with an initial velocity

and falls until it hits the surface of the Earth, at which point it stops.

B1.1 Formal Description

Inputs

ag(x) – Acceleration due to gravity at our position
ve(x) – Inertial velocity of the atmosphere at our position
p(x) – Atmospheric density at our current position

State variables and outputs

x – Position
v – Velocity
a – Acceleration

Parameters

C – Coefficient of drag
m – mass
A – cross sectional area

Behavior specification

x’ = v
v’ = a
r = v - va(x)
a = -0.5 C A p(x) |r| r / m + ag(x)

204

B.1.2 Program code for Projectile model

Projectile Model

public class Projectile {

/// Position (m)
private VectorD x;
/// Integrator for variable x
private trap_integ xinteg;
/// Velocity (m/s)
 private VectorD v;
/// Integrator for velocity
private trap_integ vinteg;
/// Acceleration (m/s^2)
private VectorD a;

/// Velocity of the atmosphere (m/s)
private VectorD va;
/// Acceleration due to gravity (m/s^2)
private VectorD ag;
/// Density of the atmosphere (kg/m^3)
private double p;

/// Mass of the projectile (kilograms)
private double m;
/// Drag coefficient (dimensionless)
private double C;
/// Area of cross section in direction of flight (m^2)
private double A;

/**
Create a projectile with the parameters m (mass in kilgrams), C, (drag coefficient),
A (cross sectional area in meters)
and initial conditions x0 (initial position in meters) and v0 (initial velocity in meters/s)
*/

public Projectile (double m, double C, double A, VectorD x0, VectorD v0) {
 this.m = m;
 this.C = C;
 this.A = A;
 this.x = x0;
 this.v = v0;

205

 p = 0.0;
 a = new VectorD(0.001,0,0);
 va = new VectorD(0.,0,0);
 ag = new VectorD(0,0,-9.80665);
 xinteg = new trap_integ(x0);
 vinteg = new trap_integ(v0);
}

// Compute a single state change with time advance dt.
// Convention is internal transition, then external transition.
/// Compute the next state using timestep dt (i.e. state at time t + dt)

public void delta (double dt) {
// Compute the position and velocity after dt time units based on acceleration
// up to current time

x.plus(xinteg.integ (v, dt));
v.plus(vinteg.integ (a, dt));

// Compute acceleration for next state transition

VectorD r = new VectorD(v);
 r.minus(va);
//a = (-0.5 * C * A * p * r.mag () * r / m) + ag;
 r.times(-0.5 * C * A * p * r.mag ());
 r.divideBy(m);
 r.plus(ag);
 a = r;
}

/// Set the atmospheric density (apply the p(x) input). Units are kg/m^3
public void setDensity (double p) { this.p = p; }
/// Set the acceleration due to gravity (apply the ag(x) input). Units are m/s^2
public void setAcclGrav (VectorD ag) { this.ag = ag; }
/// Set the atmospheric velocity (apply the va(x) input). Units are m/s
public void setAtmoTangVel (VectorD va) { this.va = va; }
/// Get the position of the projectile. Units are meters
public VectorD getPos () { return x; }
/// Get the velocity of the projectile. Units are m/s
public VectorD getVel () { return v; }
/// Get the acceleration of the projectile. Units are m/s^2
public VectorD getAccl () { return a; }

}

206

public class trap_integ{
protected VectorD xlast;

 /// Create an integrator whose intial state is (0,0,0)
public trap_integ(){ }

/// Create and set the initial state
public trap_integ (VectorD x0) { this.xlast = x0; }

/// Set the integrators initial state

public void init (VectorD x0) { this.xlast = x0; }

// Single step trapezoidal integration

private double trap (double x, double y, double dt) {
return (dt * (Math.min (x, y) + Math.abs (x - y) / 2.0));
}

public VectorD integ (VectorD x, double dt){
VectorD results = new VectorD();
results.x = trap (xlast.x, x.x, dt);
results.y = trap (xlast.y, x.y, dt);
results.z = trap (xlast.z, x.z, dt);
xlast = x;
return results;

}
}

Acceleration Model

public class instantAccelFn extends Atomic{

/// Velocity (m/s)
private VectorD velocity;
/// Velocity of the atmosphere (m/s)
private VectorD AtmoTangVel;
/// Acceleration due to gravity (m/s^2)
private VectorD accelGravity;
/// Density of the atmosphere (kg/m^3)
private double density;
/// Mass of the projectile (kilograms)

207

private double m;
/// Drag coefficient (dimensionless)
private double C;
/// Area of cross section in direction of flight (m^2)
private double A;
// stop projectile when hits ground
private boolean hitGround = false;

public instantAccelFn(String name, double mm, double CC, double AA){

super(name);
inports.add("velocity");
inports.add("Gravity");
inports.add("AtmoDensity");
inports.add("AtmoTangVel");
inports.add("hitGround");

m = mm;
C = CC;
A = AA;
initialize();
}

public void initialize() {
accelGravity = new VectorD(0,0,0);
AtmoTangVel = new VectorD(0,0,0);
super.initialize();
}

public void deltext(double e, message x) {

Continue(e);
for (int i=0; i< x.get_length();i++)
 if (message_on_port(x,"velocity",i)) {
 entity ent = x.get_val_on_port("velocity",i);
 velocity = (VectorD)ent;
 sigma = 0;
 }
 else if (message_on_port(x,"Gravity",i)) {
 entity ent = x.get_val_on_port("Gravity",i);
 accelGravity = (VectorD)ent;
 sigma = 0;
 }

208

 else if (message_on_port(x,"AtmoDensity",i)) {
 entity ent = x.get_val_on_port("AtmoDensity",i);
 density = ((doubleEnt)ent).getv();
 sigma = 0;

 }
 else if (message_on_port(x,"AtmoTangVel",i)) {
 entity ent = x.get_val_on_port("AtmoTangVel",i);
 AtmoTangVel = (VectorD)ent;
 sigma = 0;

 }
 else if (message_on_port(x,"hitGround",i)) {
 hitGround = true;
 sigma = 0;
 }

}

public void deltint() {

phase = "hitGround: " + hitGround;
sigma = INFINITY;

}

public VectorD acceleration() { /// Acceleration (m/s^2)

if (hitGround) return new VectorD(0,0,0);
VectorD r = new VectorD(velocity);
r.minus(AtmoTangVel);
//a = (-0.5 * C * A * p * r.mag () * r / m) + ag;
r.times(-0.5 * C * A * density * r.mag ());
r.divideBy(m);
r.plus(accelGravity);
return r;

}

public message out() {
message m = new message();
m.add(make_content("out", acceleration()));
return m;
}

209

}

DEVS Predictive Integrator for Velocity and Position Models

public class DEVSGenInt extends Atomic{

protected double old_inp,inp,quantum,position,initialPosition;
protected int lowerBound, nextLowerBound, input_nextLowerBound;
protected boolean positiveRestriction = false;

public DEVSGenInt(String name, double Quantum, double Position){
super(name);

inports.add("in");
inports.add("setQuantum");
inports.add("stop");

quantum = Quantum;
initialPosition = Position;
initialize();
}

public void initialize(){

 inp = 1;
 position = initialPosition;
 super.initialize();
 lowerBound = (int)Math.floor(position/quantum);
 nextLowerBound = lowerBound;
 hold_in("doReset",0.01);
}

public int signOf(double x){
 if (x == 0) return 0;
 else if (x > 0) return 1;
 else return -1;
}

public void setInp(double buf){
 inp = buf;
}

210

public void timeAdvance(double diff){
 sigma = Math.abs(diff/inp);
}

public void update(double e){

 position = position + e *inp;

 if ((inp > 0 && position > nextLowerBound*quantum)||
 (inp < 0 && position < nextLowerBound*quantum))
 {
 position = nextLowerBound*quantum;
 // System.out.println(get_name() + " INPUT VIOLATION");
 }
}

public void computeIntNextPosition(){

 lowerBound = nextLowerBound;
 nextLowerBound = lowerBound + signOf(inp);
 timeAdvance(signOf(inp)*quantum);

 if (inp == 0)
 System.out.println(get_name()+ "ERROR: input can't be zero");

}

public void computeExtNextPosition(){

 if (inp == 0)
 sigma = Double.POSITIVE_INFINITY;
 else{
 if (inp < 0){
 if (nextLowerBound > lowerBound) {
 nextLowerBound = lowerBound;
 }
 if (nextLowerBound < lowerBound) {
 nextLowerBound = lowerBound-1;
 }

 }

 else { //if (inp > 0)

211

 if (nextLowerBound > lowerBound) {
 nextLowerBound = lowerBound+1;
 }
 if (nextLowerBound < lowerBound) {
 nextLowerBound = lowerBound;
 }

 }

 phase = "" + position;

timeAdvance(nextLowerBound*quantum - position);

 }
}

public void deltcon(double e,message x)
{
 deltint();
 deltext(0,x);
}

public void deltext(double e,message x)
{
 Continue(e);
 for (int i=0; i< x.get_length();i++)
 if (message_on_port(x,"in",i)){
 entity ent = x.get_val_on_port("in",i);
 phase = "" + position;
 doubleEnt f = (doubleEnt)ent;
 setInp(f.getv());
 update(e);
 computeExtNextPosition();

 }

 for (int i=0; i< x.get_length();i++)
 if (message_on_port(x,"setQuantum",i)){
 entity ent = x.get_val_on_port("setQuantum",i);
 quantum = ((doubleEnt)ent).getv();

 lowerBound = (int)Math.floor(position/quantum);

212

 nextLowerBound = lowerBound;

 lowerBound = nextLowerBound;
 nextLowerBound = lowerBound + signOf(inp);

 update(e);
 computeExtNextPosition();

 }
 else if (message_on_port(x,"stop",i))
 passivate();

}

public void deltint()
{
position = nextLowerBound*quantum;
phase = "" + position;
computeIntNextPosition();
}

public message out()
{
int N_Quantum = nextLowerBound - lowerBound;

message m = new message();

if (N_Quantum != 0) {
m.add(make_content("out", new doubleEnt(nextLowerBound*quantum)));
}

return m;
}

}

B.2 Earth Model

The earth model consists of three sub-models; an atmospheric model, a gravity

model, and a motion model. The atmospheric model uses lookup tables based on the

213

1976 atmospheric modeling standard. The gravity model is a simple force model based

on a spherical Earth. The entire system rotates (i.e. objects attached to the earth and the

atmosphere have a rotational velocity about (0,0,0)).

B.2.1 Formal Description

Inputs

x – A point at which to compute values for the system outputs.

Outputs

p(x) – Atmospheric density at position x
ve(x) – Rotational velocity of the earth at a position x
va(x) – Rotation velocity of the atmosphere at a position x
ag(x) – Acceleration due to gravity at position x

Parameters

Re – mean equatorial radius
w – rotational velocity
m – gravitational parameter

Behavior specification

ag(x) = -m / |x |3

v = w ? x

where w is a vector (0, 0, w) and x is a position in the plane of the equator. That is, x =

(x, y, 0). In this simple model, we let ve(x) = va(x). That is, the inertial velocity of the

atmosphere at a position x is equal to the inertial velocity of a point attached to the earth

at position x.

214

B.2.2 Program code for Earth model

public class Earth {

public static final double mu = 3.986012E14;
public static final double w = 7.292115856E-5;
public static final double R = 6378145;

/// Create the Earth ()
public Earth () { }

/// Compute the atmospheric density (kg/m^3) at position x (m)
public static double getAtmoDensity (VectorD x) {
double rho = atmo76.computeRho (x.mag() - R);
return rho;
}

//// Compute the acceleration induced by gravity (m/s^2) at position x (m)
public static VectorD getGravity (VectorD x) {

// (-mu * x / pow (x.mag (), 3));
VectorD X = new VectorD(x);
X.times(-mu);
X.divideBy(Math.pow (x.mag (), 3));
return X;
}

/// Compute the tangential velocity (m/s) at position x
public static VectorD getEarthTangVel (VectorD x) {
VectorD X= new VectorD(x.x, x.y, 0.0);
VectorD W = new VectorD(0.0, 0.0, w);
return W.cross(X);
}

/// Compute the tangential velocity (m/s) of the atmosphere at position x (m)
public static VectorD getAtmoTangVel (VectorD x){
return getEarthTangVel (x);
}
}

/**
This class computes properties of the 1976 U.S. Standard Atmosphere
*/

215

public class atmo76 {

// sea- level mean molecular weight of air (kg/mol)
public static final double m0 = 28.9644;
// acceleration due to gravity (m/s^2)
public static final double g0 = 9.80665;
// radius of the Earth (m)
public static final double r0 = 6356766.0;
// gas constant (N m K / kmol)
public static final double rstar = 8314.32;

// This array of constants was not documented in the original listing
public static final double pb [] =
 { 101325.0, 22632.06468902076, 5474.889006665066,
 868.0187719024579, 110.9063215028894, 66.93888345713616,
 3.956421275130599, 0.3733836885098447 };

// This array of constants was not documented in the original listing
public static final double tmb [] =
 { 288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946 };

// This array of constants was not documented in the original listing
public static final double altb [] =
 { 0.0, 11000.0, 20000.0, 32000.0, 47000.0, 51000.0, 71000.0,
 84852.0, 91000.0, 110000.0, 120000.0, 1000000.0 };

// This array of constants was not documented in the original listing
public static final double lmb [] =
 { -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002 };

/**
Compute the atmospheric density at z meters above the Earth's surface.
i.e. If (0,0,0) is the center of the Earth in your coordinate system,
the altitude above the Earth's surface is (z - r0) meters.
Returns density (kg/m^3).
*/
public static double computeRho (double alt) {

// atmospheric density
double rho = 0.0;

// geopotential altitude above sea level (m)
double h = r0 * alt / (r0 + alt);

216

int ib = 0;

while ((h > altb[ib+1]) && (ib < 8)) ib++;

// temporary values
double delalt = 0.0;
// molecular-scale temperature (K)
double tm = 0.0;
// atmospheric pressure
double p = 0.0;

if (h <= altb[7]) {
 delalt = Math.max (-5.0, h - altb[ib]);
 tm = tmb[ib] + lmb[ib]*delalt;
 if (lmb[ib] == 0.0) p = pb[ib] * Math.exp(-g0*m0*delalt/rstar/tmb[ib]);
 else p = pb[ib] * Math.pow(tmb[ib]/(tmb[ib] + lmb[ib]*delalt),g0*m0/rstar/lmb[ib]);
 rho = p*m0/rstar/tm;
 }
else if (alt <= altb[8]) {
 rho = 2.860e-6;
 }
else if (alt <= altb[9]) {
 rho = 9.708e-8;
 }
else if (alt <= altb[10]) {
 rho = 2.222e-8;
 }
else if (alt <= altb[11]) {
 rho = 3.561e-15;
 }
else if (alt > altb[11]) {
 rho = 0.0;
 }

return rho;

} // end of function computeRho

} // end of class atmo76

217

REFERENCES

[1] Bernard P. Zeigler, “Theory of Modeling and Simulation,” New York: John Wiley,
1976.

[2] Jeffrey Bradshaw, Ed., Software Agents, AAAI Press, Menlo Park, CA, 1997.

[3] N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,” in Agent
Technology: foundations, Application, Markets, N. R. Jennings and M. Wooldridge,
Eds., pp. 3-28. Springer-Verlag, 1998.

[4] John Anderson, “A generic distributed simulation system for intelligent agent design
and evaluation,” in Proceedings of the Tenth Conference on AI, Simulation and Planning,
AIS-2000, Hessam S. Sarjoughian, Francois E. Cellier, Michael M. Marefat, and Jerzy
W. Rozenblit, Eds. March 2000, pp. 36-44, Society for computer Simulation
International.

[5] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe, “Trial by
fire: Understanding the design requirements for agents in complex environment,: Al
Magazine, vol. 10, no. 3, pp. 32-48, Fall 1989.

 [6] Martha E. Pollack and Marc Ringuette, “Introducing the tile-world: experimentally
evaluating agent architectures,” in Proceedings of the Ninth National Conference on
Artificial Intelligence, 1990, pp. 183-189.

[7] Thomas A. Montgomery and Edmund H. Durfee, “Using MICE to study intelligent
dynamic coordination,” in Proceedings of the Second International Conference on Tools
for Artificial Intelligence. 1990, pp. 438-444, IEEE

[8] S. M. Atkin, D. L. Westbrook, P. R. Cohen, and G. D. Jorstad., “AFS and HAC:
Domain general agent simulation and control.,” in Software Tools for Developing
Agents: Papers from the 1998 Workshop. 1998, number Technical Report WS-98-10, pp.
89-96, AAAI Press

[9] Defense, D.o., High Level Architecture Interface Specification, Version 1.0, Defense
Modeling and Simulation Organization, 1996, http://msis.dmso.mil

[10] Defense, D.o., Draft Standard For Modeling and Simulation (M&S) High Level
Architecture(HLA) - Federate Interface Specification, Draft 1, . 1998

[11] “CORBA Overview”
http://ww.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.htm#446864

218

[12] OMG, “Comparing ActiveX and CORBA/IIOP,”
http://www.omg.org/news/activex.html

[13] Ecoscope, “Is DCOM Truly The Object Of Middleware’s Desire?,”
http://techweb.cmp.com/nc/813/813r12.html

[14] Zeigler, B.P., DEVS Theory of Quantization, . 1998, DARPA Contract N6133997K-
0007: ECE Dept., UA, Tucson, AZ.

[15] Zeigler, B.P. and J.S. Lee. Theory of Quantized Systems: Formal Basis for
DEVS/HLA Distributed Simulation Environment. in Enabling Technology for Simulation
Science(II), SPIE AeoroSense 98. 1998. Orlando, FL.

[16] Software Technology, “Middleware”
http://www.sei.cmu.edu/technology/str/descriptions/middleware_body.html

[17] Vogel, “WWW and Java Threat or Challenge to CORBA?”
http://www.dstc.edu.cu/AU/staff/andres-vogel/papers/mws96/paper.html

[18] “Choosing between CORBA and DCOM,”
http://www.cerfnet.com/~mpcline/Corba-FAQ/corba-and-dcom.html

[19] Magic, “DCOM and CORBA,” http://www.magic-sw.be/wite4.htm

[20] T. Brando, “Comparing DCE and CORBA,”
http://www.mitre.org/research/domis/reports/DCEvCORBA.html

[21] Bernard P. Zeigler, “Multifacetted Modelling and Discrete Event Simulation,”
London: Academic Press, 1984.

[22] Bernard P. Zeigler, “Object-Oriented Simulation with Hierarchical, Modular
Models : Intelligent Agents and Endomorphic Systems,” San Diego, CA: Academic press,
1990.

[23] Yoonkeon Moon, “High Performance Simulation Based Optimization Environment:
Modeling Spatially Distributed Large Scale Ecosystems,” Ph.D. Dissertation, The
University of Arizona, Tucson, Arizona, 1996.

[24] Bernard P. Zeigler, Y. Moon, D. Kim, and J.G. Kim, “C++ DEVS: A High
Performance Modeling and Simulation Environment,” 29th Hawaii International
Conference on System Sciences, Jan. 1996.
[25] Bernard. P. Zeigler, “The Support for Hierarchical Modular Component-based
Model Construction in DEVS/HLA,” in SIW. 1999. Orlando, FL.

219

[26] Bernard. P. Zeigler and D. Kim. Design of High Level Modelling / High
Performance Simulation Environments. in 10th Workshop on Parallel and Distributed
Simulation. 1996. Philadelphia.

[27] Bernard. P. Zeigler, H. Praehofer, and T.G. Kim, Theory of Modeling and
Simulation. 2 ed. 1999, New York, NY: Academic Press

[28] Lin, C. 1994a. Study on the network load in distributed interactive simulation. In
Proceeding of the AIAA on Flight Simulation Technologies.

[29] Lin, C. 1994b. The performance assessment of the dead-reckoning algorithm in DIS.
In Proceedings of the 10th DIS Workshop on Standards for the Interoperability of
Distributed Simulation, March.

[30] BASSIOUNI, M., CHIU, M.,AND GARNSEY, M. 1993. “Real-time data filtering
in the gateways of wide area aimulation networks,” In 15th Interservice / Industry
Training Systems Conference (I/ITSC), Dec., 891-900.

[31] BASSIOUNI, M., WILLIAMS, H., AND LOPER, M. 1991. “Intelligent filtering
algorithms for real-time networked simulators,” In Proceedings of IEEE Conference on
Systems, Man and Cybernetics, 309-314.

[32] Katherine L. Morse, “Interest management in large scale distributed simulations,”
Tech. Rep. 96-127, Department of Information and Computer Science, University of
California, Irvine, 1996.

[33] Katherine L. Morse, Lubomir Bic, Michael Dillencourt, and Kevin Tsai, “Multicast
grouping for dynamic data distribution management,” in Proceeding of the 31st Society
and Computer Simulation Conference (SCSC”99), 1999.

[34] J. Saville, “Interest Management: Dynamic group multicasting using mobile java
policies,” in Proceedings of the 1997 Fall Simulation Interoperability Workshop, 1997,
number 97F-SIW-020.

[35] A. Berrached, M. Beheshti, O. Sirisaengtaksin, and A. Dekorvin, “Alternative
approaches to multicast group allocation in HLA data distribution,” in Proceeings of the
1998 Spring Simulation Interoperability Workshop 1998.

[36] High Level Architecture Run-Time Infrastructure Programmer’s Guide 1.3 Version
3, 1998 DMSO

[37] Nico Kuijpers, et al. Applying Data Distribution Management and Ownership
Management Services of the HLA Interface Specification. in SIW. 1999. Orlando, FL

220

[38] Boukerche and A. Roy "A Dynamic Grid-Based Multicast Algorithm for Data
Distribution Management" 4th IEEE Distributed Simulation and Real Time Application,
2000.

[39] Gary Tan et. al. "A Hybrid Approach to Data Distribution Management", 4th IEEE
Distributed Simulation and Real Time Application, August 2000.

[40] Zeigler, B.P., et al. Bandwidth Utilization/Fidelity Tradeoffs in Predictive
Filtering. in SIW. 1999. Orlando, FL

[41] Zeigler, B.P., DEVS Theory of Quantization, . 1998, DARPA Contract N6133997K-
0007: ECE Dept., UA, Tucson, AZ.

[42] Zeigler, B.P. and J.S. Lee. Theory of Quantized Systems: Formal Basis for
DEVS/HLA Distributed Simulation Environment. in Enabling Technology for Simulation
Science(II), SPIE AeoroSense 98. 1998. Orlando, FL

[43] Bernard. P. Zeigler, Hyup Cho, J.S. Lee, Y.K. Cho and Hessam Sarjoughian, et al.
Predictive Contract Methodology and Federation Performance. in SIW. 1999. Orlando,
FL.

[44] Hall, S.B. and B.P. Zeigler. Joint Measure: Distributed Simulation Issues In a
Mission Effectiveness Analytic Simulator. in SIW. 1999. Orlando, FL.

[45] Averill M. Law, and W. David Kelton. Simulation Modeling and Analysis, 1982.
McGraw-Hill, Inc.

[46] Bernard P. Zeigler, Hyup J. Cho, Jeong G. Kim, Hessam Sarjoughian, and Jong S.
Lee, “Quantization-based filtering in distributed simulation : experiments and analysis”
in Journal of Parallel and Distributed Computing, March 2001.

[47] Bassiouni, M.A., et al., Performance and Reliability Analysis of Relevance Filtering
for Scalable Distributed Interactive Simulation. ACM Trans. on Model. and Comp. Sim.
(TOMACS), 1997. 7(3): p. 293-331

[48] Bassiouni, M.A., et al., Relevance Filtering for distributed Interactive Simulation.
Journal of Computer Systems Science and Engineering, Volume 13, 1998.

[49] Logan, B., and Theodoropoulos, G. Dynamic Interest Management in the
Distributed simulation of Agent-based systems, AI, Simulation & Planning In High
Autonomy Systems, Tucson, AZ, 2000.

221

[50] Bernard. P. Zeigler, George Ball, Hyup Cho, and J.S. Lee, “Implementation of the
DEVS Formalism over the HLA/RTI: Problems and Solutions,” Simulation
Interoperation Workshop(SIW), June. 1999. Orlando, FL.

[51] Bernard. P. Zeigler, George Ball, Hyup Cho, J.S. Lee, and Hessam Sarjoughian,
“The DEVS/HLA Distributed Simulation Environment And Its Support for Predictive
Filtering,” DARPA Contract N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.

[52] G. Wainer, and B.P. Zeigler. “Experimental Results of Timed Cell-DEVS
Quantization.” AI and Simulation, AIS 2000, Tucson, AZ.

[53] Bernard. P. Zeigler, H. Sarjoughian, and H. Praehofer, “Theory of Quantized
Systems: DEVS Simulation of Perceiving Agents.” J. Sys. & Cyber, Vol. 16, No. 1,
2000.

[54] Roger R. Bate, Donald D. Mueller, Jerry E. White, Fundamentals of Astrodynamics,
Dover Publications, New York, 1971

[55] Erwin Kreyszig, Advanced Engineering Mathematics: Seventh Edition, John
Wiley& Sons Inc, New York, 1993.

[56] Ernesto Kofman, Sergio Junco, “Quantized-State Systems, a DEVS Approach for
Continuous System Simulation”, Transactions of SCS, 2001

[57] Hyup J. Cho, “Discrete Event System Homomorphism: Design and Implementation
of Quantization-Based Distributed Simulation Environment,” Dissertation, University of
Arizona, May 1999.

[58] S.B. Hall, S. M. Venkatesan, D.B. Wood, H. S. Sarjoughian, B.P. Zeigler, “Object
Oriented HLA Interface Design for Military Simulations.”

[59] Bernard P. Zeigler, OBJECTS & SYSTEMS: Principled Design with Implementation
in C++ and Java, 1997 Springer-Verlag New York Inc.

[60] Doohwan Kim and Bernard P. Zeigler, “Efficient Implementation of Parallel
Container Classes for High Performance Simulation.”

[61] Y. K. Cho, B.P. Zeigler, H.J. Cho, H.S. Sarjoughian, S. Sen “Design Considerations
for Distributed Real-Time DEVS,” AI and Simulation, AIS 2000, Tucson, AZ.

[62] Daryl R. Hild, “Discrete Event System Specification (DEVS) / Distributed Object
Computing (DOC) Modeling and Simulation,” Dissertation, University of Arizona,
March 2000.

