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ABSTRACT 

The Discrete Event System Specification (DEVS) formalism excels at modeling complex 

discrete event systems. A framework capable of simulating a DEVS model is presented via 

Unified Modeling Language (UML) state machines. A set of rules is enumerated for the 

creation of UML models. Adherence to these rules results in models that are both DEVS and 

UML compliant. Resultant UML models are executable within DEVS simulation frameworks 

such as DEVSJAVA. Such an approach to modeling in UML represents a significant 

improvement over alternative approaches since it enables earlier simulation and verification of 

a design. The thesis asserts that simulation fulfills an important role within the architecture of a 

system and can be readily employed within UML models. The specifics of simulation can be 

naturally expressed in UML models, and simulatable models are a natural precursor to the 

more detailed models developed during design and implementation.   
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GLOSSARY 

CORBA An OMG standard aimed at allowing access to common objects and services 

by software written in different programming languages and executing on 

different operating platforms. 

DEVS Discrete Event System Specification is a systems-theoretic mathematical 

formalism that enables modeling systems using a communication protocol 

with well-defined semantics yielding system specifications that readily lend 

themselves to simulation, validation and verification. 

DEVJAVA  A Java implementation of a DEVS modeling and simulation environment.   

Jini  Developed by Sun Microsystems. This is a Java-based architectural framework 

to aid in the development of distributed software systems suitable from small 

devices to enterprise level applications.    

JavaSpaces  Developed by Sun Microsystems as part of Jini. This is a mechanism to store 

and retrieve objects in a distributed environment. The objects can be retrieved 

from JavaSpaces and their methods invoked.   

MDA  Model Driven Architecture® (MDA®) is another OMG initiative that seeks to 

separate business from application logic through the use of platform 

independent models that can be transformed via a platform definition model 

into a platform specific model where platforms consist of various middleware 

architectures such as CORBA and .NET.    

OMG The Object Management Groups is a standards consortium responsible for the 

UML, CORBA, MDA, and other standards that enable the design, execution, 

and maintenance of software and other processes.  



 

xi 

RTC  Run-to-completion ensures that each event is processed in an atomic 

uninterruptible manner. Events may not be half processed due to the arrival of 

a higher priority event. 

UML  The Unified Modeling Language is a general-purpose modeling language 

standardized by the OMG intended to provide a complete modeling 

framework for all steps in the development, deployment and maintenance of a 

system. 



 

 

C H A P T E R  1  

INTRODUCTION 

Motivation 

This thesis presents the specification of various DEVS (Zeigler et al. 2000) models in terms of 

UML (OMG 2007) state machines. We will show that using UML state machines according to 

the principles of DEVS yields an executable modeling sub-language suitable for a DEVS 

framework.  Modeling via a combination of DEVS and UML (hereafter DEVS/UML) 

provides a structured approach for the creation of a UML model that can be simulated under 

an executable DEVS framework. DEVS makes no pretence at yielding a model that can be 

simply handed off to developers for implementation. Much design work is still necessary once 

these models are in place, but also much has been achieved and potentially verified at an early 

design stage which would otherwise not have been possible using UML alone. Furthermore, 

the simulatable models have applicability potential throughout the software development 

lifecycle in areas orthogonal to implementation such as validation and verification. 

Additionally, DEVS/UML allows software architects to code in the abstract, meaning that 

within this framework a designer can experiment with code (e.g. Java) without being lulled into 

detailed design or implementation issues. This is necessary since it is difficult to get to the meat 

of a problem through the use of purely abstract modeling constructs without the type of 

feedback that an executable model provides. From a pragmatic perspective a malleable 

executable model is well served by having the expressive power of a modern high level 

language allowing details that are difficult to express in purely UML terms. 



2 

 

Contributions 

This thesis introduces a novel approach for simulating software systems. For far too long 

within the software architecture community, simulation has been an underutilized and 

misunderstood endeavor. This thesis centers on the ability to create executable UML models 

that represent a simulation of a proposed system such that the UML practitioner requires only 

a basic understanding of simulation. In adhering to the modeling techniques developed for this 

thesis, a new approach is identified that allows the modeler to start at a high level of abstraction 

and iteratively develop models of greater and greater detail all the while allowing the modeler to 

execute these models. Such an approach to software modeling in UML should significantly expand 

the role of simulation beyond that which it occupies today.  

Toward the main contribution, the following outcomes were achieved: 

• Identification of the challenges in developing models suitable for simulation in UML, 

particularly in regards to synchronization and delivery of event signals across multiple 

components. 

• The specification of a set of guidelines to be followed when modeling in UML such that 

those models may be executable in a DEVS framework such as DEVSJAVA. 

• The development of a prototype simulator to explore the issues raised by this thesis and 

help demonstrate the proposed approach. 

• A mapping of concepts employed in DEVSJAVA to DEVS/UML. 

• Alternative architectural possibilities for the construction of simulator engines.



 

 

C H A P T E R  2  

BACKGROUND 

Why Simulate? 

  El Sheik et al. (2008) present thirteen incentives for employing simulation summarized here: 

• Inexpensive experimentation with many different scenarios. 

• Ability to expand and compress time. 

• Ability to easily replay events to discover why events occurred. 

• Ability to explore different possibilities relatively risk-free. 

• Potential for diagnosing problems. 

• Identification of constraints and ability to predict obstacles. 

• Informed decision making as opposed to hunches. 

• Animation of a simulated system can reveal hard to find defects. 

• Visualization of the “plan”. 

• Builds consensus among the stakeholders. 

• Risk reduction for changes to the system – ability to test of what-if scenarios. 

• Training opportunities available via simulation. 

• Simulation saves time and effort. 

Certain objections to simulation of software have been raised (Douglass 2005) including the 

cost of testing twice, once in the simulated version and then again in the real system, and also 

the belief that with a modern iterative development approach simulation is no longer necessary 

since the real system can be evolved incrementally thereby nullifying many of the incentives 

listed above. This thesis recommends creating a simulation model using the UML wherein 
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most of the aspects of the model particular to simulation are modeled separately wherever 

possible. Since the UML becomes the common modeling language for both the simulation 

model and the real software system, the perception of simulation as a disjoint and unnecessary 

exercise should be reduced. Furthermore, the perceived value of the simulation models will 

likely be enhanced since these models are the easiest to create and execute due to their relative 

simplicity. In terms of iteratively developing models, a modeler can begin with a simulatable 

model and as details are added, evolve toward a model closer to a traditional prototype and 

then evolve that  model on through to production. In so doing we can diminish the resistance 

to employing simulation during the conceptualization and development of a system. It should 

be noted that it is possible to evolve a simulatable model into greater and greater levels of 

precision through decomposition of the model whilst still remaining a simulatable model. 

Once we digress into the prototype phase, the models become qualitatively different in nature 

and this evolution should not be seen as a simple one-to-one mapping. Beyond the initial 

architectural phases, the simulatable models continue to serve as important tools to educate, 

stimulate and instruct. Whenever changes are under consideration or various what-if scenarios 

need examination additional experimentation using simulatable models may be employed. 

Why DEVS? 

According to Zeigler et al (2000, 10) “DEVS is the unique form of representation that 

underlies any system with discrete event behavior”. UML is inherently a discrete modeling 

language (Douglass 2004). It is therefore natural to consider what forms a DEVS-compliant 

UML model may take. Models expressed using the Discrete Event System Specification 

(DEVS) represent a class of systems theoretic models that permit parallel event-based 
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behavior to be expressed concisely and in a manner that lend themselves to formal verification 

(Zeigler 2000).  Although many different simulation formalisms have been advanced over the 

years, the DEVS formalism has emerged as the preferred formalism due to the fact that other 

formalisms have been proven to have an equivalent DEVS representation (Zeigler 2000, Choi 

et al 2003). In particular, a differential equation system specification (DESS) can be simulated 

by a discrete time system specification (DTSS) through the selection of a sufficiently small 

constant time interval. A DTSS model, in turn, can be simulated by a DEVS model by 

constraining the time advance to a constant time. As such, simulations based on DEVS are 

more general in nature than other approaches such as continuous simulation (Kofman 2003). 

In DEVS, a system is represented by two types of models: atomic and coupled models. 

Atomic models are leaf nodes in a hierarchy where coupled models are the non-leaf nodes.  

Atomic Models 

An atomic model may be represented by the structure: 

                                                   M = (X, Y, S, δext, δint, δconf, λ, ta) 

Where: 

• X is the set of input values. 

• Y is the set of output values. 

• S is the set of states. 

• δext  : Q × Xb →S is the external transition function, where Q = {(s,e)| s є S, 0 ≤ e ≤ 

ta(s)}  is the total state set and e is the elapsed time since the last transition. 

• δint: S → S is the internal transition function. 

• δconf: Q × Xb → S is the confluent transition function 
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• λ : S → Y  is the output function. 

• ta : S → R+
o,∞  is the set of positive real numbers between 0 and infinity. 

This thesis proposes that each atomic model may be expressed by a UML state chart. This in 

itself is not a novel approach as it has been the preferred representation in UML for a DEVS 

atomic model in most other research in this area (Schulz et al. 2000, Huang and Sarjoughian 

2004, Zinoviev 2005, Risco-Martin et al. 2007). However, this thesis tackles the difficult 

issue of appropriately accounting for time in UML models through a system-wide protocol 

of events without relying on the timing mechanisms inherent in the UML. This avoidance of 

UML time constructs is an important distinction between this thesis and the research of 

others in this area, notably Zinoviev (2005).  

Coupled Models 

DEVS is closed under coupling, meaning that when two or more DEVS models are coupled 

together the coupled model is itself a DEVS atomic model. Coupling is a unidirectional 

association between two models where the output (events) from one model serve as input 

(events) to the other model. DEVS employs the concept of input and output ports to 

represent the connection points between the models. Each port has a name. For each model 

all output ports are distinctly named and likewise all input ports are distinctly named. 

Further, a coupled model itself may have unidirectional associations called external input 

coupling, from its own input ports to the input ports of the models it contains, and the 

coupled model has unidirectional associations called external output coupling, from the output 

ports of the models it contains to its own output ports. In this manner DEVS models may 
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have arbitrary levels of nesting. This thesis maps the port names to UML event type names – 

again a logical choice employed by others. Unique to this thesis is a specification of a 

protocol, defined via UML state machines, of event  signals among models, such that those 

models may be simulated using an executable DEVS framework such as DEVSJAVA. 

It is important to recognize DEVS models solve a general class of problems, but are by no 

means suitable for all types of problems. Nonetheless, the approach outlined in this thesis is  

general purpose with a wide breath of applications for which the UML and state charts in 

particular are themselves employed. 

UML 2.0 Components 

Many important changes were introduced with UML 2. Perhaps most notably, the notion of a 

component has been revised from an artifact such as a file or executable to a logical construct 

specified during design.  Within a system, components now represent logical units that are 

autonomous and self-encapsulated. UML 2 introduced the component diagram to organize 

and layout components. The component diagram is significant in that it allows for a 

hierarchical decomposition of a system wherein components at lower levels may be substituted 

with alternative components as desired. In UML 1.x, the ability to model a system in a 

component-oriented hierarchical fashion was difficult. In the UML 2 component diagram, 

components may be decomposed into other sub-components and wired together via 

connections and ports. This approach is very similar to the coupled and atomic models in 

DEVS though there are some important distinctions. In simple terms a coupled model may be 

perceived as a UML 2.0 component diagram with an additional set of rules restricting how the 

component diagram may be wired together.    
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Coding in the Abstract 

Coding in a modeling and simulation environment is mostly orthogonal to traditional coding. 

Hence, it should not involve implementation decisions, nor would it be tempting to use this 

code during implementation. A central objection to prototypical solutions is that they tend to 

morph into the real product and as such represent a dangerous temptation. Coding in the 

abstract is not a matter of writing a collection of stubs and interfaces. Java (in the case of 

DEVSJAVA) becomes a glue language for architectural constructs where some other abstract 

specification language may have been used in the past. Java has the benefit of being executable, 

widely used and understood, and it also has a rich syntax to allow the architect the flexibility to 

express concepts that may otherwise be difficult to capture. These models are not blueprints 

for implementation but rather they can be seen as vehicles through which we can act out many 

different scenarios and get a sense of whether our vision is coherent and consistent. Producing 

an executable DEVS/UML model should be faster and easier than traditional methods 

because the executable framework is already in place with an abundance of supporting libraries 

and constructs. Above all DEVS/UML represents a pragmatic approach to rapidly producing 

an architectural model of a system that involves a high degree of dynamic behavior. Stephen 

Mellor (Mellor and Balcer 2002) objects to using Java or a similar programming language since 

modelers are likely to develop specifications that compromise the intended level of abstraction 

with non-domain specific constructs such as pointers and arrays. Whilst these objections are 

justified, a pragmatic approach suggests that Java employed in the specification of a DEVS 

model is not necessarily a poor choice so long as the modeler exercises good choices with 
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respect to its application. In return for employing this pragmatic approach, a model compiler 

and execution environment is readily available. 

Modeling in DEVS 

DEVS is a simple, elegant, yet very powerful and scaleable formalism which encourages both a 

compositional and decompositional approach to creating models for potential systems. Large 

models of complex systems can be expressed by focusing on atomic components of limited 

complexity and then assembling these atomic components into systems with emergent yet 

predictable complexity. Alternatively, components can be viewed as black boxes for which 

there is expected behavior (expected outputs for given inputs) and later these black boxes can 

be decomposed into a series of sub-components. DEVS is appealing since it operates at a high 

level of abstraction yet can yield critical information during an architectural phase that might 

otherwise not come to light until much later. Further, it has been shown that DEVS models 

are particularly suited to the expression of many design patterns and allow an architect to 

employ patterns usefully at an architectural and modeling stage (Ferayorni and Sarjoughian 

2007). There is a Classic DEVS and updated Parallel DEVS (Chow 1996) formalism. In this 

thesis, references to DEVS should be considered references to Parallel DEVS. One way to 

think of DEVS is as a protocol that specifies how components may be grouped and connected 

together and how and when they may communicate with one another. DEVS constitutes a 

minimal set of rules and structures necessary to formulate a model of virtually unlimited 

sophistication.  This thesis asserts that observation of this set of minimal rules during 

modeling in UML is a powerful enabler of simulation and validation for any modeler in almost 
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any domain. A limitation of DEVS is that it is generally unsuitable for specifying a software 

application at a level that can implemented as an end product.  

UML Drawbacks 

The UML is a profound and complex modeling language and in many respects it remains 

profoundly complex. At a certain level it attempts to be all things to all people, a grandiose, 

noble attempt to achieve a holy grail of raising the level of software (and systems) specification 

to an altogether higher plateau. Advocates of UML would argue that it is as simple and 

complex as it needs to be. As stated earlier, UML 2.x includes important improvements that 

can reduce the growth in complexity of models as a system increases in size. Enhancements in 

areas such as component diagrams are a major improvement over earlier releases of the UML. 

Indeed, several important the concepts such as ports and hierarchical composition of models 

present in DEVS were absent in UML 1.x and then adopted by the UML in 2.0. However, 

despite these important introductions into UML 2.0, the handling of time, especially as 

required for simulation, remains a significant shortcoming. Indeed, the UML Profile for 

Schedulability, Performance and Time Specification (OMG 2005) seeks to address this 

shortcoming and was considered as a basis for this thesis but was ultimately rejected since the 

profile introduced more complexity than required to achieve a UML representation of a 

DEVS model. 

DEVS/UML 

DEVS/UML is a proposed architectural framework in which a modeler employs UML 

according to a set of rules and is thus enabled to realize an executable model running under a 

DEVS framework. This allows an architect to generate functioning models of a system at a 
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very early state in its development and thus assist in formalizing and testing a 

conceptualization. DEVS/UML seeks to employ UML is a manner in keeping with the strictly 

minimalist approach employed by DEVS. That is to say, elements of the UML are utilized on 

an as-needed basis and in a progressive and logical manner. In DEVS/UML, we model 

systems in primarily a reactive, event-driven fashion, although it is possible for models to be 

autonomous or non-reactive. Non-reactive, non-autonomous behavior is subjugated to being 

specified within an atomic model.  

An objective of DEVS/UML is to help guide the architect/modeler in the creation of models 

that can be verified. These executable models can be realized, tuned, and corrected at a very 

early stage in the system development. There are best practices which should be employed to 

help ensure a successful modeling experience, but it is nonetheless possible that unnecessarily 

complex models are developed which hinder a successful outcome rather than contribute to an 

elegant, comprehensible and accurate model for a desired solution. An example of such over-

engineering is the area of state machine development. DEVS/UML focuses on the provision 

of state machines for the specification of the behavior of basic (or atomic) models. The 

designer must be careful not to get carried away with trying to model every possible state and 

condition and end up with a model that is not accessible to others who wish to understand the 

behavior of the model. Multiple incarnations of the model may be necessary to delve deeper 

into the details. Every DEVS model should encapsulate behavioral details. Externally, each 

model appears as a black box in its environment with a well defined interface in terms of what 

messages can be received and what messages may be produced. That said, a DEVS model 

deliberately does not involve very much by way of implementation detail in terms of its 
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specification. DEVS/UML is intended to identify junction points between DEVS and UML 

whereat UML artifacts are either produced or consumed. For example, DEVS/UML could 

generate sequence diagrams based on the execution of an experiment. Alternatively, one can 

validate that an experiment passed if it is in accordance with an existing sequence diagram. 

When modeling, one may elect different levels of abstraction for different models. For 

example, one may compose an atomic model that models the behavior of a car and consider it 

as a single entity with a limited number of states, or one may decompose that model into a set 

of constituent parts. If both models share the same perspective then the set of states and 

transitions at the level of the car should be the same for each use case scenario. Where an 

atomic model is decomposed into a coupled model, both models should be polymorphic in 

nature: substituting one for the other should be possible and the semantics should not be 

compromised. Ideally, the behavior should be identical but that may not be possible if certain 

compromises were made during the atomic model creation for the sake of simplicity - in which 

case each state in the atomic model should represent a subset of states in the coupled model. 

We can also model from different perspectives which may involve a different decomposition 

and different set of states of interest. Reflecting on the ultimate goals of the system, all of these 

models must be reconciled into a holistic solution that captures the full essence of the system 

in question. Much of this reconciliation must take place further into the development life cycle 

but this modeling remains a valuable tool. Indeed, it is not as if all DEVS/UML models need 

be generated exclusively at the initial stages of design and conceptualization – DEVS/UML 

has practical application through all iterations of system development. For example, these 
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models can be instructive during both implementation and test phases during which further 

elaboration of these models is desirable to answer questions pertinent during those phases. 

Reactive Behavior 

Within DEVS the specification of reactive behavior for a basic model is the form of 

mathematical notation or pseudo-code – there is no formal action language syntax defined as 

part of DEVS. There are no limitations as to how a model reacts to a given input other than a 

requirement to only act upon the defined state variables of the model, and all interaction with 

other components is through the output function. No requirement exists to specify the 

reactive behavior of the model in terms of a particular state machine formalism etc. (although 

it has been shown to be equivalent to such formalisms). Within DEVS/UML, it is required 

that this reactive behavior is captured via a UML state machine obeying a certain set of rules. 

Modeling Simultaneous Events  

Nonetheless, there is the thorny issue of handling multiple simultaneous events. If we perceive 

the inputs to an atomic model as events, then we are confronted with the restriction that 

multiple simultaneous events cannot be expressed in a UML state machine unless they occur in 

orthogonal regions (OMG 2007). This restriction may appear reasonable where events are 

processed in close to zero time, but from a DEVS perspective it represents a fundamental 

hurdle in the UML specification for reactive behavior. DEVS supports multiple events being 

processed at a given point in time. DEVS also supports time events (e.g. after 10 seconds) 

occurring simultaneously with other events. Practically speaking, whether two events are truly 

simultaneous is debatable, but from a modeling perspective it is nonetheless possible, 

reasonable, and practical to say two events happen say 10 seconds from now.  
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We then are left with the challenge of how we react to such simultaneous events. Since 

simultaneous events are only partially supported in UML2.0, DEVS/UML likewise has limited 

scope for the specification of such events. From one perspective, this is not an onerous 

limitation since such events present considerable challenges during implementation. That 

stated, from a simulation perspective when scheduling events, it is often necessary to specify 

that events occur simultaneously. The corresponding state machines must take this into 

account. For example, if events e1 and e2 are simultaneous, in DEVS, we can model handling 

these events and ignoring an event e3 that occurs during the processing of e1 and e2. In UML2.0 

this is not possible but one may argue that the likelihood of accepting multiple simultaneous 

events and then rejecting subsequent events does not have many practical applications. 

Further, simultaneity is only a function of the accuracy of the clock; if the clock were at a 

much finer grain, simultaneous events may not be simultaneous at all. This raises the possibility 

of considering events that occur within a given window of time as simultaneous. One beauty 

of DEVS is that the simulated time can be speeded up or slowed down to accommodate 

whatever level of granularity we choose to model.  

Run-to-Completion  

UML presumes that run-to-completion (RTC) event handling encompasses the entire state 

machine and not just any steps taken in one orthogonal region of the state machine (OMG 

2007, 560). It should be noted that embracing the run-to-completion model of execution as 

specified within UML2.0 state machines does not prohibit DEVS/UML from modeling real-

time processing systems. On the contrary, these DEVS/UML models are ideally suited to 

many such applications. DEVS/UML encourages a very limited utilization of RTC whereby 
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most of the processing remains interruptible by higher priority activities. What is confined to 

RTC is simply the entry action into such a processing state. Most of the time is spent in a sleep 

state which is intended to simulate the processing that a real implementation would be 

performing in that state. Since external events are still recognized in this state, the sleep state is 

interruptible unless the modeler chooses to ignore all such external events. 

Modeling Time  

In DEVS, the outputs from (or events generated by) an atomic model are generated in the 

output function which is invoked immediately prior to an internal transition function and never in 

direct response to an external event. This is the primary contractual obligation of a designer 

creating UML2.0 state charts compatible with DEVS/UML. Whilst this may appear 

counterintuitive at first, it is natural from a simulation perspective – outputs only occur after 

some (perhaps zero) amount of processing time. Maintaining this restriction keeps the model 

specification consistent and reduces complexity for large systems. In DEVS/UML, the 

outputs are event signals generated as part of a transition triggered on the internal transition 

event, evInternalTx, which is generated when the timer corresponding to an evSigma event 

elapses. In UML, time values can be absolute or relative. The representation is a string without 

formal semantics other than a representation of time. So a TimeExpression (OMG 2007, 451) of 

value “1” may mean one second, nanosecond, or day. It is preferable to say “1 second” or 

some such expression that will not be ambiguous.  In DEVS/UML, time is usually modeled 

via the generation of an evSigma event which results in a timer being created which upon 

expiration will trigger an internal transition evInternalTx event. This is analogous to the UML 
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after event but after is not suitable for use in state machines in DEVS/UML since all events 

must be globally coordinated due to timing considerations. 

Design Patterns 

DEVS/UML operates at a similar level of abstraction to a design pattern whereby the 

implementation details are not relevant to model creation. Design patterns can be easily 

employed and reused within the framework without considerable customization for given 

applications. In (Ferayorni and Sarjoughian 2007) Composite, Façade, and Observer patterns 

are applied to a specific domain and used to develop domain-specific simulation models that 

enable various design possibilities to be demonstrated both early in the conceptualization of a 

system and also at additional critical phases during the lifecycle of the system development. 

The beauty of employing design patterns is that they tend to be intuitively appealing to a wide 

range of stakeholders and lower the complexity threshold when communicating the intent or 

design of a system. Also, with design patterns significant alternative solutions tend to exist at 

the level of the design pattern, and in this form these alternative solutions may be more readily 

communicated to stakeholders. This is important since simulation works hand-in-glove with 

design patterns allowing not only for a textual or graphical representation of a 

problem/solution but also through simulation stakeholders can visually witness an animation 

of the alternatives and the relative merits of the approaches can be objectively quantified 

through experimentation. The time and cost of presenting this information to stakeholders 

through demonstration and experimentation is already principally covered since DEVSJAVA 

and other such DEVS simulation environments are already mature software platforms. What 

remains is the model specification for the alternatives under consideration which is a vastly 
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reduced task since the model specification for DEVS are stripped of all but the most essential 

detail. 

Another area of interest pertinent to this thesis involves executable architecture description 

languages such as Rapide (PAVG). These languages offer support for high level architecture 

analysis in terms of components, but these languages tend to have limited ability to support 

modern software concepts such as design pattern and object-oriented concepts. These 

limitations, together with an inability to model autonomous component behavior, mean that 

these executable architecture description languages are not well suited for creating simulatable 

models of software systems (Ferayorni and Sarjoughian 2007). 



 

 

C H A P T E R  3  

MAPPING DEVS MODELS TO UML (2.x) STATE MACHINES 

Strategy 

As a means of introducing DEVS/UML, we shall first consider basic DEVS models and how 

they may be represented by a UML2.0 state machine. The first models are taken from 

(ACIMS). Starting from simple models, we evolve to more complex models, until we 

ultimately arrive at a more complete specification of a simulatable model. The state machines 

presented initially are not the actual DEVS/UML specifications for these models, nor are they 

necessarily valid UML state machines. Instead, they serve as a means by which we explore the 

issues involved, and we then elaborate upon these until we finally start producing UML state 

machines capable of supporting a DEVS specification. 

Passive Atomic Model 

 
Figure 1 Passive Model (1) 

The passive atomic model does nothing. In itself, it is not very interesting, but in comparing it 

with the corresponding DEVS model, we observe a mapping decision. In DEVS, every
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component has at least one input port which accepts inputs. We modeled this in the first 

diagram with a self-transition of evInput().  

  

Figure 2 Passive Model (2) 

Since such inputs are ignored, we have eliminated this transition in the second state machine 

diagram. In DEVS, the inputs are formally specified using mathematical notation. Within 

UML, we can formalize this specification further along with the possibility of employing 

protocol state machines to specify the sequence of different inputs if necessary. For the 

moment we will only introduce concepts such as protocol state machines as needed.  

Generator Atomic Model 

  

Figure 3 Generator Atomic Model 

The generator atomic model simply generates an output every one second or such period. 

UML supports the concept of relative time events using the after operator. We “emit” a “1” 

after the processing time. This should be a signal, and signals must be sent to an object – we 

will ignore this objection for the moment [objection#1].  
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Storage Atomic Model 

  

Figure 4 Storage Atomic Model 

The storage atomic model stores a non-zero input and outputs this input whenever it receives 

a zero as input. In DEVS, it is possible for the after event and an input event to occur 

simultaneously [objection #2]. We will defer addressing this issue until later. Also accepting an 

input event in the respond state resets the after timer and should not therefore be specified. We 

could have used an internal UML transition but this too has drawbacks. As noted, there are 

many subtle variations in the semantics of different state machine specifications and in 

implementations that can lead to radically divergent behavior for the same set of events. It is 
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therefore desirable to maintain a relatively simple specification in terms of the constructs 

necessary to represent DEVS in UML notation (Crane and Dingel 2005).  

Binary Counter Atomic Model 

 

Figure 5 Binary Counter Atomic Model 

The binary counter emits a ‘one’ for every two inputs it receives. As defined, here it also 

ignores any inputs it receives while in the active state which takes 1 second to complete. To 

compensate for inputs arriving that are ignored and which reset the processing time back to 

one second, we introduce a timeAdvance function that reduces the processing time by the 

amount of time elapsed. This presumes that the state machine has access to a global clock 

which is not defined in UML – we shall ignore this limitation for the moment [objection #3].  
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N-Counter Atomic Model 

  

Figure 6 N-Counter Atomic Model 

The n counter emits a ‘one’ for every n inputs it receives. As defined here it also ignores any 

input events it receives while in the process of outputting which takes 1 second to complete. 

Therefore, we do not need the timeAdvance function presented in the binary counter atomic 

model.  
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Simple Processor without Queue Atomic Model 

  

Figure 7 Simple Processor without Queue Atomic Model 

The simple processor atomic model accepts jobs all of which have the same processingTime 

duration and emits a jobComplete token upon expiration of this time. DEVS allows multiple 

messages or events to occur simultaneously. In UML, however, events are handled one at a 

time. In this model we do not allow multiple jobs to arrive at the same time [objection#4]. Jobs 

that arrive during the processing of an existing job are discarded and never processed. 
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Simple Processor with Queue Atomic Model 

  

Figure 8 Simple Process with Queue Atomic Model 

To ensure that arriving jobs are not lost, we introduce a state variable jobQ queue and accept 

jobs that arrive during the processing of another job. We again make use of the hypothetical 

timeAdvance function. Again the notion of multiple jobs arriving simultaneously in the passive 

state is not considered. 
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Simple Processor with Bundled Events Atomic Model 

  

Figure 9 Simple Processor with Queue/Bundled Events(1) 

We now try to account for the possibility that multiple events may arrive at the same time 

[objection #4]. Since the same time is a function of the ability of the observer to recognize events 

at a certain level of granularity of time, we make the assumption that the same time is a short 

interval generally a single unit, whether a second, nanosecond, clock period, and so forth. We 

have introduced an orthogonal region into the state machine specification. Such regions 

execute in parallel. In the accept state, we accept jobs and place them in a jobs bag. Then after 

each clock period (e.g. 1 second) if the jobs bag is non-empty, we generate an evJobBag signal. 

In the other orthogonal region, we await an evJobBag event and process all these jobs together. 
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In this case, we simply place the jobs in the job bag into a job queue and process each job 

serially, allowing for the fact that other job bags may arrive during this processing that need to 

be appended to our jobs queue. The reason we use a bag and not a list is simply to represent 

the fact that the jobs arriving during one clock period have no order since they happen “at the 

same time” even if during simulation one event precedes another (the clock is stopped). 

Obviously, this model is somewhat contrived but it demonstrates how we may handle the 

notion of modeling events being generated at the same time.  

Note: In the UML there is no action language specification. Also, we could have used a 

convex pentagon symbol to represents signals but instead we have opted to use 

send([recipient.]event(args))) as the syntax for signal generation. Within UML, if the recipient is 

omitted, then the signal is sent to the state machine itself. 
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Figure 10 Simple Processor with Queue/Bundled Events(1) 
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We now elaborate on the region of the statechart that accepts jobs arriving at the same time, 

that is, within a specified time window. We now handle the situation in which the completion 

of a job may occur at the same time as the arrival of additional jobs. We removed the after 

event from the left hand/upper orthogonal region and introduced a special event called 

evInternalTx, which corresponds to invocation of the DEVS internal transition function. We 

generate an evSigma signal from the upper region which in turn is received by the lower region 

which sets a timer scheduled to elapse after processingTime. We then handle the situation where 

the timer expires at the same time as the arrival of a new job. To handle this situation, we have 

a number of decision nodes in the state machine to prioritize the evInternalTx event ahead of an 

external event – this corresponds to the DEVS confluent function. However, there remains a 

problem with this state machine in that the evSigma event will reset the after(1) pulse unless we 

make it an internal state transition. Next, we separate out this pulse, or tick, from the region 

accepting new jobs. Later we will encounter other reasons why it is necessary to separate the 

timekeeping from the state machine altogether. 

The following diagram shows that we now have separated the clock into a separate region that 

generates an evPulse (or evTick) event every unit of time. This pulse event then is used to control 

when any existing timer will expire. A timer is created as a result of a evSigma event.  At this 

point we have made significant progress towards addressing objection #2. 
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Figure 11 Simple Processor with Queue/Bundled Events & Internal Clock 
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Simple Processor with Separation of Concerns 

Simple Processor with Queue

accept

/send(send(evjobBag(jobs));
jobs=[];

evJob(j)/jobs.add(j);

This is the confluent function  
here we perform the internal 
transition followed by the 
external transition

evjobBag(jobBag) 
/ jobQ.append(jobBag);
timeAdvance()

passive

internalTx/
emit(job);

active

evjobBag(jobBag)/
/ jobQ.append(jobBag);
job=jobQ.unshift;
send(sigma(processingTime))

[else] / job=jobQ.unshift;
send(sigma(processingTime))

[jobQ.empty?]

sigma(sigmaTime)
/timer=sigmaTime

evPulse()
[ jobs.notEmpty 
or timer != null]

[ jobs.isEmpty ]
/send(internalTx); timer=null;

/timer=timer - 1

[ timer==null ]

[ timer!=null ]

[ timer==0]

[ jobs.notEmpty ]
/send(internalTx); timer=null;
send(send(evjobBag(jobs));
jobs=[];

pulse

after(1)/send(evPulse());

Event Receiver

Clock

 
Figure 12 Simple Processor with Separation of Concerns 

Here we break the state machine into three separate state machines. This does not change the 

model significantly and has the advantage of being easier to specify alternatives. But one area 

that is significant is the run-to-completion semantics. Such semantics in the UML apply to the 

entire state machine over multiple orthogonal regions. That behavioral guarantee would not 

apply if we choose to split into three separate state machines and may therefore introduce 
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some unexpected subtleties.  What is not addressed in any of the models discussed so far is the 

issue of synchronization of events across multiple models. For this we need to introduce the 

concept of a global clock. 

Simple Processor with Global Clock 

Simple Processor with Queue

accept

/send(send(evJobList(jobs));
jobs=[];

evJob(j)/jobs.add(j);

This is the confluent function  
here we perform the internal 
transition followed by the 
external transition

evJobList(jobList) 
/ jobQ.append(jobList);
timeAdvance()

passive

internalTx/
simulator.emit(job);

active

evJobList(jobList)/
/ jobQ.append(jobList);
job=jobList.unshift;
simulator.sigma(processingTime)

[else] / job=jobQ.unshift;
simulator.sigma(processingTime)

[jobQ.empty?]

sigma(wakeTime)
/timer=wakeTime

evPulse()
[ jobs.notEmpty 
or timer != null]

[ jobs.isEmpty ]
/send(internalTx); timer=null;

/timer=timer - 1

[ timer==null ]

[ timer!=null ]

[ timer==0]

[ jobs.notEmpty ]
/send(internalTx); timer=null;
send(send(evJobList(jobs));
jobs=[];

pulse

evGlobalPulse()
/simulator.evPulse();
globalClock.evAck(self);

Atomic Model Simulator

Clock

pulse

after(1)/clock.evGlobalPulse();ackCount=0;

GlobalClock

1

*

ack

[ackCount<total][else]

evAck()/ackCount++;

 

Figure 13 Simple Processor with Global Clock 

We now introduce a Global Clock to support multiple different processors and other models 

which may need to have all their clocks synchronized. From a simulation perspective, we may 
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need to have different models process an event at the same time. Additionally, when we 

communicate between these models we need to ensure that, where timing is relevant, the 

passage of time witnessed by both models is the same. The Global Clock only advances to the 

next time unit when it has received an acknowledgement from each of its client Clocks. It 

should be noted here that time is now counted in pulses, which are simulations of real time, 

but the elapsed real time between each pulse may be of varying duration. This is not a cause 

for alarm since this is simply a mechanism by which we can simulate the state of being in the 

active state for some duration of time. Simulated time is now synchronized across all other 

components via the Global Clock. It is possible that instead of time we could simulate CPU 

cycles. Also, we can get close to real time if the global clock accounts for the amount of time 

in the ack state. Further, we can allow our simulated time progress to be slower or faster than 

real time by multiplying our after time by a factor or omitting the after event altogether.   

We have, thus far, retained the notion that the passage of time will still be monitored at the 

atomic model level. This represents a significant processing overhead which can be overcome 

by delegating responsibility for time progression to the state machine controlling the 

containing coupled model or optimally to the outermost coupled model. 
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Applied Example ~ Hummingbird Feeder 

Atomic

accept

/atomic.send(externalTx(msg));
msg=[];

evMsg(inPort,m)
/msg.add(j);

This is the confluent function  
here we perform the internal 
transition followed by the 
external transition

passive

sigma(duration)
/timer=duration

evPulse()
[ msg.notEmpty 
or timer != null]

[ msg.isEmpty ]
/atomic.send(internalTx); timer=null;

/timer=timer - 1

[ timer==null ]

[ timer!=null ]

[ timer==0]

[ msg.notEmpty ]
/atomic.send(internalTx); timer=null;
atomic.send(externalTx(msg));
msg=[];

pulse

evGlobalPulse()
/msgReceiver.send(evPulse());
globalClock.send(evAck(self));

Message Receiver

Clock

pulse

after(1)/clocks.send(evGlobalPulse());ackCount=0;

GlobalClock

1

*

ack

[ackCount<total][else]

evAck()/ackCount++;acceptRegister

evRegister(clockId)/total++;clocks.push(clockId)

evStartSimulator()

 
Figure 14 Hummingbird Feeder – Domain Independent  
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Figure 15 Hummingbird Feeder – Domain Specific 
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We now consider the advanced Hummingbird feeder introduced in (ACIMS, 66).  We define 

the hummingbird state machine as an extension of the Atomic Model state machine. UML 

provides a clear specification for how state machines may be extended and elaborated upon. 

Care must be taken to ensure that the internal transitions are unambiguous. Observe that we 

cannot be in the Refill and the Feeding states at the same time.  

At any point there should only be one state in which active processing is ongoing as expressed 

via an evSigma signal generation. This signal expresses the fact that there is processing that takes 

a certain amount of time, possibly zero, before it completes. Such states may, however, be 

interruptible. Note, in UML it is possible to have states in orthogonal regions within a state 

machine that may be performing actions simultaneously – for DEVS/UML, the restriction is 

that only one state responds to an internal transition event at any time.  

At this point we have separated much of the simulation related infrastructure from the 

specification of the state machine for the particular model of interest. This is important since 

the objective of DEVS/UML is to allow architects to focus on the problem domain with little 

consideration for the issues involved in enabling simulation. We have the outline of a contract 

that the architect may follow which will enable models duly specified to be executable under a 

suitable DEVS framework.  
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Atomic

accept

/send atomic(evExternalTx(msg));
msg=[];

evMsg(inPort,m)
/msg.add(j);

This is the confluent function  
here we perform the internal 
transition followed by the 
external transition

passive

evSigma(duration)
/timer=duration

evTick()
[ msg.notEmpty 
or timer != null]

[ msg.isEmpty ]
/send atomic(evInternalTx); timer=null;

/timer=timer - 1

[ timer==null ]

[ timer!=null ]

[ timer==0]

[ msg.notEmpty ]
/send atomic(evInternalTx); timer=null;
send atomic(evExternalTx(msg));
msg=[];

pulse

evReqTick()
/sleep(simTime – (system.now() – then))
send coorinator(evTick());

Atomic Model Simulator

Global Clock

awaitTick

evTick/send clients(evTick());
ackCount=0;ackExp=clients.size

Coordinator

1

awaitAck

[ackCount<ackExp]
[else]
/send globalClock(evReqTick())

evAck()/ackCount++;initialization

evRegister(client)/clients.push(client)

evStartSimulation()
/send globalClock(evReqTick())

                   evMsg/
foreach c in clients
  if ( c.accepts(evMsg.type))
    send c(evMsg);ackExp++;

1

  
Figure 16 DEVS/UML Simulation Template I 
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In Figure 16 DEVS/UML Simulation Template I, we employ some of the terminology that we 

elected to use for the prototype system. Now, instead of each atomic model having its own 

clock, we have one clock and allow time to be globally controlled and disseminated with each 

tick. There is a contrivance in the diagram in which we try to account for the amount of time 

spent processing events between each tick that took zero time from a simulation perspective – 

the use of system.now() is not referencing a defined UML clock construct. Note that the role of 

coordinating time throughout the system is assumed by the coordinator. The coordinator is really 

just a coupled model – the outermost coupled model for the entire system. 

 

 

Figure 17 DEVS/UML Coupled Model 

This is a simplified state machine for a coupled model. The coupled model is essentially the same 

as the coordinator except that it is completely reactive with regards to message arrival in the 

main event loop, whereas the coordinator prompts the global clock for a tick event; all other 

coupled models simply wait for a tick event and then pass that along to the models they 

contain. In this state machine, we allude to an initialization phase during which we accept 
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registrations from contained sub-models, and then we await an event indicating that the system 

is ready to enter into the event loop to start processing all the events for a simulation execution 

cycle. With this model, the coupled model has no conception of time and its only function is 

to relay events down to its contained sub-models or back up to its own container. Note also 

that peer models contained within a coupled model do not communicate directly with one 

another and instead they go through the coupled models to send events to each other regardless 

of whether the ports between these models appear to be directly connected. This simplifies the 

specification of the atomic model simulator since all communication is restricted to its 

container or its atomic model. 

 

accept

/send atomic(evExternalTx(msg));
msg=[];

evMsg(m)
/msg.add(m);

This is the confluent function  
here we perform the internal 
transition followed by the 
external transition

evSigma(duration)
/
send container(evSigma(duration))
timer=duration

evTick(n)
[ msg.notEmpty 
or timer!=null]

[ msg.isEmpty ]
/send atomic(evInternalTx); 

/timer=timer - n

[ else ]

[ timer!=null ]

[ timer – n ==0]/timer=null

[ msg.notEmpty ]
/send atomic(evInternalTx); timer=null;
send atomic(evExternalTx(msg));
msg=[];

Atomic Model Simulator

 
Figure 18 DEVS/UML Atomic Model Simulator 
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In order to allow for a more efficient simulation execution we can have the evSigma events 

issued by the atomic models percolate up through the atomic model simulator to the coupled 

model and eventually up to the coordinator. This way atomic model simulators do not need to 

receive every tick but only when the evSigma value expires or when they have external transition 

messages. Each tick event now has an n parameter that specifies the amount of time that has 

elapsed since the last tick. Within the same clock cycle, there may be a need for the message 

bag to be relayed to the atomic model multiple times (each time with a new bag). The fact of 

its being in the same clock cycle should be transparent to the atomic model simulator with a 

new tick event having a value of zero for n.  And note that the structure that holds the 

messages is not an array or other ordered structure but rather an unordered bag. Also note that if 

the atomic model wishes to indicate a passive state where evSigma has a value of infinity, it can 

pass a value of -1 as the duration of the evSigma. In this way, the atomic model simulator can 

essentially remove any existing timer and the atomic model will remain dormant until it 

receives another external event. When an external event is received the timer –n == 0 condition 

will evaluate to false since timer – n will be less than zero. Thus that the confluent function will 

not be entered.  One thing that has not been addressed thus far is passing the elapsed time 

since the last internal or external transition to the atomic model itself. This is easily 

accommodated by adding this time as an argument to the messages sent to the atomic model 

from the atomic model simulator. We now have covered most of the fundamental issues 

necessary to present the DEVS/UML prototype simulation engine and to articulate a contract 

for DEVS/UML compliant state machines. 



40 

 

Representing Coupled Models in UML 

The representation of coupled models in UML is made significantly easier in UML 2.x through 

the provision of new compositional constructs. Components may contain sub-components in 

a hierarchical fashion similar to coupled models containing models. Components may be 

connected to one another and attached via ports again similar to DEVS. In DEVS 

connections between ports are unidirectional, whereas, this is not necessarily the case in UML. 

Therefore, in DEVS/UML, all ports should be unidirectional. In UML, ports may have 

required or provided interfaces. In DEVS/UML a port may either provide an interface or 

require an interface but not both since this implies bi-directionality. These interfaces may be 

represented diagrammatically via UML lollipop notation or in DEVS/UML via the convention 

of placing input ports on the left hand side of a component and output ports on the right hand 

side of a component.   In UML, ports may have a multiplicity greater than one; this is not the 

case in DEVS (and hence not allowed in DEVS/UML). In UML, port may be unnamed; they 

must be named in DEVS and thus in DEVS/UML. In UML, connectors need not attach to 

components (more correctly parts) via ports; this is not an option in DEVS and hence not an 

option in DEVS/UML. If ports are specified to provide or require an interface, there should 

be only one such interface specified in DEVS/UML. In (Huang and Sarjoughian 2004) there is 

a mapping for coupled models into UML-RT structure diagrams, but the use of the UML 

Profile for Schedulability, Performance and Time Specification (OMG 2005) is unnecessary 

when mapping from DEVS to UML.  



41 

 

 

Figure 19 DEVS/UML Coupled Model Simulator 

Here we see the events that a coupled model processes during its main event loop. The signal 

evTick comes from the containing model and is relayed to any active model and to any model 

with an expiring timeNext. The evAck signal is generated by a coupled model when it has 

received an evAck from each sub-model to which it sent an evTick signal. The evAck signal has 

one parameter, active, which indicates whether any sub-model is active. Note, an active model is 

any model with messages pending delivery. In this way, the coordinator knows whether there 

are any active models in the system, and if so, whether another simulation cycle is necessary. 

An atomic model must generate an evAck in response to an evInternalTx event after it has 

generated any external output messages – that is, at the end of its output function. 
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Clock Cycle/Simulation Cycles 

 

 

Figure 20 Clock/Simulation Cycle 

As seen, a clock cycle may have multiple simulation cycles. During the first simulation cycle, a 

model receives an evTick event with a parameter indicating the amount of time that has elapsed 

since the last evTick message received. A coupled model will only receive an evTick message in 

the event that it has a timeNext of zero.  Since atomic models may generate outputs in response 

to an evInternalTx signal those messages must be delivered during this clock cycle. However, it 

is preferred that these messages be delivered as a bag of messages and not delivered 

individually. To facilitate delivering bags of messages, a coupled model marks as active any 

model to which it sends an evMsg message. Atomic model simulators do not pass messages 

directly to atomic models upon receipt but rather wait for an evTick(0) message to arrive. An 

evTick(0) will never be the first evTick message in the clock cycle since there will never be 

undelivered messages from a previous clock cycle. Thus, the first evTick message in a clock 
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cycle will always have a non-zero amount of time elapsed.  An evTick(0) may also be triggered 

by the generation of an evSigma(0) message by an atomic model. 

 

Figure 21 EvTick 

The algorithm for accepting evTick events in a coupled model simulator is presented above.  

For each model contained within the coupled model, a timeNext is maintained containing the 

amount of time remaining until the next scheduled evInternalTx. Also, a timeElapsed is 

maintained containing the amount of time elapsed since the last evTick was sent to that model. 

If there is no scheduled evInternalTx, then the time remaining will be a negative number. 

Atomic models send an evSigma(-1) to indicate a passive state where the sigma value should be 

considered as infinity. A coupled model is considered active if any of its sub-models are active. 
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Once a coupled model sends an evTick to a sub-model, that sub-model is no longer considered 

active.  

 

 

Figure 22 EvSigma 

The evSigma signal is initially generated by the atomic model and relayed through the atomic 

model simulator to the coupled model. The coupled model stores the time contained in the 

evSigma event as the timeNext for the model. As part of the event signal, the sender is also 

identified. A coupled model also contains a timeNext for itself representing the earliest timeNext 

of all its sub-models. If the arriving timeNext is sooner than the coupled model’s earliest 

timeNext, then it communicates this new timeNext to its own container.  

 

 

Figure 23 EvAck 
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The evAck signal is generated by the atomic model when it receives an evInternalTx signal and 

after it has completed generating any external evMsg messages. The evAck message has one 

parameter, called active, which is always set to false in the case of an atomic model. For coupled 

models, the evAck signal is generated upon receipt of the final evAck from each of its sub-

models and the active parameter is set to true depending upon whether there are any active sub-

models.  

 

Figure 24 EvMsg 

The evMsg signal is generated by an atomic model as part of its output function. The output 

function is the logic performed upon receipt of an evInternalTx signal and before the evAck 

signal is generated. The output function is the only time during which external evMsg messages 

may be generated. The evMsg type is itself an abstract message type. The atomic model must 

send a concrete sub-class of this message type. For a coupled model, when an evMsg message is 

received, it is relayed to any sub-models that have the corresponding concrete message type as 

an input. The evMsg is also relayed to the containing model if the coupled model has itself the   

corresponding concrete message type as an output. 



 

 

C H A P T E R  4  

DEVS/UML PROTOTYPE 

A prototype DEVS/UML Simulator has been written to support this paper and is now 

presented. Initially, the system was developed using the JRuby language which is a pure Java 

implementation of the Ruby language executing in a Java Virtual Machine. This language has 

the benefit of having access to all java libraries such as Swing or SWT for graphical user 

presentation but also it is a highly dynamic language allowing a developer to express 

concepts in fewer lines of code than the equivalent Java code. It has the drawback of poor 

performance which for prototypical situations is not a significant impediment. However, 

JRuby itself proved to be an unsuitable language for this task since the multi-threaded 

implementation of the simulation engine exposed a number of bugs that required fixes in the 

JRuby interpreter. The prototype code was then completely rewritten in Java and the 

JavaDoc documentation is available as an accompaniment to this thesis.  

Interestingly, another dynamic language, Python, was used to develop another lightweight 

DEVS simulation engine (Borland 2003). 

Prototype Architecture 

The important classes that participate in prototype beyond the model objects are a graphical 

user interface (GUI), a thread management object (DevsRunner), a messaging infrastructure 

(MessageSpace), and a global clock. 



47 

 

 

 

Figure 25 DEVS/UML Prototype Simulator 

Event Types 

The modeler will primarily be sending events based on the EvMsg event type. This is the event 

type from which all other event types that are application specific ought to be derived. In 

addition, the EvInternalTx and EvSigma will be specified at the atomic model level. The 

atomic model simulator and coupled model simulator are primarily interested in EvTick, 

EvAck, and EvTick.  
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Figure 26 DEVS/UML Event Types 

The additional event messages allow coupled models to accept registration of contained sub-

models along with specification information. It is intended that the coupling of models 

support a maximum degree of runtime dynamics. 

Graphical User Interface 

For the prototype this is a somewhat trivial interface allowing a user to load a model and to 

execute an experiment. The execution speed can be controlled so that it is faster or slower than 

real time, and the user can step through each clock cycle or let the simulation run through 

completion and examine the results at the end. The output approximates a sequence diagram 

insofar as time descends vertically and messages pass horizontally between objects. In order to 



49 

 

facilitate debugging, message dialog boxes can be displayed during execution via the inclusion 

of debug messages in the Java source code itself. 

 

Figure 27 DEVS/UML Prototype Simulator 

By default we do not show the message space object, nor do we show the control messages 

such as registration since these are of little concern to the modeler. Although trivially simple 

from a user’s perspective, the challenges involved in implementing the underlying simulation 

engine were far greater than imagined with about eleven thousand lines of Java code necessary 

for the prototype.   
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Models 

Both atomic and coupled models are sub-classes of the Model class. The Model class has some 

logic and attributes common to both coupled and atomic models, and it is in turn a sub-class 

of ActiveObject, which contains all the logic necessary to communicate with other objects, 

specifically it has the logic to interface with the message space. In the prototype developed in 

support of this thesis, this is a sub-class of the Java Thread class. A Coordinator class is a 

special instance of a coupled model – it is the root model for an execution. 

Global Clock 

The global clock is relatively trivial; it simply issues a tick to the root coupled model 

(coordinator) and awaits an acknowledgement. Depending on the simulation speed, the delay 

between each tick is adjusted to run faster or slower than wall clock time. Since the execution 

of the simulation itself, such as sending and receiving messages, takes some time, this time is 

subtracted from the amount of time to sleep between clock ticks. Thus, by specifying a 

simulation time of zero, thereby indicating that we should not sleep between ticks, the 

simulation speed is dictated by the speed of the computer and its resources.  

Processes & Threads 

The DevsRunner singleton class is responsible for the creation of all of the objects and 

associated threads necessary for an execution run. Each coupled model executes in its own 

thread. Each atomic model had two associated threads – one for the atomic model and one for 

its atomic model simulator. In DEVSJAVA (ACIMS) this was found to create scalability 

issues, and instead of creating separate threads for each model, just two threads were created 
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and the independent execution of the models was simulated by these threads.  All 

communication between the threads is handled by the singleton MessageSpace object. 

Model Communication 

 

Figure 28 DEVS/UML Message Space 

The messaging architecture used to develop the DEVS/UML prototype involved a custom 

written implementation of a tuple space (Carriero 1992).  Although orthogonal to the issues 

discussed in this thesis it is worthwhile providing a brief discussion concerning the 

implementation and the possibilities that a tuple space provide for an implementation of a 

simulation engine. The tuple space implemented is intended to simplify communication 

between the models by eliminating direct model-to-model communication and by employing a 
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backboard type system whereby all messages are written to the tuple space and consumers of 

these messages can register to listen for messages that match a certain pattern. For example, a 

coupled model can simply request the next tuple written to the tuplespace that is addressed to 

it. Such calls are blocking calls. Alternatively, a tuple space client can check to see if such a 

message exists without being blocked. This messaging architecture is based on the work of 

David Gelernter of Yale and has been widely adopted. It has been incorporated into Java’s Jini 

where it is called JavaSpaces (Sun Microsystems). Although the prototype has a primitive 

implementation of this mechanism, it can easily be replaced with a commercial strength 

implementation such as JavaSpaces. The beauty of this approach is that all of the inter model 

communication is decoupled and replaced with a very simple protocol that allows models to 

potentially execute across different processes and hosts. 

Tuple Spaces & Multi-Processor Architectures 

A potential benefit of using tuple spaces as the messaging architecture for a DEVS simulator is 

the possibility of simplifying the specification of multi-server architecture wherein a farm of 

identical processors is available to handle requests and a coordinator distributes requests to 

these processors depending on load or some such criterion. In DEVS if each processor is 

identified with a unique input port then the multi-server coordinator must have a matching 

port for each processor in the farm; otherwise, if the processors are all identical instances with 

the same input port names then the requests will be broadcast to all processors with an 

embedded address indicating which processor is responsible for handling the request. By using 

a tuple space as the messaging mechanism, the first processor ready for a request can simply 

remove the message request from the tuple space and the specification of the multi-server 
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coordinator can have one output port mapped to the all the processors but only one processor 

(the first to grab it) will receive the message. Employing a tuple space in such a manner is not 

without theoretical and modeling consequences since the tuple space becomes, in effect, part 

of the formalism – an examination of the full consequences of which is beyond the purview 

this thesis. 

Objects in Tuple Spaces  

In the prototype developed for this thesis only messages were placed in the tuple space. In this 

primitive implementation the tuple space only served as a data store. However, in theory in 

tuple spaces, and in practice in the JavaSpaces implementation, we are not restricted to data 

but entire objects can be placed in the tuple space providing access to all the methods or 

services provided by the object. This opens up the possibility for a very different simulation 

engine than that developed in support of this thesis. For example, all atomic model instances 

could be placed in the tuple space, essentially registering each as a service. A range of 

architectural possibilities would then become available. 

Model Initialization 

Each model and the atomic model simulators go through the same initialization process. First 

wait for the message space to be initialized. Second, await availability of its container. Third, 

register with the container itself.  
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Figure 29Atomic Model Specification - Carwash 
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Atomic Model Specification 

 

Figure 30 Atomic Model Specification - Carwash 

Here we show a compliant DEVS/UML state machine. Note the evSigma signal that is 

generated in the Washing state and sent to the atomic model simulator, and the evInternalTx trigger 

event which in turn gets generated by the atomic model simulator upon the elapsing of the sigma 

timer. We do not use after since this would compromise our ability to execute a valid 
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simulation. All events generated by the atomic model must be generated only upon receipt of 

an evInternalTx event. 

Experiment Specification 

In the prototype developed, the experiments are very simple. Upon startup, a schedule of 

events is specified. During execution, an initial evSigma signal is generated for the first 

scheduled event. Upon receipt of the evInternalTx event the first output event messages are  

generated and sent to the coupled model in which the experiment model is contained. Then 

the next evSigma signal is generated, and so on. When all outputs for the experiment have been 

generated, an evExperimentComplete message is generated. When any other experiments have 

also completed, the execution cycle is terminated. During initialization, the coordinator is 

informed of all experiments. The design also allows for experiments to be activated midstream.  

 

Figure 31 Experiment Model Specification – Carwash 

An experiment is the vehicle for injecting events into a system in order to perform a 

simulation. The experiment is a sub class of an atomic model and behaves in much the same 

way except that it has additional logic to support the generation of events according to some 
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pre-defined specification. For each experiment there should be a corresponding concrete class 

where the setup method is implemented much the same as an Atomic Model. This involves 

the definition of the input and output ports of the experimental frame model and may 

optionally include a list of other models upon which the experiment depends. The concrete 

experiment implementation may include multiple scenarios, one or more of which may be 

executed during a single simulation execution. 

Atomic Model Simulator 

 

Figure 32 Atomic Model Specification - Carwash 
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Here we show a compliant DEVS/UML state machine. Note the sigma signal that is 

generated in the Washing state and sent to the atomic model simulator.  

Coupled Model Specification 

 

Figure 33 Coupled Model Specification - Carwash 

Within the prototype, events are either application or control events. Application events are 

those used for passing the application messages between models during execution. Control 

events are those used to control the execution of the simulation itself, such as the registration 

of models with their respective containers. Since most of the classes used in the simulation 

engine are themselves fundamentally state machines, they receive messages such as the 

declaration of the input and output ports of the contained models within their event loops via 

event signals from the atomic or coupled model instances that they contain. 

The signal events that an application generates corresponding to the outputs it generates do 

not need to be subclasses of ApplicationEvent but it is useful to have these events partitioned 

into a separate hierarchy from the control events. In this way the specification and 

implementation of a coupled model and atomic model simulator can be generic in nature and 

not have specific reference to the event types that they relay. 
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Time Coordination 

 

Figure 34 Clock Cycle ~ Scenario I 

In Clock Cycle ~ Scenario I, we show how the simulator handles advancing the clock for one tick 

or cycle. In this example we have a coupled model receiving a tick and then relaying it to its 

component models Ex1, AM1a and CM2. CM2 in turn relays the tick to its atomic models 

AM2a and AM2b. We then go through a cycle whereby outputs are generated by atomic 
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models and routed to their destinations, and once all this message flow completes, the tick can 

be acknowledged. In this scenario we presume that all models receive a tick message regardless 

of whether they have a scheduled internal transition. In practice we would not send tick 

messages where there is no scheduled internal transition. Furthermore, we would skip all ticks 

until there was an internal transition scheduled somewhere within the system. This requires 

relaying the time of next internal transition from each atomic model to its coupled model on 

up to the outermost coupled model also called the coordinator. In a distributed environment it 

may be less desirable to rely upon a single coordinator if it is reasonable for elements of the 

simulation to become disconnected, in which case certain rendezvous points may be established 

whereat communication between different substructures (coupled models) becomes possible. 

For example, it may be that top level coupled models A and B only ever communicate upon a 

periodic schedule. In this case it may be appropriate for A and B to coordinate their own 

events and not rely upon a global coordinator except for the periodic communications. Thus, 

it can be seen that several different forms of time and event coordination are possible within a 

simulation environment depending on scale and distribution. Further, many issues common to 

transactional databases, such as optimistic versus pessimistic locking, also have applicability 

during simulation. Different sub-models may be allowed to become temporarily out of 

synchronization with respect to time, and then latter need to communicate with one another. 

In an optimistic scenario, we would allow separate sub-models to operate independently, so 

long as communication between them is not required, and then block, waiting for both sub-

models to comes back in sync. In Clock Cycle ~ Scenario II, we present a more involved scenario 

whereby a coupled model may acknowledge a tick and still continue to receive events before 
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the arrival of the next tick. This is due to the fact that all the events that occur at the same time 

are not always available from a simulation perspective at the same time. That is, from a 

simulation perspective, there may be multiple iterations of message passing during a single 

clock cycle, because any time taken to deliver a message must be accounted for explicitly 

within the model and not in the simulation engine – within the simulation engine all message-

passing takes zero time. 

Another point to note is that although a coupled model may acknowledge the tick event, it 

may still receive events from its container in the same clock cycle – it should be quiescent with 

regards to any activity within the models contained within it. The algorithm is quite simple and 

does not require differentiating between time events, ticks, or non-time events, application events. 

Each model must acknowledge the receipt of a message regardless of type, but it can only 

acknowledge receipt of the message when all its sub-component models have acknowledged 

receipt of events passed to them. In the event that a sub-model generates additional events 

that are relayed by the coupled model to other peer sub-models, these events must also be 

acknowledged before the original initial event is acknowledged. All the while, the coupled 

model maintains a counter of events that it generated and sent to its container. When the 

acknowledgement is finally sent, this count of events signaled is also forwarded, and serves as a 

checksum for the parent coupled model ensuring that it has indeed received and processed all 

the events generated by the child model. 
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Figure 35 Clock Cycle ~ Scenario II 

In both scenarios presented thus far we have not dealt with the bundling of messages so that 

all messages that occur at a given time are presented together and not as separate events.  
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A model never knows when it has received its last message within a given clock cycle. Not 

until it receives the next evTick event signaling the beginning of the next clock cycle do we 

know the previous clock cycle has terminated. It would be nice if the model knew that it would 

receive no more messages during a clock cycle, prior to its output function. If this were possible, 

the next state would be a simple determination of the current contents of the message bag. 

However, this is not possible since a model has no control over its inputs, and as such, other 

messages can arrive during the same clock cycle (but in a later simulation cycle). Therefore, the 

internal transition scheduled as a result of the messages received is subject to change, since 

other messages may yet arrive during the same clock cycle. Imagine that if a prime number of 

messages is received, then we would transition to state s1, and for a non-prime number of 

messages, we transition to state s2. To model this we would require a counter that is initialized 

to zero during simulation set-up and reset to zero upon each evInternalTx event. For each 

external message bag receipt, we would increment the count by the number of messages in the 

bag, provisionally set the next state depending on the current count, and signal an evSigma of 

‘one’. We say provisionally since out intention is to transition to this state unless other messages 

arrive; if another message arrives, we recalculate the next state. Upon evInternalTx, the output 

function would then generate an output based on the current count value, and reset the count 

back to zero. The confluent function would specify that the evInternalTx takes place before 

processing external events, ensuring evSigma expiration would not interfere with the count. 

It would be nice to deliver all messages that occur in a given clock cycle all at once and to the 

extent that there are no evSigma(0) signals anywhere in the system during the clock cycle then 

this is possible. Where this condition hold true all outputs are generated in the first simulation 
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cycle of the clock cycle and all these messages are delivered during the second simulation cycle 

of the clock cycle. 

By default, any atomic models that have an expiring sigma, and thus an imminent internal 

transition, receive that expiration notification simultaneously (during the first simulation cycle 

of the clock cycle). Since outputs are delivered as part of the next simulation cycle, the notion 

of a confluent function becomes a non-issue, except where a model issues an evSigma(0) during a 

simulation cycle, and that model is also sent messages during that same simulation cycle by 

another model.  In such a case, there are confluent internal and external events. Confluent 

events are simultaneous events that occur during the same simulation cycle. Confluent events 

are not simultaneous events occurring during different simulation cycles during the same clock 

cycle. Where models are specified such that external events are given precedence over internal 

transitions, it may be appropriate to trigger any internal transition after any scheduled internal 

transitions for other models, that is, during the second simulation cycle. This becomes 

problematic when there are multiple such models since there is no way to resolve certain 

situations. Consider model M1 and M2 that are bi-directionally connected. Both could have an 

internal transition at time tn that results in a message being sent to the other model – for both 

models these are confluent events: the expiration of evSigma, and the receipt of the message 

from the other model, occur during the same simulation cycle. There is no way to solve this 

chicken or egg problem other than to have an internal transition during the first simulation 

cycle and to have the message from the other model arrive during the next simulation cycle – 

in which case neither model has any confluent events.  

 



65 

 

Registration 

Before any simulation can commence all the various models must register. This is a bottom-up 

procedure whereby the atomic models register with their coupled model and once all atomic 

models have registered for a particular coupled model then it can proceed to register with its 

containing coupled model and so on until registration is complete for the outermost coupled 

model (a.k.a coordinator). At this point, the coordinator can communicate to all of its coupled 

models that they can now start, meaning that they can prepare to start accepting messages as 

part of a simulation execution. 

 

Figure 36 Static Registration 

Dynamic Registration 

In the prototype developed for this thesis, an alternative form of dynamic registration was 

available called dynamic registration. Within this registration protocol the coupled models were 

essentially unaware of the structure of the models that they contained and during the 
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registration phase the models informed their respective coupled model as to the input and 

output ports they contain (and potentially other information that may be of interest such as 

timing and possible messaging filtering). 

 

Figure 37 Dynamic Registration 

 

Connecting Model Ports 

Hitherto, we have glossed over how outputs from these state machines are made available. In 

DEVS components (models) have input and output ports. Output ports from one component 
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can be connected to the inputs of another peer component or to the output ports of a 

containing component. Likewise input ports of a containing component connect to the input 

ports of sub-components or input ports can connect to output ports of a peer component. In 

DEVS, any component that contains other components is called a coupled model and all 

behavior is derived from these sub-components – there is no behavior specified at the 

container/coupled model level. It should be noted that coupled models blur the line between 

class and run-time object since sub-components are essentially instances of their respective 

model. The coupled model is simply a runtime container of its sub-components. In UML, a 

Structured Class is a rough analogue to a DEVS coupled model though it has the capability to 

have its own responsibilities beyond being a simple container and its ports are bi-directional. If 

we use a Structured Class to represent a DEVS coupled model, ports must be uni-directional, 

and there can be no connections from a part back to itself. Additionally, corresponding to each 

port is an event signal type.  

For state machines, we map DEVS input ports to events and output ports to event signal 

generation. It is envisioned that atomic (including experiments) and coupled models can join a 

system dynamically at runtime. Further, in order to simplify the specification of how models 

are connected to each other, instead of specifying this at the level of the coupled model, a set 

of conventions are employed so that in the event of dynamic registration a complete mapping 

of the ports of the model being registered need not be provided to the coupled model. During 

registration the input/output port names defined in the model’s specification can be mapped 

to different port names, that is, the actual port names for an atomic model may not make 

sense for the particular coupled model and a mapping is provided during registration.  
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By convention, where port names match between a coupled model and a sub-model, a sub-

model may be registered without supplying a port-to-port name mapping. Where port names 

do not match, or conflict, we must provide a mapping from atomic model port names to the 

port names that are currently defined in coupled model instance. In the event of output ports 

remaining unconnected at the end of initial registration, they are connected to a null output 

port for the coupled model, meaning that their outputs are discarded. 



 

 

C H A P T E R  5  

DEVS/UML CONTRACT 

Under DEVS/UML, an instance of a class may participate in a model, if and only if, it is 

contained within an instance of simulatable object or is itself an instance of a simulatable object. 

A simulatable object is one that has its behavior defined via a compliant state machine. This implies 

that all communication is essentially asynchronous insofar as replies to messages require an 

internal transition before a response is available. However, since evSigma can be specified 

with zero time delay, the distinction is moot. 

A compliant state machine has the following characteristics: 

• All time dependent behavior is expressed via evSigma signals and evInternalTx events. 

There shall be no after or other UML time related references in the state machine 

specification. The evInternalTx event may only be generated by the atomic model 

simulator. 

• Each atomic model state machine has an associated atomic model simulator. 

• All communication (signal generation) beyond the boundary of the simulatable object 

occurs only upon receipt of an evInternalTx event and occurs before the evInternalTx 

transition completes – this is the output phase. Such activity is defined in the action 

part of the specification of the transition triggered by the evInternalTx event. 

• An evAck signal must be generated and sent to the atomic model simulator upon 

completion of processing of an external event. All processing from receipt of the 

external event through the generation of the evAck signal must be atomic – it must 

run to completion. 
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• All internal communication (signal generation/method calls) occurs only in response 

to an external event (including evInternalTx). The state machine must be dormant 

(quiescent) after the evAck signal is issued.   

• An evSigma event signal is generated and sent to the atomic model simulator whenever 

the state machine wishes to simulate the amount of time required to complete some 

hypothetical processing, transmission time, or other such delay. This event is sent to 

the associated atomic simulator object. The atomic simulator will send an evInternalTx 

event back to the state machine upon expiration of this time. The state machine 

remains dormant (quiescent) during this period or until it receives another non-

evInternalTx external event.  

• If an evSigma event signal is generated, it must immediately precede the evAck signal 

generation. 

• Upon receipt of an external event, an atomic model may issue a new evSigma signal 

which supersedes any previously generated evSigma signal event. Otherwise, any 

existing evSigma will remain in effect. A duration of -1 in an evSigma signal indicates 

infinity or passive state. As such no evInternalTx event will occur and the state machine 

will be dormant until the next external event. 

• All processing time involved in handling events during simulation is performed in 

zero time unless explicitly accounted for via evSigma signals.   

• All messages (event signals) are transmitted and received in zero time – the simulation 

clock is stopped. Likewise, all logic performed in the state machine is performed in 
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zero time. Any requirement to model this time must be explicitly accounted for in the 

model via evSigma signals. 

Caveats 

As with any modeling there is an art to the choices one makes and as such no set of rules 

will guide a modeler to a wise solution. Only through experience will one become adept at 

making the right choices with regards to the appropriate level of abstraction of a given 

model, the naming of ports or events, and the types of experimentation necessary to 

demonstrate and validate the design. However, the beauty of modeling at the level defined 

by a DEVS model is that the temptation to delve into implementation decisions and create 

an elaborate model is tempered by the usefulness of simulation as a tool to aid all 

stakeholders as to the problems at hand and the proposed solutions intended. Since such 

simulations are possible with relatively trivial models, this encourages an iterative approach 

to model development and stakeholder validation. 



 

 

C H A P T E R  6  

RELATED WORK 

Mappings between UML and DEVS 

Several others have approached this subject from various perspectives. Similar observations 

are presented with regard to the desirability of performing modeling and simulation early in 

system design and that a combination of DEVS and UML represent an appropriate means 

achieving this goal (Risco-Martin et al. 2007). The authors outline an approach whereby a 

UML state machine is translated into an equivalent State Chart XML (SCXML) 

representation. The SCXML is, in turn, converted into a finite deterministic DEVS state 

machine model. The DEVS state machine model gets translated into an equivalent FD-

DEVS XML model which can then be executed by a DEVS simulation engine.  The authors 

do not address the specifics of how issues that are the domain of a simulation engine in the 

DEVS world, such as dealing with simultaneous events, confluent events, and transmission 

of events to multiple destinations are handled. This thesis diverges from their approach 

insofar as it is recommended that UML state machine models employ DEVS specific events 

(evInternalTx) and event signals (evSigma) in preference to using a UML after time-spec/action-

spec. This thesis recommends that the state machine for each atomic model sends and 

receives messages via a corresponding atomic model simulator state machine. Alternatively, it 

may be possible to use a single state machine, partitioning the simulation specific logic into 

separate orthogonal region within the state machine. Each type of atomic model should 

extend the base atomic model state machine. This thesis argues that in a UML world issues 

that are properly the domain of a simulation engine are best segmented out into separate
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state machines (atomic model simulators) so as to ensure that the specification of state machines 

for atomic models remain as simple as possible. This allows for their easy deployment as 

reusable components within a given system architecture. As a practical example, a state 

machine, thus defined, is completely reusable regardless of the coupled models in which it is 

are employed. By following a simple set of rules, we can be assured that verification and 

validation of the model is not compromised. Where and how instances of an atomic model 

are employed is of little concern during its design. There are no references to the external 

environment in an atomic model specification except the external events it receives. An 

atomic model is agnostic with respect to the specific source of such events. 

A formal mapping from DEVS to UML is presented (Zinoviev 2005). Within this mapping 

input and output ports are mapped to UML events as is the case with this thesis. Also, input 

and output ports are likewise assumed to be disjoint. DEVS state variables that are non-

continuous are mapped to UML states, and DEVS state variables that are continuous are 

mapped to attributes of UML states. At a formal level, this makes sense for mapping 

between both specifications but in practical terms it may be inappropriate to represent every 

non-continuous variable with its own state. Zinoviev (2005) also employs a combination of a 

special timeout event and use after events for handling internal transitions. The special 

timeout event has a guard condition introduced to protect against timeout events that have 

been made obsolete by an intervening external transition.  Overall, the mapping presented by 

Zinoviev (2005) is elegant and avoids the infrastructural complexity of the global clock, 

global coordinator, and atomic model simulator presented in this thesis. However, from a 

simulation perspective there is a significant problem whenever the UML after event is 
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employed: the act of simulating a model and the associated processing time is not accounted 

for and will interfere with simulation itself; this time must never be commingled. In short, 

we cannot use after if the referenced time is coincident with the time involved in enabling the 

simulation which will inevitably be the case unless this time is centrally coordinated and 

accounted for. Further, when using after, synchronized behavior among models cannot be 

guaranteed because the time cost of simulation is left unaccounted. Remember, within a 

simulation, time passes only as accounted for by the evSigma. The act of setting state 

variables, performing transitions, generating output etc. all occurs in zero time. This 

simulation specific overhead cannot be reliably accounted for via the after function.   

An informal mapping from DEVS to an equivalent STATETMATE Statechart is presented 

(Schulz et al. 2000). In a somewhat similar fashion they account for time in an orthogonal 

region of the state machine. However, the proposal does not introduce a global clock which 

is necessary for synchronicity among models. Schulz et al note that DEVS has greater 

expressive capabilities than state charts (Harel and Naamad 1996) and that any DEVS model 

can be represented via STATEMATE Activity Charts and an appropriate naming 

convention for events.   

UML Diagrammatic Representations of DEVS Models  

We are presented with the specifics of how one may represent DEVS models 

diagrammatically using UML-RT (Huang and Sarjoughian 2004). However, the authors 

conclude that UML-RT is not suitable for a simulation environment, and they assert that the 

design of software and simulation is inherently distinct. As such, both modeling frameworks 

should co-exist without the need to extend one or the other and thereby compromise the 
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respective formalisms and applicability. In a sense, a somewhat similar conclusion was 

arrived at during the research for this thesis: UML-RT is not an especially suitable 

framework for the expression of DEVS models specifically because it represents an over-

engineered solution for what in DEVS is an elegant expression of a simulation specification.  

Model-driven Architecture 

Model-driven architecture is very much a buzzword at the moment. Certainly, the notion of 

models driving architecture is central to DEVS and DEVS/UML. Ideally, work that is today 

spent writing implementation code in Java or C++ could be eliminated if models are 

specified to a sufficient level of detail to allow complete code generation. Generally, code 

generation alone is insufficient and much code must still be handwritten. Quiet often the 

model becomes out of sync with respect to the code.  

DEVS/UML can be considered a model compiler that produces an executable model. In many 

ways DEVS/UML represents a more attainable form of MDA since the scope of the 

problem is vastly reduced. Both platform specific and platform independent models can be 

created so that DEVS models demonstrate what is theoretically possible versus what is 

practically possible. Modeling in a DEVS/UML environment can mirror that of the 

transformations central to OMG MDA (OMG 2003). Douglass (1999, 2004) has been 

actively involved in advancing model driven architecture specifically in the area of real time 

systems. It is worth noting his observation that “simulation has its place, but the purpose of 

building and testing executable models is to quickly develop defect-free applications…” 

Douglass (2004, 35). This thinking reveals a lack of appreciation of simulation as a worthy 

element of systems development.  
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Dynamic Languages/Domain Specific Languages 

Despite the difficulties that working with JRuby presented during the construction of the 

prototype for this thesis, dynamic languages offer several significant advantages over 

traditional compiled languages such as Java and C++. First, the ability to execute code on 

the fly is very useful in a prototype or simulation environment. Dynamic languages such as 

Smalltalk, Ruby, Python, and Groovy, through the availability of the interpreter, are more 

readily capable of defining domain specific languages wherein custom languages created 

using the verbs and nouns common to the domain being modeled can be defined with 

relative ease. Such domain specific languages may be then used for model specification.  Java 

and C++ are generally not suitably for the creation of lightweight domain specific languages. 

Validation & Verification 

In their paper, A Compositional Approach to State Machines Semantics (Luttgen et al. 2000), the 

authors observe that classical state charts system behavior cannot be deduced from the 

behavior of their subsystems, and this is a serious weakness in state charts that impede 

employing them in a compositional fashion. They introduce a global clock and tick events in 

order to bound macro steps in a similar manner to how they are presented in this thesis. 

They contend that such modifications to a state machine enable validation and verification 

which is not otherwise possible. Each macro step is defined as a subset of transitions that are 

causally well-founded such that each of the respective transitions is enabled by the state 

machine at the point of that transition. They refer to the necessity of synchrony wherein 

events generated in one macro step are consumed by the same step and not the next step.  

They point out that STATEMATE (Harel and Naamad 1996) does not uphold synchrony.  
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Future Scope 

One area not covered in the thesis is the generation and/or validation of other UML 

artifacts such as sequence diagrams during simulation. Another area is the incorporation of 

different design patterns into a design and then using simulation to determine their relative 

suitability. With regards to simulation engine implementation, Tuple Spaces represent an 

exciting area in which potential performance improvements and other distributed topologies 

may be possible. Some research has already taken place in this area (Teo 2003). 

Another area of interest is the use of design patterns during the creation of simulatable 

models. Design patterns have already been shown to have applicability at the domain level 

when creating DEVS models (Ferayorni and Sarjoughian 2007). This thesis suggests that 

there is additional scope for employing design patterns at the UML level and in a more non-

domain or generic manner when creating simulatable UML models. 
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CONCLUSIONS 

This thesis proposes a new approach to architecting software systems using the UML wherein 

formal simulatable models are the first executable artifacts. A set of rules is specified for a 

UML practitioner to follow to ensure that the models generated are simulatable based on the 

DEVS formalism. This approach should help mitigate some of the objections to employing 

simulation during the early development of a software system. Such simulatable models 

implicitly adhere to the DEVS formalism. The objective is that those unfamiliar with DEVS 

and more comfortable with the UML have a convenient and relatively straightforward 

mechanism by which their UML models can be executed and verified at an early stage of 

design. Since other formalisms such as those employing discrete time and differential 

equations can be represented using the DEVS formalism, it means that this approach has a 

wide generality in terms of the types of systems and problems to which it can be applied. Also, 

since the models produced are component-based, and given the closure property of DEVS, 

any component can be replaced by a different component with a greater degree of 

decomposition, and the resulting system will have an equivalent behavior. This modeling 

technique fits neatly within the modern iterative approach used to develop software systems. 

Finally, it is anticipated that this, almost seamless, integration of simulation during the 

architecture of a system will help broaden and deepen the appreciation and application of 

simulation as a discipline within the field of software architecture. 
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