
GRAPHICAL USER INTERFACE REPRESENTATION AND

GENERATION USING SYSTEM ENTITY STRUCTURES

By

Lahiru Ariyananda

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN COMPUTING ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007

 2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of the requirements for an advanced

degree at the University of Arizona and is deposited in the University Library to be made

available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that

accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the head of the major department or the Dean of the Graduate College when in his or her

judgment the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

SIGNED: ___________________________

APPROVED BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

___________________________________ _____________________

Bernard P. Zeigler Date Date

Professor of Electrical and Computer Engineering

 3

ACKNOWLEDGEMENTS

My heartfelt gratitude goes to my advisor, Professor Bernard Zeigler, for his invaluable

and reassuring advice, and for the freedom he gave me to focus on areas of my interest

which made this study not only educational but also enjoyable for me. I would like to

take this opportunity to specially appreciate and remember the kind support given by Dr

Doohwan Kim and Mr Robin Moore during the course of this study. I would also like to

extend my sincere gratitude to Dr Roman Lysecky and Dr Susan Lysecky for their

flexibility and time taken to serve on my defense committee. Last but not least, many

thanks to all my colleagues at ACIMS lab for patiently sharing my moments of joy and

temporary anguish.

 4

DEDICATION

To my late beloved Father

Your undying love, guidance and encouragement will always be my inspiration.

 5

TABLE OF CONTENTS

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

ABSTRACT ... 9

CHAPTER 1 INTRODUCTION... 10

1.1 OBJECTIVE ... 11

1.2 MOTIVATION .. 11

1.3 CHAPTER INTRODUCTIONS ... 12

CHAPTER 2 SYSTEM ENTITY STRUCTURES IN A NUTSHELL...................... 13

2.1 DEFINITION AND STRUCTURE OF AN SES ... 13

2.2 AXIOMS.. 15

2.3 VISUALLY DEPICTING AN SES TREE ... 16

2.4 PRUNED ENTITY STRUCTURES ... 18

CHAPTER 3 BACKGROUND & IMPLEMENTATION CHOICES....................... 21

3.1 PROGRAMMING LANGUAGE & GRAPHICAL LIBRARY... 21

3.2 SWT MAPPING TO SES TREE ... 22

3.3 DATA MODEL... 27

3.4 INTRODUCTION TO XML.. 27

3.5 TRANSLATING THE VISUAL SWT SES TO TEXTUAL XML.................................. 30

3.6 NATURAL LANGUAGE DESCRIPTION OF AN SES... 33

3.7 NATURAL LANGUAGE TO XML PROCESS... 37

CHAPTER 4 USER MODIFICATIONS: PRUNING & EDITING..................... 41

4.1 PRUNING THE SWT SES .. 44

4.2 ENTERING DATA INTO VARIABLES : .. 45

4.3 VALIDATING THE PES.. 48

CHAPTER 5 AUTO GENERATION OF GUIS.. 51

5.1 SWTPARSER .. 51

5.2 THE TESTING AND EXECUTION ENVIRONMENT.. 52

5.3 GUI CODE GENERATION PROCESS... 53

 6

TABLE OF CONTENTS - Continued

CHAPTER 6 SES TO GUIS.. 58

6.1 MAPPING A SES TO THE SWT SES .. 60

6.2 GROUPS & FILL LAYOUTS .. 64

6.3 FURTHER REDUCING PRUNING AND MODIFICATION TIME ? 67

6.4 GENERATING PROFESSIONAL GUIS USING SWTPARSER................................... 69

SUMMARY.. 74

RELATION OF THE SES AXIOMS ?... 76

CONCLUSION AND FUTURE WORK .. 78

APPENDIX 1 SWT SES IN NL.. 80

APPENDIX 2 CANDIDATE PES IN XML GENERATED FROM DTD 83

APPENDIX 3 SIMPLEGUI1.XML.. 99

APPENDIX 4 SIMPLEGUI2.XML.. 102

APPENDIX 5 EXGUI3.XML ... 109

APPENDIX 6 EXGUI4.XML ... 116

REFERENCES.. 122

 7

LIST OF FIGURES

Figure 1 SES of a Computer ... 16

Figure 2 A PES of the Computer SES .. 19

Figure 3 PES of a Book... 20

Figure 4 SES of a basic SWT tree.. 23

Figure 5 Alternate SES of a Basic SWT Tree... 24

Figure 6 Alternate view of SWT SES ... 26

Figure 7 XML code fragment.. 28

Figure 8 Process flow : Visual SES to XML ... 31

Figure 9 Shell described in NL ... 35

Figure 10 Tabfolder Description in NL... 35

Figure 11 Decomposition of “Components” into widgets .. 36

Figure 12 Segment of SWT SES in NL .. 36

Figure 13 Vitual Work Table Web Interface .. 37

Figure 14 Virtual Work Table panels 1 & 2.. 38

Figure 15 Virtual Work Table panes 1 - 3 .. 39

Figure 16 Virtual Work Table panes 1 -4 ... 40

Figure 17 One PES for SWT SES... 42

Figure 18 SimpleGUI1 .. 43

Figure 19 Altova XMLSPY .. 45

Figure 20 Validate PES in Virtual Work Table .. 48

Figure 21 Process flow : PES in XML to GUI.. 51

Figure 22 Eclipse IDE with SWTParser open... 53

Figure 23 SimpleGUI1 executed.. 55

Figure 24 SimpleGUI2 .. 56

Figure 25 ExGUI3... 57

Figure 26 Variant of Computer SES ... 59

Figure 27 PES of SWT SES with Group... 61

Figure 28 PES of SWT SES with Group... 63

Figure 29 ExGUI4.xml code fragment.. 64

Figure 30 EXGUI4 ... 66

Figure 31 A semantically correct version of EXGUI4.. 67

Figure 32 Another ExGUI4.xml code fragment.. 68

Figure 33 GENETSCOPE Experimental Frame ... 70

Figure 34 GENETSCOPE EF mapping to SWT SES... 71

Figure 35 PES for GenetScope Experimental Frame.. 73

 8

LIST OF TABLES

Table 1 SES concept summary.. 14

Table 2 Attach variables for Widgets.. 33

 9

ABSTRACT

System Entity Structures have been mainly used as a language for hierarchical-

system modeling, simulation and knowledge representation in the past. In this work the

possibility of extending its knowledge representation features to account for Graphical

User Interfaces is investigated. The fact that a basic Standard Widget Toolkit (SWT)

library can be mapped into a SES tree based on the concepts of hierarchical

decomposition and specialization is identified. On the base recognition that SES is an

ontology framework that is closer to XML, it is used as the data storage model to make

use of its salient features so that sufficient and quantitative knowledge is represented by it

to auto generate a GUI. The GUI generation will be done using a tool named SWTParser

which was specifically developed for this study. SWTParser reads in a user customized

Pruned Entity Structure in XML format to generate fully executable GUI code in java.

Also a simple methodology that would map a given instance of a physical system defined

in SES format to a functional GUI is presented. Finally, methods to reduce the over head

time involved in the user customization process and possible expansions to the current

framework will be discussed.

 10

CHAPTER 1 INTRODUCTION

Graphical User Interface design and Application Programming are like Abbot and

Costello. Without each complimenting the other, their effectiveness is circumscribed in

modern day software development. It could be a tedious task for a developer to create

especially larger GUIs using code descriptions of a programming language. Though there

are tools developed by software development companies which allow a user to develop

GUIs without the direct involvement of a programming language, they are mainly reliant

on the user’s creativity. Hence GUI development can be considered an Art as well as a

Science.

Though the behaviors and characteristics of Hierarchical Knowledge-Based

systems are well understood [1], very little research has been done in the past two

decades which involves methodologies for GUI development using such systems. User

Management Systems are often used to help user interface designs. [2] However, a few

User Interface Management Systems exists which are designed explicitly for hierarchical

knowledge based systems [3][4].

 11

1.1 Objective

 The main objective of this research would be to exploit the hierarchical nature of

a knowledge representation language called the System Entity Structures(SES) [1]and

study the possibility of mapping a graphical library into the SES format so that sufficient

and quantitative knowledge is represented by it to auto generate a GUI. Also a simple

methodology will be presented to map a given instance of a physical system described

using an SES to a translated GUI. It should be clearly noted that a full fledged

implementation with all bells and whistles was not the intention of this research. It is the

firm belief of the author that, once a basic foundation has been laid, expansions and

innovations could be introduced as future endeavors.

1.2 Motivation

The initial motivation for this research was derived when the author was working

on the GENETSCOPE project [5] to study a feasible method for mapping its existing

GUI to a System Entity Structure mainly as knowledge representation mechanism.

Further interest was generated to study the feasibility of reversing this process to recreate

GUIs from the SES information.

 12

1.3 Chapter Introductions

SES is a modeling language that describes hierarchically decomposable physical

systems such as computer systems, buildings, and robot systems [2]. SES can also be

applied to describe conceptual hierarchical systems such as tree systems and special-

purposed languages [6]. Chapter 2 will introduce the concepts and axioms behind SES

through examples.

As mentioned before, in order to represent a GUI through an SES, a mapping of a

graphical library needs to be made. Also as SES are usually depicted as visual trees, a

method to transform the relevant information into an electronic format using a

hierarchical data model will have to be introduced. Chapter 3 will be a discussion on the

above processes and choices made on the implementation framework.

Chapter 4 will venture out to acquaint the user with pruning and modifications

processes needed to make the aforementioned SES into a viable structure for data

extraction for GUI generation. Chapter 5 will attempt to introduce the usage of the

SWTParser tool, which was developed as a part of this study to generate GUIs from the

above data files.

Chapter 6 will introduce a methodology to map an existing SES based on a

physical system to a GUI from the information discussed in the previous chapters. Also a

discussion will be presented to reduce the overhead time needed to do the tasks in chapter

4 with its pros and cons.

 13

CHAPTER 2 SYSTEM ENTITY STRUCTURES IN A NUTSHELL

2.1 Definition and Structure of an SES

As the crux of this research depends on using a System Entity Structure (SES) as

the model of choice for data representation and storage, this chapter will venture out to

introduce the language and its axioms. Zeigler proposed the System Entity Structure as a

language for hierarchical-system modeling, simulation and knowledge representation in

[7][1]. This study will be mainly focusing on its use as an effective way of knowledge

representation and data storage with the aforementioned ultimate goal of GUI generation.

If one is to quote the keywords of the basic structural composition of an SES, they

would be “Entity”, “Variable”, “Aspect”, “Specialization” and “Multiple Aspect”. Part

of the following summarized explanation was extracted from [8]. Entities represent things

that exist in the real world or sometimes in an imagined world. A house would be an

example. Aspects represent ways of decomposing things into even smaller ones. An

example would be living room, bath room, kitchen etc of a house. Multi-aspects are

aspects for which the components are all of the same kind. In other words multi aspects

can be regarded as a special case of an aspect in which the entities of the aspect are

homogeneous in nature. An example would be rooms. Specializations represent

categories or families of specific forms that a thing can assume. A family of colors or

 14

size would be an example. Variables are an attribute of an Entity. The address of a house

would be a variable. The below table extracted from [8] summarizes the basic concepts

mentioned above.

item denotes when to use

entity a thing in the real or

modeled world

Use to represent a thing

that stands alone or is a

part or variant of

another thing.

aspect the relationship

between a thing and

its components when

decomposed from a

certain perspective

Use when you want to

represent an “and”

connective among sub-

things of a thing –

where the “and”

denotes the necessity

that all of the sub-

things must appear

together to comprise

the thing.

multi-aspect a special kind of

aspect in which all the

components are

homogeneous in

nature

Use for the same

objective as an aspect

except that the

components are all

from the same classes.

specialization the relationship

between a thing and

its variants from a

given family

Use when you want to

represent an “or”

connective among sub-

things of a thing –

where the “or” denotes

the fact that a choice of

one of the variants can

replace the thing.
Table 1 SES concept summary

 15

2.2 Axioms

 The SES was originally characterized by its axioms by Zeigler [1] and later by

Zhang and Zeigler [9]. Accordingly the SES was defined as labeled tree with attached

variable types which satisfies the following axioms :

uniformity: Any two nodes which have the same labels have identical

attached variable types and isomorphic sub trees.

strict hierarchy: No label appears more than once down any path of the

tree.

alternating mode: Each node has a mode which is either entity, aspect, or

specialization; if the mode of a node is entity then the modes of its

successors are aspect or specialization, if the mode of a node is aspect or

specialization, then the modes of its children are entity. The mode of the

root is entity.

valid brothers: No two brothers have the same label.

attached variables: No two variable types attached to the same item have

the same name.

inheritance: every entity in a specialization inherits all the variables,

aspects and specializations from the parent of the specialization

 16

2.3 Visually depicting an SES tree

The most common way to visually depict an SES is by a tree structure. In this

depiction, the items (entities, aspects, specializations, and multi-aspects) are displayed as

nodes and the relationships of aspects, specializations and multi-aspects to entities are

shown as vertical lines, arrows, and triple parallel lines, respectively [8]. A key

observation of a visual tree SES would be that entities alternate with the other items. Let

us consider the SES in the below figure to further clarify the concepts mentioned before.

Figure 1 SES of a Computer

 17

The “Computer” is called the root entity and it has two specializations shown by

two vertical lines, called “class-specialization” & “technology-specialization”. The class-

spec has entities “Analog”, “Digital”, and “Hybrid”. In such a specialization relation,

Computer is referred to as a generic type relative to the entities, Analog, Digital, and

Hybrid, which are called special types [7]. Though the special types can have their own

distinctive attributes, they inherit all of the attributes (variables and substructures)

possessed by Computer.

Hybrid special type is shown as having “part decomposition” into two

components, namely Analog and Digital. As mentioned before these components are now

entities themselves. Likewise Digital has a “physical-decomposition” in four

components namely, CPU, Memory, I/O-Devices and Operating System. By the

uniformity axiom, the Digital part of a Hybrid computer has the same physical-

decomposition shown under the occurrence of Digital as a special type of Computer. It

should also be noted that Hybrid, being decomposed into Digital and Analog

components, inherits properties from both through the uniformity axiom.

In the above figure , the triple vertical bars connecting “I/O-Devices” and “I/O-

Device” depicts the special type of aspect decomposition discussed before called the

multiple decomposition. A multi-aspect decomposition is used to represent entities whose

 18

number in a system may vary. For example a Digital computer may have 0, 1, 2, or more

I/O-Devices.

2.4 Pruned Entity Structures

A pure entity structure is defined as one having no specializations and at most one

aspect hanging from every entity [7]. The pruning process is used to create such a pure

SES. The Pruned Entity Structure (PES) is the intermediate result of the pruning process

which would contain fewer aspects and specializations than the original and therefore

specifies a smaller family of alternative models than the latter. The eventual termination

to the pruning process will result in a pure entity structure that specifies the synthesis of a

particular hierarchical model.

If we consider the SES in figure 1, an example of a Pruned Entity Structure of the

original is shown in figure 2 below.

 19

Figure 2 A PES of the Computer SES

Let us consider another instance where an entity of an SES can have more than

one aspect attached to it. The following example was extracted from [8]. Fig 3 shows an

SES for a book that provides two aspects, contentDec and physicalDec, corresponding to

decompositions from the perspectives of content and physical constitution, respectively.

 20

book

contentDec physicalDec

corefront

cover
back

cover

colorSpec

red blue

materialSpec

cardboard paper

main

body
preface notes

colorSpec materialSpec

book

contentDec

main

bodypreface
notes

a)

b)

Figure 3 PES of a Book

One example PES of the SES shown in a) is would be b) in the above figure.

Another valid example of a PES for the above SES would be if one chooses the

physicalDec aspect and then chooses a single color (ex red) for the colorSpec and a

solitary material (ex paper) for the materialSpec. Hence, pruning of an SES can create

not just one PES but a family of valid PESs. Pruning will be revisited in chapter 4.

 21

CHAPTER 3 BACKGROUND & IMPLEMENTATION CHOICES

3.1 Programming Language & Graphical Library

In choosing a relevant programming language to implement the objective of this

research, as with many other instances, there were many choices. As the implementations

will mainly involve the generation and testing of Graphical User Interfaces (GUIs), the

leading contenders could be narrowed down to C/C++, Java and Visual Basic (VB)

amongst many. Out of them, Java was the author’s language of choice due to several

factors. The author’s experience of the ease of using Java’s strong graphics was the main

forerunner. Alongside this reason, other benefits such as Platform Independence, Object

Orientation and Distributed Computing were key deciding factors which would also pave

way for future expansion and research.

Once the preference has been made in choosing Java as the programming

language, it should be deemed equally as important to select a GUI library to support it.

At this juncture it should be clearly noted that a full fledged implementation with all bells

and whistles, is totally out of context of this research. It is the firm belief of the author

that, once a basic foundation has been laid, expansions and innovations could be

introduced as a future endeavor. Keeping this in mind, SWT (Standard Widget Toolkit)

was chosen over Swing. The following discussion would serve as a justification as to

why SWT was chosen as the GUI library of choice.

 22

3.2 SWT Mapping to SES tree

 As it has been discussed before, System Entity Structures clearly follow a

hierarchical format. Visualizing SWT and Swing from a top down structural format, the

author observed that SWT has a more simplified hierarchy compared to Swing. As

mentioned above, this simplified structure suits favorably the implementation objectives.

The below figure 4, depicts a basic SWT hierarchy visualized and mapped into the SES

format. It should be noted that this is not a comprehensive SWT widget/component

mapping into SES, but only a simplified version which would suit the research

objectives.

 23

Figure 4 SES of a basic SWT tree

 24

Figure 5 Alternate SES of a Basic SWT Tree

 25

When developing this SES, some factors had to be taken into consideration.

Given a hierarchical system, it could be understood, that the SES which could be formed

from it can vary from the view of its creator. In other words, there can be several

implementations of an SES derived from an open ended hierarchical system depending

on the perspective of the creator. For example the SES shown in figure 5 was finalized

after several initial attempts at deriving different versions from different perspectives.

Figure 5 is an alternate way of representing the same SES of figure 4 by restructuring the

multi-asp at the “components” level. The main advantage of using the “restructures”

figure 5 version over figure 4 is twofold. Depending on the user preference, the

components widgets at the leaf level of the tree (Button, TextBox etc) may or may not be

used in a GUI. Hence as mentioned before in the sub section 2.3, defining them as a

multiple decomposition as opposed to a specialization will allow for zero (0) items of the

widget when necessary. Also defining them as entities of a specialization (ie figure 4),

will only let the user pick one of the widgets at the pruning level. What if the GUI

consists of multiple widgets? This restructuring process is further discussed in [. On the

same note, a valid question could be raised as to why the “TabFolderMult-asp” was not

restructured in the same spirit in figure 5. Also note that the “TabFolder” could have

being decomposed into several “Tabitems” as shown in figure 6 as opposed to the

multiple aspect decomposition in figure 4. Though both these versions are also well

within the allowable syntax of System Entity Structures, the author foresaw problems of

doing so with respect to future objectives. For one, these methods would pose a

 26

restriction to the number of “Tabitems” a user can have in his/her GUI. It would be only

three in figure 6 case. What if the user wanted to have 5 or 6 tabs? If the “TabFolder”

multi-asp were restructure as in the “Components” case, the concept of a “Tabitem” will

be lost and would be very confusing to the user . Also, as it would be discussed later,

when this visual SES is converted to some data model, which would allow for data

extraction and processing, there will be complexity issues deriving data from it. In both

these versions each “Tabitem” is treated as a separate entity which would complicate

things as opposed to the multi- aspect version where all “Tabitems” are considered to

possess the same characteristics. Also the multi-aspect perspective would allow the

ultimate user to define the number of tab items according to his/her preferences.

Figure 6 Alternate view of SWT SES

 27

3.3 Data Model

Once the System Entity Structure mapping of a SWT GUI tree has been

visualized and established as above , the information need to be stored in some data

model so that it can be read and processed by a programming language (ie Java in this

case) easily. In researching for a data model to meet the needs of the research objective,

a key factor needs to be kept in mind. As all SES mappings follow hierarchy, a data

format that would support tree structures would be naturally the best contender.

 The eXtensible Markup Language (XML) was chosen as the best fit due to the

above reason and the reasons mentioned later. Before going any further, a very brief

introduction to XML would be considered appropriate at this stage.

3.4 Introduction to XML

XML could be described as a “nonprocedural programming language, which

means that things written in the language are not so much commands as they are

descriptions of a condition or state. Like almost all programming languages, XML is

written as human-readable text, in such a form that all humans as well as programs can

read and understand the instructions” [10]. XML can markup data so that the reader

(either a human or a program) can identify each piece of the data set and determine its

characteristics by examining the “tags” it contains. A tag can be named anything the

creator of a XML document wishes but the reader (a parser in this case) should be told

the meaning of them to retrieve whatever information which is contained within the tag’s

 28

“attributes” and “elements”. Tags have to be paired together so that an open tag also has

an ending tag. It would be more enlightening to follow these concepts through as

example.

Figure 7 XML code fragment

In the above figure “textboxes-multMultiAsp” in line 3 is contained in a “<” and

“>” pair is called a starting tag name which has to be matched with an ending tag as

shown. The “numContainedIntextboxes” is a name of an attribute which should be

followed by a value (ie 1 in this case). All the information from the beginning of a start

tag to the closing of the end tag, and any information in between is called an element.

Hence, the whole of line 4 is an element. Though there is one element in this case with

the name “textbox” there can be many elements. It should be also noticed that the tag in

line 3 is contained within the tag with the name “aspectsOftextboxes” and it within tag

with the name “textboxes”. Hence this tree structure maintains the hierarchy which was

discussed before.

 The term “XML document” which was mentioned before is precisely defined by

XML specifications published by the W3C [11] World Wide Web consortium. In very

loose terms, an XML document can be viewed as a “well formed” data file model that

 29

meets the W3C requirements and contains a hierarchical tree with tags, attributes and

elements. The detailed rules an XML document must follow is out of scope for this brief

introduction. A parser that will “read” an XML document will also do checks for their

validity [12]. Further more the process we will be using to generate a well formed XML

file will be discussed in detail later in chapter 4.

As mentioned before, besides hierarchy, there were a few other reasons for

choosing XML as the data model of choice. Since information coded in XML is human

readable and easy to understand, it would also prove to be beneficial to the user who will

ultimately have to customize and modify data of the figure 5 to include a specific SES

which he/she would like to be auto generated into a GUI. This process with examples

will be discussed in detail in Chapter 4. As the name says, Extensibility feature of XML

will also prove ideal to the objectives as new tags and attributes can be easily introduced

when necessary. XML does not need to have an ordered fixed set of tags. Also the

robustness feature of XML explained by [13] could be used to advantage as SWT GUI

widget names can be tagged and its attributes and elements can be read through a parser.

Examples in chapter 4 & 5 will clarify these features.

 30

3.5 Translating the visual SWT SES to textual XML

Though the figure 5 depicting the SWT System Entity Structure might not appear

to be too complicated to the human eye, the process involving it’s conversion to XML

format has to be given a lot more thought. Naturally this process will include multiple

steps. The information contained in the figure is only in a visual human readable format

and involves a high level of abstraction. It will be necessary to expand the SES with

additional explicit data variables introduced at each level where there is an entity in order

to make it a valid candidate for the ultimate objective of data extraction and auto GUI

generation. For example, at the “Shell” root entity level in figure 5, if a GUI needs to be

defined, a minimum of a shell height and width variables should be introduced. If the

user is given the opportunity to customize and modify the XML based SWT SES (to be

discussed) to include an explicit one, for example maybe of figure 1, he or she should

also be given an addition variable to include the name of the root entity, ie “Computer”.

Hence, it was apparent that the SES needs to be transformed from its visual format to

some textual format (along with the inclusion of the additional variables), so that a

computer program could read it and convert it to an XML format for data extraction. This

process is shown in the below figure.

 31

Figure 8 Process flow : Visual SES to XML

 The first hurdle was to identify the easiest process to translate the SES

information in some text based format. At the second level in the above figure, it should

be understood that the SES will grow much larger with the inclusion of the additional

variables. Zeigler and Hammond, in the book titled “Modeling & Simulation-Based Data

Engineering” identifies that “from a static point of view, the SES is an ontology

framework that is much closer to XML than that of Semantic Web ontology [8]. Further

more, they go on to describe and offer a tool to automatically generate valid XML

Schema and instances from an intuitively developed structured model.

Prior to a discussion of the above process, further research needs to be done to

determine what additional variables are needed to be introduced to the SES of figure 5 to

make is a viable candidate for data extraction and GUI generation. After a careful

analysis and further study of SWT components and widgets, the variables shown in table

2 were introduced. It should be noted that only seven widgets, namely buttons,

radiobuttons, checkbuttons, labels, textboxes, comboboxes and sliders were chosen as a

test bed for this implementation and their selection were based on their common usage as

 32

seen in regular GUI applications. Also it should be mentioned that each SWT widget is

capable of supporting more variables, to accommodate for more customizations than the

few selected in this implementation. For example, a button could have an alignment

variable or a variable to set its background color or a label could have one to change its

font type. The variables chosen (for some of the widgets) were based on the minimum

needed to place the corresponding widget in an “absolute layout” environment in SWT.

Introducing additional variables to enhance options will be an additional task for the

future and not for an experimental research of this caliber. However a few exceptions

were made to illustrate the above point and the additional variables used for setting the

scale minimum, maximum, increments and page increments will serve as an example.

Also the color variable in labels and textboxes are another example.

 33

Entity Variables
Shell name ,height,width

TabFolder tabux ,tabuy ,tablx,tably

TabItem tabname

GroupItem groupname

Button buttonname,buttonboundux,buttonbounduy,

buttonboundlx, buttonboundly

CheckButton chkbuttonname,chkbuttonboundux,

chkbuttonbounduy, chkbuttonboundlx,

chkbuttonboundly

ComboBox comboboundux, combobounduy, comboboundlx,

comboboundly

Labels lblname,lblbgdcolor,lblboundux, lblbounduy,

lblboundlx, lblboundly

RadioButton rdbuttonname,rdbuttonboundux, rdbuttonbounduy,

rdbuttonboundlx, rdbuttonboundly

Scale sclbgdcolor,sclboundux, sclbounduy, sclboundlx,

sclboundly, sclsetmax, sclsetmin, sclsetincr,

sclsetpgincr

TextBox textbgdcolor,textboundux, textbounduy,

textboundlx, textboundly
Table 2 Attach variables for Widgets

3.6 Natural Language description of an SES

As the detailed syntax for the Natural Language (NL) described by Zeigler et al

can be found in [8], a comprehensive description here is considered unnecessary.

However, in the next few pages an attempt will be made to introduce the key processes

used to convert the visual SWT SES tree (enhanced with variables) to the NL. It is

deemed that the best way to do this is by way of example.

 34

Let us recall that the Root Entity “shell” can be specialized in “design” either into

a “composite” and a “tabfolder”.

Hence in line 1 of figure 9, “shell”, “composite”, “tabFolder” and “design” are the

words of our choice. The words “A”, “can be”, “or” and “in” are key and compulsory in

the NL description which would essentially explain the specialization format. The “!”

marks the end of any sentence. Line 2 shows the inclusion of the aforementioned

variables name, height and width of shell. Again the underlined are the words of our

choice and the rest are compulsory keywords. Line 3 says that a “name” is of the value

type “string”. This would restrict the ultimate user to enter a name in only string format.

Note that an intentional space is kept after “values” and the “!” in line 3. This is to allow

the user to enter any name of the string format. Also a variable can be of keyword value

type integer (“int”) which would be the obvious choice for a height and a width. Line 4

and 5 places restrictions on the allowable values which can be specified by the user.

Hence the ultimate user can only enter integers from 300 to 400 as a valid value. Note

that at the pruning stage, these values can be checked for their validity by the framework

(to be discussed) upon user’s choice.

 35

Figure 9 Shell described in NL

Recalling that in SWT, a tabfolder is a container that can include multiple

tabitems, the below figure 10 explains by example how this could be achieved. Again the

underlined are the word of our choice.

Figure 10 Tabfolder Description in NL

Out of the many widgets that can be selected to form a GUI, recall that seven

were chosen as an experimental case for this study. Hence the entity “components” can

be decomposed into seven further “parts” from a component widget view. This process of

breaking down components into widgets namely buttons, radiobuttons, checkbuttons,

labels, scales, comboboxes, and textboxes is described by the below example in figure

10. Again the underlined are the words of our choice while the “From”, “perspective”, “

is made of” and “and” described the aspect of the entity components.

 36

Figure 11 Decomposition of “Components” into widgets

 The below text block in figure 12 is a part of the NL translation of the SWT SES

which recaps all of the concepts mentioned above (Specializations, aspects, multiple

aspects and variables).

The complete Natural Language translation for the above mentioned SES can be

found in Appendix 1.

Figure 12 Segment of SWT SES in NL

 37

3.7 Natural Language to XML Process

Once the Natural Language description for the SWT SES is in hand, the tool

offered by Zeigler et al can be put into good use to convert the SES into an XML version.

A practical implementation of the tool can be found at [14]. The figure 12 shows the

“Virtual Working Table” Web User Interface which will be used to first generate our SES

in XML and then a PES which will be the ultimate file the user will need to modify to

generate a GUI. This process will be explained in chapters 4 and 5.

Figure 13 Vitual Work Table Web Interface

The conversion of the SWT SES in NL to a one which could be “Pruned” by a

user, involves a 3 step process.

 38

Step 1 :

The SWT SES in its Natural Language format (found in Appendix 1) will be

copied into the text area of panel 1 in the above figure. Afterwards from the drop down

list between panel 1 and 2, “NL to SESinXML” needs to be selected and then the “green

arrow” clicked. Figure 14 shows this process with the SES in XML auto generated in

Panel 2.

Figure 14 Virtual Work Table panels 1 & 2

Step 2:

Once the XML version of the SES is generated in Panel 2, “SESinXML to DTD”

needs to be selected from the dropdown list and the “green arrow” between panel 2&3

clicked to generate a DTD of the SES in XML. Figure 15 illustrates this process. A

Document Type Definition (DTD) defines the legal building blocks of an XML

document. It defines the document structure with a list of legal elements and attributes.

 39

As the DTD conversion is only an additional step to accommodate for the usage flow of

the tool, further technical explanations will be considered unnecessary.

Figure 15 Virtual Work Table panes 1 - 3

Step 3:

After the DTD is generated in panel 3, “DTD to PESinXML” needs to be selected

and the “green arrow” clicked between panel 3&4. The panel 4 will show a candidate

SES in XML format for a Pruned Entity Structure (PES). Figure 16 illustrates this

process. As Pruning the Entity Structures remain a very important step prior to a GUI

can be generated from it, a detailed introduction will be given in the next chapter.

 40

Figure 16 Virtual Work Table panes 1 -4

 41

CHAPTER 4 USER MODIFICATIONS: PRUNING AND EDITING

This chapter will explain in detail the process of Pruning and Knowledge

Representation of the SWT SES which will be a required task before a GUI can be

generated from it. As the pruning process will Solely determine the format and layout of

the GUI (to be Generated later in the next chapter) , it will be of utmost importance.

Efforts will be made to introduce the inherent steps by way of example. As explained in

the previous chapter, the SES generated in XML in step 3 (found in Appendix 2) will be

the candidate for modification by the user . It will be made into a PES by the user to

meet his/her specific requirements.

As we saw in Chapter 2, the Pruning of an SES can create a family of PESs.

Hence as a start we will consider the specific PES shown in figure 16 below and discuss

how it could be made a valid candidate for data representation and extraction. The path

marked in RED is the intended PES to be derived from the original SES.

 42

Figure 17 One PES for SWT SES

 43

A reverse engineering approach will be used to best explain the process. Let us consider

the Simple GUI shown in figure 18 below with one tabitem.

Figure 18 SimpleGUI1

The process required by a User wishing to generate the above GUI can be broken

into a two steps.

1) Prune the SES in XML shown in Appendix 2 to one that reflect the figure

16 . This would result in a much smaller PES (in XML) to edit in the

next step

2) Once the PES is derived, the user can embed relevant information into its

already existing variables to make it viable for data extraction

 44

The two step process is discussed in details below.

4.1 Pruning the SWT SES

As mentioned before we first need to prune the SES shown in Appendix 2 to

derive the specific PES shown in figure 17. A special note should be made that the line

“<!DOCTYPE shell SYSTEM "xmlinDTD.dtd" []>”, which would usually appear as the

second in the SES generated in Panel 4 (refer to Step 3 in previous chapter) was

intentionally deleted in the one shown in Appendix 2 . This is due to the fact that the tool

which generates the Automatic GUIs (discussed in the next chapter) does not require it.

Though the aforementioned SES seems to be rather big, it should be noticed that

it carries lot of extra redundant information in this particular case. The crossed out

entities needs to be first removed from the SES to make it into the PES of our choice.

Though the SES could be edited within the Panel 4 of figure 13 itself, it might be

more convenient to use an XML editor to do the tasks at hand. An editor would let you

directly modify or delete an entity along with all its attributes and elements. This would

prove to expedite the process than deleting it manually by hand. Also an editor would let

you directly fill in values for variables. The below screenshot shown in figure 19 is

 45

extracted from Altova XMLSPY User Interface [15]. It shows the SES (ready for

pruning) in Appendix 2 opened and ready for editing. The big oval in yellow covering the

blue colored area in the figure is one to be deleted. It is the “Composite” entity which

needs to be deleted as shown in figure 16 . After the pruning process, the PES become

significantly compact in size as a quick glance at the PES in Appendix 2 would show.

Figure 19 Altova XMLSPY

4.2 Entering data into variables :

Before the User can modify the variable data values of the PES, he/she needs to

understand the basics of how the GUI in figure 18 correlates and maps to the existing

PES.

 46

Let us try to describe the GUI in hand. It is a GUI with the title “SimpleGUI1”

displayed in a single Tab with the name “Personal”. Within the Tab the following widget

components are placed strategically. Namely, a Textbox, 2 Labels, 2 Radiobuttons and a

Button. Respectively, the names of the labels, radiobuttons and the button are “Name”,

“Gender”, “Male”, “Female” and “Done”. The background colors of the two labels are

green and red.

With this information is it easy for the User to comprehend that the Shell name is

”SimpleGU1”, the Tabfolder should contains 1 Tabitem with name “Personal”, and the

components widgets should contain only the 3 mentioned above.

As mentioned before the multi-asp feature allows the inclusion of 0 (zero) items.

Hence this feature could be put into good use when the user does not want to include any

other widgets.

For example in this case, the “numContainedIncheckbuttons” variable should be

set to 0 and anything between the <checkbutton> and </checkbutton> tags should

removed. Looking at the code in Appendix 3, would clarify this.

Once the basics have been understood values for variables could be entered into

the PES in XML. The red ovals in the above figure show example areas where direct

values could be keyed in for values. For example the top oval shows the area where

values should be entered for Shell’s height, width and name. Similarly the user can key

in the values for rest of the variables of the PES. The Shell height would be 300 and the

width would be 400 with the name modified to “SimpleGUI1”.

 47

As the “Absolute Layout” was the pruned choice for this particular example, a

question might arise how the user would know the coordinate values to fill in. Let us

revisit the SES in NL , shown in Appendix 1, and observe the below block of code

extracted from it.

The range of tabFolder's tabux is int with values [0,10]!

The range of tabFolder's tabuy is int with values [0,10]!

The range of tabFolder's tablx is int with values [292,392]!

The range of tabFolder's tably is int with values [266,300]!

When the NL for the SES was initially defined, calculated restrictions were

imposed on the range of values the User can enter.

Note the line 5 of the generated SES in XML of Appendix 2,

“<tabFolder tablx="int292,392Value" tably="int266,366Value"

tabux="int0,10Value" tabuy="int0,10Value">”.

The indicated ranges show up within the area whether the value has to be keyed

in. For example tablx= “int292,392Value” suggests a value between those ranges. So the

User can simply chose a concrete value such as tablx= “392” or lblbgdcolor= “red” for

the label color.

 48

4.3 Validating the PES

It would be worthwhile to mention that the tool introduced in the previous chapter

has a built in feature which checks the validity of the values entered in the PES with the

original ranges defined by the SES in NL. This is an optional choice for the user but

could prove to be useful. After the specific values has been entered into the variables, and

the PES finalized, the user can select the “Validate PES” from the dropdown list between

panel 4 & 1 and click the green arrow(refer to figure 13) . The below figure illustrates

this process for the modified PES SimpleGUI1.xml in Appendix 3

Figure 20 Validate PES in Virtual Work Table

 49

Once the PES in XML is finalized, it should be saved for later use. Though one

might feel that even with these features to make it more user friendly, a PES with

Absolute Layout can prove to be too cumbersome for the User to edit and modify, it

should be noted that it has its own benefits including total user control of widget

placements. As we will see later in Chap 6 , using a PES with the “Fill” Layout can

drastically reduce this overhead time to figure and fill out the location variables, but

likewise it will have it’s own disadvantages.

Also an argument can be made that there is a time overhead for this modification

process for what appears to be conservative gain. Though it is agreed that the initial

pruning and modification process can take a while, the benefits of this method does not

reside in simple GUIs as the one discussed here. For example and argument sake, if we

wish to have 3 tabs with each containing the same layout configuration within the tab as

the one shown above, but only the tabname and widget names change, the modification

process would be nothing simpler.

 All it takes is to

a) modify the “numContainedIntabFolder” value to 3

b) make copies of every thing within the “tabitem” tags (line 7-81 in

Appendix 3) two more times in succession

c) change the variables containing names to reflect the newer ones.

 50

An example SimpleGUI2.xml created by this process can be found in Appendix 4.

Though it seems appropriate that a few more examples using different SWT PES

is discussed at this juncture, the author deems is necessary to go into the GUI generation

process and then revisit more examples in the following chapters.

 51

CHAPTER 5 AUTO GENERATION OF GUIs

From the User perspective, once a Pruned Entity Structure reflecting a specific

GUI is defined in XML, the GUI generation process proves to be a comparatively trivial

task. To generate GUIs, the user only needs to feed the XML file into a tool named

“SWTParser” which was written as a part of this research effort.

5.1 SWTParser

The SWTParser is a tool written in java by the author which takes a predefined

SWT PES in XML format as input, and writes out an auto generated .java file to a

specified path. Figure 21 illustrates this process. The written java file is a fully functional

GUI based on SWT libraries which only needs to be compiled and executed by the user.

The execution process and its features will be discussed later in the chapter.

Figure 21 Process flow : PES in XML to GUI

 52

5.2 The testing and execution environment

The tool was written and tested on a Pentium III machine running JDK 1.5.0_11

with 256MB of memory. However for processing of large GUIs it is recommended that a

faster processor with at least 1GB memory is used for speedy code generation. As java

code is portable and can be compiled in cross platforms, there should be no issues in

running this tool on a Linux or MacOSX based machine.

For demonstration, execution and testing purposes, henceforth we will be using

the Eclipse SDK Version: 3.2.2.r322_v20070104 IDE for Windows which could be

download as freeware [16]. For Linux and MacOSX enthusiasts there are compatible

Eclipse IDEs also downloadable at the above site. It will be presumed that JDK and SWT

libraries are installed and imported into Eclipse and ready for execution. The below

figure shows the basic Eclipse IDE with SWTparser .java open.

 53

Figure 22 Eclipse IDE with SWTParser open

5.3 GUI code generation process

From a User perspective the auto generation of a GUI is a simple 4 step process

Step 1 :

Copy the Pruned SES in XML (SimpleGUI1.xml in this example, which

was created in the previous chapter and can be found in Appendix 3) to some

folder. In this case it is placed in the same folder as the SWTParser.java for

convenience. Shown with 1 &2 in figure 21.

 54

Step 2 :

Include path of the PESinXML (ie SimpleGUI1.xml) as below within

the main

function.File("c:/research/eclipse/workspace/ses/ses/parser/SimpleGUI1.xml"

));”

Note that only one file can be read at a time.

Step 3 :

Set the global variable “outdir” located in the SWTParser class to a

convenient path of the User’s choice. This is output path is where the user will

find the auto generated java file for the GUI. In this case it was set to

outdir="c:/research/eclipse/workspace/testGui/src";

as shown by 3 in figure 22.

 Step 4 :

Once the GUI java code is generated (SimpleGUI1.java) it can be

compiled and executed to produce the actual GUI. The below figure shows the

output of the SimpleGUI1.java running in the Eclipse IDE foreground.

 55

Figure 23 SimpleGUI1 executed

Following the same four steps discussed above, the SimpleGUI2.xml which was

discussed in the previous chapter can be processed through SWTParser to generate the

SimpleGUI2.java. Below figure contains the output of the exercise.

 56

Figure 24 SimpleGUI2

When referring to the SimpleGUI2.xml one can notice that both the “Education”

and “Contact” tabs have a label named “Details” within them. It should be noted that the

tool has built in intelligence to generate proper output even in such cases. However the

user needs to be careful not to name 2 widgets of the same category (eg 2 labels) with

identical names within a single tab.

On the same topic, it should also be noted that if a user inputs a shell size , for

example as 300 height and 400 width, and enters bad coordinates for tabfolder location

variables (ie tabux, tabuy etc) , the tool has built in intelligence to recognize the bad

coordinates and re-adjust the tabfolder to fit well within the shell. (User entering bad

values can be reduced through the mechanism discussed in chapter 4) The author point

this out only as an attempt to show that the tool can be further extended to add such

features when necessary

 57

.

The ExGUI3.xml (it’s not a simple GUI anymore) code attached in Appendix 5

will clarify the above feature on auto resizing. Also, note that the “Personal” tab as seen

in the below figure has been expanded to demonstrate the use of other widgets. The

below ExGUI3 was generated and executed using the same methods discussed above.

Figure 25 ExGUI3

 58

CHAPTER 6 SES TO GUIs

In the previous chapters, we discussed how we can include GUI information into

a PES in XML format and auto generate the desired GUI from it. As we initially took a

reverse engineering approach and worked forwards, it would probably not be apparent

whether a specific instance of given SES (maybe a physical hierarchical system) could

be mapped into the existing framework and then a GUI could be generated from it. This

chapter will try to introduce a simple methodology to perform the above function given

an SES.

Let us consider a slight modified version of the SES in figure 1 shown in the below

figure.

 59

Figure 26 Variant of Computer SES

Is it possible for us to transform this SES into a GUI ? A User might say, “Okay,

I see that the root entity will be the Computer, but how do I go about mapping rest of the

Entities to a SWT PES to generate a GUI?” As a formal approach to this process is not

defined yet, the above question will prove to be valid. It should noted that before

information from the above SES is translated to a SWT PES by a user, there is a

intermediate step which is still undefined. Hence, the next sub section will try to

introduce a methodology to take the above SES and relate it with the existing SWT SES.

 60

6.1 Mapping a SES to the SWT SES

The figure below presents a way a user can relate the Computer SES to the SWT

one. The Computer is considered the root entity and hence the name “Computer” can be

embedded into the shell name variable. A specialization name (Technology & Class) is

thought of as a tabitem name. The corresponding entities of the specializations (VLSI,

Wafer, Analog & Digital) should be contained in a group as groupitems. The groupitem

is used to organize an area (within a tab in this case) to sub areas. Each of these sub areas

can be given a name to visually recognize them as we will see later. A “composite” also

defines an area in SWT, but they do not have visible name attached to them. The user

should be aware that in SWT, there is only a concept called group and no physical

element called a groupitem as in tabitem. However , for this research , the concept of a

group and a groupitem was introduced at the SWT SES level. A quick glance at its

description in NL(Appendix 1) and the corresponding PES of figure 26 shown in

Appendix 6 would clarify this further. The SWTParser will look at how many groupitems

are defined in a group and translate them into valid SWT code. This process is hidden

from the user as he/she doesn’t need to be aware of the SWT code generation semantics.

The User will only need to be aware of the conversion process of the given SES to a

SWT PES in XML.

 61

Figure 27 PES of SWT SES with Group

When a specialized entity is further decomposed as in this case, the leaf level

entities (Resistors, Inductors, Capacitors, CPU, Memory, IODevices and OS) will be

component widgets. Of course one could ask what happens if an aspect is further

decomposed ? As mentioned in the introduction the objective of this research was not to

cover every level of possibility. Hence, further research in this area will be needed to

expand on the concepts introduced here to cover issues as such.

 62

Once the User has a clear method of formalism in mind, the Computer SES can be

transformed into a SWT PES which could be read and a GUI generated from it. The

figure below shows the path (in Red) the SWT SES will have to take to create the PES

for this example.

 63

Figure 28 PES of SWT SES with Group

 64

6.2 Groups & Fill layouts

To understand more thoroughly the concepts of “group” , “groupitems” and “fill” layout

, let us consider the segments of XML extracted from the PES , ExGUI4.xml from

Appendix 6.

Figure 29 ExGUI4.xml code fragment

In the above figure, note that the composite-drawableareSpec has been pruned to

include “group”. In SWT a group is different from a composite container as it is allowed

to have a visible name and a border. Note , in all previous examples the pruned path was

composite -> layout. As there are two candidate groups (ie VLSI and Wafer) under

“Technology” tabitem, the multAsp number will be 2 and two groupitems needs to be

created with the above names. Attention should be drawn to the uniformity axiom of

SES as the layout under groupitem is the very same as the layout entity we have seen

before. However, in previous examples we were using “absolute” as layouttypeSpec but

in this case we are using “fill”. As the “VLSI” and “Wafer” groups are not further

 65

decomposed there will be no component widgets within them. One can note this fact by

observing in Appendix 6, that all component widgets have num 0.

The main advantage of using fill layout is that the user will be relieved of the

burden of figuring out the coordinate locations for each component as in absolute layout.

This drastically cuts down the PES generation time. Hence the reason for specifying

<tabFolder tablx="0" tably="0" tabux="0" tabuy="0"> in line 5 of the xml code.

However the downside is that the user will lose control of exact widget placements.

When using the fill layout, any component which is added to the container (ie shell,

composite or group) will be equally spaced as shown in the below figure. The figure 30

shows the output generated using SWTParser for ExGUI4.xml using the same method

discussed in the last chapter. Note that the SWTParser automatically adds components to

a container in fill layout horizontally by default. It also sets the shell and composite

containers to use fill layout automatically if the User chooses fill as a group layout. Note

that a bug in SWT will not allow one to specify a shell as “absolute” and add widgets to

its sub containers using fill layout. Actually, though code can be written as such and will

compile, when it is executed, the widgets will not appear as expected! These corrected

actions are hidden from the user as he/she does not need to be aware of it, but it will be

visible in the auto generated code. A small extension would be needed to the original

SWT SES in NL, if one wishes to add components vertically.

 66

Figure 30 EXGUI4

It should also be noted that though the above GUI will appear visually correct to a

regular user’s eye, to a user who is proficient in the semantics of SES will find it rather

irregular. The reason is due to the fact that radio buttons and check buttons were chosen

as widget options for the decomposed entities at the leaf level. The decomposed entities

practically should not be items of choice. A radio or a check button is a widget which can

be chosen active or otherwise. Hence a discrepancy would arise. The below figure

depicted with textboxes containing the component names would be a more appropriate

choice given the restriction of the seven widgets to select from.

 67

Figure 31 A semantically correct version of EXGUI4

6.3 Further reducing pruning and modification time ?

As we noted before, when using the fill layout, the User conveniently does not

have to figure out the location coordinates of the components. Hence the reason tabux,

tabuy etc was set to 0. If the location coordinates are unimportant, why does the User

have to fill in 0s? This takes way some of the time saving benefits. Can a User, for

example, leave the original tags as it were without modifications? For example can the

user leave a radio button description line as

<rdbutton rdbuttonboundlx="int0,382Value" rdbuttonboundly=" int20,350Value"

rdbuttonboundux="int0,392Value”rdbuttonbounduy="int0,366Value"

rdbuttonname="Capacitors"> ?

 68

The quick answer is Yes. This feature was thought about when the SWTParser

tool was written. The tool ignores all the location tags when reading a PES using fill

layout.

Let us consider the below code extracted from appendix 6.

Figure 32 Another ExGUI4.xml code fragment

Note that one of the location radio button variables was intentionally left as it

were originally to display this feature and the SWTParser would still work. (One can

leave out all the 4 location variables as they were initially and SWTParser would still

work). Also note that as we are using three radio buttons to define “Resistors”,

“Inductors” and “Capacitors” in the “Analog” group, the rest of the widgets were

 69

completely left out intentionally within compents-compwidgetsDec. Previously when a

widget was not needed we made the multAsp num to 0 as in the below code

<checkbuttons>

 <aspectsOfcheckbuttons>

 <checkbuttons-multMultiAsp

numContainedIncheckbuttons="0"/>

 </aspectsOfcheckbuttons>

</checkbuttons>

Leaving these out would further reduce the user pruning and modification time.

However there is an important fact to make note in both the above cases. When

validating a PES as discussed in the subsection “Validating the PES”, leaving the original

variable values as they are (ie not giving them an explicit value like 0) will cause an

error. Also leaving out the rest of the widgets completely as opposed to making their

multAsp number to 0 would result in “number of entities in components-compwidgetDec

in SES and PES not equal”. Hence there will be a trade off with this process if one

wishes to validate the PES using the “Virtual Working Table” before copying it to file.

6.4 Generating Professional GUIs using SWTParser

As mentioned in chapter 1, the initial motivation for this research was derived

when the author was working on the GENETSCOPE project to study a feasible method

for mapping its existing GUI to a System Entity Structure. Hence it would be interesting

to extract one of its frames as shown in figure 32 and discuss the possibility of

regenerating a similar GUI with the processes presented in this study.

 70

Figure 33 GENETSCOPE Experimental Frame

The relationships defined in figure 33 could be established by comparing the

above figure with the knowledge gathered through this study.

 71

Figure 34 GENETSCOPE EF mapping to SWT SES

 Note that by using a fill layout, it will reduce the times involved in producing a

PES for this GUI. But as mentioned before, by using the fill layout , the user will not be

able to exactly place the widgets where he/she wants and hence an absolute layout might

be more suitable for this particular GUI. Using the concepts discussed in chapter 4 , 5 and

6 one should be able to generate a somewhat “similar” but not exact GUI.

 However, the discussed mapping would not be able to fully include this GUI

frame as one would see. Adding the missing “slider” as a component widget to the

Original SWT SES might not be a complicated task. The area where the “About” and

“Help” buttons are located still needs to be specified. Hence a suggestion could be made

 72

that a PES following the “path in red” in the below figure should take care of this issue

somewhat as the composite can be sub divided into 2 areas mapping to 2 group items .

The first would involve the groupitem area where the “About” & “Help” buttons can be

placed. But the second groupitem should be able to add a tabfolder to it to be able to

specify the two tab items (Start & Experimental Frame) discussed above. As the current

SWT SES doesn’t support that feature, the entity GroupItem(circled in red in figure 34)

should further be extended to include a tabfolder.

Hence as one could see, this research can be further expanded to support for more

complicated GUI. As mentioned in the introduction adding bells and whistles are left

alone for a further study now that a basic frame work has been developed.

 73

Figure 35 PES for GenetScope Experimental Frame

 74

SUMMARY

The main focus of this study was to extend the knowledge representation features

of a System Entity Structure to account for Graphical User Interfaces, and develop a

framework where the user can customize data in order to auto generate fully functional

GUI code from it. As the eventual auto generation of GUI code need, as a first step,

sufficient data to be embedded into a data model for analysis and extraction, a graphical

library needed to be identified and mapped. Due to its simple hierarchy, the Standard

Widget Toolkit (SWT) library was chosen as the candidate to be mapped into an SES

tree. The key concepts of hierarchical decomposition and specialization of SESs were

used to accommodate for the mappings. As SESs are usually depicted as visual trees, a

method for translation from the format into electronic data had to be identified. Based on

the fact that XML is a hierarchical ontology framework that was recognized of having

closer connections with SES, it was used as the data storage model of choice. The

process conversion from a visual tree SES to a candidate System Entity Structure in XML

that could be customized by a user through pruning and modifications involved several

intermediate steps. Initially, a Natural Language was used to translate the aforementioned

SWT SES from the visual to textual format. Several key variables were also introduced to

accommodate for the user customization of data at each level of the tree. A web hosted

tool named Virtual Working Table was used to do the process translations in XML. Once

the candidate XML was generated, through examples, the pruning and customization

 75

process was introduced so that a final version of a Pruned Entity Structure could be

generated by the user as input for GUI code generation.

The usage of the tool named SWTParser which would generate fully functional

GUI code in java taking the user customized PES mentioned above as input was also

discussed. SWTParser was developed as part of this research effort. Once it could be

presumed that a user would be comfortable with the customization and the GUI

generation processes, an extension of the framework to map a given instance of an SES

to a GUI was discussed. It was not the author’s intension to introduce the methodology as

a comprehensive system that would cover any instance of a given SES (which it is not),

but as an example process that would make use of the concepts from the framework

discussed in the study. It was found that professional GUIs of a more complicated nature

could be supported through this framework with small extensions and future

enhancements to it. It was seen that the user customization of a PES could take

significantly more time compared to the GUI generation process which is almost trivial.

Hence methods to reduce the over head time involved in this process along with its pros

and cons were discussed.

During different stages of this study, the author needed to relate to the SES

axioms and concepts discussed in chapter 2. Hence a brief discussion emphasizing the

key relations which he was able to establish during the process is deemed appropriate.

 76

Relation of the SES Axioms ?

The uniformity axiom was made use of during this study in several occasions. Let

us be reminded that the axiom states “any two nodes which have the same labels have

identical attached variable types and isomorphic sub trees.” Note that when using the PES

in figure 28, the entity “GroupItem” was decomposed to a “Layout” entity. This Layout

entity remains identical to the one that appears in the pruning path of figure 17. Also in

figure 28, the “Components” used under “Fill” layout remains the same as the

“Components” used in figure 17. Also note that the suggested use of the “Composite”

entity in figure 34 is the same as the one that appears in the pruning path of figure 17.

The valid brothers axiom which states “No two brothers have the same label” was

implicitly used during this study. Note that the sub section 5.3 states that “However the

user needs to be careful not to name 2 widgets of the same category (eg 2 labels) with

identical names within a single tab.” Though reference was not made to it at that point

the notion behind it supports the axiom explicitly.

The strict hierarchy, alternating mode and attached variables axioms were also

followed in this study. One can confirm this by referring to any visual SES figure and the

attached code in Appendices 1 and 2.

 Finally the inheritance axiom which states that “every entity in a specialization

inherits all the variables, aspects and specializations from the parent of the specialization”

was made use of on several occasions. Note that the ‘TabFolder” and “Composite”

entities under the ‘ShellOrg” specialization in figure 5 will inherit all of the variables of

 77

its parent “Shell” entity. This feature had to be used in the SWTParser when tabfolder

auto resizing has to be done based on the Shell’s height and width variable values. Also

entities “Composite” and “None” of TabItemOrg specialization and “Fill”, “Absolute”

and “Form” of Layout specialization follows the axiom.

 78

CONCLUSION AND FUTURE WORK

 As mentioned in the Objectives sub section in 1
st
 chapter, the framework

discussed in this study was never meant to be introduced as a fault tolerant full fledged

system. It was presented as an innovative approach which would hopefully pave way for

further research and study in this field. It is said that “Little drops of water makes the

mighty ocean”.

The SES based GUI development framework has its own merits. As the

framework offers portability, and a platform free representation of a Graphical User

Interface, it would prove to be advantageous in many regards. The current adaptation

(and future expansion) of pruning rules and other constraints would support iteration and

thus provide an advantage over drag and drop methods.

 The author recognizes the fact that the framework it is still in its elementary

stages and will need further expansion to make it even more useful and user friendly. As

we saw, it has its inherent limitations. As a start the user customization process needs to

be made more user-friendly which could further reduce the overhead time. Maybe a

Graphical Interface to input the various variable values after pruning the SWT SES

would help this cause. The current framework only supports a certain class of GUIs

which could be derived from it. The main restrictions are based at the SWT SES level

 79

itself as there are few choices for pruning. Also adding more variables for user

customization at various levels of the SWT SES tree will obviously add to the

enhancement of features. On the hind side, more variables to modify mean more time it

takes for the user to customize. The brief discussion made in sub section 6.4 to support

for more complex GUIs would clarify this further. Also extending the SWT SES to

represent, and the SWTParser to generate event handlers could significantly reduce

programming effort over conventional methods.

 Hence, while expansions to the initial SWT SES will account for greater breadth

and depth to the study, the complexity of the framework will also grow in parallel.

However, if such enhancements are made, it should be noted that the SWTParser should

also be modified to support for the new additions.

As a final note, the author hopes that the readers will recognize the potentials in

this study so that future research and development in this field will be encouraged.

 80

APPENDIX 1 SWT SES in NL

A shell can be composite or tabFolder in design!

The shell has a name,height, and width!

The range of shell's name is string with values !

The range of shell's height is int with values [300,300]!

The range of shell's width is int with values [300,400]!

From a mult perspective, tabFolder is made of more than one tabitem!

The tabFolder has tabux,tabuy,tablx, and tably!

The range of tabFolder's tabux is int with values [0,10]!

The range of tabFolder's tabuy is int with values [0,10]!

The range of tabFolder's tablx is int with values [292,392]!

The range of tabFolder's tably is int with values [266,300]!

The tabitem can be none or composite in structure!

The tabitem has a tabname!

The range of tabitem's tabname is string with values !

The composite can be layout or group in drawablearea!

From a mult perspective, group are made of more than one groupitem!

The groupitem has a groupname!

The range of groupitem's groupname is string with values !

From a groupitemstruc perspective groupitem is made of layout!

The layout can be absolute,fill, or form in layouttype!

From absolutecomp perspective, absolute is made of components!

From fillcomp perspective, fill is made of components!

From compwidgets perspective, components is made of

buttons,radiobuttons,checkbuttons, labels, scales, comboboxes,and textboxes !

From a mult perspective, textboxes are made of more than one textbox!

 The textbox has a textbgdcolor, textboundux,textbounduy,textboundlx, and textboundly!

The range of textbox's textbgdcolor is string with values white,yellow, and green!

The range of textbox's textboundux is int with values [0,392]!

 81

The range of textbox's textbounduy is int with values [0,266]!

The range of textbox's textboundlx is int with values [0,392]!

The range of textbox's textboundly is int with values [20,250]!

From a mult perspective, comboboxes are made of more than one combobox!

The combobox has a comboboundux,combobounduy,comboboundlx, and

comboboundly!

The range of combobox's comboboundux is int with values [0,392]!

The range of combobox's combobounduy is int with values [0,366]!

The range of combobox's comboboundlx is int with values [0,392]!

The range of combobox's comboboundly is int with values [20,350]!

From a mult perspective, checkbuttons are made of more than one checkbutton!

The checkbutton has a chkbuttonname, chkbuttonboundux, chkbuttonbounduy,

chkbuttonboundlx, and chkbuttonboundly!

The range of checkbutton's chkbuttonname is string with values !

The range of checkbutton's chkbuttonboundux is int with values [0,392]!

The range of checkbutton's chkbuttonbounduy is int with values [0,366]!

The range of checkbutton's chkbuttonboundlx is int with values [0,382]!

The range of checkbutton's chkbuttonboundly is int with values [20,350]!

From a mult perspective, buttons are made of more than one button!

The button has a buttonname, buttonboundux,

buttonbounduy,buttonboundlx,and buttonboundly!

The range of button's buttonname is string with values !

The range of button's buttonboundux is int with values [0,392]!

The range of button's buttonbounduy is int with values [0,366]!

The range of button's buttonboundlx is int with values [0,382]!

The range of button's buttonboundly is int with values [20,350]!

From a mult perspective radiobuttons are made of more than one rdbutton!

The rdbutton has a rdbuttonname, rdbuttonboundux,

rdbuttonbounduy,rdbuttonboundlx,and rdbuttonboundly!

 82

The range of rdbutton's rdbuttonname is string with values !

The range of rdbutton's rdbuttonboundux is int with values [0,392]!

The range of rdbutton's rdbuttonbounduy is int with values [0,366]!

The range of rdbutton's rdbuttonboundlx is int with values [0,366]!

The range of rdbutton's rdbuttonboundly is int with values [10,350]!

From a mult perspective, labels are made of more than one label!

The label has a lblname,lblbgdcolor, lblboundux,lblbounduy,lblboundlx, and lblboundly!

The range of label's lblname is string with values !

The range of label's lblbgdcolor is string with values white,red,yellow, and green!

The range of label's lblboundux is int with values [0,392]!

The range of label's lblbounduy is int with values [0,366]!

The range of label's lblboundlx is int with values [0,366]!

The range of label's lblboundly is int with values [10,350]!

From a mult perspective, scales are made of more than one scale!

The scale has a sclbgdcolor, sclboundux,sclbounduy,sclboundlx,sclboundly,

sclsetmax,sclsetmin,sclsetincr, and sclsetpgincr!

The range of scale's sclbgdcolor is string with values ,white,red,yellow, and green !

The range of scale's sclboundux is int with values [0,392]!

The range of scale's sclbounduy is int with values [0,366]!

The range of scale's sclboundlx is int with values [0,366]!

The range of scale's sclboundly is int with values [10,350]!

The range of scale's sclsetmax is int with values [0,100]!

The range of scale's sclsetmin is int with values [0,100]!

The range of scale's sclsetincr is int with values [1,10]!

The range of scale's sclsetpgincr is int with values [1,10]!

 83

APPENDIX 2 Candidate PES in XML generated from DTD

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

APPENDIX 3 SimpleGUI1.xml

 100

 101

 102

APPENDIX 4 SimpleGUI2.xml

 103

 104

 105

 106

 107

 108

 109

APPENDIX 5 ExGUI3.xml

 110

 111

 112

 113

 114

 115

 116

APPENDIX 6 ExGUI4.xml

 117

 118

ERROR: stackunderflow

OFFENDING COMMAND: ~

STACK:

