GRAPHICAL USER INTERFACE REPRESENTATION AND
GENERATION USING SYSTEM ENTITY STRUCTURES

By

Lahiru Ariyananda

A Thesis Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN COMPUTING ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of the requirements for an advanced
degree at the University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgement of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the head of the major department or the Dean of the Graduate College when in his or her
judgment the proposed use of the material is in the interests of scholarship. In all other
instances, however, permission must be obtained from the author.

SIGNED:

APPROVED BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Bernard P. Zeigler Date Date
Professor of Electrical and Computer Engineering

ACKNOWLEDGEMENTS

My heartfelt gratitude goes to my advisor, Professor Bernard Zeigler, for his invaluable
and reassuring advice, and for the freedom he gave me to focus on areas of my interest
which made this study not only educational but also enjoyable for me. I would like to
take this opportunity to specially appreciate and remember the kind support given by Dr
Doohwan Kim and Mr Robin Moore during the course of this study. I would also like to
extend my sincere gratitude to Dr Roman Lysecky and Dr Susan Lysecky for their
flexibility and time taken to serve on my defense committee. Last but not least, many
thanks to all my colleagues at ACIMS lab for patiently sharing my moments of joy and

temporary anguish.

DEDICATION

To my late beloved Father

Your undying love, guidance and encouragement will always be my inspiration.

TABLE OF CONTENTS
LIST OF FLIGURESooeeetteteeeeeeeeeeeeeeeeeeeeseeesess 7
LIST OF TABLES ... ceteereeeeeneeeceseeseessssess 8
ABSTRACT .oeeeeeeeeeeeeeeeeeeeeeneeeeseseessssess 9
CHAPTER 1 INTRODUCTION ..cuuueeeceeeereeeeeseeeessccssesssssossss 10
1.1 OBIECTIVE et et e e e e e e e e et eaaeeeeearaeeeenaaaaaes 11
1.2 IMIOTIVATION ..ottt ettt ettt e et e e et e et taae e e ettt e e e aaaesestaansestaaasessanneseesans 11
1.3 CHAPTER INTRODUGCTIONS ..ottt ettt e e et e e e e eeeeeeeeeeeaeeeeeeaeeeenaaaeeenenaeeeennns 12
CHAPTER 2 SYSTEM ENTITY STRUCTURES IN A NUTSHELL......cuceeevnuneeee 13
2.1 DEFINITION AND STRUCTURE OF AN SES ..o oo 13
2.2 ATKXIOMS ..ottt e e e e e e e e et e aeaeee e e e e e aaa i aeaasseeeeeaaannaaeseeseenaannnas 15
2.3 VISUALLY DEPICTING AN SES TREE ... eetteeeeeeeee e eeeee e eeeeeeeeeeeaeaeenan 16
2.4 PRUNED ENTITY STRUCTURES ...uttttuuetttttieeeettieeeetaieeeetuneeestanesssssniesssssnnessesans 18
CHAPTER 3 BACKGROUND & IMPLEMENTATION CHOICES......uuuuuueeeccereeen 21
3.1 PROGRAMMING LANGUAGE & GRAPHICAL LLIBRARY ...covvvuiiiiiieeeeiiieeeeiieeeennnn 21
3.2 SWT MAPPING TO SES TREE ..ot e e eeeaeeeeenaaeees 22
3.3 DATA MODEL.....iiiiiieeieiiee ettt ettt e et e e et aee e e teaeesetaaesessaaseensaneseesans 27
34 INTRODUCTION TO XIML ...ttt et e e e eee e eneeeaen 27
3.5 TRANSLATING THE VISUAL SWT SES TO TEXTUAL XMLcoovvivviiiiiiiiiiieeeennn 30
3.6 NATURAL LANGUAGE DESCRIPTION OF AN SES ..o, 33
3.7 NATURAL LANGUAGE TO XML PROCESS.....ctttuetttitieeeeiiieeeeteieeeeiiieeeenaieseesans 37
CHAPTER 4 USER MODIFICATIONS: PRUNING & EDITING.....cceuuueeeeeeeen 41
4.1 PRUNING THE SW T SE S ittt ttareae e e e e e e evaaaaaas 44
4.2 ENTERING DATA INTO VARIABLES = «.evutttnteteteteeeeeeeeeeeetaeeeteeesaeeeenesesnesennnesees 45
4.3 VALIDATING THE PES ... oottt etaaeeee e e e e eeenaeanaas 48
CHAPTER 5AUTO GENERATION OF GUIS...cceettteeeeeeeeccreeeresssssenssssssssssssssessssssssns 51
5.1 SWTPARSER ...ttt ettt e e e e e e ettt e aeeseeeeetaaaaaaeasseeeseeasanneaeeseeesens 51
5.2 THE TESTING AND EXECUTION ENVIRONMENTuttuuititutetneeeeeeeeieeeeneeeenesenneeeens 52

5.3 GUI CODE GENERATION PROGCESS ...ccetuuuueeeeetettttueeeeeseeeeetsmnneaesseesessesmnnneasessessens 53

TABLE OF CONTENTS - Continued

CHAPTER 6 SES TO GUIS....ucouinuiiinnininsinsessessassasssssssssssssssssssssssssssasssssssssssssossosssses 58
6.1 MAPPING A SES TO THE SWT SES ... 60
6.2 GROUPS & FILL LAYOUTSuttiitiiiieiieeiieesite ettt ettt sttt s 64
6.3 FURTHER REDUCING PRUNING AND MODIFICATION TIME 7 ..cccuvteriiieniieenieeennne 67
6.4 GENERATING PROFESSIONAL GUIS USING SWTPARSER........cccccceeriuviinrieannen. 69

SUMMARY c.cuiiiiinsnisnississississssssssssssssssssissess 74
RELATION OF THE SES AXIOMS ?.....eiiiiiiiiiiiteiteeeeeese ettt 76

CONCLUSION AND FUTURE WORKucoiiiiniisinnisnisisissnsssssssssssssssssssssssssssssssnes 78

APPENDIX 1 SWT SES IN NL...coouiruisisrinsessessesssssanss 80

APPENDIX 2 CANDIDATE PES IN XML GENERATED FROM DTD 83

APPENDIX 3 SIMPLEGUILXML....cccovinrinsensessussansassanssnssssssssssssssassssssssssssssssosess 929

APPENDIX 4 SIMPLEGUI2. XML....ccccerenresseesessassassassasssssssssssssssassassassassassassssons 102

APPENDIX 5 EXGUIB.XIML ..uuceuinierinsesssssassasssnsssossons 109

APPENDIX 6 EXGUIZ. XML ..cocoieierecsessensassassassssssssssssssssssssssssasssssassassassssssssssos 116

REFERENCEScouiiiiiniinninnnnnnssnsssessssssessasssssssesssssssssassssssssssssssassssssassssssasssasssassssss 122

LIST OF FIGURES
Figure 1 SES 0f @ COMPULETooiiiiiiiiiiiiiiieeeceeeeeee et 16
Figure 2 A PES of the Computer SESoooiiiiiiieeeee et 19
Figure 3 PES 0f @ BOOK......cooiiiiiiiiiicceeece e 20
Figure 4 SES 0f @ basic SWT tI€€.....c..evviuiiiiiiieeiiieeieeeteeete et 23
Figure 5 Alternate SES of a Basic SWT TTee........cooviniiiiiiiiiniiiicieecececeeeeee 24
Figure 6 Alternate view of SWT SES ... 26
Figure 7 XML cOde fTagment........c.cooviriiiniiiiieieeieeneeeteeee ettt 28
Figure 8 Process flow : Visual SES to XMLcoooviiiiiiiiiiiieeiieeee e 31
Figure 9 Shell described 1n NLc.cooiiiiiiiiiiieece e 35
Figure 10 Tabfolder Description in NL........cccciiiiiiiiiiiiniieeriieeiee et 35
Figure 11 Decomposition of “Components” Int0 WIAZEtSccceveerveenienveeneenieeenneenne 36
Figure 12 Segment of SWT SES in NLoooiiiiiiiiieeeee et 36
Figure 13 Vitual Work Table Web Interfaceccccoocveveieiiiniiiniiniiiieececeeeeee 37
Figure 14 Virtual Work Table panels 1 & 2.......ccccvvveiiiiiiiiiiiiieniiecee e 38
Figure 15 Virtual Work Table panes 1 -3 ..ot 39
Figure 16 Virtual Work Table panes 1 -4cooiiiiiiiniiieeeeceeee e 40
Figure 17 One PES for SWT SESttt e 42
Figure 18 SIMPIEGUILooiiiiii e 43
Figure 19 AItova XIMLSPYooiiiiiiiieee ettt re e e 45
Figure 20 Validate PES in Virtual Work Tableccccccociiiiiniiiiiiniecceeee 48
Figure 21 Process flow : PES in XML to GUIL........ccccoiiiiiiiiiiiiieiieceeeeeeeeee e 51
Figure 22 Eclipse IDE with SWTParser open...........cccoceecueerieniiinieniieeeeneceeneeeeeee 53
Figure 23 SimpleGUIT eXECULEd......cc.ueiiiiiiiiiieeiiieeiieesite ettt et aee e 55
Figure 24 SImMPIeGUI2 ... 56
Figure 25 EXGUIB ...ttt ettt ettt e et eseae e saaeesaeeesaneeenes 57
Figure 26 Variant of Computer SES ..ot 59
Figure 27 PES of SWT SES With GrOUP......cccctiiiiiiiiieiiieeee et 61
Figure 28 PES of SWT SES With Group.......cccceeviiiiiiiniiniieieeceeeeeeeesee e 63
Figure 29 ExGUI4.xml code fragment............ccceevuvieriiiiiniieeniieeniie e 64
Figure 30 EXGUIA ..ot s 66
Figure 31 A semantically correct version of EXGUI4...........cccooviiiiiiiiiiiiiniieeieeeeeee 67
Figure 32 Another ExXGUI4.xml code fragment.............ccoceeiiiniiiiiiniinnieneceeneeeeee 68
Figure 33 GENETSCOPE Experimental Frameccccccooviiiiniiiiiniiiiiiieeiceeieeeeeee 70
Figure 34 GENETSCOPE EF mapping to SWT SES........cooiiiieeeeee 71

Figure 35 PES for GenetScope Experimental Frame.............cccoovvviveiiiiiniienniieenieeneeee 73

LIST OF TABLES

Table 1 SES concept summary..........
Table 2 Attach variables for Widgets

ABSTRACT

System Entity Structures have been mainly used as a language for hierarchical-
system modeling, simulation and knowledge representation in the past. In this work the
possibility of extending its knowledge representation features to account for Graphical
User Interfaces is investigated. The fact that a basic Standard Widget Toolkit (SWT)
library can be mapped into a SES tree based on the concepts of hierarchical
decomposition and specialization is identified. On the base recognition that SES is an
ontology framework that is closer to XML, it is used as the data storage model to make
use of its salient features so that sufficient and quantitative knowledge is represented by it
to auto generate a GUIL. The GUI generation will be done using a tool named SWTParser
which was specifically developed for this study. SWTParser reads in a user customized
Pruned Entity Structure in XML format to generate fully executable GUI code in java.
Also a simple methodology that would map a given instance of a physical system defined
in SES format to a functional GUI is presented. Finally, methods to reduce the over head
time involved in the user customization process and possible expansions to the current

framework will be discussed.

10

CHAPTER 1 INTRODUCTION

Graphical User Interface design and Application Programming are like Abbot and
Costello. Without each complimenting the other, their effectiveness is circumscribed in
modern day software development. It could be a tedious task for a developer to create
especially larger GUIs using code descriptions of a programming language. Though there
are tools developed by software development companies which allow a user to develop
GUIs without the direct involvement of a programming language, they are mainly reliant
on the user’s creativity. Hence GUI development can be considered an Art as well as a

Science.

Though the behaviors and characteristics of Hierarchical Knowledge-Based
systems are well understood [1], very little research has been done in the past two
decades which involves methodologies for GUI development using such systems. User
Management Systems are often used to help user interface designs. [2] However, a few
User Interface Management Systems exists which are designed explicitly for hierarchical

knowledge based systems [3][4].

11

1.1 Objective

The main objective of this research would be to exploit the hierarchical nature of
a knowledge representation language called the System Entity Structures(SES) [1]and
study the possibility of mapping a graphical library into the SES format so that sufficient
and quantitative knowledge is represented by it to auto generate a GUIL Also a simple
methodology will be presented to map a given instance of a physical system described
using an SES to a translated GUI. It should be clearly noted that a full fledged
implementation with all bells and whistles was not the intention of this research. It is the
firm belief of the author that, once a basic foundation has been laid, expansions and

innovations could be introduced as future endeavors.

1.2 Motivation

The initial motivation for this research was derived when the author was working
on the GENETSCOPE project [5] to study a feasible method for mapping its existing
GUI to a System Entity Structure mainly as knowledge representation mechanism.
Further interest was generated to study the feasibility of reversing this process to recreate

GUIs from the SES information.

12

1.3 Chapter Introductions

SES is a modeling language that describes hierarchically decomposable physical
systems such as computer systems, buildings, and robot systems [2]. SES can also be
applied to describe conceptual hierarchical systems such as tree systems and special-
purposed languages [6]. Chapter 2 will introduce the concepts and axioms behind SES

through examples.

As mentioned before, in order to represent a GUI through an SES, a mapping of a
graphical library needs to be made. Also as SES are usually depicted as visual trees, a
method to transform the relevant information into an electronic format using a
hierarchical data model will have to be introduced. Chapter 3 will be a discussion on the

above processes and choices made on the implementation framework.

Chapter 4 will venture out to acquaint the user with pruning and modifications
processes needed to make the aforementioned SES into a viable structure for data
extraction for GUI generation. Chapter 5 will attempt to introduce the usage of the
SWTParser tool, which was developed as a part of this study to generate GUIs from the

above data files.

Chapter 6 will introduce a methodology to map an existing SES based on a
physical system to a GUI from the information discussed in the previous chapters. Also a
discussion will be presented to reduce the overhead time needed to do the tasks in chapter

4 with its pros and cons.

13

CHAPTER 2 SYSTEM ENTITY STRUCTURES IN A NUTSHELL

2.1 Definition and Structure of an SES

As the crux of this research depends on using a System Entity Structure (SES) as
the model of choice for data representation and storage, this chapter will venture out to
introduce the language and its axioms. Zeigler proposed the System Entity Structure as a
language for hierarchical-system modeling, simulation and knowledge representation in
[7][1]. This study will be mainly focusing on its use as an effective way of knowledge

representation and data storage with the aforementioned ultimate goal of GUI generation.

If one is to quote the keywords of the basic structural composition of an SES, they
would be “Entity”, ‘“Variable”, “Aspect”, “Specialization” and “Multiple Aspect”. Part
of the following summarized explanation was extracted from [8]. Entities represent things
that exist in the real world or sometimes in an imagined world. A house would be an
example. Aspects represent ways of decomposing things into even smaller ones. An
example would be living room, bath room, kitchen etc of a house. Multi-aspects are
aspects for which the components are all of the same kind. In other words multi aspects
can be regarded as a special case of an aspect in which the entities of the aspect are
homogeneous in nature. An example would be rooms. Specializations represent

categories or families of specific forms that a thing can assume. A family of colors or

14

size would be an example. Variables are an attribute of an Entity. The address of a house

would be a variable. The below table extracted from [8] summarizes the basic concepts

mentioned above.

between a thing and
its components when
decomposed from a
certain perspective

item denotes when to use
entity a thing in the real or | Use to represent a thing
modeled world that stands alone or is a
part or variant of
another thing.
aspect the relationship Use when you want to

represent an “and”
connective among sub-
things of a thing —
where the “and”
denotes the necessity
that all of the sub-
things must appear
together to comprise
the thing.

multi-aspect

a special kind of
aspect in which all the
components are
homogeneous in
nature

Use for the same
objective as an aspect
except that the
components are all
from the same classes.

specialization

the relationship
between a thing and
its variants from a
given family

Use when you want to
represent an “‘or”
connective among sub-
things of a thing —
where the “or”” denotes
the fact that a choice of
one of the variants can
replace the thing.

Table 1 SES concept summary

15

2.2 Axioms

The SES was originally characterized by its axioms by Zeigler [1] and later by
Zhang and Zeigler [9]. Accordingly the SES was defined as labeled tree with attached

variable types which satisfies the following axioms :

uniformity: Any two nodes which have the same labels have identical

attached variable types and isomorphic sub trees.

strict hierarchy: No label appears more than once down any path of the

tree.

alternating mode: Each node has a mode which is either entity, aspect, or
specialization; if the mode of a node is entity then the modes of its
successors are aspect or specialization, if the mode of a node is aspect or
specialization, then the modes of its children are entity. The mode of the

root is entity.

valid brothers: No two brothers have the same label.

attached variables: No two variable types attached to the same item have

the same name.

inheritance: every entity in a specialization inherits all the variables,

aspects and specializations from the parent of the specialization

16

2.3 Visually depicting an SES tree

The most common way to visually depict an SES is by a tree structure. In this
depiction, the items (entities, aspects, specializations, and multi-aspects) are displayed as
nodes and the relationships of aspects, specializations and multi-aspects to entities are
shown as vertical lines, arrows, and triple parallel lines, respectively [8]. A key
observation of a visual tree SES would be that entities alternate with the other items. Let

us consider the SES in the below figure to further clarify the concepts mentioned before.

Computer
|
| 1l

technology class-specification
specification

I
[I

Analog Digital(1)

Wafer
YOI Hybrid

| physical-decomposition
cmmposiliun | l |

CPU Operating
Memory System

Digital(2) I/O-Devices

1/O-Devices

Figure 1 SES of a Computer

17

The “Computer” is called the root entity and it has two specializations shown by
two vertical lines, called “class-specialization” & “technology-specialization”. The class-
spec has entities “Analog”, “Digital”, and “Hybrid”. In such a specialization relation,
Computer is referred to as a generic type relative to the entities, Analog, Digital, and
Hybrid, which are called special types [7]. Though the special types can have their own

distinctive attributes, they inherit all of the attributes (variables and substructures)

possessed by Computer.

Hybrid special type is shown as having “part decomposition” into two
components, namely Analog and Digital. As mentioned before these components are now
entities themselves. Likewise Digital has a “physical-decomposition” in four
components namely, CPU, Memory, I/O-Devices and Operating System. By the
uniformity axiom, the Digital part of a Hybrid computer has the same physical-
decomposition shown under the occurrence of Digital as a special type of Computer. It
should also be noted that Hybrid, being decomposed into Digital and Analog

components, inherits properties from both through the uniformity axiom.

In the above figure , the ftriple vertical bars connecting “I/O-Devices” and “I/O-
Device” depicts the special type of aspect decomposition discussed before called the

multiple decomposition. A multi-aspect decomposition is used to represent entities whose

18

number in a system may vary. For example a Digital computer may have 0, 1, 2, or more

1/O-Devices.

2.4 Pruned Entity Structures

A pure entity structure is defined as one having no specializations and at most one
aspect hanging from every entity [7]. The pruning process is used to create such a pure
SES. The Pruned Entity Structure (PES) is the intermediate result of the pruning process
which would contain fewer aspects and specializations than the original and therefore
specifies a smaller family of alternative models than the latter. The eventual termination
to the pruning process will result in a pure entity structure that specifies the synthesis of a

particular hierarchical model.

If we consider the SES in figure 1, an example of a Pruned Entity Structure of the

original is shown in figure 2 below.

Computer

19

Technology-Spec

U

VLSI

Il

Class-Spec

U

Digital
|

Physical-dec

|
| |

CPU Memory [O0Devices 08

Figure 2 A PES of the Computer SES

Let us consider another instance where an entity of an SES can have more than

one aspect attached to it. The following example was extracted from [8]. Fig 3 shows an

SES for a book that provides two aspects, contentDec and physicalDec, corresponding to

decompositions from the perspectives of content and physical constitution, respectively.

20

book
| |
contentDec physicalDec
front core back
preface main notes COVer cover
body
] [
a) colorHSpec material Spec
red blue cardboard paper
@ I 1
colorSpec materialSpec
s
boFk
b) contentDec
|
main
preface body notes

Figure 3 PES of a Book

One example PES of the SES shown in a) is would be b) in the above figure.

Another valid example of a PES for the above SES would be if one chooses the

physicalDec aspect and then chooses a single color (ex red) for the colorSpec and a

solitary material (ex paper) for the materialSpec. Hence, pruning of an SES can create

not just one PES but a family of valid PESs. Pruning will be revisited in chapter 4.

21

CHAPTER 3 BACKGROUND & IMPLEMENTATION CHOICES

3.1 Programming Language & Graphical Library

In choosing a relevant programming language to implement the objective of this
research, as with many other instances, there were many choices. As the implementations
will mainly involve the generation and testing of Graphical User Interfaces (GUIs), the
leading contenders could be narrowed down to C/C++, Java and Visual Basic (VB)
amongst many. Out of them, Java was the author’s language of choice due to several
factors. The author’s experience of the ease of using Java’s strong graphics was the main
forerunner. Alongside this reason, other benefits such as Platform Independence, Object
Orientation and Distributed Computing were key deciding factors which would also pave

way for future expansion and research.

Once the preference has been made in choosing Java as the programming
language, it should be deemed equally as important to select a GUI library to support it.
At this juncture it should be clearly noted that a full fledged implementation with all bells
and whistles, is totally out of context of this research. It is the firm belief of the author
that, once a basic foundation has been laid, expansions and innovations could be
introduced as a future endeavor. Keeping this in mind, SWT (Standard Widget Toolkit)
was chosen over Swing. The following discussion would serve as a justification as to

why SWT was chosen as the GUI library of choice.

22

3.2 SWT Mapping to SES tree

As it has been discussed before, System Entity Structures clearly follow a
hierarchical format. Visualizing SWT and Swing from a top down structural format, the
author observed that SWT has a more simplified hierarchy compared to Swing. As
mentioned above, this simplified structure suits favorably the implementation objectives.
The below figure 4, depicts a basic SWT hierarchy visualized and mapped into the SES
format. It should be noted that this is not a comprehensive SWT widget/component
mapping into SES, but only a simplified version which would suit the research

objectives.

Shell

Shelllolrg—spec

. TabFolder
Composite 111
TabFoldE{Inif[lilt—asp
Tabitem
TabltemOrg-spec
Composite None
[
Composite Oro-soec
[
Group Layout
(W [
Groupldulti-asp Lavout-znec
111 ||
Groupltem |
I Fill Ahsolute Form
GrounltemStruct-dec : I !
P111C0m|p-dec: Absoli;teComp-dec
|
Layout Components Components
Componentsiiulti-asp
|11
Component
ComponentCont- spec
Button RadioButton CheckButton Scale ComhoBox TextBox Lahel

Figure 4 SES of a basic SWT tree

23

Shell

Shelllolrg—spec

. TabhFolder
Composite 111
TabPoldei'I-.iiul,lt-asp
Tabitem
TabltemOrg-spec
Composite None
[
CompositeOrg-spec
[
Group Layout
WA ||
Grouphdulti-asp Lavout-spec

| 11 I

Groupltem
| Fill Absolute Form
GroupltemStruct-dec : | !
| F111'Com|p—dec AbsolrteComp—dec
Layout Components Components
ComponentsCont-dec
Buttons RadioButtons CheckButtons Scales ComhbhoBoxes TextBoxes

111 |

Labels

BiMulti-asp RdMulti-asp ChiMulti-asp SclMulti-asp CrbMulti-asp TxtMulti-asp LbIMulti-asp

| 11
CheckButton

| 11
Scale

111
Button

I 11
RadioButton

| 11
ComhboBox

| 11
TextBox

Figure 5 Alternate SES of a Basic SWT Tree

| 11
Lahel

25

When developing this SES, some factors had to be taken into consideration.
Given a hierarchical system, it could be understood, that the SES which could be formed
from it can vary from the view of its creator. In other words, there can be several
implementations of an SES derived from an open ended hierarchical system depending
on the perspective of the creator. For example the SES shown in figure 5 was finalized
after several initial attempts at deriving different versions from different perspectives.
Figure 5 is an alternate way of representing the same SES of figure 4 by restructuring the
multi-asp at the “components” level. The main advantage of using the ‘“restructures”
figure 5 version over figure 4 is twofold. Depending on the user preference, the
components widgets at the leaf level of the tree (Button, TextBox etc) may or may not be
used in a GUL. Hence as mentioned before in the sub section 2.3, defining them as a
multiple decomposition as opposed to a specialization will allow for zero (0) items of the
widget when necessary. Also defining them as entities of a specialization (ie figure 4),
will only let the user pick one of the widgets at the pruning level. What if the GUI
consists of multiple widgets? This restructuring process is further discussed in [. On the
same note, a valid question could be raised as to why the “TabFolderMult-asp” was not
restructured in the same spirit in figure 5. Also note that the “TabFolder” could have
being decomposed into several “Tabitems” as shown in figure 6 as opposed to the
multiple aspect decomposition in figure 4. Though both these versions are also well
within the allowable syntax of System Entity Structures, the author foresaw problems of

doing so with respect to future objectives. For one, these methods would pose a

26

restriction to the number of “Tabitems” a user can have in his/her GUIL It would be only
three in figure 6 case. What if the user wanted to have 5 or 6 tabs? If the “TabFolder”
multi-asp were restructure as in the “Components” case, the concept of a “Tabitem” will
be lost and would be very confusing to the user . Also, as it would be discussed later,
when this visual SES is converted to some data model, which would allow for data
extraction and processing, there will be complexity issues deriving data from it. In both
these versions each “Tabitem” is treated as a separate entity which would complicate
things as opposed to the multi- aspect version where all “Tabitems” are considered to
possess the same characteristics. Also the multi-aspect perspective would allow the

ultimate user to define the number of tab items according to his/her preferences.

Shell

shell0ro-snec
[]

Corpositeshel] TabFolder

I
Tahiterms-dec

Tahltermnl TahItern TabIternd

Cotposite Mone
|1

Figure 6 Alternate view of SWT SES

27

3.3 Data Model

Once the System Entity Structure mapping of a SWT GUI tree has been
visualized and established as above , the information need to be stored in some data
model so that it can be read and processed by a programming language (ie Java in this
case) easily. In researching for a data model to meet the needs of the research objective,
a key factor needs to be kept in mind. As all SES mappings follow hierarchy, a data

format that would support tree structures would be naturally the best contender.

The eXtensible Markup Language (XML) was chosen as the best fit due to the
above reason and the reasons mentioned later. Before going any further, a very brief

introduction to XML would be considered appropriate at this stage.

3.4 Introduction to XML

XML could be described as a “nonprocedural programming language, which
means that things written in the language are not so much commands as they are
descriptions of a condition or state. Like almost all programming languages, XML is
written as human-readable text, in such a form that all humans as well as programs can
read and understand the instructions” [10]. XML can markup data so that the reader
(either a human or a program) can identify each piece of the data set and determine its
characteristics by examining the “tags” it contains. A tag can be named anything the
creator of a XML document wishes but the reader (a parser in this case) should be told

the meaning of them to retrieve whatever information which is contained within the tag’s

28

“attributes” and “elements”. Tags have to be paired together so that an open tag also has
an ending tag. It would be more enlightening to follow these concepts through as

example.

— <texthoxes>
— <aspectsOftextboxes>
— <textboxes-multMultiAsp numContainedIntexthoxes="1">
<textbox textboundlx="204" textboundly="29" textboundux="111" texthounduy="20" textbgdcolor="white"> </texthox>
</texthoxes-multMultiAsp>
</aspectsOftextboxes>
</texthoxes>

s W sy B - FL T LS B

Figure 7 XML code fragment

In the above figure “textboxes-multMultiAsp” in line 3 is contained in a “<” and
“>” pair is called a starting tag name which has to be matched with an ending tag as
shown. The “numContainedIntextboxes” is a name of an attribute which should be
followed by a value (ie 1 in this case). All the information from the beginning of a start
tag to the closing of the end tag, and any information in between is called an element.
Hence, the whole of line 4 is an element. Though there is one element in this case with
the name “textbox” there can be many elements. It should be also noticed that the tag in
line 3 is contained within the tag with the name “aspectsOftextboxes” and it within tag
with the name “textboxes”. Hence this tree structure maintains the hierarchy which was

discussed before.

The term “XML document” which was mentioned before is precisely defined by
XML specifications published by the W3C [11] World Wide Web consortium. In very

loose terms, an XML document can be viewed as a “well formed” data file model that

29

meets the W3C requirements and contains a hierarchical tree with tags, attributes and
elements. The detailed rules an XML document must follow is out of scope for this brief
introduction. A parser that will “read” an XML document will also do checks for their
validity [12]. Further more the process we will be using to generate a well formed XML

file will be discussed in detail later in chapter 4.

As mentioned before, besides hierarchy, there were a few other reasons for
choosing XML as the data model of choice. Since information coded in XML is human
readable and easy to understand, it would also prove to be beneficial to the user who will
ultimately have to customize and modify data of the figure 5 to include a specific SES
which he/she would like to be auto generated into a GUI. This process with examples
will be discussed in detail in Chapter 4. As the name says, Extensibility feature of XML
will also prove ideal to the objectives as new tags and attributes can be easily introduced
when necessary. XML does not need to have an ordered fixed set of tags. Also the
robustness feature of XML explained by [13] could be used to advantage as SWT GUI
widget names can be tagged and its attributes and elements can be read through a parser.

Examples in chapter 4 & 5 will clarify these features.

30

3.5 Translating the visual SWT SES to textual XML

Though the figure 5 depicting the SWT System Entity Structure might not appear
to be too complicated to the human eye, the process involving it’s conversion to XML
format has to be given a lot more thought. Naturally this process will include multiple
steps. The information contained in the figure is only in a visual human readable format
and involves a high level of abstraction. It will be necessary to expand the SES with
additional explicit data variables introduced at each level where there is an entity in order
to make it a valid candidate for the ultimate objective of data extraction and auto GUI
generation. For example, at the “Shell” root entity level in figure 5, if a GUI needs to be
defined, a minimum of a shell height and width variables should be introduced. If the
user is given the opportunity to customize and modify the XML based SWT SES (to be
discussed) to include an explicit one, for example maybe of figure 1, he or she should
also be given an addition variable to include the name of the root entity, ie “Computer”.
Hence, it was apparent that the SES needs to be transformed from its visual format to
some textual format (along with the inclusion of the additional variables), so that a
computer program could read it and convert it to an XML format for data extraction. This

process is shown in the below figure.

31

Expanded
SWT SES

in textual
format

Expanded
SWT SES

in XML
format

SWT SES
in visual

format

Figure 8 Process flow : Visual SES to XML

The first hurdle was to identify the easiest process to translate the SES
information in some text based format. At the second level in the above figure, it should
be understood that the SES will grow much larger with the inclusion of the additional
variables. Zeigler and Hammond, in the book titled “Modeling & Simulation-Based Data

Engineering” identifies that “from a static point of view, the SES is an ontology

framework that is much closer to XML than that of Semantic Web ontology [8]. Further
more, they go on to describe and offer a tool to automatically generate valid XML

Schema and instances from an intuitively developed structured model.

Prior to a discussion of the above process, further research needs to be done to
determine what additional variables are needed to be introduced to the SES of figure 5 to
make is a viable candidate for data extraction and GUI generation. After a careful
analysis and further study of SWT components and widgets, the variables shown in table
2 were introduced. It should be noted that only seven widgets, namely buttons,
radiobuttons, checkbuttons, labels, textboxes, comboboxes and sliders were chosen as a

test bed for this implementation and their selection were based on their common usage as

32

seen in regular GUI applications. Also it should be mentioned that each SWT widget is
capable of supporting more variables, to accommodate for more customizations than the
few selected in this implementation. For example, a button could have an alignment
variable or a variable to set its background color or a label could have one to change its
font type. The variables chosen (for some of the widgets) were based on the minimum
needed to place the corresponding widget in an “absolute layout” environment in SWT.
Introducing additional variables to enhance options will be an additional task for the
future and not for an experimental research of this caliber. However a few exceptions
were made to illustrate the above point and the additional variables used for setting the
scale minimum, maximum, increments and page increments will serve as an example.

Also the color variable in labels and textboxes are another example.

33

Entity Variables

Shell name ,height,width

TabFolder tabux ,tabuy ,tablx,tably

Tabltem tabname

Groupltem groupname

Button buttonname,buttonboundux,buttonbounduy,
buttonboundlx, buttonboundly

CheckButton chkbuttonname,chkbuttonboundux,
chkbuttonbounduy, chkbuttonboundlx,
chkbuttonboundly

ComboBox comboboundux, combobounduy, comboboundIx,
comboboundly

Labels Iblname,Iblbgdcolor,lblboundux, Iblbounduy,
IblboundlIx, 1blboundly

RadioButton rdbuttonname,rdbuttonboundux, rdbuttonbounduy,
rdbuttonboundlx, rdbuttonboundly

Scale sclbgdcolor,sclboundux, sclbounduy, sclboundlx,
sclboundly, sclsetmax, sclsetmin, sclsetincr,
sclsetpgincr

TextBox textbgdcolor,textboundux, textbounduy,

textboundlIx, textboundly

Table 2 Attach variables for Widgets

3.6 Natural Language description of an SES

As the detailed syntax for the Natural Language (NL) described by Zeigler et al

can be found in [8], a comprehensive description here is considered unnecessary.

However, in the next few pages an attempt will be made to introduce the key processes

used to convert the visual SWT SES tree (enhanced with variables) to the NL.

It is

deemed that the best way to do this is by way of example.

34

Let us recall that the Root Entity “shell” can be specialized in “design” either into

a “composite” and a “tabfolder”.

Hence in line 1 of figure 9, “shell”, “composite”, “tabFolder” and “design” are the

99 ¢

words of our choice. The words “A”, “can be”, “or” and “in” are key and compulsory in
the NL description which would essentially explain the specialization format. The *“!”
marks the end of any sentence. Line 2 shows the inclusion of the aforementioned
variables name, height and width of shell. Again the underlined are the words of our
choice and the rest are compulsory keywords. Line 3 says that a “name” is of the value
type “string”. This would restrict the ultimate user to enter a name in only string format.

“"’

Note that an intentional space is kept after “values” and the in line 3. This is to allow
the user to enter any name of the string format. Also a variable can be of keyword value
type integer (“int”) which would be the obvious choice for a height and a width. Line 4
and 5 places restrictions on the allowable values which can be specified by the user.
Hence the ultimate user can only enter integers from 300 to 400 as a valid value. Note

that at the pruning stage, these values can be checked for their validity by the framework

(to be discussed) upon user’s choice.

35

A shell can be composite or tabFolder in design!

The shell has a name height, and width!

The range of shell's name is string with values ! |

The range of shell's height is int with values [300_300]!
The range of shell's width is int with values [300.400]!

b e)

Lk

Figure 9 Shell described in NL

Recalling that in SWT, a tabfolder is a container that can include multiple
tabitems, the below figure 10 explains by example how this could be achieved. Again the

underlined are the word of our choice.

From a mult perspective, tabFolder is made of more than one tabitem!

Figure 10 Tabfolder Description in NL

Out of the many widgets that can be selected to form a GUI, recall that seven
were chosen as an experimental case for this study. Hence the entity “components” can
be decomposed into seven further “parts” from a component widget view. This process of
breaking down components into widgets namely buttons, radiobuttons, checkbuttons,
labels, scales, comboboxes, and textboxes is described by the below example in figure

10. Again the underlined are the words of our choice while the “From”, “perspective”,

is made of” and “and” described the aspect of the entity components.

36

From compwidgets perspective, components is made of
buttons radiobuttons.checkbuttons, labels, scales, comboboxes.and textboxes !

Figure 11 Decomposition of “Components” into widgets

The below text block in figure 12 is a part of the NL translation of the SWT SES
which recaps all of the concepts mentioned above (Specializations, aspects, multiple

aspects and variables).

The complete Natural Language translation for the above mentioned SES can be

found in Appendix 1.

The layout can be absolute fill, or form in lavouttvpe!
From absolutecomp perspective, absolute is made of components!
From fillcomp perspective, fill is made of components!

From compwidgets perspective, components is made of
buttons_radiobuttons.checkbuttons, labels, scales, comboboxes.and textboxes !

From a mult perspective, textboxes are made of more than one textbox!
The textbox has a textbgdcolor, textboundux textbounduy textboundlx, and textboundlv!

The range of textbox's textbgdcolor is string with values white vellow, and green!
The range of textbox's textboundux is int with values [0 392]!

The range of textbox's textbounduy is int with values [0_366]!

The range of textbox's textboundlx is int with values [0,392]!

The range of textbox's textboundly is int with values [20,320]!

Figure 12 Segment of SWT SES in NL

37

3.7 Natural Language to XML Process

Once the Natural Language description for the SWT SES is in hand, the tool
offered by Zeigler et al can be put into good use to convert the SES into an XML version.
A practical implementation of the tool can be found at [14]. The figure 12 shows the
“Virtual Working Table” Web User Interface which will be used to first generate our SES
in XML and then a PES which will be the ultimate file the user will need to modify to

generate a GUI. This process will be explained in chapters 4 and 5.

Modeling&Simulation-Based Data Engineering:

Introducing Pragmatics into Ontologies for Net-Centric Information Exchange
Bernard P. Zeigler and Phillip E. Hammonds
To Be Published by Elsevier

Virtual Work Table @tess o popup tlocker on your Browsss when using this sits, click helg' Sr mors deuzity | HEIP |

Elsevier selectan action -
Amazon Books
Online Course from
University of Arizona

i selectan action - - l

@ selectan action - @

Figure 13 Vitual Work Table Web Interface

The conversion of the SWT SES in NL to a one which could be “Pruned” by a

user, involves a 3 step process.

38

Step 1:

The SWT SES in its Natural Language format (found in Appendix 1) will be
copied into the text area of panel 1 in the above figure. Afterwards from the drop down
list between panel 1 and 2, “NL to SESinXML” needs to be selected and then the “green
arrow” clicked. Figure 14 shows this process with the SES in XML auto generated in

Panel 2.

Virtual Work Table {Plassa turm-of pop-up blocker on your Browsar when using this site, click "help’ for mors datail) Iﬂ/

with values [0,100]! - <?xml version='1l.0' encoding='UTF-8'?> L
The range of scale's sclsetmin is int <!DOCTYPE entity SYSTEM "ses.dtd" []> =
with values [0,100]! I_ .|.. <entity name = "shell">

The range of scale's sclsetincr is int <zpecialization name = "shell-

with values [1,10]! designSpec”>

The range of scale's sclsetpgincr is NL to SESinXML i <entity name = "tabFolder">

int with values [1,10]! <multilispect name

= "tabFolder-multMultiAsp™>

4 M

<numberComponentsVar max ¥

i selectan action - Selectan action - l"

Figure 14 Virtual Work Table panels 1 & 2

Step 2:

Once the XML version of the SES is generated in Panel 2, “SESinXML to DTD”
needs to be selected from the dropdown list and the “green arrow” between panel 2&3
clicked to generate a DTD of the SES in XML. Figure 15 illustrates this process. A
Document Type Definition (DTD) defines the legal building blocks of an XML

document. It defines the document structure with a list of legal elements and attributes.

39

As the DTD conversion is only an additional step to accommodate for the usage flow of

the tool, further technical explanations will be considered unnecessary.

Virtual Work Table (Plazzsz tum-0f pop-up blocksr on your Browssr when using this site, click help” for mors detzil) He\p

values [300,400]! <7?xml wversion='1l.0' encoding="UIF-8'7?2>

From a mult perspective, tabFolder is <!DOCTIYPE entity SYSTEM "ses.dtd" []>

made of more than one tabitem! . .\. <entity name = "shell">
<specialization name = "shell-

m o
M-

The tabFolder has tabux, tabuy,ctablx, designSpec">

and tably! R SESIAML = <entity name = "tabFolder”>
The range of tabFolder's tabux is int <multiAspect name
with wvalues [0,10]! = "tabFolder-multMultiAsp™>
The range of tabFolder's tabuy is int
with wvalues [0,10]! > <numberComponentsVar max i
r :l::
i select an action - SESinXMLto DTD - 4
- <?zml wersion='1.0' encoding='us- e
ascii'?ﬂ =
<!-— DID for a shell --3>
Select an action -
<IELEMENT shell (shell-designSpec)>
41 <!ELEMENT shell-designSpec (tabFolder
| composite }>

<!ELEMENT tabFolder
(aspects0ftcabFolder) >

Figure 15 Virtual Work Table panes 1 - 3

Step 3:

After the DTD is generated in panel 3, “DTD to PESinXML” needs to be selected
and the “green arrow” clicked between panel 3&4. The panel 4 will show a candidate
SES in XML format for a Pruned Entity Structure (PES). Figure 16 illustrates this
process. As Pruning the Entity Structures remain a very important step prior to a GUI

can be generated from it, a detailed introduction will be given in the next chapter.

40

Virtual Work Table {Plaszz tum-of pop-up blocker on your Browser when using this site,

wvalues [300,400]!
From a mult perspective, tabFolder is
made of more than one tabitem!

The tabFolder has tabux, tabuy, tablx,
and tably!

The range of tabFolder's tabux is int
with +wvalues [0,10]!

The range of tabFolder's tabuy is int
with wvalues [0,10]!

Select an action -

<?xml version="1.0"' encoding='UTF-8'7?>
<!DOCTYPE shell SYSTEM "xmlinDID.dtd™
1>
<shell height = "int300,300Value"™
name = "stringValue"™ width
= "int300, 400Value™>
<shell-designSpec>

<tabFolder tablx
= "int292,392Value™ tably
= "int266,366Value™ tabux

bt

'NL to SESinXML

DTD to PESInXML

4

click "help’ for more datail)

<?xml version='1l.0' encoding='UIF-8'?>
<!DOCTYPE entity SYSTEM "szes.dtd"™ []>

<entity mname = "shell">
<gpecialization mname = "shell-
designSpec”>

<entity name = "tabFolder™>

<multiBAspect name
= "tabFolder-multMultiAsp™>

<numberComponentsVar max

SESinXMLto DTD - 4

<?xml version="1l.0' encoding='us-
ascii'?>
<!-= DTD for a shell -->

<!'ELEMENT shell (shell-designSpec)>
<!ELEMENT shell-designSpec (tabFolder
| composite)>

<!ELEMENT tabFolder
({aspectsCfrabFolder) >

Figure 16 Virtual Work Table panes 1 -4

41

CHAPTER 4 USER MODIFICATIONS: PRUNING AND EDITING

This chapter will explain in detail the process of Pruning and Knowledge
Representation of the SWT SES which will be a required task before a GUI can be
generated from it. As the pruning process will Solely determine the format and layout of
the GUI (to be Generated later in the next chapter) , it will be of utmost importance.
Efforts will be made to introduce the inherent steps by way of example. As explained in
the previous chapter, the SES generated in XML in step 3 (found in Appendix 2) will be
the candidate for modification by the user . It will be made into a PES by the user to

meet his/her specific requirements.

As we saw in Chapter 2, the Pruning of an SES can create a family of PESs.
Hence as a start we will consider the specific PES shown in figure 16 below and discuss
how it could be made a valid candidate for data representation and extraction. The path

marked in RED is the intended PES to be derived from the original SES.

42

Shell

Shelllolrg—spec

o TahFolder
Cum.p;jﬂte 111
TabPoldefI\.i:[ullt-asp
Tabitem
TabltemOrg-spec
Composite ;L_q-f"ﬂ..g
N S
CompositeCra-snec
[]
Group Layout
e LT | |
Greuplulti-asp Lavout-spec
AL | L
JGrm'ip.Iltem |
’ i | NFL S Ahsolute Farm~”
BrounltemStruct-dec I l__ ¥ |
" | FlllConjlsﬁ-agﬂ_.ec AbsolFtEComp—dec : s
Layout Cl;f:;llpunents.“ Components

ComponentsCont-dec

Buttons RadioButtons CheckButtons Scales ComboBoxes TextBoxes Lahels

111 11 111 Lo 111 P
BtMulti-asp RdMulti-asp ChicMulti-asp SclMulti-asp CrmbMulti-asp Tathlultr-asp LbMulti-asp

111 | 11 | 11 |11 | 11 | 11 |11
Button RadioButton CheckButton Scale ComboBox TextBox Lahel

Figure 17 One PES for SWT SES

43

A reverse engineering approach will be used to best explain the process. Let us consider
the Simple GUI shown in figure 18 below with one tabitem.

r 7
W SimpleGUIL = | B |5
Personal
- O
(1 Fernale
Figure 18 SimpleGUI1

The process required by a User wishing to generate the above GUI can be broken

into a two steps.

1) Prune the SES in XML shown in Appendix 2 to one that reflect the figure
16 . This would result in a much smaller PES (in XML) to edit in the

next step

2) Once the PES is derived, the user can embed relevant information into its

already existing variables to make it viable for data extraction

44

The two step process is discussed in details below.

4.1 Pruning the SWT SES

As mentioned before we first need to prune the SES shown in Appendix 2 to
derive the specific PES shown in figure 17. A special note should be made that the line
“<IDOCTYPE shell SYSTEM "xmlinDTD.dtd" []>", which would usually appear as the
second in the SES generated in Panel 4 (refer to Step 3 in previous chapter) was
intentionally deleted in the one shown in Appendix 2 . This is due to the fact that the tool

which generates the Automatic GUIs (discussed in the next chapter) does not require it.

Though the aforementioned SES seems to be rather big, it should be noticed that
it carries lot of extra redundant information in this particular case. The crossed out

entities needs to be first removed from the SES to make it into the PES of our choice.

Though the SES could be edited within the Panel 4 of figure 13 itself, it might be
more convenient to use an XML editor to do the tasks at hand. An editor would let you
directly modify or delete an entity along with all its attributes and elements. This would
prove to expedite the process than deleting it manually by hand. Also an editor would let

you directly fill in values for variables. The below screenshot shown in figure 19 is

45

extracted from Altova XMLSPY User Interface [15]. It shows the SES (ready for
pruning) in Appendix 2 opened and ready for editing. The big oval in yellow covering the
blue colored area in the figure is one to be deleted. It is the “Composite” entity which
needs to be deleted as shown in figure 16 . After the pruning process, the PES become

significantly compact in size as a quick glance at the PES in Appendix 2 would show.

= height 500,400V alue
= pame stringValue
= width int300 400Value
« shell-designspec
« tabFolder
= tabix 392Va
= tably int266, 366Value
= tabux int0, 10V alue
= tabuy int0, 10%alue
+ aspectsOftabFolder
tabFolder-multMultiAsp
= numContainedl... 1
tabitem
= tabname siringValue
tabitem-structure Spec
{} none
composite
A‘ composﬂe-drawabfear<
] By
L] 1] J J J J LI > g

4 | tan
Tedt |[Grd | Schema/WSDL | Authenic | Browser |
artovasa\re Eprunedforguwexl ; 7-08good7wid+group+compositePESinXML |

Figure 19 Altova XMLSPY

4.2 Entering data into variables :

Before the User can modify the variable data values of the PES, he/she needs to
understand the basics of how the GUI in figure 18 correlates and maps to the existing

PES.

46

Let us try to describe the GUI in hand. It is a GUI with the title “SimpleGUI1”
displayed in a single Tab with the name “Personal”. Within the Tab the following widget
components are placed strategically. Namely, a Textbox, 2 Labels, 2 Radiobuttons and a
Button. Respectively, the names of the labels, radiobuttons and the button are “Name”,
“Gender”, “Male”, “Female” and “Done”. The background colors of the two labels are

green and red.

With this information is it easy for the User to comprehend that the Shell name is
”SimpleGU1”, the Tabfolder should contains 1 Tabitem with name “Personal”, and the

components widgets should contain only the 3 mentioned above.

As mentioned before the multi-asp feature allows the inclusion of 0 (zero) items.
Hence this feature could be put into good use when the user does not want to include any

other widgets.

For example in this case, the “numContainedIncheckbuttons” variable should be
set to 0 and anything between the <checkbutton> and </checkbutton> tags should

removed. Looking at the code in Appendix 3, would clarify this.

Once the basics have been understood values for variables could be entered into
the PES in XML. The red ovals in the above figure show example areas where direct
values could be keyed in for values. For example the top oval shows the area where
values should be entered for Shell’s height, width and name. Similarly the user can key
in the values for rest of the variables of the PES. The Shell height would be 300 and the

width would be 400 with the name modified to “SimpleGUI1".

47

As the “Absolute Layout” was the pruned choice for this particular example, a
question might arise how the user would know the coordinate values to fill in. Let us
revisit the SES in NL , shown in Appendix 1, and observe the below block of code

extracted from it.

The range of tabFolder's tabux is int with values [0,10]!
The range of tabFolder's tabuy is int with values [0,10]!
The range of tabFolder's tablx is int with values [292,392]!
The range of tabFolder's tably is int with values [266,300]!

When the NL for the SES was initially defined, calculated restrictions were

imposed on the range of values the User can enter.

Note the line 5 of the generated SES in XML of Appendix 2,

“<tabFolder tablx="int292,392Value" tably="int266,366Value"

tabux="int0,10Value" tabuy="int0,10Value">".

The indicated ranges show up within the area whether the value has to be keyed
in. For example tablx= “int292,392Value” suggests a value between those ranges. So the
User can simply chose a concrete value such as tablx= “392” or Iblbgdcolor= “red” for

the label color.

48

4.3 Validating the PES

It would be worthwhile to mention that the tool introduced in the previous chapter
has a built in feature which checks the validity of the values entered in the PES with the
original ranges defined by the SES in NL. This is an optional choice for the user but
could prove to be useful. After the specific values has been entered into the variables, and
the PES finalized, the user can select the “Validate PES” from the dropdown list between
panel 4 & 1 and click the green arrow(refer to figure 13) . The below figure illustrates

this process for the modified PES SimpleGUI1.xml in Appendix 3

with values [0,100]! - <?xml version='1.0' encoding='UTF-8'?> o
The range of scale's sclsetmin is int <!DOCTYPE entity SYSTEM "ses.dtd" []> =
with values [0,100]! B 4 <entity name = "shell">

The range of scale's sclsetincr is int Windows Internet EXP|GIEFL&J <specialization name = "shell-

with values [1,10]! designSpec”»

The range of scale's sclsetpgincr is <entity name = "tabFolder™>

int with wvalues [1,10]! <multifispect name

- . . N = "tabFolder-multMultifisp™>
This PES is valid

<nunmberComponentsVar max >
r
:
Validate PES - SESinAMLto DTD - r
<?xml version="1.0" encoding="UIF-8"7?> - <?xml version='1l.0' encoding='us- %
= ascii'?>» =
<ghell height="300" name="SimpleGUI2" <!-- DID for a shell -->
el i DTD to PESinXML -

<zhell-designSpec> <!ELEMENT =hell (shell-designSpec)>
<tabFolder tablx="382" ﬁ <!'ELEMENT shell-designSpec (tabFolder
tably="266" tabux="0" tabuy="0"> | composite }>
<!ELEMENT tabFolder
<aspects0OftabFolder> (aspectsCftabFolder) >

Restart

Figure 20 Validate PES in Virtual Work Table

49

Once the PES in XML is finalized, it should be saved for later use. Though one
might feel that even with these features to make it more user friendly, a PES with
Absolute Layout can prove to be too cumbersome for the User to edit and modify, it
should be noted that it has its own benefits including total user control of widget
placements. As we will see later in Chap 6 , using a PES with the “Fill” Layout can
drastically reduce this overhead time to figure and fill out the location variables, but

likewise it will have it’s own disadvantages.

Also an argument can be made that there is a time overhead for this modification
process for what appears to be conservative gain. Though it is agreed that the initial
pruning and modification process can take a while, the benefits of this method does not
reside in simple GUIs as the one discussed here. For example and argument sake, if we
wish to have 3 tabs with each containing the same layout configuration within the tab as
the one shown above, but only the tabname and widget names change, the modification

process would be nothing simpler.

All it takes is to

a) modify the “numContainedIntabFolder” value to 3

b) make copies of every thing within the “tabitem” tags (line 7-81 in

Appendix 3) two more times in succession

c¢) change the variables containing names to reflect the newer ones.

50

An example SimpleGUI2.xml created by this process can be found in Appendix 4.

Though it seems appropriate that a few more examples using different SWT PES
is discussed at this juncture, the author deems is necessary to go into the GUI generation

process and then revisit more examples in the following chapters.

51

CHAPTER 5 AUTO GENERATION OF GUIs

From the User perspective, once a Pruned Entity Structure reflecting a specific
GUI is defined in XML, the GUI generation process proves to be a comparatively trivial
task. To generate GUIs, the user only needs to feed the XML file into a tool named

“SWTParser” which was written as a part of this research effort.

5.1 SWTParser

The SWTParser is a tool written in java by the author which takes a predefined
SWT PES in XML format as input, and writes out an auto generated .java file to a
specified path. Figure 21 illustrates this process. The written java file is a fully functional
GUI based on SWT libraries which only needs to be compiled and executed by the user.

The execution process and its features will be discussed later in the chapter.

PES in XML |:> SWTParser > GUlas java

Figure 21 Process flow : PES in XML to GUI

52

5.2 The testing and execution environment

The tool was written and tested on a Pentium III machine running JDK 1.5.0_11
with 256MB of memory. However for processing of large GUISs it is recommended that a
faster processor with at least IGB memory is used for speedy code generation. As java
code is portable and can be compiled in cross platforms, there should be no issues in

running this tool on a Linux or MacOSX based machine.

For demonstration, execution and testing purposes, henceforth we will be using
the Eclipse SDK Version: 3.2.2.r322_v20070104 IDE for Windows which could be
download as freeware [16]. For Linux and MacOSX enthusiasts there are compatible
Eclipse IDEs also downloadable at the above site. It will be presumed that JDK and SWT
libraries are installed and imported into Eclipse and ready for execution. The below

figure shows the basic Eclipse IDE with SWTparser .java open.

53

B Java - SWTParserjava - Eclipse SDK

File Edit Source Refactor MNavigate Search Project Run FieldAssist Window Help

-l @0~ $-0-Q- S#G- DS b |- B R R R R R £ [I]
Packa...| Hierar... [%2 Navig... 52 = 0| 1] DomToXMLjavs [1] AddressBeckjava [|1] SWTParserjava L2 ' SimpleGU java | = *SimpleGUIZjavs | SimpleGUHxml | s i
e COCTRRITL BUTI0e s CUITOer = e
= HE K B facto
[} computer.omi
[7} computerT02ami
) computer706.xmi
s DomTraed?.class i
[3) parserjava Documenc = builder.parse(
[2) samplel xmi
[sample2ami
[} zample2OLDxmi
[sampleZtabsxmi
[sample3ami 1
[sample3tabs.ot
[sampledtabexml
[sampledxmi
B pmplewthscaeam ’rz o Fade (" e/workapace/ses/ses/parser
181 samplewithislecambo s TnStantINTE ot B
SWTParser thisOb] = new SWIFarser():
s SWiParser.class
this0bi.processNode (document) :
[tTTEGpvalid] v
[smibwithfillandgroupvalid2 teatch (Exception &) {
- util = e.princScackTrace (Syscem.arr);
| .classpath] ch
[-project writ assi): -
] derivedSesFarBookxml “ it v
| HouseSes.xmi = s
ﬁ et Problems | Javadoe Search| B Console i - 3 il o8~ w =0
B nonsEsinstancexmi SimpleGUIL [SWT Application] C:\Pragram Files\Javajdicl.5.0_11\jre\bin javaw.exs (Jul 8, 2007 10:31:50 PM)
fih SesExmplecsd
2 simgui
2 testGui
5@ src

4is Computer.class
I} Computerjava
P\ i1 adnan

Writsble Smart Incert 551:1

swTp. | Chwest Mad "> Snagh Capt [SmpleGUR

Figure 22 Eclipse IDE with SWTParser open

5.3 GUI code generation process

From a User perspective the auto generation of a GUI is a simple 4 step process

Step 1:

Copy the Pruned SES in XML (SimpleGUI1.xml in this example, which
was created in the previous chapter and can be found in Appendix 3) to some
folder. In this case it is placed in the same folder as the SWTParser.java for

convenience. Shown with 1 &2 in figure 21.

54

Step 2 :

Include path of the PESinXML (ie SimpleGUIl.xml) as below within
the main

function.File("'c:/research/eclipse/workspace/ses/ses/parser/SimpleGUI1.xml"
))s”

Note that only one file can be read at a time.

Step 3 :

Set the global variable “outdir” located in the SWTParser class to a
convenient path of the User’s choice. This is output path is where the user will

find the auto generated java file for the GUI In this case it was set to
outdir=""c:/research/eclipse/workspace/testGui/src'';

as shown by 3 in figure 22.

Step 4 :

Once the GUI java code is generated (SimpleGUIl java) it can be
compiled and executed to produce the actual GUI. The below figure shows the

output of the SimpleGUII .java running in the Eclipse IDE foreground.

Packa...| Hierar.. |55 Ninag. &3

| nenSESinstanceml

fiD SesEompbensd

sengu

G me
43 guiclass
1] guijova
&) guid.class
(1) guizjwes
fis guidclass
1] quidjer

0 lasspath

| preject

Remtui

=
&0 Computer.class
(] Camputer jrea
£ Computer?IZ.clas
1] Computer iz
41y Computer?D.ciss
| Computer?0E juva
41} Computestclass
5] Cemputertxjica
& ExGUB.lan
[f) ExGUB java
13 ExGUM class
] ExGUR jiva
4ih Semplel.class
1] Swmphed jrvn

Scrap.ghg

£, SimpleGU class
1) SimpbeGLEL java
&) SimpleGULL clase
(1) SimpheGUL2 java

teGusre S A java

Following the same four steps discussed above, the SimpleGUI2.xml which was

BP-O-Qr BHEF~ DF

B/ [f) DomT java [Fi]

package 8rc:

impart o
impart
tapart
import
import
tmpart
tmpart
impart &
import org.ecii

Source | Design

Problems | lavadoc | Search | D Console ©2
B SamgleGUIL [SWT Appheation] C\Program Flesliva'jdk] 5011 e e pinviwne (il 13, 2007 6409:32 P

Figure 23 SimpleGUI1 executed

discussed in the previous chapter can be processed through SWTParser to generate the

SimpleGUI2.java. Below figure contains the output of the exercise.

56

B SimpleGUIZ T | B |t

Personal | Education |Contact|

-

(71 PostGrad

Figure 24 SimpleGUI2

When referring to the SimpleGUI2.xml one can notice that both the “Education”
and “Contact” tabs have a label named “Details” within them. It should be noted that the
tool has built in intelligence to generate proper output even in such cases. However the
user needs to be careful not to name 2 widgets of the same category (eg 2 labels) with

identical names within a single tab.

On the same topic, it should also be noted that if a user inputs a shell size , for
example as 300 height and 400 width, and enters bad coordinates for tabfolder location
variables (ie tabux, tabuy etc) , the tool has built in intelligence to recognize the bad
coordinates and re-adjust the tabfolder to fit well within the shell. (User entering bad
values can be reduced through the mechanism discussed in chapter 4) The author point
this out only as an attempt to show that the tool can be further extended to add such

features when necessary

57

The ExGUI3.xml (it’s not a simple GUI anymore) code attached in Appendix 5
will clarify the above feature on auto resizing. Also, note that the “Personal” tab as seen
in the below figure has been expanded to demonstrate the use of other widgets. The

below ExGUI3 was generated and executed using the same methods discussed above.

S ihn [ESETER)
Personal Educationl
- Name
—
"1 Female
EEE

[
 Country =

Figure 25 ExGUI3

58

CHAPTER 6 SES TO GUIs

In the previous chapters, we discussed how we can include GUI information into
a PES in XML format and auto generate the desired GUI from it. As we initially took a
reverse engineering approach and worked forwards, it would probably not be apparent
whether a specific instance of given SES (maybe a physical hierarchical system) could
be mapped into the existing framework and then a GUI could be generated from it. This
chapter will try to introduce a simple methodology to perform the above function given

an SES.

Let us consider a slight modified version of the SES in figure 1 shown in the below
figure.

59

Comnputer
Technology-Spec Class—Sreu:
VLEI WWafer Analog Digital
Part-dec Phyzical-dec

| .
o | | |

Eesistors Capacitors Inductors CFTT Memeory ICDevices D3

Figure 26 Variant of Computer SES

Is it possible for us to transform this SES into a GUI ? A User might say, “Okay,
I see that the root entity will be the Computer, but how do I go about mapping rest of the
Entities to a SWT PES to generate a GUI?” As a formal approach to this process is not
defined yet, the above question will prove to be valid. It should noted that before
information from the above SES is translated to a SWT PES by a user, there is a
intermediate step which is still undefined. = Hence, the next sub section will try to

introduce a methodology to take the above SES and relate it with the existing SWT SES.

60

6.1 Mapping a SES to the SWT SES

The figure below presents a way a user can relate the Computer SES to the SWT
one. The Computer is considered the root entity and hence the name “Computer” can be
embedded into the shell name variable. A specialization name (Technology & Class) is
thought of as a tabitem name. The corresponding entities of the specializations (VLSI,
Wafer, Analog & Digital) should be contained in a group as groupitems. The groupitem
is used to organize an area (within a tab in this case) to sub areas. Each of these sub areas
can be given a name to visually recognize them as we will see later. A “composite” also
defines an area in SWT, but they do not have visible name attached to them. The user
should be aware that in SWT, there is only a concept called group and no physical
element called a groupitem as in tabitem. However , for this research , the concept of a
group and a groupitem was introduced at the SWT SES level. A quick glance at its
description in NL(Appendix 1) and the corresponding PES of figure 26 shown in
Appendix 6 would clarify this further. The SWTParser will look at how many groupitems
are defined in a group and translate them into valid SWT code. This process is hidden
from the user as he/she doesn’t need to be aware of the SWT code generation semantics.
The User will only need to be aware of the conversion process of the given SES to a

SWT PES in XML.

61

Computer -

= I [l =

Technology-Spec Class -Srec

Digital

Physi.ca]—| EC
1 | | | |
groupitem Z=ai
_——

Component widgets

Figure 27 PES of SWT SES with Group

When a specialized entity is further decomposed as in this case, the leaf level
entities (Resistors, Inductors, Capacitors, CPU, Memory, IODevices and OS) will be
component widgets. Of course one could ask what happens if an aspect is further
decomposed ? As mentioned in the introduction the objective of this research was not to
cover every level of possibility. Hence, further research in this area will be needed to

expand on the concepts introduced here to cover issues as such.

62

Once the User has a clear method of formalism in mind, the Computer SES can be
transformed into a SWT PES which could be read and a GUI generated from it. The

figure below shows the path (in Red) the SWT SES will have to take to create the PES

for this example.

Shell

She lllC)Jrg—spec

. TabhFolder
Composite I 11
Tabl:'oldelrl\iiﬁlt—asp
Tahitem
TabltemOrg-spec
Composite None
[
Composite Org-spec
: [5]
Group Layout
111 [
Grouphulti-asp Lavout-snec
0] I
Groupltem
| Fill Absolute Form
GrounltemStruct-dec ! !
| FillComlp—dec AbsolluteComp—dec
Layout Components Components
ComponentsCont-dec
Buttons RadioButtons CheckButtons Scales ComhoBoxes TextBoxes Labels

BiMulti-asp RdMulti-asp ChicMulti-asp SciMulti-asp CrmbMulti-asp Txtbulti-asp Lb

[11
CheckButton

[11
Scale

111
Button

I 11
RadioButton

| 11
ComhoBox

| 11
TextBox

Figure 28 PES of SWT SES with Group

lulti-asp
|

Lahel

64

6.2 Groups & Fill layouts

To understand more thoroughly the concepts of “group” , “groupitems” and “fill” layout
, let us consider the segments of XML extracted from the PES , ExGUI4.xml from
Appendix 6.

7 <tabitem labname="Technology">
8 =<tabitem-structureSpec
g <composite>
10 <composite-drawableareaSpes
1 Lgroups
12 =aspectsOfgroups
13 =group-multMultifdsp numContainedingroup="2">
14 =groupitemn groupname="vLSI"=
15 =aspectsOfgroupitens
16 <groupitem-groupitemstruc Dec
17 =layour
18 <layout-layouttypeSpec
19 =fil|>

Figure 29 ExGUI4.xml code fragment

In the above figure, note that the composite-drawableareSpec has been pruned to
include “group”. In SWT a group is different from a composite container as it is allowed
to have a visible name and a border. Note , in all previous examples the pruned path was
composite -> layout. As there are two candidate groups (ie VLSI and Wafer) under
“Technology” tabitem, the multAsp number will be 2 and two groupitems needs to be
created with the above names. Attention should be drawn to the uniformity axiom of
SES as the layout under groupitem is the very same as the layout entity we have seen
before. However, in previous examples we were using “absolute” as layouttypeSpec but

in this case we are using “fill”. As the “VLSI” and “Wafer” groups are not further

65

decomposed there will be no component widgets within them. One can note this fact by

observing in Appendix 6, that all component widgets have num O.

The main advantage of using fill layout is that the user will be relieved of the
burden of figuring out the coordinate locations for each component as in absolute layout.
This drastically cuts down the PES generation time. Hence the reason for specifying
<tabFolder tablx="0" tably="0" tabux="0" tabuy="0"> in line 5 of the xml code.
However the downside is that the user will lose control of exact widget placements.
When using the fill layout, any component which is added to the container (ie shell,
composite or group) will be equally spaced as shown in the below figure. The figure 30
shows the output generated using SWTParser for ExGUI4.xml using the same method
discussed in the last chapter. Note that the SWTParser automatically adds components to
a container in fill layout horizontally by default. It also sets the shell and composite
containers to use fill layout automatically if the User chooses fill as a group layout. Note
that a bug in SWT will not allow one to specify a shell as “absolute” and add widgets to
its sub containers using fill layout. Actually, though code can be written as such and will
compile, when it is executed, the widgets will not appear as expected! These corrected
actions are hidden from the user as he/she does not need to be aware of it, but it will be
visible in the auto generated code. A small extension would be needed to the original

SWT SES in NL, if one wishes to add components vertically.

n | ExGUI4

e B RS 57 gL

66

= e |

Technology |Class |

|Technolog}r| Class |

VLsL

Wafer

Analog

) Capacitors

(7 Resistors

() Inductors

Digital

[Ccru

|:|Memor:,r

@ 0s

) I0Devices

Figure 30 EXGUI4

It should also be noted that though the above GUI will appear visually correct to a

regular user’s eye, to a user who is proficient in the semantics of SES will find it rather

irregular. The reason is due to the fact that radio buttons and check buttons were chosen

as widget options for the decomposed entities at the leaf level. The decomposed entities

practically should not be items of choice. A radio or a check button is a widget which can

be chosen active or otherwise. Hence a discrepancy would arise. The below figure

depicted with textboxes containing the component names would be a more appropriate

choice given the restriction of the seven widgets to select from.

B ExGUI4

67

=|E

Technology | Class

Analog
Capacitors

Resistors

Inductors

Digital
CPU

Memory

as

[0Devices

Figure 31 A semantically correct version of EXGUI4

6.3 Further reducing pruning and modification time ?

As we noted before, when using the fill layout, the User conveniently does not

have to figure out the location coordinates of the components. Hence the reason tabux,

tabuy etc was set to 0. If the location coordinates are unimportant, why does the User

have to fill in Os? This takes way some of the time saving benefits. Can a User, for

example, leave the original tags as it were without modifications? For example can the

user leave a radio button description line as

<rdbutton rdbuttonboundlx="int0,382Value" rdbuttonboundly=" int20,350Value"

rdbuttonboundux="int0,392Value ’rdbuttonbounduy="int0,366Value"

rdbuttonname="Capacitors"> ?

68

The quick answer is Yes. This feature was thought about when the SWTParser

tool was written. The tool ignores all the location tags when reading a PES using fill

layout.

Let us consider the below code extracted from appendix 6.

142
143
144
145

147
148
149
150
151
152
153

155
156

157
158

<groupilem groupname="Analog’>
<aspectsOfgroupitens
=groupitem-groupitemstrucDec-
<layout
<layout-layouttypeSpec
=fill>
<aspecisOffill
=fill-fillcompDes>
<companents>
<aspectsOfcomponents
<components-compwidgetsDee
=radiobutions>
<aspectsOfradiobutions
<radiobuttons-muitMultidspnumCeontainedinradiobuttons="3"=
<rdbutton rdbuttonboundie="0" rdbuttonboundiy="0"
rdbuttonboundu="0" rdbuttonbounduy="int0, 366V alue" rdbutionname="Capacitors'>
<irdbutton>
<rdbutton rdbuttonboundix="0" rdbutionboundly="0"
rdbuttonboundwe="0" rdbuttonbounduy="int0, 366V alue’ rdbuttonname="Resistors>
</rdbutton=
<rdbutton rdbuttonboundi="0" rdbuttonboundh="0"
rdbuttonbounduwse="0" rdbuttonbounduy="int0, 366V alue’ rdbuttonname="Inductors'>
<frdbutton>

<fradicbuttons-multMultidsp>
</aspectsOfradiobuttons

</radicbuttons>
</components-compwidgetsDes

Figure 32 Another ExGUI4.xml code fragment

Note that one of the location radio button variables was intentionally left as it

were originally to display this feature and the SWTParser would still work. (One can

leave out all the 4 location variables as they were initially and SWTParser would still

work). Also note that as we are using three radio buttons to define “Resistors”,

“Inductors” and “Capacitors” in the “Analog” group, the rest of the widgets were

69

completely left out intentionally within compents-compwidgetsDec. Previously when a

widget was not needed we made the multAsp num to O as in the below code

<checkbuttons>
<aspectsOfcheckbuttons>
<checkbuttons-multMultiAsp
numContainedIncheckbuttons="0"/>

</aspectsOfcheckbuttons>
</checkbuttons>
Leaving these out would further reduce the user pruning and modification time.

However there is an important fact to make note in both the above cases. When
validating a PES as discussed in the subsection “Validating the PES”, leaving the original
variable values as they are (ie not giving them an explicit value like 0) will cause an
error. Also leaving out the rest of the widgets completely as opposed to making their
multAsp number to 0 would result in “number of entities in components-compwidgetDec

in SES and PES not equal”. Hence there will be a trade off with this process if one

wishes to validate the PES using the “Virtual Working Table” before copying it to file.

6.4 Generating Professional GUIs using SWTParser

As mentioned in chapter 1, the initial motivation for this research was derived
when the author was working on the GENETSCOPE project to study a feasible method
for mapping its existing GUI to a System Entity Structure. Hence it would be interesting
to extract one of its frames as shown in figure 32 and discuss the possibility of

regenerating a similar GUI with the processes presented in this study.

< GENETSCOPE - NeiSim2

|ﬁ Experimental Frame

Simulate Configuration

Load [Update Configuration

Refresh Repostony

Mobile Stations

MsgHr

‘@ Data Msg

1 Woice Duration

Ground Stations
‘Sound Interval

Aircrart Sourd

| Interval

| SNR Threshold

i

all

g 150 200 250 300

2

0 10 20 30 40 0 60 70 60 90 100

0 50 1
r {EE 1
0 10 20 30 40 50 60 70 €0 9O 100

T

L1}

| i i e
00 150 200 250 300

L] 5l o0 1500 200 250 300

=
1 1

Lt ol welp oy n i
27 21 -1 8 -3 3 9 15 2 27

Configure Experiment

10|
fen |

[0 |

Figure 33 GENETSCOPE Experimental Frame

70

The relationships defined in figure 33 could be established by comparing the

above figure with the knowledge gathered through this study.

71

e e

1] L1 g 150 FO0 250 300 - |
0 10 20 30 40 50 60 70 00 00 100 | !

10|
n 50 100 -

Sirnulete Confuration /|) _ ;«,\E
\wrmwnq{ B o | =
[0 10 20 30 40 50 60 7O 00 DO 100 _|3':
'S { o
Ground Stations o | | I8
Sound Intzrval 0 S0 W00 150 00 250 300 -,%

Alrcran Sound 7 L

Intenval L] 50 100 150 200 250 300
; hG 1 -
|| SNR Thieshold i |

Component
widgets

22 9B 0 3 3 0 15 M 27
infigune Expotiment

]

g
e
=,

Figure 34 GENETSCOPE EF mapping to SWT SES

Note that by using a fill layout, it will reduce the times involved in producing a
PES for this GUI. But as mentioned before, by using the fill layout , the user will not be
able to exactly place the widgets where he/she wants and hence an absolute layout might
be more suitable for this particular GUI. Using the concepts discussed in chapter 4 , 5 and

6 one should be able to generate a somewhat “similar” but not exact GUL

However, the discussed mapping would not be able to fully include this GUI
frame as one would see. Adding the missing “slider” as a component widget to the
Original SWT SES might not be a complicated task. The area where the “About” and

“Help” buttons are located still needs to be specified. Hence a suggestion could be made

72

that a PES following the “path in red” in the below figure should take care of this issue
somewhat as the composite can be sub divided into 2 areas mapping to 2 group items .
The first would involve the groupitem area where the “About” & “Help” buttons can be
placed. But the second groupitem should be able to add a tabfolder to it to be able to
specify the two tab items (Start & Experimental Frame) discussed above. As the current
SWT SES doesn’t support that feature, the entity Groupltem(circled in red in figure 34)

should further be extended to include a tabfolder.

Hence as one could see, this research can be further expanded to support for more
complicated GUI. As mentioned in the introduction adding bells and whistles are left

alone for a further study now that a basic frame work has been developed.

Shell

Shelllolrg—spec

Composite

73

TabFllllldllar

TabPoldelrI'.lﬂililt—asp

Tahitem

[

TabltemOrg-spec

i

Composite

[]
CompositeCrg-spec

Group Layout

111 |

Grouphulti-asp Lavout-snec
||

|
AbsolrteComp—dec

Components

ComponentsCont-dec

None

Absolute Form

Buttons RadioButtons CheckButtons Scales ComboBoxes TextBoxes
B | 11 I 11 L 11 R

|

Lahels

BiMulti-asp RdMulti-asp ChkMulti-asp SclMulti-asp CrobMulti-asp TrtMulti-asp LbIMulti-asp

111 | 11 | 11 | 11 | 11 | 11
Button RadioButton CheckButton Scale ComboBox TextBox

Figure 35 PES for GenetScope Experimental Frame

[11
Lahel

74

SUMMARY

The main focus of this study was to extend the knowledge representation features
of a System Entity Structure to account for Graphical User Interfaces, and develop a
framework where the user can customize data in order to auto generate fully functional
GUI code from it. As the eventual auto generation of GUI code need, as a first step,
sufficient data to be embedded into a data model for analysis and extraction, a graphical
library needed to be identified and mapped. Due to its simple hierarchy, the Standard
Widget Toolkit (SWT) library was chosen as the candidate to be mapped into an SES
tree. The key concepts of hierarchical decomposition and specialization of SESs were
used to accommodate for the mappings. As SESs are usually depicted as visual trees, a
method for translation from the format into electronic data had to be identified. Based on
the fact that XML is a hierarchical ontology framework that was recognized of having
closer connections with SES, it was used as the data storage model of choice. The
process conversion from a visual tree SES to a candidate System Entity Structure in XML
that could be customized by a user through pruning and modifications involved several
intermediate steps. Initially, a Natural Language was used to translate the aforementioned
SWT SES from the visual to textual format. Several key variables were also introduced to
accommodate for the user customization of data at each level of the tree. A web hosted
tool named Virtual Working Table was used to do the process translations in XML. Once

the candidate XML was generated, through examples, the pruning and customization

75

process was introduced so that a final version of a Pruned Entity Structure could be

generated by the user as input for GUI code generation.

The usage of the tool named SWTParser which would generate fully functional
GUI code in java taking the user customized PES mentioned above as input was also
discussed. SWTParser was developed as part of this research effort. Once it could be
presumed that a user would be comfortable with the customization and the GUI
generation processes, an extension of the framework to map a given instance of an SES
to a GUI was discussed. It was not the author’s intension to introduce the methodology as
a comprehensive system that would cover any instance of a given SES (which it is not),
but as an example process that would make use of the concepts from the framework
discussed in the study. It was found that professional GUIs of a more complicated nature
could be supported through this framework with small extensions and future
enhancements to it. It was seen that the user customization of a PES could take
significantly more time compared to the GUI generation process which is almost trivial.
Hence methods to reduce the over head time involved in this process along with its pros

and cons were discussed.

During different stages of this study, the author needed to relate to the SES
axioms and concepts discussed in chapter 2. Hence a brief discussion emphasizing the

key relations which he was able to establish during the process is deemed appropriate.

76

Relation of the SES Axioms ?

The uniformity axiom was made use of during this study in several occasions. Let
us be reminded that the axiom states “any two nodes which have the same labels have
identical attached variable types and isomorphic sub trees.” Note that when using the PES
in figure 28, the entity “Groupltem” was decomposed to a “Layout” entity. This Layout
entity remains identical to the one that appears in the pruning path of figure 17. Also in
figure 28, the “Components” used under “Fill” layout remains the same as the
“Components” used in figure 17. Also note that the suggested use of the “Composite”

entity in figure 34 is the same as the one that appears in the pruning path of figure 17.

The valid brothers axiom which states “No two brothers have the same label” was
implicitly used during this study. Note that the sub section 5.3 states that “However the
user needs to be careful not to name 2 widgets of the same category (eg 2 labels) with
identical names within a single tab.” Though reference was not made to it at that point

the notion behind it supports the axiom explicitly.

The strict hierarchy, alternating mode and attached variables axioms were also
followed in this study. One can confirm this by referring to any visual SES figure and the

attached code in Appendices 1 and 2.

Finally the inheritance axiom which states that “every entity in a specialization
inherits all the variables, aspects and specializations from the parent of the specialization”
was made use of on several occasions. Note that the ‘“TabFolder” and “Composite”

entities under the ‘ShellOrg” specialization in figure 5 will inherit all of the variables of

77

its parent “‘Shell” entity. This feature had to be used in the SWTParser when tabfolder
auto resizing has to be done based on the Shell’s height and width variable values. Also
entities “Composite” and “None” of TabltemOrg specialization and “Fill”, “Absolute”

and “Form” of Layout specialization follows the axiom.

78

CONCLUSION AND FUTURE WORK

As mentioned in the Objectives sub section in 1 chapter, the framework
discussed in this study was never meant to be introduced as a fault tolerant full fledged
system. It was presented as an innovative approach which would hopefully pave way for
further research and study in this field. It is said that “Little drops of water makes the

mighty ocean”.

The SES based GUI development framework has its own merits. As the
framework offers portability, and a platform free representation of a Graphical User
Interface, it would prove to be advantageous in many regards. The current adaptation
(and future expansion) of pruning rules and other constraints would support iteration and

thus provide an advantage over drag and drop methods.

The author recognizes the fact that the framework it is still in its elementary
stages and will need further expansion to make it even more useful and user friendly. As
we saw, it has its inherent limitations. As a start the user customization process needs to
be made more user-friendly which could further reduce the overhead time. Maybe a
Graphical Interface to input the various variable values after pruning the SWT SES
would help this cause. The current framework only supports a certain class of GUIs

which could be derived from it. The main restrictions are based at the SWT SES level

79

itself as there are few choices for pruning. Also adding more variables for user
customization at various levels of the SWT SES tree will obviously add to the
enhancement of features. On the hind side, more variables to modify mean more time it
takes for the user to customize. The brief discussion made in sub section 6.4 to support
for more complex GUIs would clarify this further. Also extending the SWT SES to
represent, and the SWTParser to generate event handlers could significantly reduce

programming effort over conventional methods.

Hence, while expansions to the initial SWT SES will account for greater breadth
and depth to the study, the complexity of the framework will also grow in parallel.
However, if such enhancements are made, it should be noted that the SWTParser should

also be modified to support for the new additions.

As a final note, the author hopes that the readers will recognize the potentials in

this study so that future research and development in this field will be encouraged.

80

APPENDIX 1 SWT SES in NL

A shell can be composite or tabFolder in design!

The shell has a name,height, and width!

The range of shell's name is string with values !

The range of shell's height is int with values [300,300]!

The range of shell's width is int with values [300,400]!

From a mult perspective, tabFolder is made of more than one tabitem!

The tabFolder has tabux,tabuy,tablx, and tably!

The range of tabFolder's tabux is int with values [0,10]!

The range of tabFolder's tabuy is int with values [0,10]!

The range of tabFolder's tablx is int with values [292,392]!

The range of tabFolder's tably is int with values [266,300]!

The tabitem can be none or composite in structure!

The tabitem has a tabname!

The range of tabitem's tabname is string with values !

The composite can be layout or group in drawablearea!

From a mult perspective, group are made of more than one groupitem!
The groupitem has a groupname!

The range of groupitem's groupname is string with values !

From a groupitemstruc perspective groupitem is made of layout!
The layout can be absolute,fill, or form in layouttype!

From absolutecomp perspective, absolute is made of components!

From fillcomp perspective, fill is made of components!

From compwidgets perspective, components is made of
buttons,radiobuttons,checkbuttons, labels, scales, comboboxes,and textboxes !

From a mult perspective, textboxes are made of more than one textbox!
The textbox has a textbgdcolor, textboundux,textbounduy,textboundlx, and textboundly!

The range of textbox's textbgdcolor is string with values white,yellow, and green!
The range of textbox's textboundux is int with values [0,392]!

81

The range of textbox's textbounduy is int with values [0,266]!

The range of textbox's textboundIx is int with values [0,392]!

The range of textbox's textboundly is int with values [20,250]!

From a mult perspective, comboboxes are made of more than one combobox !
The combobox has a comboboundux,combobounduy,comboboundlx, and
comboboundly!

The range of combobox's comboboundux is int with values [0,392]!
The range of combobox's combobounduy is int with values [0,366]!
The range of combobox's comboboundlx is int with values [0,392]!

The range of combobox's comboboundly is int with values [20,350]!

From a mult perspective, checkbuttons are made of more than one checkbutton!
The checkbutton has a chkbuttonname, chkbuttonboundux, chkbuttonbounduy,
chkbuttonboundlx, and chkbuttonboundly!

The range of checkbutton's chkbuttonname is string with values !

The range of checkbutton's chkbuttonboundux is int with values [0,392]!
The range of checkbutton's chkbuttonbounduy is int with values [0,366]!
The range of checkbutton's chkbuttonboundlx is int with values [0,382]!
The range of checkbutton's chkbuttonboundly is int with values [20,350]!

From a mult perspective, buttons are made of more than one button!

The button has a buttonname, buttonboundux,
buttonbounduy,buttonboundlx,and buttonboundly!

The range of button's buttonname is string with values !

The range of button's buttonboundux is int with values [0,392]!

The range of button's buttonbounduy is int with values [0,366]!

The range of button's buttonboundIx is int with values [0,382]!

The range of button's buttonboundly is int with values [20,350]!

From a mult perspective radiobuttons are made of more than one rdbutton!

The rdbutton has a rdbuttonname, rdbuttonboundux,
rdbuttonbounduy,rdbuttonboundlx,and rdbuttonboundly!

82

The range of rdbutton's rdbuttonname is string with values !

The range of rdbutton's rdbuttonboundux is int with values [0,392]!
The range of rdbutton's rdbuttonbounduy is int with values [0,366]!
The range of rdbutton's rdbuttonboundIx is int with values [0,366]!
The range of rdbutton's rdbuttonboundly is int with values [10,350]!

From a mult perspective, labels are made of more than one label!
The label has a Iblname,lblbgdcolor, 1blboundux,lblbounduy,lblboundlx, and Iblboundly!

The range of label's Iblname is string with values !
The range of label's Iblbgdcolor is string with values white,red,yellow, and green!

The range of label's Iblboundux is int with values [0,392]!
The range of label's Iblbounduy is int with values [0,366]!
The range of label's IblboundIx is int with values [0,366]!

The range of label's Iblboundly is int with values [10,350]!

From a mult perspective, scales are made of more than one scale!
The scale has a sclbgdcolor, sclboundux,sclbounduy,sclboundlx,sclboundly,
sclsetmax,sclsetmin,sclsetincr, and sclsetpgincr!

The range of scale's sclbgdcolor is string with values ,white,red,yellow, and green !
The range of scale's sclboundux is int with values [0,392]!

The range of scale's sclbounduy is int with values [0,366]!

The range of scale's sclboundlx is int with values [0,366]!

The range of scale's sclboundly is int with values [10,350]!

The range of scale's sclsetmax is int with values [0,100]!

The range of scale's sclsetmin is int with values [0,100]!

The range of scale's sclsetincr is int with values [1,10]!

The range of scale's sclsetpgincr is int with values [1,10]!

APPENDIX 2

Candidate PES in XML generated from DTD

83

C wnsparchiuprsogub T-DigoodTwdrprouproompostPESTMLaml (@ ine

84

D0~ 0 R LR =

SERLERED RBUBBRNER BRS

b i

<?xml version="1.0" encoding="UTF-8'?>

<shell height = nt300,400Valug” name = “string\Value® width = “int300.400Valug =
<shell-designSpec>
<tabFalder table = "int292 352Valud’ tably = "IM266, 366V alue” tabux = Tint0, 10Walue” tabuy = "intd, 10Value™
<aspectsOftabFoldes
<tabFeolder-multMultidsp nuemContainedintabFolder=a "1">
<tabitem tabname = "stringValue™
<tabitem-structureSpec=
<nonel=
<composites
<composite-drawableareaSpes
<layout=
<layout-layouttypeSpecs
<absolute=
<aspectsOfabsolute
=ghsclule-absolutecompDes
<companents>
=aspectsOfcomponants
<components-compwidgetsDeg
<checkbulions
<aspectsOfcheckbutions
<checkbuttons-multMulissp numCeontainedincheckbuttons="1">
<checkbutton chkbuttonboundlx = "0, 382Value” chkbuttonboundly = ~
int20.350Value’ chkbuttonboundux= “intd, 392Value’ chkbuttonbounduy= “int0,366Value” chkbuttonname = “stringValue™
<feheckbutton-
=lcheckbuttons-mulitMultissp=
<faspectsOfcheckbuttons
<{checkbultons
<textboxes
<aspecisOfiextboxes
<texthoxes-multMultidsp numContainedintextboxes= "1">
<textbox textbgdociar = "string with values yellow green . and whiteValug
textboundix = "int0,392Value’ textboundly = "int20,350Value’ textboundux = "intd, 382Value" textbounduy = "int0. 366V alue"=
<stexthax>
</textboxes-multMultibep-
=/aspectsOfiextboxes
<itexiboxes>
<scales
<aspectsOfscales
<geates-multMultidsp numContainedinscales= "1">
<soale sclbgdoolor = “string with values white red yellow green , and Valu#
sciboundlx = “int0,366Valug’ sclbaundly = “int10,350Value” sclboundux = "int0,382Value" scihounduy = "int0, 366V alue”
scizetiner = Tint1, 10Value” sclsetmax = "int0, 100V alue” sclsetmin = "intD, 100Value” sclsetpginer = "int1, 10Value™
<fscale>
</scales-multhiultifdsp-
<jaspectsOfscales
<iscales>

CARIE2007 Allowis GmBH ip. ww allova com Ragistired to lahin (ACITS) Pag 1

85

C rosearchli istgubeckiD. \goodTwidsgroupcompostePESAXML (G amems O7T/0TZ007 11.07.56 PM
45 <comboboxes
46 <aspectsOfcomboboxes
47 <comboboxes-multMultidsp numContainedincomboboxes= "1">
48 <combobox comboboundix = "intd,392Value" comboboundiy ="
int20,350Value” comboboundux = "int0,392Value’ combobounduy = "int0, 366V alus'>
49 <feombobax-
50 </comboboxes-multMultidsp-
51 </aspectsOfcomboboxes
52 <fcomboboxes>
53 <labels>
54 <aspectsOfiabels
55 <|abels-multbultitsp numContainediniabels="1">
56 <label ibgdeclor = "siring with values red yellow .green , and whiteValug

SRRERN2844d33Ed HICERIRT EBRR2BZERY

Iblboundlx = “intd, 366\ alug” Iblboundly = "int10,350Valug’ Iblboundux = “int0, 382Value” Iblbounduy = “intd, 366Valug” Ibiname
= "siringValue™>
<flabel>
</labels-multhMultifssp=
</aspectsOfiabels
</labels>
<butions=
<aspectsOfbuttons-
<buttons-multMultidsp numContainedinbuttons= "1">
<bution buttonboundhe = “int0,382Value” buttonboundly = “Ini20, 350V alue”
buttonboundux = "int0, 392Value" buttonbounduy = "intd, 366Value”™ buttonname = "stringValue">
<{button>
</buttons-multMultidsp
</aspectsOfbutions
</butiens>
<radicbutions
<aspecisOfradiobuttons-
<radiobuttons-muliMultidsp numCentainedinradiobuttons= "1">
<rdbutton rdbutionboundix = “int0,366Value” rdbuttonboundly = *
int10,350Value” rdbuttonboundus = "intD, 202Valug" rdbuttonbaunduy = "int0, 266V alug" rdbuttonname = "string\Value™
<(rdbuttan=
</radiobuttons-muliMultidsp
</aspectsOfradiobuttons-
<{radichutions
</components-compwidgetsDes
</aspectsOfcomponents
</components>
<fabsolute-absolutecompDes
</aspectsOfabsolute
</absclute-
<formi=
<fill=
<aspectsOffill=
=fill-fillcompDec=
<gomponents>

TG0E-2007 Allova GbH itg e, S com Rigistoeed ta lahind (AGims) Pagn 2

86

C rossarchinsisegubiack0 \goodTwdsgrouprcompostePESIOML I amems O7T/0TZ007 11.07.56 PM
B8 <aspectsOfcomponents-
g <gomponents-compwidgetsDee
a0 <checkbutions
k| <aspectsOfcheckbuttons
a2 =checkbuttons-muliMultiAsp numContainedincheckbutions= 1>
92 =<gheckbutton chkbuttonboundlx = "int0,382Value" chkbuttonboundly =
int20,350Value” chkbuttonboundu = "int0, 392Value" chkbuttonbounduy= "intD, 366V alue’ chkbultonname = "stringValue™
a4 </checkbutton=
95 </checkbuttons-multMultissp
96 </aspectsOfcheckbuttons
a7 </checkbutions>
98 <textboxes>
20 <aspectsOftextboxes
100 <texthoxes-multMultitsp numContainedintextbones= "1"=
101 <fextbox textbgdoolor = "string with values yellow green , and white'Valué
texiboundlx = “int0,382Value” textboundly = "int20,350Value" textboundux = “intD, 382V alue" textbounduy = "int0, 366Value'>
102 <ftextbox=
103 </textboxes-multMultidsp-
104 </aspectsOftextboxes>
105 </lextboxes>
106 <scales>
107 <aspectsOfscales
108 <seales-multMultiAsp numContainedinscales= 1=
108 <sgale sclbgdeclor = "string with values white red yellow green , and Valué
sclboundix = "int0,366Value” sclboundly = “int10,350Value” sclboundux = “int0,392Value® sclbounduy = “int0, 366V alue"
sclsetiner = "int1, 10Value” sclsetmax = "int0, 1000Valug” sclsetmin = “intD, 100Valug” sclsetpginer = “int1, 10Value™
110 <(scale>
111 </scales-multhultisspe-
112 <faspectsOfscales
113 </scales>
114 <comboboxes
115 <aspectsOfcomboboxes
116 <comboboxes-multMultibsp numContainedincomboboxes= "1">
117 <combobox comboboundix = "intd,392Value" comboboundly ="
int20,350Value” comboboundux = "int0,392Valug” combobounduy = “int0, 366Value">
118 <[combobox
119 </comboboxes-multMultidsp-
120 =faspectsOfcomboboxes
121 <fcomboboxes
122 <labels>
123 <aspectsOfiabels
124 <|abels-multbultitsp numContainediniabels="1">
125 <label Iblbgdeolor = "string with values red yellow green , and whiteValug
Iblboundlx = "int0,366Value” Iblboundly = “int10,350Value” Iblboundux = “intD, 382Value” [blbounduy = “intd, 366Value” Ibiname
= "stringValue™
126 <flabel>
127 <flabels-multtMultifsp=
128 </aspectsOfiabels

TG0E-2007 Alova GbH itg.www, alava com Rigistoeed ta lahind (AGims) Pagn 3

87

C rossarchincipsigubnekl \goodTwdsgroupscompostePESXML () smieew O7T/0TZ007 11.07.56 PM

129 </labels>

130 <butions=

13 <aspectsOfbuttons-

132 <buttons-multMultidsp numCentainedinbuttons= "1"=

133 <bution buttonboundlx = “int0,382Value” buttonboundly = “int20, 350V alue”
buttenboundux = "int,392Value’ buttonbounduy = “intd, 366V alue” buttonname = "string'/alue">

134 </button=

135 </buttons-multMultidsp=

138 </aspectsOfbutions

137 </buttons

138 <radicbutions

138 <aspectsOfradiobuttons-

140 <radiobuttons-muliMultiAsp numCentainedinradiobuttons= "1">

141 <rdbution rdbutionboundlx = “int0,366Value” rdbuttonboundly = *
int10,350Value” rdbuttonboundux = “int0,392Value" rdbuitonbounduy = “intD, 366V alue’ rdbuttonname = "stringValue™>

142 </rdbuttan=

143 <fradiobuttons-multMultidsp

144 </aspectsOfradicbuttons-

145 <{radicbutions

146 <icomponents-compwidgetsDes

147 </aspectsOfcomponents

148 </components>

144 </fill-fillcompDec>

150 <laspectsOffill>

151 </fill=

152 =fayout-layouttypeSpec-

153 </layout

154 <group>

155 <aspectsOfgroup

156 <group-multMultidsp numContainedingroup= "1">

157 <groupitern groupname = "string\Value™

158 <aspectsOfgroupitens

158 <groupitem-groupitemstruc Dec

160 <layout=

161 <layout-layouttypeSpec

162 <absolute

163 <aspectsOfabsclute:

164 <absoiute-absolutecompDec

165 <components

166 <aspectsOfcomponents

167 <components-compwidgetsDes

168 <gcheckbuttons-

169 <aspectsOfcheckbuttons

170 <checkbuttons-multMultidsp numContainedincheckbuttons= "1"

171 <checkbutton chkbutionboundlx = “intd,382Value™
chkbuttonboundly = "int20,350Value’ chkbuttonboundux = "intD, 392Value™ chkbuttonbounduy = "int0, 366V alue”
chkbuttonname = "stringWalue’

172 </checkbutton=

TG0E-2007 Alova GribH Nl aww alava com Rigislorid ta lahin (AGms) Pagn 4

88

C rossarchinsisegubiecki0 \goodTwidsgrouprcompastePESRIML () Sieew O7T/0TZ007 11.07.56 PM

173 </eheckbutions-multMuliids g

174 <laspectsOfcheckbuttons

175 </checkbuttons

178 <textboxes>

177 <aspectsOftextboxes

178 <fextboxes-muliMullifsp numContainedintextboxes="1">

179 <textbox lextbgdeolor = "siring with values yellow green |
and whiteValue' textboundtx = “int0,392Value" textboundly = “int20,350Value’ textboundux = “Intd,382Value’ textbounduy =
int0, 366V alue"=

180 <fextbox>

181 </textboxes-multhultiasp

182 <faspectsOftextboxes

183 </textboxes>

184 =scales=

185 <aspectsOfscales

188 <scales-multMultidsp numCentainedinscales= "1">

187 =scale sclbgdeolor = “string with values white red | yellow
Jgreen , and Valug' sclboundlx = "int0, 366Value” sciboundly = "int10,350Value” sciboundux = "intD, 392V alug" sclbounduy ="
int0, 366Value" sclzetiner = "int1, 10Value” sclsetmax = "int0, 100Value” sclseimin = "intD, 100Value” scisetpginer = "int1, 10Value
-3

188 </zcale>

189 </scales-muliMultibsp-

190 <laspectsOfscales

191 </scales>

192 <gomboboxes

193 <aspectsOfcomboboxes

184 <comboboxes-multMultidsp numCeontainedincomboboxes= "17>

195 <combobox comboboundlx = "int, 392Value” comboboundly
= "int20,350Value” comboboundux = “int0,392Value’ combobounduy = "int0, 366V alue™

196 <lcombobox

197 </eomboboxes-mulihMulissg

1898 <faspectsOfcomboboxas

199 </comboboxes

200 <labels~

201 <aspectsOfiabels

202 <labels-multMultidsp numCeontainedinlabels="1">

203 <label Iblbgdoolor = "string with values red yellow green
and whiteValue' Ibiboundlx = "int0, 366\ alue’ Iblboundly = "int10,350Value’ Ibiboundux = "intd,392Value’ Ibtbounduy = "
int0,366Value" Ibiname = "stringValue">

204 <flabel>

205 <flabels-multMuttidsp=

206 </aspectsOflabels>

207 </labels~

208 <buttons>

208 <aspectsOfbutions

210 <butions-multMultifsp numContainedinbuticns= "1">

n <button buttonboundlx = “int0,382Valueg” buttonboundly =

int20,350Value” buttonboundux = "“int0, 392Value” buttonbounduy = “int0, 366Value” buttonname = "stringValue™

TG0E2007 Aliova GbH Nitgy P, By com Rigistoeed ta lahind (AGims) Pagi 5

89

C rossarchincipgubeckd \goodTwadsgrouprcompostePESOMLaml (R ameee O7T/07/2007 11.07.56 PM

212 </bution>

213 </buttons-multhulidsp

214 <faspectsOfbuttons

215 </buttons>

216 <radiobuttons

217 <aspectsOfradiobuttons

218 <radicbuttons-multMultissp numContainedinradicbutions= "1">

219 <rdbutton rdbuttonboundtx = "intd,366Value’ rdbuttenboundly
= "int10,350Value” rdbuttonboundux = “intl,392Value” rdbuttonbounduy = "int0, 366Value" rdbutionname = “string'alue"=

220 </rdbutton>

2 </radichuttons-multMultifsg

222 <faspectsOfradiobutions

223 </radiobuttons

224 </components-compwidgetsDee

225 </aspectsOfcomponents-

226 </compaonents=

227 </absclute-absclutecompDec

228 </aspectsOfabsolute

229 <(absolute=

230 <farm/>

23 <fill=

232 <aspectsOffill>

233 fill-fillcompDec>

234 <components

235 <aspectsOfcomponents

238 <components-compwidgetsDer

237 <gcheckbuttons-

238 <aspectsOfcheckbuttons

238 <gheckbuttons-multMultifsp numContainedincheckbuttons= "1"

240 <checkbutton chkbuttonboundix = “intd,382Value®
chkbuttonboundily = "int20,350Value’ chkbuttonboundux = "intD, 392Value™ chkbuttonbounduy = "int0, 366V alue™
chkbuttonname = "stringValue™=

241 </checkbuttone-

242 </eheckbuttons-multMultidsg

243 <faspectsOfcheckbuttons

244 </checkbuttons

245 <textboxes>

246 <aspectsOftextbones

247 <textboxes-multhMullifAsp numCentainedintextboxes= "1">

248 <textbox textbgdeolor = "string with values yellow .green ,
and white\alug' textboundlx = “int0, 392V alue” textboundly = “int20,350Value’ textboundux = “intd, 392V alue' textbounduy = *
int0, 366V alue">

249 <fextbox=

250 <Mtextboxes-multMultiAsp=

251 <faspectsOftextboxes

252 </textboxes>

253 <grales>

254 <aspectsOfscales

TG0E-2007 ARgva GmGH Wil s Bllava com Rigisteend b laing (ACIme) Pagi 6

90

C rossarchins isigubnekl \goodTwidsgroupcompostePESmOML ol (i O7T/0TZ007 11.07.56 PM

255 <scales-multMultidsp numCeontainedinscales="1">

256 <scale sclbgdealor = “string with values white red yellow
Jgreen , and Valud' sclboundlx = "int0, 2366Value” sciboundly = "int10,350Value” sciboundux = "int0, 392Value" sclbounduy ="
int0, 366Value" sclsetincr = "int1, 10Value” sclsetmanx = "int0, 100Value" sclsetmin = "int0, 100Value” sclsetpginer = "int1, 10V alue
-3

257 </scale>

258 </scales-muliMultissp-

259 <laspectsOfscales

260 </scales>

261 <comboboxes

262 <aspectsOfcomboboxes

263 <comboboxes-multhMultidsp numContainedincomboboxes="1"2

264 <combobox comboboundlx = "int0, 392Value” comboboundly
= "int20,350Value” comboboundux = "intD, 392Value’ combobounduy = “int0,366Value™>

265 <feombobox

268 </comboboxes-mulhMulifsp-

267 </aspectsOfcomboboxes

268 </comboboxes

269 <labels>

270 <aspectsOfiabels

27 <labels-multMultidsp numCeontainedinlabels="1">

272 <label Iblbgdoolor = “string with values red yellow green ,
and whiteValug' Iblboundlx = "int0, 366V alue’ Iblboundly = "int10,350Value’ Iblboundux = "intd, 382Value' Iblbounduy =
int0, 366Value’ Iblname = "stringV/alue"=

273 </label>

274 </labels-multMultidsp>

275 <faspectsOflabels>

276 </labels>

277 <buttons=

278 <aspectsOfbutions

279 <butions-multMultidsp numContainedinbutions= "{">

280 <button buttonboundlx = “intd, 382V alue’ buttonboundly = *
int20,350Value” buttonboundux = "int, 392Value™ buttonbounduy = "int0, 366V alue” buttonname = "string\Valug™

281 </butten>

282 </buttons-multhiultidsp=

283 </aspectsOfbuttons

284 </buttons>

285 <radiobuttons=

288 <aspectsOfradicbuttons

287 <radicbuttons-multMultidsp numContainedinradicbutions= "1">

288 <rdbutton rdbuttonboundtx = “intD, 366Value’ rdbuttonboundty
="int10,350Value” rdbuttonboundux = “int0, 392Value” rdbuttonbounduy = "intd, 366Value’ rdbutionname = “siring'alue"=

289 </rdbution=

280 <fradichuttons-multMultidsp

20 <faspectsOfradiobuttons

292 </radiobuttons

2483 </components-compwidgetsDeo

284 </aspectsOfcomponents

TG0E-2007 Allova GmbH Mg e, Sy com Rigistoeed ta lahind (AGims) Pagn 7

91

C rossarchinsisegubiack0 \goodTwdsgrouprcompostePESIOML I amems O7T/0TZ007 11.07.56 PM

205 </components

206 =</fill-filcompDec>

207 </aspectsOffill>

298 </fill=

288 <flayout-layouttypeSpec-

300 </layout

m </groupitem-groupitemstrucDec

302 <faspectsOfgroupitens

303 </groupitem=

304 </group=-multMuttifsge-

305 </aspectsOfgroup~

306 </groug=

307 </composite-drawableareaSpes

308 </composite~

300 <fabitern-structureSpec

310 <ftabitem>

mn <ftabFolder-multhultidsp=

32 </aspectsOftabFolder

313 <flabFolder-

314 “gomposite=

315 <composite-drawableareaSpec

36 <layout=

317 <layout-laycuttypeSpec>

318 <absalute>

319 <aspectsOfabsolute

320 <absolute-absolutecompDec

a <components

322 <aspectsOfcomponents

323 <components-compwidgetsDes

324 <checkbuttons-

325 <aspectsOfcheckbuttons

328 <checkbuttons-multMultidsp numContainedincheckbuttons= "1"=

27 <checkbutton chkbuttonboundlx= "int0,382Value" chkbuttonboundly = "int20, 350V alue”
chkbuttonboundux = "int0, 392Value' chkbuttonbounduy = "int0, 366Value’ chkbuttonname = "stringValue™

328 </checkbuttare

329 </eheckbuttons-multMultiids g

330 </aspectsOfcheckbuttons

an <fcheckbuttons

332 <textboxes>

333 <aspectsOftextboxes~

334 <textboxes-multMultidAsp numContainedintextboxes= "1™

335 <textbox lextbgdeclor = "siring with values yellow .green , and whiteValué textboundlx ="
int0,392Value" textboundly = “int20,350Value” textboundux = “int0,392Value® texibounduy = “int0, 366V alue'>

335 <texthox=

337 <flextboxes-multhiultisspe

338 <faspectsOftextboxes

339 <Mtextboxes=

340 <gcales-

TG0E-2007 Alova GbH itg.www, alava com Rigistoeed ta lahind (AGims) Pagn &

92

Clressarchucipsrguiinekl \goodTwdsgroupscompostoPESIOML . (= OTIDTZ007 11:07.56 PM

341 <aspectsOfscales

342 <scales-multMultidsp numContainedinscaless "1"=

343 <gcabe sclbgdoolor = "string with values white red yellow green , and Valué sclboundilx
= "int0,366Value” sclboundly = “int10,350Value’ sclboundue = "int,392Value’ sclbounduy = "intd, 366V alue” sclsetiner ="
int1, 10Valug” sclsetmax = "int0, 100Value” sclsatmin = "int0, 100Valug” sclsetpginer = “int1, 10Valug">

344 </scaler

345 </scales-multMultidsp

346 <laspectsOfscales

347 <fscales>

348 <comboboxes>

349 <aspectsOfeomboboxes

350 <comboboxes-multtultifssp numContainedincomboboxes= "1">

331 <gcombobox comboboundlx = "int0,392Value™ comboboundly = "int20,350Value’
comboboundux = "int0,382Valug’ combobounduy = "intD, 366Value™>

352 </combobox-

353 </comboboxes-multhultidsp

354 </aspectsOfcomboboxes

355 <icomboboxes-

356 <|labels=>

357 <aspectsOflabels

358 <labels-multMultibsp numContainediniabels= "1">

358 <label Iblbgdeclor = “string with values red yellow green , and white\Valuég |blboundix = *
int0, 366\ alue’ Iblboundly = "int10,350Value’ Iblboundux = "int0,392Value" Iblbounduy = "intD, 366V alug’ Ibiname = “stringValue
e

360 </label-

361 <flabels-multMultitsp=

362 <laspectsOfiabels

363 <flabels>

364 <buttons>

365 <aspectsOfbutions

366 <putions-multMultidsp numContainedinbutions="1">

367 <button buttonboundlx = “intD,382Value’ buttonboundly = "int20,350Value”
buttenboundux = "int0,302Value" buttonbounduy = "intD, 366V alue” buttonname = "stringValug'>

368 </buttan=

368 </butions-multMultissp>

3T <faspectsOfbutions

3 <(buttons>

vz <radiobuttons=

T2 <aspectsOfradiobuttons-

374 <radicbuttons-multMultidsp numContainedinradicbutions= "1">

375 <rdbutton rdbuttonboundlx= “intD, 366Value” rdbuttonboundly = “int10,350Value™
rdbuttonboundux = "int0, 392Value” rdbuttonbounduy = "int0, 366V alue’ rdbuttcnname = "stringValue">

376 </rdbuttan-

3T =radicbuttons-multMultissg

378 </aspectsOfradicbuttons

378 <radiobuttons

380 =/components-compwidgetsDes

381 </aspectsCfcomponents

CDDE-2007 Alova GmbH _ hitg www, allava com Registored t ahing (Acims) Page 9

93

C rosearchincipsiguibnkl \goodTwdsgrouprcompastePESTaML il ()i OTITIB07 110756 PM

B2 </components

383 <fabsolute-absolutecompDec

384 </aspectsOfabsolute-

285 </absalute>

386 <form/=

a7 <fill =

388 <aspectsOffil

388 =fill-fillcompDec>

390 <components

ity | <aspectsCfcomponents

382 <components-compwidgetsDes

303 <checkbuttons

384 <aspectsOfcheckbuttons

385 <gheckbuttons-multMultidsp numContainedIncheckbuttons= "1"=

306 <checkbutton chkbuttonboundlc= "int0,382Value" chkbuttonboundly = "int20, 350V alue”
chkbuttonboundus = "int0, 202Value" chkbutionbounduy= "intd,366Value' chkbuttonname = "stringValue™>

87 </checkbuttore

308 </eheckbuttons-multhultibsg-

399 <faspectsOfcheckbuttons

400 </checkbuttons

401 <textboxes>

402 <aspectsOftextboxes

403 <textboxes-multMultiAsp numContainedintextboxes= "1™

404 <textbox textbgdeclor = "string with values yellow .green , and whiteValué texiboundls = "
int0,392Value" textboundly = "int20, 350V alue” textboundux = “intD,392Value” texibounduy = "int0, 366Value"=

405 <ftexthox=

406 <fextboxes-multhultissp>

407 </azspectsOftextboxes

408 <fextboxes=

409 <gcales

410 <aspectsCfscales

411 =scales-muliMultiAsp numCentainedinscales= “1">

412 <gcabe seclbgdeolor = "string with values white red yellow green , and Valué sclboundlx
= "int0, 366V alue” sclboundly = “int10,350Value’ sclboundux = “intd, 392Value' sclbounduy = “int0, 366Value” sclsetingr =~
int1, 10Valug” scisetmax = "int0, 100Valug’ sclsetmin = “int0, 100Valug” scisetpginer = “int1, 10Valug">

413 </scale>

414 </scales-multMultibsp-

415 <faspectsOfscales

418 <{scales~

417 <comboboxes>

418 <aspectsOfcomboboxes

419 <comboboxes-multMultifsp numContainedincomboboxes= "1">

420 <combobox comboboundlx = "int0,392Value” comboaboundly = "int20, 350V alue’
comboboundux = “int0,392Value” combobounduy = “intd, 366Value™=

421 </combobeox-

422 </comboboxes-multMultifsp-

423 <faspectsOfcomboboxes

424 <lcomboboxes-

TG0E-2007 Alova GmibH _ hitg e, allava com Rigistieed ta lahin (s} Pige 10

94

C rosearchis isoguibeckid \goodTwidsgrouprcompostePESIXMLaml (G i OT/OTZ007 11.07 56 PM

425 <labels=

426 <aspectsOfiabels

427 <labels-multMultidsp numContainedinlabels= "1">

428 <label Iblbgdeodor = "string with values red ,yellow green , and whiteValué Iblboundlx =~
int0,366Value’ Ibfboundly = "int10,350Value’ Iblboundux = "int0,382Value’ Iblbounduy = "int, 366V alueg’ Ibiname = “stringValue
b 2

429 </label

430 <flabels-multMultidsp>

431 <faspectsOflabels

432 <flabels=

433 <buttons=

434 <aspectsOfbutions

435 <putions-multMultidsp numContainedinbutions= "1"=

435 <button buttonboundh: = intd,382Value’ buttonboundly = “int20,350Value™
buttonboundux = "int0, 392Value' buttonbounduy = “int0, 366Value” buttonname = "string'/alue">

437 </button~

438 </butions-multMultiasg

434 </aspectsOfoutions

440 <buttons>

441 <radiobuttons>

442 <aspectsOfradicbuttons

443 <radicbuttons-multMultidsp numContainedinradiobutions= "1

444 <rdbutton rdbuttonboundlx= "int0,366\alue” rdbuttonboundly = “int10,350Value”
rdbuttonboundux = "intD, 392Value® rdbuttonbounduy = "int0, 366Value” rdbuttonname = "stringValue'>

445 </rdbutten-

445 </radichuttons-multMuttidss

447 </aspectsOfradiobuttons

448 <radiobuttons

448 </components-compwidgetsDes

450 </aspectsOfcomponents

451 <fcomponents

452 =ffill-filcormpDec=

453 </aspectsOffill=

454 </fill=

455 <flayaut-layouttypeSpeac

456 <flayout=

457 <group=

458 <aspectsOfgroup

459 <group-mulitultidzp numContainedingroup= "1">

460 <groupitem groupnarme = "string\Value™

481 <aspectsOfgroupiters

462 <groupitem-groupitemstruc Dec

463 <layout>

484 <layout-layouttypeSpec

485 <absclute=

468 <aspectsOfabsolute

467 <absolute-absolutecompDes

468 <components

TG0E-2007 Allova GmbH Wit v com Rigistoeed bo laing (ACIme)

Page 11

95

Crosearchincipsigubnekl \goodTvdsgroupreompostePESTOML (G ime OTIOTZ007 11,0756 PM

469 <aspectsOfcomponents

470 <gomponents-compwidgetsDec

471 <gcheckbuttons

472 <aspectsOfcheckbuttons

473 <checkbuttons-multhultidsp numContainedincheckbuttons= 1"

474 <checkbution chkbutionboundlx= "int0,382Value® chkbuttanboundly= "
int20, 350V alue” chkbuttonboundux = "intd, 392Value" chkbuttonbounduy= "intd, 366V alueg’ chkbultonname = "stringValue™

475 <lcheckbution

476 </checkbuttons-muliMultissp-

477 </aspectsOfcheckbuttons

478 </checkbutions>

479 <textboxes>

480 <aspectsOftextboxes

481 <lextboxes-muliMultiAsp numContainedintextboxes= "17>

482 <fextbox textbgdealor = "string with values yellow green , and whiteWalug
texiboundlx = “int0,392Value” textboundly = “int20,350Value” textboundux = “int0,392Value" textbounduy = "int0, 366V alue">

483 </extbox>

484 <ftextboxes-multhMultidsp=

485 </aspectsOftextboxes

486 =Nexiboxes=

487 <scales

488 <aspectsOfscales

488 <scales-multMultifsp numContainedinscales= "17>

480 <gcale sclbgdoolor = "string with values white red yellow .green . and
Value" sclboundix = “int0,366Value’ sclboundly = "int10,350Value’ selboundux = "int0, 382V alue" sclbounduy = “int0, 366'Value™
sclsetiner = “int1, 10Valug” sclsetmax = “int0, 100Value™ scisetmin = “intd, 100V alus” sclsetpginer = “int1, 10Value™

491 </scale>

482 <fzcales-multMulisspe

493 </aspectsOfscales

484 </zcales>

495 <comboboxes

406 =aspectsOfcomboboxes

487 <comboboxes-multhMullifsp numCeontainedincomboboxes="1">

458 <gombobox comboboundix = "int0,392Value” comboboundhy ="
int20,350Value” comboboundux = "int0, 392Value’ combobounduy = “int0,366Value">

4849 <leombobox

500 <feomboboxes-multMultidspe

501 </aspectsOfcomboboxes

02 <lcomboboxes

503 <labels~

504 <aspecisOfiabels

505 <labels-multMultidsp numContainedinlabels="1">

506 <label Ibibgdaolor = "string with values red yellow green , and whiteValué
Iblboundix = “intD,366Value” Iblboundly = “int10,350Value” Iblboundux = “int0,382Value” Iblbounduy = “int0,366Value” Ibiname
= "sfring\alue™

507 </label>

508 <flabels-multhultissp

S09 </aspectsOflabels

TG0E-2007 Alova GrilH Nitg hwww Bl com Rigistied ta lahin (ACmS) Page 12

96

C rosearchli istgubeckiD. \goodTwidsgroupcompostePESAXML (G amems O7T/0TZ007 11.07.56 PM

510 </labels>

511 <buttons-

512 <aspectsOfbuttons

513 <butions-multhMultidsp numContainedinbuttons= "1">

514 <bution buttonboundtx = "int0,382Value” buttonboundly = “int20,350Value’
buttenboundux = “intd, 382Value' buttonbounduy = “intD, 366'Value® buttonname = "siringValue">

515 </bution=

516 </buttons-multMultidsp>

517 </aspectsOfbuttons

518 </buttons>

519 <radiobuttons

520 <aspectsOfradiobuttons

521 <radichuttons-multMultidsp numCeontainedinradiobutions="1">

522 <rdbutton rdbuttonboundix= “int0,366Valug” rdbuttonboundly=
int10,350Value” rdbuttonboundux = “int0,382Value" rdbuttonbounduy= "int0, 366Value" rdbutionname = "string\alue">

523 <rdbution-

524 <lradiobuttons-multMultidsp=

525 </aspectsOfradiobutions

526 </radichuttons-

527 <lcomponents-compwidgetsDeg

528 <faspectsOfcomponents

529 </components

530 </absolute-absalutecompDes

531 <faspectsOfabsolute-

532 <fabsclute=

533 <farmi=

534 <fill=

535 <aspectsOfill-

536 <fill-fillcompDec>

537 <components

538 <aspectsOfcomponents-

538 <gomponents-compwidgetsDec

540 <checkbuttons-

541 <aspectsOfcheckbuttons

542 <checkbuttons-multMultidsp numContainedincheckbuttons= "1"=

543 <checkbutton chkbutionboundlx= “int0,382Value® chkbuttonboundly ="
int20,350Value” chkbuttonboundux = "int0,392Value” chkbuttonbounduy= "int0, 366Value’ chkbuttonname = "stringValueg™

544 </checkbuttors

545 <fcheckbuttons-multbultissp

548 </aspectsOicheckbuttons-

547 </checkbuttons>

S48 <textboxes>

549 <aspectsOftextboxes

550 <textbores-multhultiAsp numContainedintextooxess "1"=

551 <fextbox textbgdoolor = "string with values yellow green , and whiteValug
textboundlx = “int0,392Value® textboundly = “int20,350Value’ textboundux = “intd,392Value” textbounduy = “int0, 366V alue'>

552 <lextbox=

553 <ftextboxes-multMultidsp-

TG0E-2007 Allova GbH itg e, S com Rigistoeed ta lahind (AGims) Page 13

97

Crosearchucipssguibackl . \goodTwdsgroupseompostePESXML el I8} imiees O7/07/2007 11,07 56 PM

o584 <jaspectsOftextboxes

556 <fextbones>

556 <gcales

557 <aspectsOfscales

£58 <scales-multMultidsp numContainedinscaless "1"=

550 <scale sclbgdeabor = "string with values white red yellow .green . and
Value" sclboundlx = "int0, 366Value’ sclboundly = "int10,350%alue" sciboundux = "int0, 382Value" sclbounduy = "int0, 366V alue”
solsetiner = "int1, 10Value” sclsetmax = “intd, 100Value” sclsetmin = "intD, 100Valug” sclsetpginer = "int1, 10Valug™

560 </scale-

561 </zcales-multhiultissge-

562 </aspectsOfscales

563 </scales>

SE4 <comboboxes-

565 <aspectsOfcomboboxes

568 <comboboxes-multMultidsp numCeontainedincomboboxes= "1">

56T <combobox comboboundix = "int0,392Value" comboboundly =
int20,350Value” comboboundux = "int0, 382Value’ combobounduy = “intd, 366Value">

68 <lcombobox

S69 <feomboboxes-multhMultidsg-

570 </aspectsOfcomboboxes

10| </comboboxes>

572 <labels>

573 <aspecisOfiabels

574 <labels-multMultifdsp numCentainedinlabels= "1">

575 <label Iblbgdeolor = "string with values red yellow .green , and white'Valué
Iblboundlx = "int0,366Value” Iblboundly = "int10,350Value” Ibiboundux = “intD, 392Value” Iblbounduy = "int0,366Value” Ioiname
= "stringV/alue™

576 </label>

877 <flabels-muliMultifsp=

578 </aspecisOflabels

578 </labels~

580 <buttons>

581 <aspectsOfbuttons

582 <buttons-multMultidsp numCentainedinbuttons= "1™

583 <bution buttonboundix = "intD,382Value” buttonboundly = "int20,350Value’
bButtonboundux = "int0,352Value" buttonbounduy = "intD, 366Value” buttonname = "stringValue">

584 </butiore

585 <fbuttons-multMultidsp=

588 </aspectsOfbuttons

587 </butions~

588 <radiobuttons

S8a <aspecisOiradiobuttons

590 <radiobuttons-multMultidsp numCeontainedinradiobutions= "1">

581 <rdbution rdbuttonboundbx= “intd, 366V alue’ rdbuttonboundly =~
int10,350Value” rdbuttonboundus = "int0, 202Value" rdbuttonbounduy= "int0 366Valug' rdbuttonname = "stringValue™

o2 </rdbuttor

593 <lradicbuttons-multMultissp

584 </aspectsOfradiobuttons

E1G08-2007 Ao GribH _ hisg fwww aliova com Fuogistieed b lahing (Atims} Page 14

Crosearchucipssguibackl . \goodTwdsgroupseompostePESXML el I8} imiees

595
586
97
598

&00
601

603

605
G606
607
608
609
610
811
612
613
614

98

OTIOT/007 110756 PM

<iradichuttons
<lgomponents-compwidgetsDes
<faspectsOfcomponents
</companents
<ffill-fillcompDec>
<laspectsOffill-
<ffill=
</layout-layouttypeSpec
<flayout=
</groupitem-groupitemstruc Deg-
<laspectsOfgroupitens
</groupiternr
</group-multMultisspe-
</aspectsOfgroup=
<igroup=
</composite-drawableareaSpec
<fcomposite=
</shell-designSpec-
<fshell=

E1G08-2007 Ao GribH _ hisg fwww aliova com Fuogistieed b lahing (Atims}

Page 15

APPENDIX 3

SimpleGUI1.xml

99

Coresaarchiecipsequibacki7-02SmpeGUI i (3: i

100

OFr02007 0170842 AM

1 <Zxml version="1.0" encoding="UTF-§"?>
2 =shell height="300" name="SimpleGUIT" width="400">
3 <shell-designSpecs
4 <tabFolder tabix="392" tably="266" tabux="0" tabuy="0">
5 <aspectsOftabFolders
6 <tabFolder-multMultiAsp numContainedintabFoldes"1">
7 <tabitem tabname="Personal'=
8 <tabitem-structureSpec
8 <composite=
10 <gomposite-drawableareaSpes
11 <layout=
12 <layout-layouttypeSpec
13 <absolute>
14 <aspectsOfabsolute
15 <absolute-absolutecompDes
16 <components
17 <aspectsOfcomponents
18 <gomponents-compwidgetsDes
19 <checkbuttons=
20 =<gspectsOfcheckbuttons
21 <gcheckbuttons-multMultidspnumContainedincheckbuttons"0r=>
22 <faspectsOfcheckbuttons
23 <lcheckbuttons>
24 <textboxes>
25 <aspectsOftexthoxes
26 <texthoxes-mullMultifsp numContainedintextboxes="1">
27 <textbox textbgdcolor="white" textboundix="204" textboundly="29"
textboundux="111" textbounduy="2(">
28 <ftextbox=>
298 <ftextboxes-multMultibsp=
30 <fagpectsOftextboxes
3 <ftextboxes>
32 <scaless
33 <aspectsOfscales
34 <sgales-multhMultidsp numContainedinscales"0"=
35 <faspectsOfscales
k3] </scales>
ar <comboboxes=
38 <aspecisOfcomboboxes
it} =comboboxes-multhultifsp numContainedincamboboxes"0" =
40 <faspectsOfcomboboxes
41 <fcomboboxes
42 <labels>
43 <aspecisOfiabels
44 <labels-multhultidsp numContainediniabels"2">
45 <label Iblbgdeolor="green” Iblboundlx="63" Iblboundly="18" Iblboundux="16'
Iblbounduy="23" Ibiname="Mame">
46 =flabel=

©1898-2007 Altova GmbH hitpe/'www altova com Regsterad fo lahir (Acims)

101

AT

Clreseerchieclipseguipackd7- 024 SimpleGUI xml T 0702007 210842 AM

47 =labal Iblbgdeolor="red" Inlbaundlx="63" Iblooundly="18" lolboundux="16"
Iblbounduy="81" Ibiname="Gender">

48 =llabel>=

49 ~<flabels-multhuliAsp-

30 </aspectsOfiabels>

51 =flabelz=

52 “buttons>

53 ~aspectsOfbutians

54 <huttons-multMultiAsp numContainedinbuttons="1">

55 <button buttonboundl="44" suttonboundly="23" buttonboundux="330"
buttonbounduy="207" buttonname="Dang">

56 <fhutton>

57 </buttons-multhiultiAsp>

58 <aspectsOfbuttons-

39 </buttons>

60 ~radichutions=

61 <aspecteOfradiobuttons

g2 ~“radiobuttons-muliMultidsp numContainedinradicbutions="2"~

G3 <rdbutton rdbutionbeundix="83" rdbutionboundly="18" rdbuttonboundux="
111" rdbuttonbounduy="78" rdbuttonname="Male">

G4 =robutions

65 =rdbuttan rdbutionboundix="83" rdbuttonboundly="16" rdbuttonboundux="
111" rdbuttonbounduy="101" rdbuttonname="Female"=

66 =jrabuttare

g7 <{radiobuttons-multMultif s

58 =JaspectsOfradiobuttons=

542] <fradiobuttons=

70 <lcemponents-compwidgetsDes

71 </aspectsOfcomponents-

72 =/companents>

73 </absolutz-absclutecompDeg

T </aspectsOfabsoluter

75 </ gbscluie=

76 <layout-layouttypeSpec

77 </layout>

7 “/composite-drawablearsaSpes:

T </composites

a0 <abitem-structureSpec-

a1 </tabitem>

a2 <ttabFalder-multhlultifs p>

a3 “faspectsOftzbFoldes

84 </tabFolder>

85 =/shell-designSpec

a6 =ishell>

ar

RN 2007 Altova Gmbl L hiipYvwww alrova com Ragisterad fo lahin {Acims] Paga 2

102

APPENDIX 4 SimpleGUI2.xml

103

C\ressarchiecipseguibackil?- 02 SimpleGLL2 xml ¥ Fte D710/2007 01:43.03 AM
1 <%uml version="1.0" encoding="UTF-8"7=
2 =<l- edited with XMLSpy v2007 rel. 3 (htip:/fwww.altova.com) by lahiru (Acims}->
3 =shell height="300" name="SimpleGUI2" width="400">
4 <shell-designSpec
5 <tabFolder tablx="392" tably="266" tabux="0" tabuy="0">
6 <aspectsOftabFolder
T <tabFolder-multMultidsp numContainedintabFoldem"3"=
8 <tabitem tabname="Personal’>
8 <tabitem-structureSpec
10 <COMmposite=
1" <composite-drawableareaSpes
12 <layout>
13 <layout-layouttypeSpec-
14 <absolute=
15 <aspectsOfabsolute~
16 <absolute-absolutecompDec
17 <components=
18 <aspectsOfcomponents
19 <components-compwidgetsDeg-
20 <checkbuttons
21 =aspectsOfcheckbuttons
2 <checkbuttons-multMultidspnumContainedincheckbuttons"0">
23 =/aspectsOfcheckbuttons
24 <fcheckbuttons>
25 <textboxes
26 =aspectsOftextboxes
27 <textboxes-multMultiAsp numContainedintextboxes="1">
28 <textbox textbgdeolor="white" textboundix="204" textboundly="29"
textboundux="111" textbounduy="20">
29 <textbox=
30 </textboxes-multMultiAsp>
M =(aspectsOftextboxess
a2 <ftextboxes=
33 <scales>
34 =aspectsOfscales
as <scales-multMultidsp numContainedinscales"0">
36 =/aspectsOfscales
37 =fscales>
38 <comboboxes>
39 <aspectsOfcomboboxes
40 <comboboxes-multMultidAsp numContainedincomboboxes"07>
41 <(aspectsOfcomboboxes
42 <fcomboboxes-
43 <labels>
44 =aspectsOfiabels=
45 <|abelz-multMultidsp numContainedinlabel="2">
46 <|abel Iblbgdeolor="green” Iblboundix="63" Iblboundly="18" Iblboundux="16

Iblbounduy="23" Ibiname="Name™=

£1998-2007 Altova GmbH hitpifwww altova com Registered to lahiru (Acims) Page 1

104

C researchlecipsegquback07-02\SmpleGLIZ smi (32 e 071012007 01-43:.03 AM

47 <flabel>

48 <labe| Iblbgdcolor="red" Iblboundlx="63" Iblboundly="18" |blboundux="18"
Iblbounduy="81" Iblname="Gender"=

48 <flabel>

50 =/labels-multhMultidsp=

51 </aspectsOfiabels

52 <flabels>

53 <buttons

54 <aspectsOfbuttons

55 <buttons-multMultiAspnumContainedinbuttons"1">

56 <button buttonboundb="44" buttonboundiy="23" buttonboundux="330"
buttonbounduy="207" buttonname="Done"=

57 </button=

58 </buttons-multMultiAsp=

58 </aspectsOfbuttons

B0 </butions>

61 <radiobuttons=

62 <aspectsOfradiobuttons

63 <radiobuttons-multMultidspnumContainedinradiobuttons"2">

64 <rdbutton rdbuttonboundb="83" rdbuttonboundh="16" rdbuttenboundue"
111" rdbuttonbounduy="T9" rdbuttonname="Male"=

65 </rdbutton=

66 <rdbutton rdbuttonboundl="83" rdbuttonboundh="16" rdbuttenboundus="
111" rdbuttonbounduy="101" rdbuttonname="Female">

67 =/rdbutton=

68 <fradicbuttons-multMultifsp-

B9 </aspectsOfradicbuttons-

70 =fradiobuttons=

7 </components-compwidgetsDee

72 <faspectsOfcomponents-

73 </components

74 =/absolute-absolutecompDec

75 <faspectsOfabsolute

76 </absolute>

77 =fllayout-layouttypeSpec

78 <flayout=

79 </composite-drawableareaSpes

B0 =feomposite=

81 <(tabitem-structure Spec-

g2 =fabitem=

83 <tabitem tabname="Education”>

84 <tabitem-structure Spec=

85 <composite>

86 <composite-drawableareaSpes

87 <layout=

2] <layout-layouttypeSpec

88 <absolute>

a0 <aspecisOfabsaluts

£1998-2007 Altova GmbH hittp/fwww altova.com Registared to lahiru (Acims) Page 2

105

Cresearcnecipsequiacki07-02 SmpleGUI2 kmt (3 e 07/10/2007 014303 AM
1 <absolute-absolutecompDec-
82 <components-
k] <aspectsOfcomponents
84 <components-compwidgetsDec
a5 <checkbuttons
96 <aspectsOfcheckbuttons
a7 <checkbuttons-multMultidspnumContainedincheckbuttons"0"/>
B =faspectsOfcheckbuttons
a8 <lcheckbuttons
100 <textboxes>
101 =agpectsOftextboxes
102 <textboxes-multMuliibsp numContainedintextboxes="1">
103 <textbox textbgdeolor="white" textboundlx="204" textboundly="29"
textboundu="111" textbounduy="20">
104 <ftextbox>
105 <ftextboxes-muliMultiAsp>
106 =faspectsOftextboxes
107 <ftextboxes>
108 <gcales>
108 <aspectsOfscales
110 <seales-multMultiAsp numContainedinscales"0">
111 =faspectsOfscales
112 <lscales>
113 =<comboboxess
114 <aspectsOfcomboboxes
115 <=gomboboxes-multMultidsp numContainedincomboboxes="0">
116 </aspectsOfcomboboxes
117 =icomboboxes
118 <labels=
118 <aspectsOfiabels
120 <labels-multMultiAsp numContainedinlabels="2">
] <l|abel Iblbgdeolor="green" Iblboundix="63" Iblboundly="18" Iblboundux="16
Iblbounduy="23" Ibiname="Details"=
122 </label>
123 <label Iblbgdeolor="red" Iblboundlx="63" Iblboundly="18" [blboundux="16"
Iblbounduy="81" Iblname="Degree">
124 </label>
125 <flabels-multMultiAsp=
126 <laspectsOflabels
127 =flabels>
128 <buttons>
129 <aspectsOfbuttons
130 <buttons-multMultidAspnumContainedinbuttons="1">
131 <button buttonboundbe="44" buttonboundh="23" buttonboundwe="330"
buttonbounduy="207" buttonname="Done"=
132 </button=
133 </buttons-multMultidsp=
134 =faspactsOfbuttons-

©£1998-2007 Altova GmbH hitp-ffwww altova. com Registered to lahiru (Acims) Page 3

106

C resaarchiecipsequiback07-02\SimpleGLIZ xmi (3 e OF/0/2007 01:43.03 AM

135 =/buttong=

136 <radiocbuttons-

137 <aspectsOfradiobuttons

138 <radiobuttons-multMultifspnumContained inradiobuttons"2">

139 <rdbutton rdbuttonboundb="83" rdbuttonboundh="18" rdbuttonbounduse"
111" rdbuttonbounduy="79" rdbuttonname="B5">

140 </rdbutton=

141 <rdbutton rdbuttonbound="83" rdbuttonboundh="16" rdbuttonboundus="
111" rdbuttonbounduy="101" rdbuttonname="PostGrad'>

142 =/rdbutton=

143 <fradiobuttons-multMultidse=

144 </aspectsOfradicbuttons

145 =radiobuttons>

146 </components-compwidgetsDee

147 <fazpectsOfcomponents-

148 </components

149 <fabsolute-absolutecompDes

150 =/aspectsOfabsolutes

151 </absolute>

152 <flayout-layouttypeSpec-

153 =llayout=

154 <fcomposite-drawableareaSpes

155 =feamposite=

156 </tabitem-structureSpec>

157 <ftabitem=

158 <tabitem tabname="Contact">

159 <tabitem-structureSpec-

160 <composite=

181 <gompasite-drawableareaSpec

162 <layout>

163 <layout-layouttypeSpec

164 <absolute>

165 =aspectsOfabsolute

186 <absolute-absolutecompDecs

167 <components

168 <aspectsOfcomponents

169 <gomponents-compwidgetsDeg

170 <checkbuttons-

171 <aspectsOfcheckbuttons

172 =gheckbuttons-multMultidAspnumContainedincheckbuttons"0">

173 <faspectsOfcheckbuttons

174 <fcheckbuttons

175 <textboxes>

176 <aspectsOftextboxes=

177 =<textboxes-multhMultisAsp numContainedintextboxes="1">

178 <textbox textbgdeolor="white" textboundix="204" textboundly="29"
textboundux="111" textbounduy="20">

178 =ftextbor=

£1998-2007 Altova GmbH hitp-/www altova com Fegistered fo lahiru (Acims) Page 4

107

C ressarchlecipsegquibacki07-02 SimpleGLILZ xml Do 07102007 01:43:03 AM

180 <flextboxes-multhMultissp=

181 </aspectsOftextboxes

182 <ftextboxes>

183 <scales

184 <aspectsOfscales

185 =scales-multMulidsp numContainedinscales"0"'>

186 </aspectsOfscales

187 <fscales>

188 =comboboxess

188 <aspectsOfcomboboxes

180 <comboboxes-multMultidsp numCaontainedincomboboxes="0">

191 =/aspectsOfcomboboxes

192 </comboboxes-

193 <|labele>

194 <aspectsOfiabels

185 <|abels-muliMultiAsp numContainedinlabels"2">

186 <label Iblbgdeolor="green" Iblboundix="63" Iblboundly="18" Iblboundux="16
Ibibounduy="23" Iblname="Details">

197 </label>

168 <label Iblbgdeolor="red" Iblboundix="63" Iblboundly="18" Iblboundux="16"
Ibibounduy="81" Iblname="Prefarance™

1688 <flabeal>

200 <flabels-multhMultidsp=

201 </aspectsOfiabels

202 <flabels>

203 =buttons>

204 =aspectsOfbuttons

205 <buttons-multMultidspnumContainedinbuttons"1">

206 <button buttonboundlx="44" buttonboundh="23" bultonbounduw="330"
buttonbounduy="20T" buttonname="Done">

207 </button=>

208 </buttons-multMultifsp=

209 <laspectsOfouttons

210 =/buttons=

21 <radiobuttons-

212 =aspectsOfradiobuttons

213 <radiobuttons-multMultiAspnumContainedinradiobuttons"2">

214 <rdbutton rdbuttonboundl="83" rdbuttonboundh="16" rdbuttenboundux="
111" rdbuttonbounduy="79" rdbuttonname="Fhone">

215 <irebuttons

216 <rdbutton rdbuttonboundl="83" rdbuttonboundh="16" rdbuttonboundux="
111" rdbuttonbounduy="101" rdbuttonname="Mail">

217 <frdbutton

218 </radiobuttons-multMultidsp

218 =(aspectsOfradicbuttons

220 <radiobuttons>

21 <fecomponents-compwidgetsDeg

222 =faspectsOfcomponents

©1998-2007 Altova GmbH hitp/www. altova. com Fegesterad fo lahin (Acims) Page &

Cressarchlecipseguiback\07-02 SmpleGLILZ xml @Hw
223 </components
224 </absolute-absolutecompDes
225 </aspectsOfabsolute
226 </absolute>
227 <flayout-layouttypeSpec-
228 <flayout=
229 </composite-drawableareaSper
230 =feomposite>
23 </tabitem-structureSpec-
232 <ftabitem>
233 <ftabFolder-multMultiAsps=
234 </aspectsOftabFolder
235 <ftabFolder
236 </shell-designSpec
237 =ishell>
238

108

OFr 102007 014303 AM

£1998-200T Altova GmbH hitpeifwwa altova. com

Registared o lahiru (Acims)

Paga &

109

APPENDIX 5 ExGUI3.xml

110

- \resaarchithess\igures Exguid ExGUI il o:_-“ﬁr OTAH2007 004235 PM
1 =?xmil version="1.0' enceding="UTF-8'7=
2 =shell height = "400" name = "ExGUI3" width = "500">
3 <shell-designSpec
4 <tabFoider tablx = "392" tably = "266" tabux = "0" tabuy = "0">
5 =aspecteOftabFolder
& <tabFolder-multMultidAsp numCaontainedintabFolder= "3"»
T <tabitem tabname= "Personal'>
8 <tabitem-structureSpec>
a
10 <Composite>
1" <Composite-drawableareaSpes
12 <Layout=
13 <Layout-layouttypeSpece
14 <absolute>
15 <aspectsOfabsolute
16 <absolute-componentDec
17
18 <checkbuttons
19 <aspectsOfchackbuttons:
20 <checkbuttons-multMultiAspnumContainedincheckbuttons="0"/>
21 </aspectsOfcheckbuttons
22 </checkbuttons
23 <textboxes>
24 <aspectsOftextboxes
25 <textboxes-multMuliiAsp numContainedintextboxes="1">
26 <textbox textboundix = "204" textboundly = “28" textboundux = 111" textbounduy = *
20" textbgdeolar = "white"=
27 =ftextbox=
28 <texthoxes-multMultifsp=
28 <faspectsOftextboxes
30 <flextboxes>
31
32
33 <comboboxes~
34 <aspectsOfcomboboxes-
s =gomboboxes-multMultidsp numContainedincomboboxes= "1™
36 <combobox comboboundix = "62" comboeboundly = "21" comboboundux="111"
combobounduy = "206"> </combobox=
37 =fcamboboxes-multhMultidsp
s <aspectsOfcomboboxes
39 =/comboboxes <labels>
4an <aspectsOfiabels-
41 <labels-multMultidsp numContainedinlabels= "4
42 <iabel Iblbgdeolor = "grean” Iblboundlx = "63 iblboundly = 18 Iblboundux = "16" Iblbounduy = "160" ibiname = "Age"> <f
label>
43 <label Iblbgdeolor= "green” Iblboundlx = "63" [blboundly = "18" Iblboundux = “16"
Ibibounduy = "23" Iblname = "Mame™ </label~
44 <label Iblbgdcolor = "red’ Iblboundix = “63" [blboundily = "18" Iblboundux = "16" Iblbounduy = "81"

©1998-2007 Allova GmbH I vww allova com Rugistand 1o iy (Asims) Page 1

111

C\resaarchithess figures ExguiExGUID smi o:_-“ﬁr 07/19/2007 00:42.35 PM

lbiname = "Gender"> <flabel>

45 <label Iblbgdealor = "red” Iblboundlx = "63" Iblboundly = "18" Iblboundux = “16” Iblbounduy = "200"
Ibiname = "Countny/> </label>

46

47 =/labels-multMultifAsp=

4B </aspectsOfiabels

49 <llabels>

50 <butions>

51 <aspectsOfbuttons=

52 <puttons-multMultidsp numContainedinbuttons="1">

53 <button buttonboundlx = “44" buttonboundly = 23" buttonboundux = 330"
buttonbounduy = "207 buttonname = "Done™=

54 </button>

55 =/buttons-multMultidsg=

56 </aspectsOfbutions

57 </buttons>

58 <radiobuttons

59 <aspectsOfradiobuttons

60 =zradiobuttons-multhMultifsp numContainedinradiobuttons= "2'=

61 <rdbutton rdbuttonboundlx="B3" rdbuttonboundly = "16" rdbuttonboundux="111"
rdbuttonbounduy = *79" rdbuttonname = “Male™> </rdbutton=

62

63 <rdbutton rdbuttonboundix = "83" rdbuttonboundly = "16" rdbuttonboundux = "111" rdbuttonbounduy = "101" rdbuttonname = *
Femaleg"=

64 </rdbuttor>

65

66

67 </radiobuttons-multMultibsp=

68 <faspectsOfradiobutions

88 <fradiobutions>

T0

Ti

72

73 =scales>

74 <aspectsOfscales

75 <scales-multhMultifsp numContainedinscales= "17=

76 <scale scibgdeolor="" sclboundix = 108" sciboundly = "50" sclboundux = "111"
sclbounduy = “155" scisetincr = "4" sclsetmax = "20" sclsetmin = *1” sclsetpgincr = "5"=

Tr </scale>

7B </scales-multMultissp=

78 =(aspectsOfscales

80 </scales>

81 </absclute-componentDec

82 <faspectsOfabsolute

83 <fabsolute~

84

85 <fLayout-layouttypeSpec-

86 <(Layout>

©1998-2007 Allova GmbH b ivww allova com Registered to ahr (Acims) Paga 2

Cresearchithesis\figures\ExguilExGUIS xmi

112

072007 004235 PM

87
B8a <[Composite-drawableareaSpes
88 =/Composite=
a0 =ftabitem-structureSpec
91 <ftabitem=>
92
93 <tabitern tabname="Education">
94 <tabitem-structureSpec-
a5 <COmposites
86 <gcomposite-drawableareaSpec
a7 <layout=
48 =layout-layouttypeSpec
a9 <absolute>
100 <aspectsOfabsolutes
101 <absolute-absolutecompDec
102 <gomponents
103 <aspectsOfcomponents
104 <components-compwidgetsDes
105 <gheckbuttons
106 <aspectsOfcheckbuttons-
107 <checkbuttons-multMultisspnumContainedincheckbuttons="0"/>
108 </aspectsOfcheckbuttons:
109 <jcheckbuttons>
110 <textboxes-
111 <aspecisOftextboxes»
112 =textboxes-multMultidsp numContainedintextboxes="1">
13 =textbox textbgdeolor="white" textboundix="204" textboundiy="28"
textboundu="111" textbounduy="20">
114 <fextbox>
15 <Aextboxes-multMultiAsp>
116 <faspectsOftextboxes
17 <ftextboxes=>
118 <scales
118 <aspacisOfscaless
120 <gcales-multMultidspnumContainedinscales"0">
121 <laspectsOfscales
122 </scales~
123 <comboboxes=
124 <aspectsOfcomboboxes
125 <gomboboxes-multMultifsp numContainedincomboboxes"0">
126 <faspectsOfcomboboxes
127 </comboboxes>
128 <labels>
129 <aspecisOflabels
130 <labels-multMultidsp numContainediniabels="2">
131 <label Iblbgdealor="green” [blboundlx="63" Iblboundly="18" Iblboundux="16
Ibibounduy="23" Iblname="Detailg™>
132 <flabel>
©1998-2007 Allova GmbH hitg/iwww allova com Registered io lahry (Acims) Page 3

113

- \resaarchithess figuresiExguil ExGUI xmi {,:ﬁ OT/192007 09:42.35 PM

133 <label Iblbgdeolor="red" |biboundlx="83" Ibiboundh="18" iblooundux="16"
Ibfbounduy="81" Ibiname="Degree™=

134 <flabal>

135 <flabels-multMultidsp=

136 <faspecisOflabeis

137 <flabels>

138 <butions

139 <aspectsOfbuttons

140 <buttons-mutiMultidspnumContainedinbuttons"1">

141 <button buttonboundix="44" buttonboundlhy="23" buttonboundux="330"
buttonbounduy="207" buttonname="Done™>

142 </button>

143 </puttons-multMultidsp

144 </aspectsOfbuttons

145 <Mbuttons>

146 <radiobuttons

147 =aspectsOfradiobuttons

148 <radicbuttons-multMultiAspnumCeontainedinradiobuttons="2">

148 <rdbutton rdbuttonboundl="83" rdbuttonboundly="16" rdbuttonboundux="
111" rdbuttonbounduy="79" rdbuttonname="B5">

150 </rdbutton=

151 <rdbutton rdbuttonboundie"83" rdbuttenboundlye="16" rdbuttonboundue="
111" rdbuttonbounduy="101" rdbuttonname="FostGrad"=

152 <jrdbutton=

153 <fradiobuttons-multMultifsp-

154 </aspectsOfradicbuttons

155 <fradiobuttons

156 =/components-compwidgetsDeg

157 </aspectsOfcomponents

158 <lcomponents-

159 <fabsolute-absolutecompDes

160 <laspectsOfabsolute-

161 </absalute>

162 <llayout-layouttypeSpac-

163 <flayout>

164 </composite-drawableareaSpes

165 </composite>

166 <(tabitem-structureSpec-

167 <ftabitem>

168

168 <tabitem>

170 <tabitemn-structureSpec-

171 <gompaosite>

172 <composite-drawableareaSpes

173 <layout>

174 <layout-layouttypeSpec

175 <absolute>

176 <aspectsOfabsolute

©1998-2007 Altova GmbH MIp s allova com Regisiered 1o lahiru (Azims) Page 4

114

C\resaarchithess figures ExquidExGUIS il (3 e 077192007 05:42.35 PM

208

210
21
212
213
214

216
217

218
213
220

=<gbsolute-absclutecompDes
<gomponents
<aspectsOfcomponents:
<components-compwidgetsDes
=checkbuttons
<aspectsOfcheckbuttons
=checkbuttens-multMultiAspnumContainedincheckbutions"0"/>
</aspectsOfcheckbuttons
=/echeckbuttons=
<textboxes>
<gspectsOftextboxes>
=textboxes-multMultifsp numCeontainedintextboxes"1">
=textbox textbgdeolor="white™ textboundix="204" textboundiy="29"
textboundux="111" textbounduy="20">
<flexthox=
=ftextboxes-multhultitsps=
<faspectsOftexthoxes
<ftextboxes>
<scales
<aspecisOfscales
<scales-multhMultidsp numContainedinscales="0"/>
<laspectsOfscales
</scales
<comboboxes>
<aspectsOfcomboboxes
<gomboboxes-multMultidAspnumCentainedincomboboxes"0">
<faspectsOfcomboboxes
=/comboboxes>
<labels>
<aspecisOfiabels
<labels-multMultifsp numCentainedinlabels"2">
<label Iblbgdcolor="green” Iblboundlx="63" Iblboundly="18" Iblboundux="16
Iblbounduy="23" |blname="Details™>
<label=
<label Ibfbgdeolor="red" Iblboundlx="83" |biboundiy="18" Iblboundux="16"
Iblbounduy="81" Ininame="Preference">
<flabel>
<flabels-multMultidsg=
<faspectsOfiabels-
<flabels>
<huttons>
<aspecisOfbuttons
=buttons-multMultiAsp numContainedinbuttons"1"=
<button buttenboundi="44" buttonboundh="23" buttonboundux="330"
buttonbounduy="207" buttonname="Done™>
=/button=
</buttens-multMultissp
</aspectsOfbuttons

©1998-2007 Aftova GmbH hitp/fwwiw allowa com Registered fo lahiu (Acims) Pagi 5

115

C-rasaarchihessgurasiExguid ExGUIS xmi o:_:“ﬁr 072007 09:42 35 PM

21 </buttons>

222 <radiobuttons-

223 <aspectsOfradicbutions

224 <radicbuttons-multMultidspnumContainedinradiobuttons"2"=

225 <rdbutton rdbuttonboundbe"83" rdbuttonboundh="16" rdbuttonboundux="
111" rdbuttonbounduy="79" rdbuttonname="Fhone">

226 </rdbutton>

227 <rdbutton rdbutionboundi="83" rdbuttonboundly="16" rdbuttonbounduxe="
111" rdbuttonbounduy="101" rdbuttonname="Mail"=

228 </rdbution=

228 <fradiobuttons-multMultidsg

230 <faspectsOfradiobuttons

23 </radiobuttons>

232 =fcompanents-compwidgetsDeg

233 <faspectsOfcomponents:

234 <fcomponents

235 <fabsolute-absolutecompDes

236 </aspectsOfabsolute-

237 </absolute>

238 </layout-layouttype Spec

239 <flayout=

240 </composite-drawableareaSpes

241 </composite>

242 =/tabitem-structureSpec=

243 <ftabitem=

244

245

246

247 <ftabFolder-multMultifsg

248 </aspecisOftabFolder

249 <ftabFolder

250

251 <fshell-designSpec

252 <fshell>

253

©1998-2007 Alova GmbH VI allova com Registered 1o ahu (Acims) Paga &

116

APPENDIX 6 ExGUI4.xml

117

Ciresearchithessiigures Exguid ExGLIM xmi [y = 07/15/2007 05 17.57 PM

= T R e R R P N R

<?xmi version="1.0" encoding="UTF-§"7=
<shell height="300" name="ExGU 4" width="400">
<shell-designSpec
=<tabFolder tablx="0" tably="0" tabux="0" tabuy="0"=
<aspectsOftabFolder
<tabFolder-multMultibsp numContainedintabFoldem"2">
<tabitem tabname="Technology'>
<tabitem-structureSpec
<composite=
<composite-drawableareaSpes
=group=
<aspectsOfgroup=
<group-multhMultibsp numContainedingroup="2"=
<groupitem groupname="VLSI">
<aspectsOigroupitens
=groupitem-groupitemstrucDeg
<layout
<layoutlayouttypeSpec
<fill=
<aspectsOffill=
<fill-fillcompDec=
<¢components>
<aspectsOfcomponents
<components-compwidgetsDec
<checkbuttons
<aspectsOfcheckbuttons
<checkbuttons-multMultidAspnumContainedineheckbuttons"0'
=
<laspectsOfcheckbuttons
<feheckbuttons-
<textboxes>
<aspectsOftextboxes>
<textboxes-multMultidep numContainedintextboxes="0">
<laspectsOftexthoxes
<ftextboxes>
<scaless
<aspecisOfscales
<scales-multMultidspnumContainedinscales="0"f>
=laspectsOfscales
</scales>
<gomboboxes>
<aspectsOfcomboboxas
<comboboxes-multMultidAspnumContainedincomboboxes"0"
=laspectsOfcomboboxes
<fcomboboxes
<labels>
<aspecisOflabels
<labels-multMultidsp numContainediniabels="0"/>

©1998-2007 Aflova GmbH - Rittp fhwww allova com Registered o lahru (Acims) Pagir 1

118

©\researchthesisifigures) Exguid ExGLI4 sl == O7/15/2007 0817 57 PM

2B RRBR2BBBLRRRNBLBES

sdadands

EEB2888S8R

=laspectsOfiabels
=/labele>
<butions
=aspectsQOfbuttons
<buttons-multMultidAspnumContainedinbuttons="0"/>
</azspectsOfbutions
</buttons>
<radiobuttons>
=aspectsOfradiobuttons
<radiobuttons-multMultidspnumContainedinradiobuttons="0"*
=/aspectsOfradiobuttons-
<jradicbuttons=
</gcomponents-compwidgetsDeg
<laspectsOicomponents
</components
<ffil-fillcompDec>
<laspectsOffill-
<ffill=
<layout-layouttypeSpec
<flayout=
<fgroupitem-groupitemstrucDec
<faspectsOfgroupitens
</groupitems
<groupitem groupname="Wafer"=
<aspectsOfgroupitens
<groupitem-groupitemstrucDec
<layout=
<layout-layouttypeSpec
<fill=
<aspectsOffil
<fill-fillcompDec>
=components
<aspectsOfcomponents:
<gomponents-compwidgetsDeg
<checkbuttons
<aspectsOfcheckbuttons
<checkbuttons-multhultidspnumContainedincheckbuttons"0'

<faspectsOfcheckbuttons
<icheckbuttons
=textboxes=
=aspectsOftextboxes
<textboxes-muliMultifsp numContainedintextboxes"0">
=faspectsOftextboxes
</textboxes>
=scales
<aspectsOfscales
<scales-multMultidsp numContainedinscales="0"/=

©18998-2007 Allova GmbH il /iwww allova com Registered lo lahru (Azims) Page 2

ERROR: stackunderflow
OFFENDING COMMAND: ~

STACK:

