
Simulation Interoperability Across Parallel DEVS Models Ex-
pressed in Multiple Programming Languages

Thomas Wutzler

Max-Planck Institute for Biogeochemistry
Hans Knöll Str. 10

07745 Jena, Germany
thomas.wutzler@bgc-jena.mpg.de

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Dept. of Computer Science & Engr.

Ira A. Fulton School of Engr.
Arizona State University, Tempe, Arizona, USA

sarjoughian@asu.edu

Keywords: CORBA, DEVS, Distributed Simulation, Interoperability

ABSTRACT: Research efforts have focused on develop-
ing methods and technologies to support interoperability
among different simulations. In addition, modeling and
simulation frameworks have also been extended to sup-
port distributed simulation. In this research we present a
many-to-many approach to model to simulator mapping.
The goal is for a Parallel DEVS model described in one
programming language to be executed using a simulator
implemented in another programming language. This ap-
proach supports simultaneous execution of a set of
DEVS-based models written in different programming
languages. A prototype distributed simulation environ-
ment consisting of the DEVSJAVA and Adevs has been
developed to simulate DEVS and non-DEVS models de-
scribed in any of the Java, C++, and Visual Basic pro-
gramming languages.

1 INTRODUCTION

Interoperability among simulators continues to be of key
interest within the simulation community. A chief reason
is the existence of a legacy of large simulations, which are
developed in different programming languages. For ex-
ample, simulation of ecological processes have been de-
veloped in programming languages including C, C++,
Fortran, Java, and Visual Basic.

In the domain of natural and social sciences, often
mathematical and experimental data are directly repre-

sented in (popular) programming languages instead of
first casting them in appropriate modeling and simulation
frameworks. Since computer programming languages are
intended to be generic and not specialized for simulation,
they do not offer basic simulation artifacts (e.g., causal
output to input interactions and time management) that
are essential for separating simulation correctness vs.
model validation [1]. The consequence is, therefore, cus-
tom-built simulations where the separation between mod-
els and simulators is missing or otherwise obscure.

Fortunately, these legacy programming-code models of-
ten have well-defined mathematical formulations, which
facilitate their conversion to simulation-code models. The
translation from programming-code to simulation-code
models can be valuable since the latter can benefit from
simulation model development, comprehension, modifica-
tion, execution, and reuse.

A key advantage of executing simulation models using
well-defined simulation protocols is that a simulator can
execute the models independent of their realizations in
particular programming languages. To achieve exchange
of models requires a modular design with well-defined
interface specifications and a mechanism to execute the
models within a concerted simulation environment [2].
There are various approaches of exchanging model im-
plementations and a concerted execution of the models.
Techniques range from highly specialized coupling solu-
tions [3], the use of blackboards for message exchange
[4], modeling frameworks (e.g., [5]), XML-based descrip-

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

tions of models [6], to the usage of a sophisticated simula-
tion middleware [7].

In this work, we propose an “abstract model” for the par-
allel Discrete Event System Specification (DEVS) [8] to
support a new way to allow the concerted execution of a
set of DEVS-based models written in different program-
ming languages. For example, a DEVS-compliant model
of forest growth implemented in Java (e.g., DEVSJAVA
[9]) may be executed together with a soil carbon turnover
model implemented in C++ (e.g., Adevs [10]). Further-
more, the abstract model allows the execution of models
written in a programming language for which no simula-
tor has been developed. An example of this could be a
model written in Visual Basic, but simulated in
DEVSJAVA once it is wrapped inside a DEVS compo-
nent.

In the remainder of this paper, we will describe the con-
cept and a realization of executing DEVS (or DEVS-
compliant) simulation models expressed in one program-
ming language, but executed in a simulation environment
implemented in another programming language. We ex-
emplify this approach for discrete-event and optimization
models.

2 BACKGROUND AND RELATED WORK

A key advantage of a well-defined modeling and simula-
tion framework is support for building large, complex
simulation models using system-theoretic concepts. Sys-
tems-theory and its foundational concept of hierarchical
composition from parts lends itself naturally to object-
based modeling and distributed execution. Furthermore,
the combination of systems-theory and object-orientation
offers a potent basis for developing scaleable, efficient
modeling and simulation environments. A well-known
approach to system-theoretic modeling and simulation is
the Discrete Event System Specification framework [8].

In this paper we focus on the Parallel DEVS formalism
[8, 11] since it is well suited to provide the basic mecha-
nism to allow the interoperation and concerted simulation
of heterogeneous models for the following reasons. First,
sub-models can be combined using input and output ports
and their couplings. Second, it enjoys closure under cou-
pling, which allows a modular hierarchical assembly of
sub-models. Third, DEVS can reproduce the other major
discrete-time (DTSS) and approximate continuous model-
ing paradigms (DESS) that are commonly used in describ-
ing ecological and other natural systems. The DEVS for-

malism is independent of a programming language in
which it may be realized. There exist a variety of DEVS
simulation engines supporting several programming lan-
guages. However, interoperability issues among DEVS
simulation engines arise due to differences in underlying
platforms (programming languages). For example, im-
plementation differences between DEVSJAVA and
Adevs prevent sharing and reuse of the DEVS models.

single multiple

si
ng

le

di
st

rib
ut

ed

DEVSJAVA, Adevs, …

RTDEVS/CORBA,
DEVS/HLA, ...

Adevs to DEVSJAVA
model translation, …

Mixed DEVSJAVA,
Adevs, …

of Programming
Languages

Pr
oc

es
si

ng

single multiple

si
ng

le

di
st

rib
ut

ed

DEVSJAVA, Adevs, …

RTDEVS/CORBA,
DEVS/HLA, ...

Adevs to DEVSJAVA
model translation, …

Mixed DEVSJAVA,
Adevs, …

of Programming
Languages

Pr
oc

es
si

ng

Figure 1: Placement of the multi-programming language
approach among other approaches.

Aside from basic research in developing simulation envi-
ronments such as DEVSJAVA to support combined logi-
cal- and real-time simulations (Figure 1, bottom left),
there has also been interest in distributed simulation with
one DEVS-implementation (Figure 1, top left)
(RTDEVS/CORBA [12] and DEVS/HLA). It is reason-
able to expect distributed simulation where models are
described in different programming languages. This is
important since a primary objective of reusing model im-
plementation is to avoid rewriting models expressed in
different programming languages into a single program-
ming language (Figure 1, bottom right). The interopera-
tion between heterogeneous models can be considered a
special case of distributed simulation because sub-models
will run in different processes that must communicate
(Figure 1, top right). Given these last two considerations,
it becomes attractive to avoid manual translation of mod-
els from one programming language to another, especially
for complex, large-scale models that are common in the
natural sciences.

The DEVS framework also imposes fewer constraints on
the participating sub-models compared to simulation mid-
dleware HLA. This observation holds for the class of
time-stepped logical- or real-time models that are investi-
gated in this research.

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

In this paper we present an approach in which we use an
abstract Parallel DEVS model in logical time to establish
an interface for model interoperation in DEVSJAVA and
Adevs. We provide adapters for both models and two
simulation engines that support the abstract model. Both
atomic models and the execution of coupled models can
be mapped to this abstract model. We show three useful
applications of this approach:
• The interoperation between different DEVS simula-

tion engines.
• The implementation of sub-models in a computer

language for which there is no DEVS simulation en-
gine.

• The integration of non-DEVS models within a DEVS
simulation.

Since DEVS can reproduce time-stepped and approximate
continuous systems, it acts as a generic interface for cou-
pling discrete-event, discrete-time, and continuous mod-
els. Each component model needs to specify ports, ini-
tialization, state transitions, time advance, and output
functions. Models can be hierarchically combined to form
a coupled model. Simulators and coordinators take care of
the correct simulation of the coupled model. Although
there are a variety of extensions to Parallel DEVS, in this
work we consider logical-time simulations.

3 APPROACH

3.1 An Abstract Model for Alternative DEVS Model
Implementations

Different implementations of the DEVS formalism share
the same semantics due to the DEVS mathematical speci-
fication, but they generally differ in the underlying soft-
ware design. In order to allow an abstraction for different
implementations, we have defined an abstract model as
shown in Figure 2. The operations of this abstract model,
which include mediation between simulators, can be real-
ized with a middleware.

DEVWJAVA Adevs

Abstract Model

Simulator
B

Model
A

Model
B

Simulator
A

Figure 2: Abstraction of different DEVS implementa-
tions. Usually, simulator directly invoke operations on the
model. In the presented approach, the model implementa-
tions are wrapped by an abstract model.

We specified the abstract parallel DEVS model operations
in OMG-idl (Figure 3) and used CORBA to invoke these
operations expressed in different programming languages.
Note that we defined one basic interface instead of defin-
ing interfaces for simulators. Furthermore, we have not
defined an interface for coupled models since the execu-
tion of a coordinator of a coupled model is specified as an
atomic model (see Section 3.2.1). The advantages of this
approach will be discussed in Section 5.

interface DEVS{ // OMG-idl (CORBA)
void doInitialize();

// begin of simulation
double timeAdvance();

// time for next output and internal transition functions
Message outputFunction();

// produce outputs for current time
// is not allowed to change the state of the model

void internalTransition();
// state transition

void externalTransition(in double elapsedTime, in Message msg);
// state transition with input event

void confluentTransition(in Message msg);
// input event at time of internal transition}

Figure 3: Operations of the abstract DEVS model.

3.2 Extending Simulators

To support the functionality of the above abstract model,
it is useful to extend the internals of existing DEVS simu-
lation engines that are intended to simulate models ex-
pressed in multiple programming languages. This is be-
cause a simulator should not be aware of the remote
model implementations which may be assigned to it. The
simulator, therefore, needs to have access to a Model

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

Proxy as shown in Figure 4. The Model Proxy will trans-
late its method invocations to the abstract model (i.e.,
DEVS Interface element shown in Process A). While the
translation is syntactical in nature (i.e., preserves Parallel
DEVS model semantics), it is generally non-trivial since
the Model Implementation could be significantly different
depending on the constructs of a chosen programming
language. An example of complex syntactical translation
is message contents (or input and output events) of a
model implementation that is expected by a simulator in-
tended to execute it.

Process B Process A

Simulator Model
Proxy

Middle
ware

Devs
Interface

Model
Implementation

Model
Adapter

Figure 4: Adapting specific DEVS implementations to
the abstract model.

Via a middleware the operations of the abstract model in
the remote process (Process A) are invoked by the model
proxy. If the actual model implementation (shown in
Process B) cannot support the abstract model, a Model
Adapter is needed to translate the invocations of the ab-
stract model to the invocations of the Model Implementa-
tion. This again, is a syntactical mapping, which might be
non-trivial due to difference in message formats and ways
in which objects may be created and destroyed (e.g., gar-
bage collection during simulation cycles). The abstract
model here, corresponds to the DEVS-Interface, but addi-
tionally includes semantic constraints (see discussion of
real time DEVS at the end).

In this setting, therefore, the Simulator and the Model Im-
plementation remain unchanged. The Model Proxy and
the Model Adapter need to be developed only once for a
given simulation engine. Afterwards, the simulator can
simulate any abstract model implementation, and all its
models can be represented as abstract models.

3.2.1 Execution of Coupled Models as Atomic Models

The abstract model corresponds only to an atomic model
in a straightforward way. However, a coordinator that
executes a coupled model can be seen as an atomic model
itself. It performs the state transition of a coupled model.
This corresponds to the closure under coupling. The simu-
lation cycle of the coordinator is as shown below.

The invocation of the atomic model methods has to pre-
serve this order of the coordinator’s functions. The DEVS
simulation protocol guarantees that the initialization func-
tion is invoked at the beginning of the simulation, and that
one of the transition functions is invoked once during one
simulation cycle. Hence, we could map 1. to the initialize
operation and 2. to all of the transition functions. How-
ever, the outputs are valid only between 2.a.i. and 2.b. be-
cause output function is invoked right before the next in-
ternal transition. In order to allow the output function to
return valid values, we had to break the simulation cycle
right before b. The following algorithm specifies the same
semantics of the coordinator’s simulation cycle.

With this we constructed the following model adapter.
The adapter employs its own coordinator of the coupled
model. The doInitialize() function performs (1.) and (2.)
on the coordinator. Each transition function (internalTran-
sition(.), externalTransition(.), or confluentTransition(.))
performs (3.) on the coordinator. The outputFunction()
and the transition functions invoke the corresponding
methods of the coordinator. This allows execution of a
coupled model as an abstract one. The simulator is not
aware of actually executing a coupled model.

1. initialize model
2. while(next event)

a. compute input output for next event time
 i. invoke imminent component output function

ii. distribute outputs
b. invoke transition function
end while

1. initialize model
2. if(next event)

compute input output for next event time
a. invoke imminent component output function
b. distribute outputs
end if

3. while next event:
a. invoke transition function
b. if(next event) compute in/out for next ev. time

i. invoke imminent component output function
ii. distribute outputs
end if

end while

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

3.2.2 Integration of Non-DEVS Functionality

In addition to interoperating with various DEVS simula-
tion engines, the abstract model can be used to integrate
non-DEVS functionality as well. In this case, the model
adapter maps the non-DEVS functionality to the basic
model interface. Three examples of this integration fol-
low.

A) One is the integration of time-stepped models. The
time-advance function will always return the time until
the next time step. The internal transition executes the
transition. The external transition will only store the in-
puts for the next transition.

B) A second use is the integration of continuous time
models that specify the calculation of derivatives but have
no notion of DEVS yet. The model adapter will employ
quantization [13]. The transition functions will invoke the
calculation of the new derivatives within the model im-
plementation. Next, the transition functions will update a
quantized integrator and calculate the time until the next
boundary crossing. After an ordinary internal transition,
an internal output transition is scheduled. The time-
advance function will return the calculated time until the
next boundary crossing. The output function of the model
adapter will return the output of the continuous model, but
only if it is in the output phase.

C) Another use is the integration of functions that do not
depend on time as in an optimization procedure (this
means a Mealy-type passive model). The external transi-
tion function of the model adapter will invoke the original
function and immediately schedule an internal transition
in phase “output.” Within the internal transition the model
is again set to passive state (i.e., with a time-advance of
infinity). The output function will return the result of the
function invocation, but only if it is in the output phase.

4 EXAMPLE APPLICATIONS

4.1 Interoperation Between Different DEVS
Simulation Engines

We implemented the model proxy, the model adapter, and
the adapter of coupled models in the two DEVS simula-
tion engines DEVSJAVA and Adevs. Next, we simulated
a simple model consisting of an experimental frame (ef)
and a processor (p) (see Figure 5) using the Adevs and
DEVSJAVA simulation engines.

The generator is an atomic model which generates jobs
at some given time intervals. The transducer matches
jobs coming in at its two input ports and calculates the
time difference. The experimental frame is a coupled
model. It has an output port for jobs created by the gen-
erator, an input port of the finished jobs, two external
couplings, and one internal coupling. The processor ac-
cepts jobs when in passive phase and outputs finished
jobs after its processing time.

experimental frame

processor
generator

transducer

experimental frame

processor
generator

transducer

Figure 5: Experimental frame (ef)-processor (p) model.

We implemented the experimental frame in
DEVSJAVA and the processor and the combined ef-p
models in Adevs (Figure 6). The ef model adapter was
constructed and started in a DEVSJAVA server process.
Within a C++ program, a model proxy was constructed
with the CORBA reference of the DEVSJAVA model
adapter. The model proxy could be used in an Adevs
simulation like any other Adevs atomic model. As noted
earlier, the experimental frame appears to the Adevs
simulator as an atomic model.

DEVSJAVAAdevs

Model Adapter

Simulator

Coupled Model
"ef-p"

Atomic Model
"processor" Model Proxy Coupled Model

"experimental frame"

Atomic Model
"generator"

Atomic Model
"transducer"

Abstract Model
(CORBA Implementation)

Figure 6: Implementation of the ef-p model with the ex-
perimental frame submodel specified and executed in a
simulation engine different from that of the ef-p model.

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

4.2 Model Implementation Without Corresponding
Simulation Engines

To illustrate simulating DEVS-compliant models which
have no corresponding simulation engines, we imple-
mented the atomic model of a processor (see the previous
section) within VBA routines of an MS Excel workbook.

The class of the Visual Basic model descends directly
from the portable object adapter classes generated by
VBORB (An object request broker for Visual Basic) [14].
It implements the abstract model. The processing time of
the processor was obtained from a cell of a workbook.
Therefore, the user could easily change the model behav-
ior before or during the simulation. Within a start-up rou-
tine of the workbook, a CORBA object was constructed
with this VB model class. In this example the model itself
implemented the DEVS Interface, so no model adapter
was needed.

A DEVSJAVA model proxy was constructed with refer-
ence to the CORBA object and was used as any other
DEVSJAVA atomic model.

4.3 Simulation of Non-DEVS Models

In the following example a user buys power from two dif-
ferent providers offering two different price regimes de-
pending on the ordered amount (Figure 7). Given a power
demand (c) we want to know which amount of power we
have to order from the oil provider (x) and which amount
from the solar provider (y = c - x), so that the overall price
is minimized. This is an optimization problem for the
power price: p = x * f(x) + (c-x) * g(c-x), where f(x) and
g(y) are the unit cost functions depending on the ordered
amount of power.

0

5

10

15

20

0 5 10 15 20
power demand

pr
ic

e
pe

r
po

w
er

 u
ni

t

price per unit oil power

price per unit solar power

polynomial

exponential function

Figure 7: Cost functions of the optimization example.

Suppose the search for a minimum of the price function is
not possible in a closed form. Hence, an iterative optimi-

zation procedure is used. We modeled the problem within
MS Excel and its Solver module. We implemented a VBA
function that determines the best proportion of power
from the oil provider and the minimum average price per
power unit.

The DEVS Interface gives us the ability to utilize this op-
timization procedure within a DEVSJAVA simulation.
The optimization model is modeled as an atomic model
according to 3.2.2 C. A simple experiment consisting of a
generator, PowerOptimizer, and Observer is devised.
The generator outputs are received as powerDemand in-
put events by the PowerOptimizer. The observer model
records the outputs of both models with time as shown
below.

5 DISCUSSION

The approach presented for combining heterogeneous
DEVS models has the advantage of placing only few con-
straints on the participating sub-models. Hence, few or no
changes are necessary for the DEVS models that are writ-
ten for specific simulation engines. Often relatively sim-
ple adapters will suffice. Other approaches (e.g., HLA)
place much more constraints on the sub-models. For ex-
ample, HLA is intended to support all simulations as well
as physical systems with support for different types of
simulation protocols (e.g., combined conservative and op-
timistic simulations). An advantage of the proposed ap-
proach is the free availability of both CORBA implemen-
tations and DEVS simulation engines for the main
programming languages.

Correctness of model execution, therefore, is grounded in
the DEVS formal specification. The developer of a DEVS
simulator has to show that the model adapter is compliant
to a common abstract model. This ensures every model is
a legitimate Parallel DEVS model in logical time. Inter-
operability between different DEVS simulation engines
using one abstract model allows use (or implementation)
of different engines without having a “coupled” abstract
model. Instead we mapped the execution of a coordinator
to an atomic model. Hence, the interoperability takes
place at the model level, not at the simulator level. The

<input time='0' powerDemand='20' />
<input time='0' oilRatio='49.9087' unitPrice='9.294' />
<input time='4' powerDemand='14' />
<input time='4' unitPrice='8.81' oilRatio='0' />
<input time='6' powerDemand='16' />
<input time='6' unitPrice='9.42044' oilRatio='41.13' />

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

advantage is that only few constraints need to be placed
on models that were not specifically designed for a
DEVS-simulator. The price is that we lose degrees of
freedom in distributing the simulation because the struc-
ture of a remote coupled model is transparent to the simu-
lator. A standardization method for interoperating DEVS
engines can alternatively specify abstract simulators and
abstract coordinators for the purpose of interoperability
between simulation engines.

We note that the abstract model does not rely on any par-
ticular middleware such as CORBA, although the choice
of a middleware has key importance including perform-
ance and interoperability robustness. Thus, the abstract
model may be implemented, for example, with COM or
Web services.

In the context of this work, we have accounted for logi-
cal-time DEVS models. The approach presented in this
paper, however, is also applicable for real-time DEVS
models. In this case, the interface can stay the same, but
the semantics of the abstract model need to comply with
real-time DEVS specifications. The transition functions
are required to return immediately and do computational
or observing work within a second thread or process (an
activity). The external transition of the example optimiza-
tion model would schedule an internal transition after a
time greater than zero that reflects an optimistic estimate
of the time to do the optimization calculation. It would
then start the optimization activity but return immediately.
After calculating the “optimal price” activity in real-time,
it is returned with the output function. The implementa-
tion of the activity is left to model specification.
RTDEVS/CORBA can simulate any DEVSJAVA model
in real time. Hence, with the DEVSJAVA model proxy it
will be able to simulate a Parallel DEVS abstract model in
real time.

6 CONCLUSIONS

In this paper we considered the need for simulating com-
mon types of pure or DEVS-compliant models. We
showed that a combination of DEVS-based simulation
engines can be used to carry out a concerted simulation of
heterogeneous DEVS, DTSS and DESS, and timeless
models. Distributed simulation across models codified in
different programming languages was achieved via an ab-
stract model and interoperability services of the CORBA
middleware.

The presented approach places few constraints on the sub-
models and thus aids flexible and non-tedious simulation
model integration. We successfully demonstrated the us-
ability of the approach for (1) the interoperation between
different DEVS simulation engines, (2) the implementa-
tion and simulation of models in a computer language that
has no DEVS simulation engine available, and (3) the in-
tegration of non-DEVS models or functionality within a
DEVS simulation.

The work presented in this paper remains to be further in-
vestigated to support real-time DEVS models as well as
using HLA.

Although in this paper we presented basic examples, in an
ongoing project we will demonstrate the concerted appli-
cation of more complex ecological models, implemented
in Java and C++, that are time stepped or are specified by
differential equations.

7 ACKNOWLEDGMENTS

This work was funded by a doctoral scholarship of the
German Academic Exchange Service.

8 REFERENCES

[1] H. S. Sarjoughian and B. P. Zeigler, "DEVS and
HLA: Complementary Paradigms for Modeling and
Simulation?" Transactions of the Society for Modeling
and Simulation International, vol. 17, pp. 187-197, 2000.

[2] B. Acock and J. F. Reynolds, "Introduction: modular-
ity in plant models," Ecological Modelling, vol. 94, pp. 1-
6, 1997.

[3] S. Valcke, D. Declat, R. Redler, H. Ritzdorf, and R.
Vogelsang, "The PRISM Coupling and I/O System:
OASIS 4," MPI Meteorology Hamburg, 2005.

[4] J. Liu, C. Peng, Q. Dang, M. Apps, and H. Jiang, "A
component object model strategy for reusing ecosystem
models," Computers and Electronics in Agriculture, vol.
35, pp. 17-33, 2002.

[5] C. Hillyer, J. Bolte, F. van Evert, and A. Lamaker,
"The ModCom modular simulation system," European
Journal of Agronomy, vol. 18, pp. 333-343, 2003.

[6] D. Pullar, "SimuMap: a computational system for
spatial modelling," Environmental Modelling & Software,
vol. 19, pp. 235-243, 2004.

Accepted for publication in the Proceedings of the DEVS Integrative M&S Symposium, Huntsville, Alabama, USA, April 2-4, 2006

[7] HLA, "High Level Architecture." http://hla.dmso.mil:
Defense Modeling and Simulation Office, 1999.

[8] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems, Second Edition
ed: Academic Press, 2000.

[9] ACIMS, "DEVSJAVA Software,"
http://www.acims.arizona.edu, 2005.

[10] J. J. Nutaro, "Adevs (A Discrete EVent System simu-
lator) C++ library," 2005.

[11] A. Chow, "Parallel DEVS: A Parallel, Hierarchical,
Modular Modeling Formalism and Its Distributed Simu-
lator," SCS Transactions on Simulation, vol. 13, pp. 55-
102, 1996.

[12] Y. K. Cho, "RTDEVS/CORBA: A Distributed Object
Computing Environment For Simulation-Based Design of
Real-Time Discrete Event Systems," in Electrical and
Computer Engineering, vol. PhD. Tucson: University of
Arizona, 2001.

[13] E. Kofman, "Discrete event simulation of hybrid sys-
tems," Siam Journal On Scientific Computing, vol. 25, pp.
1771-1797, 2004.

[14] M. Both, "VBOrb - A Visual Basic Object Request
Broker," vol. 2005: http://www.martin-
both.de/vborb.html, 2003.

