

Abstract — The development of a distributed testing environment
would have to comply with recent DoD mandates requiring that the
DoD Architectural Framework (DoDAF) be adopted to express high
level system and operational requirements and architectures
Unfortunately, DoDAF and DoD net-centric mandates pose
significant challenges to testing and evaluation since DoDAF
specifications must be evaluated to see if they meet requirements
and objectives, yet they are not expressed in a form that is amenable
to such evaluation. DoDAF is the basis for integrated architectures
and provides broad levels of specification related to operational,
system, and technical views. In our earlier work, we described an
approach to support specification of DoDAF architectures within a
development environment based on DEVS (Discrete Event System
Specification) for semi-automated construction of the needed
simulation models. The result is an enhanced system lifecycle
development process that includes both development and testing in
an integral manner. We also developed automated model generation
using XML which paves the way for OVs to become
service-providing components in the Web Services architecture. In
this paper we present the semantic structure for one of the
Operational View documents OV-6a that would aid the development
of these semi-automated models. We will describe how OV-6a can
be structured in a more generalized meta-model framework such that
every rule is reducible to meaningful code which is automatedly
constructed through Natural Language Processing (NLP) methods
and further be reduced to DEVS based models. The paper also
presents an overview of the Life-cycle development methodology
for these enterprise architectures and how a common enterprise
domain-model can be used in customized business/domain-specific
rules and policy structures.

I. INTRODUCTION
The development of a distributed testing environment would
have to comply with recent DoD mandates requiring that the
DoD Architectural Framework (DoDAF) be adopted to
express high level system and operational requirements and
architectures [4,5,6,7] Unfortunately, DoDAF and DoD
net-centric [8] mandates pose significant challenges to testing
and evaluation since DoDAF specifications must be
evaluated to see if they meet requirements and objectives, yet
they are not expressed in a form that is amenable to such
evaluation.

This paper begins by providing an overview of the current
DoDAF descriptions and how DEVS is positioned to address
the need for a new DoDAF-based and net-centric paradigm
for test and evaluation at the system-of-systems and
enterprise systems levels. Our earlier work [9] enhanced
DoDAF by proposing a methodology to map DoDAF
descriptions to DEVS specifications, i.e., DoDAF-to-DEVS

mapping. Since DEVS environments, such as DEVSJAVA,
DEVS.C++, and others [10] are embedded in object-oriented
implementations, they support the goal of representing
executable model architectures in an object-oriented
representational language. As a mathematical formalism,
DEVS, is platform independent, and its implementations
adhere to the DEVS protocol so that DEVS models easily
translate from one form (e.g., C++) to another (e.g., Java)
[11]. DEVS environments are typically open architectures
that have been extended to execute on various middleware
such as DoD’s HLA standard, CORBA, SOAP, and others
[12,13,14,15] and can be readily interfaced to other
engineering and simulation and modeling tools [16].
Furthermore, DEVS operation over a web-middleware
(SOAP) enables it to fully participate in the net-centric
environment of the Global Information Grid [8]. As a result
of recent advances, DEVS can support model continuity
through a simulation-based development and testing
life-cycle [17]. This means that the mapping of high-level
DoDAF specifications into lower-level DEVS formalizations
enables such specifications to be thoroughly tested in virtual
simulation environments before being easily and consistently
transitioned to operate in real environment for further testing
and fielding.

In [18], we proposed extensions to DoDAF by introducing
two new Operational View documents, OV-8 and OV-9, that
allow modeling and simulation be a critical part in the design
process. We demonstrated how DoDAF-DEVS mapping can
actually take place from the existing DoDAF UML
specifications and how standardized Model Repositories can
be created.

The present work aims to refine another DoDAF document,
namely OV-6 document. We are particularly focused towards
OV-6a specifications that incorporate various rule-based
constraints that would allow selective capabilities and
multiple designs from a single architecture specified within
DoDAF framework. We will demonstrate how the
applications of a defined rule-based meta-model provides
structure to the current OV-6a document and expedites the
construction of semi-automated DEVS models. We propose a
DoDAF/DEVS based developmental methodology that
includes formal Modeling and Simulation as a part of design,
test and evaluation strategy. In addition to this overall
development methodology, our focus is to produce a
semantically strong OV-6a document that would aid creation
of semi-automated Model development. The procedures that
would bring about the translation from a rule-based structure

Strengthening OV-6a Semantics with Rule-Based Meta-models in
DEVS/DoDAF based Life-cycle Architectures Development

Saurabh Mittal, Amit Mitra, Amar Gupta, Bernard P. Zeigler, Fellow IEEE

2

to DEVS Model definitions pave way to creation of run-time
models through Natural Language Processing (NLP)
methods, as shown in [18].

The next section presents an overview of DoDAF documents,
and the Rule-Based Meta-model Framework. Section III
describes the integrated developmental methodology using
DEVS Testing and Evaluation procedures as a part of design
process. Section IV explores the OV-6a semantics with more
details on rule-based meta-models and DEVS model
constructions. Section V concludes with some discussion on
the proposed methodologies and its advantages on the
development of Enterprise Architectures

Impact
In an editorial [1]. Carstairs asserts an acute need for a new
testing paradigm that could provide answers to several
challenges described in a three tier structure. The lowest
level, containing the individual systems or programs, does not
present a problem. The second tier, consisting of systems of
systems in which interoperability is critical, has not been
addressed in a systematic manner. The third tier, the
enterprise level, where joint and coalition operations are
conducted, is even more problematic. Although current test
and evaluation (T&E) systems are approaching adequacy for
tier two challenges, they are not sufficiently well integrated
with defined architectures focusing on interoperability to
meet those of tier three. To address mission thread testing at
the second and third tiers, Carstairs advocates a Collaborative
Distributed Environment (CDE) which is a federation of new
and existing facilities from commercial, military and
not-for-profit organizations. In such an environment,
Modeling and Simulation (M&S) technologies can be
exploited to support Model-continuity [2] and Model-Driven
Design development [3], making test and evaluation an
integral part of the design and operations life-cycle.

The present work employs formal M&S, semantically
accurate rule-based structure that is built on an underlying
Meta-model, and NLP based methods that would translate
these semantic rule structures to automated models, thereby
exploiting recent DEVS advancements towards an integrated
life cycle development methodology that entails a formal Test
and Evaluation strategy for enterprise systems.

II. BACKGROUND AND EARLIER WORK

A. DoDAF documents (enhanced)
The DoDAF is mandated for expressing high level system
and operational requirements and architectures that cross
organizational and national boundaries [20]. Its objective is to
provide a common denominator of understanding, comparing
and integrating these Family of Systems (FoSs), System of
Systems (SoSs) and interoperating and interacting
architectures. It comprises of 3 major Views:

1) Operational View (OV):
This view provides information on what needs to be
accomplished and who should be doing it. It deals with
the functional capabilities of the architecture
2) Systems View (SV):
This view provides information on which systems are
employed to provide the functionalities expressed in OV.
It provides the bridge between the conceptual
functionalities and real systems that would provide them.
3) Technical View (TV):
This view provides information on what standards are
being used to employ the systems required in SV and what
standards are under development to address the future
needs of the current architecture.

The interaction between these three views is shown in figure
below.

Figure 1: DoDAF Views and their inter-relationships

The primary focus of this paper is within the Operational
View documents. Listing all of them, in order of their
development sequence:

1) OV-1: Contains the overall functional objective
2) OV-5: Contains the hierarchical functional

descriptions of the central capabilities and how
different functional elements are integrated in a
top-down approach.

3) OV-6: It is further divided into three
sub-documents:

a. OV-6a: Contains the rule-based constraints
that would define the boundaries and
operational limits.

b. OV-6b: Contains the sequencing
information of various activities listed in
OV-5. It also involves decomposing of
OV-5 activities into smaller activities.
Links various activities to provide a
composite ‘capability’

c. OV-6c: Contains information about the
statechart (finite state machine)
descriptions for any activity/capability.

4) OV-2: Contains the logical Operational node
definitions and how different capabilities are
grouped together to be performed at one logical
node and their mutual connectivity.

5) OV-3: Contains information about various data
exchanged that happen between logical nodes in
OV-2.

3

6) OV-7: Contains information about the logical data
model developed from OV-2. It inherits the logical
connectivity description from OV-2.

7) OV-4: Contains information about the
organizational structure (and their associated
constraints) of various Operational nodes identified
in OV-2 and OV-7.

8) OV-8: Contains information relation to functional
capability as ‘components’ and their interface
descriptions needed for component M&S

9) OV-9: Contains information on mapping the
Activity components to Operational nodes (defined
in OV-2) for functional composablitiy and enhanced
M&S.

B. Rule-Based Meta-model Structure
The Rule Meta-model is based on the meta-model of
Knowledge as put forward by Dr. Mitra and Dr. Gupta in
their work [28]. Figure 2 below shows the layered
architecture of Knowledge meta-model. At the top layer is the
domain information. The data flows from top-bottom and is
analogous to the OSI 7 layer logical structure. The difference
here is that the layered meta-models in actuality are rules,
classified on the basis of their functionalities and according to
their application-domain.

Figure 2: Layered Information Stack in

Knowledge Meta-model

The rules in the below 3 layers are common to most of the
enterprise architecture designs with little changes but the
rules in the topmost layer are truly the rules and constraints
that define the performance and behavior of any architecture.
They are derived from ‘Meaning’, a term coined in the
Knowledge meta-model that basically signify an abstract
term reducible to a logical object capable of some resulting
effect as the available domain rules apply to this term.
Alternatively, considering a term A having certain meaning,
on application of some rule/constraint, transforms to term B
with some different meaning in real world. These
transformations are also defined at application-domain level
and are know as ‘Relationship’ constraints in this Knowledge
meta-model. Consequently, an architecture when reduced to a
specific design, ready for being tested (through M&S) or
before deployment has set ‘terms’, meanings and various

‘relationships’ through which these rules get manifested. The
Relationship set along with Meanings may be called upon as
jargon of that particular architectural design. This is
beneficial for information reuse and component redesign as
same logical entities in a generalized architecture can be
called upon by different names in dissimilar domains e.g.
Business-domain and Military-domain. When such top-down
domain-specific rules are applied to any generalized
information architecture, the resulting design is application
specific and is heavily developed through component reuse.

Figure 3: Broad classification of Domain-meaning

Looking deeper into the structure of ‘Domain’, we have it
classified into two broad categories: Qualitative and
Quantitative domains. The Domain by itself is actually a
domain of Meanings. There are 4 types of domains:

1) Nominal Domains
It contains only classification information. i.e. what
category does this Meaning belong to. Are these two
meanings the same? They have no information on
sequencing, or ratio of properties of objects. This piece of
information is expressed in atleast one, but possibly,
many formats.
2) Ordinal Domains
It contains both classification and sequencing. They have
no information on magnitude of ratios between two
meanings. This piece of information is expressed in
atleast one, but possibly, many formats and can be used to
compare various objects to arrange them in a sequence.
3) Difference Scaled Domains
This domain allows classification in natural sequence
based on the measure of their point-to-point differences in
the sequence. They carry no information on ratios. It
needs atleast one physical format for its expression, know
as Unit of Measure (UOM) in Knowledge meta-model.
Each UOM must be expressed in atleast one, but possibly
several formats.
4) Ratio Scaled Domains
This domain allows classification in natural sequence
based on the measure of their point-to-point differences,
and takes their ratios. They always have a natural zero.

More details on these domains can be seen in [28].

Mapping to DoDAF Views
This Knowledge meta-model can be very readily mapped to
the DoDAF framework. The lowest layer is analogous to
Technical View. The second layer from below, Interface rules
can be mapped to System Views where different system

4

components have their own presentation and interface
definitions. The third layer from below, can be mapped to the
Operational View where logistics and other operational
constraints defined how ‘Operational nodes’ be defined. The
top layer is the domain specific rule structure that drives the
whole 3-layer set below. As we will see in the next section
how application of Domain rules transform a generalized
architecture into a specific design, the Knowledge
meta-model is very much in line with the basic development
methodology of any information related system.

C. Brief Overview of DEVS M&S Capabilities
Recent advancement in DEVS technology has enabled the
field of M&S to be applied to the system design process.
Earlier M&S was viewed as an analysis tool but currently it is
very much a part of Design search process. DEVS with its
Experimental Frame scenario construction separates the
behavior of model against definite controlled conditions thru
user interface of Experimental Frame. To provide a brief
overview of the current capabilities provided by DEVS, let’s
look how it could provide solutions to the challenges in
net-centric design and evaluation (Table 1).

Desired M&S Capability Solutions provided by DEVS technology
Requirement Coherence and
Prioritization

MIL-Worth Analysis (M&S
Executable Architectures)

Enhanced user capabilities

Execution Roadmaps

Source Selection

Technology Application
/Transition
Test Support including
Vulnerability analysis
Interoperability and Integration
Assurance
Hierarchical modular
construction of models aiding
Systems of system testing

Provide collaborative distributed
environment for M&S

1. Control simulation on-the-fly [23].
2. Reconfigure simulation on-the-fly [24]
3. Provide dynamic variable-structure component

modeling [24][25]
4. Separate model from the act of simulation itself

which can be executed on single or multiple
distributed platforms [11]

5. Simulation Architecture is layered to
accomplish the technology migration or run
different technological scenarios [16][26]

6. With its Bifurcated test and development
process, automated test generation is integral to
this methodology [27]

7. Dynamic simulation tuning, interoperability
testing and benchmarking [24].

8. Provide rapid means of deployment using
Model-continuity principles and concepts like
‘simulation becomes the reality’ [12].

Table 1: DEVS on addressing M&S issues

Figure 4: DEVS/DoDAF as the basis for development of Enterprise Architectures incorporating formal M&S

5

III. INTEGRATED DEVELOPMENT METHODOLOGY
This section presents the integrated design methodology
based on DEVS/DoDAF system design principles that
incorporates formal M&S test and evaluation procedures. It
has 3 major sections. The first is the encoding of information
in XML. The second being the development of OV-6a
document based on Rule-based meta-model structure. The
third being incorporating and merging the above two sections
using semi-automated DEVS modeling and distributed
simulation. The overall process is shown in Figure 4 above.

The integrated methodology is executed in the following
sequential manner:
1. Develop architecture requirements and define DoDAF

All View AV-1 and conceptual Operational view OV-1
showing the key capabilities.

2. Define the hierarchical capability functional description
document OV-5 and provide more details in OV-6b,c
leading to components identification.

3. Develop OV-8 and OV-9 documents that are dedicated
to M&S. More details on their development can be seen
in [18].

4. Gather component and interface definition information
and develop System View SV-4 and SV-5 documents
that deals with identification of systems (COTS) that
could provide the required capabilities. SV-4 deals with
new proposed system identifications. SV-5 deals with
COTS. Their identification is continually refined as
development to deployment time is extended over long
durations.

5. Specify the components, interface, Nodes, and
connectivity information from OV-8,9 documents into
XML.

6. Put these XML DEVS component models in Web Model
Repository

7. Develop OV-6a rules of engagement document
description based on underlying meta-model and
translated them into meaningful code using NLP
methods as done in [19]. More details about this step is
provided in Section IV.

8. Gather generalized behavior DEVS model from Web
repository and apply the Domain-specific
rules/constraints specified in previous step and develop
run-time models ready for DEVS distributed simulation,
automatedly.

9. Gather performance results (and tune models if need be
[9,18]) and transform code to actual system components
using Model Continuity principles [12].

IV. DEVELOPMENT OF DOMAIN-SPECIFIC
RULES/POLICIES DEFINITIONS

This section presents more details regarding Step 8 of
previous section (yellow shaded box in Figure 4). Going

further in the details of any Domain term/meaning (Figure 3),
we have in Figure 5, another two objects in Knowledge
Meta-model known as Unit of Measure (UOM) and Formats.
Since this is the topmost level of ‘relationships’, the lines
shown in the diagram are called Meta-relationships, and for
the similar reason, these two new objects are called
Meta-objects. Figure 5 below shows that a Quantitative
domain-meaning is expressed in atleast one or possibly many
UOMs (e.g. Difference Scale domains and Ratio Scaled
domains). Similarly, Qualitative domains are expressed in
atleast one or possibly many formats. Now this figure brings
new information in connecting and converting domain related
information from one meaning to another:

1. One UOM is expressed in atleast one format or
possibly many formats.

2. one UOM converts to none or atmost one UOM
3. one Format converts to none or atmost one Format

Figure 5: Meta-model of Domain

The inherent formatting information or any ‘meanings’
measurability is very beneficial in specifying and classifying
the behavior of any domain-meaning. Having such
underlying framework associated with every ‘term’ being
used in an architecture design aids the automated conversion
of various types of Formats and UOMs, if their exists a
definition of it, coupled with a domain-meaning. Errors like
Mars Rover conversion would not have happened if such
Formatting information had been coupled with the meaning
of ‘Rover speed’. Only the Format was associated with it. If
UOM had been associated along with Format, the unit
meters/sec could have been automatedly transformed to
miles/sec.

Now going further along the yellow box in Figure 4, we
arrive now at the OV-6a description of the architecture
descriptions. Recall that before we define our OV-6a rules of
engagement, we have already developed our OV-5
hierarchical activity descriptions. We have listed numerous
activities and how their sequencing occurs in OV-5, OV-6b,
and OV-6c. These documents present us with the information
on the mechanism of activity happening without constraints
or ‘security issues’ in military domains. In order to develop a
semantically accurate OV-6a document, we need to associate
various meanings to the repository of domain-meanings as

6

per our Rule-based meta-model. This association will
automatically entail the Meta-objects Format and UOM,
removing any ambiguities in representations across any
boundaries (national or organizational), which is one of the
prime objectives of DoDAF.

Consider a simple OV-6a snippet translated to structured
English in the form of pseudo code. This kind of structured
English is done manually after understanding the operational
and security procedures for any mission undertaking. In this
simple example terms like “acceleration rate”, “drag effect
rate” can be very readily associated with domain-meanings
for this particular architecture. Here ‘acceleration’ is a
domain-meaning term, ‘rate’ is another domain-meaning
term, and so is ‘drag effect’. Construction of composite
meaning like ‘acceleration rate’ is very well supported in the
underlying rule-based Meta-model. Associating them with
domain-meanings, ensures their formatting and UOMs,
thereby making them semantically consistent and
mathematically more accurate.

Figure 6: OV-6a pseudo code snippet for Rules of

Engagement

Going to the next step involves translation of such pseudo
code into dynamic DEVS model specifications. Recent work
has been done in this area where structured English is
translatable to DEVS models and their internal behaviors
being coded thru such pseudo code. More details can be
found at [18].

V. DISCUSSION AND CONCLUSION
DoDAF OV-5, 6 capture the functional capabilities of any
military system architecture. OV-6a defines the rules and
constraints for any mission specific exercise on a generalized
architecture. Describing OV-6 documents with an underlying
semantic structure, such as Rule-based Meta-model
framework, enhances the usability and reuse of defined
processes. The information contained therein the OV-6a is
exact, semantically consistent and mathematically accurate, if
terms are inherently quantifiable. Such defined structures can
be used in domains other than military domains as the general
mechanisms are well documented in OV-5, 6 documents. The
mapping of Knowledge based Metamodel to DoDAF views
gives enough evidence that DoDAF is a well constructed
information oriented document. However, it is missing a
rule-based structure that would allow different architectures

to be used for multiple designs. Merging the Knowledge
based Meta-model with DoDAF/DEVS based Life cycle
development cycle makes DoDAF semantically stronger.

REFERENCES
[1] Carstairs, D.J., “Wanted: A New Test Approach for Military

Net-Centric Operations”, Guest Editorial, ITEA Journal, Volume 26,
Number 3, October 2005

[2] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic
Distributed Real-Time Systems”, accepted by IEEE Transactions On
Systems, Man And Cybernetics— Part A: Systems And Humans

[3] Wegmann, A., “Strengthening MDA by Drawing from the Living
Systems Theory”, Workshop in Software Model Engineering, 2002

[4] DoD Architecture Framework, Software Productivity Consortium,
http://www.software.org/pub/architecture/dodaf.asp, last accessed Jan
9, 2005.

[5] DOD Instruction 5000.2 “Operation of the Defense Acquisition
System,” 12 May 2003.

[6] Chairman, JCS Instruction 3170.01D “Joint Capabilities Integration
and Development System,” 12 March 2004.

[7] Chairman, JCS Instruction 6212.01C “Interoperability and
Supportability of Information Technology and National Security
Systems,” 20 November 2003

[8] K. Atkinson, “Modeling and Simulation Foundation for Capabilities
Based Planning”, Simulation Interoperability Workshop Spring 2004

[9] B.P. Zeigler, S. Mittal, “Enhancing DoDAF with DEVS-Based System
Life-cycle Process”, IEEE International Conference on Systems, Man
and Cybernetics, Hawaii, October 2005

[10] A. Tolk, S. Solick, “Using the C4ISR Architecture Framework as a
Tool to Facilitate V&V for Simulation Systems within the Military
Application Domain”, Simulation Interoperability Workshop, Spring
2003

[11] B. P Zeigler, H. Praehofer, T. G. Kim, “Theory of Modeling and
Simulation”, Academic Press, 2000

[12] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic
Distributed Real-Time Systems”, accepted by IEEE Transactions On
Systems, Man And Cybernetics— Part A: Systems And Humans

[13] Discrete Event Modeling and Simulation Technologies: A Tapestry of
Systems and AI-Based Theories and Methodologies Editors: Hessam S.
Sarjoughian , François E. Cellier, Spring-Verlag, NY, 2001.

[14] B. P.Zeigler, DEVS Today: Recent Advances in Discrete Event-based
Information Technology, MASCOTS Conference, 2003

[15] http://www.acims.arizona.edu/SOFTWARE/software.shtml, last
accessed Jan 12, 2005

[16] H. Sarjoughian, B. Zeigler, and S. Hall, “A Layered Modeling and
Simulation Architecture for Agent-Based System Development”,
Proceedings of the IEEE 89 (2); 201-213, 2001

[17] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and Implementation of
Distributed Real-Time DEVS/CORBA, IEEE Sys. Man. Cyber. Conf.,
Tucson, Oct. 2001.

[18] Mittal.S., “Extending DoDAF to Allow Integrated DEVS-Based
Modeling and Simulation”, submitted to special issue on DoDAF,
Journal of Defense Modeling and Simulation, Oct 2005

[19] Mittal, S., Mak, E., Nutaro, J.J., “DEVS Based dynamic Model
Reconfiguration and Simulation control in the Enhanced DoDAF
Design Process”, submitted to the special issue on DoDAF, Journal of
Defense Modeling and Simulation., Feb 2006

[20] DoDAF Deskbook
[21] Bernard P. Zeigler, Herbert Praehofer, Tao G. Kim, “Theory of

Modeling and Simulation,” Academic Press, 2 Edition, January 2000
[22] Buss, A., Jackson, L. “Distributed Simulation Modeling: A Comparison

of CORBA, HLA, and RMI”. Proceedings of the 1998 Winter
Simulation Conference. 1998.

[23] Mittal, S., B. P. Zeigler, “Dynamic Simulation Control with Queue
Visualization”, Summer Computer Simulation Conference SCSC'05,
Philadelphia, July 2005

[24] Mittal,S., Zeigler, B.P:, Hammonds, P., Veena, M., “Network
Simulation Environment for Evaluating and Benchmarking HLA/RTI
Experiments”, JITC Report, Fort Huachuca, December 2004.

7

[25] X. Hu, B. P. Zeigler, S. Mittal, “Dynamic Configuration in DEVS
Component-based Modeling and Simulation”, SIMULATION:
Transactions of SCS International, November 2003

[26] S. Mittal, B. P. Zeigler, “Modeling/Simulation Architectures for
Autonomous Computing”, Autonomic Computing Workshop: The
Next Era of Computing, January 2003

[27] B. P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, "Framework for
M&S-Based System Development and Testing in Net-centric
Environment,” , ITEA Journal, Volume 26, Number 3, October 2005

[28] A. Mitra, A. Gupta, “Agile Systems with Reusable Patterns of Business
Knowledge”, Artech House, published 2005

