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ABSTRACT 

 

 With the increased demand for distributed simulation to support large-scale 

modeling and simulation applications, much research has focused on developing a 

suitable framework to support simulation across a heterogeneous computing network. 

Middleware based solutions have dominated this area for years, however, they lack the 

flexibility for model partitions and dynamic repartition due to their innate static natures. 

In this dissertation, a novel approach for DEVS based distributed simulation framework 

is proposed and implemented. The objective of such a framework is to distribute 

simulation entities across network nodes seamlessly without any of the commonly used 

middleware, as well as to support adaptive and reconfigurable simulations during run-

time. This new approach, called DEVS/RMI, is proved to be well suited for complex, 

computationally intensive simulation applications and its flexibility in a distributed 

computing environment promotes a rapid development of distributed simulation 

applications. A hilly terrain continuous spatial model is studied to show how DEVS/RMI 

can easily refactor the simulations to accommodate both increases of the resolution and 

computation nodes. Furthermore, an agent-based valley fever model is investigated in 

this dissertation with particular interests on the concept of DEVS  “activity”. Dynamic 

reconfiguration of distributed simulation is then exemplified using the “activity” based 

model repartition in a DEVS/RMI supported environment. The flexibility and 

reconfigurable nature of DEVS/RMI open up further investigations into the relationship 
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between speedup of a simulation and the partition or repartition algorithm used in a 

distributed simulation environment. 
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1 INTRODUCTION 

 

 Discrete Event System Specification (DEVS) is a mathematical formalism [1] to 

describe real-world system behaviors in an abstract and rigorous manner. DEVS has 

defined its standard as a well-known discrete event modeling and simulation 

methodology. Compared with Non-DEVS traditional modeling and simulation 

methodologies, DEVS defines a strict and concrete modeling and simulation framework 

that supports fully object oriented modeling and simulation. Furthermore, DEVS has 

been proved to be effective not only for discrete event models but also for continuous 

spatial and hybrid models. With the help of modern object oriented language such as C++ 

and Java, the frameworks for modeling and simulation based on DEVS have reached 

their mature stages and have been applied in many real-world applications. 

 With the increased demand for high-performance and large-scale simulation 

frameworks, parallel and distributed simulations are called on to support various 

scientific and engineering studies, including technical (e.g., standards conformance), 

system level (focus on a single natural or engineered system) and operational (focus on 

multiple systems, such as families of systems or system of systems) [2]. The objectives of 

such studies may include testing of correctness of system behavior/function, evaluation of 

measures of performance, and evaluation of measures of effectiveness and key 

performance parameters. An ideal parallel and distributed framework should be able to 

meet the following requirements:  
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• Flexibility – must handle a wide range of dynamic, information exchange and 

dialogic behaviors. 

• Institutionalized Reuse – support for model reuse and composability, not only at 

the syntactical, but at the semantic and pragmatic levels as well. 

• Model Continuity – allow basic development of systems in virtual time-managed 

mode, while supporting stage-wise transition to real-time hardware in the loop 

implementation as well.  

• Quality of Service – should provide acceptable simulation performance at 

minimum, and increased performance in dimensions such as execution time when 

required. 

  

 With regard to parallel-distributed DEVS frameworks, there have been noticeable 

progresses in recent years. DEVS/C++ [3], ADEVS [4] and CD++ [5] are such software 

tools that work well for shared memory multi-processors, and have been used to simulate 

large-scale models in practice. These implementations provide the necessary power for 

high-performance parallel-distributed simulation, but lack the flexibilities for mapping 

models to processors. Other DEVS based parallel-distributed simulation frameworks 

include DEVS/GRID [6], DEVS/P2P [7], DEVS/HLA [8], DEVS/CORBA [9] and etc., 

which use middleware to bridge the simulation entities with the underlying networks, and 

therefore, only limited support for model distribution is provided in a networking 

environment.  
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 In this dissertation, a new distributed DEVS modeling and simulation framework, 

called DEVS/RMI [2], is proposed and implemented. DEVS/RMI is a significant 

extension of DEVS/JAVA [11] and aims to provide a simulation framework which can 

easily scale a single machine's simulation to multiple distributed processors. It is an 

integration of Java RMI [13] technology with DEVS/JAVA, and is able to transparently 

distribute simulation entities (models and/or simulators) to cluster of machines, which 

greatly reduces the difficulties of mapping partitioned models to computing processors. 

Because Java RMI supports the synchronization of local objects with remote ones, no 

additional simulation time management, beyond that already in DEVSJAVA, needs to be 

added when distributing the simulators to remote nodes. It also provides an auto-adaptive 

and reconfigurable environment for dynamic model re-partition and simulator/model 

migration. Such an environment simplifies simulator/model distribution across a network 

without the help of other middleware while still providing platform independence 

through the use of Java and its Virtual Machine (JVM) implementations. Compared with 

other implementations using traditional high performance computing environments such 

as MPI or PVM, DEVS/RMI provides a flexible and efficient software development 

environment for rapid development of distributed simulation applications. The approach 

using DEVS/RMI is tested and verified in this dissertation to be well suited for complex, 

computationally intensive, and dynamic simulation applications. We need the high-

performance capabilities to address the computational complexity needed to thoroughly 

examine complex natural systems and also to test and certify trusted information systems. 

Therefore, the approach of DEVS/RMI presented in this dissertation opens a wide area of 
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simulation research, and it also helps promoting science and engineering studies by 

providing a high performance and flexible distributed simulation framework. 

 In terms of some of the application areas, DEVS/RMI could be easily applied to 

refactor simulation applications in a circumstance when both problem sizes and 

computation nodes need increase. It is an ideal simulation framework for investigating 

the computation space for large-scale continuous spatial models in which the resolution 

of the simulation needs to be adjusted by increasing or decreasing the cell-space sizes. 

Furthermore, the capability of DEVS/RMI to support dynamic reconfiguration of 

simulations will help the study of behaviors of very large-scale dynamic system, where 

both the flexibility of model partitions and the necessary computing power are on-

demand. DEVS/RMI could also be run on a Grid environment natively as long as JVM is 

installed on the participating computing nodes. Such a capability to scale a single 

machine’s simulation to a large-scale Grid computing environment makes the 

DEVS/RMI more attractive for a wide area of applications including large-scale agent-

based simulation, computing intensive simulation testing and etc.  

 

 

  The main contributions of this dissertation are as follows:  

• Designed and implemented a scalable and flexible distributed simulation 

framework called DEVS/RMI. 

• Studied the computation space of a large-scale continuous spatial hilly terrain 

model with the help of DEVS/RMI. 
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• Studied and implemented “activity” based dynamic reconfiguration in a 

distributed simulation environment. 

 

 The organization of this dissertation is described as followings:  Chapter 2 

presents some background information directly related to this dissertation, where basic 

DEVS theory and formalism are briefly reviewed. DEVSJAVA and JAVA RMI are both 

discussed to provide necessary links for later Chapters. Chapter 3 reviews the principle 

concepts and research in parallel and distributed simulation, and Chapter 4 reviews the 

model partition and dynamic repartition techniques commonly used in the distributed 

simulation circumstances.  Chapter 5 proposes the design and implementation of 

DEVS/RMI, where the key attributes of it are presented and discussed in detail. Chapter 6 

presents the model partition technique implemented in DEVS/RMI followed by Chapter 

7, which investigated and demonstrated how DEVS/RMI can be applied on the study of 

computational space of large-scale continuous special model. Chapter 8 shows the 

effectiveness of DEVS/RMI on solving large-scale agent based model as well as dynamic 

reconfiguration capability using model “activity”. At last, Chapter 9 discusses the 

performance issues related to DEVS/RMI, and the dissertation is then concluded by 

Chapter 10 which also suggests some future works. 
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2 BACKGROUND 

 

2.1 DEVS 

2.1.1 Introduction of DEVS and DEVS Formalism 

Discrete Event System Specification (DEVS) is a mathematical formalism to 

describe real-world system behavior in an abstract and rigorous manner. Compared with 

traditional methodology for modeling and simulation, DEVS formalism describes and 

specifies a modeled system as a mathematical object, and such object based 

representation of the targeted system can then be implemented using different simulation 

languages, especially modern object-oriented ones. In general, a system has a set of key 

parameters when being modeled in a modeling framework, which include time base, 

inputs, states, outputs, and functions for determining state transitions. Discrete event 

systems in general encapsulate these parameters as object entities, and then use modern 

object oriented simulation languages to describe the relationship among the specified 

entities. As a pioneering formal modeling and simulation methodology, DEVS provides a 

concrete simulation theoretical foundation, which promotes fully object-oriented 

modeling and simulation techniques for solving today’s simulation problems required by 

other science and engineering discipline. The insight provided by the DEVS formalism is 

in the simple way that it characterizes how discrete event simulation languages specify 

discrete event system parameters [14]. Having such an abstraction, it is possible to design 

new simulation languages with sound semantics that are easier to understand than 

traditional ones.  Figure 2-1 presents a DEVS concept framework to show the basic 
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objects and their relationships in a DEVS modeling and simulation world. These basic 

objects include [15]:  

• the real system, in existence or proposed, which is regarded as fundamentally a 

source of data 

• model, which is a set of instructions for generating data comparable to that 

observable in the real system.  The structure of the model is its set of instructions.  

The behavior of the model is the set of all possible data that can be generated by 

faithfully executing the model instructions.   

• simulator, which exercises the model's instructions to actually generate its 

behavior. 

• experimental frame, which captures how the modeler’s objectives impact on  

model construction, experimentation and validation. As implemented in 

DEVJAVA, such experimental frames are formulated as model objects in the 

same manner as the models of primary interest.  In this way, model/experimental 

frame pairs form coupled model objects with the same properties as other objects 

of this kind. It will become evident later, that this uniform treatment yields 

immediate benefits in terms of modularity and system entity structure 

representation. 

These basic objects are then related by two relations [15]: 

• modeling relation: linking real system and model, defines  how  well the  model  

represents the system or entity being  modeled.  In general terms a model  can be 
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considered  valid  if  the  data generated  by  the  model agrees with the data  

produced  by  the real system in an experimental frame of interest.   

• simulation  relation, linking model and simulator, represents  how faithfully  the  

simulator is  able  to  carry  out  the instructions of the model.   

 

Source 

System

Simulator

Model

Experimental Frame

Simulation

Relation

Modeling

Relation

behavior database

 

Figure 2-1 Basic Entities and Relations [15] 

In the view from DEVS, the basic items of data produced by a system or model 

are time segments.  These time segments are mappings from intervals defined over a 

specified time base to values in the ranges of one or more variables [15].  These variables 

can either be observed or measured. An example of a data segment is shown in Figure 

2-2, where X is inputs, S is states, e is time elapsed, and Y is outputs.   
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y0
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t0 t1 t2

 

Figure 2-2 Discrete Event Time Segments [1] 

 In fact, DEVS formalism provides a formal definition to describe the data 

segment depicted above in Figure 2-2, and the history of DEVS can be traced back to 

decades ago. A standard and classic DEVS formalism is defined as a structure [1]: 

M = <X, S, Y, δint, δext, λ, ta> 

where, 

  X :  set of inputs;  

  S :  set of states;  

  Y :  set of outputs;  

  δint: S  →   S : internal transition function  

  δext : Q × X   →   S : external transition function  
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Q = { (s,e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the 

elapsed time since last state transition. 

  λ : S  →   Y : output function  

  ta : S   → +

∞,0R : time advance function; 

Figure 2-3 illustrates the key concept of above classic DEVS formalism. 

Assuming the system is in state S after a previous state transition, it will stay in state S 

for a duration determined by ta(s). When this resting time of ta() expires(or say the 

elapsed time e=ta(s)), the system gives output λ(s) and changes its state from s to s’. This 

state transition is exactly determined by the internal transition function δint as mentioned 

in the formalism. However, if an external event occurs through the input X before the 

duration specified by ta(s)(or say, the system is in total state (s,e) with e= ta(s), the 

system will change to a state determined by δext(s,e,x) . After the system changes its state 

to a new state, the same rules in the formalism are applied to govern how the system 

responses to discrete events. DEVS makes an explicit difference between internal and 

external state transitions, where the internal transition function determines the system’s 

new state when no events have occurred since the last transition, while the external 

transition function determines the system’s new state when an external event occurs 

between 0 and ta(s). It is worth to note that ta(s) is a real number including 0 and ∞,  

where “0” means that the system is a so-called “transitory” state that no external events 

can intervene, and “∞” means that the system is in a so-called “passive” state that is 

unchanged forever until an external event wakes it up.  
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Figure 2-3  An Illustration For Classic  DEVS Formalism [1] 

 The above classic DEVS formalism does not take into account of concurrent 

events, and therefore, has relatively limited usage for real-world application. With the 

consideration of concurrent events and parallel processing on a discrete event system, 

parallel DEVS system specification is developed from classic DEVS. The key 

capabilities of Parallel DEVS beyond the classical DEVS are [1]: 

• Ports are represented explicitly – there can be any of input and output ports on 

which values can be received and sent. 

• Instead of receiving a single input or sending a single output, basic parallel DEVS 

models can handle bags of inputs and outputs. It should be noted here that a bag 

can contain many elements with possibly multiple occurrences of its elements. 
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• A transition function, called confluent, is added, which decides the next state in 

cases of collision between external and internal events.  

 

Such parallel DEVS formalism consists of two parts: basic and coupled models. 

A basic model of a standard parallel DEVS is a structure [1]: 

M = <XM, S, YM, δint, δext, δcon, λ, ta> 

where, 

XM ={( p , v) | p∈IPorts, v∈Xp } is the set of input ports and values; 

YM ={( p , v) | p∈OPorts, v∈Yp } is the set of output ports and values; 

S :  set of sequential states;  

δint: S  →   S : internal transition function  

δext : Q × XM
b
   →   S : external transition function  

δcon: Q × XM
b
   →   S : confluent transition function  

XM
b
  is a set of bags over elements in X, 

λ : S  →   Y
b
 : output function generating external events at the 

output; 

ta : S   → +

∞,0R : time advance function; 

Q = { (s,e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the 

 elapsed time since last state transition. 

Such basic model as defined in parallel DEVS captures the following information 

from a discrete event system:  
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� the set of input ports through which external events are received                                                                 

� the set of output ports through which external events are sent 

� the set of state variables and parameters  

� the time advance function which controls the timing of internal transitions 

� the internal transition function which specifies to which next state the system will 

transit after the time given by the time advance function has elapsed 

� the external transition function which specifies how the system changes state 

when an input is received. The next state is computed on the basis of the present 

state, the input port and value of the external event, and the time that has elapsed 

in the current state. 

� the confluent transition function which decides the next state in cases of collision 

between internal and external events. 

� the output function which generates an external output just before an internal 

transition takes place. 

 

Basic model is a building block for a more complex coupled model, which defines 

a new model constructed by connecting basic model components. Two major activities 

involved in coupled models are specifying its component models and defining the 

couplings which create the desired communication networks. A coupled model is defined 

as follows [1]: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>  

where,  
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 X : set of external input events;  

 Y : a set of outputs;  

 D : a set of components names;  

   for each i in D,  

       Mi is a component model 

       Ii is the set of influencees for i  

for each j in Ii,  

      Zi,j is the i-to-j output translation function 

 

A coupled model template captures the following information: 

� the set of components  

� for each component, its influencees  

� the set of input ports through which external events are received  

� the set of output ports through which external events are sent  

� the coupling specification consisting of:  

o the external input coupling (EIC) connects the input ports of the coupled 

to one or more of the input ports of the components 

o the external output coupling (EOC) connects the output ports of the 

components to one or more of the output ports of the coupled model 

o internal coupling (IC) connects output ports of components to input ports 

of other components 
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As we have seen in this section, DEVS formalisms are strictly defined and it 

evolves continuously to satisfy the requirement of today’s large and complex system 

modeling and simulation. It has been extended by a lot of researcher around world, 

however, its core concept is unchanged as we can see from the classic and parallel 

formalisms. In the next section, we will discuss DEVS modeling framework and 

simulation protocol, which provides the keys to the understanding of this dissertation’s 

goal. 

 

2.1.2 DEVS Modeling and Simulation Framework  

 DEVS modeling and simulation framework is very different with traditional 

module and function based ones. It provides a very flexible and scalable modeling and 

simulation foundation by separating models and simulators.  Figure 2-4 shows how 

DEVS model components interact with DEVS and Non-DEVS simulators through DEVS 

simulation protocol. We can also see that DEVS models interact with each other through 

DEVS simulators. The separation of models from simulators is a key aspect in the DEVS, 

which is critical for scalable simulation and middleware supported distributed simulation 

such as those using CORBA, HLA, and MPI. 
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Figure 2-4  DEVS Modeling and Simulation Framework [10] 

  

 The advantages for such a framework is obvious because model development is in 

fact not affected by underlying computational resources for executing the model. 

Therefore, models maintain their reusability and can be stored or retrieved from a model 

repository. The same model system can be executed in different ways using different 

DEVS simulation protocols. In such a setting, commonly used middleware technologies 

for parallel and distributed computing could be easily applied on separately developed 

DEVS models. Therefore, within the DEVS framework, model components can be easily 

migrated from single processor to multiprocessor and vice versa. 

If we have a closer look at DEVS based modeling framework, we will find that it 

is based on hierarchical model construction technique as shown on Figure 2-5. For 

instance, a coupled model is obtained by adding a coupling specification to a set of 

atomic models. This coupled model can then be used as a component in a larger system 

with new components. A hierarchical coupled model can be built level by level by adding 
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a set of model components (either atomic or coupled) as well as coupling information 

among these components. Reusable model repository for developers is therefore created. 

DEVS based modeling framework also supports model component as a “blackbox”, 

where the internals of the model is hidden and only the behavior of it is seen through its 

input/output ports.  

One interesting aspect of DEVS formalism is that a coupled DEVS model can be 

expressed as an equivalent basic model (or say atomic model). This attributes in DEVS 

formalism is so-called closure under coupling. Such a equivalent basic model transferred 

from a coupled model can then be employed in a larger coupled model. Therefore, DEVS 

formalism provides an excellent composition framework that supports closure under 

coupling and hierarchical construction.  

Atomic

Atomic

Atomic

Atomic

+ coupling
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Atomic
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Figure 2-5  Coupled Modules Formed Via Coupling and Their Use As Components [10] 
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DEVS simulation protocol is the key component to interconnect modeling 

framework with simulation engines, which plays the driving force for aforementioned 

DEVS hierarchical models. Figure 2-6 illustrates how a basic DEVS simulation protocol 

works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6  Basic DEVS Simulation Protocol [10] 

 

As we can see, for a simple coupled model with atomic model components, a 

coordinator is assigned to it and simulators are assigned to its components (atomic 

models). The coordinator is responsible for overall simulation time management and 
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execution. At each simulation step controlled by coordinator, each simulator reacts to the 

incoming message as follows [10]: 

(1). Coordinator sends nextTN to request tN from each of  the simulators. 

(2). All the simulators reply with their tNs in the outTN message to the 

 coordinator. 

(3). Coordinator sends to each simulator a getOut  message containing  the global tN 

(the minimum of the tNs) 

(4) . Each simulator checks if it is imminent (its tN = global tN) and if so, returns the 

output of its model in a message to the coordinator in a sendOut message. If it is 

imminent and its input message is empty, then it invokes its model’s internal 

transition function; If it is imminent and its input message is not empty, it invokes 

its model’s confluence transition function; If is not imminent and its input 

message is not  empty, it invokes its model’s external transition function; If is not 

imminent and its input message is empty then nothing happens. 

(5) Coordinator uses the coupling specification to distribute the outputs as  

accumulated messages back to the simulators in an applyDelt message to the 

simulators – for those simulators not receiving any input, the messages sent are 

empty.   

 

The basic DEVS simulation protocol demonstrated above provides a core concept 

on how DEVS drives the simulators as well as how simulators inter-actions with model 

components. In fact, other DEVS simulation protocols use the key concept of the basic 
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protocol with added extensions for dealing with different circumstances. In general, 

DEVS based framework supports hierarchical, modular based modeling and simulation 

using reusable model components, and it can take a full range of computational methods 

to support scalable and flexible modeling and simulations including distributed and real-

time based solutions. 

In the subsequent section, DEVSJAVA, a known implementation of parallel 

DEVS formalism, is reviewed with the focus on how the simulation protocol is 

implemented in it. 

 

2.2 DEVSJAVA 

 DEVSJAVA [11] is an implementation in Java of DEVS framework that has been 

used for solving real-world simulation problem as well as serving as an openly available 

teaching tool.  It is a fully object orient implementation of standard parallel DEVS 

formalism, and therefore, provides a very dynamic and flexible modeling and simulation 

framework. DEVSJAVA has relatively complex class hierarchical structure, and it is the 

foundation of DEVS/RMI, which is a distributed DEVS proposed and implemented in 

this dissertation. 

 Figure 2-7 illustrated a somewhat simplified class hierarchy diagram implemented 

in DEVSJAVA, where devs, is the base class of the DEVS sub-hierarchy with Atomic 

and Coupled as the main derived classes of it [11]. Class digraph is a main subclass of 

class coupled to define coupled model as described in previous subsection. For DEVS 

model developers, the user-defined model classes should derive from these basic classes 

and such model classes then become new components in DEVS for later reuse. The 



 

  

 

 

  34

implementation of DEVSJAVA supports the fundamental concept of DEVS hierarchical 

construction and makes it easier to build complex model. 

Figure 2-7  DEVSJAVA Class hierarchy and main methods [11] 

 

Class message is derived from the container class and it encapsulates the data that 

needs to be transferred back and forth among components in a coupled model. A message 

consists of (port, value) pair, where value actually carries an entity instance transmitted 

from sender to receiver. Because value derives from entity class, any entity can be 

transmitted across involved simulators. Since model component is devs class instance, 
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and devs is a derived class of entity, model itself can be transmitted from one component 

to another! 

 DEVSJAVA has a well-defined class hierarchical structure as we have seen. 

Now, we will look at its simulation protocol and understand how it works. In fact, its 

simulation engine actually implements and extends the basic DEVS simulation protocol 

aforementioned.   

 

 

 

 

 

 

 

 

 

    

 

Figure 2-8  Simulate Hierarchical Coupled Model in Fast Mode [12] 

 

We focus our discuss on how DEVSJAVA simulator protocol works in its fast 

mode, which is a generally used simulation mode for gaining fastest simulation speed. As 

shown in Figure 2-8, in DEVSJAVA, the coordinator is the main and overall simulation 
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control thread which governs the whole simulation execution. Initially, the model is 

passed to the coordinator, which then decomposes the model according to its hierarchical 

structure. In such a way, each atomic model is assigned a CoupledSimulator, while each 

coupled model is assigned a CoupledCoordinator.  A CoupledCoordinator combines the 

functionality of a CoupledSimulator and a coordinator. It works as a CoupledSimulator 

to its peer brothers (such as CoupledSimulator3 and CoupledSimulator4 in Figure 2-8), to 

which messages are sent by calling each other’s putMessage() function. However, it 

works as a coordinator to its children ( such as CoupledSimulator1 and 

CoupledSimulator2 in Figure 2-8). As an example, if CoupledCoordinator gets external 

input from CoupledSimulator3 or CoupledSimulator4, it calls its sendDownMessage() to 

send the message down to its children (CoupledSimulator1) based on the 

internalModelTosim data structure explained below. On the other hand, if Atomic2 

generates output, CoupledSimulator2 then calls CoupledCoordinator’s putMyMessage() 

to put the message to CoupledCoordinator’s output port, which then puts the message to 

CoupledSimulator3’s input port.  

In this section, we have briefly reviewed some of the background of DEVSJAVA 

class hierarchy and how simulation protocol works in it. In the next section, we will look 

into the Java RMI, which is key technology used in this dissertation for developing a 

fully dynamic distributed simulation framework. 
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2.3 JAVA RMI 

Distributed object computing is an emerging technology that helps on solving 

large-scale computing problems in a distributed network environment in a transparent 

way. A software system built on distributed objects has many advantages over traditional 

parallel and distributed computing techniques, such as: 

• Maintaining the original object architecture built for a single processor, which is 

important for building large-scale scalable system.   

• Task or computing workload distribution is at object level, which helps on solving 

load-balance, fault-tolerance problems in distributed computing in an easier way.  

• Make the design of highly dynamic and reconfigrable distributed framework 

easier.  

• Systems integration can be performed to a higher degree.  

 

The major representatives for distributed object technologies include Java RMI, 

CORBA [16], DCOM [17]and .NET Remote [18]. CORBA is developed by Object 

Management Group (OMG) and is a distributed framwork supporting inter-language 

objects linked by CORBA Object Request Broker (ORB). DCOM and .NET Remote are 

Microsoft’s implementations for distributed objects computing, which are mostly relied 

on Microsoft Windows Operating System, although Unix based support has been 

proposed and implemented recently.  

Java Remote Method Invocation (RMI) [13] is Sun Java’s answer to distributed 

object computing technology, which allows Java objects to be distributed across a 
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heterogeneous network. Its high level abstraction of message passing in a heterogeneous 

network simplifies distributed computing system designs and implementations. Java RMI 

hides all low-level communication handling from the programmers and combines local 

and remote objects references in a same program context, where remote objects uses a 

stub class (the proxy for remote object) to interact with other local objects. 

 

Figure 2-9 RMI System [19] 

 

A JAVA RMI system is a multi-layered structure as shown in Figure 2-9, where a 

client and a server interact with each other through these layers [19]. The first layer is the 

RMI Stub/Skeleton Layer, which is responsible for managing the remote object interface 

between the client and server. The second layer is the Remote Reference Layer (RRL), 

which manages the references of the remote objects. The third layer is the transport layer 



 

  

 

 

  39

that handles the lower level data communications. In common cases, the transport layer is 

implemented with TCP/IP based Java Remote Method Protocol (JRMP).  

In the RMI programming model, a RMI server defines a set of remote objects and 

methods that clients can invoke remotely. These remote methods have to be declared in 

an interface, which is used by client’s stub for type checking and casting. As a complete 

distributed object framework, Java RMI relies on several key components/techniques :  

• RMI Registry: a daemon Java server application which holds information 

about available server objects. It acts as a central management point for 

RMI system and actually a simple name repository. It generally runs on 

certain port at server machine, for example, the default running port is: 

1099. 

• Remote Object Lookup: A RMI client uses RMI URL to locate demanding 

remote object references, which are stored in the server RMI Registry.  

• Stubs and Skeletons: proxy classes generated by rmic compiler to 

help on transparent objects communications among local and remote 

Java objects. In general, the stub resides on the client machine and 

the skeleton resides on the server machine.  

• Object Serialization: a key techniques used in RMI system, used for 

transmit Java object across wire in a distributed computing environment. 

Any Java object transmitted by RMI procedure has to be a serialized, which 

allows objects to be marshaled (or transmitted) as a stream. 
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Java RMI is a powerful and flexible technology to support fully object level 

architecture. It supports client-server programming model with the advantage of object 

migration across network. Such object level transmitting provides more power than 

traditional remote procedure call and it helps on designing and implementing a scalable 

distributed system much easier. 

Figure 2-10 RMI in Action [20] 

Figure 2-10 depicts an acting RMI system, where RMI server binds a name with a 

remote object and then registers this name to rmiregistry; RMI client lookups the 

rmiregistry to locate the remote object before initiating any remote method calls. The 

RMI server can also interact with web server directly using URL protocol for loading 

class definition on demand.  

Compared with CORBA and DCOM, JAVA RMI is a Java-specific middleware, 

hence there are no separate IDL mappings as required by DCOM or CORBA. Java-RMI 

can work with true sub-classes, while DCOM and CORBA can not do since they are 

static object models. JAVA RMI supports dynamic class loading as well as distributed 

garbage collection, which makes it unique for building very flexible and dynamic 
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distributed system. However, the confinement to Java language and network latency for 

RMI procedure have to be carefully considered when constructing a large-scale 

distributed RMI system.   

The performance of RMI [21] has attracted many researchers for years. The major 

drawback of Sun’s RMI implementation is the communication latency due to the 

inefficient object serialization and marshalling. However, some other high performance 

RMI implementations, such as Manta RMI [22], KaRMI [23], have been developed in 

recent years, which make RMI a more attractive technology for high performance 

distributed computing or simulation. 
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3 PARALLEL-DISTRIBUTED SIMULATION 

3.1 OVERVIEW 

In this section, we will go over some of the key concepts in parallel-distributed 

simulation, which can provide some background knowledge for the later chapters in this 

dissertation. Parallel-Distributed simulation is becoming more and more important for 

solving today’s science and engineering simulation problems that require high-level 

computing power and memory. Our particular concentration in this chapter, however, is 

on the discrete event system, and furthermore, the DEVS based parallel-distributed 

simulation. 

As we know, Discrete Event Simulation (DES) is generally performed by using 

computer models for a system where changes in the state of the system occur at discrete 

points in simulation time [24]. The key concepts of DES are system states (or state 

variables) and state transitions (or events). A DES computation can be viewed as a 

sequence of event computations, with each event computation assigned a time stamp. 

DES systems consist of models and simulation executives, and the data structure of DES 

basically includes pending event lists, state variables and simulation time clock variables. 

For a DES systems, there are in general three ways for executing simulation models: as-

fast-as-possible, real-time and scaled real-time.  

 Parallel-Distributed simulation is generally a way to handle the above mentioned 

DES in a parallel or distributed fashion. Parallel-Distributed simulation may be called on 

when a model of a large and complex system is put into a simulation framework. The 
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reason for using a parallel-distributed simulation is in most cases due to the following 

[24]: 

a. Reducing model execution time. 

b. Overcoming limited memory for a single machine to handle large models. 

c. Obtaining scalable performance. 

d. Handling geographically distributed users and/or resources (e.g., databases, 

specialized equipment). 

e. Integrating simulations running on different platforms. 

f. Dealing with fault tolerance. 

 The research and development communities related to parallel-distributed 

simulation are largely in high performance computing, defense, internet and gaming. 

Traditionally, Parallel Discrete Event Simulation (PDES) has to handle logical processes, 

time stamped messages, local causality constraints and the synchronization problems. It 

must deal with collection of sequential simulators possibly running on different 

processors, and logical processes that communicate with each other exclusively by 

exchanging messages. The synchronization is one of the biggest concerns in PDES, and 

the most commonly used synchronization mechanisms are conservative synchronization 

and optimistic synchronization. Conservative synchronization is used to avoid violating 

the local causality constraints, and it provides deadlock avoidance mechanism by using 

null messages [25][26] as well as a mechanism for deadlock detection and recovery. 

Optimistic synchronization uses a different approach by allowing violations of local 

causalities to occur, but detects them at runtime and recovers using a rollback 
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mechanism. One of the best-known optimistic synchronization algorithms is time warp 

by Jefferson [27][28], and there are also numerous other approaches. One good example 

of time warp is so-called Georgia Tech Time Warp [29], a general purpose parallel 

discrete event simulation executive using optimistic synchronization technique. It is 

worth to note that aforementioned “local causality constraint” is an important concept in 

parallel-distributed simulation, which states that events within each logical process must 

be processed in time stamp order to ensure that the parallel simulation produces exactly 

the same results as the corresponding sequential simulation.  

 High level architecture [30] is a distributed simulation standard defined by DoD 

which aims to provide a federations of simulations (federates) and is based on a 

composable “system of systems” approach. The motivation of HLA is that no single 

simulation can satisfy all user needs, therefore, it is necessary to define a standard that 

can support interoperability and reuse among DoD simulations. The federates here 

mentioned in HLA could be represented by pure software simulations, human-in-the-loop 

simulations (virtual simulators) or some other live components (e.g., instrumented 

weapon systems). With regard to the architecture, HLA consists of rules, Object Model 

Template (OMT) and Interface Specification (IFSpec), where rules are defined for 

federates to follow in order to achieve proper interaction during a federation execution; 

Object Model Template (OMT) defines the format for specifying the set of common 

objects used by a federation, their attributes, as well as relationships among them; 

Interface Specification (IFSpec) provides interface to the Run-Time Infrastructure (RTI), 

that ties federates together during model execution. 
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 The Distributed Virtual Environments (DVE) is another important concept in the 

parallel and distributed simulation world. It mainly concerns the simulator interactions 

and real-time factors of a distributed simulation when humans and/or physical devices are 

embedded. It aims to provide a virtual environment that involves the interactions among 

humans, devices, and computers/computations at different locations. Typical examples of 

DVE are: training simulations with SIMNET [31], Distributed Interactive Simulation 

(DIS) [32], HLA [30], and simulation applications such as multiplayer internet video 

games. A key issue of DVE is to ensure that different participants have consistent views 

of the DVE. Therefore, it is especially important for DVE has an appropriate treatment of 

consistency in time and space as well as treatment of network latency incurred by limited 

communication bandwidth of the internet. DVE has different requirements when 

compared with analytic simulations, and thus it needs different solution approaches. In 

certain cases, it is necessary to sacrifice accuracy to achieve better visual realism. 

 With regard to parallel and distributed simulation frameworks, there have been a 

lot tools developed from different communities. The SPEEDES [33] simulation engine 

allows the simulation builder to perform optimistic parallel processing on high 

performance computers, networks of workstations, or combinations of networked 

computers and HPC platforms.  Applications that can make use of SPEEDES are 

typically time-constrained (too many events to process in a limited amount of time). 

SPEEDES is also designed to implement High Level Architecture (HLA) federations of 

simulations. TEMPO [34] is a language and environment that is used in the modeling and 

simulation arena for parallel execution of simulations in a distributed environment. It is 
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an extension of the language Sim++ [35], a collection of C++ tools (routines and 

programs) for computer simulation. TEMPO is primarily aimed at connecting multiple 

simulation sites into a shared memory space and distributing time-stamped events to 

entities operating in a simulation. SIMSCRIPT II.5 [36] is used for discrete-event and 

combined discrete-event/continuous simulation models. It has been used world wide for 

building portable, high fidelity, large-scale simulation modeling applications with a 

interactive GUI.  JDisco [37] is another simulation software package written in Java, 

which can handle the combined discrete-event/continuous simulation models. 

In general, parallel and distributed simulation is necessary when a simulation 

application cannot be fulfilled with a single processor’s computer power and memory. 

However, parallel and distributed simulation brings a new level of complexity due to the 

involvement of multi-processors, distributed memory address space, distributed time 

management. In the next sub-section, we will review and discuss DEVS based parallel 

and distributed simulation, which is one of the competitive solutions in solving large-

scale and dynamic system simulations. 

 

3.2 DEVS BASED PARALLEL-DISTRIBUTED SIMULATION  

 Traditional simulation framework commonly uses middleware to support the 

parallel and distributed execution of models. Simulation-specific middleware such as 

High Level Architecture (HLA) and test-range-specific middleware such as the Test and 

Training Enabling Architecture (TENA) provide higher levels of dedicated support for 

distributed simulation. However, they only provide partial solutions to address the 
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attributes of distributed simulations required for engineering systems. Compared with 

such traditional parallel-distributed simulation, the parallel and distributed simulation 

with Discrete Event System Specification (DEVS) uses a strictly defined formalism to 

describe the behaviors of a system, and therefore, provides a more rigorous, dynamic and 

flexible environment for simulation applications.  

 In general, the Discrete Event System Specification (DEVS) formalism provides a 

more complete solution to an ideal distributed simulation environment when 

implemented over middleware technologies. Such implementations include DEVS/GRID, 

DEVS/P2P, DEVS/HLA, and DEVS/CORBA. However, such middleware architecture 

based solutions provide only limited support for model distribution, in that the mapping 

of model components to network nodes is largely a manual process. Moreover, although 

DEVS and its associated simulation protocol are defined abstractly to support migration 

to other platforms and languages, the coded implementation still has to be redone for a 

new context. This means that there is still significant work to migrate a simulation 

application that works well in one environment to work with different middleware on a 

different operating system or network. As a result, simulating a large and complex model 

in these frameworks could become a very time-consuming process, and verifying the 

correctness of the simulation cannot be done in an easier way. 

 Regarding parallel-distributed simulation of DEVS, some other tools have been 

developed to make use of shared memory multi-processors or distributed cluster of 

machines. DEVS/C++ is a tool based on the parallel DEVS formalism, and provides a 

modular and hierarchical discrete event simulation environment implemented in C++ 
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language. ADEVS is a C++ library, developed by Jim Nutaro, for constructing discrete 

event simulations based on the Parallel DEVS and DSDEVS formalisms. It includes 

support for standard, sequential simulation as well as conservative, parallel simulation on 

shared memory machines with POSIX threads. CD++ is another well-known general 

toolkit written in C++, which allows the definition of DEVS and Cell-DEVS models, and 

it supports simulations in real-time and parallel fashions. 

 DEVS based parallel and distributed simulation frameworks are continuously 

being developed by research groups around the world. Most recent efforts are toward an 

internet grid based solution that uses service oriented architecture (SOA) for 

interoperability of DEVS models and simulators developed by different languages and 

methods [38]. It could be foresee that DEVS based parallel and distributed modeling and 

simulation framework will become more and more flexible and easier to use with the help 

of modern software engineering techniques.  
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4 MODEL PARTITIONS AND DYNAMIC REPARTITIONS IN 

DISTRIBUTED SIMULATION ENVIRONMENTS 

 

4.1 GENERAL MODEL PARTITION TECHNIQUE 

In this section, we will review some of the key concepts for model partition 

because they are the key concerns for parallel and distributed simulation. Model partition 

techniques used in distributed simulation are in fact not specific only for modeling and 

simulation, they are very general concepts and techniques directly related distributed 

computing. 

Modeling and simulation has become a fundamental technique to the modern 

science and engineering, and it is essentially important in predicting the future behavior 

of complex systems. Parallel or Distributed simulation is especially important in solving 

large and complex simulation applications due to the advantages of using computing 

power and memory of multi-processor system. However, due to the communication 

overhead incurred in the distributed simulation, an optimal model partition scheme is in 

general very important to help gaining the overall better simulation performance. 

 As mentioned above, model partition is one of the major issues in distributed 

simulation. The performance of a simulation in a distributed environment is directly 

related to the model partition algorithm used on the model structure. To optimally 

distributing simulation models/entities to the computing nodes is especially important in 

order to gain the best possible overall simulation performance. Therefore, partitioning 



 

  

 

 

  50

algorithms have great effects on the partitioning results, which then affect the simulation 

performance.  

 In general, the partitioning techniques can be classified as following: random 

partitioning, partitioning improvement, simulated annealing, and heuristic partitioning 

[39][40]. Random partitioning randomly aggregates models to a set of partition blocks 

and then maps the partition blocks to the processors. Partitioning improvement algorithm 

modifies the partitioning results during the process of partitioning [41][42]. Simulated 

annealing [43][44][45] uses statistical methods to develop the process of the model 

partitioning. Heuristic partitioning is an algorithm which uses domain-specific 

knowledge or a particular optimization technique for a better partitioning results. As one 

of the extensions of aforementioned partition techniques, the Kernighan-Lin algorithm 

[46] is a kind of improvement of random partitioning by using random partitioning at first 

, but then swapping models among partition blocks whenever a better partitioning results 

could be obtained. 

 Graph partitioning technique [47] is closely related to most of the partitioning 

techniques used in high-performance distributed simulations, and has been applied to the 

area such as scientific simulation for years. The key concept of graph partitioning is that 

the mapping for partitioned models to processors is equivalent to a graph partitioning 

problem. The graph partitioning problem is known to be NP-complete, which means that 

it is not possible to compute optimal partitioning for graphs of interesting size in a 

reasonable amount of time [47]. Graph partitioning technique has led to the development 

of several heuristic approaches [48][49], which can be classified as geometric, 
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combinatorial, spectral, combinatorial optimization techniques, or multilevel methods. 

For example, geometric technique [50], also referred to as mesh partitioning scheme, 

computes partitioning based solely on the coordinate information of mesh nodes while 

not considering the inter-connectivity of the mesh elements. In contrast, combinatorial 

partitioning schemes compute a partitioning based only on the adjacency information of 

the graph without considering the coordinates of the vertices. More sophistically, 

multilevel paradigm is a newly proposed class of partitioning algorithms [51][52], which 

consists of three phases: graph coarsening, initial partitioning and multilevel refinement.  

 With regard to the dynamic repartition of a distributed simulation application, 

adaptive graph partitioning technique needs to be considered to improve the load-

balancing on multi-processor system. Adaptive graph partitioning algorithm shares most 

of the characteristics of aforementioned static graph partitioning algorithms, but adds an 

objective: minimizing the amount of data that needs to be redistributed among the 

processors in order to balance the computation for the simulation. Such repartitioning 

schemes have been developed by a lot researchers. As an example, a number of 

repartitioning schemes are proposed by Oliker [53], and such algorithms compute new 

partitioning from scratch and then intelligently map the subdomain labels to those of the 

original partitioning in order to minimize the data redistribution costs. Such technique is 

often referred to as scratch-remap repartitioning. Other repartition methods include cut-

and-paste repartitioning, Diffusion-based repartitioning and etc.. Cut-and-Paste 

repartitioning swaps excess vertices in overweight subdomains into one or more 

underweight subdomains in order to balance the partitioning. Diffusion-based 
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repartitioning attempts to minimize the difference between the original partitioning and 

the final repartitioning by making incremental changes in the partitioning to restore 

balance. Such diffusion schemes include local diffusion algorithms [54] and global 

diffusion schemes [55]. In general, there is a tradeoff between edge-cut and data 

redistribution cost in dynamic graph repartitioning. For the simulation applications in 

which the mesh needs to be adapted frequently, minimizing the data redistribution cost is 

preferred; while for application in which repartitioning occurs infrequently, minimizing 

the edge-cut is firstly considered. Such tradeoff can be controlled by a number of 

coarsening and refinement heuristics, such as in [54][55][56]. With the advance of more 

sophisticated classes simulation such as multi-phase, multi-physics and multi-mesh 

simulations, new graph partitioning algorithms are required, which results in the 

proposing of the techniques such as: multi-constraint [57], multi-objective graph [58] 

partitioning. Although the traditional graph partitioners and repartitioner are very 

powerful for solving the model partition problem in distribute simulation, some 

limitations need to be addressed: graph partitioning problem formulation, other 

application modeling limitations, and architecture modeling limitations [47]. 

 Hierarchical model partitioning [59][60][61] is a technique to apply the general 

model partition technique, such as graph partitioning, on the hierarchical model structure 

for distribute simulation. It is a process of constructing partition blocks by decomposing a 

hierarchical model structures based on certain decision-making criteria. Hierarchical 

model partitioning is especially important for Discrete Event System Specification 

(DEVS) based distributed simulation environment because the model structure in most 
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DEVS implementation uses such hierarchical modular structure to represent a system for 

simulations. General hierarchical model partition techniques are: flattening, deepening 

and heuristic. Flattening is a technique which transforms a hierarchical structure into a 

non-hierarchical structure. Deepening, sometime called hierarchical clustering, is a 

technique which in reverse transforms a structural non-hierarchical structures into 

hierarchical structures. Heuristic technique uses heuristic functions to analyze nodes in a 

hierarchical model tree to determine the partition policies.  

 Cost based model partition for distributed simulation is one of the hierarchical 

model partitioning techniques proposed by Park [62], where a new Generic Model 

Partitioning (GMP) algorithm is proposed for partitioning hierarchical DEVS based 

models. The GMP uses a cost analysis methodology to construct partition blocks, and it 

makes an effort to guarantee incremental quality of partitioning (QoP) improvements 

until a best partitioning is reached. The GMP is highly generic and could be applied on 

any family of models as long as appropriate cost information of models can be obtained 

and processed. Cost analysis plays an important role in the GMP because it provides the 

fundamental view of the models in terms of “cost”, and it also determines the partitioning 

policies that will be applied to the model structures. In particular, the cost analysis 

includes: cost harvesting, cost generation, cost aggregation, cost evaluation and cost 

analysis [62]. A cost tree is built according to the model hierarchical structure. The cost 

based model partition algorithm, such as GMP, provides and adaptive and flexible 

technique for decomposing hierarchical model structure such as those represented by 

DEVS. Compared with full decomposition such as used in flattening technique, it 
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minimizes the model decomposition which makes it less sensitive to the depth or the 

width of a given hierarchical model. However, in current stage, GMP is only applicable 

for static model partition in a distributed simulation environment although it has proposed 

to improve the algorithm by dealing with dynamic cost changes of the models. Also, 

there exists no literature to report the comparison of GMP with other partition algorithms 

in a distributed simulation environment, and thus it is worthwhile to further investigate 

GMP in terms of the performance improvement of distributed simulations. 

Other hierarchical partition algorithms, such as proposed by Li [63], can be 

applied to large parallel/distributed system including distribute simulation framework. 

The proposed hierarchical partition algorithm, so-called HPA, allows the partition to 

reflect the state of the adaptive grid hierarchy and reduces synchronization requirement in 

order to improve load-balance and to enable concurrent communications and incremental 

repartitioning. HPA decomposes the computational domain into subdomains and then 

assign them to dynamically configured hierarchical processor groups [64]. [65] proposed 

new algorithms for static load balancing using a small amount of domain knowledge and 

run-time measurements. In a distributed simulation environment, it could automatically 

discover the simulation objects that communicate frequently and then place these objects 

on the same processor. Such model partition technique aims to increases the 

communication localities and reduce the potential message passing among simulators 

residing on different machines. 
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4.2 MODEL PARTITION/REPARTITION IN DISTRIBUTED SIMULATION 

FRAMEWORKS 

Model partition and repartition mechanisms play an important role in determining 

the distributed simulation performance. Partition and repartition have been studied for a 

long time due to the necessity of more efficient execution of distributed computing 

applications and simulations. In this section, we will focus on reviewing “cost”, or say 

“activity”, based model partition and repartition techniques that are proposed and 

implemented in DEVS based distributed simulation environment. We will start with 

demonstration of a previous mentioned new partition algorithm proposed by Park [62], 

and then present two distributed DEVS implementations that use this technique.   

 Park presented an illustrative example for his GMP algorithm for hierarchical 

DEVS model as shown in Figure 4-1, which depicts a 1-dimensional activity distribution 

in terms of cost distribution between models. A node of a cost tree is defined by a pair of 

activity and spatial information of a model. As an example, (8, 3) means that this cost 

node has cost measured as “8” and distance as “3”. Furthermore, the cost node of the cost 

tree can be decomposed to sub-nodes as shown on Figure 4-2. 
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Figure 4-1Activity Distribution and Associated Cost Tree [62] 

 

Figure 4-2Decomposable Cost Tree [62] 

  

 As a more detailed example shown in Figure 4-3 and Figure 4-4, GMP makes an 

effort to get the optimal partition result by redistributing a part of costs of the PBmax into 

its neighbor(s) (i.e., PBprev and PBnext ). Based on the previous partitioning result, new 
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partitioning is performing by expanding a particular node of PBmax and creating a new 

partitioning result. Once the result is created, it is compared with the previous result until 

best one is reached. Figure 4-3 shows the procedure of this process: node 1 to node 4 

shows the partition changes when applying the GMP algorithm, and node 5,6,7 shows the 

possible alternatives of this partition process. Node 4 is the finally obtained optimal 

partition. In this example, minimizing the disparity of cost in each partition block is the 

major concern for getting optimal partition. Figure 4-4 shows the final partition result 

based on the process of Figure 4-3. 

 

Figure 4-3  Partition Tree [62] 
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Figure 4-4  Final Partition Result [62] 

 

 We have just exemplified how GMP algorithm does partitions using “cost” as 

measurement of workload. In the following paragraphs, two distributed DEVS 

frameworks are briefly discussed because they use GMP algorithm for model partition 

and repartition in a distributed simulation environment. 

 DEVS/Grid [6] is one of the recent implementation of DEVS in a distributed 

environment, especially in Grid computing infrastructure. DEVS/Grid provides a 

middleware bridge between DEVS simulation entities with the underlying grid 

computing resource, and therefore, opens up an area for high performance distributed 

simulation applications. DEVS/Grid supports dynamic coupling restructuring, automatic 

model deployment, remote simulator activation and etc., which are especially important 

for dynamic repartitioning a DEVS model.  DEVS/Grid supports both static and dynamic 

model partition of DEVS model in a distributed simulation environment. The model 
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partition in DEVS/GRID is based on cost-based hierarchical model partitioning by Park 

[62]. Such kind of partition is generally constructed by building partition blocks through 

decomposing the DEVS hierarchical model structure based on certain-decision making 

criteria. The partitioning used in DEVS/Grid is initiated by creating a cost tree by 

examining the DEVS hierarchical model with cost measurements to it. For example, the 

total states of a model component could be used as a static measurement for the cost tree; 

the activity of a model, counting the total number of state transitions for a period, could 

be used as a dynamic cost measure. And the Generic Model Partitioning Algorithm 

(GMP) is then applied to construct partition blocks. DEVS/Grid framework has been 

applied on very simple model structure for demonstration and proof-of-concept with 

static model partition. It is a noticeable approach for distributed simulation with the 

support of model partition and dynamic repartition, but it has not been applied on solving 

large and complex model structure. 

 

 

Figure 4-5 Dynamic Coupling Reconstruction[6] 
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 DEVS/P2P [7] is another distributed simulation framework, which is developed 

recently at ACIMS lab. It combines the DEVS with Peer-to-Peer network system to 

introduce a new distributed simulation approach. It is based on parallel DEVS formalism 

and P2P message protocol, and solves the distributed simulation synchronization problem 

by involving only peers without using centralized simulation control unit, such as 

coordinator, for time synchronization. It supports Autonomous Hierarchical Model 

Partitioning (AHMP), Automatic Model Deployment (AMD) and so on.  The AHMP also 

uses the cost based hierarchical model partition algorithm proposed in Park [62]. It 

partitions the model evenly using the cost analysis obtained through the GMP, and then 

deploys the partitioned models to local and remote simulators. As shown in Figure 4-6, 

the original DEVS model on the leftmost is partitioned to several Payloads (or sub-

groups of models). The almost evenly partitioned DEVS models are deployed to the local 

and remote simulators by the Model Distributor (MD) through JXTA message exchange 

service. Such partition is obviously static without run-time repartition support. Similarly, 

only very simple demonstrated model is tested in DEVS/P2P and partitioning large and 

complex model has not been reported yet.  
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Figure 4-6  Model Partition, Deployment and Simulation in DEVS/P2P[7] 

 

 In this section, we reviewed “cost” based model partition and repartition, and also 

discussed two distributed DEVS implementations, which use middleware to bridge the 

DEVS with underlying network infrastructure. In the next section, we will focus on the 

key part of this dissertation, DEVS/RMI, a new approach of DEVS based distributed 

simulation framework. 
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5 DEVS/RMI—A NEW APPROACH TO DISTRIBUTED DEVS 

 

In this chapter, we will present DEVS/RMI, a new approach to distributed 

simulation using DEVS. This new approach is thoroughly discussed in terms of design 

consideration, architecture, key components with focus on flexible and dynamic aspects 

of the framework. Some basic performance test results are presented as well to establish a 

foundation for discussion and analysis for following chapters. 

 

5.1 DEVS/RMI SYSTEM ARCHITECTURE 

DEVS/RMI is a distributed simulation system based on the standard distribution 

of DEVSJAVA and it aims to support seamless distribution of simulation entities across 

network nodes. DEVS/RMI makes an effort to retain all the existing class structures used 

in DEVSJAVA while enabling the models and simulators to support Java Remote Object 

Technology (RMI). In this way, distributing the simulators and models can be done 

without any of the commonly used middleware such as CORBA, HLA, or GRID. 

Because Java RMI supports the synchronization of local objects with remote ones, no 

additional simulation time management, beyond that already in DEVSJAVA, needs to be 

added when distributing the simulators to remote nodes. DEVS/RMI maintains all the 

model and data structures used in DEVSJAVA with expanded capabilities to support 

remote object technology. Thus, a complex model structure that has been tested and 

verified on a single machine can then be ported to a cluster of computers without any 

code change. The environment simplifies simulator/model distribution across a network 

without the help of other middleware while still providing platform independence 

through the use of Java and its Virtual Machine (JVM) implementations. The goal of the 
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DEVS/RMI system is to provide a simulation application with a fully dynamic and re-

configurable run-time infrastructure that can handle load balancing and fault tolerance in 

a distributed simulation environment. A second goal of the DEVS/RMI is to distribute 

large-scale models to the computing clusters to gain a speedup of a simulation execution, 

or to handle simulation applications with problem sizes that cannot be handled by a single 

machine’s memory and computing power. 

Furthermore, DEVS/RMI makes an effort to provide an adaptive and 

reconfigurable distributed simulation framework, in which the simulation execution is 

centrally controlled. The simulation controller has the capability to dynamically 

repartition a running model in order to gain better load-balance. With the support of 

RMI’s transparent object migrations among computing nodes, it is much easier for 

DEVS/RMI to provide the capability for dynamically migrating simulation models across 

machines with persistent states. Such an approach is generally difficult to implement 

when using traditional MPI or PVM based solutions, in which model partitions cannot be 

changed during simulation run-time.   

As shown on Figure 5-1, the DEVS/RMI system consists of several key 

components which include simulation controller, configuration engine, simulation 

monitor and remote simulators. Each of the components will be discussed in more detail 

in the following sections.  
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Figure 5-1  DEVS/RMI System Architecture 
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5.2 SIMULATION CONTROLLER AND CONFIGURATION ENGINE 

The simulation controller is the key control unit in the DEVS/RMI system. Its 

main function is to apply the dynamically generated partition plan as received from the 

configuration engine, and then to create or migrate the appropriate simulators/models 

across the computing nodes in the network. Basically, the simulation controller can stop 

and restart/continue the simulation execution at any stage. As a closely related 

component to simulation controller, the configuration engine is the “brain” of the system 

that analyzes the dynamic model information obtained from the simulation monitor, and 

then applies the corresponding partition/repartition algorithm on the simulation 

controller. For example, if the configuration engine decides that a new partition plan is 

necessary during simulation run-time, the simulation controller can then stop the current 

execution and re-configure the simulation environment. This might involve creating a 

new set of simulators on selected nodes and/or migrating existing simulators/models 

among the computing nodes. The key concern here is how to maintain the model states 

during such migration. It is worth to note that Java RMI supports persistent object 

migration natively and therefore, aforementioned reconfiguration mechanism could be 

implemented seamlessly in a heterogeneous network. Although not required, the 

simulation controller and configuration engine can be implemented as DEVS models to 

simplify their interactions with other DEVS models in the system. 

As shown in Figure 5-2, in DEVS/RMI, the simulation controller is commonly 

implemented as RMICoordinator, which takes the model object as parameter and then 

decomposes the model according to its hierarchical structure. During the model 
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decomposing stage, the RMICoordinator assigns decomposed sub-models (either atomic 

or coupled) to local or remote simulators which are either dynamically created or static 

created (pre-existed on remote computing nodes or processors). In fact, the local or 

remote simulators are created according to the model’s putwhere attributes. Such a 

mechanism provides a high-level flexibility for managing the simulation execution in a 

distributed computing environment. The simulation controller has also built-in 

capabilities for dynamic repartition of a model in order to gain higher level of load-

balancing. 
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Figure 5-2  Flowchart of Distributed Simulation in DEVS/RMI 
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5.3 SIMULATION MONITOR 

The simulation monitor is another important component in the DEVS/RMI system 

and aims to provide the key information about each running model in the network. The 

simulation monitor collects the information from running models, measures their 

“activities” and then conveys collected information to the configuration engine which 

then determines the new partition plan during run-time whenever necessary. Similar to 

simulation controller and configuration engine, the simulation monitor can also be 

implemented as a DEVS model. It worth to note here that the simulation monitor used in 

DEVS/RMI basically collects “activity” metric as a measurement of workload on the 

computing nodes, which is different with more generally used system resource 

monitoring utilities. In most distributed computing or simulation framework, system 

resources, such as CPU utilization, memory utilization, network bandwidth, are 

periodically detected and measured as a indication of computing workload. In a later 

chapter, we will discuss an implementation of dynamic reconfiguration of a distributed 

simulation using the “activity” metric as an indication of workload to do run-time 

repartition. We believe that “activity” based simulation monitoring can provide a more 

accurate indication of dynamically changed workload in a distributed simulation. 

 

5.4 REMOTE SIMULATORS 

5.4.1 Remote Simulator Definition 

The remote simulator operates according to the same concept and hierarchical 

structure used in DEVSJAVA. However, the simulator related interfaces and classes are 
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redefined to support these simulators as remote objects. Remote simulator classes are 

created by making the CoreSimulatorInterface and AtomicSimulatorInterface to extend 

the Remote interface. In this way, all the other inherited simulators or coordinators can 

then be remote objects because they extend the CoreSimulatorInterface and 

AtomicSimulatorInterface level by level.  

 In DEVSJAVA, any message object passing as parameter among simulators is 

inherited from the entity object as we have described in a previous chapter. Therefore, in 

order to be able to passing these message objects among distributed simulators in 

DEVS/RMI, the entity interface has to extend Java Serializable so that any inherited 

message class can be transferred by RMI.  

 It is worth to make clear that remote simulator references in DEVS/RMI work in 

the same programming context as local simulators except that the remote simulator 

objects are physically located on remote computing nodes. The key advantage of such 

RMI based implementation is that mapping models to distributed nodes becomes 

transparent due to the object level distribution of computing workload. 

 

5.4.2 Remote Simulator Creation and Registration 

As shown in the architecture in Figure 5-1, the remote simulators are created by 

the simulation controller (RMICoordinator), and then register themselves with the RMI 

naming server using unique URL names for later lookup by the simulation controller. The 

remote simulator object instances are physically located in remote machines, however, 

their references are hosted on the same machine as simulation controller. As shown in 
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Figure 5-3, the RMICoordinator object calls the method regRemoteSim () which accepts 

the model name and machine name as parameters and then makes a remote method call 

on TestServer object, where remote simulators are created. The remote machine hosting 

TestServer then registers these simulators and returns the registered RMI URLs back to 

the RMICoordinator. The RMICoordinator consequently uses these URLs to add remote 

references for the newly created remote simulators using addRemoteSim() method. 
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Figure 5-3  Sequence Diagram for Creating Remote Simulators 

 

The above demonstrated remote simulator creations and registrations are 

implemented through a dynamic way, which involves the passing of model objects as 

parameters. The other way to create remote simulator is to use a static approach, which 

actually separate the process of creating simulators on local and remote machines. For 

example, a simulator and its corresponding model are created and registered at a remote 

machine independently, not through a remote method call from RMICoordinator. The 

RMICoordinator then creates a remote reference for that remote simulator using 

predefined URL, for example, a RMI server address plus the model name.  

In general, the static approach is more practical for creating remote simulators for 

large-scale models such as 2D or 3D cell spaces due to consideration of the time 
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efficiency. Dynamic creations of remote simulators need to be carefully considered 

because it is costly to passing a large number of model components by value as required 

in the dynamic approach. 

 

5.4.3 Local Simulator vs. Remote Simulator 

It is not always an efficient approach to create a simulator as a remote simulator 

using a remote reference. In some cases, if the model sits in the same machine as the 

RMICoordinator, it is more efficient to create the simulator using a local reference. 

Figure 5-4 shows the relationship among local and remote 

CoupledSimulators/CoupledCoordinators, where local and remote simulators references 

are sitting in a same programming context. However, the message communication among 

them has to go through underlying network using corresponding RMI stubs/skeletons as 

proxies. It should be noted that during the initialization phase of RMICoordinator, a 

simulator reference can be created either as local object reference or as remote object 

reference. The difference here is that the local simulator object is created and initialized 

when a local simulator reference is created; however, when a remote simulator reference 

is created, it points to the remote object created in different address space or JVM, which 

either can be created by dynamic or static way as aforementioned. 
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Figure 5-4  Local vs. Remote Simulator 
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5.5 DYNAMIC SIMULATOR AND MODEL MIGRATION 

The key technology used in DEVS/RMI to make the run-time reconfiguration of a 

distributed simulation possible is Java RMI object persistence. RMI supports the object 

serialization and reconstruction in remote JVM with persistent data, which is the key 

concern when a model is migrated from one machine to another one during simulation 

run-time. As shown in Figure 5-5, the remote simulator/model pair on machine 1 can be 

dynamically migrated to machine 2 using predefined RMI procedure. The data 

consistency of the pair is maintained except for the change of their remote references in 

the simulation controller. It should be noted that such migration does not affect 

simulation time synchronization because of the native synchronization property of RMI.  

 

 

 

 

 

 

 

 

Figure 5-5  Dynamic Simulator and Model Migration 
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5.6 DYNAMIC MODEL RECONFIGURATION IN DISTRIBUTED 

ENVIRONMENT 

Dynamic model reconfiguration has been studied and implemented by Hu [15] in 

DEVSJAVA in a form referred to as “variable structure”. It is a powerful method to 

express dynamic model structure changes when modeling complex and dynamic systems. 

DEVS/RMI natively supports this feature without changes of the original implementation 

if the relevant models are local for RMICoordinator. Furthermore, DEVS/RMI can also 

support model reconfiguration even if the models are remotely located to the 

RMICoordinator.  

As shown in Figure 5-6, the model in the remote machine (hosting the TestServer) 

can locate the RMICoordinator during runtime, and then remotely call the 

addRMICoupling() or removeRMICoupling() methods in the RMICoordinator, by which 

way the RMICoordinator is updated with new model structure information. After such an 

update, the simulation execution is continued from its pending point. Dynamic 

reconfiguration capability is especially useful for simulating dynamic model system, 

which changes its structure during run-time. The extension of this capability to 

distributed simulation by DEVS/RMI makes it much easier for solving large-scale 

dynamic system’s simulation in a distributed fashion. 
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Figure 5-6  Flowchart of Dynamic Coupling Changes 

 

 In general, dynamic reconfiguration is implemented by dynamically 

reconstructing the model structures and their coupling relations using the methods 

provided in the simulation controller in DEVS/RMI. It is very important for obtaining a 

better load balance in a distributed simulation, in which the workload on the computing 

nodes may change dynamically.  

 

5.7 INCREASE LOCALITY FOR LARGE-SCALE CELL SPACE MODEL IN 

DEVS/RMI 

As we have discussed in previous sections, DEVS/RMI combines the local and 

remote simulator references in a central simulation control class such as 
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RMICoordinator. Therefore, increasing the communication locality is very important to 

obtain an overall better simulation performance when applying the DEVS/RMI system on 

large-scale models. DEVS/RMI supports the hierarchical model construction in the same 

way as DEVSJAVA, and therefore enables the possibilities of increasing the locality 

whenever necessary. For example, a large cell-space model could be partitioned to 

several sub-spaces, and each sub-space is then mapped to a computational node. The 

models within the same sub-space should be able to communicate with each other using 

local references instead of using remote references. In order to achieve such efficiency, 

the initial cell space (a coupled model) should be decomposed into several inter-

connected sub-spaces (also coupled models) with equivalent overall coupling relation. In 

such a case, the RMI calls are only initiated when a model in one sub-space needs to 

communicate with a model in other sub-spaces, and such message passing can be done 

through two RMICoupledCoordinators. 

In fact, such domain decomposing based model partition is especially useful for 

handling large-scale cell space model, where the inter-cell communication dominates the 

overall model system’s behaviors. As we mentioned in previous sections, the models or 

sub-models are assigned to computing nodes using their putWhere() attributes, therefore, 

partitioned sub-space or sub-model is assigned to computing node by RMICoordinator 

directly. In such an implementation, the simulation control node creates and maintains the 

remote references for the sub-model, while the sub-model object instance is residing on 

desired remote computing node. In such a setting, only the cells on the edges of sub-
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space need to use remote method call to communicate with cells on other computing 

nodes. The inter-cell communication within a sub-space is totally local object calls.  

As a summary, we should say that the communication locality can be optimally 

maintained with the flexible model partition mechanism supported by DEVS/RMI. 

Minimizing the RMI communication overhead is essential for gaining optimal distributed 

simulation performance in DEVS/RMI. 

 

5.8 BASIC PERFORMANCE TEST 

In this section, we will present some of the basic performance results in 

DEVS/RMI. We use the simplest model structure to help us to obtain the overhead 

associated with message passing between models. We compare results for single machine 

with those obtained for three machines (one head node + two computing nodes) using 

RMI calls. As shown in Figure 5-7, a DEVS “generator” and multiple “processors” are 

coupled through their digraphs. “Generator” outputs periodically to the “processors”, 

which then process the jobs they receive. 

 

 

 

 

 

Figure 5-7  Simple DEVS “gp” Model 
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In this test, we measure the overhead incurred by the message passing between 

“generator” and “processors”, and we then compare such overhead obtained in single 

machine with those obtained in a distributed environment (one head node + two 

computing nodes).  

Figure 5-8 is the line plot for the experimental result which shows a significant 

communication overhead incurred by DEVS/RMI. However, such overhead presents a 

nearly linear behavior with the increased number of “processors” involved. This result 

provides a baseline for further analysis for communication overhead incurred by using 

DEVS/RMI for a distributed simulation. 

In later chapters, we will see the advantages of distributed simulation using 

DEVS/RMI when large-scale cell space model is simulated. The test result presented here 

can provide a basic guide for messaging overhead incurred by DEVS/RMI’s remote 

message passing. 

 

 

 

 

 

 

 

Figure 5-8  Messaging Overhead in Simple DEVS Model 
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6 MODEL PARTITIONS IN DEVS/RMI 

 

 The major goal of the DEVS/RMI system is to provide a simulation application 

with a fully dynamic and re-configurable run-time infrastructure that can handle load 

balancing and fault tolerance in a distributed simulation environment. DEVS/RMI 

supports both static model partition and dynamic repartition through the flexible Java 

RMI technology. Static model partition is implemented in the model construction stage 

and then manipulated by the corresponding simulator. In contrast, dynamic partition and 

repartition happen in an intermediate stage of a simulation execution. In later chapters, 

we will show how model partition in DEVS/RMI is used on cluster of workstations to 

solve very large and dynamic model such as valley fever and hilly terrain models. In this 

chapter, we will present and discuss the basic model partition techniques used in a 

DEVS/RMI based system. 

 

6.1 STATIC PARTITION 

 In this section, some illustrative static model partition methods are presented to 

show how DEVS/RMI implements some of the basic partition techniques. We will focus 

on static model partition implemented in DEVS/RMI, especially random partition and 

model domain decomposition techniques. 
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Figure 6-1A Coupled DEVS Model 

 We begin our discussion from a generic DEVS model shown in Figure 6-1, where 

A is the root digraph, A1 and A2 are two inter-connected children digraphs. A11, A12 and 

A21, A22 are atomic models belonging to A1 and A2 respectively. DEVS/RMI supports 

the partition of such generic model in a very flexible way. For example, any component 

within the root digraph A can be assigned to any computing node. Such assignments 

happen at model construction phase as shown in the following piece code: 

ViewableAtomic A1 = new generator(“A1”,”node2”); 

add(A1); 

ViewableAtomic A11 = new generator(“A11”,”node3”); 

add(A11); 

        …… 

 

 This means that random partition is directly supported in DEVS/RMI. The 

capability to map any model or sub-model to any computing node is a very powerful 

technique that allows user to implement different model partition algorithms much easier. 

Following example shows a random mapping of model components to computing nodes 

for the model structure in Figure 6-1.  
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A—Coordinator, computation node 1. 

A1---coupledCoordinator, computation node 2.  

A11---coupledSimulator, computation node 3. 

A12---coupledSimulator, computation node 4. 

A2---coupledCoordinator, computation node 5.  

A21---coupledSimulator, computation node 6. 

A21---coupledSimulator, computation node 7. 

 

 As we have seen in above illustration, such random partition capability provides 

the most flexible simulation environment for any kind of DEVS hierarchical model, and 

DEVS/RMI can implement such partition without decomposing the original model 

structure to equivalent interconnected sub-models. However, the efficiency of such 

partition needs to be carefully considered. For example, partitioning A11 and A12 on two 

different nodes will significantly increase the communication overhead of the simulation 

because the message passing between A11 and A12 has to go through the underlying 

network using RMI calls. Therefore, communication locality needs to be enhanced 

whenever possible to get a better overall simulation performance. However, on the other 

hand, such random partition is useful in some cases when performance is not the major 

concern, such as some situations in distributed virtual environment (DVE). Furthermore, 

Figure 6-2 shows the random partition of the model in Figure 6-1, and each labeled sub-

domain is then assigned to a computing node. We can see in this partition that the 

communication locality is broken because the message passing between A11 and A12 

now needs a remote method call, for example. However, the random partition capability 

is the basis for doing more sophisticated model partition, and therefore, can open an 

interesting area for studying and finding an optimal partition algorithm in a distributed 

simulation environment. 
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Figure 6-2A Random Partition Showing the Assignments of Atomic Models to 

Computing Nodes 

 Compared with random model partition, re-grouping the models to sub-domains 

while considering communication locality is another important partitioning technique 

implemented in DEVS/RMI. This technique is especially useful to handle large-scale 

cell-space models. In such model, the depth of model hierarchical tree is relative small, 

and the focus of the partition is generally on how to assign the grouped cells to the 

computing nodes.  

 

 

 

 

         

 

Figure 6-3 2D Cell Space 
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Figure 6-4 Coupling Relationship Among Cells 

 Figure 6-3 shows a generic 2D cell space model (4 by 4) with coupling 

relationship among cells shown in Figure 6-4, where any cell that is not on the edge of 

cell space is coupled with its eight nearest neighbors. It is easy to see that for such cell 

space model, randomly partitioning cells to the computing nodes is not an efficient 

approach because of the tight coupling relationship among cells showed in Figure 6-4. 

How to re-group cells to sub-groups/domains is especially important to obtain best 

overall simulation performance.  

 

 

 

 

 

 

 

Figure 6-5 Evenly Divided Sub-Domains of 2D Cell Space Model 
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           Figure 6-5 shows the evenly divided sub-domains of the 2D cell space model in 

Figure 6-3. The evenly divided sub-domains means that the number of cells in each sub-

domain are equal. Compared with random partitioning, such partition needs the re-

construction of the original model. As shown in Figure 6-5, each sub-domain now 

belongs to a new digraph, and cells on the edge of the digraph needs added new coupling 

to their digraph. The original coupling relationship can be maintained by further 

constructing the coupling among these sub-domain digraphs.   

 

Figure 6-6 shows a more general case, where cells in the cell-space are irregularly 

divided to several different computing sub-domains, and then assigned to different 

computing nodes. Any cell on the edge of sub-domain digraph needs creating coupling to 

the digraph it belongs to in order to maintain the original coupling relationship. It is 

worth to note that such irregular partition is useful when each individual cell cannot be 

equally weighted in terms of computing workload. For example, in a certain time period, 

some cells have more computing workload than other cells. In such a case, using such 

irregular partition is necessary to get an overall load-balance of the computing in a 

distributed environment. In some cases, if the individual cell cannot be treated with equal 

or similar computing workload for a simulation run, some heuristic function should be 

used to estimate the computing workload on each cell (or group of cells) before initiating 

a model partition plan. 



 

  

 

 

  86

 In general, dynamic re-partitioning technique needs to be applied to obtain best 

processor’s utilizations because of the dynamic nature of some of the modeled systems. 

We will discuss such technique in the following section. 

 

 

 

 

 

 

 

Figure 6-6 Irregular Re-Group the Cells to Different Computing Sub-Domains 

 

6.2 DYNAMIC REPARTITION 

6.2.1 Overview 

Dynamic model partition/repartition applies or changes the model partition plan 

during simulation runtime. In dynamic model partition, the models are repartitioned on 

demand, and are always dynamically migrated among the computing nodes. In such a 

circumstance, the simulation loop temporarily stops by the simulation controller and then 

resumes its execution after the model migrations are finished. Figure 6-7 illustrates an 

example for dynamic model repartition in DEVS/RMI. The figure on top shows the initial 

model partition in two sub-domains. The bottom figure shows that the “cell 13” and 
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“cell 23” in “sub-domain 2” are migrated to “sub-domain 1” during run-time. Such a 

process is accomplished by decoupling the “cell 13” and “cell 23” from their neighbor 

cells and sub-domain boundary (or say the digraph to which they belong), and then 

migrating them by a RMI call at simulation controller such as RMICoordinator. After 

such model migrations, new couplings need to be added to maintain the overall coupling 

relationship among cells in the cell-space. As we have mentioned before, such dynamic 

decoupling and re-coupling (or adding new couplings) can be done by using “Variable 

Structure” technique in DEVS/JAVA and DEVS/RMI. It is also worth to mention that 

dynamic repartition is called on when load-balance of the distributed simulation is a 

major concern for the tested model. In general, dynamic repartition is helpful for gaining 

optimal processor utilizations, and therefore, may enhance the performance of distributed 

simulation. 
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Figure 6-7  Dynamic Model Repartition in DEVS/RMI 

 

6.2.2 A Dynamic Repartition Example 

 We will now exemplify the dynamic model repartition using a DEVS “gp” model, 

which consists of a “generator” and multiple “processors”. As shown in Figure 6-8, a 

“generator” with multiple “processors” (total number is n, a variable to represent number 

of “processors” involved in test) is assigned to machine 1, and an individual “processor2” 

is assigned to machine 2 by DEVS/RMI simulation controller—RMICoordinator. The 

distributed simulation initializes and starts with this setting and then temporally stops 
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during run-time. The RMICoordinator then dynamically migrates the n processors (from 

“Processor10” to “Processor1n”) from machine 1 to machine 2, and re-constructs the 

couplings among the “generator” and “processors”. Figure 6-9 shows the re-constructed 

model structure and the updated models’ physical locations. After this model dynamic 

migrations with persistent states, the simulation continues its execution.  

   

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8  A DEVS “gp” Model Before Model Repartition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9  A DEVS “gp” Model After Model Repartition 
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 Figure 6-10 and Figure 6-11 are dump screens showing the dynamic repartition in 

actions using SSH tunneling to access remote USGS Beowulf cluster. The output of this 

distributed execution is compared with the single machine’s execution, and the 

correctness of the dynamic repartition is therefore verified.  

 

 
 

Figure 6-10  Dynamic Repartition in Action at USGS Beowulf Cluster-1 
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Figure 6-11  Dynamic Repartition in Action at USGS Beowulf Cluster-2 

 

Now, we look into the detail on how the dynamic repartition happens. As shown 

in Figure 6-12: TestSever1 and TestSever2 on two remote machines create and register 

their sub-models before RMICoordinator creates two remote references pointing to them. 

The object instances of sub-models and their simulators actually exist in the two remote 

machines respectively. Thereafter, the RMICoordinator initiates itself using some pre-

defined procedures, and then starts the simulation execution for certain steps. The 

simulation is then temporarily stopped before the RMICoordinator calls migration 

method, which actually attempts to migrate a bundle of “processors” (from number 1 to 

number n) from machine 1 to machine 2. After the model migration is done, the 

controller reconstructs the coupling relations to make the overall model structure 

unchanged except for their actual physical location. An integer variable numberofP is 
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defined to represent the number of “processors” being migrated, which helps to 

determine the overhead associated with such dynamic model migration as well as number 

of migrated models. The distributed simulation is then continued from its stopping point. 

 

Figure 6-12  Sequence Diagram for Dynamic Model Migration 

 

 As we know, the performance is a key concern for using dynamic repartition 

during simulation run-time. We show some performance test result here to clarify the 

overhead incurred by dynamic repartition. Table 6-1 shows how overhead incurred from 

model migration is related to the number of models being transmitted across network. 

Figure 6-13 demonstrates such a relation visibly using a line chart. We can see from this 
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plot that the overhead is nearly linear increased with the increased number of migrated 

models. The overhead is significant when migrating large number of model components 

dynamically. However, if an optimal dynamic repartition mechanism is used, the overall 

distributed simulation performance is expected to be better than using static model 

partition.  

 

Number of 

“p”   

1 5 10 15 20 40 80 160 

Overhead(s) 0.086   0.17      0.269      0.35         0.419  0.841  1.73    4.871 

 

Table 6-1 Overhead Incurred by Dynamic Model Migration 
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Figure 6-13  Overhead Incurred by Dynamic Model Repartitions 
 

 

The above example is presented as generic mechanism for model dynamic 

migrations during simulation run-time. Due to its intrinsic flexibility, it is easy to 

implement complex repartition algorithms into the simulation controller, and therefore, to 

achieve higher level of dynamic load-balance in a distributed simulation environment. 
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The overhead incurred by dynamic model repartition should be carefully considered 

when applying repartition algorithms. The example presented in this section could be 

used as a basis for exploiting more complex dynamic model repartition techniques in a 

distribute simulation environment. 
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7 INVESTIGATING THE COMPUTATION SPACE OF A SIMULATION 

WITH DEVS/RMI 

 

7.1 INTRODUCTION 

In previous sections, we discussed the DEVS/RMI system architecture, 

components and key functionalities, and we show our particular interests on base 

performance test, dynamic reconfiguration capabilities of a DEVS/RMI system. In this 

section, we will further our discussion of its application on large-scale continuous spatial 

model, and we will show the advantages of using DEVS/RMI to investigate the 

computation space of a simulation.  

As we know, modeling and simulation has become a fundamental technique to the 

modern science and engineering, and it is essentially important in predicting the future 

behavior of complex dynamic systems. With the development of high performance 

computing and simulation, modeling and simulation techniques are being applied in 

solving very complex and large-scale problems such as those described by continuous 

spatial models. Due to the limitations of a single machine’s computing power and 

memory capability, parallel-distributed simulation has to be considered to solve these 

continuous spatial models which in general have very large problem sizes. However, such 

efforts have been proven to be a great challenge because most of mature parallel-

distributed simulation frameworks, including commercial ones, cannot handle the 

distributed simulation in a transparent way. 



 

  

 

 

  96

Parallel-Distributed simulations of continuous spatial models typically must 

address questions such as: how fine a resolution  (therefore, how many cells) is needed 

for acceptable accuracy? and how many computational nodes are needed for acceptable 

execution time? In many applied simulations, these questions are not readily answered 

because of the effort required to refactor the simulations to accommodate both increases 

in cells and computation nodes. To answer such questions requires a flexible 

infrastructure in which it is easy to change resolution of the model as well as partitions of 

the model to the variable numbers of nodes. In this section, we show how DEVS/RMI, an 

implementation of distributed DEVS using remote method invocation (RMI), provides 

the flexible infrastructure required for investigating the computation space of simulation. 

DEVS/RMI is used to simulate a large-scale 2D continuous cell space model, and the 

experiment results show that DEVS/RMI provides a scalable simulation environment 

where a large-scale cell space model can gain significant speedup when a cluster of 

machines is used. The experimental results also imply that larger cell space model with a 

significant computing workload could benefit from distributed simulation with 

DEVS/RMI. The flexibility of DEVS/RMI opens up further investigations into the 

relationship between speedup of simulation and the partition algorithm as well as the 

study of techniques such as load-balancing and self-configuration during simulation run-

time. 
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7.2 SIMULATIONS OF CONTINUOUS SPATIAL MODELS 

Continuous time simulation is used when the state changes occur continuously 

across time within the modeled system, and such system behavior typically is described 

by differential equations. In contrast, discrete event simulation is generally performed by 

using computer models for a system where changes in the state of the system occur at 

discrete points in simulation time [69]. Therefore, it is necessary to have a general 

methodology that could combine the two into one unified framework because a lot of 

systems have shown behaviors of both continuous time and discrete event. Such 

combined simulation methodology was first proposed by Fahrland [70], and the need for 

such combined simulations has also been addressed by Cellier [71] and Dessouky [72].  

With regard to DEVS approach to such unified methodology, a formalism called 

DEV&DESS subsumes both the DESS(for continuous system) and the DEVS (for 

discrete event system), and thus supports the development of coupled systems whose 

components are expressed in any of the basic formalisms [1]. Such multiformalism 

modeling capability is very important to handle real-world simulation since some of the 

modeled system behavior has to be captured by using both DESS and DEVS. As an 

example, a chemical plant is usually modeled with differential equations while its control 

logic is best designed with discrete event formalism [1]. 

DEVS approach to continuous state systems, such as those described by 

continuous spatial models, uses quantized state system to integrate the DEVS with the 

DESS. A quantized system is a system with input and output quantizers [73], and it uses 

quantization to generate state updates but only at quantum level crossings, which affords 
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an alternative, efficient approach to embedding continuous models within discrete event 

simulations.  DEV/DESS has provided a framework to represent classes of continuous 

and discrete systems, and makes it possible to develop object-oriented simulation 

applications with such models. 

 Continuous spatial models are those models in which two or three dimensions are 

represented [74], and they could be solved by the combined simulation techniques such 

as DEV/DESS. In order to get the acceptable accuracy of the simulation of such spatial 

models, resolution needs to be increased by adjusting the computation space of the 

model. However, the increased resolution commonly needs larger cell space size to be 

simulated, and therefore, requires more computation power in the computation space of 

the simulation. With the demand for obtaining higher resolution of such models, the 

computation space has to be increased accordingly until all the resources for a single 

machine are used up. In such a case, parallel-distributed simulation is most likely to be 

called on to get the desired resolution by distributing the computation space to sub-

spaces, and then mapping to a cluster of machines. However, a flexible simulation 

framework is necessary to deal with such model scale changes as well as the feasibility of 

mapping the model to computation nodes. 

 

7.3 HILLY TERRAIN MODEL 

In this section, we focus our discussion on a hilly terrain model, which is a two 

dimensional continuous spatial cell space model to simulate how a traveler finds the 

smallest travel time to a goal point taking account of hilliness of the terrain. The smallest 



 

  

 

 

  99

travel time is measured by the simulation as a function of number and placement of  

“hills” where “hills” combine to provide a gradient to each point in a 2D space. The time 

to traverse a small region is related to the gradient in the following way: if the gradient is 

positive in the traveler’s direction, then the travel time is directly related to its magnitude 

(going up slows progress); if the gradient is negative, then the travel time is inversely 

related to its magnitude (going down increases progress). 

Adding hills in the 2D space increases the computing workload required for each 

individual cell in the model. The larger the workload on each cell, the greater the benefit 

to be expected from distributed simulation. It is also worth to note that increasing number 

of cells results in the increase of memory usage and computational workload for the 

simulation engine. As shown in Figure 7-3, each terrain cell represents a DEVS atomic 

model with possible states: “output”, “firstoutput”, “secondoutput”, “refractive”, 

“receptive”, and etc. Each terrain cell has its own X-Y coordinates in the space and has 

eight input and eight output ports for coupling with its existing nearest neighbors. For 

example, the cells residing in the inner 2D space are coupled with 8 nearest neighbors, 

while the cells residing on the edge or corner of the space are coupled with less than 8 

neighbors.  Consequently, each cell is influenced by any of its nearest neighbors through 

these couplings. 

         Figure 7-1 shows how to calculate the gradient and the time to traverse a distance q 

for a 1D hilly terrain model. A hill in the space is modeled and represented by the 

function h(x), where H represents the height of the hill and c is the central location of the 

hill. The time to traverse a distance q (represented by a quantum in DEVS) is a function 
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of q and the gradient of the hill at a given location x. If the gradient is positive, the time to 

traverse q increases; if the gradient is negative, the time to traverse q decreases. 

 

Figure 7-1 Calculate Hilliness and Traversed Time in 1D Space 

      

Moreover, Figure 7-2 shows how to calculate the hilliness in a 2D hilly terrain 

space as used in this section, where (ci,cj) represents the x-y coordinator of the center of a 

hill in the space, and H(ci,cj) is the height of this hill. The hilliness of the 2D cell space 

can then be obtained by sum of the h(ci,cj) (x,y) functions for all hills. The hilliness is used 

to calculate the gradient at certain location (x,y), and is then applied to determine the 

direction of the traveler at any point in the space. In order to get the shortest travel time 

from point A to B, at certain point (x,y), the traveler goes to the “north” or “east” 

according to the smaller steepness of the hill between x and y direction, by calculating the 

gradient at point (x,y)---partial derivatives of h(x,y) to x and to y.  
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Figure 7-2  Calculate Hilliness in 2D Space 

 

 The continuous spatial hilly terrain model, described by the mathematic functions 

in Figure 7-1 and Figure 7-2, is then modeled in DEVS using quantization technique. The 

resulted DEVS model can then be simulated in DEVS/JAVA and DEVS/RMI for 

studying the computation space of it. In the following sections, we will present the 

detailed implementation, and we show particular interests on the speedup of the 

simulation when running this model in a distributed environment provided by 

DEVS/RMI. 
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Figure 7-3Hilly Terrain Model in Simview 

 

7.4 WHY DEVS/RMI FOR HILLY TERRAIN MODEL 

Hilly terrain model was initially constructed and simulated in DEVS/JAVA in a 

single machine. However, due to the limitations of a single machine’s CPU power and 

memory capability, the cell-space size cannot exceed 100 by 100, at which point the out 

of memory error of Java VM appears. It is wise to consider increasing the memory for 

Java runtime, and an interesting finding is that the Java VM provides only 64M heap 

memories as default for regular applications, which is apparently not sufficient enough 

for a large cell space model. With such a consideration, a Java runtime parameter  “-

Xmx1024m” was used to increase the Java runtime memory at the maximum value for a 

regular desktop PC, which generally has a 256M, 512M or 1024M memory. It did solve 
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the problem a little further and some model cases with a size of 150 by 150 can run, 

although considerable amount of time is necessary to get the result. However, a cell space 

larger than 150 by 150 cannot be solved in any means in the tested single machine with 

512M physical memories. In order to make this situation clearer, let’s do a simple Math 

for memory estimation. For example, to initialize a 150 by 150 cell space model, 2 by 

150 by 150 DEVS/JAVA model and simulator objects are necessary, and each of these 

300 by 150 objects also create other relevant objects. If each model/simulator object 

creates 10 related objects and we assume the average occupied memory for each object is 

1000 bytes, the total necessary memory is around 450M. Although the heap memory 

occupied by Java objects is garbage collected, cell objects cannot benefit from this 

dynamic memory management because they are statically created before a simulation 

execution starts. It is worth investigating how such a limited memory problem could be 

solved by distributed simulation, such as using DEVS/RMI.  

Another major reason to use DEVS/RMI to simulate the hilly terrain model is that 

such a simulation needs a flexible and scalable distributed framework to reach the 

model’s necessary resolution when the problem size goes out of capability for a single 

processor’ CPU and memory capabilities. For example, it is not easy to re-tailor and 

revalidate the model when a middleware solution is applied, which generally adds 

additional simulator control layer and time management layer. As presented in previous 

sections, DEVS/RMI can provide a flexible and scalable infrastructure, which can be 

easily applied to refactor the simulation application in a circumstance when both problem 

sizes and computation nodes need increase. In the following experimentation, 
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DEVS/RMI works by changing computation space of a simulation at model initialization 

phases, and maintains the same partition algorithm for the increases of the both cell space 

size and the computing nodes. This is due to the seamless support for distributed 

simulation of DEVS/RMI, which does not rely on additional layers on top of its 

simulation engine. By using easily configured simulation experiments of DEVS/RMI, it 

is easy to answer questions such as how fine a resolution  (therefore, how many cells) is 

needed for acceptable accuracy? And how many computational nodes are needed for 

acceptable execution time? In contrast, in many other approaches, such questions are 

difficult to be answered. 

 

7.5 LINUX CLUSTER 

In this experiment, 3, 6 and 11 nodes of a 40 nodes Linux cluster are used to test 

the hilly terrain model under DEVS/RMI. Each node in the cluster has an AMD Athlon 

XP 2400+ with 2GHz CPU and 512M physical memories, and all the nodes are 

connected by 100M Ethernet switch with TCP/IP as communication protocol. The 

operating system of each node is GNU/Linux 2.4.20 with Java Runtime 1.4.1-01 

installed. 

 

7.6 MODEL PARTITION FOR HILLY TERRAIN MODEL 

In order to run the hilly terrain model in DEVS/RMI in an efficient way, the 

original model is partitioned to computing nodes by dividing it into several 

interconnected sub-models. In this experiment, the hilly terrain model is evenly divided 
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by columns according to the number of computing nodes used for testing. As shown in 

Figure 7-3 and Figure 7-4, the digraph of original cell space is divided into two sub-

digraphs, which are interconnected to each other through input/output ports. In fact, the 

inter-connected sub-digraphs are equivalent to the original digraph in terms of coupling 

relations of cells in the space. Thereafter, each sub-space can be assigned to a computing 

node easily. It is verified that the partitioned model has the same output result when 

running in DEVS/RMI compared with the original model running in a single machine 

using DEVSJAVA. The reason to do such a partition is that sub-digraphs could be 

assigned to computing nodes evenly and then be controlled by their local 

RMICoupledCoordinators, and thus avoid RMI calls within sub-digraphs. This model 

partition mechanism has been proposed and discussed in earlier chapters aiming to 

increase the locality. Each subspace, for example, “s0” or “s1” in Figure 7-4 is assigned 

to different computing nodes respectively and either of them is controlled locally by the 

corresponding RMICoupledCoordinator, which is then controlled by RMICoordinator 

residing on the main simulation control node. 

In general, such model partition aims to reduce the RMI overhead caused by 

message passing among cells. Although such partition involves generating a new 

equivalent model of original model, the overall message passing efficiency may be 

increased due to reduced RMI overhead. 
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Figure 7-4 Divided Hilly Terrain Model in Simview 

 

7.7 AUTOMATIC TEST SETUP 

For a large-scale model such as hilly terrain model, it is necessary to set up the test 

using DEVS/RMI in an automatic way in order to make collecting experimental data 

more efficient. Therefore, on each computing node, the same RMI server program is 

started for accepting the request from the simulation main control node. The main 

program in simulation main control node actually uses synchronized threads to initialize 

all the computing nodes at first. Each thread generally uses a RMI call to let the 

corresponding computing nodes to start creating and registering its models as well as 

simulators/coordinators. When this initialization phase finished on all computing nodes, 

the main control program then automatically continues executing and starting the 

simulation control loop. This automatic setup is very important for simulating large-scale 
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cell space because it is not practical to manually start the initialization phase in each 

computing node, and then to wait for their finishing after a long time delay. 

       As shown in Figure 7-5, RMICoordinator calls the regSimulator() method to 

initialize the creation and registration of remote simulators on two remote machines, 

which host TestServer1 and TestServer2. After this procedure is finished, the 

RMICoordinator then starts the simulation execution loops. Therefore, the overall 

distributed simulation is fully automatically initialized and controlled by the “head” node 

running RMICoordinator. 

 

 

 

 

 

Figure 7-5 Sequence Diagram for Automatic Setup Distributed Simulation 
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7.8 SPEEDUP OF SIMULATION FOR HILLY TERRAIN MODEL 

In this section, some experiment results for the distributed simulation of hilly 

terrain model are presented and discussed. The focus is on the performance of the 

DEVS/RMI when being applied on a cluster of computing nodes to solve large problem 

sizes for this model. 

As aforementioned, the purpose of simulating hilly terrain model is to obtain the 

shortest travel time of a traveler in a terrain. As added obstacles for the traveler, the 

existence of hills in the terrain delays the shortest travel time. The size of the cell space 

determines the resolution of the measurement of the shortest travel time, however, 

oversized cell space is not necessary to capture the converged shortest travel time 

constant for a given condition of hills in the space. Figure 7-6 shows how the simulation 

resolution for the hilly terrain model relates to the number of cells (or say problem size). 

When the number of cells reaches certain level, the measured travel time converges to a 

constant. This constant is different for different number of hills as well as the setting of 

these hills in the cell space because the hills in the cell space directly affect the shortest 

travel time. Figure 7-7 shows how the travel time increases with number of hills in the 

cell space. With the increase of the hills in the space, the number of cells in the space 

needs to be increased significantly in order to find the converged constant. Therefore, a 

scalable simulation framework such as DEVS/RMI is on demand to solve this simulation 

problem. 
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Travel Time vs. No. of Cells
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Figure 7-6  Travel Time vs. Number of Cells 
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Figure 7-7  Travel Time vs. Number of Hills 

 

In fact, DEVS/RMI works straightforwardly on obtaining the shortest travel time 

constant for a cell space with added hills by scaling the model to larger sizes. A cell space 
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with one hill is also tested to compare with the model with 100 hills in the cell space. 

Increasing both the cell space size and the computing nodes is easily accomplished using 

DEVS/RMI, and does not alter the model domain-decomposition technique used in this 

experiment. Figure 7-8 shows the speedup for simulation initialization time by 

DEVS/RMI using 3, 6 and 11 nodes for one hill and 100 hills respectively in the cell 

space. It could be seen that the initialization speedups increase dramatically with the 

increased computing nodes for a fixed cell space size, because each node initializes only 

one partitioned sub-space. However there is almost no difference of speedup for one hill 

and 100 hills, for a given number of nodes, because adding hills has no effect to cell 

space size and the speedup of initialization is only related to the number of cells on each 

computing node. It is easy to find that adding computing nodes can greatly reduce the 

initialization time for the simulation, especially for larger cell space model.  
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Figure 7-8  Speedup of Initialization Time with DEVS/RMI 
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Speedup of Simulation
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Figure 7-9  Speedup of Simulation Using DEVS/RMI 

 

Figure 7-9 shows the speedup of the simulation by DEVS/RMI using 3, 6 and 11 

nodes for one hill and 100 hills in the cell space.  For one hill, the speedup of the 

simulation execution time increases from below 1 to near 1 when increasing the number 

of cells in cell space, and adding more nodes actually degrade the performance. This is 

because adding one hill in the hilly terrain does not increase enough workload on each 

cell to compensate the increased communication workload incurred by RMI calls.   

When 100 hills are added to the cell space, each cell is injected with a significant 

workload and the overall workload for the cell space increases with the increased number 

of cells. However, for a fixed cell space, with the increased computing nodes, each node 

has less computing workload but with increased communication workload due to the 

RMI calls among the edge cells on each node as well as the RMI calls between 

computing node and simulation control node. Figure 7-9 shows that for a 100 by 100 cell 
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space, a maximum speedup could be achieved by using 11 nodes. When cell space size 

continuously increases beyond 100 by 100, the speedup decreases for all 3, 6 and 11 

nodes for 100 hills due to the increased RMI calls incurred by increased edge cells. In 

general, for a larger cell space in this experiment, increasing computing nodes also 

increases speedup of simulation if each cell has enough workload on it. This experiment 

implies that there is an optimal point for speedup when both problem size and computing 

nodes increase. DEVS/RMI makes it easy to locate such critical points by scaling the 

simulation transparently from single processor to multiple processors.   

 

7.9 SIMULATING VERY LARGE HILLY TERRAIN MODEL 

A 400 by 400 hilly terrain model is tested under DEVS/RMI with 8 computational 

nodes, and it works with no problem but needs considerable amount of time to get the 

result because the necessary simulation loops increase significantly with the increase of 

the cell space size for this particular model. However, this verifies that DEVS/RMI could 

solve very large cell-space models as long as the necessary computing nodes are 

available with the help of distributed memory technology used in DEVS/RMI. 

 

7.10 CONCLUSION 

We have seen in this chapter that DEVS/RMI provides a very flexible, dynamic 

and scalable distributed simulation infrastructure, which could be easily applied to 

refactor the simulation applications in a circumstance when both problem sizes and 

computation nodes need increase. The experimental results could directly help on 
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answering the questions such as: how fine a resolution  (therefore, how many cells) is 

needed for acceptable accuracy? and how many computational nodes are needed for 

acceptable execution time? This is because that refactoring the spatial model in the 

experiment is transparent with the help of DEVS/RMI. 
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8 LARGE-SCALE DISTRIBUTED AGENT BASED SIMULATION USING 

DEVS/RMI 

 

8.1 DISTRIBUTED SIMULATION OF VALLEY FEVER MODEL 

In this chapter, we further our discussion on DEVS/RMI by investigating a highly 

dynamic 2D cell space model called valley fever. We focus our discussion on how 

speedup of the distributed simulation relates to the partitioned workload on the 

computing nodes, and we will continue our interests on examining the concept of model 

“activity” and how it affects the workload distribution in a distributed simulation 

environment. 

 

8.1.1 Valley Fever Model 

The Agent-based Valley Fever Model initially designed by Bultman, Fisher and 

Gettings [66] is a 2D dynamic cell space model to represent how the fungal spores grow 

on a patch of field over a long period of time with given environmental conditions such 

as wind, rain, moisture and etc. As shown on Figure 8-1, it consists of several individual 

model components: wind model, rainfall model, coupling control model and patch model. 

All these components are DEVS atomic models except patch model, a DEVS coupled 

model consisting of an atomic model called “Sporing Process” and another atomic model 

called “environment”. All these models are assigned to a 2D cell space DEVS diagraph 

and the patch models are in fact have X-Y coordinator in the cell space. The wind model 

and the rainfall model are both statistic models which can generate wind data and rain 

data periodically. The output from them are then sent to the coupling control model 

which uses the input rain data and wind data to determine the dynamic coupling of rain 
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model with patches as well as the dynamic coupling among patches. This model structure 

is highly dynamic and changes its structure on each simulation step.  

 

 

Figure 8-1Valley Fever Model in DEVSJAVA SimView 

 

8.1.2 Model Partition for Valley Fever Model 

In this experiment, the static model partition is used in order to reduce the cost of 

dynamically creating remote simulators with models passing as parameters. Several 

different partition methods are tested and it was found that the distributing other model 

components except patch cells does not have much difference regarding the simulation 

execution time. With the increase of the patch cells for the model, it is easier to see that it 

is necessary to partition these cells. 
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Therefore, the patch cell space is evenly divided by columns according to the 

number of computing nodes. For example, to partition a 10 by 10 patch space on 5 nodes, 

every two columns of cells is assigned to one node. All the other model components are 

sitting with the simulation control node. On each computing node, a program called 

“testserver” is started to start RMI registry by itself and creates a set of simulator/model 

pairs which belong to this node according to the model’s putWhere() attributes, then the 

references of the simulators are registered with RMI registry for the lookup by the 

RMICoordinator. After above mentioned initialization of each node, the RMICoordinator 

is started at the main simulation control node.  

 

8.1.3 Distributed Simulation Results for Valley Fever Model 

As shown in Figure 8-2, a 10 by 10 patch space is divided into 1, 2, 5, 10 nodes 

respectively to measure the total simulation execution time in terms of 100 simulation 

loops. It can be seen that the simulation time has a significant increase with the increase 

of the computing nodes due to the added communication overhead, however, there is no 

significant execution time increase for simulating the model among two nodes, five nodes 

and ten nodes. 
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Figure 8-2  Simulation Execution Time(seconds) vs. No. of Computing Nodes in 

Original Model 

 

8.1.4 Workload Injection to the Distributed Cells 

From the experiment result obtained from above section, it can be inferred that the 

increase of simulation execution time is due to the increased communication workload 

among the nodes. It is worthwhile to examine what may happen if the workload is 

increased on distributed cells without increasing the communication workload (such as 

number of RMI calls through network). A 5 by 5 cell space is tested in terms of 400 

simulation loop in order to get the experiment result relatively quicker. Figure 8-3 shows 

how the situation changes compared with the result obtained in original model when 

different workload is injected to the distributed cells. For the figure on left side, whenever 

each patch cell gets an external event, it calculates the sum of integers from 1 to 100 as a 

way to add computing workload. It can be seen that the total execution time of overall 

simulation is slightly increased for 5 nodes compared with for 1 node. For the figure on 

the right side, whenever each patch cell gets an external event, it calculates the sum of 

integers from 1 to 150,  and we can see that the total execution time of overall simulation 
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is greatly reduced when using 5 nodes compared with using only 1 node. It can be then 

seen that the workload on the distributed cells plays an important role in affecting the 

performance of the distributed simulation. This experiment result implies that, for the 

original valley fever model, the distributed cells do not have enough workload to 

compensate the cost of increased communication incurred by RMI calls across network.   
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Figure 8-3  Simulation Execution Time(seconds) vs. No. of Computing nodes 

Under Different Workload on Distributed Cells 

From all of above experimentations, we have seen that DEVS/RMI plays an 

important role in solving large-scale cell DEVS models in a transparent and scalable 

fashion. The experimental results imply that a larger cell space model with a significant 

computing workload can benefit from distributed simulation with DEVS/RMI in terms of 

getting positive speedup.  
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8.2 DYNAMIC RECONFIGURATION OF DISTRIBUTED SIMULATION OF 

VALLEY FEVER MODEL USING ‘ACTIVITY’ 

8.2.1 Introduction 

From our previous discussions, we could say that it is worth investigating model 

partition algorithms, in particular, dynamic partition or repartition techniques in order to 

improve the performance of distributed simulation. Dynamic partition or re-partition is 

important for complex simulation models, where their run-time behaviors are difficult to 

predict. However, a well-defined model partition plan is hard to obtain in practice when 

running the model in distributed fashion. Therefore, a parallel or distributed simulation 

framework that supports dynamic reconfiguration is needed to properly study dynamic 

repartitioning of simulation models on clusters of machines. 

In the previous section, we use a static “blind” model partition for running valley 

fever model in DEVS/RMI in a distributed fashion. We have found that the workload in 

the partitioned cells plays an important role in affecting the distributed simulation 

performance. In this section, we will focus on dynamic reconfiguration in distributed 

simulation, and particularly, we are interested in how “activity” affects the model 

partition and consequently influences the performance of distributed simulation. We 

exemplified such a concept of “activity” by continually using the valley fever model 

discussed in previous section.  

As presented in some earlier work [67][68], DEVS based distributed simulation 

framework uses “activity” as a measure of computing workload. As we know, DEVS 

provides a solid simulation methodology for representing asynchronous spatial behavior 
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that is usually implemented by time-stepped simulation. Therefore, in this section, we 

show how to exploit the heterogeneity of model behavior in time and space that often 

results from such DEVS representations. And then we use such “activity” metric to 

balance the computation workload using dynamic reconfiguration of distributed 

simulation. We will show how to exploit this “activity” metric to improve the distributed 

simulation performance by using an activity-based partitioning approach. 

In the following sections, we present a dynamic reconfiguration mechanism that 

uses an “activity” metric which is dynamically gathered before a distributed simulation 

execution, and therefore, provides a useful information for deciding an improved model 

partition plan. Consequently, such a partition plan will prove to be better than a blind-

partition in terms of simulation execution performance.  

 

8.2.2 Static Blind Model Partition vs. Dynamic Reconfiguration Using “Activity” 

In order to compare with the dynamic model partition using “activity”, static blind 

model partition is used to map the “patches” models to computing nodes. In this setting, 

“wind”, “rain” and “coupling_control” models are all arranged at the “head” node, and 

the “patches” cells are evenly divided to other computing nodes in a “blind” fashion, i.e., 

without regard to their measured activities. For example, for a 4 by 4 cell space to run on 

4 computing nodes, each column of cells is assigned to one computing node resulting in 

an evenly distributed cells to computing nodes-- 4 cells on each node. 

The static blind model partition does not consider the imbalance of workload on 

each individual cell. Some cells may have less “activity” than others, and therefore, are 
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subject to less computing workload. To partition the cells blindly results in imbalance of 

workload of computing nodes, which cannot benefit the overall simulation performance. 

In general, for a given highly dynamic simulation model such as valley fever, it is 

difficult to predict the model run-time behavior. 

Fortunately, in the valley fever model, production of spores is the main driver of 

activity in patches. “Sporing” is largely determined by the strength and direction of the 

wind which is an external input to the model. New “sporing” patches are typically highly 

concentrated in the direction of the wind. The fact that wind regimes change relatively 

infrequently allows us to obtain stable activity distributions using simulation on a single 

machine for each such regime. Activity at each cell is measured over such a period as the 

total number of internal transitions that the cell undergoes during that period. 

Experimentally, we verify that this number is closely related to the computational 

intensity required to simulate a cell during such a period. 

  Given the dependence of activity on wind regimes, we can measure model 

“activity” by executing the model (on a single machine or in distributed fashion) for 

desired wind regimes and gather the model “activity” metric through such a run. This 

information can then be applied to obtain a model partition plan for a distributed run of 

the same model configuration. Since the wind regime is controlled externally to the 

model, we can monitor the wind generator and apply the partition plan that is optimal for 

a regime whenever the wind changes. We measure the model activity through counting 

the internal transitions of the ‘sporingProcess’ to see how a dynamic model partition 

using such information can benefit the distributed simulation performance. In this 
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example, a simplified method is used to determine a subset of cells called high-activity 

cells. Firstly, the average internal transition count of all the cells in the cell space is 

obtained by running the model in the head node for a given wind regime. At the end of 

this run, each cell compares its own count with the average, if it is larger than the 

average, the cell’s id is added to a linked list data structure for high-activity cells. Figure 

8-4 illustrates how high-activity cells are selected from the cell space. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 8-4 Selecting High-Activity Cells 

 

 

 After the high-activity sets are obtained for each wind regime, the following 

process occurs within a single simulation run. The RMICoordinator in the head node 

creates a new valley fever model and partitions it according to the initial wind regime. 

Every time a new wind regime is detected, the RMICoordinator creates a new valley 
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fever model, and partitions its cells so that the high activity cells for that regime are 

granted more computing power than are the remaining cells. Finally, the cells are 

dynamically loaded to computing nodes and the distributed simulation is then re-started 

from the state that the model was in before the repartition.  

In the following test, we discuss one iteration of this process in which all the low 

activity cells are assigned to one computing node, and all the high activity cells are then 

evenly distributed to other available computing nodes. Some test results are presented in 

next section. 

 

8.2.3 Test Environment and Results 

In this experiment, 5 nodes of a 40 node Linux cluster are used, where each node 

in the cluster has a AMD Athlon XP 2400+ with 2GHz CPU and 512M physical 

memory. All the computing nodes are inter-connected by 100M Ethernet switches, and 

the operating system of each node is GNU/Linux 2.4.20 with Java Runtime 1.4.1-01 

installed. 

   In this test, static blind partition is compared with dynamic reconfiguration in 

terms of simulation execution time. A 4 by 4 and 8 by 8 cell spaces are used and are 

executed with 400 and 2000 simulation steps. The purpose of this test is to verify the 

advantage of using “activity” based dynamic repartition when compared with static 

“blind” model partition. Such verification will also prove that the model “activity” is a 

more accurate indicator for computing workload for the examined cells in a cell space.  
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Using 5 computing 

nodes including 1 head 

node. 

Static Blind Partition not 

considering model 

activities 

Dynamic 

reconfiguration 

using “activity” 

Performance 

increase by 

percentage 

4 by 4 cells with 400 

simulation steps 

28.124s 27.566s 1.98% 

4 by 4 cells with 2000 

simulation steps 

113.977s 114.968s -0.87% 

8 by 8 cells with 400 

simulation steps 

256.49s 248.644s 3.06% 

8 by 8 cells with 2000 

simulation steps 

1238.479s 1216.97s 1.73% 

 

Table 8-1 Distributed Simulation Execution Time for Static Blind Partition and 

Dynamic Reconfiguration Using “Activity”—5 nodes. 

 

Using 9 computing 

nodes including 1 head 

node. 

Static Blind Partition not 

considering model 

activities 

Dynamic 

reconfiguration 

using “activity” 

Performance 

increase by 

percentage 

4 by 4 cells with 2000 

simulation steps 

134.74s 110.49s 18% 

8 by 8 cells with 2000 

simulation steps 

1348.17s 1199.87s 11% 

 

 

Table 8-2 Distributed Simulation Execution Time for Static Blind Partition and Dynamic 

Reconfiguration Using “Activity”—9 Nodes. 
 

 

As shown in Table 8-1, for a 4 by 4 cell space, there is no noticeable difference 

when using dynamic reconfiguration. However, for 8 by 8 cell space, dynamic partition 

using model “activity” improves the simulation performance in a noticeable manner. This 

is because for a 4 by 4 cell space, there is only several cells difference in each computing 

node, and these cells cannot contribute too much on workload difference. It could be 
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expected that for a large cell space with long simulation execution steps, model “activity” 

could play an increasingly important role on affecting distributed simulation 

performance. Table 8-2 further verifies our expectation on performance improvement 

when more computing nodes are used on high-activity cells. We can see a significant 

performance increase using “activity” based model repartition. 

The test results suggest that it worth further investigating the concept of model 

“activity” in more detail and to develop model partition plans that exploit the activity 

distributions in a more precise way.  

 

8.2.4 Discussion 

In this section, we present and demonstrate how DEVS “activity” affects 

performance of a distributed simulation. Dynamic model reconfiguration plays a very 

important role for large-scale and highly asynchronous and irregular models. We have 

seen that dynamic model reconfiguration using the “activity” metric can improve 

distributed simulation performance. It is also worth to note that DEVS/RMI provides a 

flexible distributed simulation environment for studying and investigating dynamic 

model partition/repartition algorithms.  

For the future work on the “activity” based distributed simulation, adaptive 

reconfiguration needs to be investigated to improve the distributed simulation 

performance. The concept of “activity” needs to be studied further to provide more 

detailed information on how significant changes in activity distribution can be detected 

during run time as a basis for dynamic load balancing, thereby promoting an optimal and 
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dynamic reconfiguration schema for a distributed simulation execution. We have found 

that high concentrations of activity in space that change relatively slowly during 

simulation can be exploited to significantly reduce execution time within an appropriate 

infrastructure for dynamic reconfiguration in a DEVS based distributed simulation 

framework. In contrast to other dynamic load balancing approaches, the activity-based 

approach discussed here exploits model properties directly rather than relying on 

resource-based measurements on which to base reconfiguration. 

In the next chapter, we will discuss some of the performance issues involved in 

using DEVS/RMI in a distributed simulation environment. 
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9 CONCLUSION AND FUTURE WORK 

 

From the experiments performed on the previous chapters, it is found that the 

performance of DEVS/RMI highly depends on the model component partition, especially 

the model component workload partition. For example, if the distributed components or 

cells have less workload, the performance of the simulation can worsen compared with 

that in a single machine due to the latency of the network and the remote method calls 

among distributed simulators. When the workload on cells increases without increasing 

the number of RMI calls, the speedup of the simulation is significant when running the 

model on a computing cluster with DEVS/RMI. 

Dynamic model partition/repartition in a distributed environment is fully 

supported in DEVS/RMI. However, the change of model structure such as coupling 

information among distributed machines is costly due to the RMI calls and network 

latency. It is worth to investigate further how the dynamic model repartition could affect 

the overall simulation performance in a distributed environment. 

With regard to the underlying communication protocol, Sun’s RMI used in 

DEVS/RMI may not be the best implementation for high performance distributed 

simulation. However, a large-scale model still achieves performance advantages using 

DEVS/RMI if the distributed model components have a noticeable workload. If an 

alternative high-speed RMI protocol is implemented in DEVS/RMI, it can be expected 

that a high performance fully object-oriented distributed simulation environment can be 

built to solve very complex and large-scale simulation problem. 
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Another important issue that needs to be considered is that it is impractical to 

simulate a valley fever or a hilly terrain model in a single machine with a cell space 

larger than 85 by 85 because of memory limitation of a single machine. This implies that 

there is a limitation of problem size when simulating large-scale cell space on single 

machine, which can be solved by distributing the large size model to a computer cluster 

with DEVS/RMI. In such situations, distributing the model to multiple computing nodes 

is the only solution so long as the performance is not overly degraded by a 

communications burden. The results for distributed simulation of a large-scale hilly 

terrain model render DEVS/RMI as a promising technique to solve large-scale cell space 

models that are critical for investigating some of today’s scientific and engineering 

problems. 

 In a summary, with the increased demand for distributed simulation to support 

large-scale modeling and simulation applications, much research has focused on 

developing a software environment to support simulation across a heterogeneous 

computing network. Among the distributed simulation frameworks, Discrete Event 

System Specification (DEVS) based tools are attracting more and more attentions due to 

its intrinsic properties to support object oriented modeling and simulation. Traditionally, 

distributed simulations have to face the difficulties for mapping models to computing 

nodes, and dynamic reconfiguration of a distributed simulation is in most cases not 

possible due to the lack of the flexibilities of the implemented framework. Middleware 

based solutions have been dominating for years, however, additional overhead is incurred 

because of adding a new layer for simulation time management. Furthermore, 
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inconsistency exists when migrating a single machine’s simulation to multi-processor 

systems, which means that a verified model has to be revalidated after it is transferred 

from single processor to multi-processor. Also, model mapping is largely a manual 

process which involves time-consuming work on redoing the single machine’s model 

code. 

 In this dissertation, we have developed a new implementation of the DEVS 

formalism called DEVS/RMI as a natively distributed simulation system, which aims to 

reduce the overhead that is added by middleware solutions for the distributed simulation. 

We have shown that DEVS/RMI has the capability to distribute simulation entities across 

network nodes seamlessly without any of the commonly used middleware. Because Java 

RMI supports the synchronization of local objects with remote ones, no additional 

simulation time management needs to be added when distributing the simulators to 

remote nodes. We have seen from our studies on the two complex and dynamic models 

that such approach is well suited for complex, computationally intensive simulation 

applications. It also provides an extremely flexible and efficient software development 

environment for rapid development of distributed simulation applications.   

 We studied a hilly terrain continuous spatial in distributed simulation with support 

of DEVS/RMI. In general, distributed simulations of continuous spatial models typically 

must address the capability of the framework to refactor the simulations to accommodate 

both increases the resolution  (number of cells) and computation nodes. However, to 

answer such questions requires a flexible infrastructure in which it is easy to change 

resolution of the model as well as partitions of the model to the variable numbers of 
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nodes. In the experimentation of the hilly terrain model, we show how DEVS/RMI 

provides the flexible infrastructure required for investigating the computation space of 

the simulation. The experimental results show that DEVS/RMI provides a scalable 

simulation environment where a large-scale cell space model could gain significant 

speedup when a cluster of machines is used. The experimental results also imply that 

larger cell space model with a significant computing workload could benefit from 

distributed simulation with DEVS/RMI.  

 Furthermore, we show our particular interests on model partition and dynamic 

repartition techniques that are implemented in DEVS/RMI. We exemplified our ideas by 

investigating an agent-based valley fever model on a Beowulf cluster and found that the 

speedup of the distributed simulation is directly related to the computing workload 

assigned to the computing nodes. We discussed and used the concept of DEVS “activity” 

concept and applied such concept on the reconfiguration of the distributed simulation. 

We have seen how such “activity” can be used as a more accurate measurement of 

workload distribution in a distributed simulation environment, and how “activity” based 

model repartition enhances the distributed simulation performance. 

 We also discussed performance concerns of using DEVS/RMI and promoted 

potential techniques for improving the distributed simulation performance in a 

DEVS/RMI supported environment. 

 For the future work, it is suggested to further investigate the relationship between 

speedup of simulation and the model partition/repartition algorithms. The dynamic aspect 

of DEVS/RMI needs to be continuously developed and implemented to improve the 
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overall efficiency of a distributed simulation. “Activity” based model partition and 

repartition need further concerns due to its role on affecting the load-balance of a 

distributed simulation. 
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