
TOWARD A FLEXIBLE AND RECONFIGURABLE DISTRIBUTED

SIMULATION: A NEW APPROACH TO DISTRIBUTED DEVS

by

Ming Zhang

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007

 2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Ming Zhang

entitled Toward a Flexible and Reconfigurable Distributed Simulation: A New Approach to Distributed

DEVS

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy

___ Date: 4/4/2007

Bernard P. Zeigler

___ Date: 4/4/2007

Roman Lysecky

___ Date: 4/4/2007

Janet Meiling Wang

Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final

copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be

accepted as fulfilling the dissertation requirement.

__ Date: 4/4/2007

Dissertation Director: Bernard P. Zeigler

 3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at the University of Arizona and deposited in the University Library to

be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgment of source made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted the

head of the major department or the Dean of the Graduate College when in his or her

judgment the proposed use of the material is in interests of scholarship. In all other

instances, however, permission must be obtained from the author.

SIGNED: Ming Zhang

 4

 ACKNOWLEDGEMENTS

I would like to express my greatest appreciation to my advisor Dr. Bernard P. Zeigler,

who introduced me to the fantastic world of discrete event simulation. His support and

encouragement on my research brought me so much insight which guides me to find my

way in the world of computer simulation.

I would like to thanks Dr. Phil Hammonds and Dr. James Nutaro for their help and

mentoring during my study.

I would like to thank Dr. Roman Lysecky and Dr. Janet Wang for serving as my defense

committee.

I would like to show special thanks to Ms. Lourdes Canto, who helps and supports me

during my graduate study.

I would like to thank all the members at ACIMS, especially Dr. Kim, Raj, Dr. Moon for

the useful discussion on my research.

Finally, I would like to express my wholehearted appreciation to my parents, who never

stop supporting and encouraging me.

 5

 DEDICATION

To

My Wife Yuanyuan

 6

TABLE OF CONTENTS

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

ABSTRACT... 12

1 INTRODUCTION .. 14

2 BACKGROUND... 19

2.1 DEVS... 19

2.1.1 Introduction of DEVS and DEVS Formalism 19

2.1.2 DEVS Modeling and Simulation Framework................................... 28

2.2 DEVSJAVA.. 33

2.3 JAVA RMI ... 37

3 PARALLEL-DISTRIBUTED SIMULATION .. 42

3.1 OVERVIEW... 42

3.2 DEVS BASED PARALLEL-DISTRIBUTED SIMULATION 46

4 MODEL PARTITIONS AND DYNAMIC REPARTITIONS IN

DISTRIBUTED SIMULATION ENVIRONMENTS.. 49

4.1 GENERAL MODEL PARTITION TECHNIQUE 49

4.2 MODEL PARTITION/REPARTITION IN DISTRIBUTED

SIMULATION FRAMEWORKS... 55

5 DEVS/RMI—A NEW APPROACH TO DISTRIBUTED DEVS...................... 62

5.1 DEVS/RMI SYSTEM ARCHITECTURE .. 62

5.2 SIMULATION CONTROLLER AND CONFIGURATION ENGINE

 ... 65

5.3 SIMULATION MONITOR.. 68

5.4 REMOTE SIMULATORS.. 68

5.4.1 Remote Simulator Definition.. 68

5.4.2 Remote Simulator Creation and Registration 69

5.4.3 Local Simulator vs. Remote Simulator... 72

 7

TABLE OF CONTENTS-Continued

5.5 DYNAMIC SIMULATOR AND MODEL MIGRATION................. 74

5.6 DYNAMIC MODEL RECONFIGURATION IN DISTRIBUTED

ENVIRONMENT ... 75

5.7 INCREASE LOCALITY FOR LARGE-SCALE CELL SPACE

MODEL IN DEVS/RMI... 76

5.8 BASIC PERFORMANCE TEST ... 78

6 MODEL PARTITIONS IN DEVS/RMI... 80

6.1 STATIC PARTITION... 80

6.2 DYNAMIC REPARTITION .. 86

6.2.1 Overview... 86

6.2.2 A Dynamic Repartition Example.. 88

7 INVESTIGATING THE COMPUTATION SPACE OF A SIMULATION

WITH DEVS/RMI .. 95

7.1 INTRODUCTION ... 95

7.2 SIMULATIONS OF CONTINUOUS SPATIAL MODELS.............. 97

7.3 HILLY TERRAIN MODEL... 98

7.4 WHY DEVS/RMI FOR HILLY TERRAIN MODEL 102

7.5 LINUX CLUSTER... 104

7.6 MODEL PARTITION FOR HILLY TERRAIN MODEL.............. 104

7.7 AUTOMATIC TEST SETUP... 106

7.8 SPEEDUP OF SIMULATION FOR HILLY TERRAIN MODEL 108

7.9 SIMULATING VERY LARGE HILLY TERRAIN MODEL 112

7.10 CONCLUSION .. 112

8 LARGE-SCALE DISTRIBUTED AGENT BASED SIMULATION USING

DEVS/RMI... 114

8.1 DISTRIBUTED SIMULATION OF VALLEY FEVER MODEL.. 114

8.1.1 Valley Fever Model .. 114

 8

TABLE OF CONTENTS-Continued

8.1.2 Model Partition for Valley Fever Model .. 115

8.1.3 Distributed Simulation Results for Valley Fever Model 116

8.1.4 Workload Injection to the Distributed Cells 117

8.2 DYNAMIC RECONFIGURATION OF DISTRIBUTED

SIMULATION OF VALLEY FEVER MODEL USING ‘ACTIVITY’.......... 119

8.2.1 Introduction... 119

8.2.2 Static Blind Model Partition vs. Dynamic Reconfiguration Using

“Activity” ... 120

8.2.3 Test Environment and Results .. 123

8.2.4 Discussion ... 125

9 CONCLUSION AND FUTURE WORK.. 127

REFERENCES.. 132

 9

LIST OF TABLES

Table 6-1 Overhead Incurred by Dynamic Model Migration... 93

Table 8-1 Distributed Simulation Execution Time for Static Blind Partition and Dynamic

Reconfiguration Using “Activity”—5 nodes. ... 124

Table 8-2 Distributed Simulation Execution Time for Static Blind Partition and Dynamic

Reconfiguration Using “Activity”—9 Nodes. .. 124

 10

LIST OF FIGURES

Figure 2-1 Basic Entities and Relations [15] .. 21

Figure 2-2 Discrete Event Time Segments [1] ... 22

Figure 2-3 An Illustration For Classic DEVS Formalism [1]... 24

Figure 2-4 DEVS Modeling and Simulation Framework [10] .. 29

Figure 2-5 Coupled Modules Formed Via Coupling and Their Use As Components [10]

... 30

Figure 2-6 Basic DEVS Simulation Protocol [10]... 31

Figure 2-7 DEVSJAVA Class hierarchy and main methods [11] 34

Figure 2-8 Simulate Hierarchical Coupled Model in Fast Mode [12] 35

Figure 2-9 RMI System [19]... 38

Figure 2-10 RMI in Action [20].. 40

Figure 4-1Activity Distribution and Associated Cost Tree [62]....................................... 56

Figure 4-2Decomposable Cost Tree [62].. 56

Figure 4-3 Partition Tree [62] .. 57

Figure 4-4 Final Partition Result [62].. 58

Figure 4-5 Dynamic Coupling Reconstruction[6] .. 59

Figure 4-6 Model Partition, Deployment and Simulation in DEVS/P2P[7].................... 61

Figure 5-1 DEVS/RMI System Architecture... 64

Figure 5-2 Flowchart of Distributed Simulation in DEVS/RMI 67

Figure 5-3 Sequence Diagram for Creating Remote Simulators 71

Figure 5-4 Local vs. Remote Simulator... 73

Figure 5-5 Dynamic Simulator and Model Migration ... 74

Figure 5-6 Flowchart of Dynamic Coupling Changes... 76

Figure 5-7 Simple DEVS “gp” Model ... 78

Figure 5-8 Messaging Overhead in Simple DEVS Model... 79

Figure 6-1A Coupled DEVS Model ... 81

 11

LIST OF FIGURES-Continued

Figure 6-2A Random Partition Showing the Assignments of Atomic Models to

Computing Nodes ... 83

Figure 6-3 2D Cell Space.. 83

Figure 6-4 Coupling Relationship Among Cells .. 84

Figure 6-5 Evenly Divided Sub-Domains of 2D Cell Space Model................................. 84

Figure 6-6 Irregular Re-Group the Cells to Different Computing Sub-Domains............. 86

Figure 6-7 Dynamic Model Repartition in DEVS/RMI .. 88

Figure 6-8 A DEVS “gp” Model Before Model Repartition ... 89

Figure 6-9 A DEVS “gp” Model After Model Repartition.. 89

Figure 6-10 Dynamic Repartition in Action at USGS Beowulf Cluster-1 90

Figure 6-11 Dynamic Repartition in Action at USGS Beowulf Cluster-2 91

Figure 6-12 Sequence Diagram for Dynamic Model Migration...................................... 92

Figure 6-13 Overhead Incurred by Dynamic Model Repartitions 93

Figure 7-1 Calculate Hilliness and Traversed Time in 1D Space................................... 100

Figure 7-2 Calculate Hilliness in 2D Space... 101

Figure 7-3Hilly Terrain Model in Simview.. 102

Figure 7-4 Divided Hilly Terrain Model in Simview ... 106

Figure 7-5 Sequence Diagram for Automatic Setup Distributed Simulation 107

Figure 7-6 Travel Time vs. Number of Cells... 109

Figure 7-7 Travel Time vs. Number of Hills ... 109

Figure 7-8 Speedup of Initialization Time with DEVS/RMI... 110

Figure 7-9 Speedup of Simulation Using DEVS/RMI .. 111

Figure 8-1Valley Fever Model in DEVSJAVA SimView.. 115

Figure 8-2 Simulation Execution Time(seconds) vs. No. of Computing Nodes in Original

Model .. 117

Figure 8-3 Simulation Execution Time(seconds) vs. No. of Computing nodes Under

Different Workload on Distributed Cells.. 118

Figure 8-4 Selecting High-Activity Cells ... 122

 12

ABSTRACT

 With the increased demand for distributed simulation to support large-scale

modeling and simulation applications, much research has focused on developing a

suitable framework to support simulation across a heterogeneous computing network.

Middleware based solutions have dominated this area for years, however, they lack the

flexibility for model partitions and dynamic repartition due to their innate static natures.

In this dissertation, a novel approach for DEVS based distributed simulation framework

is proposed and implemented. The objective of such a framework is to distribute

simulation entities across network nodes seamlessly without any of the commonly used

middleware, as well as to support adaptive and reconfigurable simulations during run-

time. This new approach, called DEVS/RMI, is proved to be well suited for complex,

computationally intensive simulation applications and its flexibility in a distributed

computing environment promotes a rapid development of distributed simulation

applications. A hilly terrain continuous spatial model is studied to show how DEVS/RMI

can easily refactor the simulations to accommodate both increases of the resolution and

computation nodes. Furthermore, an agent-based valley fever model is investigated in

this dissertation with particular interests on the concept of DEVS “activity”. Dynamic

reconfiguration of distributed simulation is then exemplified using the “activity” based

model repartition in a DEVS/RMI supported environment. The flexibility and

reconfigurable nature of DEVS/RMI open up further investigations into the relationship

 13

between speedup of a simulation and the partition or repartition algorithm used in a

distributed simulation environment.

 14

1 INTRODUCTION

 Discrete Event System Specification (DEVS) is a mathematical formalism [1] to

describe real-world system behaviors in an abstract and rigorous manner. DEVS has

defined its standard as a well-known discrete event modeling and simulation

methodology. Compared with Non-DEVS traditional modeling and simulation

methodologies, DEVS defines a strict and concrete modeling and simulation framework

that supports fully object oriented modeling and simulation. Furthermore, DEVS has

been proved to be effective not only for discrete event models but also for continuous

spatial and hybrid models. With the help of modern object oriented language such as C++

and Java, the frameworks for modeling and simulation based on DEVS have reached

their mature stages and have been applied in many real-world applications.

 With the increased demand for high-performance and large-scale simulation

frameworks, parallel and distributed simulations are called on to support various

scientific and engineering studies, including technical (e.g., standards conformance),

system level (focus on a single natural or engineered system) and operational (focus on

multiple systems, such as families of systems or system of systems) [2]. The objectives of

such studies may include testing of correctness of system behavior/function, evaluation of

measures of performance, and evaluation of measures of effectiveness and key

performance parameters. An ideal parallel and distributed framework should be able to

meet the following requirements:

 15

• Flexibility – must handle a wide range of dynamic, information exchange and

dialogic behaviors.

• Institutionalized Reuse – support for model reuse and composability, not only at

the syntactical, but at the semantic and pragmatic levels as well.

• Model Continuity – allow basic development of systems in virtual time-managed

mode, while supporting stage-wise transition to real-time hardware in the loop

implementation as well.

• Quality of Service – should provide acceptable simulation performance at

minimum, and increased performance in dimensions such as execution time when

required.

 With regard to parallel-distributed DEVS frameworks, there have been noticeable

progresses in recent years. DEVS/C++ [3], ADEVS [4] and CD++ [5] are such software

tools that work well for shared memory multi-processors, and have been used to simulate

large-scale models in practice. These implementations provide the necessary power for

high-performance parallel-distributed simulation, but lack the flexibilities for mapping

models to processors. Other DEVS based parallel-distributed simulation frameworks

include DEVS/GRID [6], DEVS/P2P [7], DEVS/HLA [8], DEVS/CORBA [9] and etc.,

which use middleware to bridge the simulation entities with the underlying networks, and

therefore, only limited support for model distribution is provided in a networking

environment.

 16

 In this dissertation, a new distributed DEVS modeling and simulation framework,

called DEVS/RMI [2], is proposed and implemented. DEVS/RMI is a significant

extension of DEVS/JAVA [11] and aims to provide a simulation framework which can

easily scale a single machine's simulation to multiple distributed processors. It is an

integration of Java RMI [13] technology with DEVS/JAVA, and is able to transparently

distribute simulation entities (models and/or simulators) to cluster of machines, which

greatly reduces the difficulties of mapping partitioned models to computing processors.

Because Java RMI supports the synchronization of local objects with remote ones, no

additional simulation time management, beyond that already in DEVSJAVA, needs to be

added when distributing the simulators to remote nodes. It also provides an auto-adaptive

and reconfigurable environment for dynamic model re-partition and simulator/model

migration. Such an environment simplifies simulator/model distribution across a network

without the help of other middleware while still providing platform independence

through the use of Java and its Virtual Machine (JVM) implementations. Compared with

other implementations using traditional high performance computing environments such

as MPI or PVM, DEVS/RMI provides a flexible and efficient software development

environment for rapid development of distributed simulation applications. The approach

using DEVS/RMI is tested and verified in this dissertation to be well suited for complex,

computationally intensive, and dynamic simulation applications. We need the high-

performance capabilities to address the computational complexity needed to thoroughly

examine complex natural systems and also to test and certify trusted information systems.

Therefore, the approach of DEVS/RMI presented in this dissertation opens a wide area of

 17

simulation research, and it also helps promoting science and engineering studies by

providing a high performance and flexible distributed simulation framework.

 In terms of some of the application areas, DEVS/RMI could be easily applied to

refactor simulation applications in a circumstance when both problem sizes and

computation nodes need increase. It is an ideal simulation framework for investigating

the computation space for large-scale continuous spatial models in which the resolution

of the simulation needs to be adjusted by increasing or decreasing the cell-space sizes.

Furthermore, the capability of DEVS/RMI to support dynamic reconfiguration of

simulations will help the study of behaviors of very large-scale dynamic system, where

both the flexibility of model partitions and the necessary computing power are on-

demand. DEVS/RMI could also be run on a Grid environment natively as long as JVM is

installed on the participating computing nodes. Such a capability to scale a single

machine’s simulation to a large-scale Grid computing environment makes the

DEVS/RMI more attractive for a wide area of applications including large-scale agent-

based simulation, computing intensive simulation testing and etc.

 The main contributions of this dissertation are as follows:

• Designed and implemented a scalable and flexible distributed simulation

framework called DEVS/RMI.

• Studied the computation space of a large-scale continuous spatial hilly terrain

model with the help of DEVS/RMI.

 18

• Studied and implemented “activity” based dynamic reconfiguration in a

distributed simulation environment.

 The organization of this dissertation is described as followings: Chapter 2

presents some background information directly related to this dissertation, where basic

DEVS theory and formalism are briefly reviewed. DEVSJAVA and JAVA RMI are both

discussed to provide necessary links for later Chapters. Chapter 3 reviews the principle

concepts and research in parallel and distributed simulation, and Chapter 4 reviews the

model partition and dynamic repartition techniques commonly used in the distributed

simulation circumstances. Chapter 5 proposes the design and implementation of

DEVS/RMI, where the key attributes of it are presented and discussed in detail. Chapter 6

presents the model partition technique implemented in DEVS/RMI followed by Chapter

7, which investigated and demonstrated how DEVS/RMI can be applied on the study of

computational space of large-scale continuous special model. Chapter 8 shows the

effectiveness of DEVS/RMI on solving large-scale agent based model as well as dynamic

reconfiguration capability using model “activity”. At last, Chapter 9 discusses the

performance issues related to DEVS/RMI, and the dissertation is then concluded by

Chapter 10 which also suggests some future works.

 19

2 BACKGROUND

2.1 DEVS

2.1.1 Introduction of DEVS and DEVS Formalism

Discrete Event System Specification (DEVS) is a mathematical formalism to

describe real-world system behavior in an abstract and rigorous manner. Compared with

traditional methodology for modeling and simulation, DEVS formalism describes and

specifies a modeled system as a mathematical object, and such object based

representation of the targeted system can then be implemented using different simulation

languages, especially modern object-oriented ones. In general, a system has a set of key

parameters when being modeled in a modeling framework, which include time base,

inputs, states, outputs, and functions for determining state transitions. Discrete event

systems in general encapsulate these parameters as object entities, and then use modern

object oriented simulation languages to describe the relationship among the specified

entities. As a pioneering formal modeling and simulation methodology, DEVS provides a

concrete simulation theoretical foundation, which promotes fully object-oriented

modeling and simulation techniques for solving today’s simulation problems required by

other science and engineering discipline. The insight provided by the DEVS formalism is

in the simple way that it characterizes how discrete event simulation languages specify

discrete event system parameters [14]. Having such an abstraction, it is possible to design

new simulation languages with sound semantics that are easier to understand than

traditional ones. Figure 2-1 presents a DEVS concept framework to show the basic

 20

objects and their relationships in a DEVS modeling and simulation world. These basic

objects include [15]:

• the real system, in existence or proposed, which is regarded as fundamentally a

source of data

• model, which is a set of instructions for generating data comparable to that

observable in the real system. The structure of the model is its set of instructions.

The behavior of the model is the set of all possible data that can be generated by

faithfully executing the model instructions.

• simulator, which exercises the model's instructions to actually generate its

behavior.

• experimental frame, which captures how the modeler’s objectives impact on

model construction, experimentation and validation. As implemented in

DEVJAVA, such experimental frames are formulated as model objects in the

same manner as the models of primary interest. In this way, model/experimental

frame pairs form coupled model objects with the same properties as other objects

of this kind. It will become evident later, that this uniform treatment yields

immediate benefits in terms of modularity and system entity structure

representation.

These basic objects are then related by two relations [15]:

• modeling relation: linking real system and model, defines how well the model

represents the system or entity being modeled. In general terms a model can be

 21

considered valid if the data generated by the model agrees with the data

produced by the real system in an experimental frame of interest.

• simulation relation, linking model and simulator, represents how faithfully the

simulator is able to carry out the instructions of the model.

Source

System

Simulator

Model

Experimental Frame

Simulation

Relation

Modeling

Relation

behavior database

Figure 2-1 Basic Entities and Relations [15]

In the view from DEVS, the basic items of data produced by a system or model

are time segments. These time segments are mappings from intervals defined over a

specified time base to values in the ranges of one or more variables [15]. These variables

can either be observed or measured. An example of a data segment is shown in Figure

2-2, where X is inputs, S is states, e is time elapsed, and Y is outputs.

 22

x0 x1X

S

Y

y0

e

t0 t1 t2

Figure 2-2 Discrete Event Time Segments [1]

 In fact, DEVS formalism provides a formal definition to describe the data

segment depicted above in Figure 2-2, and the history of DEVS can be traced back to

decades ago. A standard and classic DEVS formalism is defined as a structure [1]:

M = <X, S, Y, δint, δext, λ, ta>

where,

 X : set of inputs;

 S : set of states;

 Y : set of outputs;

 δint: S → S : internal transition function

 δext : Q × X → S : external transition function

 23

Q = { (s,e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the

elapsed time since last state transition.

 λ : S → Y : output function

 ta : S → +

∞,0R : time advance function;

Figure 2-3 illustrates the key concept of above classic DEVS formalism.

Assuming the system is in state S after a previous state transition, it will stay in state S

for a duration determined by ta(s). When this resting time of ta() expires(or say the

elapsed time e=ta(s)), the system gives output λ(s) and changes its state from s to s’. This

state transition is exactly determined by the internal transition function δint as mentioned

in the formalism. However, if an external event occurs through the input X before the

duration specified by ta(s)(or say, the system is in total state (s,e) with e= ta(s), the

system will change to a state determined by δext(s,e,x) . After the system changes its state

to a new state, the same rules in the formalism are applied to govern how the system

responses to discrete events. DEVS makes an explicit difference between internal and

external state transitions, where the internal transition function determines the system’s

new state when no events have occurred since the last transition, while the external

transition function determines the system’s new state when an external event occurs

between 0 and ta(s). It is worth to note that ta(s) is a real number including 0 and ∞,

where “0” means that the system is a so-called “transitory” state that no external events

can intervene, and “∞” means that the system is in a so-called “passive” state that is

unchanged forever until an external event wakes it up.

 24

Figure 2-3 An Illustration For Classic DEVS Formalism [1]

 The above classic DEVS formalism does not take into account of concurrent

events, and therefore, has relatively limited usage for real-world application. With the

consideration of concurrent events and parallel processing on a discrete event system,

parallel DEVS system specification is developed from classic DEVS. The key

capabilities of Parallel DEVS beyond the classical DEVS are [1]:

• Ports are represented explicitly – there can be any of input and output ports on

which values can be received and sent.

• Instead of receiving a single input or sending a single output, basic parallel DEVS

models can handle bags of inputs and outputs. It should be noted here that a bag

can contain many elements with possibly multiple occurrences of its elements.

 25

• A transition function, called confluent, is added, which decides the next state in

cases of collision between external and internal events.

Such parallel DEVS formalism consists of two parts: basic and coupled models.

A basic model of a standard parallel DEVS is a structure [1]:

M = <XM, S, YM, δint, δext, δcon, λ, ta>

where,

XM ={(p , v) | p∈IPorts, v∈Xp } is the set of input ports and values;

YM ={(p , v) | p∈OPorts, v∈Yp } is the set of output ports and values;

S : set of sequential states;

δint: S → S : internal transition function

δext : Q × XM
b
 → S : external transition function

δcon: Q × XM
b
 → S : confluent transition function

XM
b
 is a set of bags over elements in X,

λ : S → Y
b
 : output function generating external events at the

output;

ta : S → +

∞,0R : time advance function;

Q = { (s,e) | s ∈ S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the

 elapsed time since last state transition.

Such basic model as defined in parallel DEVS captures the following information

from a discrete event system:

 26

� the set of input ports through which external events are received

� the set of output ports through which external events are sent

� the set of state variables and parameters

� the time advance function which controls the timing of internal transitions

� the internal transition function which specifies to which next state the system will

transit after the time given by the time advance function has elapsed

� the external transition function which specifies how the system changes state

when an input is received. The next state is computed on the basis of the present

state, the input port and value of the external event, and the time that has elapsed

in the current state.

� the confluent transition function which decides the next state in cases of collision

between internal and external events.

� the output function which generates an external output just before an internal

transition takes place.

Basic model is a building block for a more complex coupled model, which defines

a new model constructed by connecting basic model components. Two major activities

involved in coupled models are specifying its component models and defining the

couplings which create the desired communication networks. A coupled model is defined

as follows [1]:

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>

where,

 27

 X : set of external input events;

 Y : a set of outputs;

 D : a set of components names;

 for each i in D,

 Mi is a component model

 Ii is the set of influencees for i

for each j in Ii,

 Zi,j is the i-to-j output translation function

A coupled model template captures the following information:

� the set of components

� for each component, its influencees

� the set of input ports through which external events are received

� the set of output ports through which external events are sent

� the coupling specification consisting of:

o the external input coupling (EIC) connects the input ports of the coupled

to one or more of the input ports of the components

o the external output coupling (EOC) connects the output ports of the

components to one or more of the output ports of the coupled model

o internal coupling (IC) connects output ports of components to input ports

of other components

 28

As we have seen in this section, DEVS formalisms are strictly defined and it

evolves continuously to satisfy the requirement of today’s large and complex system

modeling and simulation. It has been extended by a lot of researcher around world,

however, its core concept is unchanged as we can see from the classic and parallel

formalisms. In the next section, we will discuss DEVS modeling framework and

simulation protocol, which provides the keys to the understanding of this dissertation’s

goal.

2.1.2 DEVS Modeling and Simulation Framework

 DEVS modeling and simulation framework is very different with traditional

module and function based ones. It provides a very flexible and scalable modeling and

simulation foundation by separating models and simulators. Figure 2-4 shows how

DEVS model components interact with DEVS and Non-DEVS simulators through DEVS

simulation protocol. We can also see that DEVS models interact with each other through

DEVS simulators. The separation of models from simulators is a key aspect in the DEVS,

which is critical for scalable simulation and middleware supported distributed simulation

such as those using CORBA, HLA, and MPI.

 29

Figure 2-4 DEVS Modeling and Simulation Framework [10]

 The advantages for such a framework is obvious because model development is in

fact not affected by underlying computational resources for executing the model.

Therefore, models maintain their reusability and can be stored or retrieved from a model

repository. The same model system can be executed in different ways using different

DEVS simulation protocols. In such a setting, commonly used middleware technologies

for parallel and distributed computing could be easily applied on separately developed

DEVS models. Therefore, within the DEVS framework, model components can be easily

migrated from single processor to multiprocessor and vice versa.

If we have a closer look at DEVS based modeling framework, we will find that it

is based on hierarchical model construction technique as shown on Figure 2-5. For

instance, a coupled model is obtained by adding a coupling specification to a set of

atomic models. This coupled model can then be used as a component in a larger system

with new components. A hierarchical coupled model can be built level by level by adding

Simulator

Single

processor

Distributed

Simulator

Real-Time

Simulator

C++

Non

DEVS

DEVS

Java

Other

Representation

DEVS

Simulation

Protocol

 30

a set of model components (either atomic or coupled) as well as coupling information

among these components. Reusable model repository for developers is therefore created.

DEVS based modeling framework also supports model component as a “blackbox”,

where the internals of the model is hidden and only the behavior of it is seen through its

input/output ports.

One interesting aspect of DEVS formalism is that a coupled DEVS model can be

expressed as an equivalent basic model (or say atomic model). This attributes in DEVS

formalism is so-called closure under coupling. Such a equivalent basic model transferred

from a coupled model can then be employed in a larger coupled model. Therefore, DEVS

formalism provides an excellent composition framework that supports closure under

coupling and hierarchical construction.

Atomic

Atomic

Atomic

Atomic

+ coupling

hierarchical

construction

Atomic

A tomic

A tomic

Figure 2-5 Coupled Modules Formed Via Coupling and Their Use As Components [10]

 31

DEVS simulation protocol is the key component to interconnect modeling

framework with simulation engines, which plays the driving force for aforementioned

DEVS hierarchical models. Figure 2-6 illustrates how a basic DEVS simulation protocol

works.

Figure 2-6 Basic DEVS Simulation Protocol [10]

As we can see, for a simple coupled model with atomic model components, a

coordinator is assigned to it and simulators are assigned to its components (atomic

models). The coordinator is responsible for overall simulation time management and

coordinator

simulator

Component

tN

tN.

After each transition

 tN = t + ta(), tL = t

simulator

Component

tN

tN.

simulator

Component

tN

tN. tL

Coupled

 Model

1 nextTN

2. outTN

3 getOut

4 sendOut

5 applyDelt

 32

execution. At each simulation step controlled by coordinator, each simulator reacts to the

incoming message as follows [10]:

(1). Coordinator sends nextTN to request tN from each of the simulators.

(2). All the simulators reply with their tNs in the outTN message to the

 coordinator.

(3). Coordinator sends to each simulator a getOut message containing the global tN

(the minimum of the tNs)

(4) . Each simulator checks if it is imminent (its tN = global tN) and if so, returns the

output of its model in a message to the coordinator in a sendOut message. If it is

imminent and its input message is empty, then it invokes its model’s internal

transition function; If it is imminent and its input message is not empty, it invokes

its model’s confluence transition function; If is not imminent and its input

message is not empty, it invokes its model’s external transition function; If is not

imminent and its input message is empty then nothing happens.

(5) Coordinator uses the coupling specification to distribute the outputs as

accumulated messages back to the simulators in an applyDelt message to the

simulators – for those simulators not receiving any input, the messages sent are

empty.

The basic DEVS simulation protocol demonstrated above provides a core concept

on how DEVS drives the simulators as well as how simulators inter-actions with model

components. In fact, other DEVS simulation protocols use the key concept of the basic

 33

protocol with added extensions for dealing with different circumstances. In general,

DEVS based framework supports hierarchical, modular based modeling and simulation

using reusable model components, and it can take a full range of computational methods

to support scalable and flexible modeling and simulations including distributed and real-

time based solutions.

In the subsequent section, DEVSJAVA, a known implementation of parallel

DEVS formalism, is reviewed with the focus on how the simulation protocol is

implemented in it.

2.2 DEVSJAVA

 DEVSJAVA [11] is an implementation in Java of DEVS framework that has been

used for solving real-world simulation problem as well as serving as an openly available

teaching tool. It is a fully object orient implementation of standard parallel DEVS

formalism, and therefore, provides a very dynamic and flexible modeling and simulation

framework. DEVSJAVA has relatively complex class hierarchical structure, and it is the

foundation of DEVS/RMI, which is a distributed DEVS proposed and implemented in

this dissertation.

 Figure 2-7 illustrated a somewhat simplified class hierarchy diagram implemented

in DEVSJAVA, where devs, is the base class of the DEVS sub-hierarchy with Atomic

and Coupled as the main derived classes of it [11]. Class digraph is a main subclass of

class coupled to define coupled model as described in previous subsection. For DEVS

model developers, the user-defined model classes should derive from these basic classes

and such model classes then become new components in DEVS for later reuse. The

 34

implementation of DEVSJAVA supports the fundamental concept of DEVS hierarchical

construction and makes it easier to build complex model.

Figure 2-7 DEVSJAVA Class hierarchy and main methods [11]

Class message is derived from the container class and it encapsulates the data that

needs to be transferred back and forth among components in a coupled model. A message

consists of (port, value) pair, where value actually carries an entity instance transmitted

from sender to receiver. Because value derives from entity class, any entity can be

transmitted across involved simulators. Since model component is devs class instance,

 35

and devs is a derived class of entity, model itself can be transmitted from one component

to another!

 DEVSJAVA has a well-defined class hierarchical structure as we have seen.

Now, we will look at its simulation protocol and understand how it works. In fact, its

simulation engine actually implements and extends the basic DEVS simulation protocol

aforementioned.

Figure 2-8 Simulate Hierarchical Coupled Model in Fast Mode [12]

We focus our discuss on how DEVSJAVA simulator protocol works in its fast

mode, which is a generally used simulation mode for gaining fastest simulation speed. As

shown in Figure 2-8, in DEVSJAVA, the coordinator is the main and overall simulation

Coordinator

Coupled-

Coordinator

Coupled-

Simulator4

Ato

mic4

Coupled-

Simulator3

Ato

mic3

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOu

tput“)

simulators.tellAll("sendMessages")

simulators.tellAll("DeltFunc“)

putMessage putMessage

putMessage

Coupled-

Simulator1

Coupled-

Simulator2

Ato

mic1

Ato

mic2

putMessage

putMyMessage

Couple

d1

sendDownMessage

 36

control thread which governs the whole simulation execution. Initially, the model is

passed to the coordinator, which then decomposes the model according to its hierarchical

structure. In such a way, each atomic model is assigned a CoupledSimulator, while each

coupled model is assigned a CoupledCoordinator. A CoupledCoordinator combines the

functionality of a CoupledSimulator and a coordinator. It works as a CoupledSimulator

to its peer brothers (such as CoupledSimulator3 and CoupledSimulator4 in Figure 2-8), to

which messages are sent by calling each other’s putMessage() function. However, it

works as a coordinator to its children (such as CoupledSimulator1 and

CoupledSimulator2 in Figure 2-8). As an example, if CoupledCoordinator gets external

input from CoupledSimulator3 or CoupledSimulator4, it calls its sendDownMessage() to

send the message down to its children (CoupledSimulator1) based on the

internalModelTosim data structure explained below. On the other hand, if Atomic2

generates output, CoupledSimulator2 then calls CoupledCoordinator’s putMyMessage()

to put the message to CoupledCoordinator’s output port, which then puts the message to

CoupledSimulator3’s input port.

In this section, we have briefly reviewed some of the background of DEVSJAVA

class hierarchy and how simulation protocol works in it. In the next section, we will look

into the Java RMI, which is key technology used in this dissertation for developing a

fully dynamic distributed simulation framework.

 37

2.3 JAVA RMI

Distributed object computing is an emerging technology that helps on solving

large-scale computing problems in a distributed network environment in a transparent

way. A software system built on distributed objects has many advantages over traditional

parallel and distributed computing techniques, such as:

• Maintaining the original object architecture built for a single processor, which is

important for building large-scale scalable system.

• Task or computing workload distribution is at object level, which helps on solving

load-balance, fault-tolerance problems in distributed computing in an easier way.

• Make the design of highly dynamic and reconfigrable distributed framework

easier.

• Systems integration can be performed to a higher degree.

The major representatives for distributed object technologies include Java RMI,

CORBA [16], DCOM [17]and .NET Remote [18]. CORBA is developed by Object

Management Group (OMG) and is a distributed framwork supporting inter-language

objects linked by CORBA Object Request Broker (ORB). DCOM and .NET Remote are

Microsoft’s implementations for distributed objects computing, which are mostly relied

on Microsoft Windows Operating System, although Unix based support has been

proposed and implemented recently.

Java Remote Method Invocation (RMI) [13] is Sun Java’s answer to distributed

object computing technology, which allows Java objects to be distributed across a

 38

heterogeneous network. Its high level abstraction of message passing in a heterogeneous

network simplifies distributed computing system designs and implementations. Java RMI

hides all low-level communication handling from the programmers and combines local

and remote objects references in a same program context, where remote objects uses a

stub class (the proxy for remote object) to interact with other local objects.

Figure 2-9 RMI System [19]

A JAVA RMI system is a multi-layered structure as shown in Figure 2-9, where a

client and a server interact with each other through these layers [19]. The first layer is the

RMI Stub/Skeleton Layer, which is responsible for managing the remote object interface

between the client and server. The second layer is the Remote Reference Layer (RRL),

which manages the references of the remote objects. The third layer is the transport layer

 39

that handles the lower level data communications. In common cases, the transport layer is

implemented with TCP/IP based Java Remote Method Protocol (JRMP).

In the RMI programming model, a RMI server defines a set of remote objects and

methods that clients can invoke remotely. These remote methods have to be declared in

an interface, which is used by client’s stub for type checking and casting. As a complete

distributed object framework, Java RMI relies on several key components/techniques :

• RMI Registry: a daemon Java server application which holds information

about available server objects. It acts as a central management point for

RMI system and actually a simple name repository. It generally runs on

certain port at server machine, for example, the default running port is:

1099.

• Remote Object Lookup: A RMI client uses RMI URL to locate demanding

remote object references, which are stored in the server RMI Registry.

• Stubs and Skeletons: proxy classes generated by rmic compiler to

help on transparent objects communications among local and remote

Java objects. In general, the stub resides on the client machine and

the skeleton resides on the server machine.

• Object Serialization: a key techniques used in RMI system, used for

transmit Java object across wire in a distributed computing environment.

Any Java object transmitted by RMI procedure has to be a serialized, which

allows objects to be marshaled (or transmitted) as a stream.

 40

Java RMI is a powerful and flexible technology to support fully object level

architecture. It supports client-server programming model with the advantage of object

migration across network. Such object level transmitting provides more power than

traditional remote procedure call and it helps on designing and implementing a scalable

distributed system much easier.

Figure 2-10 RMI in Action [20]

Figure 2-10 depicts an acting RMI system, where RMI server binds a name with a

remote object and then registers this name to rmiregistry; RMI client lookups the

rmiregistry to locate the remote object before initiating any remote method calls. The

RMI server can also interact with web server directly using URL protocol for loading

class definition on demand.

Compared with CORBA and DCOM, JAVA RMI is a Java-specific middleware,

hence there are no separate IDL mappings as required by DCOM or CORBA. Java-RMI

can work with true sub-classes, while DCOM and CORBA can not do since they are

static object models. JAVA RMI supports dynamic class loading as well as distributed

garbage collection, which makes it unique for building very flexible and dynamic

 41

distributed system. However, the confinement to Java language and network latency for

RMI procedure have to be carefully considered when constructing a large-scale

distributed RMI system.

The performance of RMI [21] has attracted many researchers for years. The major

drawback of Sun’s RMI implementation is the communication latency due to the

inefficient object serialization and marshalling. However, some other high performance

RMI implementations, such as Manta RMI [22], KaRMI [23], have been developed in

recent years, which make RMI a more attractive technology for high performance

distributed computing or simulation.

 42

3 PARALLEL-DISTRIBUTED SIMULATION

3.1 OVERVIEW

In this section, we will go over some of the key concepts in parallel-distributed

simulation, which can provide some background knowledge for the later chapters in this

dissertation. Parallel-Distributed simulation is becoming more and more important for

solving today’s science and engineering simulation problems that require high-level

computing power and memory. Our particular concentration in this chapter, however, is

on the discrete event system, and furthermore, the DEVS based parallel-distributed

simulation.

As we know, Discrete Event Simulation (DES) is generally performed by using

computer models for a system where changes in the state of the system occur at discrete

points in simulation time [24]. The key concepts of DES are system states (or state

variables) and state transitions (or events). A DES computation can be viewed as a

sequence of event computations, with each event computation assigned a time stamp.

DES systems consist of models and simulation executives, and the data structure of DES

basically includes pending event lists, state variables and simulation time clock variables.

For a DES systems, there are in general three ways for executing simulation models: as-

fast-as-possible, real-time and scaled real-time.

 Parallel-Distributed simulation is generally a way to handle the above mentioned

DES in a parallel or distributed fashion. Parallel-Distributed simulation may be called on

when a model of a large and complex system is put into a simulation framework. The

 43

reason for using a parallel-distributed simulation is in most cases due to the following

[24]:

a. Reducing model execution time.

b. Overcoming limited memory for a single machine to handle large models.

c. Obtaining scalable performance.

d. Handling geographically distributed users and/or resources (e.g., databases,

specialized equipment).

e. Integrating simulations running on different platforms.

f. Dealing with fault tolerance.

 The research and development communities related to parallel-distributed

simulation are largely in high performance computing, defense, internet and gaming.

Traditionally, Parallel Discrete Event Simulation (PDES) has to handle logical processes,

time stamped messages, local causality constraints and the synchronization problems. It

must deal with collection of sequential simulators possibly running on different

processors, and logical processes that communicate with each other exclusively by

exchanging messages. The synchronization is one of the biggest concerns in PDES, and

the most commonly used synchronization mechanisms are conservative synchronization

and optimistic synchronization. Conservative synchronization is used to avoid violating

the local causality constraints, and it provides deadlock avoidance mechanism by using

null messages [25][26] as well as a mechanism for deadlock detection and recovery.

Optimistic synchronization uses a different approach by allowing violations of local

causalities to occur, but detects them at runtime and recovers using a rollback

 44

mechanism. One of the best-known optimistic synchronization algorithms is time warp

by Jefferson [27][28], and there are also numerous other approaches. One good example

of time warp is so-called Georgia Tech Time Warp [29], a general purpose parallel

discrete event simulation executive using optimistic synchronization technique. It is

worth to note that aforementioned “local causality constraint” is an important concept in

parallel-distributed simulation, which states that events within each logical process must

be processed in time stamp order to ensure that the parallel simulation produces exactly

the same results as the corresponding sequential simulation.

 High level architecture [30] is a distributed simulation standard defined by DoD

which aims to provide a federations of simulations (federates) and is based on a

composable “system of systems” approach. The motivation of HLA is that no single

simulation can satisfy all user needs, therefore, it is necessary to define a standard that

can support interoperability and reuse among DoD simulations. The federates here

mentioned in HLA could be represented by pure software simulations, human-in-the-loop

simulations (virtual simulators) or some other live components (e.g., instrumented

weapon systems). With regard to the architecture, HLA consists of rules, Object Model

Template (OMT) and Interface Specification (IFSpec), where rules are defined for

federates to follow in order to achieve proper interaction during a federation execution;

Object Model Template (OMT) defines the format for specifying the set of common

objects used by a federation, their attributes, as well as relationships among them;

Interface Specification (IFSpec) provides interface to the Run-Time Infrastructure (RTI),

that ties federates together during model execution.

 45

 The Distributed Virtual Environments (DVE) is another important concept in the

parallel and distributed simulation world. It mainly concerns the simulator interactions

and real-time factors of a distributed simulation when humans and/or physical devices are

embedded. It aims to provide a virtual environment that involves the interactions among

humans, devices, and computers/computations at different locations. Typical examples of

DVE are: training simulations with SIMNET [31], Distributed Interactive Simulation

(DIS) [32], HLA [30], and simulation applications such as multiplayer internet video

games. A key issue of DVE is to ensure that different participants have consistent views

of the DVE. Therefore, it is especially important for DVE has an appropriate treatment of

consistency in time and space as well as treatment of network latency incurred by limited

communication bandwidth of the internet. DVE has different requirements when

compared with analytic simulations, and thus it needs different solution approaches. In

certain cases, it is necessary to sacrifice accuracy to achieve better visual realism.

 With regard to parallel and distributed simulation frameworks, there have been a

lot tools developed from different communities. The SPEEDES [33] simulation engine

allows the simulation builder to perform optimistic parallel processing on high

performance computers, networks of workstations, or combinations of networked

computers and HPC platforms. Applications that can make use of SPEEDES are

typically time-constrained (too many events to process in a limited amount of time).

SPEEDES is also designed to implement High Level Architecture (HLA) federations of

simulations. TEMPO [34] is a language and environment that is used in the modeling and

simulation arena for parallel execution of simulations in a distributed environment. It is

 46

an extension of the language Sim++ [35], a collection of C++ tools (routines and

programs) for computer simulation. TEMPO is primarily aimed at connecting multiple

simulation sites into a shared memory space and distributing time-stamped events to

entities operating in a simulation. SIMSCRIPT II.5 [36] is used for discrete-event and

combined discrete-event/continuous simulation models. It has been used world wide for

building portable, high fidelity, large-scale simulation modeling applications with a

interactive GUI. JDisco [37] is another simulation software package written in Java,

which can handle the combined discrete-event/continuous simulation models.

In general, parallel and distributed simulation is necessary when a simulation

application cannot be fulfilled with a single processor’s computer power and memory.

However, parallel and distributed simulation brings a new level of complexity due to the

involvement of multi-processors, distributed memory address space, distributed time

management. In the next sub-section, we will review and discuss DEVS based parallel

and distributed simulation, which is one of the competitive solutions in solving large-

scale and dynamic system simulations.

3.2 DEVS BASED PARALLEL-DISTRIBUTED SIMULATION

 Traditional simulation framework commonly uses middleware to support the

parallel and distributed execution of models. Simulation-specific middleware such as

High Level Architecture (HLA) and test-range-specific middleware such as the Test and

Training Enabling Architecture (TENA) provide higher levels of dedicated support for

distributed simulation. However, they only provide partial solutions to address the

 47

attributes of distributed simulations required for engineering systems. Compared with

such traditional parallel-distributed simulation, the parallel and distributed simulation

with Discrete Event System Specification (DEVS) uses a strictly defined formalism to

describe the behaviors of a system, and therefore, provides a more rigorous, dynamic and

flexible environment for simulation applications.

 In general, the Discrete Event System Specification (DEVS) formalism provides a

more complete solution to an ideal distributed simulation environment when

implemented over middleware technologies. Such implementations include DEVS/GRID,

DEVS/P2P, DEVS/HLA, and DEVS/CORBA. However, such middleware architecture

based solutions provide only limited support for model distribution, in that the mapping

of model components to network nodes is largely a manual process. Moreover, although

DEVS and its associated simulation protocol are defined abstractly to support migration

to other platforms and languages, the coded implementation still has to be redone for a

new context. This means that there is still significant work to migrate a simulation

application that works well in one environment to work with different middleware on a

different operating system or network. As a result, simulating a large and complex model

in these frameworks could become a very time-consuming process, and verifying the

correctness of the simulation cannot be done in an easier way.

 Regarding parallel-distributed simulation of DEVS, some other tools have been

developed to make use of shared memory multi-processors or distributed cluster of

machines. DEVS/C++ is a tool based on the parallel DEVS formalism, and provides a

modular and hierarchical discrete event simulation environment implemented in C++

 48

language. ADEVS is a C++ library, developed by Jim Nutaro, for constructing discrete

event simulations based on the Parallel DEVS and DSDEVS formalisms. It includes

support for standard, sequential simulation as well as conservative, parallel simulation on

shared memory machines with POSIX threads. CD++ is another well-known general

toolkit written in C++, which allows the definition of DEVS and Cell-DEVS models, and

it supports simulations in real-time and parallel fashions.

 DEVS based parallel and distributed simulation frameworks are continuously

being developed by research groups around the world. Most recent efforts are toward an

internet grid based solution that uses service oriented architecture (SOA) for

interoperability of DEVS models and simulators developed by different languages and

methods [38]. It could be foresee that DEVS based parallel and distributed modeling and

simulation framework will become more and more flexible and easier to use with the help

of modern software engineering techniques.

 49

4 MODEL PARTITIONS AND DYNAMIC REPARTITIONS IN

DISTRIBUTED SIMULATION ENVIRONMENTS

4.1 GENERAL MODEL PARTITION TECHNIQUE

In this section, we will review some of the key concepts for model partition

because they are the key concerns for parallel and distributed simulation. Model partition

techniques used in distributed simulation are in fact not specific only for modeling and

simulation, they are very general concepts and techniques directly related distributed

computing.

Modeling and simulation has become a fundamental technique to the modern

science and engineering, and it is essentially important in predicting the future behavior

of complex systems. Parallel or Distributed simulation is especially important in solving

large and complex simulation applications due to the advantages of using computing

power and memory of multi-processor system. However, due to the communication

overhead incurred in the distributed simulation, an optimal model partition scheme is in

general very important to help gaining the overall better simulation performance.

 As mentioned above, model partition is one of the major issues in distributed

simulation. The performance of a simulation in a distributed environment is directly

related to the model partition algorithm used on the model structure. To optimally

distributing simulation models/entities to the computing nodes is especially important in

order to gain the best possible overall simulation performance. Therefore, partitioning

 50

algorithms have great effects on the partitioning results, which then affect the simulation

performance.

 In general, the partitioning techniques can be classified as following: random

partitioning, partitioning improvement, simulated annealing, and heuristic partitioning

[39][40]. Random partitioning randomly aggregates models to a set of partition blocks

and then maps the partition blocks to the processors. Partitioning improvement algorithm

modifies the partitioning results during the process of partitioning [41][42]. Simulated

annealing [43][44][45] uses statistical methods to develop the process of the model

partitioning. Heuristic partitioning is an algorithm which uses domain-specific

knowledge or a particular optimization technique for a better partitioning results. As one

of the extensions of aforementioned partition techniques, the Kernighan-Lin algorithm

[46] is a kind of improvement of random partitioning by using random partitioning at first

, but then swapping models among partition blocks whenever a better partitioning results

could be obtained.

 Graph partitioning technique [47] is closely related to most of the partitioning

techniques used in high-performance distributed simulations, and has been applied to the

area such as scientific simulation for years. The key concept of graph partitioning is that

the mapping for partitioned models to processors is equivalent to a graph partitioning

problem. The graph partitioning problem is known to be NP-complete, which means that

it is not possible to compute optimal partitioning for graphs of interesting size in a

reasonable amount of time [47]. Graph partitioning technique has led to the development

of several heuristic approaches [48][49], which can be classified as geometric,

 51

combinatorial, spectral, combinatorial optimization techniques, or multilevel methods.

For example, geometric technique [50], also referred to as mesh partitioning scheme,

computes partitioning based solely on the coordinate information of mesh nodes while

not considering the inter-connectivity of the mesh elements. In contrast, combinatorial

partitioning schemes compute a partitioning based only on the adjacency information of

the graph without considering the coordinates of the vertices. More sophistically,

multilevel paradigm is a newly proposed class of partitioning algorithms [51][52], which

consists of three phases: graph coarsening, initial partitioning and multilevel refinement.

 With regard to the dynamic repartition of a distributed simulation application,

adaptive graph partitioning technique needs to be considered to improve the load-

balancing on multi-processor system. Adaptive graph partitioning algorithm shares most

of the characteristics of aforementioned static graph partitioning algorithms, but adds an

objective: minimizing the amount of data that needs to be redistributed among the

processors in order to balance the computation for the simulation. Such repartitioning

schemes have been developed by a lot researchers. As an example, a number of

repartitioning schemes are proposed by Oliker [53], and such algorithms compute new

partitioning from scratch and then intelligently map the subdomain labels to those of the

original partitioning in order to minimize the data redistribution costs. Such technique is

often referred to as scratch-remap repartitioning. Other repartition methods include cut-

and-paste repartitioning, Diffusion-based repartitioning and etc.. Cut-and-Paste

repartitioning swaps excess vertices in overweight subdomains into one or more

underweight subdomains in order to balance the partitioning. Diffusion-based

 52

repartitioning attempts to minimize the difference between the original partitioning and

the final repartitioning by making incremental changes in the partitioning to restore

balance. Such diffusion schemes include local diffusion algorithms [54] and global

diffusion schemes [55]. In general, there is a tradeoff between edge-cut and data

redistribution cost in dynamic graph repartitioning. For the simulation applications in

which the mesh needs to be adapted frequently, minimizing the data redistribution cost is

preferred; while for application in which repartitioning occurs infrequently, minimizing

the edge-cut is firstly considered. Such tradeoff can be controlled by a number of

coarsening and refinement heuristics, such as in [54][55][56]. With the advance of more

sophisticated classes simulation such as multi-phase, multi-physics and multi-mesh

simulations, new graph partitioning algorithms are required, which results in the

proposing of the techniques such as: multi-constraint [57], multi-objective graph [58]

partitioning. Although the traditional graph partitioners and repartitioner are very

powerful for solving the model partition problem in distribute simulation, some

limitations need to be addressed: graph partitioning problem formulation, other

application modeling limitations, and architecture modeling limitations [47].

 Hierarchical model partitioning [59][60][61] is a technique to apply the general

model partition technique, such as graph partitioning, on the hierarchical model structure

for distribute simulation. It is a process of constructing partition blocks by decomposing a

hierarchical model structures based on certain decision-making criteria. Hierarchical

model partitioning is especially important for Discrete Event System Specification

(DEVS) based distributed simulation environment because the model structure in most

 53

DEVS implementation uses such hierarchical modular structure to represent a system for

simulations. General hierarchical model partition techniques are: flattening, deepening

and heuristic. Flattening is a technique which transforms a hierarchical structure into a

non-hierarchical structure. Deepening, sometime called hierarchical clustering, is a

technique which in reverse transforms a structural non-hierarchical structures into

hierarchical structures. Heuristic technique uses heuristic functions to analyze nodes in a

hierarchical model tree to determine the partition policies.

 Cost based model partition for distributed simulation is one of the hierarchical

model partitioning techniques proposed by Park [62], where a new Generic Model

Partitioning (GMP) algorithm is proposed for partitioning hierarchical DEVS based

models. The GMP uses a cost analysis methodology to construct partition blocks, and it

makes an effort to guarantee incremental quality of partitioning (QoP) improvements

until a best partitioning is reached. The GMP is highly generic and could be applied on

any family of models as long as appropriate cost information of models can be obtained

and processed. Cost analysis plays an important role in the GMP because it provides the

fundamental view of the models in terms of “cost”, and it also determines the partitioning

policies that will be applied to the model structures. In particular, the cost analysis

includes: cost harvesting, cost generation, cost aggregation, cost evaluation and cost

analysis [62]. A cost tree is built according to the model hierarchical structure. The cost

based model partition algorithm, such as GMP, provides and adaptive and flexible

technique for decomposing hierarchical model structure such as those represented by

DEVS. Compared with full decomposition such as used in flattening technique, it

 54

minimizes the model decomposition which makes it less sensitive to the depth or the

width of a given hierarchical model. However, in current stage, GMP is only applicable

for static model partition in a distributed simulation environment although it has proposed

to improve the algorithm by dealing with dynamic cost changes of the models. Also,

there exists no literature to report the comparison of GMP with other partition algorithms

in a distributed simulation environment, and thus it is worthwhile to further investigate

GMP in terms of the performance improvement of distributed simulations.

Other hierarchical partition algorithms, such as proposed by Li [63], can be

applied to large parallel/distributed system including distribute simulation framework.

The proposed hierarchical partition algorithm, so-called HPA, allows the partition to

reflect the state of the adaptive grid hierarchy and reduces synchronization requirement in

order to improve load-balance and to enable concurrent communications and incremental

repartitioning. HPA decomposes the computational domain into subdomains and then

assign them to dynamically configured hierarchical processor groups [64]. [65] proposed

new algorithms for static load balancing using a small amount of domain knowledge and

run-time measurements. In a distributed simulation environment, it could automatically

discover the simulation objects that communicate frequently and then place these objects

on the same processor. Such model partition technique aims to increases the

communication localities and reduce the potential message passing among simulators

residing on different machines.

 55

4.2 MODEL PARTITION/REPARTITION IN DISTRIBUTED SIMULATION

FRAMEWORKS

Model partition and repartition mechanisms play an important role in determining

the distributed simulation performance. Partition and repartition have been studied for a

long time due to the necessity of more efficient execution of distributed computing

applications and simulations. In this section, we will focus on reviewing “cost”, or say

“activity”, based model partition and repartition techniques that are proposed and

implemented in DEVS based distributed simulation environment. We will start with

demonstration of a previous mentioned new partition algorithm proposed by Park [62],

and then present two distributed DEVS implementations that use this technique.

 Park presented an illustrative example for his GMP algorithm for hierarchical

DEVS model as shown in Figure 4-1, which depicts a 1-dimensional activity distribution

in terms of cost distribution between models. A node of a cost tree is defined by a pair of

activity and spatial information of a model. As an example, (8, 3) means that this cost

node has cost measured as “8” and distance as “3”. Furthermore, the cost node of the cost

tree can be decomposed to sub-nodes as shown on Figure 4-2.

 56

Figure 4-1Activity Distribution and Associated Cost Tree [62]

Figure 4-2Decomposable Cost Tree [62]

 As a more detailed example shown in Figure 4-3 and Figure 4-4, GMP makes an

effort to get the optimal partition result by redistributing a part of costs of the PBmax into

its neighbor(s) (i.e., PBprev and PBnext). Based on the previous partitioning result, new

 57

partitioning is performing by expanding a particular node of PBmax and creating a new

partitioning result. Once the result is created, it is compared with the previous result until

best one is reached. Figure 4-3 shows the procedure of this process: node 1 to node 4

shows the partition changes when applying the GMP algorithm, and node 5,6,7 shows the

possible alternatives of this partition process. Node 4 is the finally obtained optimal

partition. In this example, minimizing the disparity of cost in each partition block is the

major concern for getting optimal partition. Figure 4-4 shows the final partition result

based on the process of Figure 4-3.

Figure 4-3 Partition Tree [62]

 58

Figure 4-4 Final Partition Result [62]

 We have just exemplified how GMP algorithm does partitions using “cost” as

measurement of workload. In the following paragraphs, two distributed DEVS

frameworks are briefly discussed because they use GMP algorithm for model partition

and repartition in a distributed simulation environment.

 DEVS/Grid [6] is one of the recent implementation of DEVS in a distributed

environment, especially in Grid computing infrastructure. DEVS/Grid provides a

middleware bridge between DEVS simulation entities with the underlying grid

computing resource, and therefore, opens up an area for high performance distributed

simulation applications. DEVS/Grid supports dynamic coupling restructuring, automatic

model deployment, remote simulator activation and etc., which are especially important

for dynamic repartitioning a DEVS model. DEVS/Grid supports both static and dynamic

model partition of DEVS model in a distributed simulation environment. The model

 59

partition in DEVS/GRID is based on cost-based hierarchical model partitioning by Park

[62]. Such kind of partition is generally constructed by building partition blocks through

decomposing the DEVS hierarchical model structure based on certain-decision making

criteria. The partitioning used in DEVS/Grid is initiated by creating a cost tree by

examining the DEVS hierarchical model with cost measurements to it. For example, the

total states of a model component could be used as a static measurement for the cost tree;

the activity of a model, counting the total number of state transitions for a period, could

be used as a dynamic cost measure. And the Generic Model Partitioning Algorithm

(GMP) is then applied to construct partition blocks. DEVS/Grid framework has been

applied on very simple model structure for demonstration and proof-of-concept with

static model partition. It is a noticeable approach for distributed simulation with the

support of model partition and dynamic repartition, but it has not been applied on solving

large and complex model structure.

Figure 4-5 Dynamic Coupling Reconstruction[6]

 60

 DEVS/P2P [7] is another distributed simulation framework, which is developed

recently at ACIMS lab. It combines the DEVS with Peer-to-Peer network system to

introduce a new distributed simulation approach. It is based on parallel DEVS formalism

and P2P message protocol, and solves the distributed simulation synchronization problem

by involving only peers without using centralized simulation control unit, such as

coordinator, for time synchronization. It supports Autonomous Hierarchical Model

Partitioning (AHMP), Automatic Model Deployment (AMD) and so on. The AHMP also

uses the cost based hierarchical model partition algorithm proposed in Park [62]. It

partitions the model evenly using the cost analysis obtained through the GMP, and then

deploys the partitioned models to local and remote simulators. As shown in Figure 4-6,

the original DEVS model on the leftmost is partitioned to several Payloads (or sub-

groups of models). The almost evenly partitioned DEVS models are deployed to the local

and remote simulators by the Model Distributor (MD) through JXTA message exchange

service. Such partition is obviously static without run-time repartition support. Similarly,

only very simple demonstrated model is tested in DEVS/P2P and partitioning large and

complex model has not been reported yet.

 61

Figure 4-6 Model Partition, Deployment and Simulation in DEVS/P2P[7]

 In this section, we reviewed “cost” based model partition and repartition, and also

discussed two distributed DEVS implementations, which use middleware to bridge the

DEVS with underlying network infrastructure. In the next section, we will focus on the

key part of this dissertation, DEVS/RMI, a new approach of DEVS based distributed

simulation framework.

 62

5 DEVS/RMI—A NEW APPROACH TO DISTRIBUTED DEVS

In this chapter, we will present DEVS/RMI, a new approach to distributed

simulation using DEVS. This new approach is thoroughly discussed in terms of design

consideration, architecture, key components with focus on flexible and dynamic aspects

of the framework. Some basic performance test results are presented as well to establish a

foundation for discussion and analysis for following chapters.

5.1 DEVS/RMI SYSTEM ARCHITECTURE

DEVS/RMI is a distributed simulation system based on the standard distribution

of DEVSJAVA and it aims to support seamless distribution of simulation entities across

network nodes. DEVS/RMI makes an effort to retain all the existing class structures used

in DEVSJAVA while enabling the models and simulators to support Java Remote Object

Technology (RMI). In this way, distributing the simulators and models can be done

without any of the commonly used middleware such as CORBA, HLA, or GRID.

Because Java RMI supports the synchronization of local objects with remote ones, no

additional simulation time management, beyond that already in DEVSJAVA, needs to be

added when distributing the simulators to remote nodes. DEVS/RMI maintains all the

model and data structures used in DEVSJAVA with expanded capabilities to support

remote object technology. Thus, a complex model structure that has been tested and

verified on a single machine can then be ported to a cluster of computers without any

code change. The environment simplifies simulator/model distribution across a network

without the help of other middleware while still providing platform independence

through the use of Java and its Virtual Machine (JVM) implementations. The goal of the

 63

DEVS/RMI system is to provide a simulation application with a fully dynamic and re-

configurable run-time infrastructure that can handle load balancing and fault tolerance in

a distributed simulation environment. A second goal of the DEVS/RMI is to distribute

large-scale models to the computing clusters to gain a speedup of a simulation execution,

or to handle simulation applications with problem sizes that cannot be handled by a single

machine’s memory and computing power.

Furthermore, DEVS/RMI makes an effort to provide an adaptive and

reconfigurable distributed simulation framework, in which the simulation execution is

centrally controlled. The simulation controller has the capability to dynamically

repartition a running model in order to gain better load-balance. With the support of

RMI’s transparent object migrations among computing nodes, it is much easier for

DEVS/RMI to provide the capability for dynamically migrating simulation models across

machines with persistent states. Such an approach is generally difficult to implement

when using traditional MPI or PVM based solutions, in which model partitions cannot be

changed during simulation run-time.

As shown on Figure 5-1, the DEVS/RMI system consists of several key

components which include simulation controller, configuration engine, simulation

monitor and remote simulators. Each of the components will be discussed in more detail

in the following sections.

 64

Figure 5-1 DEVS/RMI System Architecture

Model Structure

Configuration Engine

Simulation Controller

RMI Naming

Server

Remote

Simulator

Model

Simulation Monitor

RMI Naming

Server

Remote

Simulator

Model

RMI Naming

Server

Remote

Simulator

Model

Machine 1 Machine 2 Machine 3

 65

5.2 SIMULATION CONTROLLER AND CONFIGURATION ENGINE

The simulation controller is the key control unit in the DEVS/RMI system. Its

main function is to apply the dynamically generated partition plan as received from the

configuration engine, and then to create or migrate the appropriate simulators/models

across the computing nodes in the network. Basically, the simulation controller can stop

and restart/continue the simulation execution at any stage. As a closely related

component to simulation controller, the configuration engine is the “brain” of the system

that analyzes the dynamic model information obtained from the simulation monitor, and

then applies the corresponding partition/repartition algorithm on the simulation

controller. For example, if the configuration engine decides that a new partition plan is

necessary during simulation run-time, the simulation controller can then stop the current

execution and re-configure the simulation environment. This might involve creating a

new set of simulators on selected nodes and/or migrating existing simulators/models

among the computing nodes. The key concern here is how to maintain the model states

during such migration. It is worth to note that Java RMI supports persistent object

migration natively and therefore, aforementioned reconfiguration mechanism could be

implemented seamlessly in a heterogeneous network. Although not required, the

simulation controller and configuration engine can be implemented as DEVS models to

simplify their interactions with other DEVS models in the system.

As shown in Figure 5-2, in DEVS/RMI, the simulation controller is commonly

implemented as RMICoordinator, which takes the model object as parameter and then

decomposes the model according to its hierarchical structure. During the model

 66

decomposing stage, the RMICoordinator assigns decomposed sub-models (either atomic

or coupled) to local or remote simulators which are either dynamically created or static

created (pre-existed on remote computing nodes or processors). In fact, the local or

remote simulators are created according to the model’s putwhere attributes. Such a

mechanism provides a high-level flexibility for managing the simulation execution in a

distributed computing environment. The simulation controller has also built-in

capabilities for dynamic repartition of a model in order to gain higher level of load-

balancing.

 67

Figure 5-2 Flowchart of Distributed Simulation in DEVS/RMI

If sub_model.putwhere

= “localhost”

DEVS Model

Decomposing Model

Sub-Models (Atomic

or Coupled)

RMICoordinator

Create and Assign

Local Simulators

If sub_model.putwhere =

“remote host”

Parsing as

parameters

Load the model to

“Remote Host”, create
the simulators there,

obtains the Remote

References of the
Remote Simulators.

Dynamic Creation of

Remote Simulators

Static Creation of Remote

Simulators

Create Remote

References of the
Remote Simulators

using pre-defined RMI

URL.

Initialize RMICoordinator

Start Execution of

Distributed Simulation

 68

5.3 SIMULATION MONITOR

The simulation monitor is another important component in the DEVS/RMI system

and aims to provide the key information about each running model in the network. The

simulation monitor collects the information from running models, measures their

“activities” and then conveys collected information to the configuration engine which

then determines the new partition plan during run-time whenever necessary. Similar to

simulation controller and configuration engine, the simulation monitor can also be

implemented as a DEVS model. It worth to note here that the simulation monitor used in

DEVS/RMI basically collects “activity” metric as a measurement of workload on the

computing nodes, which is different with more generally used system resource

monitoring utilities. In most distributed computing or simulation framework, system

resources, such as CPU utilization, memory utilization, network bandwidth, are

periodically detected and measured as a indication of computing workload. In a later

chapter, we will discuss an implementation of dynamic reconfiguration of a distributed

simulation using the “activity” metric as an indication of workload to do run-time

repartition. We believe that “activity” based simulation monitoring can provide a more

accurate indication of dynamically changed workload in a distributed simulation.

5.4 REMOTE SIMULATORS

5.4.1 Remote Simulator Definition

The remote simulator operates according to the same concept and hierarchical

structure used in DEVSJAVA. However, the simulator related interfaces and classes are

 69

redefined to support these simulators as remote objects. Remote simulator classes are

created by making the CoreSimulatorInterface and AtomicSimulatorInterface to extend

the Remote interface. In this way, all the other inherited simulators or coordinators can

then be remote objects because they extend the CoreSimulatorInterface and

AtomicSimulatorInterface level by level.

 In DEVSJAVA, any message object passing as parameter among simulators is

inherited from the entity object as we have described in a previous chapter. Therefore, in

order to be able to passing these message objects among distributed simulators in

DEVS/RMI, the entity interface has to extend Java Serializable so that any inherited

message class can be transferred by RMI.

 It is worth to make clear that remote simulator references in DEVS/RMI work in

the same programming context as local simulators except that the remote simulator

objects are physically located on remote computing nodes. The key advantage of such

RMI based implementation is that mapping models to distributed nodes becomes

transparent due to the object level distribution of computing workload.

5.4.2 Remote Simulator Creation and Registration

As shown in the architecture in Figure 5-1, the remote simulators are created by

the simulation controller (RMICoordinator), and then register themselves with the RMI

naming server using unique URL names for later lookup by the simulation controller. The

remote simulator object instances are physically located in remote machines, however,

their references are hosted on the same machine as simulation controller. As shown in

 70

Figure 5-3, the RMICoordinator object calls the method regRemoteSim () which accepts

the model name and machine name as parameters and then makes a remote method call

on TestServer object, where remote simulators are created. The remote machine hosting

TestServer then registers these simulators and returns the registered RMI URLs back to

the RMICoordinator. The RMICoordinator consequently uses these URLs to add remote

references for the newly created remote simulators using addRemoteSim() method.

 71

Figure 5-3 Sequence Diagram for Creating Remote Simulators

The above demonstrated remote simulator creations and registrations are

implemented through a dynamic way, which involves the passing of model objects as

parameters. The other way to create remote simulator is to use a static approach, which

actually separate the process of creating simulators on local and remote machines. For

example, a simulator and its corresponding model are created and registered at a remote

machine independently, not through a remote method call from RMICoordinator. The

RMICoordinator then creates a remote reference for that remote simulator using

predefined URL, for example, a RMI server address plus the model name.

In general, the static approach is more practical for creating remote simulators for

large-scale models such as 2D or 3D cell spaces due to consideration of the time

 72

efficiency. Dynamic creations of remote simulators need to be carefully considered

because it is costly to passing a large number of model components by value as required

in the dynamic approach.

5.4.3 Local Simulator vs. Remote Simulator

It is not always an efficient approach to create a simulator as a remote simulator

using a remote reference. In some cases, if the model sits in the same machine as the

RMICoordinator, it is more efficient to create the simulator using a local reference.

Figure 5-4 shows the relationship among local and remote

CoupledSimulators/CoupledCoordinators, where local and remote simulators references

are sitting in a same programming context. However, the message communication among

them has to go through underlying network using corresponding RMI stubs/skeletons as

proxies. It should be noted that during the initialization phase of RMICoordinator, a

simulator reference can be created either as local object reference or as remote object

reference. The difference here is that the local simulator object is created and initialized

when a local simulator reference is created; however, when a remote simulator reference

is created, it points to the remote object created in different address space or JVM, which

either can be created by dynamic or static way as aforementioned.

 73

Figure 5-4 Local vs. Remote Simulator

RMICoordinator

Local

Coupled

Coordinator

Remote Coupled

Coordinator(Remote

Reference)

Local

Coupled

Simulator

Remote Coupled

Simulator(Remote

Reference)

Local

coupled

simulator

Local

coupled

coordinator

coupled

simulator

coupled

coordinator Local

coupled

simulator

…

Local

coupled

simulator

coupled

simulator

coupled

simulator

.

.

.

Remote Machine

coupled

coordinator

 74

5.5 DYNAMIC SIMULATOR AND MODEL MIGRATION

The key technology used in DEVS/RMI to make the run-time reconfiguration of a

distributed simulation possible is Java RMI object persistence. RMI supports the object

serialization and reconstruction in remote JVM with persistent data, which is the key

concern when a model is migrated from one machine to another one during simulation

run-time. As shown in Figure 5-5, the remote simulator/model pair on machine 1 can be

dynamically migrated to machine 2 using predefined RMI procedure. The data

consistency of the pair is maintained except for the change of their remote references in

the simulation controller. It should be noted that such migration does not affect

simulation time synchronization because of the native synchronization property of RMI.

Figure 5-5 Dynamic Simulator and Model Migration

RMI Naming
Server

Remote

Simulator

Model

RMI Naming
Server

Remote

Simulator

Model

Machine 1 Machine 2

Dynamic
Object

Migration

 75

5.6 DYNAMIC MODEL RECONFIGURATION IN DISTRIBUTED

ENVIRONMENT

Dynamic model reconfiguration has been studied and implemented by Hu [15] in

DEVSJAVA in a form referred to as “variable structure”. It is a powerful method to

express dynamic model structure changes when modeling complex and dynamic systems.

DEVS/RMI natively supports this feature without changes of the original implementation

if the relevant models are local for RMICoordinator. Furthermore, DEVS/RMI can also

support model reconfiguration even if the models are remotely located to the

RMICoordinator.

As shown in Figure 5-6, the model in the remote machine (hosting the TestServer)

can locate the RMICoordinator during runtime, and then remotely call the

addRMICoupling() or removeRMICoupling() methods in the RMICoordinator, by which

way the RMICoordinator is updated with new model structure information. After such an

update, the simulation execution is continued from its pending point. Dynamic

reconfiguration capability is especially useful for simulating dynamic model system,

which changes its structure during run-time. The extension of this capability to

distributed simulation by DEVS/RMI makes it much easier for solving large-scale

dynamic system’s simulation in a distributed fashion.

 76

Figure 5-6 Flowchart of Dynamic Coupling Changes

 In general, dynamic reconfiguration is implemented by dynamically

reconstructing the model structures and their coupling relations using the methods

provided in the simulation controller in DEVS/RMI. It is very important for obtaining a

better load balance in a distributed simulation, in which the workload on the computing

nodes may change dynamically.

5.7 INCREASE LOCALITY FOR LARGE-SCALE CELL SPACE MODEL IN

DEVS/RMI

As we have discussed in previous sections, DEVS/RMI combines the local and

remote simulator references in a central simulation control class such as

 77

RMICoordinator. Therefore, increasing the communication locality is very important to

obtain an overall better simulation performance when applying the DEVS/RMI system on

large-scale models. DEVS/RMI supports the hierarchical model construction in the same

way as DEVSJAVA, and therefore enables the possibilities of increasing the locality

whenever necessary. For example, a large cell-space model could be partitioned to

several sub-spaces, and each sub-space is then mapped to a computational node. The

models within the same sub-space should be able to communicate with each other using

local references instead of using remote references. In order to achieve such efficiency,

the initial cell space (a coupled model) should be decomposed into several inter-

connected sub-spaces (also coupled models) with equivalent overall coupling relation. In

such a case, the RMI calls are only initiated when a model in one sub-space needs to

communicate with a model in other sub-spaces, and such message passing can be done

through two RMICoupledCoordinators.

In fact, such domain decomposing based model partition is especially useful for

handling large-scale cell space model, where the inter-cell communication dominates the

overall model system’s behaviors. As we mentioned in previous sections, the models or

sub-models are assigned to computing nodes using their putWhere() attributes, therefore,

partitioned sub-space or sub-model is assigned to computing node by RMICoordinator

directly. In such an implementation, the simulation control node creates and maintains the

remote references for the sub-model, while the sub-model object instance is residing on

desired remote computing node. In such a setting, only the cells on the edges of sub-

 78

space need to use remote method call to communicate with cells on other computing

nodes. The inter-cell communication within a sub-space is totally local object calls.

As a summary, we should say that the communication locality can be optimally

maintained with the flexible model partition mechanism supported by DEVS/RMI.

Minimizing the RMI communication overhead is essential for gaining optimal distributed

simulation performance in DEVS/RMI.

5.8 BASIC PERFORMANCE TEST

In this section, we will present some of the basic performance results in

DEVS/RMI. We use the simplest model structure to help us to obtain the overhead

associated with message passing between models. We compare results for single machine

with those obtained for three machines (one head node + two computing nodes) using

RMI calls. As shown in Figure 5-7, a DEVS “generator” and multiple “processors” are

coupled through their digraphs. “Generator” outputs periodically to the “processors”,

which then process the jobs they receive.

Figure 5-7 Simple DEVS “gp” Model

Generator

Processor10

Processor11

Processor1n

………….

Machine 1 Machine 2

 79

In this test, we measure the overhead incurred by the message passing between

“generator” and “processors”, and we then compare such overhead obtained in single

machine with those obtained in a distributed environment (one head node + two

computing nodes).

Figure 5-8 is the line plot for the experimental result which shows a significant

communication overhead incurred by DEVS/RMI. However, such overhead presents a

nearly linear behavior with the increased number of “processors” involved. This result

provides a baseline for further analysis for communication overhead incurred by using

DEVS/RMI for a distributed simulation.

In later chapters, we will see the advantages of distributed simulation using

DEVS/RMI when large-scale cell space model is simulated. The test result presented here

can provide a basic guide for messaging overhead incurred by DEVS/RMI’s remote

message passing.

Figure 5-8 Messaging Overhead in Simple DEVS Model

Simulation Execution Time vs. No. of "Processors"

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Number of "Processors"

S
im
u
la
ti
o
n
 E
x
e
c
u
ti
o
n
 T
im
e
(S
e
c
o
n
d
s
)

Single Machine

3 Machines

 80

6 MODEL PARTITIONS IN DEVS/RMI

 The major goal of the DEVS/RMI system is to provide a simulation application

with a fully dynamic and re-configurable run-time infrastructure that can handle load

balancing and fault tolerance in a distributed simulation environment. DEVS/RMI

supports both static model partition and dynamic repartition through the flexible Java

RMI technology. Static model partition is implemented in the model construction stage

and then manipulated by the corresponding simulator. In contrast, dynamic partition and

repartition happen in an intermediate stage of a simulation execution. In later chapters,

we will show how model partition in DEVS/RMI is used on cluster of workstations to

solve very large and dynamic model such as valley fever and hilly terrain models. In this

chapter, we will present and discuss the basic model partition techniques used in a

DEVS/RMI based system.

6.1 STATIC PARTITION

 In this section, some illustrative static model partition methods are presented to

show how DEVS/RMI implements some of the basic partition techniques. We will focus

on static model partition implemented in DEVS/RMI, especially random partition and

model domain decomposition techniques.

 81

Figure 6-1A Coupled DEVS Model

 We begin our discussion from a generic DEVS model shown in Figure 6-1, where

A is the root digraph, A1 and A2 are two inter-connected children digraphs. A11, A12 and

A21, A22 are atomic models belonging to A1 and A2 respectively. DEVS/RMI supports

the partition of such generic model in a very flexible way. For example, any component

within the root digraph A can be assigned to any computing node. Such assignments

happen at model construction phase as shown in the following piece code:

ViewableAtomic A1 = new generator(“A1”,”node2”);

add(A1);

ViewableAtomic A11 = new generator(“A11”,”node3”);

add(A11);

 ……

 This means that random partition is directly supported in DEVS/RMI. The

capability to map any model or sub-model to any computing node is a very powerful

technique that allows user to implement different model partition algorithms much easier.

Following example shows a random mapping of model components to computing nodes

for the model structure in Figure 6-1.

A

A1 A2

A11 A21 A22 A12

 82

A—Coordinator, computation node 1.

A1---coupledCoordinator, computation node 2.

A11---coupledSimulator, computation node 3.

A12---coupledSimulator, computation node 4.

A2---coupledCoordinator, computation node 5.

A21---coupledSimulator, computation node 6.

A21---coupledSimulator, computation node 7.

 As we have seen in above illustration, such random partition capability provides

the most flexible simulation environment for any kind of DEVS hierarchical model, and

DEVS/RMI can implement such partition without decomposing the original model

structure to equivalent interconnected sub-models. However, the efficiency of such

partition needs to be carefully considered. For example, partitioning A11 and A12 on two

different nodes will significantly increase the communication overhead of the simulation

because the message passing between A11 and A12 has to go through the underlying

network using RMI calls. Therefore, communication locality needs to be enhanced

whenever possible to get a better overall simulation performance. However, on the other

hand, such random partition is useful in some cases when performance is not the major

concern, such as some situations in distributed virtual environment (DVE). Furthermore,

Figure 6-2 shows the random partition of the model in Figure 6-1, and each labeled sub-

domain is then assigned to a computing node. We can see in this partition that the

communication locality is broken because the message passing between A11 and A12

now needs a remote method call, for example. However, the random partition capability

is the basis for doing more sophisticated model partition, and therefore, can open an

interesting area for studying and finding an optimal partition algorithm in a distributed

simulation environment.

 83

Figure 6-2A Random Partition Showing the Assignments of Atomic Models to

Computing Nodes

 Compared with random model partition, re-grouping the models to sub-domains

while considering communication locality is another important partitioning technique

implemented in DEVS/RMI. This technique is especially useful to handle large-scale

cell-space models. In such model, the depth of model hierarchical tree is relative small,

and the focus of the partition is generally on how to assign the grouped cells to the

computing nodes.

Figure 6-3 2D Cell Space

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Cell 31 Cell 32 Cell 33 Cell 34

Cell 41 Cell 42 Cell 43 Cell 44

2D Cell Space

Sub-domain 1 Sub-domain 2 Sub-domain 3

A11 A12 A21 A22

 84

Figure 6-4 Coupling Relationship Among Cells

 Figure 6-3 shows a generic 2D cell space model (4 by 4) with coupling

relationship among cells shown in Figure 6-4, where any cell that is not on the edge of

cell space is coupled with its eight nearest neighbors. It is easy to see that for such cell

space model, randomly partitioning cells to the computing nodes is not an efficient

approach because of the tight coupling relationship among cells showed in Figure 6-4.

How to re-group cells to sub-groups/domains is especially important to obtain best

overall simulation performance.

Figure 6-5 Evenly Divided Sub-Domains of 2D Cell Space Model

Cell i-1,j-1 Cell i-1,j Cell i-1,j+1

Cell i, j-1 Cell i,j Cell i, j+1

Cell i+1,j-1 Cell i+1,j Cell i+1,j+1

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Sub-Domain 1 Sub-Domain 2

Sub-Domain 3 Sub-Domain 4

 85

 Figure 6-5 shows the evenly divided sub-domains of the 2D cell space model in

Figure 6-3. The evenly divided sub-domains means that the number of cells in each sub-

domain are equal. Compared with random partitioning, such partition needs the re-

construction of the original model. As shown in Figure 6-5, each sub-domain now

belongs to a new digraph, and cells on the edge of the digraph needs added new coupling

to their digraph. The original coupling relationship can be maintained by further

constructing the coupling among these sub-domain digraphs.

Figure 6-6 shows a more general case, where cells in the cell-space are irregularly

divided to several different computing sub-domains, and then assigned to different

computing nodes. Any cell on the edge of sub-domain digraph needs creating coupling to

the digraph it belongs to in order to maintain the original coupling relationship. It is

worth to note that such irregular partition is useful when each individual cell cannot be

equally weighted in terms of computing workload. For example, in a certain time period,

some cells have more computing workload than other cells. In such a case, using such

irregular partition is necessary to get an overall load-balance of the computing in a

distributed environment. In some cases, if the individual cell cannot be treated with equal

or similar computing workload for a simulation run, some heuristic function should be

used to estimate the computing workload on each cell (or group of cells) before initiating

a model partition plan.

 86

 In general, dynamic re-partitioning technique needs to be applied to obtain best

processor’s utilizations because of the dynamic nature of some of the modeled systems.

We will discuss such technique in the following section.

Figure 6-6 Irregular Re-Group the Cells to Different Computing Sub-Domains

6.2 DYNAMIC REPARTITION

6.2.1 Overview

Dynamic model partition/repartition applies or changes the model partition plan

during simulation runtime. In dynamic model partition, the models are repartitioned on

demand, and are always dynamically migrated among the computing nodes. In such a

circumstance, the simulation loop temporarily stops by the simulation controller and then

resumes its execution after the model migrations are finished. Figure 6-7 illustrates an

example for dynamic model repartition in DEVS/RMI. The figure on top shows the initial

model partition in two sub-domains. The bottom figure shows that the “cell 13” and

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

Cell Cell Cell Cell

 87

“cell 23” in “sub-domain 2” are migrated to “sub-domain 1” during run-time. Such a

process is accomplished by decoupling the “cell 13” and “cell 23” from their neighbor

cells and sub-domain boundary (or say the digraph to which they belong), and then

migrating them by a RMI call at simulation controller such as RMICoordinator. After

such model migrations, new couplings need to be added to maintain the overall coupling

relationship among cells in the cell-space. As we have mentioned before, such dynamic

decoupling and re-coupling (or adding new couplings) can be done by using “Variable

Structure” technique in DEVS/JAVA and DEVS/RMI. It is also worth to mention that

dynamic repartition is called on when load-balance of the distributed simulation is a

major concern for the tested model. In general, dynamic repartition is helpful for gaining

optimal processor utilizations, and therefore, may enhance the performance of distributed

simulation.

 88

Figure 6-7 Dynamic Model Repartition in DEVS/RMI

6.2.2 A Dynamic Repartition Example

 We will now exemplify the dynamic model repartition using a DEVS “gp” model,

which consists of a “generator” and multiple “processors”. As shown in Figure 6-8, a

“generator” with multiple “processors” (total number is n, a variable to represent number

of “processors” involved in test) is assigned to machine 1, and an individual “processor2”

is assigned to machine 2 by DEVS/RMI simulation controller—RMICoordinator. The

distributed simulation initializes and starts with this setting and then temporally stops

Bold lines represent newly added coupling

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

These arrow lines represent the coupling that will be

removed.

Migration

Migration

 89

during run-time. The RMICoordinator then dynamically migrates the n processors (from

“Processor10” to “Processor1n”) from machine 1 to machine 2, and re-constructs the

couplings among the “generator” and “processors”. Figure 6-9 shows the re-constructed

model structure and the updated models’ physical locations. After this model dynamic

migrations with persistent states, the simulation continues its execution.

Figure 6-8 A DEVS “gp” Model Before Model Repartition

Figure 6-9 A DEVS “gp” Model After Model Repartition

Generator

Processor10

Processor11

Processor1n

Processor2

………….

Machine 1 Machine 2

Generator

Processor10

Processor11

Processor1n

Processor2

………….

Machine 1 Machine 2

 90

 Figure 6-10 and Figure 6-11 are dump screens showing the dynamic repartition in

actions using SSH tunneling to access remote USGS Beowulf cluster. The output of this

distributed execution is compared with the single machine’s execution, and the

correctness of the dynamic repartition is therefore verified.

Figure 6-10 Dynamic Repartition in Action at USGS Beowulf Cluster-1

 91

Figure 6-11 Dynamic Repartition in Action at USGS Beowulf Cluster-2

Now, we look into the detail on how the dynamic repartition happens. As shown

in Figure 6-12: TestSever1 and TestSever2 on two remote machines create and register

their sub-models before RMICoordinator creates two remote references pointing to them.

The object instances of sub-models and their simulators actually exist in the two remote

machines respectively. Thereafter, the RMICoordinator initiates itself using some pre-

defined procedures, and then starts the simulation execution for certain steps. The

simulation is then temporarily stopped before the RMICoordinator calls migration

method, which actually attempts to migrate a bundle of “processors” (from number 1 to

number n) from machine 1 to machine 2. After the model migration is done, the

controller reconstructs the coupling relations to make the overall model structure

unchanged except for their actual physical location. An integer variable numberofP is

 92

defined to represent the number of “processors” being migrated, which helps to

determine the overhead associated with such dynamic model migration as well as number

of migrated models. The distributed simulation is then continued from its stopping point.

Figure 6-12 Sequence Diagram for Dynamic Model Migration

 As we know, the performance is a key concern for using dynamic repartition

during simulation run-time. We show some performance test result here to clarify the

overhead incurred by dynamic repartition. Table 6-1 shows how overhead incurred from

model migration is related to the number of models being transmitted across network.

Figure 6-13 demonstrates such a relation visibly using a line chart. We can see from this

 93

plot that the overhead is nearly linear increased with the increased number of migrated

models. The overhead is significant when migrating large number of model components

dynamically. However, if an optimal dynamic repartition mechanism is used, the overall

distributed simulation performance is expected to be better than using static model

partition.

Number of

“p”

1 5 10 15 20 40 80 160

Overhead(s) 0.086 0.17 0.269 0.35 0.419 0.841 1.73 4.871

Table 6-1 Overhead Incurred by Dynamic Model Migration

Overhead vs. No. of Migrated Models

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

Number of Migrated Models

O
v
e
rh
e
a
d
(s
e
c
o
n
d
s
)

Overhead vs. No. of Migrated Models

Figure 6-13 Overhead Incurred by Dynamic Model Repartitions

The above example is presented as generic mechanism for model dynamic

migrations during simulation run-time. Due to its intrinsic flexibility, it is easy to

implement complex repartition algorithms into the simulation controller, and therefore, to

achieve higher level of dynamic load-balance in a distributed simulation environment.

 94

The overhead incurred by dynamic model repartition should be carefully considered

when applying repartition algorithms. The example presented in this section could be

used as a basis for exploiting more complex dynamic model repartition techniques in a

distribute simulation environment.

 95

7 INVESTIGATING THE COMPUTATION SPACE OF A SIMULATION

WITH DEVS/RMI

7.1 INTRODUCTION

In previous sections, we discussed the DEVS/RMI system architecture,

components and key functionalities, and we show our particular interests on base

performance test, dynamic reconfiguration capabilities of a DEVS/RMI system. In this

section, we will further our discussion of its application on large-scale continuous spatial

model, and we will show the advantages of using DEVS/RMI to investigate the

computation space of a simulation.

As we know, modeling and simulation has become a fundamental technique to the

modern science and engineering, and it is essentially important in predicting the future

behavior of complex dynamic systems. With the development of high performance

computing and simulation, modeling and simulation techniques are being applied in

solving very complex and large-scale problems such as those described by continuous

spatial models. Due to the limitations of a single machine’s computing power and

memory capability, parallel-distributed simulation has to be considered to solve these

continuous spatial models which in general have very large problem sizes. However, such

efforts have been proven to be a great challenge because most of mature parallel-

distributed simulation frameworks, including commercial ones, cannot handle the

distributed simulation in a transparent way.

 96

Parallel-Distributed simulations of continuous spatial models typically must

address questions such as: how fine a resolution (therefore, how many cells) is needed

for acceptable accuracy? and how many computational nodes are needed for acceptable

execution time? In many applied simulations, these questions are not readily answered

because of the effort required to refactor the simulations to accommodate both increases

in cells and computation nodes. To answer such questions requires a flexible

infrastructure in which it is easy to change resolution of the model as well as partitions of

the model to the variable numbers of nodes. In this section, we show how DEVS/RMI, an

implementation of distributed DEVS using remote method invocation (RMI), provides

the flexible infrastructure required for investigating the computation space of simulation.

DEVS/RMI is used to simulate a large-scale 2D continuous cell space model, and the

experiment results show that DEVS/RMI provides a scalable simulation environment

where a large-scale cell space model can gain significant speedup when a cluster of

machines is used. The experimental results also imply that larger cell space model with a

significant computing workload could benefit from distributed simulation with

DEVS/RMI. The flexibility of DEVS/RMI opens up further investigations into the

relationship between speedup of simulation and the partition algorithm as well as the

study of techniques such as load-balancing and self-configuration during simulation run-

time.

 97

7.2 SIMULATIONS OF CONTINUOUS SPATIAL MODELS

Continuous time simulation is used when the state changes occur continuously

across time within the modeled system, and such system behavior typically is described

by differential equations. In contrast, discrete event simulation is generally performed by

using computer models for a system where changes in the state of the system occur at

discrete points in simulation time [69]. Therefore, it is necessary to have a general

methodology that could combine the two into one unified framework because a lot of

systems have shown behaviors of both continuous time and discrete event. Such

combined simulation methodology was first proposed by Fahrland [70], and the need for

such combined simulations has also been addressed by Cellier [71] and Dessouky [72].

With regard to DEVS approach to such unified methodology, a formalism called

DEV&DESS subsumes both the DESS(for continuous system) and the DEVS (for

discrete event system), and thus supports the development of coupled systems whose

components are expressed in any of the basic formalisms [1]. Such multiformalism

modeling capability is very important to handle real-world simulation since some of the

modeled system behavior has to be captured by using both DESS and DEVS. As an

example, a chemical plant is usually modeled with differential equations while its control

logic is best designed with discrete event formalism [1].

DEVS approach to continuous state systems, such as those described by

continuous spatial models, uses quantized state system to integrate the DEVS with the

DESS. A quantized system is a system with input and output quantizers [73], and it uses

quantization to generate state updates but only at quantum level crossings, which affords

 98

an alternative, efficient approach to embedding continuous models within discrete event

simulations. DEV/DESS has provided a framework to represent classes of continuous

and discrete systems, and makes it possible to develop object-oriented simulation

applications with such models.

 Continuous spatial models are those models in which two or three dimensions are

represented [74], and they could be solved by the combined simulation techniques such

as DEV/DESS. In order to get the acceptable accuracy of the simulation of such spatial

models, resolution needs to be increased by adjusting the computation space of the

model. However, the increased resolution commonly needs larger cell space size to be

simulated, and therefore, requires more computation power in the computation space of

the simulation. With the demand for obtaining higher resolution of such models, the

computation space has to be increased accordingly until all the resources for a single

machine are used up. In such a case, parallel-distributed simulation is most likely to be

called on to get the desired resolution by distributing the computation space to sub-

spaces, and then mapping to a cluster of machines. However, a flexible simulation

framework is necessary to deal with such model scale changes as well as the feasibility of

mapping the model to computation nodes.

7.3 HILLY TERRAIN MODEL

In this section, we focus our discussion on a hilly terrain model, which is a two

dimensional continuous spatial cell space model to simulate how a traveler finds the

smallest travel time to a goal point taking account of hilliness of the terrain. The smallest

 99

travel time is measured by the simulation as a function of number and placement of

“hills” where “hills” combine to provide a gradient to each point in a 2D space. The time

to traverse a small region is related to the gradient in the following way: if the gradient is

positive in the traveler’s direction, then the travel time is directly related to its magnitude

(going up slows progress); if the gradient is negative, then the travel time is inversely

related to its magnitude (going down increases progress).

Adding hills in the 2D space increases the computing workload required for each

individual cell in the model. The larger the workload on each cell, the greater the benefit

to be expected from distributed simulation. It is also worth to note that increasing number

of cells results in the increase of memory usage and computational workload for the

simulation engine. As shown in Figure 7-3, each terrain cell represents a DEVS atomic

model with possible states: “output”, “firstoutput”, “secondoutput”, “refractive”,

“receptive”, and etc. Each terrain cell has its own X-Y coordinates in the space and has

eight input and eight output ports for coupling with its existing nearest neighbors. For

example, the cells residing in the inner 2D space are coupled with 8 nearest neighbors,

while the cells residing on the edge or corner of the space are coupled with less than 8

neighbors. Consequently, each cell is influenced by any of its nearest neighbors through

these couplings.

 Figure 7-1 shows how to calculate the gradient and the time to traverse a distance q

for a 1D hilly terrain model. A hill in the space is modeled and represented by the

function h(x), where H represents the height of the hill and c is the central location of the

hill. The time to traverse a distance q (represented by a quantum in DEVS) is a function

 100

of q and the gradient of the hill at a given location x. If the gradient is positive, the time to

traverse q increases; if the gradient is negative, the time to traverse q decreases.

Figure 7-1 Calculate Hilliness and Traversed Time in 1D Space

Moreover, Figure 7-2 shows how to calculate the hilliness in a 2D hilly terrain

space as used in this section, where (ci,cj) represents the x-y coordinator of the center of a

hill in the space, and H(ci,cj) is the height of this hill. The hilliness of the 2D cell space

can then be obtained by sum of the h(ci,cj) (x,y) functions for all hills. The hilliness is used

to calculate the gradient at certain location (x,y), and is then applied to determine the

direction of the traveler at any point in the space. In order to get the shortest travel time

from point A to B, at certain point (x,y), the traveler goes to the “north” or “east”

according to the smaller steepness of the hill between x and y direction, by calculating the

gradient at point (x,y)---partial derivatives of h(x,y) to x and to y.

 101

Figure 7-2 Calculate Hilliness in 2D Space

 The continuous spatial hilly terrain model, described by the mathematic functions

in Figure 7-1 and Figure 7-2, is then modeled in DEVS using quantization technique. The

resulted DEVS model can then be simulated in DEVS/JAVA and DEVS/RMI for

studying the computation space of it. In the following sections, we will present the

detailed implementation, and we show particular interests on the speedup of the

simulation when running this model in a distributed environment provided by

DEVS/RMI.

 102

Figure 7-3Hilly Terrain Model in Simview

7.4 WHY DEVS/RMI FOR HILLY TERRAIN MODEL

Hilly terrain model was initially constructed and simulated in DEVS/JAVA in a

single machine. However, due to the limitations of a single machine’s CPU power and

memory capability, the cell-space size cannot exceed 100 by 100, at which point the out

of memory error of Java VM appears. It is wise to consider increasing the memory for

Java runtime, and an interesting finding is that the Java VM provides only 64M heap

memories as default for regular applications, which is apparently not sufficient enough

for a large cell space model. With such a consideration, a Java runtime parameter “-

Xmx1024m” was used to increase the Java runtime memory at the maximum value for a

regular desktop PC, which generally has a 256M, 512M or 1024M memory. It did solve

 103

the problem a little further and some model cases with a size of 150 by 150 can run,

although considerable amount of time is necessary to get the result. However, a cell space

larger than 150 by 150 cannot be solved in any means in the tested single machine with

512M physical memories. In order to make this situation clearer, let’s do a simple Math

for memory estimation. For example, to initialize a 150 by 150 cell space model, 2 by

150 by 150 DEVS/JAVA model and simulator objects are necessary, and each of these

300 by 150 objects also create other relevant objects. If each model/simulator object

creates 10 related objects and we assume the average occupied memory for each object is

1000 bytes, the total necessary memory is around 450M. Although the heap memory

occupied by Java objects is garbage collected, cell objects cannot benefit from this

dynamic memory management because they are statically created before a simulation

execution starts. It is worth investigating how such a limited memory problem could be

solved by distributed simulation, such as using DEVS/RMI.

Another major reason to use DEVS/RMI to simulate the hilly terrain model is that

such a simulation needs a flexible and scalable distributed framework to reach the

model’s necessary resolution when the problem size goes out of capability for a single

processor’ CPU and memory capabilities. For example, it is not easy to re-tailor and

revalidate the model when a middleware solution is applied, which generally adds

additional simulator control layer and time management layer. As presented in previous

sections, DEVS/RMI can provide a flexible and scalable infrastructure, which can be

easily applied to refactor the simulation application in a circumstance when both problem

sizes and computation nodes need increase. In the following experimentation,

 104

DEVS/RMI works by changing computation space of a simulation at model initialization

phases, and maintains the same partition algorithm for the increases of the both cell space

size and the computing nodes. This is due to the seamless support for distributed

simulation of DEVS/RMI, which does not rely on additional layers on top of its

simulation engine. By using easily configured simulation experiments of DEVS/RMI, it

is easy to answer questions such as how fine a resolution (therefore, how many cells) is

needed for acceptable accuracy? And how many computational nodes are needed for

acceptable execution time? In contrast, in many other approaches, such questions are

difficult to be answered.

7.5 LINUX CLUSTER

In this experiment, 3, 6 and 11 nodes of a 40 nodes Linux cluster are used to test

the hilly terrain model under DEVS/RMI. Each node in the cluster has an AMD Athlon

XP 2400+ with 2GHz CPU and 512M physical memories, and all the nodes are

connected by 100M Ethernet switch with TCP/IP as communication protocol. The

operating system of each node is GNU/Linux 2.4.20 with Java Runtime 1.4.1-01

installed.

7.6 MODEL PARTITION FOR HILLY TERRAIN MODEL

In order to run the hilly terrain model in DEVS/RMI in an efficient way, the

original model is partitioned to computing nodes by dividing it into several

interconnected sub-models. In this experiment, the hilly terrain model is evenly divided

 105

by columns according to the number of computing nodes used for testing. As shown in

Figure 7-3 and Figure 7-4, the digraph of original cell space is divided into two sub-

digraphs, which are interconnected to each other through input/output ports. In fact, the

inter-connected sub-digraphs are equivalent to the original digraph in terms of coupling

relations of cells in the space. Thereafter, each sub-space can be assigned to a computing

node easily. It is verified that the partitioned model has the same output result when

running in DEVS/RMI compared with the original model running in a single machine

using DEVSJAVA. The reason to do such a partition is that sub-digraphs could be

assigned to computing nodes evenly and then be controlled by their local

RMICoupledCoordinators, and thus avoid RMI calls within sub-digraphs. This model

partition mechanism has been proposed and discussed in earlier chapters aiming to

increase the locality. Each subspace, for example, “s0” or “s1” in Figure 7-4 is assigned

to different computing nodes respectively and either of them is controlled locally by the

corresponding RMICoupledCoordinator, which is then controlled by RMICoordinator

residing on the main simulation control node.

In general, such model partition aims to reduce the RMI overhead caused by

message passing among cells. Although such partition involves generating a new

equivalent model of original model, the overall message passing efficiency may be

increased due to reduced RMI overhead.

 106

Figure 7-4 Divided Hilly Terrain Model in Simview

7.7 AUTOMATIC TEST SETUP

For a large-scale model such as hilly terrain model, it is necessary to set up the test

using DEVS/RMI in an automatic way in order to make collecting experimental data

more efficient. Therefore, on each computing node, the same RMI server program is

started for accepting the request from the simulation main control node. The main

program in simulation main control node actually uses synchronized threads to initialize

all the computing nodes at first. Each thread generally uses a RMI call to let the

corresponding computing nodes to start creating and registering its models as well as

simulators/coordinators. When this initialization phase finished on all computing nodes,

the main control program then automatically continues executing and starting the

simulation control loop. This automatic setup is very important for simulating large-scale

 107

cell space because it is not practical to manually start the initialization phase in each

computing node, and then to wait for their finishing after a long time delay.

 As shown in Figure 7-5, RMICoordinator calls the regSimulator() method to

initialize the creation and registration of remote simulators on two remote machines,

which host TestServer1 and TestServer2. After this procedure is finished, the

RMICoordinator then starts the simulation execution loops. Therefore, the overall

distributed simulation is fully automatically initialized and controlled by the “head” node

running RMICoordinator.

Figure 7-5 Sequence Diagram for Automatic Setup Distributed Simulation

 108

7.8 SPEEDUP OF SIMULATION FOR HILLY TERRAIN MODEL

In this section, some experiment results for the distributed simulation of hilly

terrain model are presented and discussed. The focus is on the performance of the

DEVS/RMI when being applied on a cluster of computing nodes to solve large problem

sizes for this model.

As aforementioned, the purpose of simulating hilly terrain model is to obtain the

shortest travel time of a traveler in a terrain. As added obstacles for the traveler, the

existence of hills in the terrain delays the shortest travel time. The size of the cell space

determines the resolution of the measurement of the shortest travel time, however,

oversized cell space is not necessary to capture the converged shortest travel time

constant for a given condition of hills in the space. Figure 7-6 shows how the simulation

resolution for the hilly terrain model relates to the number of cells (or say problem size).

When the number of cells reaches certain level, the measured travel time converges to a

constant. This constant is different for different number of hills as well as the setting of

these hills in the cell space because the hills in the cell space directly affect the shortest

travel time. Figure 7-7 shows how the travel time increases with number of hills in the

cell space. With the increase of the hills in the space, the number of cells in the space

needs to be increased significantly in order to find the converged constant. Therefore, a

scalable simulation framework such as DEVS/RMI is on demand to solve this simulation

problem.

 109

Travel Time vs. No. of Cells

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000

Number of Cells

T
ra
v
e
l
T
Im
e

one hill

four hills

Figure 7-6 Travel Time vs. Number of Cells

Travel Time vs. No. of Hills

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

Number of Hills

T
ra
v
e
l
T
im
e

100 by 100 cell space

Figure 7-7 Travel Time vs. Number of Hills

In fact, DEVS/RMI works straightforwardly on obtaining the shortest travel time

constant for a cell space with added hills by scaling the model to larger sizes. A cell space

 110

with one hill is also tested to compare with the model with 100 hills in the cell space.

Increasing both the cell space size and the computing nodes is easily accomplished using

DEVS/RMI, and does not alter the model domain-decomposition technique used in this

experiment. Figure 7-8 shows the speedup for simulation initialization time by

DEVS/RMI using 3, 6 and 11 nodes for one hill and 100 hills respectively in the cell

space. It could be seen that the initialization speedups increase dramatically with the

increased computing nodes for a fixed cell space size, because each node initializes only

one partitioned sub-space. However there is almost no difference of speedup for one hill

and 100 hills, for a given number of nodes, because adding hills has no effect to cell

space size and the speedup of initialization is only related to the number of cells on each

computing node. It is easy to find that adding computing nodes can greatly reduce the

initialization time for the simulation, especially for larger cell space model.

Speedup of Initialization Time

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000

No. of Cells

S
p
e
e
d
u
p
(s
in
g
le
/m
u
lt
i-
n
o
d
e
s
)

1 hill 3 nodes

1 hill 6 nodes

1 hill 11 nodes

100 hills 3 nodes

100 hills 6 nodes

100 hills 11 nodes

Figure 7-8 Speedup of Initialization Time with DEVS/RMI

 111

Speedup of Simulation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2500 5000 7500 1000

0

1250

0

1500

0

1750

0

2000

0

2250

0

2500

0

No. of Cells

S
p
e
e
d
u
p
(s
in
g
le
/m
u
lt
i-
n
o
d
e
s
)

3 nodes one hill

6 nodes one hill

11 nodes one hill

3 nodes 100 hills

6 nodes 100 hills

11 nodes 100 hills

Figure 7-9 Speedup of Simulation Using DEVS/RMI

Figure 7-9 shows the speedup of the simulation by DEVS/RMI using 3, 6 and 11

nodes for one hill and 100 hills in the cell space. For one hill, the speedup of the

simulation execution time increases from below 1 to near 1 when increasing the number

of cells in cell space, and adding more nodes actually degrade the performance. This is

because adding one hill in the hilly terrain does not increase enough workload on each

cell to compensate the increased communication workload incurred by RMI calls.

When 100 hills are added to the cell space, each cell is injected with a significant

workload and the overall workload for the cell space increases with the increased number

of cells. However, for a fixed cell space, with the increased computing nodes, each node

has less computing workload but with increased communication workload due to the

RMI calls among the edge cells on each node as well as the RMI calls between

computing node and simulation control node. Figure 7-9 shows that for a 100 by 100 cell

 112

space, a maximum speedup could be achieved by using 11 nodes. When cell space size

continuously increases beyond 100 by 100, the speedup decreases for all 3, 6 and 11

nodes for 100 hills due to the increased RMI calls incurred by increased edge cells. In

general, for a larger cell space in this experiment, increasing computing nodes also

increases speedup of simulation if each cell has enough workload on it. This experiment

implies that there is an optimal point for speedup when both problem size and computing

nodes increase. DEVS/RMI makes it easy to locate such critical points by scaling the

simulation transparently from single processor to multiple processors.

7.9 SIMULATING VERY LARGE HILLY TERRAIN MODEL

A 400 by 400 hilly terrain model is tested under DEVS/RMI with 8 computational

nodes, and it works with no problem but needs considerable amount of time to get the

result because the necessary simulation loops increase significantly with the increase of

the cell space size for this particular model. However, this verifies that DEVS/RMI could

solve very large cell-space models as long as the necessary computing nodes are

available with the help of distributed memory technology used in DEVS/RMI.

7.10 CONCLUSION

We have seen in this chapter that DEVS/RMI provides a very flexible, dynamic

and scalable distributed simulation infrastructure, which could be easily applied to

refactor the simulation applications in a circumstance when both problem sizes and

computation nodes need increase. The experimental results could directly help on

 113

answering the questions such as: how fine a resolution (therefore, how many cells) is

needed for acceptable accuracy? and how many computational nodes are needed for

acceptable execution time? This is because that refactoring the spatial model in the

experiment is transparent with the help of DEVS/RMI.

 114

8 LARGE-SCALE DISTRIBUTED AGENT BASED SIMULATION USING

DEVS/RMI

8.1 DISTRIBUTED SIMULATION OF VALLEY FEVER MODEL

In this chapter, we further our discussion on DEVS/RMI by investigating a highly

dynamic 2D cell space model called valley fever. We focus our discussion on how

speedup of the distributed simulation relates to the partitioned workload on the

computing nodes, and we will continue our interests on examining the concept of model

“activity” and how it affects the workload distribution in a distributed simulation

environment.

8.1.1 Valley Fever Model

The Agent-based Valley Fever Model initially designed by Bultman, Fisher and

Gettings [66] is a 2D dynamic cell space model to represent how the fungal spores grow

on a patch of field over a long period of time with given environmental conditions such

as wind, rain, moisture and etc. As shown on Figure 8-1, it consists of several individual

model components: wind model, rainfall model, coupling control model and patch model.

All these components are DEVS atomic models except patch model, a DEVS coupled

model consisting of an atomic model called “Sporing Process” and another atomic model

called “environment”. All these models are assigned to a 2D cell space DEVS diagraph

and the patch models are in fact have X-Y coordinator in the cell space. The wind model

and the rainfall model are both statistic models which can generate wind data and rain

data periodically. The output from them are then sent to the coupling control model

which uses the input rain data and wind data to determine the dynamic coupling of rain

 115

model with patches as well as the dynamic coupling among patches. This model structure

is highly dynamic and changes its structure on each simulation step.

Figure 8-1Valley Fever Model in DEVSJAVA SimView

8.1.2 Model Partition for Valley Fever Model

In this experiment, the static model partition is used in order to reduce the cost of

dynamically creating remote simulators with models passing as parameters. Several

different partition methods are tested and it was found that the distributing other model

components except patch cells does not have much difference regarding the simulation

execution time. With the increase of the patch cells for the model, it is easier to see that it

is necessary to partition these cells.

 116

Therefore, the patch cell space is evenly divided by columns according to the

number of computing nodes. For example, to partition a 10 by 10 patch space on 5 nodes,

every two columns of cells is assigned to one node. All the other model components are

sitting with the simulation control node. On each computing node, a program called

“testserver” is started to start RMI registry by itself and creates a set of simulator/model

pairs which belong to this node according to the model’s putWhere() attributes, then the

references of the simulators are registered with RMI registry for the lookup by the

RMICoordinator. After above mentioned initialization of each node, the RMICoordinator

is started at the main simulation control node.

8.1.3 Distributed Simulation Results for Valley Fever Model

As shown in Figure 8-2, a 10 by 10 patch space is divided into 1, 2, 5, 10 nodes

respectively to measure the total simulation execution time in terms of 100 simulation

loops. It can be seen that the simulation time has a significant increase with the increase

of the computing nodes due to the added communication overhead, however, there is no

significant execution time increase for simulating the model among two nodes, five nodes

and ten nodes.

 117

0

100

200

300

400

500

1 2 5 10

Execution

Time(S)

Figure 8-2 Simulation Execution Time(seconds) vs. No. of Computing Nodes in

Original Model

8.1.4 Workload Injection to the Distributed Cells

From the experiment result obtained from above section, it can be inferred that the

increase of simulation execution time is due to the increased communication workload

among the nodes. It is worthwhile to examine what may happen if the workload is

increased on distributed cells without increasing the communication workload (such as

number of RMI calls through network). A 5 by 5 cell space is tested in terms of 400

simulation loop in order to get the experiment result relatively quicker. Figure 8-3 shows

how the situation changes compared with the result obtained in original model when

different workload is injected to the distributed cells. For the figure on left side, whenever

each patch cell gets an external event, it calculates the sum of integers from 1 to 100 as a

way to add computing workload. It can be seen that the total execution time of overall

simulation is slightly increased for 5 nodes compared with for 1 node. For the figure on

the right side, whenever each patch cell gets an external event, it calculates the sum of

integers from 1 to 150, and we can see that the total execution time of overall simulation

 118

is greatly reduced when using 5 nodes compared with using only 1 node. It can be then

seen that the workload on the distributed cells plays an important role in affecting the

performance of the distributed simulation. This experiment result implies that, for the

original valley fever model, the distributed cells do not have enough workload to

compensate the cost of increased communication incurred by RMI calls across network.

0

200

400

600

800

1000

1 5

workload1

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5

workload2

Figure 8-3 Simulation Execution Time(seconds) vs. No. of Computing nodes

Under Different Workload on Distributed Cells

From all of above experimentations, we have seen that DEVS/RMI plays an

important role in solving large-scale cell DEVS models in a transparent and scalable

fashion. The experimental results imply that a larger cell space model with a significant

computing workload can benefit from distributed simulation with DEVS/RMI in terms of

getting positive speedup.

 119

8.2 DYNAMIC RECONFIGURATION OF DISTRIBUTED SIMULATION OF

VALLEY FEVER MODEL USING ‘ACTIVITY’

8.2.1 Introduction

From our previous discussions, we could say that it is worth investigating model

partition algorithms, in particular, dynamic partition or repartition techniques in order to

improve the performance of distributed simulation. Dynamic partition or re-partition is

important for complex simulation models, where their run-time behaviors are difficult to

predict. However, a well-defined model partition plan is hard to obtain in practice when

running the model in distributed fashion. Therefore, a parallel or distributed simulation

framework that supports dynamic reconfiguration is needed to properly study dynamic

repartitioning of simulation models on clusters of machines.

In the previous section, we use a static “blind” model partition for running valley

fever model in DEVS/RMI in a distributed fashion. We have found that the workload in

the partitioned cells plays an important role in affecting the distributed simulation

performance. In this section, we will focus on dynamic reconfiguration in distributed

simulation, and particularly, we are interested in how “activity” affects the model

partition and consequently influences the performance of distributed simulation. We

exemplified such a concept of “activity” by continually using the valley fever model

discussed in previous section.

As presented in some earlier work [67][68], DEVS based distributed simulation

framework uses “activity” as a measure of computing workload. As we know, DEVS

provides a solid simulation methodology for representing asynchronous spatial behavior

 120

that is usually implemented by time-stepped simulation. Therefore, in this section, we

show how to exploit the heterogeneity of model behavior in time and space that often

results from such DEVS representations. And then we use such “activity” metric to

balance the computation workload using dynamic reconfiguration of distributed

simulation. We will show how to exploit this “activity” metric to improve the distributed

simulation performance by using an activity-based partitioning approach.

In the following sections, we present a dynamic reconfiguration mechanism that

uses an “activity” metric which is dynamically gathered before a distributed simulation

execution, and therefore, provides a useful information for deciding an improved model

partition plan. Consequently, such a partition plan will prove to be better than a blind-

partition in terms of simulation execution performance.

8.2.2 Static Blind Model Partition vs. Dynamic Reconfiguration Using “Activity”

In order to compare with the dynamic model partition using “activity”, static blind

model partition is used to map the “patches” models to computing nodes. In this setting,

“wind”, “rain” and “coupling_control” models are all arranged at the “head” node, and

the “patches” cells are evenly divided to other computing nodes in a “blind” fashion, i.e.,

without regard to their measured activities. For example, for a 4 by 4 cell space to run on

4 computing nodes, each column of cells is assigned to one computing node resulting in

an evenly distributed cells to computing nodes-- 4 cells on each node.

The static blind model partition does not consider the imbalance of workload on

each individual cell. Some cells may have less “activity” than others, and therefore, are

 121

subject to less computing workload. To partition the cells blindly results in imbalance of

workload of computing nodes, which cannot benefit the overall simulation performance.

In general, for a given highly dynamic simulation model such as valley fever, it is

difficult to predict the model run-time behavior.

Fortunately, in the valley fever model, production of spores is the main driver of

activity in patches. “Sporing” is largely determined by the strength and direction of the

wind which is an external input to the model. New “sporing” patches are typically highly

concentrated in the direction of the wind. The fact that wind regimes change relatively

infrequently allows us to obtain stable activity distributions using simulation on a single

machine for each such regime. Activity at each cell is measured over such a period as the

total number of internal transitions that the cell undergoes during that period.

Experimentally, we verify that this number is closely related to the computational

intensity required to simulate a cell during such a period.

 Given the dependence of activity on wind regimes, we can measure model

“activity” by executing the model (on a single machine or in distributed fashion) for

desired wind regimes and gather the model “activity” metric through such a run. This

information can then be applied to obtain a model partition plan for a distributed run of

the same model configuration. Since the wind regime is controlled externally to the

model, we can monitor the wind generator and apply the partition plan that is optimal for

a regime whenever the wind changes. We measure the model activity through counting

the internal transitions of the ‘sporingProcess’ to see how a dynamic model partition

using such information can benefit the distributed simulation performance. In this

 122

example, a simplified method is used to determine a subset of cells called high-activity

cells. Firstly, the average internal transition count of all the cells in the cell space is

obtained by running the model in the head node for a given wind regime. At the end of

this run, each cell compares its own count with the average, if it is larger than the

average, the cell’s id is added to a linked list data structure for high-activity cells. Figure

8-4 illustrates how high-activity cells are selected from the cell space.

Figure 8-4 Selecting High-Activity Cells

 After the high-activity sets are obtained for each wind regime, the following

process occurs within a single simulation run. The RMICoordinator in the head node

creates a new valley fever model and partitions it according to the initial wind regime.

Every time a new wind regime is detected, the RMICoordinator creates a new valley

All Cells

Counting number of

internal transitions

of each cell

Calculate Average of

internal transitions

Add this cell to

high-activity list

If this cell’s number of internal
transitions is larger than the

average Else

Add this cell to

low-activity list

Compare each cell with

average

 123

fever model, and partitions its cells so that the high activity cells for that regime are

granted more computing power than are the remaining cells. Finally, the cells are

dynamically loaded to computing nodes and the distributed simulation is then re-started

from the state that the model was in before the repartition.

In the following test, we discuss one iteration of this process in which all the low

activity cells are assigned to one computing node, and all the high activity cells are then

evenly distributed to other available computing nodes. Some test results are presented in

next section.

8.2.3 Test Environment and Results

In this experiment, 5 nodes of a 40 node Linux cluster are used, where each node

in the cluster has a AMD Athlon XP 2400+ with 2GHz CPU and 512M physical

memory. All the computing nodes are inter-connected by 100M Ethernet switches, and

the operating system of each node is GNU/Linux 2.4.20 with Java Runtime 1.4.1-01

installed.

 In this test, static blind partition is compared with dynamic reconfiguration in

terms of simulation execution time. A 4 by 4 and 8 by 8 cell spaces are used and are

executed with 400 and 2000 simulation steps. The purpose of this test is to verify the

advantage of using “activity” based dynamic repartition when compared with static

“blind” model partition. Such verification will also prove that the model “activity” is a

more accurate indicator for computing workload for the examined cells in a cell space.

 124

Using 5 computing

nodes including 1 head

node.

Static Blind Partition not

considering model

activities

Dynamic

reconfiguration

using “activity”

Performance

increase by

percentage

4 by 4 cells with 400

simulation steps

28.124s 27.566s 1.98%

4 by 4 cells with 2000

simulation steps

113.977s 114.968s -0.87%

8 by 8 cells with 400

simulation steps

256.49s 248.644s 3.06%

8 by 8 cells with 2000

simulation steps

1238.479s 1216.97s 1.73%

Table 8-1 Distributed Simulation Execution Time for Static Blind Partition and

Dynamic Reconfiguration Using “Activity”—5 nodes.

Using 9 computing

nodes including 1 head

node.

Static Blind Partition not

considering model

activities

Dynamic

reconfiguration

using “activity”

Performance

increase by

percentage

4 by 4 cells with 2000

simulation steps

134.74s 110.49s 18%

8 by 8 cells with 2000

simulation steps

1348.17s 1199.87s 11%

Table 8-2 Distributed Simulation Execution Time for Static Blind Partition and Dynamic

Reconfiguration Using “Activity”—9 Nodes.

As shown in Table 8-1, for a 4 by 4 cell space, there is no noticeable difference

when using dynamic reconfiguration. However, for 8 by 8 cell space, dynamic partition

using model “activity” improves the simulation performance in a noticeable manner. This

is because for a 4 by 4 cell space, there is only several cells difference in each computing

node, and these cells cannot contribute too much on workload difference. It could be

 125

expected that for a large cell space with long simulation execution steps, model “activity”

could play an increasingly important role on affecting distributed simulation

performance. Table 8-2 further verifies our expectation on performance improvement

when more computing nodes are used on high-activity cells. We can see a significant

performance increase using “activity” based model repartition.

The test results suggest that it worth further investigating the concept of model

“activity” in more detail and to develop model partition plans that exploit the activity

distributions in a more precise way.

8.2.4 Discussion

In this section, we present and demonstrate how DEVS “activity” affects

performance of a distributed simulation. Dynamic model reconfiguration plays a very

important role for large-scale and highly asynchronous and irregular models. We have

seen that dynamic model reconfiguration using the “activity” metric can improve

distributed simulation performance. It is also worth to note that DEVS/RMI provides a

flexible distributed simulation environment for studying and investigating dynamic

model partition/repartition algorithms.

For the future work on the “activity” based distributed simulation, adaptive

reconfiguration needs to be investigated to improve the distributed simulation

performance. The concept of “activity” needs to be studied further to provide more

detailed information on how significant changes in activity distribution can be detected

during run time as a basis for dynamic load balancing, thereby promoting an optimal and

 126

dynamic reconfiguration schema for a distributed simulation execution. We have found

that high concentrations of activity in space that change relatively slowly during

simulation can be exploited to significantly reduce execution time within an appropriate

infrastructure for dynamic reconfiguration in a DEVS based distributed simulation

framework. In contrast to other dynamic load balancing approaches, the activity-based

approach discussed here exploits model properties directly rather than relying on

resource-based measurements on which to base reconfiguration.

In the next chapter, we will discuss some of the performance issues involved in

using DEVS/RMI in a distributed simulation environment.

 127

9 CONCLUSION AND FUTURE WORK

From the experiments performed on the previous chapters, it is found that the

performance of DEVS/RMI highly depends on the model component partition, especially

the model component workload partition. For example, if the distributed components or

cells have less workload, the performance of the simulation can worsen compared with

that in a single machine due to the latency of the network and the remote method calls

among distributed simulators. When the workload on cells increases without increasing

the number of RMI calls, the speedup of the simulation is significant when running the

model on a computing cluster with DEVS/RMI.

Dynamic model partition/repartition in a distributed environment is fully

supported in DEVS/RMI. However, the change of model structure such as coupling

information among distributed machines is costly due to the RMI calls and network

latency. It is worth to investigate further how the dynamic model repartition could affect

the overall simulation performance in a distributed environment.

With regard to the underlying communication protocol, Sun’s RMI used in

DEVS/RMI may not be the best implementation for high performance distributed

simulation. However, a large-scale model still achieves performance advantages using

DEVS/RMI if the distributed model components have a noticeable workload. If an

alternative high-speed RMI protocol is implemented in DEVS/RMI, it can be expected

that a high performance fully object-oriented distributed simulation environment can be

built to solve very complex and large-scale simulation problem.

 128

Another important issue that needs to be considered is that it is impractical to

simulate a valley fever or a hilly terrain model in a single machine with a cell space

larger than 85 by 85 because of memory limitation of a single machine. This implies that

there is a limitation of problem size when simulating large-scale cell space on single

machine, which can be solved by distributing the large size model to a computer cluster

with DEVS/RMI. In such situations, distributing the model to multiple computing nodes

is the only solution so long as the performance is not overly degraded by a

communications burden. The results for distributed simulation of a large-scale hilly

terrain model render DEVS/RMI as a promising technique to solve large-scale cell space

models that are critical for investigating some of today’s scientific and engineering

problems.

 In a summary, with the increased demand for distributed simulation to support

large-scale modeling and simulation applications, much research has focused on

developing a software environment to support simulation across a heterogeneous

computing network. Among the distributed simulation frameworks, Discrete Event

System Specification (DEVS) based tools are attracting more and more attentions due to

its intrinsic properties to support object oriented modeling and simulation. Traditionally,

distributed simulations have to face the difficulties for mapping models to computing

nodes, and dynamic reconfiguration of a distributed simulation is in most cases not

possible due to the lack of the flexibilities of the implemented framework. Middleware

based solutions have been dominating for years, however, additional overhead is incurred

because of adding a new layer for simulation time management. Furthermore,

 129

inconsistency exists when migrating a single machine’s simulation to multi-processor

systems, which means that a verified model has to be revalidated after it is transferred

from single processor to multi-processor. Also, model mapping is largely a manual

process which involves time-consuming work on redoing the single machine’s model

code.

 In this dissertation, we have developed a new implementation of the DEVS

formalism called DEVS/RMI as a natively distributed simulation system, which aims to

reduce the overhead that is added by middleware solutions for the distributed simulation.

We have shown that DEVS/RMI has the capability to distribute simulation entities across

network nodes seamlessly without any of the commonly used middleware. Because Java

RMI supports the synchronization of local objects with remote ones, no additional

simulation time management needs to be added when distributing the simulators to

remote nodes. We have seen from our studies on the two complex and dynamic models

that such approach is well suited for complex, computationally intensive simulation

applications. It also provides an extremely flexible and efficient software development

environment for rapid development of distributed simulation applications.

 We studied a hilly terrain continuous spatial in distributed simulation with support

of DEVS/RMI. In general, distributed simulations of continuous spatial models typically

must address the capability of the framework to refactor the simulations to accommodate

both increases the resolution (number of cells) and computation nodes. However, to

answer such questions requires a flexible infrastructure in which it is easy to change

resolution of the model as well as partitions of the model to the variable numbers of

 130

nodes. In the experimentation of the hilly terrain model, we show how DEVS/RMI

provides the flexible infrastructure required for investigating the computation space of

the simulation. The experimental results show that DEVS/RMI provides a scalable

simulation environment where a large-scale cell space model could gain significant

speedup when a cluster of machines is used. The experimental results also imply that

larger cell space model with a significant computing workload could benefit from

distributed simulation with DEVS/RMI.

 Furthermore, we show our particular interests on model partition and dynamic

repartition techniques that are implemented in DEVS/RMI. We exemplified our ideas by

investigating an agent-based valley fever model on a Beowulf cluster and found that the

speedup of the distributed simulation is directly related to the computing workload

assigned to the computing nodes. We discussed and used the concept of DEVS “activity”

concept and applied such concept on the reconfiguration of the distributed simulation.

We have seen how such “activity” can be used as a more accurate measurement of

workload distribution in a distributed simulation environment, and how “activity” based

model repartition enhances the distributed simulation performance.

 We also discussed performance concerns of using DEVS/RMI and promoted

potential techniques for improving the distributed simulation performance in a

DEVS/RMI supported environment.

 For the future work, it is suggested to further investigate the relationship between

speedup of simulation and the model partition/repartition algorithms. The dynamic aspect

of DEVS/RMI needs to be continuously developed and implemented to improve the

 131

overall efficiency of a distributed simulation. “Activity” based model partition and

repartition need further concerns due to its role on affecting the load-balance of a

distributed simulation.

 132

REFERENCES

[1]. Bernard P. Zeigler, Tag Gon Kim and Herbert Praehofer, “Theory of Modeling

and Simulation”, Academic Press, 2000.

[2]. Zhang, M., Zeigler, B.P., Hammonds, P., "DEVS/RMI-An Auto-Adaptive and

Reconfigurable Distributed Simulation Environment for Engineering Studies", ITEA

Journal, March/April 2006.

[3]. Bernard P. Zeigler, Yoonkeon Moon and etcs, "DEVS-C++: A High Performance

Modelling and Simulation Environment", Twenty-ninth Hawaii International Conference

on System Sciences, Jan. 1996.

[4]. Nutaro, J., ADEVS (A Discrete EVent System simulator), Arizona Center for

Integrative Modeling & Simulation (ACIMS), University of Arizona, Tucson, AZ,

http://www.ece.arizona.edu/~nutaro/index.php.

[5]. Wainer. G, "CD++: a toolkit to define discrete-event models", "sofware,practice

and experience",Wiley. Vol.32, No. 3, 2002.

[6]. Chungman Seo, Sunwoo Park, Byounguk Kim, and etc., “Implementation of

Distributed High-performance DEVS Simulation Framework in the Grid Computing

Environment”, 2004 High Peformance Computing Symposium.

[7]. Saehoon Cheon, Chungman Seo, Sunwoo Park, and etc., “Design and

Implementation of Distributed DEVS Simulation in a Peer to Peer Network System”,

2004 Military, Government, and Aerospace Simulation.

[8]. Jong-keun Lee, Min-Woo Lee, Sung-Do Chi, “DEVS/HLA-Based Modeling and

Simulation for Intelligent Transportation Systems”, SIMULATION, Vol. 79, No. 8, 423-

439 (2003).

[9]. Bernard P. Zeigler, Doohwan Kim, Stephen J. Buckley, “Distributed supply

chain simulation in a DEVS/CORBA execution environment”, Proceedings of the 31st

conference on winter simulation: Simulation---a bridge to the future - Volume 2,

December 1999.

[10]. B. P. Zeigler, H.S. Sarjoughian, “Approach and Techniques for Building

Component-based Simulation ModelsThe Interservice/Industry Training”, presentation at

Simulation and Education Conference '04, Orlando, FL

 133

[11]. B.P. Zeigler and Hessam S. Sarjoughian, “Introduction to DEVS Modeling &

Simulation with JAVA”, ACIMS publication, Arizona Center for Integrative Modeling

and Simulation, Tucson, Arizona,

http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/CBMSManuscript.zip

[12]. B.P. Zeigler , “DEVS Simulation Protocols and Real-time Simulation”,

http://www.acims.arizona.edu/EDUCATION/ECE575Fall05/ECE575Fall05.html

[13]. JAVA RMI Specification by Sun Microsystems, Inc.,

http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf

[14]. Bernard P. Zeigler, Hessam S. Sarjoughian, “DEVS Component-Based M&S

Framework: An Introduction”, AIS 2002.

[15]. X. Hu, “A Simulation-based Software Development Methodology for Distributed

Real-time Systems”, Ph. D. Dissertation, Fall 2003, Electrical and Computer Engineering

Dept., University of Arizona

[16]. CORBA, http://www.corba.org/

[17]. DCOM, http://msdn2.microsoft.com/en-us/library/ms809311.aspx

[18]. .NET Remote, http://www.developer.com/net/cplus/article.php/1479761

[19]. Introduction to Java Remote Method Invocation (RMI) ,Written by Chris

Matthews http://www.edm2.com/0601/rmi1.html

[20]. Sun’s RMI tutorial, http://java.sun.com/docs/books/tutorial/rmi/overview.html

[21]. RMI performance:

http://www.javaolympus.com/J2SE/NETWORKING/RMI/RMIPerformace.jsp

[22]. Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske

Plaat. “An efficient implementation of Java's remote method invocation”, In Proceedings

of the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP, pages 173-182, May 1999.

[23]. Michael Philippsen, Bernhard Haumacher and Christian Nester, “More Efficient

Serialization and RMI for Java”, In Concurrency: Practice and Experience 12(7):495-518,

John Wiley & Sons, Ltd., Chichester, West Sussix, May 2000.

[24]. R. M. Fujimoto, Parallel and Distributed Simulation Systems. New York: Wiley-

Interscience, 2000.

 134

[25]. K. M. Chandy and J. Misra, "Distributed Simulation: ACase Study in Design and

Verification of Distributed Programs," IEEE Transactions on Software Engineering, vol.

5, pp. 440-452, 1979.

[26]. R. E. Bryant, "Simulation of Packet Communications Architecture Computer

Systems," Massachusetts Institute of Technology. MIT-LCS-TR-188 MIT-LCS-TR-188,

1977.

[27]. Jefferson, D. R., "Virtual Time", ACM Transactions on Programming Languages

and Systems, Vol. 7, No. 3, pp 404—425, July 1985.

[28]. Jefferson, D. R., "Virtual Time II: Storage Management in Distributed

Simulation", In Proceedings of the Annual Symposium on Principles of Distributed

Computing, pp 75—89, Aug. 1989.

[29]. Samir Das, Richard Fujimoto and etcs, "GTW: a time warp system for shared

memory",1994 Winter Simulation Conference.

[30]. HLA, https://www.dmso.mil/public/transition/hla/

[31]. Hamdy A. and Taha,"SIMNET simulation language",1987 Winter Simulation

Conference.

[32]. DIS 92 Distributed Interactive Simulation - Operational Concept. Sept. 1992.

[33]. SPEEDES Project, http://www.speedes.com/speedes2_2.html

[34]. Pooch and Wall, "Discrete Event Simulation(A practical approach), CRC

press,1993

[35]. Sim++,http://www.cs.sunysb.edu/~algorith/implement/simpack/implement.shtml

[36]. Simscript, http://www.simprocess.com/products/simscript.cfm

[37]. jDisco project, http://www.akira.ruc.dk/~keld/research/JDISCO/JDISCO-

1.1/doc/Report.pdf

[38]. Mittal, S., Risco-Martín, J.L., Zeigler, B.P., "DEVSML: Automating DEVS

Execution Over SOA Towards Transparent Simulators", DEVS Symposium, Spring

Simulation Multiconference, Norfork, Virginia, March

[39]. Pothen, A. 1997. “Graph Partitioning Algorithms with Applications to Scientific

Computing”, Parallel Numerical algorithms. Kluwer Academic Publishers, 323-368.

 135

[40]. Fjallstrom, P. ,"Algorithms for Graph Partitioning: A Survey", Computer and

Information Science vol. 3,1998.

[41]. Frieze, A. and M. Jerrum, "Improved approximation algorithms for MAX k-CUT

and MAX BISECTION." Alogorithmica 18:61-77, 1994

[42]. Banan, M.R. and K. D. Hjelmstad, "Self-organization of architecture by simulated

hierarchical adaptive random partitioning", Presented at International Joint Conference

of Neural Networks (IJCNN), 1992.

[43]. Berger, J.M. and S. H. Bokhari, "A Partitioning Strategy for Non-Uniform

Problems across Multiprocessors." IEEE Transactions on Computers 36:570-580, 1987.

[44]. Simon, H.D. , "Partitioning of Unstructured Problems for Parallel Processing."

Computing Systems in Engineering 2:135-148, 1991.

[45]. Kirkpatrick,V., C.D. Gelatt, M.P. Vecchi, "Optimiza tion by simulated

annealing." Science 220:671-680, 1983.

[46]. Kernighan, B. and S. Lin, "An Efficient Heuristic Procedure for Partitioning

Graph." The Bell System Technical Journal 49:291-307, 1970.

[47]. J. Dongarra, I. Foster, G. Fox, K. Kennedy, and A. White, “Graph Partitioning for

High Performance Scientic Simulations”, CRPC Parallel Computing Handbook, Morgan

Kaufmann, 2000.

[48]. C. Ashcraft and J. Liu., “A partition improvement algorithm for generalized

nested dissection”, Technical Report BCSTECH 94-020, York University, North York,

Ontario, Canada, 1994.

[49]. C. Ashcraft and J. Liu, “Using domain decomposition to find graph bisectors”,

Technical report, York University, North York, Ontario, Canada, 1995.

[50]. M. Berger and S. Bokhari, “Partitioning strategy for nonuniform problems on

multiprocessors”, IEEE Transactions on Computers, C-36(5):570-580, 1987.

[51]. T. Bui and C. Jones, “A heuristic for reducing fill in sparse matrix factorization”,

6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445-452, 1993.

[52]. J. Cong and M. Smith, “A parallel bottom-up clustering algorithm with

applications to circuit partitioning in VLSI design”, Proc. ACM/IEEE Design

Automation Conference, pages 755-760, 1993.

 136

[53]. L. Oliker and R. Biswas, “PLUM: Parallel load balancing for adaptive

unstructured meshes”, Journal of Parallel and Distributed Computing, 52(2):150-177,

1998.

[54]. K. Schloegel, G. Karypis, and V. Kumar, “Multilevel diffusion schemes for

repartitioning of adaptive meshes”, Journal of Parallel and Distributed Computing,

47(2):109-124, 1997.

[55]. P. Diniz, S. Plimpton, B. Hendrickson, and R Leland, “ Parallel algorithms for

dynamically partitioning unstructured grids”, Proc. 7th SIAM Conf. Parallel Proc., pages

615-620, 1995.

[56]. C. Walshaw and M. Cross, “Load-balancing for parallel adaptive unstructured

meshes”, Proc. Numerical Grid Generation in Computational Field Simulations, pages

781-790. ISGG, Mississippi, 1998.

[57]. A. Stone and J. Tukey, “Generalized ‘sandwich’ theorems”, The Collected Works

of John W. Tukey. Wadsworth, Inc., 1990.

[58]. K. Schloegel, G. Karypis, and V. Kumar, “A new algorithm for multi-objective

graph partitioning”, Proc. EuroPar '99, pages 322-331, 1999.

[59]. Zha, Y. and G. Karypis. 2002. "Evaluation of Hierarchical Clustering Algorithms

for Document Dataset.", CIKM 2002.

[60]. Zhang, G. and B.P. Zeigler, "Mapping Hierarchical Discrete Event Models to

Multiprocessor Systems: Algorithm, Analysis, and Simulation." J. Parallel and

Distributed Computers 9:271-281, 1990.

[61]. Kim, K.H.; T.G. Kim; K.H. Kim, “Hierarchical Partitioning Algorithm for

Optimistic Distributed Simulation of DEVS Models.” Journal of Systems Architecture

44:433 455, 1998.

[62]. Sunwoo Park and Bernard P. Zeigler, “Distributing Simulation Work Based on

Component Activity:A New Approach to Partitioning Hierarchical DEVS Models”,

Proceedings of the international workshop on challenges of large applications in

distributed environments(CLADE,03), 2003.

[63]. X. Li and M. Parashar, “Adaptive Runtime Management of Spatial and Temporal

Heterogeneity for Dynamic Grid Applications”, Proceedings of the 13th High

Performance Computing Symposium (HPC 2005), San Diego, California, pp. 223-228,

April 2005.

 137

[64]. X. Li and M. Parashar, “Hierarchical partitioning techniques for structured

adaptive mesh refinement applications”, The Journal of Supercomputing, 28(3):265 –

278, 2004.

[65]. Martin C. Carlisle and Laurence D. Merkle, “Automated Load Balancing a

Missile Defense Simulation Using Domain Knowledge”, JDMS, Vol. 1, Issue 1, Page 59-

68, April 2004.

[66]. R. Jammalalika, et. al., Re-implemenation of an Agent-based Valley Fever Model

(Originally Developed by Bultman and Fisher by Gettings) in DEVS, DEVS Symposium,

April, 2005.

[67]. R. Jammalamadaka. Activity characterization of spatial models: Application to

the discrete event solution of partial differential equations. Master’s thesis, University of

Arizona, Tucson, Arizona, USA, 2003.

[68]. Bernard P. Zeigler. Continuity and change (activity) are fundamentally related in

devs simulation of continuous systems. In Keynote Talk at AI, Simulation, and Planning

2004 (AIS’04), October 2004.

[69]. R. M. Fujimoto, Parallel and Distributed Simulation Systems. New York: Wiley-

Interscience, 2000.

[70]. Fahrland, D. A. , “Combined discrete event continuous systems simulation”,

Simulation 14 (2): 61–72, 1970.

[71]. Cellier, F. E. , “Combined continuous / discrete system simulation languages –

usefulness, experiences and future development”, Methodology in Systems Modeling and

Simulation: 201–220, 1979.

[72]. Dessouky, Y. and C. A. Roberts, “A review and classification of combined

simulation”, Computers and Industrial Engineering 32 (2): 251–264, 1997.

[73]. Technical Report,

http://www.acims.arizona.edu/PUBLICATIONS/CDRLs/UnivArizonaCDRL1.pdf

[74]. George L. Ball, Bernard P. Zeigler, Richard Schlichting, and etc., “Problems of

Multi-resolution Integration in Dynamic Simulation”,Third International

Conference/Workshop on Integrating GIS and Environmental Modeling,1996

