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Abstract 

 
   Modeling and Simulation (M&S) is finding 
increasing application in development and testing of 
command and control systems comprised of 
information-intensive component systems.  In this 
paper, we apply a System of Systems (SoS) perspective 
on the integration of M&S with such systems. We 
employ recently developed interoperability concepts 
based on linguistic categories along with the Discrete 
Event System Specification formalism to propose a 
standard for interoperability. We will show how the 
developed standard is implemented in DEVS/SOA net-
centric modeling and simulation framework. 
 
 
1. Introduction 
 
   Modeling and Simulation (M&S) is finding 
increasing application in important aspects of 
command and control systems comprised of 
information intensive component systems. One aspect 
of such application is the incorporation of M&S 
functionality into such systems, an objective of the 
Extensible Modeling and Simulation Framework 
(XMSF), a set of Web-based technologies and 
distributed testbed [1]. Another aspect, the use of M&S 
to support the development and testing such systems, 
as instances of System of Systems (SoS). The SoS 
concept relates to the attempt to integrate disparate 
systems to achieve a specific goal, typically not co-
incident with the goals of the pre-existing component 
systems.  Consequently, the defining concern in SoS 
engineering is interoperability, or lack thereof, among 

the constituent system [1, 2].  Achieving such 
interoperability is among the chief SoS engineering 
objectives in the development of command and control 
(C2) capabilities for joint and coalition warfare [3]. 
Sage [1] analogized the construction of SoS to the 
federation of socio-political systems and drew a 
parallel between such processes and the federation that 
is supported by the High Level Architecture (HLA, an 
IEEE standard fostered by the DoD to enable 
interoperation of simulation components [4]).  In this 
light, the present author discussed the role that 
modeling and simulation (M&S) can play in helping to 
address the interoperability problems in SoS 
engineering [5].  The present paper builds upon this 
work by considering not only the parallel between SoS 
engineering and distributed simulation, but also how 
M&S can be more integrally included within SoS 
engineering approaches.  The focus of this paper is to 
present fundamental concepts to help tackle the 
integration of M&S and C2 SoS through the use of 
concepts and standards for interoperability based on 
the Discrete Event Systems Specification (DEVS) 
formalism. Our ultimate motivation is to apply M&S 
concepts and technologies to support collaborative 
decision making in C2 SoS as well as the testing and 
evaluation of such systems.   

2. Interoperability in Distributed 
Simulation 
 
   As illustrated in Figure 1, HLA is a network 
middleware layer that supports message exchanges 
among simulation components, called federates, in a 
neutral format and also provides a range of services to 
support dynamic and efficient execution of simulations.  



However, experience with HLA has been 
disappointing and forced proponents to acknowledge 
the difference between enabling heterogeneous 
simulations to exchange data, so-called  technical 
interoperability, and   substantive interoperability – the 
desired outcome of exchanging meaningful data so that 
coherent interaction among federates takes place [5]. 
Tolk introduced the Levels of Conceptual 
Interoperability Model (LCIM) which identified seven 
levels of interoperability among participating systems 
[6]. These levels also can be viewed as a refinement of 
the operational interoperability type which is one of 
three defined by Dimario [7]. The operational type 
concerns linkages between systems in their interactions 
with one another, the environment, and with users. The 
additional levels provide more elaboration to the catch-
all category of substantive interoperability and, as 
illustrated in Figure 1, are missing from HLA standard 
as such. 
 
3. Levels of Conceptual Interoperability 
Model  

 
Although Levels of Information Systems 

Interoperability [8] models are used successfully to 
determine the degree of interoperability between 
information technology systems, they do not 

 
Figure 1. HLA Technical Interoperability 

 
 
provide a systematic formulation of the underlying 
properties of information exchange.  To remedy this 
situation, the LCIM outlined in Table 1, was developed 
to become a bridge between conceptual and technical 
design for implementation, integration, or federation [9, 
10]. 
 

   The last column lists key conditions that are required 
to reach an interoperability level from the one below. 
Of course, the conditions accumulate as the level 
increases. We note that the conditions given in the 
LCIM for pragmatic interoperability require that the 
use of data be mutually understood, where the term 
“use” is interpreted as the context of its application. A 
reformulation of LCIM was presented in [11] where 
more definitive concepts for pragmatic interoperability 
including the concepts of pragmatic frames and 
pragmatic equivalence. Moreover, the definition of the 
semantic level requires the use of a single reference 
semantic model as a hub for information exchange 
among participants in collaboration. However such a 
hub and spokes approach, while desirable, is not 
always feasible. [12] evaluated a common information 
exchange model, C2IEDM, as an interoperability-
enabling ontology for command and control. The 
conclusion is that even if there is room for 
improvements, the model supports almost all basic 
needs for such a semantic bridge. However, [13] claim 
that in its current form, the model is unbalanced in its 
levels of detail and too large to be practical. In the 
stratification to be introduced below, we review a more 
streamlined and extended account of information 
exchange levels. 
 
4. Linguistic Levels 
 
   The definitions given in [11] agree in general, but 
differ substantially, with those used in the LCIM. They 
are summarized:  
 

• Pragmatics: Data use in relation to data 
structure and context of application  

• Semantics: Low level semantics focuses on 
definitions and attributes of terms; high level 
semantics focuses on the combined meaning 
of multiple terms (Generalized Context). Note 
in contrast to the LCIM requirement for 
semantic interoperability, this definition 
focuses on the underlying requirement for 
achieving shared meanings rather than how 
this requirement is achieved. 

• Syntax focuses on a structure and adherence 
to the rules that govern that structure, e.g., 
XML (Rules and Structure) 
 

 
 
 
 
Table 1 Levels of Conceptual Interoperability 

HLA
Middleware



Level of 
Conceptual 
Interoperability 

Characteristic Key Condition 

Conceptual The assumptions 
and constraints 
underlying the 
meaningful 
abstraction of 
reality are 
aligned 

Requires that 
conceptual models 
be documented 
based on 
engineering 
methods enabling 
their interpretation 
and evaluation by 
other engineers. 
 

Dynamic Participants are 
able to 
comprehend 
changes in 
system state and 
assumptions and 
constraints that 
each is making 
over time, and 
are able to take 
advantage of 
those changes. 

Requires common 
understanding of 
system dynamics  

Pragmatic Participants are 
aware of the 
methods and 
procedures that 
each is 
employing 

Requires that the 
use of the data – or 
the context of their 
application – is 
understood by the 
participating 
systems. 
 

Semantic The meaning of 
the data is 
shared 

Requires  a common 
information 
exchange reference 
model 

Syntactic Introduces a 
common 
structure to 
exchange 
information,  

Requires that a 
common data 
format is used 

Technical Data can be 
exchanged 
between 
participants 

Requires that a 
communication 
protocol exists  

Stand alone No 
interoperability 

 

 
The authors of LCIM associate the lower layers with 
the problems of simulation interoperation while the 
upper layers relate to the problems of reuse and 
composition of models [14,15]. They conclude 
“simulation systems are based on  models  and  their 
assumptions and constraints. If two simulation systems 
are combined, these assumptions and constraints must 
be aligned accordingly to ensure meaningful 
results.”[10]. This suggests that levels of 

interoperability that have been identified in the area of 
modeling and simulation (M&S) can serve as 
guidelines to discussion of information exchange in 
general. Therefore, we consider an earlier developed 
conceptual layered architecture for M&S [16]. We’ll 
correlate the above linguistic definitions with the 
layers outlined below and shown in Figure 2.  
 
Network Layer contains the actual computers 
(including workstations and high performance 
systems) and the connecting networks (both LAN and 
WAN, their hardware and software) that do the work 
of supporting all aspects of the M&S lifecycle. 
 
Execution Layer is the software that executes the 
models in simulation time and/or real time to generate 
their behavior. Included in this layer are the protocols 
that provide the basis for distributed simulation (such 
as those that are standardized in the High Level 
Architecture (HLA).  Also included are database 
management systems, software systems to support 
control of simulation executions, visualization and 
animation of the generated behaviors. 
 
Modeling Layer supports the development of models 
in formalisms that are independent of any given 
simulation layer implementation.  HLA just mentioned 
also provides object-oriented templates for model 
description aimed at supporting confederations of 
globally dispersed models. However, beyond this, the 
formalisms for model behavior, whether continuous, 
discrete or discrete event in nature) as well as structure 
change, are also included in this layer. Model 
construction and especially, the key processes of 
model abstraction and continuity over the lifecycle are 
also included. We also add ontologies to this layer 
where they are understood as models of the world for a 
particular conceptualization intended to support 
information exchange. 

Execution Layer
Abstract Simulators, Real time Execution, ,Animation  Visualization

Network Layer
Workstation,    Distributed Grids, Service Oriented Architectures 

Ontologies, Formalisms, Model Dynamic Structure, Life Cycle 
Continuity, Model Abstraction

SES, DoDAF, Integrated System Development and Testing

Decision Layer
Exploration, Evaluation, Selection, Optimization   

Collaboration Layer
Semantic Web, Composition, Orchestration                        

Modeling Layer

Design and Search Layer

 
Figure 2  Architecture for Modeling and Simulation 
 



Design and Search Layer supports the design of 
systems, such as in the Department of Defense 
Architecture Framework (DoDAF) where the design is 
based on specifying desired behaviors through models 
and implementing these behaviors through 
interconnection of system components. It also includes 
investigation of large families of alternative models, 
whether in the form of spaces set up by parameters or 
more powerful means of specifying alternative model 
structures such as provided by the SES methodology 
[11]. Artificial intelligence and simulated natural 
intelligence (evolutionary programming) may be 
brought in to help deal with combinatorial explosions 
occasioned by powerful model synthesizing 
capabilities. 
 
Decision Layer applies the capability to search and 
simulate large model sets at the layer below to make 
decisions in solving real-world problems. Included are 
course-of-action planning, selection of design 
alternatives and other choices where the outcomes may 
be  supported by concept explorations, “what-
if“ investigations, and optimizations of the models 
constructed in the modeling layer using the simulation 
layer below it.  
 
Collaboration Layer enables people or intelligent 
agents with partial knowledge about a system, whether 
based on discipline, location, task, or responsibility 
specialization, to bring to bear individual perspectives 
and contributions to achieve an overall goal. 
 
Using the definitions for linguistic levels above, we 
correlate such levels with the layers just discussed. As 
illustrated in Figure 3, at the syntactic level we 
associate network and execution layers. The semantic 
level corresponds with the modeling layer – where we 
have included ontology frameworks as well as 
dynamic system formalisms as models.  Finally, the 
pragmatic level includes use of the information such as 
identified in the upper layers of the M&S architecture. 
This use occurs for example, in design and search, 
making decisions and collaborating to achieve 
common goals. Indeed, such mental activities, along 
with real-world physical actions that they lead to, 
provide the basis for enumerating the kinds of 
pragmatic frames that might be of interest in particular 
applications – the context of use.  
 
The resulting stratification leads us to propose Table 2 
for defining effective interoperation of collaborating 
systems or services at the identified linguistic levels 
(first and second columns).  

 
5. DEVS Standard 
 
The conceptual interoperability model described above 
provides a general guideline for supporting system 
interoperability. Following the layered approach of this 
conceptual model, next we review the work of Discrete 
Event Systems Specification (DEVS) standardization 
that aims to support M&S interoperability based on the 
DEVS M&S framework. This work of standardization 
correspond to the two levels shown in Figure 3: the 
semantic level that deals with standardization of model 
interface; and the syntactic level that deals with 
standardization of simulation protocol.   
 
The DEVS formalism [16], based on Mathematical 
Systems theory, provides a computational framework 
and tool set to support Systems concepts in application 
to SoS. We first provide a brief review. More detail is 
available in [16]. 

Execution Layer

Network Layer

Decision Layer

Collaboration Layer

Modeling Layer

Design and Search Layer

Syntactic Level

Semantic Level

Pragmatic Level

 Figure 3  Associating Linguistic Levels  with Layers of 
Modeling and Simulation 
 
 
Table 2. Linguistic levels of Interoperability 

Linguistic 
Level 

A collaboration 
of systems or 
services 
interoperates at 
this level if: 

Examples 

Pragmatic – 
how 
information in 
messages is 
used 

The receiver 
reacts to the 
message in a 
manner that the 
sender intends 

An order from a 
commander is 
obeyed by the 
troops in the field as 
the commander 
intended.  A 
necessary condition 
is that the 
information arrives 



in a timely manner 
and that its  meaning 
has been preserved  
(semantic  
interoperability)  

Semantic – 
shared  
understanding 
of meaning of 
messages  

The receiver assigns 
the same meaning as 
the sender did to the 
message.  

An order from a 
commander to multi-
national participants in 
a coalition operation is 
understood in a 
common manner 
despite translation into 
different languages. 
Similarly geographic 
data must be translated 
correctly to UTM grid 
coordinates for ground 
forces and to LatLong 
for air and naval 
forces.   

Syntactic – 
common rules 
governing 
composition and 
transmission of 
messages 

The consumer is 
able to receive and 
parse the sender’s 
message  

A common network 
protocol (e.g. IPv4)  is 
employed ensuring that 
all nodes on the 
network can send and 
receive data bit arrays 
adhering to a 
prescribed format. 

 
DEVS makes a sharp distinction between the model 

and the device that simulates it.  Both model and 
simulator are defined as mathematical systems as 
defined by Wymore and others (see [16] for details), 
and the relation between them is standardized by the 
concept of “abstract” simulator.  Information flow in 
the DEVS formalism, as implemented on an object-
oriented substrate, is mediated by the concept of 
DEVS message, a container for port-value pairs. In a 
message sent from component A to component B, a 
port-value pair is a pair in which the port is an output 
port of A,   and the value is an instance of the base 
class of a DEVS implementation, or any of its sub-
classes. A coupling is a four-tuple of the form (sending 
component A, output port of A, receiving component B, 
input port of B). This sets up a path where by a value 
placed on an output port of A by A’s output function is 
transmitted to the input port of B, to be consumed by 
the latter. In systems or simulations implemented in 
DEVS environments the concepts of ports, messages, 
and coupling are explicit in the code. However, for 
systems/simulations that were implemented without 
systems theory guidance, in legacy or non-DEVS 
environments, these concepts are abstract and need to 
be identified concretely with the constructs offered by 
the underlying environment. For SoS engineering, 
where legacy components are the norm, it is worth 

starting with the clear concepts and methodology 
offered by systems theory and DEVS, getting a grip on 
the interoperability problems, and then translating 
backwards to the non-DEVS concepts as necessary. 

Within a working group of the Simulation 
Interoperability Standards Organization, a standard has 
been under development to support interoperability of 
DEVS models implemented in different platforms as 
well as with legacy simulations. Figure 4 illustrates an 
architectural approach proposed to accommodate the 
various combinations and permutations of possible 
application, both currently known, as well as those that 
will emerge in the future. The basic idea is to define 
two sets of interfaces; the DEVS model Interface and 
the DEVS Simulator Interface, as well as a DEVS 
Simulation Protocol that operates between the two. 
The interfaces protocols are based on those in 
GenDEVS, an implementation at the heart of the 
DEVJAVA M&S environment 
[www.acims.arizona.edu]. DEVS/C++ and 
DEVSJAVA are platform specific implementations 
while DEVSML[26] and FDDEVS [27] are platform 
independent implementations in XML which can 
transform to any platform specific implementations.  
 

 
Figure 4: Conceptual Architecture of Standard 

 
   As a direct consequence of the model-simulator 
separation there can be multiple ways in which the 
same model can be simulated – all adhering to the 
abstract simulator specification. Corresponding to 
different simulation modes, the standard has virtual-
time and real-time simulators. In virtual-time 
simulation, the simulator interprets time as logical time 
so the simulation can skip from one event time to the 
next without traversing the intervening time interval.  
However, in real-time simulation, time is interpreted as 
wall clock readings, so the real-time simulator will 
wait for the interval to its next scheduled event to 
expire before handling the event.  In addition to the 
model type/simulation mode combinations, the 
standard allows for the use of different forms of 
distribution of model components, e.g., single 
processor vs. multi-processor, and within the latter, 



conservative vs optimistic time advance for virtual-
time as well as  centralized vs non-centralized time 
control in real-time execution. The standard is also 
agnostic with respect to different implementation 
platforms, such as Windows vs Unix, different 
programming languages, such as Java vs C++, and 
different networking and middleware frameworks such 
as .Net vs Apache. From the above introduction, we 
can see that the standard will have multiple simulation 
scenarios. For example, considering the combinations 
of simulation mode and distribution mode, we have: 
simulating a model in virtual-time and simulating 
model in real-time both in distributed and non-
distributed fashion. 

IODevs

atomicDevs
(optional)IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupled

DevsInterface

 
Figure 5 DEVS Model Interfaces 

 
Among these interfaces, IODevs defines interface for 
the functions that handle  message exchange based on 
input and output ports. Any model, whether DEVS or 
non-DEVS, can implement these functions so it can 
interoperate with other implementers of this interface, 
in the sense of receiving input and sending output. The 
basicDevs Interface defines the basic functions a 
DEVS model needs to implement such as deltext(), 
deltint(), out(), ta() and so on.  The basicDevs interface 
is the interface that is exposed to the atomic simulators. 
An additional interface, atomicDevs, provides a 
convenient set of primitives for defining the basic 
functions in an atomic model. However, since the basic 
functions can be defined without using such primitives, 
the atomicDevs interface is optional.  The 
IOBasicDevs interface extends the IODevs interface 
and basicDevs interface. It provides a common basis 
for implementing atomic models and coupled models. 
Combining IOBasicDevs with atomicDevs, we get 
AtomicInterface which defines the function signatures 
an atomic model need to implement.  Of course, if 
atomicDevs is omitted, then AtomicInterface reduces to 
IOBasicDevs.  Similarly, CoupledDevs interface 
defines the function signatures that are used in DEVS 

coupled models. It also has methods that support 
adding components and couplings to the model; 
methods for retrieving a component by name and for 
accessing all components; and to access the internal 
coupling specifications (intended only by simulators).  
Combining IOBasicDevs with CoupledDevs, we get 
the Coupled interface which defines the functions 
coupled models need to implement. 

 

coreSimulator

Atomic
Simulator

CoupledSimulator

Coordinator

CoupledCoordinator

 
Figure 6  DEVS Simulator Interfaces 

 
   The basic simulator interface is the CoreSimulator 
that provides a common interface for DEVS and non-
DEVS simulation. Further, the CoreSimulator 
interface is the basic interface from which simulation 
services could be designed for a truly net-centric 
interoperable simulation framework [23]. Under the 
CoreSimulator interface, two classes of simulators 
have been defined CoupledSimulator and 
CoupledCoordinator interfaces where the latter also 
inherits from Coordintor. These apply to both virtual 
(logical); and real-time simulation. (Real time 
simulators interpret time as real wall clock time and 
have their own thread and system clock. Virtual or 
logical time simulators can advance from one event 
time to the next). The CoreSimulator interface includes 
methods that are invoked by the DEVS simulation 
protocol: 
 
interface coreSimulatorInterface{ 
void setSimulators 
                     (Collection<CoreSimulatorInterface>);  
void initialize(); 
Double nextTN(); 
void computeInputOutput(Double t); 
void applyDeltFunc(Double t); 
void putContentOnSimulator 
        (CoreSimulatorInterface sim, ContentInterface c); 
void sendMessages(); 
 
 
5.1 DEVS Simulation Protocol 
 
DEVS treats a model and its simulator as two distinct 
elements. The simulation protocol describes how a 



DEVS model should be simulated whether in 
standalone fashion or in a coupled model. Such a 
protocol is implemented by a processor which can be a 
simulator or a coordinator. 
 

Coordinator

Atoimc1

Non-DEVS 
Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS
Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)
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putContentOnSimulator
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Simulator

DEVS 
Simulator

DEVS
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2
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Figure 7 Federation of DEVS with Non-DEVS Simulators 

 
As illustrated in Figure 7, the DEVS protocol is 
executed as following: 
1. It starts with the coordinator telling each of the 

simulators in the collection the others’ addresses 
and then to perform initialization function.  

2. A cycle is then entered in which the coordinator 
requests that each simulator provide its time of 
next event and takes the minimum of the returned 
values to obtain the global time of next event 

3. Each of the simulators applies its 
computeInputOutput() method to produce an   
output that consists of a collection of contents 
(port/value) pairs – for  DEVS simulators this is a 
composite message computed according to the 
DEVS formalism based on its model’s current 
state.  

4. Then each simulator partitions its output into 
messages intended for recipient simulators and 
sends these messages to these recipient simulators 
– for DEVS simulators these recipients are 
determined from the output ports in the message 
and the coupling information that will have 
previously been received from the coordinator.  

5. Finally, each simulator executes its 
ApplyDeltFunc method which computes the 
combined effect of the received messages and 
internal scheduling on its state, a side effect of 
which is produce of time of next event, tN  – for 
DEVS simulators this state change is computed 
according to the DEVS formalism and the tN is 
updated using its model’s time advance.  

6. The coordinator obtains the next global time of 
next event and the cycle repeats 

 
It should be noted that the above is one form of many 
possible protocols that can provide various forms of 
conservative and optimistic simulation, each of which 
must be proved to be correct as a realization of the 
DEVS closure under coupling property [16].  
 
Implicit in the above description are the following 
constraints involving methods in the 
CoreSimulatorInterface: 
• The sendMessages() method “must” employ the 

putContentOnSimulator() method as follows:  for 
any simulator to which it wishes to send a content, 
it must call the recipient’s 
putContentOnSimulator() method with the 
recipient and the content as arguments.   

• Further, in applying its computeInputOutput() 
method, a simulator “must” be able to interpret  
the contents  (satisfying the ContentInterface) it 
has received from the other simulators.  

 
Notice that we cannot enforce the “must” requirements 
just given, and cannot prove that the simulation 
executes a desired behavior, unless we are given 
further information about its behavior. One way to do 
this is where the simulators are truly DEVS simulators 
in that they satisfy the interfaces and constraints given 
below. Failing this additional rigor, the interoperation 
involving DEVS and non-DEVS  is purely at the 
technical level similar to that of a federation of 
simulators in HLA. This contrasts with the situation in 
which the federation is in fact derived from a DEVS 
coupled model for which correct simulation of the 
coupled model is guaranteed according to the DEVS 
formalism. 
 
6. DEVS/SOA  
 
An implementation of the standard within the Service 
Oriented Architecture (SOA) has been completed that 
provides DEVS modeling and simulation services over 
the World Wide Web [17, 23], As shown in the Figure 
8, at the top of the layered architecture is the 
application layer that contains models in DEVSJAVA 
or DEVSML, a way of representing DEVS models in 
the eXtended Markup Language (XML). This 
DEVSML is built on JAVAML [18], which is XML 
implementation of JAVA. The current development 
effort of DEVSML takes its power from the underlying 
JAVAML that is needed to specify the ‘behavior’ logic 
of atomic and coupled models. The DEVSML models 



are cross-transformable to Java. The second layer is 
the DEVSML layer itself that provides seamless 
integration, composition and dynamic scenario 
construction resulting in portable models in DEVSML 
that are complete in every respect. These DEVSML 
models can be ported to any remote location using the 
SOA infrastructure and cam be executed at any remote 
location in a distributed or non-distributed manner. 
Another major advantage of such capability is total 
simulator ‘transparency’. The simulation engine is 
totally transparent to model execution over the SOA 
infrastructure. The DEVSML model description files 
in XML contains meta-data information about its 
compliance with various simulation ‘builds’ or 
versions to provide true interoperability between 
various simulator engine implementations. This has 
been achieved for at least two independent simulation 
engines as they have an underlying DEVS protocol to 
adhere to. This has been made possible with the 
implementation of a single atomic schema [24] and a 
single coupled schema [25] that validates the 
DEVSML descriptions generated from these two 
implementations. Such run-time interoperability 
provides great advantage when models from different 
repositories are used to compose large coupled models 
using the DEVSML integration capabilities. Detailed 
design can be seen in [17,23]. 

WEB
SERVICE
CLIENT

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVSJAVA

DEVS
Agent

( Virtual User)

DEVS
Agent

(Observer)

WEB
SERVICE
CLIENT

 
Figure 8  DEVS/SOA interoperability 

 
The complete setup requires one or more servers that 
are capable of running DEVS Simulation Service, as 
shown in the second layer in Figure 8. The capability 
to run the simulation service is provided by the server 
side design of DEVS Simulation protocol supported by 
the DEVSJAVA. Of course, many issues of policy 
management and security considerations must be taken 
care of in the generation of DEVS models from 
WSDLs specifications [22]. Furthermore, the multi-

platform simulation capability provided by 
DEVSV/SOA framework consists of realizing 
distributed simulation among different DEVS 
platforms or simulator engines such as DEVSJAVA, 
DEVS-C++, etc. and executing the native simulation 
service. This kind of interoperability where multi-
platform simulations can be executed with our 
DEVSML integration facilities has been made possible 
with the hierarchical design of simulator interfaces as 
described in Section 5.  
 
7. How Interoperability is supported 
 
The proposed DEVS standard and its DEVS/SOA 
implementation support several modes of 
interoperability. These are outlined in the following 
paragraphs. 
 
7.1 DEVS-to-DEVS Interoperability 

DEVS-to-DEVS Interoperability is the basic form of 
interoperability enabled by the DEVS standard as 
discussed above. Adoption of the DEVS standard 
facilitates new development to achieve interoperability 
at the syntactic, semantic and pragmatic levels 
mentioned above.  More detail on these concepts in 
application to testing of SOA systems can be found in 
[5, 20, 21, 22]. 
 

7.2 DEVS-to-Non-DEVS Interoperability  
 
7.2.1 Direct. As mentioned before, legacy simulations 
that can be refactored to implement the CoreSimulator 
interface can be interoperate at the syntactic level with 
DEVS and other non-DEVS peers. In its strongest 
form, such simulation methodology guarantees well-
defined time preservation and simulation correctness 
as a sound basis to aim for interoperability at the 
higher levels. 

 
7.2.2 Via Client Gateways.  For a variety of reasons, 
although DEVS compliance is desirable, it can be 
expected that legacy systems will continue to prevail 
and new non-compliant systems developed. The 
adoption of the SOA standard however, will facilitate 
the interoperation of DEVS and non-DEVS 
components that are compliant with the SOA standard. 
This form is realized in an Agent-implemented Test 
Instrumentation Infrastructure that deploys DEVS 
models to act as agents that are attached to clients of 
services [5,22]. Such attachment can be performed in 
automated fashion using tools such as Axis Toolkit to 



create the client stub given a service’s Web Service 
Description Language (WSDL) [22].  As in Figure 8, 
these agents can observe the web service requests 
originating from the client and server responses (or 
failure thereof) to accumulate a variety of performance 
measurements. The agents can also serve as virtual 
users to interact with other users to direct the course of 
test scenarios and collect performance metrics to 
support scalability studies. Further, while collecting 
data, DEVS agents can communicate with each other 
to coordinate and share information using the DEVS-
to-DEVS configuration just discussed. Case studies are 
available in reference [22].  
 
8. Conclusions 
 
Achieving interoperability is one of the chief SoS 
engineering objectives in the development of 
command and control (C2) capabilities for joint and 
coalition warfare. The importance of M&S in SoS 
design and evaluation cannot be underestimated. M&S 
can be used strategically to provide early feasibility 
studies and aid the design process. As components 
comprising SoS are designed and analyzed, their 
integration and communication is the most critical part 
that must be addressed by the employed SoS M&S 
framework. The integration infrastructure must support 
interoperability at syntactic, semantic and pragmatic 
levels to enable such integration.  
 
Currently there are several other approaches to 
distributed simulation and to integration of M&S with 
advanced C2 systems.  These approaches build on the 
internet or other net-centric middleware to provide 
component connectivity and simulation services [1,20]. 
The latter may also include HLA implementations; 
however, the extent of adoption of HLA in this context 
remains to be seen.  The DEVS standard provides a 
formal systems-based abstraction that can support 
higher level interoperability, whether alone or on top 
of HLA.  The DEVS/SOA implementation provides a 
SOA implementation independent of HLA and is a 
viable approach to M&S integration with C2 SoS in 
the weaker gateway form, and in the strong direct 
compliance form. Further, DEVS has been applied to 
frameworks like DoDAF, UML and other systems 
engineering frameworks like SES. A globally wide- 
spread and growing DEVS-based research and 
development community provides a prolific base for 
sharing of DEVS models and tools [28].  It is not a 
major step from here to see how DEVS components 
including decision making agents, sensor simulators, 
and environmental representations can bring the power 

of M&S to the development of C2 SoS.  The 
underlying SOA standard that facilitates this 
interoperation can be expected to be widely adopted 
(for example, it has been adopted by the DoD’s Global 
Information Grid initiative).  
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