
Towards a Formal Standard for Interoperability in
M&S/System of Systems Integration

Bernard Zeigler, Saurabh Mittal

Arizona Center for Integrative Modeling and Simulation,
University of Arizona,

Tucson, AS
{zeigler | saurabh} @ece.arizona.edu

Xiaolin Hu

Dept of Computer Science,
Georgia State University,

Atlanta, GA
xhu@cs.gsu.edu

Abstract

 Modeling and Simulation (M&S) is finding
increasing application in development and testing of
command and control systems comprised of
information-intensive component systems. In this
paper, we apply a System of Systems (SoS) perspective
on the integration of M&S with such systems. We
employ recently developed interoperability concepts
based on linguistic categories along with the Discrete
Event System Specification formalism to propose a
standard for interoperability. We will show how the
developed standard is implemented in DEVS/SOA net-
centric modeling and simulation framework.

1. Introduction

 Modeling and Simulation (M&S) is finding
increasing application in important aspects of
command and control systems comprised of
information intensive component systems. One aspect
of such application is the incorporation of M&S
functionality into such systems, an objective of the
Extensible Modeling and Simulation Framework
(XMSF), a set of Web-based technologies and
distributed testbed [1]. Another aspect, the use of M&S
to support the development and testing such systems,
as instances of System of Systems (SoS). The SoS
concept relates to the attempt to integrate disparate
systems to achieve a specific goal, typically not co-
incident with the goals of the pre-existing component
systems. Consequently, the defining concern in SoS
engineering is interoperability, or lack thereof, among

the constituent system [1, 2]. Achieving such
interoperability is among the chief SoS engineering
objectives in the development of command and control
(C2) capabilities for joint and coalition warfare [3].
Sage [1] analogized the construction of SoS to the
federation of socio-political systems and drew a
parallel between such processes and the federation that
is supported by the High Level Architecture (HLA, an
IEEE standard fostered by the DoD to enable
interoperation of simulation components [4]). In this
light, the present author discussed the role that
modeling and simulation (M&S) can play in helping to
address the interoperability problems in SoS
engineering [5]. The present paper builds upon this
work by considering not only the parallel between SoS
engineering and distributed simulation, but also how
M&S can be more integrally included within SoS
engineering approaches. The focus of this paper is to
present fundamental concepts to help tackle the
integration of M&S and C2 SoS through the use of
concepts and standards for interoperability based on
the Discrete Event Systems Specification (DEVS)
formalism. Our ultimate motivation is to apply M&S
concepts and technologies to support collaborative
decision making in C2 SoS as well as the testing and
evaluation of such systems.

2. Interoperability in Distributed
Simulation

 As illustrated in Figure 1, HLA is a network
middleware layer that supports message exchanges
among simulation components, called federates, in a
neutral format and also provides a range of services to
support dynamic and efficient execution of simulations.

However, experience with HLA has been
disappointing and forced proponents to acknowledge
the difference between enabling heterogeneous
simulations to exchange data, so-called technical
interoperability, and substantive interoperability – the
desired outcome of exchanging meaningful data so that
coherent interaction among federates takes place [5].
Tolk introduced the Levels of Conceptual
Interoperability Model (LCIM) which identified seven
levels of interoperability among participating systems
[6]. These levels also can be viewed as a refinement of
the operational interoperability type which is one of
three defined by Dimario [7]. The operational type
concerns linkages between systems in their interactions
with one another, the environment, and with users. The
additional levels provide more elaboration to the catch-
all category of substantive interoperability and, as
illustrated in Figure 1, are missing from HLA standard
as such.

3. Levels of Conceptual Interoperability
Model

Although Levels of Information Systems

Interoperability [8] models are used successfully to
determine the degree of interoperability between
information technology systems, they do not

Figure 1. HLA Technical Interoperability

provide a systematic formulation of the underlying
properties of information exchange. To remedy this
situation, the LCIM outlined in Table 1, was developed
to become a bridge between conceptual and technical
design for implementation, integration, or federation [9,
10].

 The last column lists key conditions that are required
to reach an interoperability level from the one below.
Of course, the conditions accumulate as the level
increases. We note that the conditions given in the
LCIM for pragmatic interoperability require that the
use of data be mutually understood, where the term
“use” is interpreted as the context of its application. A
reformulation of LCIM was presented in [11] where
more definitive concepts for pragmatic interoperability
including the concepts of pragmatic frames and
pragmatic equivalence. Moreover, the definition of the
semantic level requires the use of a single reference
semantic model as a hub for information exchange
among participants in collaboration. However such a
hub and spokes approach, while desirable, is not
always feasible. [12] evaluated a common information
exchange model, C2IEDM, as an interoperability-
enabling ontology for command and control. The
conclusion is that even if there is room for
improvements, the model supports almost all basic
needs for such a semantic bridge. However, [13] claim
that in its current form, the model is unbalanced in its
levels of detail and too large to be practical. In the
stratification to be introduced below, we review a more
streamlined and extended account of information
exchange levels.

4. Linguistic Levels

 The definitions given in [11] agree in general, but
differ substantially, with those used in the LCIM. They
are summarized:

• Pragmatics: Data use in relation to data
structure and context of application

• Semantics: Low level semantics focuses on
definitions and attributes of terms; high level
semantics focuses on the combined meaning
of multiple terms (Generalized Context). Note
in contrast to the LCIM requirement for
semantic interoperability, this definition
focuses on the underlying requirement for
achieving shared meanings rather than how
this requirement is achieved.

• Syntax focuses on a structure and adherence
to the rules that govern that structure, e.g.,
XML (Rules and Structure)

Table 1 Levels of Conceptual Interoperability

HLA
Middleware

Level of
Conceptual
Interoperability

Characteristic Key Condition

Conceptual The assumptions
and constraints
underlying the
meaningful
abstraction of
reality are
aligned

Requires that
conceptual models
be documented
based on
engineering
methods enabling
their interpretation
and evaluation by
other engineers.

Dynamic Participants are
able to
comprehend
changes in
system state and
assumptions and
constraints that
each is making
over time, and
are able to take
advantage of
those changes.

Requires common
understanding of
system dynamics

Pragmatic Participants are
aware of the
methods and
procedures that
each is
employing

Requires that the
use of the data – or
the context of their
application – is
understood by the
participating
systems.

Semantic The meaning of
the data is
shared

Requires a common
information
exchange reference
model

Syntactic Introduces a
common
structure to
exchange
information,

Requires that a
common data
format is used

Technical Data can be
exchanged
between
participants

Requires that a
communication
protocol exists

Stand alone No
interoperability

The authors of LCIM associate the lower layers with
the problems of simulation interoperation while the
upper layers relate to the problems of reuse and
composition of models [14,15]. They conclude
“simulation systems are based on models and their
assumptions and constraints. If two simulation systems
are combined, these assumptions and constraints must
be aligned accordingly to ensure meaningful
results.”[10]. This suggests that levels of

interoperability that have been identified in the area of
modeling and simulation (M&S) can serve as
guidelines to discussion of information exchange in
general. Therefore, we consider an earlier developed
conceptual layered architecture for M&S [16]. We’ll
correlate the above linguistic definitions with the
layers outlined below and shown in Figure 2.

Network Layer contains the actual computers
(including workstations and high performance
systems) and the connecting networks (both LAN and
WAN, their hardware and software) that do the work
of supporting all aspects of the M&S lifecycle.

Execution Layer is the software that executes the
models in simulation time and/or real time to generate
their behavior. Included in this layer are the protocols
that provide the basis for distributed simulation (such
as those that are standardized in the High Level
Architecture (HLA). Also included are database
management systems, software systems to support
control of simulation executions, visualization and
animation of the generated behaviors.

Modeling Layer supports the development of models
in formalisms that are independent of any given
simulation layer implementation. HLA just mentioned
also provides object-oriented templates for model
description aimed at supporting confederations of
globally dispersed models. However, beyond this, the
formalisms for model behavior, whether continuous,
discrete or discrete event in nature) as well as structure
change, are also included in this layer. Model
construction and especially, the key processes of
model abstraction and continuity over the lifecycle are
also included. We also add ontologies to this layer
where they are understood as models of the world for a
particular conceptualization intended to support
information exchange.

Execution Layer
Abstract Simulators, Real time Execution, ,Animation Visualization

Network Layer
Workstation, Distributed Grids, Service Oriented Architectures

Ontologies, Formalisms, Model Dynamic Structure, Life Cycle
Continuity, Model Abstraction

SES, DoDAF, Integrated System Development and Testing

Decision Layer
Exploration, Evaluation, Selection, Optimization

Collaboration Layer
Semantic Web, Composition, Orchestration

Modeling Layer

Design and Search Layer

Figure 2 Architecture for Modeling and Simulation

Design and Search Layer supports the design of
systems, such as in the Department of Defense
Architecture Framework (DoDAF) where the design is
based on specifying desired behaviors through models
and implementing these behaviors through
interconnection of system components. It also includes
investigation of large families of alternative models,
whether in the form of spaces set up by parameters or
more powerful means of specifying alternative model
structures such as provided by the SES methodology
[11]. Artificial intelligence and simulated natural
intelligence (evolutionary programming) may be
brought in to help deal with combinatorial explosions
occasioned by powerful model synthesizing
capabilities.

Decision Layer applies the capability to search and
simulate large model sets at the layer below to make
decisions in solving real-world problems. Included are
course-of-action planning, selection of design
alternatives and other choices where the outcomes may
be supported by concept explorations, “what-
if“ investigations, and optimizations of the models
constructed in the modeling layer using the simulation
layer below it.

Collaboration Layer enables people or intelligent
agents with partial knowledge about a system, whether
based on discipline, location, task, or responsibility
specialization, to bring to bear individual perspectives
and contributions to achieve an overall goal.

Using the definitions for linguistic levels above, we
correlate such levels with the layers just discussed. As
illustrated in Figure 3, at the syntactic level we
associate network and execution layers. The semantic
level corresponds with the modeling layer – where we
have included ontology frameworks as well as
dynamic system formalisms as models. Finally, the
pragmatic level includes use of the information such as
identified in the upper layers of the M&S architecture.
This use occurs for example, in design and search,
making decisions and collaborating to achieve
common goals. Indeed, such mental activities, along
with real-world physical actions that they lead to,
provide the basis for enumerating the kinds of
pragmatic frames that might be of interest in particular
applications – the context of use.

The resulting stratification leads us to propose Table 2
for defining effective interoperation of collaborating
systems or services at the identified linguistic levels
(first and second columns).

5. DEVS Standard

The conceptual interoperability model described above
provides a general guideline for supporting system
interoperability. Following the layered approach of this
conceptual model, next we review the work of Discrete
Event Systems Specification (DEVS) standardization
that aims to support M&S interoperability based on the
DEVS M&S framework. This work of standardization
correspond to the two levels shown in Figure 3: the
semantic level that deals with standardization of model
interface; and the syntactic level that deals with
standardization of simulation protocol.

The DEVS formalism [16], based on Mathematical
Systems theory, provides a computational framework
and tool set to support Systems concepts in application
to SoS. We first provide a brief review. More detail is
available in [16].

Execution Layer

Network Layer

Decision Layer

Collaboration Layer

Modeling Layer

Design and Search Layer

Syntactic Level

Semantic Level

Pragmatic Level

 Figure 3 Associating Linguistic Levels with Layers of
Modeling and Simulation

Table 2. Linguistic levels of Interoperability

Linguistic
Level

A collaboration
of systems or
services
interoperates at
this level if:

Examples

Pragmatic –
how
information in
messages is
used

The receiver
reacts to the
message in a
manner that the
sender intends

An order from a
commander is
obeyed by the
troops in the field as
the commander
intended. A
necessary condition
is that the
information arrives

in a timely manner
and that its meaning
has been preserved
(semantic
interoperability)

Semantic –
shared
understanding
of meaning of
messages

The receiver assigns
the same meaning as
the sender did to the
message.

An order from a
commander to multi-
national participants in
a coalition operation is
understood in a
common manner
despite translation into
different languages.
Similarly geographic
data must be translated
correctly to UTM grid
coordinates for ground
forces and to LatLong
for air and naval
forces.

Syntactic –
common rules
governing
composition and
transmission of
messages

The consumer is
able to receive and
parse the sender’s
message

A common network
protocol (e.g. IPv4) is
employed ensuring that
all nodes on the
network can send and
receive data bit arrays
adhering to a
prescribed format.

DEVS makes a sharp distinction between the model

and the device that simulates it. Both model and
simulator are defined as mathematical systems as
defined by Wymore and others (see [16] for details),
and the relation between them is standardized by the
concept of “abstract” simulator. Information flow in
the DEVS formalism, as implemented on an object-
oriented substrate, is mediated by the concept of
DEVS message, a container for port-value pairs. In a
message sent from component A to component B, a
port-value pair is a pair in which the port is an output
port of A, and the value is an instance of the base
class of a DEVS implementation, or any of its sub-
classes. A coupling is a four-tuple of the form (sending
component A, output port of A, receiving component B,
input port of B). This sets up a path where by a value
placed on an output port of A by A’s output function is
transmitted to the input port of B, to be consumed by
the latter. In systems or simulations implemented in
DEVS environments the concepts of ports, messages,
and coupling are explicit in the code. However, for
systems/simulations that were implemented without
systems theory guidance, in legacy or non-DEVS
environments, these concepts are abstract and need to
be identified concretely with the constructs offered by
the underlying environment. For SoS engineering,
where legacy components are the norm, it is worth

starting with the clear concepts and methodology
offered by systems theory and DEVS, getting a grip on
the interoperability problems, and then translating
backwards to the non-DEVS concepts as necessary.

Within a working group of the Simulation
Interoperability Standards Organization, a standard has
been under development to support interoperability of
DEVS models implemented in different platforms as
well as with legacy simulations. Figure 4 illustrates an
architectural approach proposed to accommodate the
various combinations and permutations of possible
application, both currently known, as well as those that
will emerge in the future. The basic idea is to define
two sets of interfaces; the DEVS model Interface and
the DEVS Simulator Interface, as well as a DEVS
Simulation Protocol that operates between the two.
The interfaces protocols are based on those in
GenDEVS, an implementation at the heart of the
DEVJAVA M&S environment
[www.acims.arizona.edu]. DEVS/C++ and
DEVSJAVA are platform specific implementations
while DEVSML[26] and FDDEVS [27] are platform
independent implementations in XML which can
transform to any platform specific implementations.

Figure 4: Conceptual Architecture of Standard

 As a direct consequence of the model-simulator
separation there can be multiple ways in which the
same model can be simulated – all adhering to the
abstract simulator specification. Corresponding to
different simulation modes, the standard has virtual-
time and real-time simulators. In virtual-time
simulation, the simulator interprets time as logical time
so the simulation can skip from one event time to the
next without traversing the intervening time interval.
However, in real-time simulation, time is interpreted as
wall clock readings, so the real-time simulator will
wait for the interval to its next scheduled event to
expire before handling the event. In addition to the
model type/simulation mode combinations, the
standard allows for the use of different forms of
distribution of model components, e.g., single
processor vs. multi-processor, and within the latter,

conservative vs optimistic time advance for virtual-
time as well as centralized vs non-centralized time
control in real-time execution. The standard is also
agnostic with respect to different implementation
platforms, such as Windows vs Unix, different
programming languages, such as Java vs C++, and
different networking and middleware frameworks such
as .Net vs Apache. From the above introduction, we
can see that the standard will have multiple simulation
scenarios. For example, considering the combinations
of simulation mode and distribution mode, we have:
simulating a model in virtual-time and simulating
model in real-time both in distributed and non-
distributed fashion.

IODevs

atomicDevs
(optional)IOBasicDevs

basicDevs

coupledDevs

AtomicInterfaceCoupled

DevsInterface

Figure 5 DEVS Model Interfaces

Among these interfaces, IODevs defines interface for
the functions that handle message exchange based on
input and output ports. Any model, whether DEVS or
non-DEVS, can implement these functions so it can
interoperate with other implementers of this interface,
in the sense of receiving input and sending output. The
basicDevs Interface defines the basic functions a
DEVS model needs to implement such as deltext(),
deltint(), out(), ta() and so on. The basicDevs interface
is the interface that is exposed to the atomic simulators.
An additional interface, atomicDevs, provides a
convenient set of primitives for defining the basic
functions in an atomic model. However, since the basic
functions can be defined without using such primitives,
the atomicDevs interface is optional. The
IOBasicDevs interface extends the IODevs interface
and basicDevs interface. It provides a common basis
for implementing atomic models and coupled models.
Combining IOBasicDevs with atomicDevs, we get
AtomicInterface which defines the function signatures
an atomic model need to implement. Of course, if
atomicDevs is omitted, then AtomicInterface reduces to
IOBasicDevs. Similarly, CoupledDevs interface
defines the function signatures that are used in DEVS

coupled models. It also has methods that support
adding components and couplings to the model;
methods for retrieving a component by name and for
accessing all components; and to access the internal
coupling specifications (intended only by simulators).
Combining IOBasicDevs with CoupledDevs, we get
the Coupled interface which defines the functions
coupled models need to implement.

coreSimulator

Atomic
Simulator

CoupledSimulator

Coordinator

CoupledCoordinator

Figure 6 DEVS Simulator Interfaces

 The basic simulator interface is the CoreSimulator
that provides a common interface for DEVS and non-
DEVS simulation. Further, the CoreSimulator
interface is the basic interface from which simulation
services could be designed for a truly net-centric
interoperable simulation framework [23]. Under the
CoreSimulator interface, two classes of simulators
have been defined CoupledSimulator and
CoupledCoordinator interfaces where the latter also
inherits from Coordintor. These apply to both virtual
(logical); and real-time simulation. (Real time
simulators interpret time as real wall clock time and
have their own thread and system clock. Virtual or
logical time simulators can advance from one event
time to the next). The CoreSimulator interface includes
methods that are invoked by the DEVS simulation
protocol:

interface coreSimulatorInterface{
void setSimulators
 (Collection<CoreSimulatorInterface>);
void initialize();
Double nextTN();
void computeInputOutput(Double t);
void applyDeltFunc(Double t);
void putContentOnSimulator
 (CoreSimulatorInterface sim, ContentInterface c);
void sendMessages();

5.1 DEVS Simulation Protocol

DEVS treats a model and its simulator as two distinct
elements. The simulation protocol describes how a

DEVS model should be simulated whether in
standalone fashion or in a coupled model. Such a
protocol is implemented by a processor which can be a
simulator or a coordinator.

Coordinator

Atoimc1

Non-DEVS
Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS
Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("ApplyDeltFunc”)

putContentOnSimulator
DEVS
Simulator

DEVS
Simulator

DEVS
Model

2

?

Figure 7 Federation of DEVS with Non-DEVS Simulators

As illustrated in Figure 7, the DEVS protocol is
executed as following:
1. It starts with the coordinator telling each of the

simulators in the collection the others’ addresses
and then to perform initialization function.

2. A cycle is then entered in which the coordinator
requests that each simulator provide its time of
next event and takes the minimum of the returned
values to obtain the global time of next event

3. Each of the simulators applies its
computeInputOutput() method to produce an
output that consists of a collection of contents
(port/value) pairs – for DEVS simulators this is a
composite message computed according to the
DEVS formalism based on its model’s current
state.

4. Then each simulator partitions its output into
messages intended for recipient simulators and
sends these messages to these recipient simulators
– for DEVS simulators these recipients are
determined from the output ports in the message
and the coupling information that will have
previously been received from the coordinator.

5. Finally, each simulator executes its
ApplyDeltFunc method which computes the
combined effect of the received messages and
internal scheduling on its state, a side effect of
which is produce of time of next event, tN – for
DEVS simulators this state change is computed
according to the DEVS formalism and the tN is
updated using its model’s time advance.

6. The coordinator obtains the next global time of
next event and the cycle repeats

It should be noted that the above is one form of many
possible protocols that can provide various forms of
conservative and optimistic simulation, each of which
must be proved to be correct as a realization of the
DEVS closure under coupling property [16].

Implicit in the above description are the following
constraints involving methods in the
CoreSimulatorInterface:
• The sendMessages() method “must” employ the

putContentOnSimulator() method as follows: for
any simulator to which it wishes to send a content,
it must call the recipient’s
putContentOnSimulator() method with the
recipient and the content as arguments.

• Further, in applying its computeInputOutput()
method, a simulator “must” be able to interpret
the contents (satisfying the ContentInterface) it
has received from the other simulators.

Notice that we cannot enforce the “must” requirements
just given, and cannot prove that the simulation
executes a desired behavior, unless we are given
further information about its behavior. One way to do
this is where the simulators are truly DEVS simulators
in that they satisfy the interfaces and constraints given
below. Failing this additional rigor, the interoperation
involving DEVS and non-DEVS is purely at the
technical level similar to that of a federation of
simulators in HLA. This contrasts with the situation in
which the federation is in fact derived from a DEVS
coupled model for which correct simulation of the
coupled model is guaranteed according to the DEVS
formalism.

6. DEVS/SOA

An implementation of the standard within the Service
Oriented Architecture (SOA) has been completed that
provides DEVS modeling and simulation services over
the World Wide Web [17, 23], As shown in the Figure
8, at the top of the layered architecture is the
application layer that contains models in DEVSJAVA
or DEVSML, a way of representing DEVS models in
the eXtended Markup Language (XML). This
DEVSML is built on JAVAML [18], which is XML
implementation of JAVA. The current development
effort of DEVSML takes its power from the underlying
JAVAML that is needed to specify the ‘behavior’ logic
of atomic and coupled models. The DEVSML models

are cross-transformable to Java. The second layer is
the DEVSML layer itself that provides seamless
integration, composition and dynamic scenario
construction resulting in portable models in DEVSML
that are complete in every respect. These DEVSML
models can be ported to any remote location using the
SOA infrastructure and cam be executed at any remote
location in a distributed or non-distributed manner.
Another major advantage of such capability is total
simulator ‘transparency’. The simulation engine is
totally transparent to model execution over the SOA
infrastructure. The DEVSML model description files
in XML contains meta-data information about its
compliance with various simulation ‘builds’ or
versions to provide true interoperability between
various simulator engine implementations. This has
been achieved for at least two independent simulation
engines as they have an underlying DEVS protocol to
adhere to. This has been made possible with the
implementation of a single atomic schema [24] and a
single coupled schema [25] that validates the
DEVSML descriptions generated from these two
implementations. Such run-time interoperability
provides great advantage when models from different
repositories are used to compose large coupled models
using the DEVSML integration capabilities. Detailed
design can be seen in [17,23].

WEB
SERVICE
CLIENT

Middleware (SOAP, RMI etc)
Net-centric infrastructure

DEVS Simulator Services

DEVS Modeling Language (DEVML)

DEVSJAVA

DEVS
Agent

(Virtual User)

DEVS
Agent

(Observer)

WEB
SERVICE
CLIENT

Figure 8 DEVS/SOA interoperability

The complete setup requires one or more servers that
are capable of running DEVS Simulation Service, as
shown in the second layer in Figure 8. The capability
to run the simulation service is provided by the server
side design of DEVS Simulation protocol supported by
the DEVSJAVA. Of course, many issues of policy
management and security considerations must be taken
care of in the generation of DEVS models from
WSDLs specifications [22]. Furthermore, the multi-

platform simulation capability provided by
DEVSV/SOA framework consists of realizing
distributed simulation among different DEVS
platforms or simulator engines such as DEVSJAVA,
DEVS-C++, etc. and executing the native simulation
service. This kind of interoperability where multi-
platform simulations can be executed with our
DEVSML integration facilities has been made possible
with the hierarchical design of simulator interfaces as
described in Section 5.

7. How Interoperability is supported

The proposed DEVS standard and its DEVS/SOA
implementation support several modes of
interoperability. These are outlined in the following
paragraphs.

7.1 DEVS-to-DEVS Interoperability

DEVS-to-DEVS Interoperability is the basic form of
interoperability enabled by the DEVS standard as
discussed above. Adoption of the DEVS standard
facilitates new development to achieve interoperability
at the syntactic, semantic and pragmatic levels
mentioned above. More detail on these concepts in
application to testing of SOA systems can be found in
[5, 20, 21, 22].

7.2 DEVS-to-Non-DEVS Interoperability

7.2.1 Direct. As mentioned before, legacy simulations
that can be refactored to implement the CoreSimulator
interface can be interoperate at the syntactic level with
DEVS and other non-DEVS peers. In its strongest
form, such simulation methodology guarantees well-
defined time preservation and simulation correctness
as a sound basis to aim for interoperability at the
higher levels.

7.2.2 Via Client Gateways. For a variety of reasons,
although DEVS compliance is desirable, it can be
expected that legacy systems will continue to prevail
and new non-compliant systems developed. The
adoption of the SOA standard however, will facilitate
the interoperation of DEVS and non-DEVS
components that are compliant with the SOA standard.
This form is realized in an Agent-implemented Test
Instrumentation Infrastructure that deploys DEVS
models to act as agents that are attached to clients of
services [5,22]. Such attachment can be performed in
automated fashion using tools such as Axis Toolkit to

create the client stub given a service’s Web Service
Description Language (WSDL) [22]. As in Figure 8,
these agents can observe the web service requests
originating from the client and server responses (or
failure thereof) to accumulate a variety of performance
measurements. The agents can also serve as virtual
users to interact with other users to direct the course of
test scenarios and collect performance metrics to
support scalability studies. Further, while collecting
data, DEVS agents can communicate with each other
to coordinate and share information using the DEVS-
to-DEVS configuration just discussed. Case studies are
available in reference [22].

8. Conclusions

Achieving interoperability is one of the chief SoS
engineering objectives in the development of
command and control (C2) capabilities for joint and
coalition warfare. The importance of M&S in SoS
design and evaluation cannot be underestimated. M&S
can be used strategically to provide early feasibility
studies and aid the design process. As components
comprising SoS are designed and analyzed, their
integration and communication is the most critical part
that must be addressed by the employed SoS M&S
framework. The integration infrastructure must support
interoperability at syntactic, semantic and pragmatic
levels to enable such integration.

Currently there are several other approaches to
distributed simulation and to integration of M&S with
advanced C2 systems. These approaches build on the
internet or other net-centric middleware to provide
component connectivity and simulation services [1,20].
The latter may also include HLA implementations;
however, the extent of adoption of HLA in this context
remains to be seen. The DEVS standard provides a
formal systems-based abstraction that can support
higher level interoperability, whether alone or on top
of HLA. The DEVS/SOA implementation provides a
SOA implementation independent of HLA and is a
viable approach to M&S integration with C2 SoS in
the weaker gateway form, and in the strong direct
compliance form. Further, DEVS has been applied to
frameworks like DoDAF, UML and other systems
engineering frameworks like SES. A globally wide-
spread and growing DEVS-based research and
development community provides a prolific base for
sharing of DEVS models and tools [28]. It is not a
major step from here to see how DEVS components
including decision making agents, sensor simulators,
and environmental representations can bring the power

of M&S to the development of C2 SoS. The
underlying SOA standard that facilitates this
interoperation can be expected to be widely adopted
(for example, it has been adopted by the DoD’s Global
Information Grid initiative).

9. References

[1] Mark Pullen,LTC Ken Wilson, Michael Hieb, Andreas

Tolk,Extensible Modeling and Simulation Framework (XMSF)
C4I Testbed, http://www.movesinstitute.org/xmsf/xmsf.html

[2] Andrew Sage: From Engineering a System to Engineering an
Integrated System Family, From Systems Engineering to
System of Systems Engineering, 2007 IEEE International
Conference on System of Systems Engineering (SoSE). April
16th -18th, 2007, San Antonio, Texas

 [3] Jacobs, Robert W. “Model-Driven Development of Command
and Control Capabilities For Joint and Coalition Warfare,”
Command and Control Research and Technology Symposium,
June 2004.

[4] Dahmann, J.S., F. Kuhl, and R. Weatherly, Standards for
Simulation: As Simple As Possible But Not Simpler The High
Level Architecture For Simulation. Simulation, 1998. 71(6): p.
378

[5] Saurabh Mittal, Bernard P. Zeigler, Jose L. Risco Martin, Ferat
Sahin and Mo Jamshidi Modeling and Simulation for Systems
of Systems Engineering to appear in Systems of Systems --
Innovations for the 21st Century (to be published by Wiley)

[6] Tolk, A., and Muguira, J.A. The Levels of Conceptual
Interoperability Model (LCIM). Proceedings Fall Simulation
Interoperability Workshop, 2003

[7] M.J. DiMario System of Systems Interoperability Types and
Characteristics in Joint Command and Control, Proceedings of
the 2006 IEEE/SMC International Conference on System of
Systems Engineering, Los Angeles, CA, USA - April 2006

[8] Levels of Information Systems Interoperability (LISI),
http://www.sei.cmu.edu/isis/guide/introduction/lisi.htm

[9] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an
Interoperability-Enabling Ontology,” Proceedings of Fall
Simulation Interoperability Workshop, 2005.

[10] Muguira, James. and Tolk., A “Applying a Methodology to
identify Structural Variances in Interoperations,” JDMS: The
Journal of Defense Modeling and Simulation, Vol 3, No 2,
2006

[11] Zeigler, B.P., and P. Hammonds, “Modeling & Simulation-
Based Data Engineering: Introducing Pragmatics into
Ontologies for Net-Centric Information Exchange”, 2007, New
York, NY: Academic Press.

[12] Turnitsa C., and A. Tolk, “Evaluation of the C2IEDM as an
Interoperability-Enabling Ontology,” Proceedings of Fall
Simulation Interoperability Workshop, 2005.

[13] Lasschuyt E., M. van Henken, W. Treurniet, and M. Visser,
“How to Make an Effective Information Exchange Data
Model,” RTO-IST-042/9,2004

[14] Hoffmann, M., Challenges of Model Interoperation in Military
Simulations. SIMULATION, Vol. 80, pp. 659-667, 2004

[15] Chaum, E., Hieb, M.R., and Tolk, A. “M&S and the Global
Information Grid,” Proceedings Interservice/Industry Training,
Simulation and Education Conference (I/ITSEC), 2005.

[16] Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000). Theory of
Modeling and Simulation. New York, NY, Academic Press.

 [17] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-Based Web
Services for Net-centric T&E”, Summer Computer Simulation
Conference, 2007

[18] Badros, G. JavaML: a Markup Language for Java Source Code,
Proceedings of the 9th International World Wide Web
Conference on Computer Networks: the international journal of
computer and telecommunication networking, pages 159-177

 [19] Zeigler, B. P., S Mittal, “Enhancing DoDAF with DEVS-
Based System Life-cycle Process”, IEEE International
Conference on Systems, Man and Cybernetics, Hawaii,
October 2005

[20] Steven W. Reichenthal, SRML - Simulation Reference Markup
Language W3C Note 18 December 2002
http://www.w3.org/TR/SRML/

[21] S Mittal, “Extending DoDAF to allow DEVS-Based Modeling
and Simulation”, Special issue on DoDAF, Journal of Defense
Modeling and Simulation (JDMS), Vol 3. No. 2

[22] S Mittal, BP Zeigler, JLR Martin, J Nutaro, “Design and
Analysis of Service Oriented Architectures using DEVS/SOA-
Based Modeling and Simulation”, submitted to IEEE
Transactions on Systems, Man and Cybernetics, Part C, Special
Issue on Information Reuse and Integration

[23] S. Mittal, JLR Martin, BP Zeigler, ”DEVS/SOA: A Cross-
platform Framework for Net-centric Modeling and Simulation

in DEVS Unified Process”, submitted to SIMULATION:
Transactions of SCS

[24] Atomic Schema:
http://www.u.arizona.edu/~saurabh/fddevs/NewXMLSchema.x
sd

[25] Coupled Schema:
http://www.u.arizona.edu/~saurabh/fddevs/CoupledDevs.xsd

[26]S Mittal, JLR Martín, BP Zeigler, “DEVSML: Automating
DEVS Execution over SOA Towards Transparent Simulators”,
Special Session on DEVS Collaborative Execution and
Systems Modeling over SOA, DEVS Integrative M&S
Symposium DEVS' 07, Spring Simulation Multi-Conference,
March 2007

[27] S Mittal, MH Hwang, BP Zeigler, Finite Deterministic DEVS
(FDDEVS):
http://www.u.arizona.edu/%7Esaurabh/fddevs/FD-DEVS.html

[28] Workshop on Net-Centric M&S,
http://osa.inria.fr/wiki/NCMS/NCMS

Biographies

Bernard P. Zeigler is Professor of Electrical and
Computer Engineering at the University of Arizona,
Tucson and Director of the Arizona Center for
Integrative Modeling and Simulation. He is
internationally known for his 1976 foundational text
Theory of Modeling and Simulation, recently revised
for a second edition (Academic Press, 2000), He has
published numerous books and research publications
on the Discrete Event System Specification (DEVS)
formalism. In 1995, he was named Fellow of the IEEE
in recognition of his contributions to the theory of
discrete event simulation. In 2000 he received the
McLeod Founder’s Award by the Society for
Computer Simulation, its highest recognition, for his
contributions to discrete event simulation. He was
appointed Fellow of the Society for Modeling and
Simulation, International (SCS), 2006.

Saurabh Mittal is an Assistant Research Professor at
the ECE Department, University of Arizona. He
received both MS and PhD in ECE from the University
of Arizona in 2004 and 2007 respectively. His research
interests include modeling and simulation, net-centric
systems engineering, DoDAF-based executable
architectures, interoperability and data engineering. He
is a recipient of Joint Interoperability Test Command's
highest civilian contractor 'Golden Eagle' award for the
project GENETSCOPE and NTSA award for Best
Cross-platform development in M&S area for the
project ATC-Gen. He is currently working on projects
at JITC and NGIT. He can be reached at
saumitt@gmail.com

XIAOLIN HU is an Assistant Professor in the
Computer Science Department at Georgia State
University, Atlanta, Georgia. He received his Ph.D.
degree from the University of Arizona, M.S. degree
from Chinese Academy of Sciences, and B.S. degree
from Beijing Institute of Technology in 2004, 1999,
and 1996 respectively. His research interests include
modeling and simulation, and their applications to
complex system design, multi-agent/multi-robot
systems, and ecological and biological problems. He
has served as program chairs for four international
conferences/ symposiums in the field of modeling and
simulation, and guest editor for Simulation:
Transaction of The Society for Modeling and
Simulation International.

