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ABSTRACT 

Many complex systems can only be studied using dynamical models that can be 

simulated. Models must have precise structural and behavioral abstractions in order to be 

correctly simulated. A key challenge in developing and executing simulation models is to 

have a modeling and simulation environment where users can systematically transition 

from model creation to simulation experimentation and evaluation. In response, this thesis 

develops a novel approach for component-based system modeling and simulation. An 

integrated modeling and simulation tool called Component-based System Modeling and 

Simulation (CoSMoS) is developed. Its modeling engine supports logical, visual, and 

persistent model specification with support for automated simulation code generation. Its 

simulation engine supports visual experimentation configuration and run-time data 

collection and observation. The CoSMoS tool enables simulation-based system design 

process with support for model verification and simulation validation. The integrated 

model specification, simulation code generation, and controlled experimentation 

capabilities of the CoSMoS tool are demonstrated with a model of an Anti-Virus Network 

software system. 
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1 INTRODUCTION 

Design and engineering of software-based systems remain an active area of 

research. Software architecture has a central role in building complex, large-scale software 

systems since it reduces development time, increases quality of detailed design and 

provides a holistic description of a system’s specification (Medvidovic, Rosenblum, 

Redmiles, & Robbins, 2002). Modeling is needed to define and analyze the structural and 

behavioral aspects of a system. A general theory of Modeling and Simulation (M&S) was 

derived from the basic systems theory and thus provides a basis towards the engineering of 

software-based systems. Creating simulation models for systems can support developing 

designs that can be executed in virtual settings. These simulation models complement 

UML (Unified Modeling Language) models that are commonly used for software analysis 

and design (Ferayorni, 2008; Ferayorni & Sarjoughian, 2007). Simulation of software 

designs can support model verification and validation capabilities beyond what is generally 

supported by UML (Mooney, 2008). 

DEVSJAVA (Arizona Center for Integrative Modeling and Simulation, 2007), an 

M&S tool implemented in JAVATM, establishes an environment that supports 

characterizing the models in DEVS (Discrete Event System Specification) (Zeigler, Kim, 

& Praehofer, 2000) formalism. The partitions in the architecture of the tool clearly 

delineate a modeling engine that realizes the logical DEVS modeling artifacts, and a 

simulation engine that realizes the parallel DEVS abstract simulator. The absence of the 

facility to automatically track model states and input/output trajectory makes it inapt for 

setting up experiments with hundreds of distinct models. The above mentioned capabilities 

have been introduced to the DEVS-Suite (Kim, 2008; Kim, H. S. Sarjoughian, R. Flasher, 
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& V. Elamvazhuthi, in preparation), an environment that extends the DEVSJAVA 

Tracking environment (DTE) (Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003) 

with time-based data trajectories, tabular data, and CSV files. However DEVS-Suite does 

not support visual model development. 

CoSMo1 (Component-Based System Modeler) is a logical, visual, and persistent 

modeling framework that supports specification of models using a generic component-

based paradigm (S. Bendre, 2004; S.  Bendre & Sarjoughian, 2005; Fu, 2002; Mohan, 

2003; H. S. Sarjoughian, 2005; Sarjoughian & Flasher, 2007). CoSMo supports specifying 

a family of models, where their scalability and complexity can be managed in a controlled 

manner. Given simulation engines such as DEVSJAVA, models created in CoSMo can be 

mapped into partial simulation code. 

1.1 Research Objective and Approach 

The primary goal of this research is to integrate CoSMo and DEVS-Suite 

environments. The resulting environment Component-based System Modeling and 

Simulation (CoSMoS) is aimed at supporting development and configuration of simulation 

experiments using CoSMo’s logical, visual, and persistent modeling engine specialized for 

DEVS models and can be executed using DEVS-Suite with automatic data observation and 

collection. The capabilities of the CoSMoS environment are: 

• Visual selection of hierarchical model components for tracking.  

                                                 

1  The name CoSMo is coined as a replacement for SESM/CM (Sarjoughian, in preparation). The new name captures 
more strongly the component aspect of system modeling. 
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• Follows a process for creating models and simulating them to conduct experiments. 

• Display automatically gathered simulation data using a set of complementary data 

viewers. 

CoSMo
DEVS‐
Suite

 
Figure 1. CoSMoS Integration 

The overall approach to the integration was to observe the differences in the format 

of the models that are generated by CoSMo and can be simulated by DEVS-Suite. The 

version 1.3.0 of CoSMo provides the capability for creating, modifying, and deleting the 

structural aspects of the primitive and composite models (ACIMS, 2007). These structural 

aspects involve the name of the models, input/output ports (port names and data variables), 

couplings and modular hierarchical structures, multiplicity of model components, and 

specializations. CoSMo has a relational database for storing and managing the primitive 

and composite model types. CoSMo also supports some behavioral modeling (inputs, 

outputs, and states). This makes it suitable for the development of a family of models.  

DEVS-Suite is an object-oriented modeling and simulation environment with the 

capability to track input, output, and state data sets. The models are described based on the 

system-theoretic modeling concepts and implemented in JAVA. The simulation models are 

syntactically checked for conformity by the Parallel DEVS simulator. The logical model to 

simulation code translator in CoSMo generates files that conform to the DEVS-Suite 

syntax and semantics. To enable simulation of these models in DEVS-Suite, a visual 



4 

 

modeling to simulation approach has been designed and developed. This involves 

completing the partially generated models in CoSMoS and loading them into DEVS-Suite. 

Using CoSMoS, modelers can develop and simulate models in an integrated visual 

modeling and simulation environment. 

1.2 Contribution 

The contributions of this thesis can be summarized as 

• Extended CoSMo design and implementation to support visual configuration of 

models for experimentations and generation of simulation code for DEVS-Suite. 

• Defined a process where model development and simulation can be carried out 

systematically. 

1.3 Organization of the Thesis 

Chapter 2 gives an overview and background of the CoSMo and DEVS-Suite 

environments being integrated. It involves the detailed description of the visual modeling 

engine CoSMo and its current capabilities. It also has a detailed architecture of the 

DEVSJAVA Tracking Environment that is the basis of the DEVS-Suite. The related work 

discusses and compares the discrete event modeling and simulation environments Ptolemy 

II (Lee, 2003), SimEvents (MathWorks, 2007), and DEVS-Suite. The concept of Federation 

Development and Execution Process (FEDEP) is described with respect to the CoSMoS 

environment. 

Chapter 3 describes the conceptual design of the CoSMoS environment. A process 

flow has been defined and explained in detail. It also discusses the necessary additions and 
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modifications required to facilitate the integration of CoSMo and DEVS-Suite 

environments. All the new or modified capabilities of CoSMoS are described in terms of 

use case diagram and basic requirements.  

Chapter 4 shows the design for these capabilities which involves both class and 

sequence diagrams. The algorithms for the new capabilities have been described in detail 

along with a set of new database queries. 

Chapter 5 depicts an example of Anti-Virus Model developed in CoSMoS. A set of 

models are developed step-by-step in order to show the capabilities of the CoSMoS.  

Chapter 6 discuses conclusions and future research. 



2 BACKGROUND 

2.1 Component-based System Modeler (CoSMo) 

Component-based System Modeler (CoSMo) is a modeling framework aimed at 

characterizing a family of system specifications. It defines a novel unified foundation for 

specifying logical, visual, and persistent primitive and composite models. Based on the 

concepts of modularity and (part-of and is-a) hierarchy, complex structures can be specified 

by coupling components’ input and output ports. CoSMo supports component-based 

modeling approaches such as DEVS and XML (Sarjoughian & Flasher, 2007) which will 

be discussed in detail later.  

Component –based System Modeler (CoSMo)

Visual
Modeling

Logical
Modeling

Persistent
Modeling

Model
Translator

Simulation 
Code

Standardized
Models

 
Figure 2. Logical, visual, and persistent model types with model translators 

The logical model specification is governed by a set of axioms that ensure 

consistency among a family of alternative hierarchical model specifications. The models 

can have arbitrary complex part-of and is-a relationships giving rise to a large number of 

digraph (i.e., strict hierarchal) models. The persistent feature helps the modelers create, 

store, access and manipulate the models efficiently. The advantages of storing the model in 

a database include the management and scalability of models and being able to compute 

their complexity metrics. The visual modeling supports developing and manipulating large 
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models. CoSMo provides the facility to design the models at different levels of details due 

to the separation of the Template Models (TM), Instance Template Models (ITM) and 

Instance Models (IM). The CoSMo’s translator supports transforming the logical models 

that are stored in the databases to their equivalent simulation code as well as other 

representations such as DTD (Document Type Definition) and XML (Extensible Markup 

Language) (Sarjoughian & Flasher, 2007). Logical models can be translated to simulation 

models. For example, for models that comply with the DEVS formalism and are intended 

to be executed with the DEVS-Suite, a translator has been developed. These DEVS-

compliant logical models transformed to DEVS-Suite simulation code can be executed by 

adding functions that operate on inputs and state changes to produce outputs based on the 

given timing function. Translators have also been developed to generate DTD and XML 

models. The CoSMo models are explained in a more elaborate way using the state 

variables, ports, and the couplings that exist between the various models when the coupled 

models come into focus.  
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Figure 3. CoSMo Client Server Architecture 

The basic architecture of the CoSMo is client-server (see Figure 3). The main parts 

of the software are Client, Network, and Server. The Client requests for the write requests, 

which are managed by the Network and then processed by the Server. The server also 

enforces rules according to the CoSMo’s axioms in order to maintain the syntactical 

correctness of the models. All the read operations are directly handled by the database. The 

graphical user interface is efficient and provides three complementary views of every 

model: the Template model (TM), Instance Template Model (ITM), and the Instance 

Model (IM). The models are shown in the GUI by two means, one is using the Tree 

structure that lists all the primitive and composite models and their parts and specializations 

and the other is the block representation that shows the primitive models and the composite 

models up to two levels of its hierarchy. Using the DEVS-Suite translator, the CoSMo’s 

primitive and composite models can be translated into partial DEVS atomic and complete 

coupled simulation code which can then be run by the DEVS-Suite simulation engine once 

it is completed. The partial DEVS-Suite source code generated for each atomic model can 
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be completed by providing the implementation of the external, internal, output, and time 

advance function templates using any IDE or the editor that is provided with CoSMo. 

CoSMo also supports a class of Non-Simulatable Model (NSM) components. These 

types of models are based on object-oriented and XML model components. They are 

depicted differently than the Simulatable Model (SM) components which are time-based. 

The main difference between SM and NSM from a CoSMo perspective is that the 

execution of the SM model components is determined by the simulation protocol which 

generates simulation code. For example, if the DEVS-Suite simulator is used, then the 

Simulatable Models are executed according to the Parallel DEVS protocol.  
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Figure 4. SESM (Scalable Entity Structure Modeler) GUI 

2.2 DEVS-Suite 

DEVS-Suite (Kim, 2008; Kim, et al., in preparation) extends the DEVSJAVA 

Tracking Environment (DTE) (Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003). 

DTE is an object-oriented DEVS simulation environment. The models are syntactically 

checked for the conformation to Parallel DEVS. These models are simulated with the 

DEVSJAVA simulation engine, an implementation of the DEVS abstract atomic and 

coupled simulators. 

This simulation environment is comprised of a set of packages that support 

developing DEVS models. Two basic packages are the devs.model.environment.modeling 
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and devs.model.environment.simulation. The former supports a realization of the atomic 

and coupled modeling constructs. The latter is a realization of the abstract atomic and 

coupled simulators. The simulation model is typically defined as a set of instructions, rules, 

equations, or the constraints for consuming and producing input and output events. The 

models are designed with the Internal and External transition functions, time advance 

function, and output generation function to accept the input trajectories and thus generate 

the output trajectory over a period of time. 

DTE is developed on strong system theoretic concepts and the classic MVC 

(MODEL-VIEW-CONTROL) design pattern. The details governing the modeling and 

simulation engines (MODEL) are strictly shielded from the VIEW and CONTROL. 

The MODEL is independent of CONTROL and VIEW. The MODEL is processed 

under the directive of the CONTROL and the data is consumed by the VIEW. The 

CONTROL does not introduce any side effects to the MODEL. The CONTROL maps user 

actions to their counterparts provided in the MODEL (for example, injecting input to a 

model). The VIEW does not change the simulation models; instead it supports accessing 

simulation models input and output variables and common variables (i.e., sigma & phase; 

tL & tN) that belong to all models and the simulator. The VIEW provides an interface 

through which the simulated model can be executed under the DEVS-Suite execution 

scheme. 
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Figure 5. Architecture of DEVS-Suite (adapted from (Singh & Sarjoughian, 2003)) 

The architecture (Figure 5) of DEVS-Suite has modeling and simulation engines 

that are complex in nature and are treated as part of the MODEL of the MVC 

decomposition. The MODEL represents the atomic and coupled models. The Façade 

design pattern is used to expose inputs, outputs, and states of the models as well as 

simulation control operations. The FACADE manages all external VIEW and CONTROL 
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interactions of the MODEL. This FACADE Interface layer maintains a precise set of 

operations in such a way that the MODEL’s internal details are invisible to the VIEW and 

CONTROL. For this layer to communicate with the VIEW and CONTROLLER, the 

Coupling and Communication (C&C) layer is introduced. The C&C layer has the simulator 

control logic built into it. The VIEW and CONTROLLER can send and receive data and 

control messages to the FACADE interface layer (and thus the MODEL) only through the 

C&C layer. 

The VIEW serves as a visualization interface for the user to interact with the 

MODEL through the CONTROL. The VIEW displays some aspects of the simulation 

models to the user. It only has access to the information that is available from the Façade 

and C&C layers. The VIEW can be considered as a workspace to view, control, and 

monitor simulation models. It also orders all user interactions. However, there is no 

guarantee that the VIEW can display the data it receives from the C&C at the same rate the 

MODEL is generating them. This is because the VIEW does not control the execution of 

the simulation models (i.e., MODEL) and therefore pulls the data from the C&C layer 

independently of the CONTROL and MODEL. 

The CONTROLLER defines the overarching execution logic which includes 

initialization, termination of environment, and VIEW and MODEL manipulation. The 

control requests are originated in the VIEW due to a user request or action. The 

CONTROLLER also defines proxies for the simulation engine’s execution logic which are 

Reset, Run, Run[n], Inject, and Pause operations. The user also has the choice of 
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controlling the speed of the simulator and animation. These operations are managed 

through the C&C layer. When the logic for processing control request is not present in the 

model level logic, the CONTROLLER maps it into the corresponding section in the C&C 

layer.  

The central feature of DEVS-Suite is to allow the user the option to select the 

components and thus observe only the input, output, and state variables that are of interest. 

This capability simplifies the configuration of different simulation experiments without 

adding auxiliary code to the simulation models or writing transducer models as is 

commonly done. This kind of setup helps in analysis by enabling the setup of simulations 

and therefore tracking the states, and input/output in the three complementary views 

(tabular, time trajectories, and animation) in a controlled and repeatable manner. 
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Figure 6. DEVS-Suite GUI 

2.3 Verification and Validation 

Simulation models are used for building complex systems or understanding their 

inner-workings. The developers who build these simulation models and the users who use 

these simulation results are concerned about the correctness of these models. Model 

verification and validation (V&V) plays an important role to address this issue. 

Verification refers to the process of analyzing the extent to which the model 

developed pertains to its requirements and specifications. Verification also evaluates the 

extent in which the model and simulation developed conforms to the established software 
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and systems engineering techniques. Validation refers to the process of analyzing the 

degree of similarity in the simulated model with the real (or imagined) system while 

conforming to the prescribed (or desired) structural and behavioral requirements. 

A disciplined approach to the V&V of these simulation models can reduce 

developing and integration risk while enhancing the credibility of the simulations. The 

iterative nature of simulation model development in CoSMoS helps the modeler carry out 

modeling and simulation tasks systematically. 

2.4 Federation Development and Execution Process (FEDEP) 

High Level Architecture (HLA) has been defined to introduce interoperability 

among simulations and also reuse. Thus HLA enables various types of simulation (logical 

and real). HLA Object Model Template (OMT) plays an important role in building HLA-

compliant simulations (Lutz, Scrudder, & Graffagnini, 1998). The HLA/OMT specifies 

two object models: Federation Object Model (FOM) and Simulation Object Model (SOM). 

A FOM deals with the issues of decomposition of federations into federates while a SOM 

deals with the dynamic capabilities of the federates, such as their operations to the extent of 

capturing interactions. There are two main technical objectives for HLA/OMT 

specifications. The first objective is to provide a common specification for the exchange of 

the data and coordination among the members of the federation using the concept of 

publish and subscribe. The second objective is to provide a common mechanism for 

describing the capabilities of potential federation. FEDEP defines seven basic steps for the 

HLA federations to develop and execute their federations. The steps are as follows: 
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Step 1. Define federation objectives 

The federation user, sponsor, and the developer define and agree on a set of 

objectives. 

Step 2. Perform conceptual analysis 

Based on the characteristics of the problem space, a representation of the real 

world domain is developed. 

Step 3. Design federation 

A plan is developed for federation development and integration. 

Step 4. Develop federation 

The Federate Object Model (FOM) is developed. 

Step 5. Plan, integrate, and test federation 

Federation integration and testing is conducted to ensure the interoperability 

requirements are met. 

Step 6. Execute federation and prepare outputs 

The federation is executed and the output is pre-processed. 

Step 7. Analyze data and evaluate results 

The output data from the federation execution is analyzed and evaluated. 

We can observe that there is a direct relationship between HLA FOM and SOM 

with DEVS. The atomic and coupled models correspond to federate and federation 

components (Sarjoughian and Zeigler, Simulation Transactions, 2000).  
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As seen in the FEDEP modeling and simulation life cycle, simulation model 

development and execution is an important component. To build conceptually correct 

models and correct simulation code for large scale complex systems, an environment 

should consider the following: 

• Formal model specification: The logical models in CoSMo follow specific 

rules and axioms to support well defined (component-based) structure and 

behavior specifications. 

• Visualizations: CoSMo allows the modeler to develop large and complex 

models. Visualization of the simulation output data is provided with the help of 

DEVS-Suite’s viewers (e.g., time trajectories of inputs, outputs, and states). 

• Repository: The models are stored in the database and thus are persistent 

across different sessions. 

• Transformation: Models can be translated into simulation code for a class of 

simulation models (e.g., DEVS). 

Since CoSMo’s primitive and composite models can represent DEVS atomic and 

coupled models, CoSMo and DEVS-Suite can be used together to support model 

verification and simulation validation. As we see in Figure 7 (H. Sarjoughian, 2005), 

CoSMo supports four phases of the FEDEP (i.e., Develop Design, Develop Conceptual 

Model, Validate Conceptual Model, and Verify Design) 
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Develop 
Conceptual 
Model

Develop 
Design

Verify 
Design

Validate 
Conceptual
Model

Implement
& Tests

Verify Simulation & 
Validate  Results

Collect and Evaluate Accreditation

Simulation Model Verification and Validation Phases

Simulation Model Development Phases

Component-based 
System Modeler 

(CoSMo)

   

Figure 7. CoSMo and FEDEP 

The integration of DTE in CoSMo allowed the modeler to implement the DEVS 

model and simulate them using the DEVS simulator available in DTE. The models can be 

structurally configured; however, for behavior specification the modeler needs to manually 

complete the models using the IDE available in CoSMoS. The simulation results of the 

models developed above can be shown in various output trajectory viewers available. 

2.5 Related Work 

2.5.1 Ptolemy II 

Ptolemy II (Department of EECS, 2007) is a modeling & simulation framework 

developed as a part of the Ptolemy Project. It is a component based framework 

implemented in JAVA and has a graphical user interface called Vergil. The project aims at 

studying modeling and simulation of real time and embedded systems. It has a large, visual, 

domain-polymorphic component library. A component called Director defines the 

interaction semantics among a set of models and the director that is for discrete event 
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models is called DE Director. The models are pre-defined for a given domain and specific 

visual representations. These model parameters can be set visually, but changes to each 

model’s logic (e.g., functions) must be done manually (i.e., through the use of text editors). 

The models can be visually coupled together. However, they are not auto-arranged and thus 

it is the responsibility of the modeler to manually adjust their positions. The animation 

feature shows one active model at any given instance of time during the simulation. These 

simulation results can be monitored and analyzed with the help of pre-built plotters. The 

plotters form part of the model layout and increases the number of the components in 

addition to the models that are simulated. The components used in Ptolemy II are domain 

specific and the modeler needs domain knowledge in order to use them. 

2.5.2 SimEvents 

SimEvents is an extension of Simulink which has a discrete-event model of 

computation built into it. SimEvents can be used to develop activity-based models to 

monitor system parameters such as congestion, re-source contention, and processing 

delays. It provides pre-fabricated queues, servers, switches, gates, timers, time-outs, and 

generators for entities, events, and signals. The SimEvents Sinks Library has several 

plotters that can be used in the models to monitor the values or the states of the various 

events. These sinks are strongly typed and thus use of an incompatible value at one of the 

ports will result in an error. SimEvents provides an environment for modeling hybrid 

dynamic systems containing continuous-time, discrete-event and discrete-time components. 
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SimEvents interacts with the time-based dynamics of Simulink. SimEvents also provides 

signals or entity changes to control the processing of State flow changes. 

2.5.3 DEVS-Suite 

DEVS-Suite is an environment targeted for simulating parallel DEVS models. It 

uses the DEVSJAVA simulation engine and introduces the capability to configure input 

and output variables and predefined state variables for observation and data collection. 

Data can be viewed as time-based trajectories and in tabular form during simulation 

execution. DEVS-Suite use the Model-View-Control architecture as described in Section 

2.2. DEVS-Suite supports simulating atomic and coupled model types. The atomic model 

contains input and output ports and variables, state variables and parameters, and time 

advance, internal, external, confluent transition, and output functions. The composite model 

defines the way in which atomic and/or components can be coupled together. However, 

there is no support for visual model development – i.e., template Java code must be 

completed using a text editor or IDE such as Eclipse. The input and output messages 

between the models can be animated and their state and parameters visualized during 

simulation execution. The models can be moved around manually in the simulation viewer, 

but the couplings are static and are relatively aligned. Due to this, they often overlap and 

reduce the visual clarity of the model. 

2.5.4 Assembly Line Model Exemplar 

The Assembly Line (Jayadev, 1986) model shown in Figure 8 is chosen to compare 

Ptolemy II, SimEvents, and DEVS-Suite simulation tools. Jobs are generated by a 
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Generator model at predefined intervals and are serviced by three processors P1, P2, and P3 

in a cascade fashion. The service time for each job is specified by a Processor.  

 
Generator 

g ( 1 2 ,, , kt t t… ) 

Processor

P1 ( 1 2, , , kt t t′ ′ ′… ) 

)

Processor

P2 ( 1 2, , kt t t′′ ′′ ′′… ) 

Processor 

P3 ( 1 2, , , kt t t′′′ ′′′ ′′′… ) 

Jobs

Jobs

 
Figure 8. Assembly Line model 
 
2.5.4.1 Observations 

We considered Ptolemy II, SimEvents, and DEVS-Suite to analyze the visualization 

aspects of models and their simulations. The Assembly Line shown in Figure 8 is a model 

that generates jobs and processes them using multiple processors in a cascading fashion. 

This exemplar model is part of the demos bundled with Ptolemy II. 

The components used in Ptolemy II to build the sample model are shown in Table 

1. Several components have to be combined to represent a single entity. For e.g., pulse 

generator and NonInterruptable Timer form the processor used in the Assembly Line 

model. Visual monitoring components have to be added as a part of the model to observe 

the output and behavior of the model during the simulation. The models and the couplings 

must be adjusted manually to avoid overlapping and to enhance visual feedback. The 

layout of the Assembly Line in the Ptolemy II environment can be seen in Figure 9. 
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Figure 9. Assembly Line model in Ptolemy II 

Table 1  

Ptolemy II model components 

 Component Name Icon Representation Name in Model 
DE Director  

 
DE Director 

Clock  
 

Jobs 

CurrentTime 
 

CurrentTime 

Pulse 

 

ServiceTimes1, 
ServiceTimes2, 
ServiceTimes3, 

NonInterruptibleTimer

 

Station 1, Station 2, 
Station 3 

Ptolemy 
II 

TimedPlotter 

 

Times when jobs arrive, 
Times when stations 
finish jobs. 

 

The Assembly Line model was also developed in SimEvents. The ports in 

SimEvents have to be manually adjusted. The ports are checked for types before they can 
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be coupled. The components have been categorized as logical and visual components, 

ports, and couplings. The visual components are the graphs and the plotters that capture the 

simulation data. These probes are shown as separate entities in the model layout. As the 

models are synthesized using basic components from libraries, some functionality, such as 

queuing of jobs in the server, needs the queue component to be added explicitly to the 

model. To track any particular component of the model these probes have to be added in 

addition to the models. Brief descriptions of the models are given in Table 2 and the layout 

is shown in Figure 10. 

 
Figure 10. Assembly Line model in SimEvents  
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Table 2 

SimEvents model components 

 Component Name Icon Representation Name in Model 

Event based sequence 
generator 

 

Generate Intervals 
1, 2, 3, 4 

Time-Based Entity 
Generator 

 

Job Generator 

FIFO Queue 

 

Server Queue1, 
Server Queue2, 
Server Queue3 

SimEvents 

Single Server 

 

Server 1, Server 2, 
Server 3 

 

A brief description of the models and the components are given in Table 3. DEVS-

Suite is a visual simulation tool where the models development is through code. The 

simulation viewer (Figure 6) shows the state information of each component during the 

course of the simulation. The ability to animate the messages passing between the models 

reduces need for additional visual monitoring components, ports and couplings associated 

with them. 

Table 3 

 DEVS-Suite model components 

 Component Name Name in Model 

Atomic Model Entity Generator 
Atomic Model Service Station 1, Service Station 2, 

Service Station 3, 
DEVS-Suite 

Coupled Model ExperSetup 
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Table 4  

Comparison of visual complexity metrics 

 Ptolemy SimEvents DEVS-Suite 
Logical Components 9 11 5 
Ports 15 29 10 
Couplings 11 14 4 
Monitoring Components 2 4 0 
Trajectory Viewer 2 4 4 
Total No. of Components 39 62 23 

 

The visual complexity metrics of the Assembly Line model with respect to the 

different environments are shown in Table 4. The metrics reveal that as the scale of a 

model increases, the number of components would increase for Ptolemy II and SimEvents 

with respect to DEVS-Suite. From the table it can be observed that visual components are 

the major contributors to the overall visual complexity of Ptolemy II and SimEvents. In 

contrast, DEVS-Suite does not require components such as TimedPlotter; instead dialogue 

boxes are used. 

Feedbacks were also added to observe the alignment of the models and their 

couplings. As already mentioned in Ptolemy II and SimEvents the components and 

couplings had to be manually adjusted. DEVS-Suite allows alignment of the model, but 

does not support couplings that cross over model components. Such overlaps and difficulty 

in adjusting the models makes it very challenging to manage for large-scale models. 

The example model mentioned in Section 2.3.0.1 (i.e., the Assembly Line) has also 

been developed in the CoSMoS environment. After comparing the visual complexity of 

CoSMoS to that of DEVS-Suite, it can be seen that a number of logical components, ports 
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and couplings are similar. The advantages of CoSMoS over DEVS-Suite involve visual 

model development and not needing to use customized code or dialogue boxes for 

simulation data collection and observation. 

 
Figure 11. Assembly Line model in CoSMo 

 



3 CoSMoS REQUIREMENTS SPECIFICATION 

The major components for the integration, i.e., CoSMo and DEVS-Suite, were 

analyzed closely and the shortcomings from each were identified. An overall architecture 

for the integrated system CoSMoS (Component-based System Modeling and Simulation) 

has been designed. The components involved in the integration have been explained clearly 

with respect to the integrated architecture. The problems identified in both CoSMo and 

DEVS-Suite have been realized as requirements and have been described using a detailed 

use-case diagram. A detailed process flow has been defined for the integrated environment. 

The process flow shows the sequence of steps for the creation of visual models, adding 

behavior, and simulating the models using the DEVS-Suite controls. 

3.1 Preliminaries  

The design of the CoSMoS environment is based on the Model-View-Control 

(MVC) design pattern. Both CoSMo (S. Bendre, 2004; S.  Bendre & Sarjoughian, 2005; 

Fu, 2002; Sarjoughian, 2001; Sarjoughian & Flasher, 2007) and DEVS-Suite (Kim, et al., 

in preparation; Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003) environments are 

developed using the principles of the MVC (Trygve M. H. Reenskaug). The Model, View, 

and Control components of CoSMoS are described next. 

3.1.1 Model 

3.1.1.1 Logical Models (CoSMo): 

The primitive and the composite models are defined in CoSMo. Each of these 

models is represented as both Template Model and Instance Template Model. The Instance 

Template Models (ITM) can also be instantiated to Instance Model (IM) which shows the 
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realizations of the specializations and concretely defines the multiplicity of the sub-

components if it is unspecified. 

The primitive component corresponds to the Template Model(TM) or an IM. In the 

TM, the primitive model can be specialized using is-a relationship. The term specializee 

refers to the component that has a specialization relationship to the specialized models. The 

input/output interface of the specialized model is same as the interface of the specializee. 

However the state variables of two specialized models can be different. 

A composite model corresponds to the TM, ITM or IM. The composite model 

consists of primitive or other composite model. It also has states, input/output ports, and a 

set of couplings between the ports contained within it. 

3.1.1.2 ER Specification, Persistent Models (CoSMo): 

The structural models in CoSMo are described and stored in a relational database in 

terms of structural features of the model components such as identity (i.e., model name), 

hierarchy (i.e., decomposition), input/output interface (i.e., port names), and their creation 

time. For the models to be executed there are some behavioral requirements which need to 

be added to the existing models. These are described in terms of port variables, state 

variables, and NSM variables. 

3.1.1.3 Atomic & Coupled Models (DEVS-Suite) 

The models in DEVS-Suite are based on the DEVS formalism which can be 

mathematically expressed. As mentioned earlier, there are two types of models: atomic and 

coupled. Atomic models are the basic models from which the coupled models can be built. 
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Atomic models have the ability to define behavior with time base, inputs, outputs and 

functions for defining the next states. The higher models, i.e., the coupled models, are 

composed of other atomic and/or coupled models connected to each other by couplings in a 

hierarchical manner. These models are supported with input and output ports to enable 

communication with each other and the outside world. 

3.1.2 View 

3.1.2.1 Hierarchical tree and block model representations (CoSMo) 

The graphical user interface of CoSMo plays a major role in supporting visual 

model development. The hierarchical models are displayed in a structured tree format using 

the JTree format of JAVA. Although the couplings and ports are not visible in the tree 

structure, it is complemented by the block diagram layout with ports and couplings. The 

block diagram shows the models at two levels of hierarchy in a single display. The 

advantage of a well defined user interface of CoSMo was to streamline the process of 

developing models so that they can be developed in an orderly fashion, i.e., create the 

template models and then create the instance models from those. These visual 

representations are consistent with the model information in the database. The ports in the 

block can be selected to configure the model for simulation.  

3.1.2.2 SimView (DEVS-Suite) 

The SimView is a simulation viewer that has a visualization of the structure and 

behavior of the hierarchical DEVS models. The hierarchical and the component structure 

are derived from the source code written in JAVA that conforms to DEVS specifications. 
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The view uses a boxes-within-boxes visual metaphor to portray all of the 

components in a model and their position within the hierarchy. The individual input/output 

ports and their couplings with models in the current or different level of hierarchy are 

clearly shown in the viewer. It also shows the movement of messages as the simulation 

progresses. This helps in presenting the dynamics of the model and simulation in a detailed 

manner. The view also possesses capabilities to give inputs to models that can be defined 

on the ports in the simulation code. 

3.1.2.3 Time-based and Tabular Trajectories (DEVS-Suite) 

The simulation data selected for observation can be collected in the HTML table 

and observed at run-time. This data is retrieved from the DEVS-Suite Communication and 

Control layer and displayed to the modeler.  

Time-based trajectories are displayed in X (value) and Y (time) coordinates. These 

coordinates represent observed data values, such as input events at a series of 

monotonically increasing time instances. The Y coordinates are single-valued and can be 

numeric or symbolic. The values show simulation time (or clock) which is determined by 

the simulation model’s time advance function. The X coordinate can be either single- or 

multi-valued. The X coordinate may represent input, output, or state values of models. 

Models can be continuous, discrete-time, and discrete-event. That is, the semantics of the 

data displayed are based on the DEVS models. DEVS-Suite also supports separately 

assigning units to the X and Y coordinates (e.g., the unit of time in one plot can be seconds 

while the unit of time in another plot can be milliseconds).   
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To allow the TimeView to become a viewer of time-based simulation, the 

semantics of the data it displays are provided by the DEVS simulation engine. That is, the 

TimeView displays data it receives, but the correctness of input, output, and state 

trajectories are due to the models and their simulation. 

3.1.3 Control 

3.1.3.1 Visual Modeling Gestures (CoSMo) 

The visual modeling gestures in CoSMo environment include creating, modifying, 

and deleting models. It supports modelers by specifying their models in an iterative and 

incremental fashion. The operations on the models are persistent, i.e., the models are stored 

in the database. The models follow a strict flow in their creation. The template models need 

to be created before they can be instantiated and are ready to be simulated. The structural 

specification for a model can be specified from the GUI at three places 

• The menu bar defined at the top of the application. 

• A pop-up menu showing options for the model on the tree structure. This menu can 

also be invoked from the graphical block representation of models. CoSMo also 

enables behavior specification of the atomic models. The behavior of these atomic 

models is specified in terms of input/output variables, state variables, and state 

transition functions. Currently CoSMo provides pop-up menus on atomic models to 

add input/output variables and state variables. The state transition functions can be 

added into the model using a built-in source code editor. There are several 

available.  
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3.1.3.2 Simulation Gestures (DEVS-Suite) 

The simulation gestures from DEVS-Suite forms the part of the model-level logic 

that includes behavior such as simulation and model manipulation (Run, Pause, Step, Step 

(n), and Restart). The control gestures are usually triggered from the VIEW by a user as a 

task to be completed. The logic for the processing of the control request is not present in 

the model-level logic itself. Instead, a mapping of the request is sent to the Coupling and 

Communication layer.  

These controls are loaded on the GUI of CoSMo once the model has been 

successfully loaded into the simulation engine. 

3.2 CoSMoS Requirements 

For the successful integration of CoSMo and DEVS-Suite environments there were 

several requirements that had to be met. In the following, we describe the requirements for 

the integrated CoSMoS environment given in each of the following use cases. 

 



34 

 

3.2.1 Instance Model Creation 

The modeler selects the template 
model to instantiate.

Created Instance Model can be 
exported to DEVSJAVA files

Generate DEVSJAVA simulation 
model components

Modeler

Create Instance Model

<<include>> CoSMo

 
Figure 12. Instance Model Creation – The process  

The use case in Figure 12 shows the instance model creation process in the CoSMo 

environment. The instance model forms the instantiation of the Template Model where the 

multiplicity of the components is explicitly identified and the specializations are reserved. 

The generation of the partially complete Java files is dependent upon the instance model 

creation. The process to create the Instance Model had to be enhanced to incorporate new 

capabilities, like identifying the corresponding simulation code of the selected model and 

reuse of an existing model with the same set of components. 

The requirements identified to implement the new Instance Model creation method 

are: 

1) Each model needs to be given unique names to distinguish between models with 

different multiplicity and specialization. 
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2) Root models instantiated to the same set of constituent components should not be 

allowed to be recreated. 

3) The Components that are a part of the multiplicity in a model must be 

distinguishable between them once the instance has been created. 

4) Instances of the component models as a part of a higher model should be reused if 

an instance of the same component with identical configuration exists 

5) A clear mapping of the model names and their respective classes should be defined 

which would be needed for exporting the instance model to its respective JAVA 

file. 

The requirements listed above were carefully analyzed and changes to the design 

were proposed in terms of a revised algorithm for the Instance Model Creation, a new 

algorithm to establish the mapping between the Models and the classes to be used and new 

additions to the database and existing program logic. 

1) The instance model identifications were chosen based on the FCFS (First Come 

First Serve) basis. Any model can be either a root model or a constituent of another 

model; the instance identification numbers would be generated based on order of 

their creation. 

2) Each and every model’s instance and its constituents are checked for redundancy 

and similarity in composition to enable reuse of the models. Temporary tables in 

the database are used to store the current configuration of the model and data from 
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ComponentOfI and InstanceModel tables are used to check for similarity in 

composition. 

3) The incremental instance and instance template identification number generation 

during the creation of the models have been clearly distinguished for the composite 

and atomic models.  

4) An algorithm for identifying model names and the class files that it would 

correspond to in the JAVA file version of the model was developed; the generated 

mappings are stored in the ModelClass table. 

3.2.2 Loading Models for simulation 

This section deals with the relationship between the completion of the partially 

generated models, updating them with the behavior and loading them into the DEVS-Suite 

for simulation. 
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DEVS-Suite

Generates DEVSJAVA 
models from Instance 
Models in CoSMo

Partial primitive models are 
completed by adding 
behavior through CoSMo's 
built-in IDE

Completed Models are 
Simulated by DEVS-
Suite

Generate Simulatable 
Models

CoSMo

Complete Models

<<include>>

Modeler

Simulate Models

<<include>>

 
Figure 13. Loading models for simulation 

Figure 13 shows the use-case diagram outlining the important operations and 

interactions occurring between various actors and components in the system. 

The requirements identified for the successful mapping are described below: 

1) The model to be simulated has to be exported and saved in the workspace with a 

unique identifying name so there is no redundancy in the models and files. 

2) The model selected needs to be mapped to the corresponding Java file in the 

predefined workspace. 

3) The DEVS-Suite should identify the model location and the name. 

4) The controls and the simulation view should be composed.  

Approach taken to achieve these requirements for the integration is: 
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1) The VIEW of Model-View-Control of the DEVS-Suite (Figure 5) has been 

replaced with the CoSMo GUI. 

2) The ModelClass table (Table 5) has the information of the model and the class 

name it corresponds to, thus the filename can be derived from it. 

3) The exported files are arranged in a predetermined work space, which is recognized 

by both CoSMo and DEVS-Suite’s framework. 

4) The controls of the DEVS-Suite have been embedded into the CoSMo GUI; this 

helps the modeler control the simulations of a successfully loaded model. 
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DEVS-Suite’s  FSimulator control  
Figure 14. DEVS-Suite Simulation Controls in CoSMo  

3.2.3 Visual Component and Port Selection 
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Simulate Models DEVS-Suite

Select component and ports 
in Instance Model

<<include>>

Modeler

The modeler selects the template 
model to instantiate.

Configures the ports on the 
instance model

The configuration informations is 
used to display simulation data

Create Instance Models

<<include>>

CoSMo

 
Figure 15. Visual Configuration of Models 

 The use case in Figure 15 describes the visual model configuration feature in 

CoSMo. CoSMo constantly updates its GUI with the information it receives from the 

mouse or keyboard events created by the modeler. 

Following are the requirements identified to enable the Visual Configuration 

Models. 

1) The port selected needs to be uniquely identified in the working environment. 

2) The configuration data must be persistent. 

3) The selection process should be reversible. 

4) The configuration should be portable. 

5) The configuration should be in a format that can be identified by the DEVS-Suite. 

Approach taken to meet the above mentioned requirements: 
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1) A naming mechanism was used where the name of the port was concatenated along 

with its Model name. 

2) The selected ports are stored in a Hash Map where the name generated in the 

previous step forms the Key and the port name forms the Value of the <K,V> pair 

in the hash map. 

3) The port listener and the Hash Map work together to analyze the current state of the 

port and thus help with reversibility. 

4) The separate input and output Hash Maps are persistent through the execution 

cycle. 

5) Each entry in the Hash Map directly maps to the port trackers in DEVS-Suite; thus 

the information can be easily imported. 

 
Figure 16. Visual Configuration of Models for Data Collection – The process 
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3.3 CoSMoS Process Lifecycle  

Select 
Database

Select an existing template 
model or create new  

model

Select  instance template 
model and create its 

instance models

Transform 
instance models

CoSMo
Database

Add behavior to 
simulation models

Select and load 
simulation models

Select  visualization 
modes ( SimView, 

TimeView and 
Tracking Log)

JVM

Select 
input/output 

ports of models 
for tracking

Partial 
DEVSJAVA 
Models

Completed and 
compiled 

DEVSJAVA files

Execute

CoSMo

CoSMoS

DEVS-Suite

SimView Tracking Log TimeView
 

Figure 17. Process for creating and simulating models 

The processes and relationships defined in Figure 17 are defined below. 
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Select Database: This process defines the user selecting the database that serves as 

a repository for the models. The relational database supports functionalities like creation, 

modification, storage, and reuse of the stored models. Structured Query Language (SQL) is 

used as a medium of communication as it is a standard language for databases and helps in 

application portability. The user is required to locate the database and create an appropriate 

data source for it using Microsoft Access (*.mdb) as the driver. 

CoSMo Database: The physical database that has a predefined structure as defined 

by the ER schema. 

Select the existing template model or create new: CoSMoS allows reuse of the 

models since models are stored in the database. The user can also create new, unique 

template models to represent a new family of models. The template model defines the 

primitive or composite model with input or output ports and values. The atomic model 

contains state variables, the ports, and the name of the model. The coupled model specifies 

the couplings between its components and the name of the ports. The name assigned to the 

primitive or the composite model must be unique, i.e., it must be identifiable within its 

hierarchical decomposition. 

Transform Instance Models: The template models created are instantiated to a 

well defined model when they are transformed into Instance Models. If the model has 

specialized models, the user can select the specialization for these models during the 

transformation. The modeler can specify different models depending upon his choice 
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during the instantiation of template models. This gives the modeler the independence to 

create alternative models depending on alternative resolution and aspects. 

Partial DEVSJAVA models created: The translator in CoSMoS can export the 

logical models into simulation code that conforms to the syntax of the DEVS-Suite 

simulation engine. The behaviors of the primitive models are defined in terms of dynamic 

characteristics of the model, such as input variables, output variables, state variables, and 

state transition functions. 

Manually Add behavior to the simulation models: The primitive models are 

completed using the IDE in the CoSMoS environment. The models are completed by 

adding the behavior and completing the transition functions. 

Select and load simulation models: The visual model in CoSMo is selected to 

determine the model to be simulated. The models are mapped to their files that are 

simulation code written in JAVA. These models are complete and are compiled before the 

model class files are ready for simulation. It is an iterative process between Completed 

and compiled Java implementation files and Select and load simulation models. 

Visually Select components and ports of models: The ports of the primitive and 

composite models can be selected visually. These selections by the user are stored in the 

memory (JVM) and are used by the Tracking Control in DEVS-Suite for simulating the 

models. 
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Changes to be consistent with the models in CoSMo: The IDE in CoSMo 

protects the model’s structure and keeps it consistent with the model specification in the 

database. 

Select visualization modes: The modeler is given the choice of viewing the 

models’ simulation output data on different types of trajectory viewers. The options are 

broadly classified into animation and tracking the simulation of the models. The animation 

includes the SimView and the tracking of the output is shown in Tracking Log and 

TimeView. 

Execute: The complete and compiled models are simulated in the DEVS-Suite 

simulation engine. Depending on the selection of the visualization mode, the output 

trajectories are shown to the user. 

Visualize: The simulation results may be viewed as time graphs (time-based 

trajectories, tabulated form, animation) or exported as CSV files for user-defined analysis. 

 

3.4 Verification and Validation using CoSMoS  

The CoSMoS allows a modeler to create models, generate simulation code, 

complete simulation code, configure models for observation, simulate models, and view 

simulation results. Integral to these activities are model verification and simulation 

validation. Since CoSMoS can be used to develop DEVS models, it can be seen that the 

model development and simulation process flow shown in Figure 17 supports all the 

FEDEP phases shown in Figure 7. The CoSMo activities can be associated with the 
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Develop Design and Develop Conceptual Model phases. The Implement and Tests can be 

associated with the CoSMoS and DEVS-Suite. The Validate Conceptual Model, Verify 

Design, and Verify Simulation and Validate Results are supported in part by CoSMo’s 

logical specification, visual model development, and model repository and DEVS-Suite’s 

experimentation configuration and automated data generation and collection. The 

verification for structures of models including their interfaces and implementations is 

partially automated and simplified in CoSMoS. Some other aspects of model verification 

and simulation validation processes must be carried out manually. In particular, the 

completion of source code for the DEVS atomic models’ functions is impractical to 

automate in any existing tool unless models are restricted for a particular domain (e.g., 

modeling and simulation of electrical circuits) and comprehensive pre-built model libraries 

are available. However, when model components are already verified and validated, they 

can be synthesized to create more complex models and benefit from the model 

development and simulation automation supported by the CoSMoS environment. 

 



4 CoSMoS DESIGN AND IMPLEMENTATION 

The creation of the instance models in the previous version was not controlled. 

Thus the modeler could create any number of instances of a given model. This led to 

duplicate JAVA files. The concept of a well-formed relationship between a single class 

with multiple instantiations (i.e., objects) could not be achieved as each model had a 

separate file associated with it. The logical specification for the Instance Models had to be 

changed to enable reuse of models with the same structures across same or different levels 

of hierarchy.  

The persistent modeling represented by the ER schema had to be altered to reflect 

the new changes for the instance model creation. A table called ExportTempTable is 

defined to hold temporary values of the model components and ports to be tracked. Another 

table called ModelClass is defined to store Instance Model names and their handle names. 

The Instance Model names are used to create unique Java files. The handle names are those 

that are utilized in the Java file. The ModelClass table stores class-object relationships. 

That is, the ModelClass table defines the names of the classes for which unique handle 

names are created. 

The model translator was updated to accommodate the changes in the logic of the 

model creation and the database structure. The structures of the created JAVA files have 

been defined to support their use in the DEVS-Suite environment. This also involves the 

specification of new namespace for the models as the directory structure for the storing and 

loading of the models had been unified across the new integrated environment. 

The visual modeling feature was modified to enable the user to select the ports of 

the models for tracking. The tracking is defined for instance models since they can be 
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transformed to simulation code. To select models for tracking, there must not be any side 

effects on the Template or Instance Template Models – i.e., mode creation, modification, or 

deletion is not allowed. The visual tracking of the models’ ports is a single atomic process 

and needs to be fully completed before the models can be loaded for simulation. The 

information about model selection is maintained. The name of every Template Model is 

used to look up the corresponding class in the ModelClass table. After the Java models are 

exported and loaded into the DEVS-Suite, the simulation engine is initialized. The 

simulator controls are defined for the simulator and a reference to those controls loads them 

into the UI as shown in Figure 14. The control allows the user to execute the simulation as 

required and the input and output variables for the selected model components can be 

viewed. 

4.1 Instance Model Creation 

Once the Instance Template Models have been created, the instance creation plays 

an important role as it defines their realization into Instance Models. These Instance 

Models have direct mappings into their Java files – every Instance Model is transformed 

into simulation model subject to the class-object relationship defined above. Allowing the 

modeler to create or duplicate Instance Models (and thus simulation models) is 

unmanageable. To avoid this problem, the CoSMo’s rules for assigning IDs to Model 

Instances were revised. The revised rules are described next: 

 

1) TM (Template Model): 
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The models are classified as primitive, composite, or specialized. The composite 

models can be either isomorphic or homomorphic in regards to each other. 

a) tID (Template Model ID) : The tID are unique identifications, the database does not 

allow the duplication of tID since they form the primary key in the ‘Template 

Model’. 

i) tID ∈ {0,...,9} ∪ {a,…,z} ∪ {A,…,Z} ; 0 < tID ≤ K ; K=54 

ii) The modelType for a component identifies if it is a primitive, composite, or 

specialized model. 

2) ITM (Instance Template Models): 

The Instance Template Models are added for every occurrence of a composite 

or primitive model. The Instance Template ID for a model specifies if it is a root 

component (composite) or a part component (primitive or composite).  

a) Primitive Component: 

i) tiID (template instance model ID) = 0. The ITM ID of primitive models are 

always 0. 

ii) tID • tiID : In the Instance template model view the concatenated tID (template 

model ID) and tiID forms an unique representation of the model. 

iii) Concatenates tID and tiID 

b) Composite Component:  

i) If model is root model 

(1) tiID =0 
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(2) tID • tiID uniquely represents the model in the ITM view of the models. 

ii) If the model is a composite component of a root model. 

(1) tiID is unique , tiID ∈{1,…,m}, m ≠ ∞. 

(2) The tiID in this scenario is generated based on the information in the 

database, i.e., if a model of the same structure exists but at a different level 

of hierarchy, the instance template IDs are incremented by 1. 

3) IM (Instance Model): 

There can be multiple instances of the same model. But the instance generated 

cannot be identical to each other – i.e., the configuration of the composite model based 

on the specialized models has to be different. 

a) Primitive Component : 

i) If model is root model 

(1) iID = 0 

(2) tID • tiID • iID uniquely represents the model in the IM view of the models 

ii) If a component model, the iID, is calculated based on the information stored in 

the database. 

b) Composite Component : 

i) iID is generated based on the information present in the database. The difference 

is seen when the model IDs are concatenated together to uniquely identify the 

models. 
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The combination of tiID (Instance Template Model ID) and iID (Instance Model 

ID), if iID is 0, it shows that it’s a primitive root model. The above specification was used 

to design and implement the algorithms described next. 

4.1.1 Algorithms 

We used the above rules to design the following two algorithms. Algorithm 1 

prevents creating duplicate Instance Model names. Algorithm 2 defines pairs of model 

names and class names where each model name refers to the Instance Model name and 

each class name refers to the simulation model name. 
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4.1.1.1 Algorithm 1 – Unique Instance Model Creation 

 

Figure 18. Unique Instance Model creation – The Algorithm 
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4.1.1.2 Algorithm 2 – Model Name-Class Name Relationship Creation 

 

Figure 19. Model-Class Relationship – The Algorithm 
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4.1.2 Class Diagram 

sesmServer
(from sesmNet)

sesmQuery
(from dbms)

dmlAccess
(from dbAccess)

sesmAdd
(from dbms)

sesmDB

addInstanceModel(TemplateID : String, InstanceTemplateID : String) : String[]

(from dbms)

1

+theQuery

1

1
+dbConnect

1 1
+add

1

 
Figure 20. Class Diagram – Adding Instance Models 

 The sesmDB class has the declaration of the function that adds new instance 

models to the database. The function has frequent interaction with the database for making 

decisions regarding the creation of these instances. 

Most of the interactions are in the form of queries to the database. Query operations 

such as building the query, query execution, and collection of the results are handled by the 

sesmQuery Class.   

Once the decision has been made to create new instance models, the sesmAdd 

function performs the queries to add new instance models into the Instance Model table. 

The sesmAdd class is also used to update the Instance Template Model (ITM). This is to 

update the specialized models ITM information in the ITM table. 
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The function for adding the Instance Models is called from either sesmServer as a 

user instruction or as a part of the recursive call from the same function itself. sesmServer 

inherits the sesmDB class and the function from the super class is called.  

4.1.3 Sequence Diagram 

 : sesmDB theQuery : sesmQuery

modelType(String)

String

selectSpec(String, Vector)

 
Figure 21. Sequence Diagram – Select specialization 

The sequence diagram in Figure 21 shows the sequence of functions and messages 

passed for selecting a specialized model for the specializee model. 

modelType(String) : This function returns the type of the model {PRIMITIVE, 

COMPOSITE, SPECIALIZED} that is identified by the Template ID which as passed as the 

String argument. 

selectSpec(String, Vector) : This function helps the user to decide the specialization for the 

specializee model. First parameter refers to the Template ID of the specializee model and 

the second parameter stores the hierarchical model information of the model currently 

being specialized. On successful completion of the process, the function returns the 

Template ID of the specialized model. 
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 : sesmDB theQuery : sesmQuery add : sesmAdd

modelType(String)

String

InstanceExists(String [])

Model information
Template ID, Instance Template 
Model ID and Instance Model ID 
information are stored as a part of 
the array

boolean modelI(String, String, String)
boolean

pouplateModelClassTable(String, String, String)

ITMtoSMI(String, String, String, String, String)

Function called if model is 
Specialized. First two parameters 
represent the model's specialized 
model's Template ID and Instance 
Template ID. The last three 
represent the Template ID, 
Instance Template ID and Instance 
ID of the specialization selected.  

Figure 22. Sequence Diagram – Creating Instance of the Primitive Model  

The Instance ID of all primitive models is ‘0’, using the information about the 

Model’s Template ID, Instance Template ID, and Instance ID to check if an instance of the 

primitive model exists in the database. Figure 22 shows the process of creating an instance 

model of a primitive model. 

InstanceExists(String, String, String) : Checks the above mentioned and returns a Boolean 

value depending on the success or failure of the operation.  
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modelI(String, String, String) : This function in the sesmAdd class adds the instance model 

with the model’s Template ID, Instance Template ID, and Instance ID that was generated 

in sesmAdd. 

PopulateModelClass (String, String, String) : This function updates the ModelClass table 

with the model’s details and the class name. 

ITMtoSMI(String, String, String, String, String) : If the primitive model was a specialized 

model, the information about the specializee and the specialized model is stored in the 

ITMtoSMI table. 
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 : sesmDB theQuery : sesmQuery add : sesmAdd

modelType(String)

String

componentOf(String)

Vector

addInstanceModel(String, String)

If the child model is 
coupled model, the same 
fucntion is recursively 
called.

The vector is the 
collection of all the 
child model elements.

String[] Model_Info

The model information 
having Template ID, Instance 
Template ID and Instance 
Model ID

SpecialInstanceCheck(String, String)

boolean

emptyIID(String)

new IID : String

modelI(String, String, String)

boolean

componentI(String, String, String)

boolean

populateModelClassTable(String, templateI,iID)

This function checks for 
similarity in the coupled 
instance modes with 
already existing ones. 

This sequence diagram 
shows the sequence of 
operations if there are no 
matching models.

This function is 
executed for every 
component model.

 
Figure 23. Sequence Diagram – Creating Instance of the Composite Models 

The diagram in Figure 23 shows the sequence diagram for the generation of 

composite instance models. A temporary variable is used to hold the information about all 

of the children of the composite model. The details about the children are used to find 

existing models with the same constitution.  
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componentOf(String) : Returns the list of all immediate children of the model. Each of 

these children is processed before their parent. The addInstanceModel(String, String, 

String) function is called recursively for the children. 

SpecialInstanceCheck(String, String) : The list of the children added to the temporary 

variable are run through the database to see if there exists a composite model with the same 

set of children. 

emptyIID(String) : If a new instance of the model has to be created, the new instance ID is 

generated using the existing information in the database. 

componentI(String, String, String) : This function updates the componentI table; this holds 

the information about the models’ instances and their respective children. 

These set of class diagrams, sequence diagrams, and operations define the new 

algorithm for adding the instance models. 

4.1.4 Entity Relationship Changes 

To support the new features, two new entities were added to the database. 

4.1.4.1 ModelClass (Model Class) Entity 

• Attributes 

o template (Template ID) 

o templateI (Instance Template ID) 

o iID (Instance ID) 

o class (Name of the Class) 

o createTime (Time of creation) 
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• Description 

The ModelClass table defines the relationship between the instance models 

and their corresponding class. The set of IDs {template, templateI, iID} identifies 

the instance model. The corresponding class names can be the same as the instance 

models or they can vary. The naming scheme in section 4.1 helps to establish these 

relationships.  

The table ModelClass has an identifying one-to-one relationship with the 

InstanceModel table on the template, templateI, and iID. For every model’s entry in 

ModelClass table, an exact match should exist in the InstanceModel. The table is 

updated with the Algorithm-2 shown in Figure 18. 

Table 5  

Relational Database Schema Specification for ModelClass Table 

Model Class 
template templateI iID class createTime 

 

As seen in Table 5, {template, templateI, iID} forms the primary key from the 

table. 

• template is a foreign key from InstanceModel (template). 

• templateI is a foreign key from InstanceModel (templateI). 

• iID is a foreign key from InstanceModel (iID). 

• class is an alphanumeric string with a maximum length of 50 characters. 

• createTime is a double decimal number. 
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4.1.4.2 Extended CoSMoS Transactions 

Addition of the new algorithms requires the addition of a temporary disjoint table,  

ExportTempTable.  

Table 6  

Relational Database Schema Specification for ExportTempTable Table 

ExportTempTable 
tComponent tiComponent iComponent tOwner tiOwner iOwner 

 

The relationship between the newly table and the existing schema is show in Figure 

24. The ModelClass table forms an identifying relationship with the InstanceModel table. 

Thus every record in the ModelClass table can be identified by an entry in the 

InstanceModel table. This table is updated by the algorithm specified in Figure 19. The 

ExportTempTable forms an identifying relationship with the componentOfI table. This 

table and the relationship help in generating the query that would check for identical 

composition of models in the database. The identifying relationships between the models 

helps in the cascade add and deletion operations. 
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InstanceModel
template : VARCHAR(50)
templateI : INTEGER
iID : INTEGER
modelName : SMALLINT
createTime : DOUBLE PRECISION

<<PK>> PK_modelInstance43()
<<FK>> FK_modelInstance69()
<<FK>> FK_modelInstance81()

ModelClass
template : VARCHAR(50)
templateI : INTEGER
iID : INTEGER
Class : VARCHAR(1)
createTime : DOUBLE PRECISION

<<PK>> PK_ModelClass60()
<<FK>> FK_ModelClass112()

0..11 0..11

<<Identifying>>

componentOfI
tOwner : VARCHAR(50)
tiOwner : INTEGER
iOwner : INTEGER
tComponent : VARCHAR(50)
tiComponent : INTEGER
iComponent : INTEGER

<<FK>> FK_componentOfI83()
<<PK>> PK_componentOfI57()
<<FK>> FK_componentOfI98()
<<Unique>> TC_componentOfI403()

1

0..*

1

0..*

Owner/Composite Models

<<Identifying>>

1

1

1

1

Components of the Owner/Composite Models

<<Identifying>>

ExportTempTable
tComponent : VARCHAR(50)
tiComponent : INTEGER
iComponent : INTEGER
tOwner : VARCHAR(50)
tiOwner : INTEGER
iOwner : INTEGER

<<PK>> PK_ExportTempTable61()
<<FK>> FK_ExportTempTable113()

0..11 0..11

<<Identifying>>

 
Figure 24. Entity Relationship Changes 

The SQL query for a transaction to check the similarity of a model being created in 

terms of its composition with already existing models is given below. There are two tables 

needed for identifying the similar models ExportTempTabel and InstanceModel. 

( )

( ) ( )( )

, , , , ,

, , ' ' 0

tOwner tiOwner iOwner tComponent tiComponent iComponent

tComponent tiComponent iComponent tOwner ExpFrame ANDtiOwner

componentOfI

ExportTempTable

π

π σ = =

÷
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• SELECT DISTINCT  tOwner, tiOwner, iOwner FROM  (SELECT tOwner, 

tiOwner, iOwner, tComponent, tiComponent, iComponent FROM componentOfI) 

T WHERE tiOwner = 0 AND not exists  (SELECT   *  FROM (SELECT 

DISTINCT  tComponent, tiComponent, iComponent  FROM ExportTempTable  

WHERE tOwner = 'ExpFrame' and tiOwner=0)B   WHERE  NOT EXISTS   ( 

SELECT * FROM (SELECT tOwner, tiOwner, iOwner, tComponent, 

tiComponent, iComponent FROM componentOfI)AB WHERE ((AB.tOwner = 

T.tOwner AND AB.tiOwner = T.tiOwner AND AB.iOwner = T.iOwner) AND 

(AB.tComponent = B.tComponent AND AB.tiComponent = B.tiComponent AND 

AB.iComponent = B.iComponent)) ) ) 

 

4.2 Export Models 

4.2.1 Exported Models File Structure 

The primitive and composite models from CoSMoS’s visual models can be 

transformed to two types of simulation models. For DEVS-Suite, CoSMoS generates 

atomic and coupled simulation models. The created Java files conform to the DEVS 

specification. These simulation models have their own unique structures.  
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Figure 25. A sample of a generated atomic model 

Figure 25 shows a partial sample atomic model created by the model transformation 

from CoSMoS. Changes were also made to the coupled model generation. The model 

transformation function becomes more with the atomic model as it has to establish the 

object-class relationship using the ModelClass table. The new instance model creation 

algorithm that has been added to CoSMoS populates the coupled model with the instances 

of the models that belong to it. Every (atomic or coupled) model that is part of the coupled 

model is instantiated from a class and has a handle name. When adding in the components 

for the coupled model, every model is checked for the corresponding class in the 

ModelClass table. A snippet of a coupled model is shown in Figure 26. 
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Figure 26. A sample of a generated coupled model 

4.2.2 Model Namespace 

The namespace for the models that are converted into simulation code has been 

changed to reflect the new implemented directory changes. The location for all the 

generated simulation code is relative to the working directory. The location of these JAVA 

files are based on the database selected. Separate folders are maintained for each database 

loaded. The files are arranged in a master folder at the same level of the file system where 

the environment main file resides. Each database utilized by the user creates a separate 

folder and holds the actual database file followed by the Java, XML, and NSM (Non 

Simulatable models) folders to hold their respective files. Figure 27 shows the layout of the 

folder structure for maintaining the namespace of the generated simulation models. 
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Root

Mb_models

<Name of Database 1> <Name of Database 2> <Name of Database 3>

JAVA Models NSM Models XML Models Database1.mdb

CompiledModelsDEVS_SuiteGeneratedModelsDEVS_Suite

Model1.Java

Model2.Java

Model3Java Model1.class

Model2.class

Model3.class

SES DTD Models SES XSD Models CoSMo DTD Models

 
Figure 27. File-Directory Structure 

4.2.3 CoSMo Editor 

The atomic models that are transformed from CoSMoS are to be completed before 

they can be loaded into the simulator and simulated. CoSMoS assists the user in editing the 

JAVA file and adding behavior in it. The behavior is added to the model in terms of 

internal transition, external transition, confluent, and output functions as well as model 

initialization. The structural information in these Java model files are automatically added 

during the transformation according to the database. The Java file of the model has to be 

consistent in terms of the name, ports, variables, and state variables with the model in the 

database.  

Figure 51 shows sample tabs of various source code editors opened up in CoSMoS. 

The editor is available as a part of the Netbeans editor API. The editor has functionality 
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such as code coloring, line numbering, and keyword recognition. To disable the changes to 

the model’s structure, the ‘Guarded Sections’ property of the editor is used. Some markers 

are included in the generated JAVA files that act as tags and does not allow the models to 

be edited. The guarded sections of the code, seen as a shaded section, can be observed in 

Figure 49. 

4.3 Visual Model Component and Port Selection 

 
Figure 28. Data Flow in DEVS-Suite 

The models loaded in the DEVS-Suite are assigned default trackers. The DEVS-

Suite allows the user to select the components of a coupled model for visualizing its input 

and output ports as well as all of its parts. For atomic models, state variables (Phase and 

Sigma) and time parameters (tN: Time of next event and tL: Time of last event) can also be 

visualized with the help of trackers. Figure 28 shows the data flow for the DEVS-Suite. 
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The Controller is responsible for the creation of the hooks with the View. The View 

delegates the logic for determining the data for output trajectory viewers through the 

TrackingControl class. Each tracker associated with the model has Boolean checkers to 

enable or disable the components for tracking. These trackers can be invoked in the DEVS-

Suite with the help of the tracking dialog box associated with each of the models. The user 

may also choose one or more model components with the ability to select one or more of its 

ports. Figure 16 shows the design of the feature that creates the bridge between CoSMo’s 

visual selection and the trackers of the models in DEVS-Suite.  

4.3.1 Class diagram 

Controller

ControllerInterface SimulatorHookListener

sesmGUI

TrackEnvSimController

TrackingControl

Viewview

ViewInterface

SimView

tracking sim

 
Figure 29. Class Diagram – Visually selecting components 

As the Instance Models are selected from the CoSMoS for simulation, the 

completed simulation models are loaded from the respective JAVA files. These JAVA files 

are loaded into the Controller of the DEVS-Suite. The Controller invokes the View to 

initialize and setup the output trajectory viewer such as the TimeView, tracking log, and 

SimView. Although the SimView forms a part of the graphical user interface, the 
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TrackingControl does not control it. The TrackingControl forms the intermediate 

component for providing the output data to be displayed in the trajectory viewer. 

Tracker

Tracker()
showDialogPanel()
toString()
getAttachedModel()
getDataStorage()
getDataHeaders()
saveCurrentTrackingState()
getCurrentTrackingHTMLString()
getCurrentTimeViewData()
isTrackingSelected()
isTimeViewSelected()

(from view)

TrackingControl

controlTimeView()
addTracking()
loadSimModel()
getAllModels()
trackingLogOption()
showTrackerSettingsDialog()
findTrackerFor()
getHTML()
getEncodedCSV()
getCSV()
registerTrackingLog()
registerTimeView()
disposalFrames()

(from view)

-trackingControl

#$modelColumn[]

Each of the tracker 
associated with the 
model is maintained in 
the modelColumn array

 
Figure 30. Class Diagram – TrackingControl and Tracker 

After these trackers have been initialized as a part of the model loading process, 

they have to be updated based on the selection made by the user on the visual models. The 

scheme used for this updating process is defined in the sequence diagrams given below. 



70 

 

4.3.2 Sequence Diagram 

Model Port : port portTracker : PortTracker in_Ports : HashMap

MouseClicked(MouseEvent)

PortExist(String, 
String, 

String,String,String)

boolean

setTrackPorts
(String,String,String,S

tring,String)

setTrackInPorts
(String,String,String,String)

put(object,object)

The name of the port and the 
model to which it belongs to is 
stored as a <K,V> pair in the 
globaly available in_Ports.

The selected port is checked if 
it is already tracked. Selecting 
an already checked port 
results in deselction.

  
Figure 31. Sequence Diagram – Selecting input ports for tracking by mouse clicks 

 The ports selected by the user in CoSMoS’ visual models are recorded in 

temporary Hash Maps. Figure 16 shows the structure of the temporary Hash Map. The 

sequence diagram in Figure 31 illustrates the process of selecting the ports in the models 

with mouse clicks. The colors of the ports and the text are reversed to represent the status 

of the selection. The selected ports are inserted into the temporary Hash Maps with the 

“Name of the model + Name of the port” as the key and the “Name of the port” as the 

value. The selection has the ability to toggle between tracked and ports not tracked. These 

selected ports make visualizing time-based trajectories possible with DEVS-Suite. 
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sesm_GUI : sesmGUI TrackEnvSimController : 
Controller

view : View

userGesture(String, Object)

loadSimulator(FSimulator)

updateTrackersFromSESM

registerTimeViews(FModel)

 
Figure 32. Sequence Diagram – Loading Models for Simulation 

 The process of selecting the ports for tracking has to be completed before the 

models can be loaded for simulation. As shown in the sequence diagram in Figure 32, the 

function updateTrackersFromSEM() from the controller sets the port trackers from DEVS-

Suite based on the information present in the Hash Maps from CoSMoS. When the user 

selects the TimeView option, the time graphs must be initialized before they can be used 

for adding events. The registerTimeViews(FModel) function in Controller is responsible 

for setting up the TimeView.  
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TrackEnvSimController : 
Controller

portTracker : PortTracker tracker : 
Tracker

updateTrackersFromSESM

getTrackInPorts()

HashMap Iterator

iRecursiveModelLoading(rootModel)

enableTrackingLog()

setTracker(True)

The trackers of the models are 
loaded to the controller based on 
the data from the SESM GUI.

Depending on the Hash 
Map information, the 
trackers are updated and 
the tracking log is prepared.

  
Figure 33. Sequence Diagram – Enabling models for tracking 

 The sequence diagram in Figure 33 explains the updateTrackersFromSESM() 

function described in Figure 32. The controller retrieves the Hash Maps that have the 

information about the user’s selection from the PortTracker class. The sequence diagram 

described in Figure 33 defines the scenario involving only the input ports. The same logic 

applies for the output ports. The controller then calls the 

iRecursiveModelLoading(rootModel) where all the models in the hierarchy of the specified 

root model are retrieved. These models’ trackers are accessed and modified based on the 

information extracted from the Hash maps from CoSMo. The function setTracke (True) is 

used to enable the tracking flag of a particular component of the model. The 

enableTrackingLog() is called by the controller so that the output data can be written in an 

HTML format in the tracking log. 
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4.4 Loading Models for Simulation 

After the modeler has decided to simulate a completed instance model from 

CoSMo, the JAVA implementation model is found in the repository location specified by 

the property file. As already explained in Section 4.1, the creation of the instance models 

are changed to create unique models and eliminate redundancy. The visual models shown 

have classes (i.e., Java files) and may also be handles to an already existing model having 

exactly the same structure. The DEVS-Suite loads the Java files and generates data for 

SimView and Tracking Control. The visualization of the output trajectory for SimView and 

Tracking Control (TimeView and Tracking Log) requires different logic. If the user selects 

the option of SimView, the completed and compiled Java files are passed as parameters for 

the SimView. During simulation mode, the View pane replaces the graphics of the model in 

CoSMo’s GUI. If the tracking option is selected by the user, the primitive and composite 

block models are shown and the functionality of the Trackers attached to the models helps 

in monitoring the models throughout the simulation. 
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4.4.1 Class Diagram 

ControllerInterface
(from controller)

SimulatorHookListener
(from hooks)

Controller
(from controller)

sesmGUI
(from sesmUI)

FSimulator
(from simulation)

ViewInterface

(from view)

Tracker
(from view)

GUI

simulator
View

tracker
Controller

 
Figure 34. Class Diagram – Components for loading models 

 As shown in Figure 34 the class diagram delineates the classes required for loading 

the models into the simulator. The user gestures for the DEVS-Suite are emulated from 

CoSMo by specifying the location of the models. The models are loaded in the form of 

Java files and complied automatically. The loading of the class files is terminated if any of 

the Java implementation fails to compile. Any errors are displayed in a console. The user 

can edit the Java files using the editor provided in CoSMoS and debug the programming 

errors manually. The sesmGUI object also retrieves the simulator and the TrackingControl 

instance setup for the model.  
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4.4.2 Sequence Diagram 

loader : 
java.net.URLClassLoader

sesm_GUI : sesmGUI rootModel : modelT OTS : 
OutputTrajectorySelection

TrackEnvSimController 
: Controller

compile : 
ModelCompilation

mouseClicked

traverseThroughInstanceTree

OutputTrajectorySelection()

Void

OTS:OutputTrajectorySelection()

setup()

setupSimulationEnvironmentParams()

userGesture(LOAD_MODEL Gesture,  Location)

loadModel(String [])

Generate(String, 
String)

boolean

loadClass(String)

 
Figure 35. Sequence Diagram – Loading models for simulation 

 The sequence diagram in Figure 35 shows the control and the data flow between 

the various components needed to successfully load the models in the simulator. Once the 

start simulation option is chosen, the selected model is mapped to the ModelClass table and 

the classes corresponding to it are found. Using the class information, the models are 

loaded into the simulator. 

The visual models in CoSMo have mouse listeners that register these models as the 

last model is selected. After the menu item Track has been chosen, the last selected gets 

registered as the root model. The user cannot select a model outside the root model’s 

hierarchy while in the tracking mode. 
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A window showing different output trajectory viewers options is presented to the 

user. After the components to be tracked have been selected, the 

setupSimulationEnvironmentParams() is executed by the OutputTrajectorySelection object 

of the environment. The user may chose to select the SimView to view the animation of the 

models and the messages between them during the simulation instead of selecting models 

to be tracked. The SimView is loaded in the visual block model view area. After the 

successful completion of the setup of the Tracking environment, the command to load the 

model along with the model’s location as arguments is executed. The user gestures for the 

loading of the models are performed by calling the userGesture() in the Controller. These 

raw Java files are compiled at first using the ModelCompilation class DEVS-Suite (Kim, 

2008; Kim, et al., in preparation). Subsequently, the class files for the created Java files are 

loaded using the dynamic class loader functions available in the java.net.URLClassLoader. 

 



5 DEMONSTRATION 

The capabilities of the integrated environment are demonstrated with the help of a 

simple anti-virus network model (S. Bendre, 2004). The demonstration shows the basic life 

cycle of a model that involves creation of the models, instantiating, adding of behavior for 

simulation, configuration for simulation experiments, simulation, and viewing the 

simulation data. 

5.1 Anti –Virus Model Example 

The anti-virus model describes an anti-virus system that is intended to protect a 

network of computers from virus attacks. The SimpleVirusNet consists of two RouterVirus 

coupled models. The messages arriving at the in port of the SimpleVirusNet are sent to the 

in port of the first RouterVirus model. The messages arriving at the SimpleVirusNet 

alertSignal are sent to the alertSignal of both RouterVirus models. 

The RouterQ acts as the processor for the RouterVirus model. If it receives a 

message and is not affected by a virus, the message is sent to the out port after processing. 

The type of messages arriving at the alertSignal port is same as the messages arriving at the 

in port. A message arriving at the in port is considered to be suspicious if its ID matches the 

ID of the message arriving at the port alertSignal. The RouterQ has two queues, q and 

alertQ, to store the messages and the alert messages respectively. 

ExpFrame, an experimental frame, was designed for the simulation experiments. 

The experimental frame consists of a message generator GenrMsg and a virus generator 

GenrVirus. The GenrMsg generates messages for the in port of the SimpleVirusNet and 

GenrVirus generates messages for the alertSignal port.  
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5.1.1 Select Database or Create New Database 

When starting up the environment the user is given the option of selecting an 

existing database or creating a new database for creating and modifying the models. The 

first process in Figure 17 shows the selection of database and establishing the connection 

for the further processes. 

 
Figure 36. Selecting existing database  

As seen in Figure 36, the model can be loaded from an existing database. To see the 

list of all the existing databases in the working directory, click the button labeled with the 

“…” next to the “Enter Database Name:”; the drop down menu lists of all the existing 

databases. 

The environment also empowers the user to create new database by simply adding 

the name of the desired database in the “Enter Database Name” text field. A separate 

folder with the name of the database is created in the file system. 
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5.1.2 Model Creation 

The next step, according to the process flow in Figure 17, is shown by the block of 

Selecting or Adding Template Models in the CoSMo section. The model creation first 

involves creating the template models. 

The template models can be created in two ways  

1) Using the Model menu and selecting the option Create Model Template (Figure 37). 

2) Using the keyboard shortcut ALT+T. 

 
Figure 37. Creating a new Model Template 

When primitive models like GenrMsg are being added, the above mentioned 

methods can be used to add them.  
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Table 7  

Primitive models in the Anti-Virus Model 

PORTS PRIMITIVE 
MODELS 

DESCRIPTION 
INPUT OUTPUT

GenrMsg Responsible for generating messages and 
sending it to the TransdSVN and 
SimpleVirusNet 

- outMsg 

GenrVirus Generates the alert messages for the 
corresponding infected messages 

- outVirus 

TransdSVN Collects the information about the 
experiment. 

inMsg 
inNet 
inVirus 
virusNet 

- 

RouterQ Processes the messages generated by the 
generators. 

alertSignal 
in 

out 
outVirus 

VirusProcQ Checks if the message is infected with the 
virus. 

inVirus out 
virusDet 

 
The rest of the models are initially created as primitive models and then 

components are added which convert them into composite models. During the process of 

adding components to a composite model, a dialog box pops up that accepts the 

multiplicity for the component in that model. 
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Table 8  

Composite models in the Anti-Virus Model 

PORTS COMPOSITE MODELS COMPONENTS 
(MULTIPLICITY) INPUT OUTPUT 

ExpFrame GenrMsg(1) 
GenrVirus(1) 
TransdSVN(1) 

in 
virus 

outMsg 
outVirus 

RouterVirus RouterQ(1) 
VirusProcQ(1) 

alertSignal 
in 

out 
outVirus 

SimpleVirusNet RouterVirus(2) alertSignal 
in 

out 
virusDet 

 
NetVirusExp 

 
SimpleVirusNet 

 
- 

 
out 
virusDet 

 

 
Figure 38. Adding specializations to a model  

The template model can be specialized into one or more specialized components. 

Specialization supports different types of models to be instantiated based on the intent of 
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the modeler. The model can be specialized using the is-a relationship. Figure 36 shows the 

process of adding specialization to a model using the popup menus on the tree. 

The specializations can be added in the following ways: 

1) Select the component on the tree and right click on the node which brings up the 

menu associated with the model. The selection of Model Add  Specialization 

helps in adding the specialization for the model (Figure 38). 

2) The menu can also be invoked by a right click on the model in the model display 

panel. 

 
Figure 39. Adding components to a model 

The add component command can be called by the following ways: 
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1) Select the component on the tree and right click on the node to bring up the popup 

menu. The selection of Menu Add Component helps in adding the component. 

The process is show in Figure 39. 

2) The same process can be carried out at the model display panel; a right click on a 

model brings up the same menu described for the tree view. 

3) The option is also available in the Menu bar under the Edit Add Component. The 

model to be operated upon should be under focus in the tree view. 

4) The command mentioned in option 3 can also be accessed by using the keyboard 

shortcut ALT+C. 

  
Figure 40. ITM view of the models 

The Instance Template Model can be seen by selecting the ITM tab (Figure 40) in 

the Simulatable tab pane. The tree view shows the models with the ITM information 
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attached to it. The multiplicity of the components is mentioned next to the model. The 

graphical view of the model shows the ITM identification of the component models. 

 

Figure 41. Adding input ports to a model 

The ports have to be added to the models depending on the structure. The 

input/output ports for a model can be added in several different ways:  

1) The menu for a model will pop up by right clicking on the model from the tree. The 

menu can also be accessed on the block model area by a right click on the model’s 

block and following the options Input port Add port. A similar sequence of 

operations can be performed for the output ports. The screenshot in Figure 41 

explains the process of visually adding input ports. 

2) The option for adding the ports are also available in the menu bar, which can be 

invocated by ALT+F1 for input ports and ALT+F3 for output ports. 
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After the ports have been created, the couplings between these ports have to be 

built. The couplings can be established between ports by only one method. Creation of the 

coupling is a two-step process in which the source, i.e., from port, is selected and then the 

destination port, i.e., to port, is selected. This process is accomplished by right clicking 

within the area of the exact port and selecting the coupling item from the menu (Figure 42). 

 
Figure 42. Adding couplings between two ports 

Primitive and Composite models may also need state variables which can be added 

by right clicking on a model and selecting the States Add State variable. Figure 43 

shows the screen shot for adding state variables to the models. The menu also includes 

provisions to modify or delete the state variable. The state variable accepts a name, type, 

and initial value as its parameters. 



86 

 

 

Figure 43. Adding a state variable to a model 

5.1.3 Create Model Instance 

After the Instance Template Models have been defined, the next step is to create the 

instance models, which CoSMoS allows a modeler to create from the Model menu. In the 

overall life cycle of the model, these are represented by the process of Select instance 

template model and then create its instance models in the CoSMo section as shown in 

Figure 17. The menu has an item called the Create Model Instance. A dialog box showing 

the list of all the models that can be instantiated in the current database is shown (Figure 

44). 
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Figure 44. Creating Instance Model 

 The selected model forms the root of the set of the instance models to be created. 

The environment attaches a unique name to each of the models and it components. The 

environment does not allow the modeler to create a redundant instance model. 

 
Figure 45. Choosing specialization for a specialized model 

If the template model being instantiated has a model in its hierarchy that has 

specializations in it, a dialog box is showing the model being specialized (Figure 45). 

• Name of the model being specialized. 

• The model’s location in the hierarchy. 

• List of specializations for the model in a drop down list. 

The instance models can be viewed in the IM tab of the Simulatable pane. 
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5.1.4 Adding Behavior 

Once the instance models have been created, the models can be selected to be 

transformed into Java code. The transformation of these models is enabled only for the 

Instance Model view. The selection process is shown in the process flow in Figure 17 

Select input/output ports of models for tracking. The model on which the transformation is 

initiated forms the root model. These popup menus can be made visible by either right 

clicking on the model in the tree or within the area enclosed by the model in the visual 

model layout. The model transformation is recursive as it transforms all the components in 

its hierarchy. The location of the generated files can be obtained by looking at the 

properties file accessed from the CoSMo menu by selecting the View Property File.  
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Figure 46. Adding behavior to an already exported model 

The model transformation for DEVS-Suite is complete for the coupled models but 

not for primitive models. The models can be viewed and modified by using the CoSMo 

editor. The section of the code having structural specification is locked and cannot be 

edited. This feature is to enforce the consistency between the model information in the 

database and the flat files created. Figure 46 shows the screen shot of adding behavior to 

the model source code using the editor built into CoSMoS. 
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5.1.5 Configuration 

 
Figure 47. Selecting ports to track 

Once the models are completed in terms of their behavior, they can be simulated. 

Now the user can determine which component is to be animated and which input/output 

ports will be observed. The Track item from the Simulation menu is checked to set the 

environment for model tracking. To set a port as tracked, the user clicks on a port and the 

inverted colors show that the port has been selected. The port can be unselected by clicking 

it again; the color of the port now returns to its original hue. The tracking process is shown 

in Figure 47. The environment records all the information selected by the user and uses the 

configuration information in the DEVS-Suite to update its tracking configuration. 
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5.1.6 Simulation 

 
Figure 48. Loading models for simulation 

After the behavior has been added into the models, they can be loaded in the 

simulator along with the model configuration data collected in the previous step. The 

Tracking mode checked during the configuration is necessary for the simulation to be 

enabled. Although, the model configuration can be empty, the tracking mode needs to be 

enabled. 

The simulation process is initiated by selecting the item Start Simulation from the 

Simulation menu. Figure 48 shows the process of loading the models for simulation. The 

Java files corresponding to the models created and modified by the user are compiled 

against the DEVS-Suite. If the Java files are not well formed or do not pertain to the 

DEVS-Suite, the errors are shown in the console and must be fixed before the models can 

be loaded into the simulator. The code can be edited in the editor available through 

CoSMoS. 
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Once the models have been successfully loaded into the simulator, the controls are 

visible in the section below the tree structure of the models. Depending upon the output 

trajectory viewer chosen, the output of the simulation can be viewed. 

 

5.1.7 Simulation Results 

 
Figure 49. Options to select the output trajectory viewer  

Before the models are loaded into the simulator, the user has to select the Output 

Trajectory viewer for the simulation data. The two major options are SimView and 

Tracking. The SimView does not use any of the tracking information that was collected as 

a part of the configurations process. If choosing Tracking, the user has to select if he or she 

wants the output in the Tracking Log or TimeView. Depending upon the viewer chosen, the 
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information is displayed in different tabs. Based upon the simulation controls, the output is 

updated in the trajectory viewers. The controls also have the Real Time Factor slider that 

can be adjusted to control the real time take for each simulation step. If the SimView is 

selected, the graphical representation of the model is replaced with the SimView animation 

window and Animation Speed slider is activated to control the speed of the animation of 

messages flowing between the models. Figure 49 shows the screen shot of the CoSMoS 

with the output trajectory viewer.  



6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, the CoSMo and DEVS-Suite environments are integrated following 

software engineering principles. The prototype CoSMoS is developed. The integrated 

environment CoSMoS has a clear separation among: 

• Visual model development (CoSMo). 

• Configuring simulation experiments (CoSMo). 

• Simulating logical models (DEVS-Suite). 

• Displaying simulation results (DEVS-Suite). 

 Developments and configuring simulation experimentation offers important 

capabilities within the modeling and simulation lifecycle. This environment supports 

creating and simulating models and thus promotes forward engineering in modeling and 

simulation. There exists a clear mapping for translating the generic primitive and composite 

models to their DEVSJAVA atomic and coupled simulation models. The mapping from the 

primitive model to atomic model is incomplete. The behavior for  each atomic models can 

be added to the counterpart generic primitive models using the new editor that has been 

implemented. A process flow has been defined for creating the models visually in CoSMo 

and simulating them using the DEVS-Suite. 

 The work presented in this thesis serves as a basis toward developing round-trip 

modeling and simulation activities where, for example, model correctness can be ensured 

between those that are stored in database and those that can be executed using DEVS-Suite. 
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6.2 Future Work 

The CoSMoS approach enables the modeler to partially automate the process of 

converting the models to simulation code and simulate them. The design of CoSMoS can 

be extended in the following areas toward greater automated modeling and simulation 

tool, 

1) Behavioral modeling: The ability to visually model behavior for the atomic 

model needs to be introduced along with the feature of automatic behavioral 

model to code conversion. 

2) Simulation code to model transformation: CoSMoS currently does not 

support reverse engineering of generated simulation code to database 

model. It is very useful to automatically update the stored primitive and 

composite models based on the changes made to their simulation model 

counterparts. 

3) User Interface Enhancements: CoSMoS can be enhanced with respect to the 

user interface by allowing drag and drop feature of the models and its 

components. 

CoSMoS currently supports the simulation of models conforming Discrete Event 

Specification (DEVS) since the code generated is DEVSJAVA source code. CoSMoS can 

be extended in terms of its support for different models in the following areas, 
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1) Discrete-Time and Continuous system: Although the models created and 

simulated in CoSMoS are discrete-event models, CoSMoS may be extended 

to support discrete-time and continuous models. 

2) Cellular Automata (CA) modeling and simulation. CoSMoS to provide an 

environment for visually modeling and constructing discrete time 

component based pure and composable Cellular Automata models.  

3) Domain Specific Modeling. Using CoSMoS the modeler should be able to 

define or reuse domain specific models and the capability to simulate them. 

Some examples are Service Oriented Architecture, Network Simulation and 

Semiconductor Manufacturing supply chain system modeling and 

simulation. 
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APPENDIX A  

NETBEANS BASED EDITOR
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The NetBeans Editor API is a publicly available open source API that allows the 

user to use the features of the editor available in NetBeans. 

It is possible to use the base class from this module as a starting point for defining 

your own editor kits, syntax coloring, code folding, etc. for new languages and file formats. 

One of the most important features of the editor being used is the Guarded Blocks. 

Figure 50 shows the class diagram and all the components involved in the 

implementation of the NBEditor document. 

The class NBEditorLibDemoFrame is called by CoSMo to initialize the editor and 

all its subsequent components. 

NBEditorLibDemoFrame

NBEditorFactory

JavaEditorKit

JavaSyntax JavaTokenColoringInitializer JavaTokenContext

JavaSettingsInitializer

NBPrintContainer

NBEditorDocument

1

AnnotationDescDelegate

11 1

 
Figure 50. Class diagram of NBEditor implementation 

  

The Guarded Blocks section is an important feature of this editor with respect to 

CoSMoS. After the models have been completed by the user, the models should be 
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consistent with the database in terms of the input/output ports and couplings. Therefore the 

user should not be allowed to change the structural information of the individual models.  

When the models are generated, they are attached with tags for the editor to identify 

and mark as guarded. The guarded sections are shown by the shaded region in the editor. 
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Figure 51. A file generated by CoSMoS as seen in the editor  


