

VISUAL COMPONENT-BASED SYSTEM MODELING WITH AUTOMATED

SIMULATION DATA COLLECTION AND OBSERVATION

by

Vignesh Elamvazhuthi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

August 2008

VISUAL COMPONENT-BASED SYSTEM MODELING WITH AUTOMATED

SIMULATION DATA COLLECTION AND OBSERVATION

by

 Vignesh Elamvazhuthi

has been approved

August 2008

Graduate Supervisory Committee:

Hessam Sarjoughian, Chair
Stephen Yau

Hasan Davulcu

ACCEPTED BY THE GRADUATE COLLEGE

iii

ABSTRACT

Many complex systems can only be studied using dynamical models that can be

simulated. Models must have precise structural and behavioral abstractions in order to be

correctly simulated. A key challenge in developing and executing simulation models is to

have a modeling and simulation environment where users can systematically transition

from model creation to simulation experimentation and evaluation. In response, this thesis

develops a novel approach for component-based system modeling and simulation. An

integrated modeling and simulation tool called Component-based System Modeling and

Simulation (CoSMoS) is developed. Its modeling engine supports logical, visual, and

persistent model specification with support for automated simulation code generation. Its

simulation engine supports visual experimentation configuration and run-time data

collection and observation. The CoSMoS tool enables simulation-based system design

process with support for model verification and simulation validation. The integrated

model specification, simulation code generation, and controlled experimentation

capabilities of the CoSMoS tool are demonstrated with a model of an Anti-Virus Network

software system.

iv

To my parents

v

ACKNOWLEDGMENTS

First of all I would like to offer my sincerest gratitude to my thesis advisor Dr.

Hessam Sarjoughian for introducing me to the research area of modeling and simulation.

His patience and knowledge throughout the course of the research has been invaluable for

the successful completion of the thesis. His professional guidance and encouragement

helped me learn and appreciate the challenges of the subject.

I would like to thank my thesis committee Dr. Stephen Yau and Dr. Hasan

Davulcu for their time and efforts in reviewing this thesis. I also would like to thank Dr.

Yinong Chen who served as alternate during my defense examination.

I would like to thank all the members at ASU-ACIMS (Arizona Center for

Integrative Modeling and Simulation), their help in discussions on my research, their

support and friendship.

Finally I express my wholehearted thanks for my parents for their endless love

and blessings. Their constant encouragement and support helped me to pull up my spirits

when they were down.

vi

TABLE OF CONTENTS

 Page

LIST OF TABLES ………………………………………………………………………ix

LIST OF FIGURES……………………………………………………………………….x

CHAPTER

1 INTRODUCTION ...1

1.1 Research Objective and Approach..2

1.2 Contribution...4

1.3 Organization of the Thesis ..4

2 BACKGROUND ...6

2.1 Component-based System Modeler (CoSMo)..6

2.2 DEVS-Suite ...10

2.3 Verification and Validation...15

2.4 Federation Development and Execution Process (FEDEP)16

2.5 Related Work ...19

2.5.1 Ptolemy II ..19

2.5.2 SimEvents ..20

2.5.3 DEVS-Suite ...21

2.5.4 Assembly Line Model Exemplar ..21

3 COSMOS REQUIREMENTS SPECIFICATION ...28

3.1 Preliminaries ..28

vii

CHAPTER Page

3.1.1 Model ...28

3.1.2 View...30

3.1.3 Control ...32

3.2 CoSMoS Requirements ...33

3.2.1 Instance Model Creation ...34

3.2.2 Loading Models for simulation...36

3.2.3 Visual Component and Port Selection..39

3.3 CoSMoS Process Lifecycle...42

3.4 Verification and Validation using CoSMoS...45

4 COSMOS DESIGN AND IMPLEMENTATION ...47

4.1 Instance Model Creation ...48

4.1.1 Algorithms ...51

4.1.2 Class Diagram ...54

4.1.3 Sequence Diagram...55

4.1.4 Entity Relationship Changes...59

4.2 Export Models ...63

4.2.1 Exported Models File Structure ..63

4.2.2 Model Namespace ...65

4.2.3 CoSMo Editor..66

4.3 Visual Model Component and Port Selection ..67

4.3.1 Class diagram ..68

viii

CHAPTER Page

4.3.2 Sequence Diagram...70

4.4 Loading Models for Simulation ..73

4.4.1 Class Diagram ...74

4.4.2 Sequence Diagram...75

5 DEMONSTRATION...77

5.1 Anti –Virus Model Example ...77

5.1.1 Select Database or Create New Database...78

5.1.2 Model Creation..79

5.1.3 Create Model Instance...86

5.1.4 Adding Behavior ...88

5.1.5 Configuration...90

5.1.6 Simulation..91

5.1.7 Simulation Results...92

6 CONCLUSION AND FUTURE WORK ...94

6.1 Conclusion ...94

6.2 Future Work...95

REFERENCES...97

APPENDIX A…………………………………………………………………...100

ix

LIST OF TABLES

Table Page

1 Ptolemy II model components...23

2 SimEvents model components ..25

3 DEVS-Suite model components ...25

4 Comparison of visual complexity metrics ..26

5 Relational Database Schema Specification for ModelClass Table60

6 Relational Database Schema Specification for ExportTempTable Table..........................61

7 Primitive models in the Anti-Virus Model ...80

8 Composite models in the Anti-Virus Model...81

x

LIST OF FIGURES

Figure Page

1. CoSMoS Integration...3

2. Logical, visual, and persistent model types with model translators....................................6

3. CoSMo Client Server Architecture ..8

4. SESM GUI..10

5. Architecture of DEVS-Suite (adapted from (Singh & Sarjoughian, 2003)).....................12

6. DEVS-Suite GUI ..15

7. CoSMo and FEDEP..19

8. Assembly Line model...22

9. Assembly Line model in Ptolemy II ..23

10. Assembly Line model in SimEvents..24

11. Assembly Line model in CoSMo...27

12. Instance Model Creation – The process...34

13. Loading models for simulation ..37

14. DEVS-Suite Simulation Controls in CoSMo ..39

15. Visual Configuration of Models...40

16. Visual Configuration of Models for Data Collection – The process41

17. Process for creating and simulating models...42

18. Unique Instance Model creation – The Algorithm..52

19. Model-Class Relationship – The Algorithm..53

20. Class Diagram – Adding Instance Models ..54

xi

Figure Page

21. Sequence Diagram – Select specialization ..55

22. Sequence Diagram – Creating Instance of the Primitive Model.....................................56

23. Sequence Diagram – Creating Instance of the Composite Models.................................58

24. Entity Relationship Changes ..62

25. A sample of a generated atomic model..64

26. A sample of a generated coupled model ..65

27. File-Directory Structure..66

28. Data Flow in DEVS-Suite ..67

29. Class Diagram – Visually selecting components...68

30. Class Diagram – TrackingControl and Tracker...69

31. Sequence Diagram – Selecting input ports for tracking by mouse clicks.......................70

32. Sequence Diagram – Loading Models for Simulation ..71

33. Sequence Diagram – Enabling models for tracking ..72

34. Class Diagram – Components for loading models ..74

35. Sequence Diagram – Loading models for simulation ...75

36. Selecting existing database...78

37. Creating a new Model Template ..79

38. Adding specializations to a model ...81

39. Adding components to a model..82

40. ITM view of the models ...83

xii

Figure Page

41. Adding input ports to a model..84

42. Adding couplings between two ports...85

43. Adding a state variable to a model ...86

44. Creating Instance Model...87

45. Choosing specialization for a specialized model...87

46. Adding behavior to an already exported model...89

47. Selecting ports to track ...90

48. Loading models for simulation ..91

49. Options to select the output trajectory viewer ...92

50. Class diagram of NBEditor implementation..100

51. A file generated by CoSMoS as seen in the editor ..102

1 INTRODUCTION

Design and engineering of software-based systems remain an active area of

research. Software architecture has a central role in building complex, large-scale software

systems since it reduces development time, increases quality of detailed design and

provides a holistic description of a system’s specification (Medvidovic, Rosenblum,

Redmiles, & Robbins, 2002). Modeling is needed to define and analyze the structural and

behavioral aspects of a system. A general theory of Modeling and Simulation (M&S) was

derived from the basic systems theory and thus provides a basis towards the engineering of

software-based systems. Creating simulation models for systems can support developing

designs that can be executed in virtual settings. These simulation models complement

UML (Unified Modeling Language) models that are commonly used for software analysis

and design (Ferayorni, 2008; Ferayorni & Sarjoughian, 2007). Simulation of software

designs can support model verification and validation capabilities beyond what is generally

supported by UML (Mooney, 2008).

DEVSJAVA (Arizona Center for Integrative Modeling and Simulation, 2007), an

M&S tool implemented in JAVATM, establishes an environment that supports

characterizing the models in DEVS (Discrete Event System Specification) (Zeigler, Kim,

& Praehofer, 2000) formalism. The partitions in the architecture of the tool clearly

delineate a modeling engine that realizes the logical DEVS modeling artifacts, and a

simulation engine that realizes the parallel DEVS abstract simulator. The absence of the

facility to automatically track model states and input/output trajectory makes it inapt for

setting up experiments with hundreds of distinct models. The above mentioned capabilities

have been introduced to the DEVS-Suite (Kim, 2008; Kim, H. S. Sarjoughian, R. Flasher,

2

& V. Elamvazhuthi, in preparation), an environment that extends the DEVSJAVA

Tracking environment (DTE) (Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003)

with time-based data trajectories, tabular data, and CSV files. However DEVS-Suite does

not support visual model development.

CoSMo1 (Component-Based System Modeler) is a logical, visual, and persistent

modeling framework that supports specification of models using a generic component-

based paradigm (S. Bendre, 2004; S. Bendre & Sarjoughian, 2005; Fu, 2002; Mohan,

2003; H. S. Sarjoughian, 2005; Sarjoughian & Flasher, 2007). CoSMo supports specifying

a family of models, where their scalability and complexity can be managed in a controlled

manner. Given simulation engines such as DEVSJAVA, models created in CoSMo can be

mapped into partial simulation code.

1.1 Research Objective and Approach

The primary goal of this research is to integrate CoSMo and DEVS-Suite

environments. The resulting environment Component-based System Modeling and

Simulation (CoSMoS) is aimed at supporting development and configuration of simulation

experiments using CoSMo’s logical, visual, and persistent modeling engine specialized for

DEVS models and can be executed using DEVS-Suite with automatic data observation and

collection. The capabilities of the CoSMoS environment are:

• Visual selection of hierarchical model components for tracking.

1 The name CoSMo is coined as a replacement for SESM/CM (Sarjoughian, in preparation). The new name captures
more strongly the component aspect of system modeling.

3

• Follows a process for creating models and simulating them to conduct experiments.

• Display automatically gathered simulation data using a set of complementary data

viewers.

CoSMo
DEVS‐
Suite

Figure 1. CoSMoS Integration

The overall approach to the integration was to observe the differences in the format

of the models that are generated by CoSMo and can be simulated by DEVS-Suite. The

version 1.3.0 of CoSMo provides the capability for creating, modifying, and deleting the

structural aspects of the primitive and composite models (ACIMS, 2007). These structural

aspects involve the name of the models, input/output ports (port names and data variables),

couplings and modular hierarchical structures, multiplicity of model components, and

specializations. CoSMo has a relational database for storing and managing the primitive

and composite model types. CoSMo also supports some behavioral modeling (inputs,

outputs, and states). This makes it suitable for the development of a family of models.

DEVS-Suite is an object-oriented modeling and simulation environment with the

capability to track input, output, and state data sets. The models are described based on the

system-theoretic modeling concepts and implemented in JAVA. The simulation models are

syntactically checked for conformity by the Parallel DEVS simulator. The logical model to

simulation code translator in CoSMo generates files that conform to the DEVS-Suite

syntax and semantics. To enable simulation of these models in DEVS-Suite, a visual

4

modeling to simulation approach has been designed and developed. This involves

completing the partially generated models in CoSMoS and loading them into DEVS-Suite.

Using CoSMoS, modelers can develop and simulate models in an integrated visual

modeling and simulation environment.

1.2 Contribution

The contributions of this thesis can be summarized as

• Extended CoSMo design and implementation to support visual configuration of

models for experimentations and generation of simulation code for DEVS-Suite.

• Defined a process where model development and simulation can be carried out

systematically.

1.3 Organization of the Thesis

Chapter 2 gives an overview and background of the CoSMo and DEVS-Suite

environments being integrated. It involves the detailed description of the visual modeling

engine CoSMo and its current capabilities. It also has a detailed architecture of the

DEVSJAVA Tracking Environment that is the basis of the DEVS-Suite. The related work

discusses and compares the discrete event modeling and simulation environments Ptolemy

II (Lee, 2003), SimEvents (MathWorks, 2007), and DEVS-Suite. The concept of Federation

Development and Execution Process (FEDEP) is described with respect to the CoSMoS

environment.

Chapter 3 describes the conceptual design of the CoSMoS environment. A process

flow has been defined and explained in detail. It also discusses the necessary additions and

5

modifications required to facilitate the integration of CoSMo and DEVS-Suite

environments. All the new or modified capabilities of CoSMoS are described in terms of

use case diagram and basic requirements.

Chapter 4 shows the design for these capabilities which involves both class and

sequence diagrams. The algorithms for the new capabilities have been described in detail

along with a set of new database queries.

Chapter 5 depicts an example of Anti-Virus Model developed in CoSMoS. A set of

models are developed step-by-step in order to show the capabilities of the CoSMoS.

Chapter 6 discuses conclusions and future research.

2 BACKGROUND

2.1 Component-based System Modeler (CoSMo)

Component-based System Modeler (CoSMo) is a modeling framework aimed at

characterizing a family of system specifications. It defines a novel unified foundation for

specifying logical, visual, and persistent primitive and composite models. Based on the

concepts of modularity and (part-of and is-a) hierarchy, complex structures can be specified

by coupling components’ input and output ports. CoSMo supports component-based

modeling approaches such as DEVS and XML (Sarjoughian & Flasher, 2007) which will

be discussed in detail later.

Component –based System Modeler (CoSMo)

Visual
Modeling

Logical
Modeling

Persistent
Modeling

Model
Translator

Simulation
Code

Standardized
Models

Figure 2. Logical, visual, and persistent model types with model translators

The logical model specification is governed by a set of axioms that ensure

consistency among a family of alternative hierarchical model specifications. The models

can have arbitrary complex part-of and is-a relationships giving rise to a large number of

digraph (i.e., strict hierarchal) models. The persistent feature helps the modelers create,

store, access and manipulate the models efficiently. The advantages of storing the model in

a database include the management and scalability of models and being able to compute

their complexity metrics. The visual modeling supports developing and manipulating large

7

models. CoSMo provides the facility to design the models at different levels of details due

to the separation of the Template Models (TM), Instance Template Models (ITM) and

Instance Models (IM). The CoSMo’s translator supports transforming the logical models

that are stored in the databases to their equivalent simulation code as well as other

representations such as DTD (Document Type Definition) and XML (Extensible Markup

Language) (Sarjoughian & Flasher, 2007). Logical models can be translated to simulation

models. For example, for models that comply with the DEVS formalism and are intended

to be executed with the DEVS-Suite, a translator has been developed. These DEVS-

compliant logical models transformed to DEVS-Suite simulation code can be executed by

adding functions that operate on inputs and state changes to produce outputs based on the

given timing function. Translators have also been developed to generate DTD and XML

models. The CoSMo models are explained in a more elaborate way using the state

variables, ports, and the couplings that exist between the various models when the coupled

models come into focus.

8

Figure 3. CoSMo Client Server Architecture

The basic architecture of the CoSMo is client-server (see Figure 3). The main parts

of the software are Client, Network, and Server. The Client requests for the write requests,

which are managed by the Network and then processed by the Server. The server also

enforces rules according to the CoSMo’s axioms in order to maintain the syntactical

correctness of the models. All the read operations are directly handled by the database. The

graphical user interface is efficient and provides three complementary views of every

model: the Template model (TM), Instance Template Model (ITM), and the Instance

Model (IM). The models are shown in the GUI by two means, one is using the Tree

structure that lists all the primitive and composite models and their parts and specializations

and the other is the block representation that shows the primitive models and the composite

models up to two levels of its hierarchy. Using the DEVS-Suite translator, the CoSMo’s

primitive and composite models can be translated into partial DEVS atomic and complete

coupled simulation code which can then be run by the DEVS-Suite simulation engine once

it is completed. The partial DEVS-Suite source code generated for each atomic model can

9

be completed by providing the implementation of the external, internal, output, and time

advance function templates using any IDE or the editor that is provided with CoSMo.

CoSMo also supports a class of Non-Simulatable Model (NSM) components. These

types of models are based on object-oriented and XML model components. They are

depicted differently than the Simulatable Model (SM) components which are time-based.

The main difference between SM and NSM from a CoSMo perspective is that the

execution of the SM model components is determined by the simulation protocol which

generates simulation code. For example, if the DEVS-Suite simulator is used, then the

Simulatable Models are executed according to the Parallel DEVS protocol.

10

Figure 4. SESM (Scalable Entity Structure Modeler) GUI

2.2 DEVS-Suite

DEVS-Suite (Kim, 2008; Kim, et al., in preparation) extends the DEVSJAVA

Tracking Environment (DTE) (Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003).

DTE is an object-oriented DEVS simulation environment. The models are syntactically

checked for the conformation to Parallel DEVS. These models are simulated with the

DEVSJAVA simulation engine, an implementation of the DEVS abstract atomic and

coupled simulators.

This simulation environment is comprised of a set of packages that support

developing DEVS models. Two basic packages are the devs.model.environment.modeling

11

and devs.model.environment.simulation. The former supports a realization of the atomic

and coupled modeling constructs. The latter is a realization of the abstract atomic and

coupled simulators. The simulation model is typically defined as a set of instructions, rules,

equations, or the constraints for consuming and producing input and output events. The

models are designed with the Internal and External transition functions, time advance

function, and output generation function to accept the input trajectories and thus generate

the output trajectory over a period of time.

DTE is developed on strong system theoretic concepts and the classic MVC

(MODEL-VIEW-CONTROL) design pattern. The details governing the modeling and

simulation engines (MODEL) are strictly shielded from the VIEW and CONTROL.

The MODEL is independent of CONTROL and VIEW. The MODEL is processed

under the directive of the CONTROL and the data is consumed by the VIEW. The

CONTROL does not introduce any side effects to the MODEL. The CONTROL maps user

actions to their counterparts provided in the MODEL (for example, injecting input to a

model). The VIEW does not change the simulation models; instead it supports accessing

simulation models input and output variables and common variables (i.e., sigma & phase;

tL & tN) that belong to all models and the simulator. The VIEW provides an interface

through which the simulated model can be executed under the DEVS-Suite execution

scheme.

12

Figure 5. Architecture of DEVS-Suite (adapted from (Singh & Sarjoughian, 2003))

The architecture (Figure 5) of DEVS-Suite has modeling and simulation engines

that are complex in nature and are treated as part of the MODEL of the MVC

decomposition. The MODEL represents the atomic and coupled models. The Façade

design pattern is used to expose inputs, outputs, and states of the models as well as

simulation control operations. The FACADE manages all external VIEW and CONTROL

13

interactions of the MODEL. This FACADE Interface layer maintains a precise set of

operations in such a way that the MODEL’s internal details are invisible to the VIEW and

CONTROL. For this layer to communicate with the VIEW and CONTROLLER, the

Coupling and Communication (C&C) layer is introduced. The C&C layer has the simulator

control logic built into it. The VIEW and CONTROLLER can send and receive data and

control messages to the FACADE interface layer (and thus the MODEL) only through the

C&C layer.

The VIEW serves as a visualization interface for the user to interact with the

MODEL through the CONTROL. The VIEW displays some aspects of the simulation

models to the user. It only has access to the information that is available from the Façade

and C&C layers. The VIEW can be considered as a workspace to view, control, and

monitor simulation models. It also orders all user interactions. However, there is no

guarantee that the VIEW can display the data it receives from the C&C at the same rate the

MODEL is generating them. This is because the VIEW does not control the execution of

the simulation models (i.e., MODEL) and therefore pulls the data from the C&C layer

independently of the CONTROL and MODEL.

The CONTROLLER defines the overarching execution logic which includes

initialization, termination of environment, and VIEW and MODEL manipulation. The

control requests are originated in the VIEW due to a user request or action. The

CONTROLLER also defines proxies for the simulation engine’s execution logic which are

Reset, Run, Run[n], Inject, and Pause operations. The user also has the choice of

14

controlling the speed of the simulator and animation. These operations are managed

through the C&C layer. When the logic for processing control request is not present in the

model level logic, the CONTROLLER maps it into the corresponding section in the C&C

layer.

The central feature of DEVS-Suite is to allow the user the option to select the

components and thus observe only the input, output, and state variables that are of interest.

This capability simplifies the configuration of different simulation experiments without

adding auxiliary code to the simulation models or writing transducer models as is

commonly done. This kind of setup helps in analysis by enabling the setup of simulations

and therefore tracking the states, and input/output in the three complementary views

(tabular, time trajectories, and animation) in a controlled and repeatable manner.

15

Figure 6. DEVS-Suite GUI

2.3 Verification and Validation

Simulation models are used for building complex systems or understanding their

inner-workings. The developers who build these simulation models and the users who use

these simulation results are concerned about the correctness of these models. Model

verification and validation (V&V) plays an important role to address this issue.

Verification refers to the process of analyzing the extent to which the model

developed pertains to its requirements and specifications. Verification also evaluates the

extent in which the model and simulation developed conforms to the established software

16

and systems engineering techniques. Validation refers to the process of analyzing the

degree of similarity in the simulated model with the real (or imagined) system while

conforming to the prescribed (or desired) structural and behavioral requirements.

A disciplined approach to the V&V of these simulation models can reduce

developing and integration risk while enhancing the credibility of the simulations. The

iterative nature of simulation model development in CoSMoS helps the modeler carry out

modeling and simulation tasks systematically.

2.4 Federation Development and Execution Process (FEDEP)

High Level Architecture (HLA) has been defined to introduce interoperability

among simulations and also reuse. Thus HLA enables various types of simulation (logical

and real). HLA Object Model Template (OMT) plays an important role in building HLA-

compliant simulations (Lutz, Scrudder, & Graffagnini, 1998). The HLA/OMT specifies

two object models: Federation Object Model (FOM) and Simulation Object Model (SOM).

A FOM deals with the issues of decomposition of federations into federates while a SOM

deals with the dynamic capabilities of the federates, such as their operations to the extent of

capturing interactions. There are two main technical objectives for HLA/OMT

specifications. The first objective is to provide a common specification for the exchange of

the data and coordination among the members of the federation using the concept of

publish and subscribe. The second objective is to provide a common mechanism for

describing the capabilities of potential federation. FEDEP defines seven basic steps for the

HLA federations to develop and execute their federations. The steps are as follows:

17

Step 1. Define federation objectives

The federation user, sponsor, and the developer define and agree on a set of

objectives.

Step 2. Perform conceptual analysis

Based on the characteristics of the problem space, a representation of the real

world domain is developed.

Step 3. Design federation

A plan is developed for federation development and integration.

Step 4. Develop federation

The Federate Object Model (FOM) is developed.

Step 5. Plan, integrate, and test federation

Federation integration and testing is conducted to ensure the interoperability

requirements are met.

Step 6. Execute federation and prepare outputs

The federation is executed and the output is pre-processed.

Step 7. Analyze data and evaluate results

The output data from the federation execution is analyzed and evaluated.

We can observe that there is a direct relationship between HLA FOM and SOM

with DEVS. The atomic and coupled models correspond to federate and federation

components (Sarjoughian and Zeigler, Simulation Transactions, 2000).

18

As seen in the FEDEP modeling and simulation life cycle, simulation model

development and execution is an important component. To build conceptually correct

models and correct simulation code for large scale complex systems, an environment

should consider the following:

• Formal model specification: The logical models in CoSMo follow specific

rules and axioms to support well defined (component-based) structure and

behavior specifications.

• Visualizations: CoSMo allows the modeler to develop large and complex

models. Visualization of the simulation output data is provided with the help of

DEVS-Suite’s viewers (e.g., time trajectories of inputs, outputs, and states).

• Repository: The models are stored in the database and thus are persistent

across different sessions.

• Transformation: Models can be translated into simulation code for a class of

simulation models (e.g., DEVS).

Since CoSMo’s primitive and composite models can represent DEVS atomic and

coupled models, CoSMo and DEVS-Suite can be used together to support model

verification and simulation validation. As we see in Figure 7 (H. Sarjoughian, 2005),

CoSMo supports four phases of the FEDEP (i.e., Develop Design, Develop Conceptual

Model, Validate Conceptual Model, and Verify Design)

19

Develop
Conceptual
Model

Develop
Design

Verify
Design

Validate
Conceptual
Model

Implement
& Tests

Verify Simulation &
Validate Results

Collect and Evaluate Accreditation

Simulation Model Verification and Validation Phases

Simulation Model Development Phases

Component-based
System Modeler

(CoSMo)

Figure 7. CoSMo and FEDEP

The integration of DTE in CoSMo allowed the modeler to implement the DEVS

model and simulate them using the DEVS simulator available in DTE. The models can be

structurally configured; however, for behavior specification the modeler needs to manually

complete the models using the IDE available in CoSMoS. The simulation results of the

models developed above can be shown in various output trajectory viewers available.

2.5 Related Work

2.5.1 Ptolemy II

Ptolemy II (Department of EECS, 2007) is a modeling & simulation framework

developed as a part of the Ptolemy Project. It is a component based framework

implemented in JAVA and has a graphical user interface called Vergil. The project aims at

studying modeling and simulation of real time and embedded systems. It has a large, visual,

domain-polymorphic component library. A component called Director defines the

interaction semantics among a set of models and the director that is for discrete event

20

models is called DE Director. The models are pre-defined for a given domain and specific

visual representations. These model parameters can be set visually, but changes to each

model’s logic (e.g., functions) must be done manually (i.e., through the use of text editors).

The models can be visually coupled together. However, they are not auto-arranged and thus

it is the responsibility of the modeler to manually adjust their positions. The animation

feature shows one active model at any given instance of time during the simulation. These

simulation results can be monitored and analyzed with the help of pre-built plotters. The

plotters form part of the model layout and increases the number of the components in

addition to the models that are simulated. The components used in Ptolemy II are domain

specific and the modeler needs domain knowledge in order to use them.

2.5.2 SimEvents

SimEvents is an extension of Simulink which has a discrete-event model of

computation built into it. SimEvents can be used to develop activity-based models to

monitor system parameters such as congestion, re-source contention, and processing

delays. It provides pre-fabricated queues, servers, switches, gates, timers, time-outs, and

generators for entities, events, and signals. The SimEvents Sinks Library has several

plotters that can be used in the models to monitor the values or the states of the various

events. These sinks are strongly typed and thus use of an incompatible value at one of the

ports will result in an error. SimEvents provides an environment for modeling hybrid

dynamic systems containing continuous-time, discrete-event and discrete-time components.

21

SimEvents interacts with the time-based dynamics of Simulink. SimEvents also provides

signals or entity changes to control the processing of State flow changes.

2.5.3 DEVS-Suite

DEVS-Suite is an environment targeted for simulating parallel DEVS models. It

uses the DEVSJAVA simulation engine and introduces the capability to configure input

and output variables and predefined state variables for observation and data collection.

Data can be viewed as time-based trajectories and in tabular form during simulation

execution. DEVS-Suite use the Model-View-Control architecture as described in Section

2.2. DEVS-Suite supports simulating atomic and coupled model types. The atomic model

contains input and output ports and variables, state variables and parameters, and time

advance, internal, external, confluent transition, and output functions. The composite model

defines the way in which atomic and/or components can be coupled together. However,

there is no support for visual model development – i.e., template Java code must be

completed using a text editor or IDE such as Eclipse. The input and output messages

between the models can be animated and their state and parameters visualized during

simulation execution. The models can be moved around manually in the simulation viewer,

but the couplings are static and are relatively aligned. Due to this, they often overlap and

reduce the visual clarity of the model.

2.5.4 Assembly Line Model Exemplar

The Assembly Line (Jayadev, 1986) model shown in Figure 8 is chosen to compare

Ptolemy II, SimEvents, and DEVS-Suite simulation tools. Jobs are generated by a

22

Generator model at predefined intervals and are serviced by three processors P1, P2, and P3

in a cascade fashion. The service time for each job is specified by a Processor.

Generator

g (1 2 ,, , kt t t…)

Processor

P1 (1 2, , , kt t t′ ′ ′…)

)

Processor

P2 (1 2, , kt t t′′ ′′ ′′…)

Processor

P3 (1 2, , , kt t t′′′ ′′′ ′′′…)

Jobs

Jobs

Figure 8. Assembly Line model

2.5.4.1 Observations

We considered Ptolemy II, SimEvents, and DEVS-Suite to analyze the visualization

aspects of models and their simulations. The Assembly Line shown in Figure 8 is a model

that generates jobs and processes them using multiple processors in a cascading fashion.

This exemplar model is part of the demos bundled with Ptolemy II.

The components used in Ptolemy II to build the sample model are shown in Table

1. Several components have to be combined to represent a single entity. For e.g., pulse

generator and NonInterruptable Timer form the processor used in the Assembly Line

model. Visual monitoring components have to be added as a part of the model to observe

the output and behavior of the model during the simulation. The models and the couplings

must be adjusted manually to avoid overlapping and to enhance visual feedback. The

layout of the Assembly Line in the Ptolemy II environment can be seen in Figure 9.

23

Figure 9. Assembly Line model in Ptolemy II

Table 1

Ptolemy II model components

 Component Name Icon Representation Name in Model
DE Director

DE Director

Clock

Jobs

CurrentTime

CurrentTime

Pulse

ServiceTimes1,
ServiceTimes2,
ServiceTimes3,

NonInterruptibleTimer

Station 1, Station 2,
Station 3

Ptolemy
II

TimedPlotter

Times when jobs arrive,
Times when stations
finish jobs.

The Assembly Line model was also developed in SimEvents. The ports in

SimEvents have to be manually adjusted. The ports are checked for types before they can

24

be coupled. The components have been categorized as logical and visual components,

ports, and couplings. The visual components are the graphs and the plotters that capture the

simulation data. These probes are shown as separate entities in the model layout. As the

models are synthesized using basic components from libraries, some functionality, such as

queuing of jobs in the server, needs the queue component to be added explicitly to the

model. To track any particular component of the model these probes have to be added in

addition to the models. Brief descriptions of the models are given in Table 2 and the layout

is shown in Figure 10.

Figure 10. Assembly Line model in SimEvents

25

Table 2

SimEvents model components

 Component Name Icon Representation Name in Model

Event based sequence
generator

Generate Intervals
1, 2, 3, 4

Time-Based Entity
Generator

Job Generator

FIFO Queue

Server Queue1,
Server Queue2,
Server Queue3

SimEvents

Single Server

Server 1, Server 2,
Server 3

A brief description of the models and the components are given in Table 3. DEVS-

Suite is a visual simulation tool where the models development is through code. The

simulation viewer (Figure 6) shows the state information of each component during the

course of the simulation. The ability to animate the messages passing between the models

reduces need for additional visual monitoring components, ports and couplings associated

with them.

Table 3

 DEVS-Suite model components

 Component Name Name in Model

Atomic Model Entity Generator
Atomic Model Service Station 1, Service Station 2,

Service Station 3,
DEVS-Suite

Coupled Model ExperSetup

26

Table 4

Comparison of visual complexity metrics

 Ptolemy SimEvents DEVS-Suite
Logical Components 9 11 5
Ports 15 29 10
Couplings 11 14 4
Monitoring Components 2 4 0
Trajectory Viewer 2 4 4
Total No. of Components 39 62 23

The visual complexity metrics of the Assembly Line model with respect to the

different environments are shown in Table 4. The metrics reveal that as the scale of a

model increases, the number of components would increase for Ptolemy II and SimEvents

with respect to DEVS-Suite. From the table it can be observed that visual components are

the major contributors to the overall visual complexity of Ptolemy II and SimEvents. In

contrast, DEVS-Suite does not require components such as TimedPlotter; instead dialogue

boxes are used.

Feedbacks were also added to observe the alignment of the models and their

couplings. As already mentioned in Ptolemy II and SimEvents the components and

couplings had to be manually adjusted. DEVS-Suite allows alignment of the model, but

does not support couplings that cross over model components. Such overlaps and difficulty

in adjusting the models makes it very challenging to manage for large-scale models.

The example model mentioned in Section 2.3.0.1 (i.e., the Assembly Line) has also

been developed in the CoSMoS environment. After comparing the visual complexity of

CoSMoS to that of DEVS-Suite, it can be seen that a number of logical components, ports

27

and couplings are similar. The advantages of CoSMoS over DEVS-Suite involve visual

model development and not needing to use customized code or dialogue boxes for

simulation data collection and observation.

Figure 11. Assembly Line model in CoSMo

3 CoSMoS REQUIREMENTS SPECIFICATION

The major components for the integration, i.e., CoSMo and DEVS-Suite, were

analyzed closely and the shortcomings from each were identified. An overall architecture

for the integrated system CoSMoS (Component-based System Modeling and Simulation)

has been designed. The components involved in the integration have been explained clearly

with respect to the integrated architecture. The problems identified in both CoSMo and

DEVS-Suite have been realized as requirements and have been described using a detailed

use-case diagram. A detailed process flow has been defined for the integrated environment.

The process flow shows the sequence of steps for the creation of visual models, adding

behavior, and simulating the models using the DEVS-Suite controls.

3.1 Preliminaries

The design of the CoSMoS environment is based on the Model-View-Control

(MVC) design pattern. Both CoSMo (S. Bendre, 2004; S. Bendre & Sarjoughian, 2005;

Fu, 2002; Sarjoughian, 2001; Sarjoughian & Flasher, 2007) and DEVS-Suite (Kim, et al.,

in preparation; Sarjoughian & Singh, 2004; Singh & Sarjoughian, 2003) environments are

developed using the principles of the MVC (Trygve M. H. Reenskaug). The Model, View,

and Control components of CoSMoS are described next.

3.1.1 Model

3.1.1.1 Logical Models (CoSMo):

The primitive and the composite models are defined in CoSMo. Each of these

models is represented as both Template Model and Instance Template Model. The Instance

Template Models (ITM) can also be instantiated to Instance Model (IM) which shows the

29

realizations of the specializations and concretely defines the multiplicity of the sub-

components if it is unspecified.

The primitive component corresponds to the Template Model(TM) or an IM. In the

TM, the primitive model can be specialized using is-a relationship. The term specializee

refers to the component that has a specialization relationship to the specialized models. The

input/output interface of the specialized model is same as the interface of the specializee.

However the state variables of two specialized models can be different.

A composite model corresponds to the TM, ITM or IM. The composite model

consists of primitive or other composite model. It also has states, input/output ports, and a

set of couplings between the ports contained within it.

3.1.1.2 ER Specification, Persistent Models (CoSMo):

The structural models in CoSMo are described and stored in a relational database in

terms of structural features of the model components such as identity (i.e., model name),

hierarchy (i.e., decomposition), input/output interface (i.e., port names), and their creation

time. For the models to be executed there are some behavioral requirements which need to

be added to the existing models. These are described in terms of port variables, state

variables, and NSM variables.

3.1.1.3 Atomic & Coupled Models (DEVS-Suite)

The models in DEVS-Suite are based on the DEVS formalism which can be

mathematically expressed. As mentioned earlier, there are two types of models: atomic and

coupled. Atomic models are the basic models from which the coupled models can be built.

30

Atomic models have the ability to define behavior with time base, inputs, outputs and

functions for defining the next states. The higher models, i.e., the coupled models, are

composed of other atomic and/or coupled models connected to each other by couplings in a

hierarchical manner. These models are supported with input and output ports to enable

communication with each other and the outside world.

3.1.2 View

3.1.2.1 Hierarchical tree and block model representations (CoSMo)

The graphical user interface of CoSMo plays a major role in supporting visual

model development. The hierarchical models are displayed in a structured tree format using

the JTree format of JAVA. Although the couplings and ports are not visible in the tree

structure, it is complemented by the block diagram layout with ports and couplings. The

block diagram shows the models at two levels of hierarchy in a single display. The

advantage of a well defined user interface of CoSMo was to streamline the process of

developing models so that they can be developed in an orderly fashion, i.e., create the

template models and then create the instance models from those. These visual

representations are consistent with the model information in the database. The ports in the

block can be selected to configure the model for simulation.

3.1.2.2 SimView (DEVS-Suite)

The SimView is a simulation viewer that has a visualization of the structure and

behavior of the hierarchical DEVS models. The hierarchical and the component structure

are derived from the source code written in JAVA that conforms to DEVS specifications.

31

The view uses a boxes-within-boxes visual metaphor to portray all of the

components in a model and their position within the hierarchy. The individual input/output

ports and their couplings with models in the current or different level of hierarchy are

clearly shown in the viewer. It also shows the movement of messages as the simulation

progresses. This helps in presenting the dynamics of the model and simulation in a detailed

manner. The view also possesses capabilities to give inputs to models that can be defined

on the ports in the simulation code.

3.1.2.3 Time-based and Tabular Trajectories (DEVS-Suite)

The simulation data selected for observation can be collected in the HTML table

and observed at run-time. This data is retrieved from the DEVS-Suite Communication and

Control layer and displayed to the modeler.

Time-based trajectories are displayed in X (value) and Y (time) coordinates. These

coordinates represent observed data values, such as input events at a series of

monotonically increasing time instances. The Y coordinates are single-valued and can be

numeric or symbolic. The values show simulation time (or clock) which is determined by

the simulation model’s time advance function. The X coordinate can be either single- or

multi-valued. The X coordinate may represent input, output, or state values of models.

Models can be continuous, discrete-time, and discrete-event. That is, the semantics of the

data displayed are based on the DEVS models. DEVS-Suite also supports separately

assigning units to the X and Y coordinates (e.g., the unit of time in one plot can be seconds

while the unit of time in another plot can be milliseconds).

32

To allow the TimeView to become a viewer of time-based simulation, the

semantics of the data it displays are provided by the DEVS simulation engine. That is, the

TimeView displays data it receives, but the correctness of input, output, and state

trajectories are due to the models and their simulation.

3.1.3 Control

3.1.3.1 Visual Modeling Gestures (CoSMo)

The visual modeling gestures in CoSMo environment include creating, modifying,

and deleting models. It supports modelers by specifying their models in an iterative and

incremental fashion. The operations on the models are persistent, i.e., the models are stored

in the database. The models follow a strict flow in their creation. The template models need

to be created before they can be instantiated and are ready to be simulated. The structural

specification for a model can be specified from the GUI at three places

• The menu bar defined at the top of the application.

• A pop-up menu showing options for the model on the tree structure. This menu can

also be invoked from the graphical block representation of models. CoSMo also

enables behavior specification of the atomic models. The behavior of these atomic

models is specified in terms of input/output variables, state variables, and state

transition functions. Currently CoSMo provides pop-up menus on atomic models to

add input/output variables and state variables. The state transition functions can be

added into the model using a built-in source code editor. There are several

available.

33

3.1.3.2 Simulation Gestures (DEVS-Suite)

The simulation gestures from DEVS-Suite forms the part of the model-level logic

that includes behavior such as simulation and model manipulation (Run, Pause, Step, Step

(n), and Restart). The control gestures are usually triggered from the VIEW by a user as a

task to be completed. The logic for the processing of the control request is not present in

the model-level logic itself. Instead, a mapping of the request is sent to the Coupling and

Communication layer.

These controls are loaded on the GUI of CoSMo once the model has been

successfully loaded into the simulation engine.

3.2 CoSMoS Requirements

For the successful integration of CoSMo and DEVS-Suite environments there were

several requirements that had to be met. In the following, we describe the requirements for

the integrated CoSMoS environment given in each of the following use cases.

34

3.2.1 Instance Model Creation

The modeler selects the template
model to instantiate.

Created Instance Model can be
exported to DEVSJAVA files

Generate DEVSJAVA simulation
model components

Modeler

Create Instance Model

<<include>> CoSMo

Figure 12. Instance Model Creation – The process

The use case in Figure 12 shows the instance model creation process in the CoSMo

environment. The instance model forms the instantiation of the Template Model where the

multiplicity of the components is explicitly identified and the specializations are reserved.

The generation of the partially complete Java files is dependent upon the instance model

creation. The process to create the Instance Model had to be enhanced to incorporate new

capabilities, like identifying the corresponding simulation code of the selected model and

reuse of an existing model with the same set of components.

The requirements identified to implement the new Instance Model creation method

are:

1) Each model needs to be given unique names to distinguish between models with

different multiplicity and specialization.

35

2) Root models instantiated to the same set of constituent components should not be

allowed to be recreated.

3) The Components that are a part of the multiplicity in a model must be

distinguishable between them once the instance has been created.

4) Instances of the component models as a part of a higher model should be reused if

an instance of the same component with identical configuration exists

5) A clear mapping of the model names and their respective classes should be defined

which would be needed for exporting the instance model to its respective JAVA

file.

The requirements listed above were carefully analyzed and changes to the design

were proposed in terms of a revised algorithm for the Instance Model Creation, a new

algorithm to establish the mapping between the Models and the classes to be used and new

additions to the database and existing program logic.

1) The instance model identifications were chosen based on the FCFS (First Come

First Serve) basis. Any model can be either a root model or a constituent of another

model; the instance identification numbers would be generated based on order of

their creation.

2) Each and every model’s instance and its constituents are checked for redundancy

and similarity in composition to enable reuse of the models. Temporary tables in

the database are used to store the current configuration of the model and data from

36

ComponentOfI and InstanceModel tables are used to check for similarity in

composition.

3) The incremental instance and instance template identification number generation

during the creation of the models have been clearly distinguished for the composite

and atomic models.

4) An algorithm for identifying model names and the class files that it would

correspond to in the JAVA file version of the model was developed; the generated

mappings are stored in the ModelClass table.

3.2.2 Loading Models for simulation

This section deals with the relationship between the completion of the partially

generated models, updating them with the behavior and loading them into the DEVS-Suite

for simulation.

37

DEVS-Suite

Generates DEVSJAVA
models from Instance
Models in CoSMo

Partial primitive models are
completed by adding
behavior through CoSMo's
built-in IDE

Completed Models are
Simulated by DEVS-
Suite

Generate Simulatable
Models

CoSMo

Complete Models

<<include>>

Modeler

Simulate Models

<<include>>

Figure 13. Loading models for simulation

Figure 13 shows the use-case diagram outlining the important operations and

interactions occurring between various actors and components in the system.

The requirements identified for the successful mapping are described below:

1) The model to be simulated has to be exported and saved in the workspace with a

unique identifying name so there is no redundancy in the models and files.

2) The model selected needs to be mapped to the corresponding Java file in the

predefined workspace.

3) The DEVS-Suite should identify the model location and the name.

4) The controls and the simulation view should be composed.

Approach taken to achieve these requirements for the integration is:

38

1) The VIEW of Model-View-Control of the DEVS-Suite (Figure 5) has been

replaced with the CoSMo GUI.

2) The ModelClass table (Table 5) has the information of the model and the class

name it corresponds to, thus the filename can be derived from it.

3) The exported files are arranged in a predetermined work space, which is recognized

by both CoSMo and DEVS-Suite’s framework.

4) The controls of the DEVS-Suite have been embedded into the CoSMo GUI; this

helps the modeler control the simulations of a successfully loaded model.

39

DEVS-Suite’s FSimulator control
Figure 14. DEVS-Suite Simulation Controls in CoSMo

3.2.3 Visual Component and Port Selection

40

Simulate Models DEVS-Suite

Select component and ports
in Instance Model

<<include>>

Modeler

The modeler selects the template
model to instantiate.

Configures the ports on the
instance model

The configuration informations is
used to display simulation data

Create Instance Models

<<include>>

CoSMo

Figure 15. Visual Configuration of Models

 The use case in Figure 15 describes the visual model configuration feature in

CoSMo. CoSMo constantly updates its GUI with the information it receives from the

mouse or keyboard events created by the modeler.

Following are the requirements identified to enable the Visual Configuration

Models.

1) The port selected needs to be uniquely identified in the working environment.

2) The configuration data must be persistent.

3) The selection process should be reversible.

4) The configuration should be portable.

5) The configuration should be in a format that can be identified by the DEVS-Suite.

Approach taken to meet the above mentioned requirements:

41

1) A naming mechanism was used where the name of the port was concatenated along

with its Model name.

2) The selected ports are stored in a Hash Map where the name generated in the

previous step forms the Key and the port name forms the Value of the <K,V> pair

in the hash map.

3) The port listener and the Hash Map work together to analyze the current state of the

port and thus help with reversibility.

4) The separate input and output Hash Maps are persistent through the execution

cycle.

5) Each entry in the Hash Map directly maps to the port trackers in DEVS-Suite; thus

the information can be easily imported.

Figure 16. Visual Configuration of Models for Data Collection – The process

42

3.3 CoSMoS Process Lifecycle

Select
Database

Select an existing template
model or create new

model

Select instance template
model and create its

instance models

Transform
instance models

CoSMo
Database

Add behavior to
simulation models

Select and load
simulation models

Select visualization
modes (SimView,

TimeView and
Tracking Log)

JVM

Select
input/output

ports of models
for tracking

Partial
DEVSJAVA
Models

Completed and
compiled

DEVSJAVA files

Execute

CoSMo

CoSMoS

DEVS-Suite

SimView Tracking Log TimeView

Figure 17. Process for creating and simulating models

The processes and relationships defined in Figure 17 are defined below.

43

Select Database: This process defines the user selecting the database that serves as

a repository for the models. The relational database supports functionalities like creation,

modification, storage, and reuse of the stored models. Structured Query Language (SQL) is

used as a medium of communication as it is a standard language for databases and helps in

application portability. The user is required to locate the database and create an appropriate

data source for it using Microsoft Access (*.mdb) as the driver.

CoSMo Database: The physical database that has a predefined structure as defined

by the ER schema.

Select the existing template model or create new: CoSMoS allows reuse of the

models since models are stored in the database. The user can also create new, unique

template models to represent a new family of models. The template model defines the

primitive or composite model with input or output ports and values. The atomic model

contains state variables, the ports, and the name of the model. The coupled model specifies

the couplings between its components and the name of the ports. The name assigned to the

primitive or the composite model must be unique, i.e., it must be identifiable within its

hierarchical decomposition.

Transform Instance Models: The template models created are instantiated to a

well defined model when they are transformed into Instance Models. If the model has

specialized models, the user can select the specialization for these models during the

transformation. The modeler can specify different models depending upon his choice

44

during the instantiation of template models. This gives the modeler the independence to

create alternative models depending on alternative resolution and aspects.

Partial DEVSJAVA models created: The translator in CoSMoS can export the

logical models into simulation code that conforms to the syntax of the DEVS-Suite

simulation engine. The behaviors of the primitive models are defined in terms of dynamic

characteristics of the model, such as input variables, output variables, state variables, and

state transition functions.

Manually Add behavior to the simulation models: The primitive models are

completed using the IDE in the CoSMoS environment. The models are completed by

adding the behavior and completing the transition functions.

Select and load simulation models: The visual model in CoSMo is selected to

determine the model to be simulated. The models are mapped to their files that are

simulation code written in JAVA. These models are complete and are compiled before the

model class files are ready for simulation. It is an iterative process between Completed

and compiled Java implementation files and Select and load simulation models.

Visually Select components and ports of models: The ports of the primitive and

composite models can be selected visually. These selections by the user are stored in the

memory (JVM) and are used by the Tracking Control in DEVS-Suite for simulating the

models.

45

Changes to be consistent with the models in CoSMo: The IDE in CoSMo

protects the model’s structure and keeps it consistent with the model specification in the

database.

Select visualization modes: The modeler is given the choice of viewing the

models’ simulation output data on different types of trajectory viewers. The options are

broadly classified into animation and tracking the simulation of the models. The animation

includes the SimView and the tracking of the output is shown in Tracking Log and

TimeView.

Execute: The complete and compiled models are simulated in the DEVS-Suite

simulation engine. Depending on the selection of the visualization mode, the output

trajectories are shown to the user.

Visualize: The simulation results may be viewed as time graphs (time-based

trajectories, tabulated form, animation) or exported as CSV files for user-defined analysis.

3.4 Verification and Validation using CoSMoS

The CoSMoS allows a modeler to create models, generate simulation code,

complete simulation code, configure models for observation, simulate models, and view

simulation results. Integral to these activities are model verification and simulation

validation. Since CoSMoS can be used to develop DEVS models, it can be seen that the

model development and simulation process flow shown in Figure 17 supports all the

FEDEP phases shown in Figure 7. The CoSMo activities can be associated with the

46

Develop Design and Develop Conceptual Model phases. The Implement and Tests can be

associated with the CoSMoS and DEVS-Suite. The Validate Conceptual Model, Verify

Design, and Verify Simulation and Validate Results are supported in part by CoSMo’s

logical specification, visual model development, and model repository and DEVS-Suite’s

experimentation configuration and automated data generation and collection. The

verification for structures of models including their interfaces and implementations is

partially automated and simplified in CoSMoS. Some other aspects of model verification

and simulation validation processes must be carried out manually. In particular, the

completion of source code for the DEVS atomic models’ functions is impractical to

automate in any existing tool unless models are restricted for a particular domain (e.g.,

modeling and simulation of electrical circuits) and comprehensive pre-built model libraries

are available. However, when model components are already verified and validated, they

can be synthesized to create more complex models and benefit from the model

development and simulation automation supported by the CoSMoS environment.

4 CoSMoS DESIGN AND IMPLEMENTATION

The creation of the instance models in the previous version was not controlled.

Thus the modeler could create any number of instances of a given model. This led to

duplicate JAVA files. The concept of a well-formed relationship between a single class

with multiple instantiations (i.e., objects) could not be achieved as each model had a

separate file associated with it. The logical specification for the Instance Models had to be

changed to enable reuse of models with the same structures across same or different levels

of hierarchy.

The persistent modeling represented by the ER schema had to be altered to reflect

the new changes for the instance model creation. A table called ExportTempTable is

defined to hold temporary values of the model components and ports to be tracked. Another

table called ModelClass is defined to store Instance Model names and their handle names.

The Instance Model names are used to create unique Java files. The handle names are those

that are utilized in the Java file. The ModelClass table stores class-object relationships.

That is, the ModelClass table defines the names of the classes for which unique handle

names are created.

The model translator was updated to accommodate the changes in the logic of the

model creation and the database structure. The structures of the created JAVA files have

been defined to support their use in the DEVS-Suite environment. This also involves the

specification of new namespace for the models as the directory structure for the storing and

loading of the models had been unified across the new integrated environment.

The visual modeling feature was modified to enable the user to select the ports of

the models for tracking. The tracking is defined for instance models since they can be

48

transformed to simulation code. To select models for tracking, there must not be any side

effects on the Template or Instance Template Models – i.e., mode creation, modification, or

deletion is not allowed. The visual tracking of the models’ ports is a single atomic process

and needs to be fully completed before the models can be loaded for simulation. The

information about model selection is maintained. The name of every Template Model is

used to look up the corresponding class in the ModelClass table. After the Java models are

exported and loaded into the DEVS-Suite, the simulation engine is initialized. The

simulator controls are defined for the simulator and a reference to those controls loads them

into the UI as shown in Figure 14. The control allows the user to execute the simulation as

required and the input and output variables for the selected model components can be

viewed.

4.1 Instance Model Creation

Once the Instance Template Models have been created, the instance creation plays

an important role as it defines their realization into Instance Models. These Instance

Models have direct mappings into their Java files – every Instance Model is transformed

into simulation model subject to the class-object relationship defined above. Allowing the

modeler to create or duplicate Instance Models (and thus simulation models) is

unmanageable. To avoid this problem, the CoSMo’s rules for assigning IDs to Model

Instances were revised. The revised rules are described next:

1) TM (Template Model):

49

The models are classified as primitive, composite, or specialized. The composite

models can be either isomorphic or homomorphic in regards to each other.

a) tID (Template Model ID) : The tID are unique identifications, the database does not

allow the duplication of tID since they form the primary key in the ‘Template

Model’.

i) tID ∈ {0,...,9} ∪ {a,…,z} ∪ {A,…,Z} ; 0 < tID ≤ K ; K=54

ii) The modelType for a component identifies if it is a primitive, composite, or

specialized model.

2) ITM (Instance Template Models):

The Instance Template Models are added for every occurrence of a composite

or primitive model. The Instance Template ID for a model specifies if it is a root

component (composite) or a part component (primitive or composite).

a) Primitive Component:

i) tiID (template instance model ID) = 0. The ITM ID of primitive models are

always 0.

ii) tID • tiID : In the Instance template model view the concatenated tID (template

model ID) and tiID forms an unique representation of the model.

iii) Concatenates tID and tiID

b) Composite Component:

i) If model is root model

(1) tiID =0

50

(2) tID • tiID uniquely represents the model in the ITM view of the models.

ii) If the model is a composite component of a root model.

(1) tiID is unique , tiID ∈{1,…,m}, m ≠ ∞.

(2) The tiID in this scenario is generated based on the information in the

database, i.e., if a model of the same structure exists but at a different level

of hierarchy, the instance template IDs are incremented by 1.

3) IM (Instance Model):

There can be multiple instances of the same model. But the instance generated

cannot be identical to each other – i.e., the configuration of the composite model based

on the specialized models has to be different.

a) Primitive Component :

i) If model is root model

(1) iID = 0

(2) tID • tiID • iID uniquely represents the model in the IM view of the models

ii) If a component model, the iID, is calculated based on the information stored in

the database.

b) Composite Component :

i) iID is generated based on the information present in the database. The difference

is seen when the model IDs are concatenated together to uniquely identify the

models.

51

The combination of tiID (Instance Template Model ID) and iID (Instance Model

ID), if iID is 0, it shows that it’s a primitive root model. The above specification was used

to design and implement the algorithms described next.

4.1.1 Algorithms

We used the above rules to design the following two algorithms. Algorithm 1

prevents creating duplicate Instance Model names. Algorithm 2 defines pairs of model

names and class names where each model name refers to the Instance Model name and

each class name refers to the simulation model name.

52

4.1.1.1 Algorithm 1 – Unique Instance Model Creation

Figure 18. Unique Instance Model creation – The Algorithm

53

4.1.1.2 Algorithm 2 – Model Name-Class Name Relationship Creation

Figure 19. Model-Class Relationship – The Algorithm

54

4.1.2 Class Diagram

sesmServer
(from sesmNet)

sesmQuery
(from dbms)

dmlAccess
(from dbAccess)

sesmAdd
(from dbms)

sesmDB

addInstanceModel(TemplateID : String, InstanceTemplateID : String) : String[]

(from dbms)

1

+theQuery

1

1
+dbConnect

1 1
+add

1

Figure 20. Class Diagram – Adding Instance Models

 The sesmDB class has the declaration of the function that adds new instance

models to the database. The function has frequent interaction with the database for making

decisions regarding the creation of these instances.

Most of the interactions are in the form of queries to the database. Query operations

such as building the query, query execution, and collection of the results are handled by the

sesmQuery Class.

Once the decision has been made to create new instance models, the sesmAdd

function performs the queries to add new instance models into the Instance Model table.

The sesmAdd class is also used to update the Instance Template Model (ITM). This is to

update the specialized models ITM information in the ITM table.

55

The function for adding the Instance Models is called from either sesmServer as a

user instruction or as a part of the recursive call from the same function itself. sesmServer

inherits the sesmDB class and the function from the super class is called.

4.1.3 Sequence Diagram

 : sesmDB theQuery : sesmQuery

modelType(String)

String

selectSpec(String, Vector)

Figure 21. Sequence Diagram – Select specialization

The sequence diagram in Figure 21 shows the sequence of functions and messages

passed for selecting a specialized model for the specializee model.

modelType(String) : This function returns the type of the model {PRIMITIVE,

COMPOSITE, SPECIALIZED} that is identified by the Template ID which as passed as the

String argument.

selectSpec(String, Vector) : This function helps the user to decide the specialization for the

specializee model. First parameter refers to the Template ID of the specializee model and

the second parameter stores the hierarchical model information of the model currently

being specialized. On successful completion of the process, the function returns the

Template ID of the specialized model.

56

 : sesmDB theQuery : sesmQuery add : sesmAdd

modelType(String)

String

InstanceExists(String [])

Model information
Template ID, Instance Template
Model ID and Instance Model ID
information are stored as a part of
the array

boolean modelI(String, String, String)
boolean

pouplateModelClassTable(String, String, String)

ITMtoSMI(String, String, String, String, String)

Function called if model is
Specialized. First two parameters
represent the model's specialized
model's Template ID and Instance
Template ID. The last three
represent the Template ID,
Instance Template ID and Instance
ID of the specialization selected.

Figure 22. Sequence Diagram – Creating Instance of the Primitive Model

The Instance ID of all primitive models is ‘0’, using the information about the

Model’s Template ID, Instance Template ID, and Instance ID to check if an instance of the

primitive model exists in the database. Figure 22 shows the process of creating an instance

model of a primitive model.

InstanceExists(String, String, String) : Checks the above mentioned and returns a Boolean

value depending on the success or failure of the operation.

57

modelI(String, String, String) : This function in the sesmAdd class adds the instance model

with the model’s Template ID, Instance Template ID, and Instance ID that was generated

in sesmAdd.

PopulateModelClass (String, String, String) : This function updates the ModelClass table

with the model’s details and the class name.

ITMtoSMI(String, String, String, String, String) : If the primitive model was a specialized

model, the information about the specializee and the specialized model is stored in the

ITMtoSMI table.

58

 : sesmDB theQuery : sesmQuery add : sesmAdd

modelType(String)

String

componentOf(String)

Vector

addInstanceModel(String, String)

If the child model is
coupled model, the same
fucntion is recursively
called.

The vector is the
collection of all the
child model elements.

String[] Model_Info

The model information
having Template ID, Instance
Template ID and Instance
Model ID

SpecialInstanceCheck(String, String)

boolean

emptyIID(String)

new IID : String

modelI(String, String, String)

boolean

componentI(String, String, String)

boolean

populateModelClassTable(String, templateI,iID)

This function checks for
similarity in the coupled
instance modes with
already existing ones.

This sequence diagram
shows the sequence of
operations if there are no
matching models.

This function is
executed for every
component model.

Figure 23. Sequence Diagram – Creating Instance of the Composite Models

The diagram in Figure 23 shows the sequence diagram for the generation of

composite instance models. A temporary variable is used to hold the information about all

of the children of the composite model. The details about the children are used to find

existing models with the same constitution.

59

componentOf(String) : Returns the list of all immediate children of the model. Each of

these children is processed before their parent. The addInstanceModel(String, String,

String) function is called recursively for the children.

SpecialInstanceCheck(String, String) : The list of the children added to the temporary

variable are run through the database to see if there exists a composite model with the same

set of children.

emptyIID(String) : If a new instance of the model has to be created, the new instance ID is

generated using the existing information in the database.

componentI(String, String, String) : This function updates the componentI table; this holds

the information about the models’ instances and their respective children.

These set of class diagrams, sequence diagrams, and operations define the new

algorithm for adding the instance models.

4.1.4 Entity Relationship Changes

To support the new features, two new entities were added to the database.

4.1.4.1 ModelClass (Model Class) Entity

• Attributes

o template (Template ID)

o templateI (Instance Template ID)

o iID (Instance ID)

o class (Name of the Class)

o createTime (Time of creation)

60

• Description

The ModelClass table defines the relationship between the instance models

and their corresponding class. The set of IDs {template, templateI, iID} identifies

the instance model. The corresponding class names can be the same as the instance

models or they can vary. The naming scheme in section 4.1 helps to establish these

relationships.

The table ModelClass has an identifying one-to-one relationship with the

InstanceModel table on the template, templateI, and iID. For every model’s entry in

ModelClass table, an exact match should exist in the InstanceModel. The table is

updated with the Algorithm-2 shown in Figure 18.

Table 5

Relational Database Schema Specification for ModelClass Table

Model Class
template templateI iID class createTime

As seen in Table 5, {template, templateI, iID} forms the primary key from the

table.

• template is a foreign key from InstanceModel (template).

• templateI is a foreign key from InstanceModel (templateI).

• iID is a foreign key from InstanceModel (iID).

• class is an alphanumeric string with a maximum length of 50 characters.

• createTime is a double decimal number.

61

4.1.4.2 Extended CoSMoS Transactions

Addition of the new algorithms requires the addition of a temporary disjoint table,

ExportTempTable.

Table 6

Relational Database Schema Specification for ExportTempTable Table

ExportTempTable
tComponent tiComponent iComponent tOwner tiOwner iOwner

The relationship between the newly table and the existing schema is show in Figure

24. The ModelClass table forms an identifying relationship with the InstanceModel table.

Thus every record in the ModelClass table can be identified by an entry in the

InstanceModel table. This table is updated by the algorithm specified in Figure 19. The

ExportTempTable forms an identifying relationship with the componentOfI table. This

table and the relationship help in generating the query that would check for identical

composition of models in the database. The identifying relationships between the models

helps in the cascade add and deletion operations.

62

InstanceModel
template : VARCHAR(50)
templateI : INTEGER
iID : INTEGER
modelName : SMALLINT
createTime : DOUBLE PRECISION

<<PK>> PK_modelInstance43()
<<FK>> FK_modelInstance69()
<<FK>> FK_modelInstance81()

ModelClass
template : VARCHAR(50)
templateI : INTEGER
iID : INTEGER
Class : VARCHAR(1)
createTime : DOUBLE PRECISION

<<PK>> PK_ModelClass60()
<<FK>> FK_ModelClass112()

0..11 0..11

<<Identifying>>

componentOfI
tOwner : VARCHAR(50)
tiOwner : INTEGER
iOwner : INTEGER
tComponent : VARCHAR(50)
tiComponent : INTEGER
iComponent : INTEGER

<<FK>> FK_componentOfI83()
<<PK>> PK_componentOfI57()
<<FK>> FK_componentOfI98()
<<Unique>> TC_componentOfI403()

1

0..*

1

0..*

Owner/Composite Models

<<Identifying>>

1

1

1

1

Components of the Owner/Composite Models

<<Identifying>>

ExportTempTable
tComponent : VARCHAR(50)
tiComponent : INTEGER
iComponent : INTEGER
tOwner : VARCHAR(50)
tiOwner : INTEGER
iOwner : INTEGER

<<PK>> PK_ExportTempTable61()
<<FK>> FK_ExportTempTable113()

0..11 0..11

<<Identifying>>

Figure 24. Entity Relationship Changes

The SQL query for a transaction to check the similarity of a model being created in

terms of its composition with already existing models is given below. There are two tables

needed for identifying the similar models ExportTempTabel and InstanceModel.

()

() ()()

, , , , ,

, , ' ' 0

tOwner tiOwner iOwner tComponent tiComponent iComponent

tComponent tiComponent iComponent tOwner ExpFrame ANDtiOwner

componentOfI

ExportTempTable

π

π σ = =

÷

63

• SELECT DISTINCT tOwner, tiOwner, iOwner FROM (SELECT tOwner,

tiOwner, iOwner, tComponent, tiComponent, iComponent FROM componentOfI)

T WHERE tiOwner = 0 AND not exists (SELECT * FROM (SELECT

DISTINCT tComponent, tiComponent, iComponent FROM ExportTempTable

WHERE tOwner = 'ExpFrame' and tiOwner=0)B WHERE NOT EXISTS (

SELECT * FROM (SELECT tOwner, tiOwner, iOwner, tComponent,

tiComponent, iComponent FROM componentOfI)AB WHERE ((AB.tOwner =

T.tOwner AND AB.tiOwner = T.tiOwner AND AB.iOwner = T.iOwner) AND

(AB.tComponent = B.tComponent AND AB.tiComponent = B.tiComponent AND

AB.iComponent = B.iComponent))))

4.2 Export Models

4.2.1 Exported Models File Structure

The primitive and composite models from CoSMoS’s visual models can be

transformed to two types of simulation models. For DEVS-Suite, CoSMoS generates

atomic and coupled simulation models. The created Java files conform to the DEVS

specification. These simulation models have their own unique structures.

64

Figure 25. A sample of a generated atomic model

Figure 25 shows a partial sample atomic model created by the model transformation

from CoSMoS. Changes were also made to the coupled model generation. The model

transformation function becomes more with the atomic model as it has to establish the

object-class relationship using the ModelClass table. The new instance model creation

algorithm that has been added to CoSMoS populates the coupled model with the instances

of the models that belong to it. Every (atomic or coupled) model that is part of the coupled

model is instantiated from a class and has a handle name. When adding in the components

for the coupled model, every model is checked for the corresponding class in the

ModelClass table. A snippet of a coupled model is shown in Figure 26.

65

Figure 26. A sample of a generated coupled model

4.2.2 Model Namespace

The namespace for the models that are converted into simulation code has been

changed to reflect the new implemented directory changes. The location for all the

generated simulation code is relative to the working directory. The location of these JAVA

files are based on the database selected. Separate folders are maintained for each database

loaded. The files are arranged in a master folder at the same level of the file system where

the environment main file resides. Each database utilized by the user creates a separate

folder and holds the actual database file followed by the Java, XML, and NSM (Non

Simulatable models) folders to hold their respective files. Figure 27 shows the layout of the

folder structure for maintaining the namespace of the generated simulation models.

66

Root

Mb_models

<Name of Database 1> <Name of Database 2> <Name of Database 3>

JAVA Models NSM Models XML Models Database1.mdb

CompiledModelsDEVS_SuiteGeneratedModelsDEVS_Suite

Model1.Java

Model2.Java

Model3Java Model1.class

Model2.class

Model3.class

SES DTD Models SES XSD Models CoSMo DTD Models

Figure 27. File-Directory Structure

4.2.3 CoSMo Editor

The atomic models that are transformed from CoSMoS are to be completed before

they can be loaded into the simulator and simulated. CoSMoS assists the user in editing the

JAVA file and adding behavior in it. The behavior is added to the model in terms of

internal transition, external transition, confluent, and output functions as well as model

initialization. The structural information in these Java model files are automatically added

during the transformation according to the database. The Java file of the model has to be

consistent in terms of the name, ports, variables, and state variables with the model in the

database.

Figure 51 shows sample tabs of various source code editors opened up in CoSMoS.

The editor is available as a part of the Netbeans editor API. The editor has functionality

67

such as code coloring, line numbering, and keyword recognition. To disable the changes to

the model’s structure, the ‘Guarded Sections’ property of the editor is used. Some markers

are included in the generated JAVA files that act as tags and does not allow the models to

be edited. The guarded sections of the code, seen as a shaded section, can be observed in

Figure 49.

4.3 Visual Model Component and Port Selection

Figure 28. Data Flow in DEVS-Suite

The models loaded in the DEVS-Suite are assigned default trackers. The DEVS-

Suite allows the user to select the components of a coupled model for visualizing its input

and output ports as well as all of its parts. For atomic models, state variables (Phase and

Sigma) and time parameters (tN: Time of next event and tL: Time of last event) can also be

visualized with the help of trackers. Figure 28 shows the data flow for the DEVS-Suite.

68

The Controller is responsible for the creation of the hooks with the View. The View

delegates the logic for determining the data for output trajectory viewers through the

TrackingControl class. Each tracker associated with the model has Boolean checkers to

enable or disable the components for tracking. These trackers can be invoked in the DEVS-

Suite with the help of the tracking dialog box associated with each of the models. The user

may also choose one or more model components with the ability to select one or more of its

ports. Figure 16 shows the design of the feature that creates the bridge between CoSMo’s

visual selection and the trackers of the models in DEVS-Suite.

4.3.1 Class diagram

Controller

ControllerInterface SimulatorHookListener

sesmGUI

TrackEnvSimController

TrackingControl

Viewview

ViewInterface

SimView

tracking sim

Figure 29. Class Diagram – Visually selecting components

As the Instance Models are selected from the CoSMoS for simulation, the

completed simulation models are loaded from the respective JAVA files. These JAVA files

are loaded into the Controller of the DEVS-Suite. The Controller invokes the View to

initialize and setup the output trajectory viewer such as the TimeView, tracking log, and

SimView. Although the SimView forms a part of the graphical user interface, the

69

TrackingControl does not control it. The TrackingControl forms the intermediate

component for providing the output data to be displayed in the trajectory viewer.

Tracker

Tracker()
showDialogPanel()
toString()
getAttachedModel()
getDataStorage()
getDataHeaders()
saveCurrentTrackingState()
getCurrentTrackingHTMLString()
getCurrentTimeViewData()
isTrackingSelected()
isTimeViewSelected()

(from view)

TrackingControl

controlTimeView()
addTracking()
loadSimModel()
getAllModels()
trackingLogOption()
showTrackerSettingsDialog()
findTrackerFor()
getHTML()
getEncodedCSV()
getCSV()
registerTrackingLog()
registerTimeView()
disposalFrames()

(from view)

-trackingControl

#$modelColumn[]

Each of the tracker
associated with the
model is maintained in
the modelColumn array

Figure 30. Class Diagram – TrackingControl and Tracker

After these trackers have been initialized as a part of the model loading process,

they have to be updated based on the selection made by the user on the visual models. The

scheme used for this updating process is defined in the sequence diagrams given below.

70

4.3.2 Sequence Diagram

Model Port : port portTracker : PortTracker in_Ports : HashMap

MouseClicked(MouseEvent)

PortExist(String,
String,

String,String,String)

boolean

setTrackPorts
(String,String,String,S

tring,String)

setTrackInPorts
(String,String,String,String)

put(object,object)

The name of the port and the
model to which it belongs to is
stored as a <K,V> pair in the
globaly available in_Ports.

The selected port is checked if
it is already tracked. Selecting
an already checked port
results in deselction.

Figure 31. Sequence Diagram – Selecting input ports for tracking by mouse clicks

 The ports selected by the user in CoSMoS’ visual models are recorded in

temporary Hash Maps. Figure 16 shows the structure of the temporary Hash Map. The

sequence diagram in Figure 31 illustrates the process of selecting the ports in the models

with mouse clicks. The colors of the ports and the text are reversed to represent the status

of the selection. The selected ports are inserted into the temporary Hash Maps with the

“Name of the model + Name of the port” as the key and the “Name of the port” as the

value. The selection has the ability to toggle between tracked and ports not tracked. These

selected ports make visualizing time-based trajectories possible with DEVS-Suite.

71

sesm_GUI : sesmGUI TrackEnvSimController :
Controller

view : View

userGesture(String, Object)

loadSimulator(FSimulator)

updateTrackersFromSESM

registerTimeViews(FModel)

Figure 32. Sequence Diagram – Loading Models for Simulation

 The process of selecting the ports for tracking has to be completed before the

models can be loaded for simulation. As shown in the sequence diagram in Figure 32, the

function updateTrackersFromSEM() from the controller sets the port trackers from DEVS-

Suite based on the information present in the Hash Maps from CoSMoS. When the user

selects the TimeView option, the time graphs must be initialized before they can be used

for adding events. The registerTimeViews(FModel) function in Controller is responsible

for setting up the TimeView.

72

TrackEnvSimController :
Controller

portTracker : PortTracker tracker :
Tracker

updateTrackersFromSESM

getTrackInPorts()

HashMap Iterator

iRecursiveModelLoading(rootModel)

enableTrackingLog()

setTracker(True)

The trackers of the models are
loaded to the controller based on
the data from the SESM GUI.

Depending on the Hash
Map information, the
trackers are updated and
the tracking log is prepared.

Figure 33. Sequence Diagram – Enabling models for tracking

 The sequence diagram in Figure 33 explains the updateTrackersFromSESM()

function described in Figure 32. The controller retrieves the Hash Maps that have the

information about the user’s selection from the PortTracker class. The sequence diagram

described in Figure 33 defines the scenario involving only the input ports. The same logic

applies for the output ports. The controller then calls the

iRecursiveModelLoading(rootModel) where all the models in the hierarchy of the specified

root model are retrieved. These models’ trackers are accessed and modified based on the

information extracted from the Hash maps from CoSMo. The function setTracke (True) is

used to enable the tracking flag of a particular component of the model. The

enableTrackingLog() is called by the controller so that the output data can be written in an

HTML format in the tracking log.

73

4.4 Loading Models for Simulation

After the modeler has decided to simulate a completed instance model from

CoSMo, the JAVA implementation model is found in the repository location specified by

the property file. As already explained in Section 4.1, the creation of the instance models

are changed to create unique models and eliminate redundancy. The visual models shown

have classes (i.e., Java files) and may also be handles to an already existing model having

exactly the same structure. The DEVS-Suite loads the Java files and generates data for

SimView and Tracking Control. The visualization of the output trajectory for SimView and

Tracking Control (TimeView and Tracking Log) requires different logic. If the user selects

the option of SimView, the completed and compiled Java files are passed as parameters for

the SimView. During simulation mode, the View pane replaces the graphics of the model in

CoSMo’s GUI. If the tracking option is selected by the user, the primitive and composite

block models are shown and the functionality of the Trackers attached to the models helps

in monitoring the models throughout the simulation.

74

4.4.1 Class Diagram

ControllerInterface
(from controller)

SimulatorHookListener
(from hooks)

Controller
(from controller)

sesmGUI
(from sesmUI)

FSimulator
(from simulation)

ViewInterface

(from view)

Tracker
(from view)

GUI

simulator
View

tracker
Controller

Figure 34. Class Diagram – Components for loading models

 As shown in Figure 34 the class diagram delineates the classes required for loading

the models into the simulator. The user gestures for the DEVS-Suite are emulated from

CoSMo by specifying the location of the models. The models are loaded in the form of

Java files and complied automatically. The loading of the class files is terminated if any of

the Java implementation fails to compile. Any errors are displayed in a console. The user

can edit the Java files using the editor provided in CoSMoS and debug the programming

errors manually. The sesmGUI object also retrieves the simulator and the TrackingControl

instance setup for the model.

75

4.4.2 Sequence Diagram

loader :
java.net.URLClassLoader

sesm_GUI : sesmGUI rootModel : modelT OTS :
OutputTrajectorySelection

TrackEnvSimController
: Controller

compile :
ModelCompilation

mouseClicked

traverseThroughInstanceTree

OutputTrajectorySelection()

Void

OTS:OutputTrajectorySelection()

setup()

setupSimulationEnvironmentParams()

userGesture(LOAD_MODEL Gesture, Location)

loadModel(String [])

Generate(String,
String)

boolean

loadClass(String)

Figure 35. Sequence Diagram – Loading models for simulation

 The sequence diagram in Figure 35 shows the control and the data flow between

the various components needed to successfully load the models in the simulator. Once the

start simulation option is chosen, the selected model is mapped to the ModelClass table and

the classes corresponding to it are found. Using the class information, the models are

loaded into the simulator.

The visual models in CoSMo have mouse listeners that register these models as the

last model is selected. After the menu item Track has been chosen, the last selected gets

registered as the root model. The user cannot select a model outside the root model’s

hierarchy while in the tracking mode.

76

A window showing different output trajectory viewers options is presented to the

user. After the components to be tracked have been selected, the

setupSimulationEnvironmentParams() is executed by the OutputTrajectorySelection object

of the environment. The user may chose to select the SimView to view the animation of the

models and the messages between them during the simulation instead of selecting models

to be tracked. The SimView is loaded in the visual block model view area. After the

successful completion of the setup of the Tracking environment, the command to load the

model along with the model’s location as arguments is executed. The user gestures for the

loading of the models are performed by calling the userGesture() in the Controller. These

raw Java files are compiled at first using the ModelCompilation class DEVS-Suite (Kim,

2008; Kim, et al., in preparation). Subsequently, the class files for the created Java files are

loaded using the dynamic class loader functions available in the java.net.URLClassLoader.

5 DEMONSTRATION

The capabilities of the integrated environment are demonstrated with the help of a

simple anti-virus network model (S. Bendre, 2004). The demonstration shows the basic life

cycle of a model that involves creation of the models, instantiating, adding of behavior for

simulation, configuration for simulation experiments, simulation, and viewing the

simulation data.

5.1 Anti –Virus Model Example

The anti-virus model describes an anti-virus system that is intended to protect a

network of computers from virus attacks. The SimpleVirusNet consists of two RouterVirus

coupled models. The messages arriving at the in port of the SimpleVirusNet are sent to the

in port of the first RouterVirus model. The messages arriving at the SimpleVirusNet

alertSignal are sent to the alertSignal of both RouterVirus models.

The RouterQ acts as the processor for the RouterVirus model. If it receives a

message and is not affected by a virus, the message is sent to the out port after processing.

The type of messages arriving at the alertSignal port is same as the messages arriving at the

in port. A message arriving at the in port is considered to be suspicious if its ID matches the

ID of the message arriving at the port alertSignal. The RouterQ has two queues, q and

alertQ, to store the messages and the alert messages respectively.

ExpFrame, an experimental frame, was designed for the simulation experiments.

The experimental frame consists of a message generator GenrMsg and a virus generator

GenrVirus. The GenrMsg generates messages for the in port of the SimpleVirusNet and

GenrVirus generates messages for the alertSignal port.

78

5.1.1 Select Database or Create New Database

When starting up the environment the user is given the option of selecting an

existing database or creating a new database for creating and modifying the models. The

first process in Figure 17 shows the selection of database and establishing the connection

for the further processes.

Figure 36. Selecting existing database

As seen in Figure 36, the model can be loaded from an existing database. To see the

list of all the existing databases in the working directory, click the button labeled with the

“…” next to the “Enter Database Name:”; the drop down menu lists of all the existing

databases.

The environment also empowers the user to create new database by simply adding

the name of the desired database in the “Enter Database Name” text field. A separate

folder with the name of the database is created in the file system.

79

5.1.2 Model Creation

The next step, according to the process flow in Figure 17, is shown by the block of

Selecting or Adding Template Models in the CoSMo section. The model creation first

involves creating the template models.

The template models can be created in two ways

1) Using the Model menu and selecting the option Create Model Template (Figure 37).

2) Using the keyboard shortcut ALT+T.

Figure 37. Creating a new Model Template

When primitive models like GenrMsg are being added, the above mentioned

methods can be used to add them.

80

Table 7

Primitive models in the Anti-Virus Model

PORTS PRIMITIVE
MODELS

DESCRIPTION
INPUT OUTPUT

GenrMsg Responsible for generating messages and
sending it to the TransdSVN and
SimpleVirusNet

- outMsg

GenrVirus Generates the alert messages for the
corresponding infected messages

- outVirus

TransdSVN Collects the information about the
experiment.

inMsg
inNet
inVirus
virusNet

-

RouterQ Processes the messages generated by the
generators.

alertSignal
in

out
outVirus

VirusProcQ Checks if the message is infected with the
virus.

inVirus out
virusDet

The rest of the models are initially created as primitive models and then

components are added which convert them into composite models. During the process of

adding components to a composite model, a dialog box pops up that accepts the

multiplicity for the component in that model.

81

Table 8

Composite models in the Anti-Virus Model

PORTS COMPOSITE MODELS COMPONENTS
(MULTIPLICITY) INPUT OUTPUT

ExpFrame GenrMsg(1)
GenrVirus(1)
TransdSVN(1)

in
virus

outMsg
outVirus

RouterVirus RouterQ(1)
VirusProcQ(1)

alertSignal
in

out
outVirus

SimpleVirusNet RouterVirus(2) alertSignal
in

out
virusDet

NetVirusExp

SimpleVirusNet

-

out
virusDet

Figure 38. Adding specializations to a model

The template model can be specialized into one or more specialized components.

Specialization supports different types of models to be instantiated based on the intent of

82

the modeler. The model can be specialized using the is-a relationship. Figure 36 shows the

process of adding specialization to a model using the popup menus on the tree.

The specializations can be added in the following ways:

1) Select the component on the tree and right click on the node which brings up the

menu associated with the model. The selection of Model Add Specialization

helps in adding the specialization for the model (Figure 38).

2) The menu can also be invoked by a right click on the model in the model display

panel.

Figure 39. Adding components to a model

The add component command can be called by the following ways:

83

1) Select the component on the tree and right click on the node to bring up the popup

menu. The selection of Menu Add Component helps in adding the component.

The process is show in Figure 39.

2) The same process can be carried out at the model display panel; a right click on a

model brings up the same menu described for the tree view.

3) The option is also available in the Menu bar under the Edit Add Component. The

model to be operated upon should be under focus in the tree view.

4) The command mentioned in option 3 can also be accessed by using the keyboard

shortcut ALT+C.

Figure 40. ITM view of the models

The Instance Template Model can be seen by selecting the ITM tab (Figure 40) in

the Simulatable tab pane. The tree view shows the models with the ITM information

84

attached to it. The multiplicity of the components is mentioned next to the model. The

graphical view of the model shows the ITM identification of the component models.

Figure 41. Adding input ports to a model

The ports have to be added to the models depending on the structure. The

input/output ports for a model can be added in several different ways:

1) The menu for a model will pop up by right clicking on the model from the tree. The

menu can also be accessed on the block model area by a right click on the model’s

block and following the options Input port Add port. A similar sequence of

operations can be performed for the output ports. The screenshot in Figure 41

explains the process of visually adding input ports.

2) The option for adding the ports are also available in the menu bar, which can be

invocated by ALT+F1 for input ports and ALT+F3 for output ports.

85

After the ports have been created, the couplings between these ports have to be

built. The couplings can be established between ports by only one method. Creation of the

coupling is a two-step process in which the source, i.e., from port, is selected and then the

destination port, i.e., to port, is selected. This process is accomplished by right clicking

within the area of the exact port and selecting the coupling item from the menu (Figure 42).

Figure 42. Adding couplings between two ports

Primitive and Composite models may also need state variables which can be added

by right clicking on a model and selecting the States Add State variable. Figure 43

shows the screen shot for adding state variables to the models. The menu also includes

provisions to modify or delete the state variable. The state variable accepts a name, type,

and initial value as its parameters.

86

Figure 43. Adding a state variable to a model

5.1.3 Create Model Instance

After the Instance Template Models have been defined, the next step is to create the

instance models, which CoSMoS allows a modeler to create from the Model menu. In the

overall life cycle of the model, these are represented by the process of Select instance

template model and then create its instance models in the CoSMo section as shown in

Figure 17. The menu has an item called the Create Model Instance. A dialog box showing

the list of all the models that can be instantiated in the current database is shown (Figure

44).

87

Figure 44. Creating Instance Model

 The selected model forms the root of the set of the instance models to be created.

The environment attaches a unique name to each of the models and it components. The

environment does not allow the modeler to create a redundant instance model.

Figure 45. Choosing specialization for a specialized model

If the template model being instantiated has a model in its hierarchy that has

specializations in it, a dialog box is showing the model being specialized (Figure 45).

• Name of the model being specialized.

• The model’s location in the hierarchy.

• List of specializations for the model in a drop down list.

The instance models can be viewed in the IM tab of the Simulatable pane.

88

5.1.4 Adding Behavior

Once the instance models have been created, the models can be selected to be

transformed into Java code. The transformation of these models is enabled only for the

Instance Model view. The selection process is shown in the process flow in Figure 17

Select input/output ports of models for tracking. The model on which the transformation is

initiated forms the root model. These popup menus can be made visible by either right

clicking on the model in the tree or within the area enclosed by the model in the visual

model layout. The model transformation is recursive as it transforms all the components in

its hierarchy. The location of the generated files can be obtained by looking at the

properties file accessed from the CoSMo menu by selecting the View Property File.

89

Figure 46. Adding behavior to an already exported model

The model transformation for DEVS-Suite is complete for the coupled models but

not for primitive models. The models can be viewed and modified by using the CoSMo

editor. The section of the code having structural specification is locked and cannot be

edited. This feature is to enforce the consistency between the model information in the

database and the flat files created. Figure 46 shows the screen shot of adding behavior to

the model source code using the editor built into CoSMoS.

90

5.1.5 Configuration

Figure 47. Selecting ports to track

Once the models are completed in terms of their behavior, they can be simulated.

Now the user can determine which component is to be animated and which input/output

ports will be observed. The Track item from the Simulation menu is checked to set the

environment for model tracking. To set a port as tracked, the user clicks on a port and the

inverted colors show that the port has been selected. The port can be unselected by clicking

it again; the color of the port now returns to its original hue. The tracking process is shown

in Figure 47. The environment records all the information selected by the user and uses the

configuration information in the DEVS-Suite to update its tracking configuration.

91

5.1.6 Simulation

Figure 48. Loading models for simulation

After the behavior has been added into the models, they can be loaded in the

simulator along with the model configuration data collected in the previous step. The

Tracking mode checked during the configuration is necessary for the simulation to be

enabled. Although, the model configuration can be empty, the tracking mode needs to be

enabled.

The simulation process is initiated by selecting the item Start Simulation from the

Simulation menu. Figure 48 shows the process of loading the models for simulation. The

Java files corresponding to the models created and modified by the user are compiled

against the DEVS-Suite. If the Java files are not well formed or do not pertain to the

DEVS-Suite, the errors are shown in the console and must be fixed before the models can

be loaded into the simulator. The code can be edited in the editor available through

CoSMoS.

92

Once the models have been successfully loaded into the simulator, the controls are

visible in the section below the tree structure of the models. Depending upon the output

trajectory viewer chosen, the output of the simulation can be viewed.

5.1.7 Simulation Results

Figure 49. Options to select the output trajectory viewer

Before the models are loaded into the simulator, the user has to select the Output

Trajectory viewer for the simulation data. The two major options are SimView and

Tracking. The SimView does not use any of the tracking information that was collected as

a part of the configurations process. If choosing Tracking, the user has to select if he or she

wants the output in the Tracking Log or TimeView. Depending upon the viewer chosen, the

93

information is displayed in different tabs. Based upon the simulation controls, the output is

updated in the trajectory viewers. The controls also have the Real Time Factor slider that

can be adjusted to control the real time take for each simulation step. If the SimView is

selected, the graphical representation of the model is replaced with the SimView animation

window and Animation Speed slider is activated to control the speed of the animation of

messages flowing between the models. Figure 49 shows the screen shot of the CoSMoS

with the output trajectory viewer.

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, the CoSMo and DEVS-Suite environments are integrated following

software engineering principles. The prototype CoSMoS is developed. The integrated

environment CoSMoS has a clear separation among:

• Visual model development (CoSMo).

• Configuring simulation experiments (CoSMo).

• Simulating logical models (DEVS-Suite).

• Displaying simulation results (DEVS-Suite).

 Developments and configuring simulation experimentation offers important

capabilities within the modeling and simulation lifecycle. This environment supports

creating and simulating models and thus promotes forward engineering in modeling and

simulation. There exists a clear mapping for translating the generic primitive and composite

models to their DEVSJAVA atomic and coupled simulation models. The mapping from the

primitive model to atomic model is incomplete. The behavior for each atomic models can

be added to the counterpart generic primitive models using the new editor that has been

implemented. A process flow has been defined for creating the models visually in CoSMo

and simulating them using the DEVS-Suite.

 The work presented in this thesis serves as a basis toward developing round-trip

modeling and simulation activities where, for example, model correctness can be ensured

between those that are stored in database and those that can be executed using DEVS-Suite.

95

6.2 Future Work

The CoSMoS approach enables the modeler to partially automate the process of

converting the models to simulation code and simulate them. The design of CoSMoS can

be extended in the following areas toward greater automated modeling and simulation

tool,

1) Behavioral modeling: The ability to visually model behavior for the atomic

model needs to be introduced along with the feature of automatic behavioral

model to code conversion.

2) Simulation code to model transformation: CoSMoS currently does not

support reverse engineering of generated simulation code to database

model. It is very useful to automatically update the stored primitive and

composite models based on the changes made to their simulation model

counterparts.

3) User Interface Enhancements: CoSMoS can be enhanced with respect to the

user interface by allowing drag and drop feature of the models and its

components.

CoSMoS currently supports the simulation of models conforming Discrete Event

Specification (DEVS) since the code generated is DEVSJAVA source code. CoSMoS can

be extended in terms of its support for different models in the following areas,

96

1) Discrete-Time and Continuous system: Although the models created and

simulated in CoSMoS are discrete-event models, CoSMoS may be extended

to support discrete-time and continuous models.

2) Cellular Automata (CA) modeling and simulation. CoSMoS to provide an

environment for visually modeling and constructing discrete time

component based pure and composable Cellular Automata models.

3) Domain Specific Modeling. Using CoSMoS the modeler should be able to

define or reuse domain specific models and the capability to simulate them.

Some examples are Service Oriented Architecture, Network Simulation and

Semiconductor Manufacturing supply chain system modeling and

simulation.

REFERENCES

ACIMS (2007). Scalable Entity Structure Modeler (SESM) (Version 1.3.0). Department of
Computer Science and Engineering, Arizona State University, Tempe.

Arizona Center for Integrative Modeling and Simulation (2007). DEVSJAVA.

http://www.acims.arizona.edu.

Bendre, S. (2004). Behavioral Model Specification Towards Simulation Validation Using

Relational Databases. Department of Computer Science and Engineering, Arizona
State University, Tempe.

Bendre, S., & Sarjoughian, H. S. (2005). Discrete-Event Behavioral Modeling in SESM:

Software Design and Implementation, Advanced Simulation Technology
Conference, San Diego, CA, USA.

Department of EECS, U. B. (2007). Ptolemy II: http://ptolemy.eecs.berkeley.edu/.

Ferayorni, A. (2008). Domain Driven Simulation Modeling For Software Design.

Department of Computer Science and Engineering, Arizona State University,
Tempe.

Ferayorni, A., & Sarjoughian, H. S. (2007). Domain Driven Modeling for Simulation of

Software Architectures. Summer Computer Simulation Conference, IEEE, San
Diego, CA, USA.

Fu, T. (2002). Hierarchical Modeling of Large-Scale Systems Using Relational Databases.

Master Thesis, Department of Electrical & Computer Engineering, University of
Arizona, Tucson.

Jayadev, M. (1986). Distributed discrete-event simulation. ACM Computing Surveys, 18(1),

39-65.

Kim, S. (2008). Simulation of service Based System: Modeling and Implementation using

the DEVS-Suite. Department of Computer Science and Engineering, Arizona State
University, Tempe.

Kim, S., H. S. Sarjoughian, R. Flasher, & V. Elamvazhuthi (in preparation). DEVS-Suite: A

Component-based Simulation Tool for Rapid Experimentation and Evaluation.
Spring Simulation Multiconference, San Diego, CA, USA.

Lee, E. A. (2003). Overview of the Ptolemy Project (No. UCB/ERL M03/25), Department

of Electrical and Computing Engineering, University of California, Berkeley.

Lutz, R., Scrudder, R., & Graffagnini, J. (1998). High Level Architecture Object Model

Development And Supporting Tools. Simulation, 71(6), 401-409.

98

MathWorks (2007). How does SIMULINK perform simulations.

http://www.mathworks.com/support/solutions/data/1-15IAO.html.

Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., & Robbins, J. E. (2002). Modeling

software architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(1), 2-57.

Mohan, S. (2003). Measuring Structural Complexities of Modular, Hierarchical Large-

scale Models. Department of Computer Science and Engineering, Arizona State
University, Tempe.

Mooney, J. (2008). DEVS/UML - A Framework for Simulatable UML Models. Department

of Computer Science and Engineering, Arizona State University, Tempe.

Sarjoughian, H. (2005). A scalable component-based modeling Environment Supporting

Model Validation. 39th Interservice/Industry Training, Simulation, and Education
Conference, Orlando, FL, USA.

Sarjoughian, H. S. (2001). An Approach for Scaleable Model Representation and

Management. Department of Computer Science and Engineering, Arizona State
University, Tempe.

Sarjoughian, H. S. (in preparation). A Unified Logical, Visual, and Persistent Component-

based Modeling Framework.

Sarjoughian, H. S., & Flasher, R. (2007). System Modeling with Mixed Object and Data

Models. DEVS Symposium, Spring Simulation Multi-conference, Norfolk, VA,
USA.

Sarjoughian, H. S., & Singh, R. (2004). Building Simulation Modeling Environments Using

Systems Theory and Software Architecture Principles. Advanced Simulation
Technology Symposium (ASTC), Washington DC, USA.

Singh, R., & Sarjoughian, H. S. (2003). Software Architecture for Object-Oriented

Simulation Modeling and Simulation Environments: Case Study and Approach (No.
03-09-2003), Department of Computer Science and Engineering, Arizona State
University, Tempe.

Trygve M. H. Reenskaug. MVC XEROX PARC 1978-79, 2008, from

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

99

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of Modeling and Simulation
(2nd ed.). New York: Academic Press.

APPENDIX A

NETBEANS BASED EDITOR

 100

The NetBeans Editor API is a publicly available open source API that allows the

user to use the features of the editor available in NetBeans.

It is possible to use the base class from this module as a starting point for defining

your own editor kits, syntax coloring, code folding, etc. for new languages and file formats.

One of the most important features of the editor being used is the Guarded Blocks.

Figure 50 shows the class diagram and all the components involved in the

implementation of the NBEditor document.

The class NBEditorLibDemoFrame is called by CoSMo to initialize the editor and

all its subsequent components.

NBEditorLibDemoFrame

NBEditorFactory

JavaEditorKit

JavaSyntax JavaTokenColoringInitializer JavaTokenContext

JavaSettingsInitializer

NBPrintContainer

NBEditorDocument

1

AnnotationDescDelegate

11 1

Figure 50. Class diagram of NBEditor implementation

The Guarded Blocks section is an important feature of this editor with respect to

CoSMoS. After the models have been completed by the user, the models should be

 101

consistent with the database in terms of the input/output ports and couplings. Therefore the

user should not be allowed to change the structural information of the individual models.

When the models are generated, they are attached with tags for the editor to identify

and mark as guarded. The guarded sections are shown by the shaded region in the editor.

 102

Figure 51. A file generated by CoSMoS as seen in the editor

