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ABSTRACT 

 

Computational cell biology is a relatively new branch of computational sciences 

which sets computer simulation, as well as molecular biology, biochemistry and 

biophysics, at the center of its disciplines. 

This thesis first inspects this new field of science, cell biology, especially on its 

computational aspects, and identifies some computational techniques in the design of 

simulation algorithms and software platforms. One important characteristic of the 

computational cell biology is that it is highly heterogeneous in terms of the modeling 

formalisms and computational methods. Different simulation techniques are used for 

different types of sub-systems in the cell, and these sub-systems are often represented by 

different timescales. We found that the scientific necessity to integrate these 

computational subcomponents to form the multi-formalism and composite models is 

becoming increasingly important.  

Secondly, this thesis proposes a novel computational framework based on discrete 

event and differential equation combined with System Biology Markup Language 

(SBML) to simulate the cell biological processes, which realizes efficient multi-algorithm 

simulations. It is demonstrated that this framework can give a significant speed-up to a 

real biological simulation model of E. coli heat-shock response by Discrete Event System 

Specifications (DEVS) Ordinary Differential Equations (ODEs) solver combined with 

SBML. It is also shown that this framework can boost the simulation of the single-gene 
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oscillatory circuit model. Some results of the numerical analysis and discussions for the 

heat-shock and single-gene oscillatory circuit model are presented. 

Lastly, this thesis describes the layered architecture, design and implementation 

issues of DEVS-SBML Platform, a newly developed software environment for modeling, 

simulation and analysis in computational cell biology, in which this computational 

framework will be implemented as a future work. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Introduction 

The advent of molecular biology in the twentieth century has led to exponential 

growth in our knowledge about the inner workings of life. Dozens of completed genomes 

are now at hand, and equipped with an array of high throughput methods to characterize 

the way in which encoded genes and their products operate, we find ourselves asking 

exactly how to assemble the various pieces. The question is whether we can predict the 

behavior of a living cell given sufficient information about its molecular components. As 

with any network of interacting elements, the overall behavior becomes non-intuitive as 

soon as their number exceeds three. Computers have proven to be an invaluable tool in 

the analysis of these systems, and many biologists are turning to the keyboard. It is worth 

noting that the motivation of the biologist here is somewhat different from that of the 

biologist who turns to computing for bioinformatics (such as sequence analysis). 

Bioinformatics delivers additional information about the biopolymers being studied, and 

may provide clues as to their function. What is sought in the analysis of cellular systems 

is a reconstruction of experimental phenomena from the known properties of the 

individual molecules, and more importantly, the interactions between them. Such a model, 

if sufficiently detailed and accurate, serves as a reference, a guide for interpreting 

experimental results, and a powerful means of suggesting new hypotheses.  
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Modeling, simulation, and analysis are therefore perfectly positioned for 

integration into the experimental cycle of cell biology. In addition to demystifying non-

intuitive phenomena, simulation allows experimentally unfeasible scenarios to be tested, 

and has the potential to seriously reduce experimental costs. Although “real” experiments 

will always be necessary to advance our understanding of biological processes, 

conducting “in silico” experiments using computer models can help to guide the wet lab 

process, effectively narrowing the experimental search space.  

The process of building in silico models of cells contrasts with the traditional 

hypothesis-driven research process in biology. Modeling can be described as a holistic 

approach that opposes the reductionism so widespread in biology. Molecular and cellular 

biologists have been overwhelmingly successful in identifying, purifying, and 

characterizing molecules crucial to specific cellular functions. However, results from 

genome projects reveal that most organisms contain a surprisingly small number of genes, 

at least relative to the complexity of the phenotype. This provides a striking 

demonstration of the nontrivial nature of molecular interactions in the cell - the whole, 

quite simply, is much more than the mere sum of its parts. 

 

1.2 Contributions 

The main contribution of this thesis is the introduction of a new technique, 

Discrete Event System Specification (DEVS) framework combined with Systems 

Biology Markup Language (SBML), to simulate biological processes. On this framework, 

virtually any, discrete/continuous, stochastic/deterministic, simulation algorithms can be 
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implemented in biological simulations. More efficient method in biological simulation, 

DEVS framework, is found. 

Secondly, biological models can be shared between DEVS and SBML by DEVS-

SBML Platform, a Simulation Platform for computational cell biology. This simulation 

software is under development in a fully object-oriented fashion based on the DEVS 

algorithm framework combined with SBML.  

As the rationale of development of these new computational frameworks and 

software, this thesis also argues that computational cell biology has some major features 

those distinguish itself from conventional computational sciences such as computational 

physics and biochemical simulations. 

 

1.3 Organization 
 

Chapter 2 discusses a domain analysis of computational cell biology from the 

viewpoint of simulation algorithm design and software engineering, and we identify 

some ’desirable features’ of cellular simulation software. In Chapter 3, we reviewed the 

basic DEVS concept and DEVS formalism. Multi-algorithm framework, the combination 

of the DEVS and the Differential Equation System Specifications (DESS) formalism, was 

introduced in this Chapter. The implementation of the integrator and Instantaneous 

Functions to solve Differential Equations is given in DEVSJAVA Continuous package. 

Chapter 4 defines a new computational framework to simulate biological processes, 

called DEVS-SBML Platform. The architecture, design and some features of DEVS-

SBML Platform is shown. In chapter 5, we use two demonstration models, an E. coli 
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heat-shock model and a single-gene oscillatory circuit model, and find that the DEVS 

algorithm can successfully combine SBML yielding considerable performance 

improvements to the biological field. This chapter also has some discussions on DEVS 

framework combined with SBML. The DEVS-SBML Platform will continue to be 

implemented as a future work, a generic software suite for modeling, simulation and 

analysis of cellular systems. Chapter 6 will give some conclusions for this thesis and 

future works. 
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CHAPTER 2 CELL BIOLOGY BACKGROUND AND 

SIGNIFICANCE 

 

This chapter investigates the cell as a target of simulation, and discusses 

computational challenges that it poses. Some simulation methods in the computational 

cell biology were reviewed. We identify required features of cell biology simulators. 

Multi-algorithm simulation was introduced in the computational cell biology. Existing 

software platforms and projects also were reviewed. The definition of SBML was shown. 

 

2.1 Simulation of cellular processes 

The cell is a big system in terms of the number and the diversity of physical 

phenomena that constitutes its internal dynamics. The small number of genes in most 

organisms implies that molecular phenomena in the cell are, to say the least, nontrivial. 

Collective knowledge of parts of the system itself does not directly lead to understanding 

of the cell as a whole. Necessity and importance of cell simulation as a research method 

arises here; putting the data into databases is not enough, only a more constructive 

approach with computer modeling and simulation can provide a way to understand the 

cell as a system. 

In this section, we review such chemical and physical phenomena and discuss 

some possible computational approaches to simulate these systems. 
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2.1.1 Metabolism 

Energy metabolism is the best characterized part of all cellular behavior, and is 

particularly well understood in human red blood cells. Given that an erythrocyte is devoid 

of nuclei and other related features, it serves as an ideal model system for studying 

metabolism in isolation — this cell is, essentially, “a bag of metabolism”. Biochemists 

have succeeded in collecting enough quantitative data to allow kinetic models of the 

entire cell to be constructed, and there is a long history of computer simulations dating 

back to the 1960s [1]. These metabolic models, and many others, typically comprise a set 

of ordinary differential equations (ODE) that describe the rates of enzymatic reactions. 

These can be solved by numerical integration, for which several well-established 

algorithms exist. 

Modern metabolic pathway models typically consist of primary state variables for 

molecular species concentrations, one ODE for each enzyme reaction, and a stoichio-

metric matrix. The rate equations of most modern enzyme kinetics models are derived 

using the King-Altman method [2], which is a generalized version of the classical 

formulation of Michaelis and Menten, the Michaelis-Menten equations [3]. Additional 

algebraic equations are commonly employed as constraints on the system. Thus, most 

metabolism models are described as differential-algebraic equations (DAE). The origin of 

numerical methods for solving ODEs can be traced back to Euler’s work in the eighteenth 

century. Variations of the Runge-Kutta method are generally used for simulations. 

Implicit variations of the methods, are often used for ’stiff’ systems which involve a wide 
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range of time constants. See the following section for discussions about stiffness of ODEs. 

Although there have been certain major advances in the last few decades, the essence of 

the numerical algorithms for solving initial value problems of ODE systems was 

described by Gear in 1971 [4]. Press et al. also give an introduction to the topic in 

Numerical Recipes in C [5]. The theoretical and practical bases of simulating metabolic 

pathways are therefore quite well grounded. However, the design and implementation of 

simulation software and model construction methods, which this thesis attempts to 

highlight, are still under active discussion. 

Metabolism, of course, is not the only function of the cell, and we must not forget 

that cells have other important roles such as gene expression, signal transduction, motility, 

vesicular transport, cell division and differentiation. Although quantitative data on these 

processes are still relatively sparse compared to erythrocyte energy metabolism, certain 

systems have been modeled with considerable success. Examples include the simulation 

of gene expression in phage-λ [6] and the signal transduction pathway controlling 

bacterial chemotaxis [7]. 

 

2.1.2 Signal transduction 

Signal transduction pathways constitute an example of systems with 

characteristics that prevent the simple application of ODE-based modeling. These 

pathways are ordinarily composed of much fewer numbers of reactant molecules than 

metabolic systems, and the underlying stochastic behavior of the molecular interactions 

becomes evident.  Accordingly, there have been attempts to model signal transduction 
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pathways with stochastic computation [8] [9] instead of deterministic methods (e.g. use 

of ODEs). 

Recently, it has been revealed that two-dimensional stochastic coupled lattice 

model of receptor localization of E. coli chemotaxis signaling better explains the 

system’s hyper sensitivity to stimuli that could not be reproduced by conventional 

compartmental simulations [10]. 

 

2.1.3 Gene expression 

Gene expression systems, like signaling pathways, tend to be composed of a small 

number of molecular entities, which include transcription factors, polymerases, and genes. 

These low copy number molecules orchestrate gene expression in a highly stochastic 

fashion. For example, the initial phase of gene expression is remarkable because its 

stochastic behavior has binary consequences: binding of a rare transcription factor and a 

single gene in a cell can determine whether the gene is turned on or off. It seems that in 

many cases, gene expression systems might best be modeled with stochastic equations, 

although there are many other ways to model these phenomena, depending on the 

modeler’s interests. Examples include ODE models (e.g. linear models and mass action 

models), S-System models [11], and binary and multi-reaction models [12]. 

Another characteristic of gene expression systems is the richness of interaction 

with other cellular processes. These systems can control metabolic flux by changing the 

concentrations of enzymes, and at the same time being regulated by signaling proteins. 

Chromosomal structure is dynamically regulated by DNA binding factors, which are in 
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turn derived from other genes. When a whole cell is modeled, elements in the gene 

expression system sometimes need information about elements in other systems, in order 

to allow cross-system interactions. Integration of gene expression and other systems at 

the whole cell level might best be accommodated by object-oriented data structures, as 

previously described in Hashimoto et al. [13]. 

 

2.1.4 Biophysical phenomena 

All of the above simulation examples treat the properties of protein binding and 

enzyme kinetics reactions. However, certain cellular processes such as cytoskeletal 

movement and cytoplasmic streaming need to be modeled at the biophysical level. 

Cytoplasmic streaming involves diffusion of relatively heavy proteins, whereas the 

movement of the cytoskeleton causes structural changes, including cell division and cell 

differentiation. Simulations of these phenomena have been carried out since the 1970s 

[14]. Studies have become more precise with time, concomitant with the increase in our 

depth of understanding at the molecular level [15]. 

 

2.1.5 Summary 

A few types of cellular processes and typical computational approaches are shown 

in Table 2.1. The interested reader is referred to two recent reviews which address some 

of the issues raised thus far: Tyson et al. provide an excellent review of computational 

cell biology with an emphasis on cell-cycle control [16], while Phair and Misteli review 

the application of kinetic modeling methods to biophysical problems [17]. 
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Table 2.1 some cellular processes and typical computational approaches 
Process type Dominant phenomena Typical computation schemes 
Metabolism Enzymatic reaction DAE, PL, FBA, CA 

Signal transduction Molecular binding  DAE, stochastic algorithms 
(StochSim, Gillespie), diffusion-
reaction 

Gene expression Molecular binding,  
polymerization,  
degradation 

OOM, PL, DAE, Boolean 
networks, stochastic algorithms 

DNA replication Molecular binding,  
polymerization 

OOM, DAE 

Cytoskeletal dynamics Polymerization,  
mechanical forces  

DAE (including mechanical 
models), particle dynamics, OOM 

Cytoplasmic streaming Streaming  CA (e.g. lattice Boltzman), PDE 
Abbreviations: CA, Cellular Automata; DAE, differential-algebraic equations (rate 
equation-based systems); FBA, flux balance analysis; OOM, object-oriented 
modeling; PL, power-law, such as S-System and Generalized Mass Action. 

 

 

2.2 Computational cell biology 

 

2.2.1 Differences from conventional computational sciences 

Software development for non-trivial cell simulation projects is a notably 

expensive process. For research projects in the traditional computational sciences, where 

brute force computation remains operative, it is reasonable to develop new software for 

each project, sometimes in a disposable fashion. Most of the traditional computational 

science fields like computational physics are characterized by numerous uniform 

components and a limited number of simple principles. Cell simulation, in contrast, 

involves numerous and various components with different properties, interacting in 

diverse, complicated manners. Typical characteristics of several simulation targets are 
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summarized in Table 2.2. The design and implementation of simulation software 

inevitably reflects the complexity of the problem. 

Table 2.2 Rough comparison of typical numbers characterizing various simulation targets 
Target Compartments Components Component 

types 
Interaction 

modes 
Prokaryotes 

(E. coli) 
~101 ~1013−14 molecules 

~103−4 species 
~101(1) ~101−3(2) 

Eukaryotes 
(H. sapiens) 

~103−4 ~1017−18 molecules 
~104−5 species 

~101(1) ~101−4(2) 

LSI 
(Electronic 

circuit) 

usually 1 ~106−7 a few 1 

CFD 
(Fluid dynamics) 

usually 100−1 ~105−6 1 1 

MD 
(Molecular 
dynamics) 

1 ~102−6 a few a few 

Some typical numbers, which determine computational hardware and software 
requirements, are compared among several simulation targets. Large numbers of 
compartments, component types and interaction modes characterize cell simulation. 
Notes: (1) Component types which require different data structures or object classes are 
counted. For example, a ’membrane’ object needs a different object class from protein 
molecules. Different molecular species, however, are not counted. (2) This number 
depends on whether or not different enzyme kinetics equations, which are roughly 
proportional to the number of enzyme encoding genes, are counted as different 
interaction modes. Interaction modes other than enzymatic reactions include molecular 
bindings (complex formations), molecular collisions, DNA replication, cytoplasmic 
streaming, cytokinesis, and vesicular trafficking. 
 

 

2.2.2 Computational cell biology research cycle 

We envision a research cycle of cell biology that incorporates bio-simulation 

technology (Figure 2.1). Every step of the cycle completed outside of the wet lab depends 

upon sound methods in software engineering. Consider the storage, processing, and 

utilization of massive amounts of biological knowledge: only through integration of an 



 26

intelligent modeling environment with sophisticated data and knowledge bases can the 

challenge of modeling a very large and complex system be accommodated. Although this 

thesis mainly considers the first half of the cycle (from ’Qualitative Modeling’ to ’Run’), 

a technological stagnancy in any one of the steps may form a bottleneck, and thus 

threaten the evolution of computational cell biology. 

 
Figure 2.1 Research cycle of computational cell biology 

The wet lab process is extended to include simulation software for a computational cell 
biology research project. Qualitative models (e.g. pathway maps) are built from in vivo 
and in vitro data and hypotheses, or a reference model (Qualitative Modeling). Then, 
quantitative characterization of cellular properties facilitates the transition to a 
mathematical system model (Quantitative Modeling). The numerical and discrete 
properties of the quantitative model are translated into a modeling language (Cell 
Programming), and the systemic behavior is predicted (Run). Results are then analyzed to 
suggest new hypotheses (Analysis and Interpretation). Any acquired hypothesis is 
subsequently tested by wet experiments, and the cycle begins a new. 
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2.3 Simulation methods in computational cell biology 

As we have seen, simulation of the cell requires heterogeneous approaches 

according to the levels of abstraction, scales, and types of information available to 

construct simulation models. Here we briefly review some commonly used numerical 

simulation techniques.  

 

2.3.1 Ordinary differential equation solvers 

Ordinary differential equations (ODEs) are one of the most popular ways of 

describing continuous dynamical systems. A distinct strength of this formalism is that, 

with its well-established theory in numerical treatments and availability of high-

performance generic solvers described in the following, it can represent virtually any 

continuous and deterministic dynamics elegantly. 

In computational cell biology, the most popular use of ODE formalism is the 

macroscopic representation of chemically reacting systems by a means of kinetic rate 

equations. Elementary and some simple reactions are represented in a form of mass-

actions, for example, 

                                                  X1 + X2  X3,                                                                 (2.1) 

and it can be formulated by using the following differential equation 

]][[][][][ 21321 XXkX
dt

d
X

dt

d
X

dt

d
 ,                                    (2.2) 

Where Xn is the n-th chemical species ([·] denotes concentration), and k is the rate 

constant. Complex enzymatic reactions are often modeled by using Michaelis-Menten 
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and King-Altman types of rate equations. The Michaelis-Menten equation corresponding 

to the following simplest enzymatic reaction mechanism 

E + S  ES → E + P,                                                     (2.3) 

is  

][

][

SK

SEK
P

dt

d
S

dt

d

m

Tcat




 , ET = E + ES,                                      (2.4) 

Where S, P, and E are the substrate, product, and enzyme, respectively, and Kcat is the 

catalytic constant (the turnover number of the enzyme), and Km is the Michaelis constant. 

Unlike some of other specialized formalisms introduced in the following sections, 

most differential equation solvers are generic, and can handle a variety of linear and 

nonlinear equations employed in cell biology. Some examples of representations of those 

phenomena other than rate equations include dynamic changes in environmental factors 

such as thermodynamic parameters temperature, pH, and volume 

 

Initial value problems of ODEs 

A system of ODE has a general form like this: 

                00 )(),,( xtXxtfX
dt

d
                                                (2.5)  

Where x is a vector of dependent variables, f is a vector of derivative functions, and t is 

an independent variable. In time-driven simulations, the independent variable t is usually 

time. The system is autonomous if the system does not explicitly depend on the 

independent variable t; 
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                                               )(xfX
dt

d
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Time simulation of ODE systems is equivalently reformulated as solving (2.5) for X(t), 

where t  R+, 0. 

Taylor expansion of X in (2.5) at time t0 gives 
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If analytical differentiation of the system f to arbitrary high order can be derived, this 

Taylor expansion immediately gives the solution, or the simulation trajectory, X(t). 

Practically, however, ODE representations of biological problems often make use of 

nonlinear equations, and it is very hard to construct a general method of solving these 

equations analytically. Thus use of iterative numerical methods is the norm. This class of 

the problem is called the initial value problem (IVP) of ODEs. 

Numerical solution of ODEs has a considerable history, and the oldest and 

simplest method was given by Euler in 1768 [63]. From the definition of derivatives, 
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Where 

,1 nn ttt                                                         (2.10)       

  Now for sufficiently small t we can assume that this formula gives an 

approximation of the derivatives at the time point tn, 
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Comparing this with (2.5), 

Xn+1 = Xn + ∆t · f (tn, Xn)                                              (2.12) 

We now get the explicit Euler method. It is called explicit because no unknown 

appears in the right hand side (RHS) of the equation (2.12). 

 

Consistency and Convergence 

Two requisite properties of a numerical method to be useful are consistency and 

convergence. 

A numerical method is consistent when the local truncation error, 

e ≡ |X<tn> (tn+1) – Xn+1|,                                                (2.13)     

diminishes to zero as the step size decreases: 
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where e is a vector of the local truncation errors of each variable of the system xi  x. 

Here x < tn > (tn+1) is the exact solution with the initial condition x(tn) at time tn. Proof of 

consistency of the explicit Euler method is trivial. Using (2.10), (2.11), and assuming xn 

= x (xtn), the local truncation error of the method is obtained from (2.12) as  
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It can be verified that eeuler  0 as t  0, hence the explicit Euler method is 

consistent. Third and higher components are ignorable when t is sufficiently small, thus: 
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te                                               (2.17) 

Consequently, it can be seen the error of the method has an order of t2. Thus, a more 

formal formulation of the method comes with the local error term of O(t2): 

X(tn+1) = Xn + ∆t · f(tn, Xn) + O(∆t2)                                       (2.18) 

In simulation, the global truncation error, which indicates accumulation of the local error 

after certain period of time, is of practical importance. The global truncation error of a 

method is given by 

E ≡ |X(ti) - Xi|                                                                 (2.19) 

For simplicity, assuming the step size t is constant, the simulation requires (t)−1 

iterations for a unit of time. Thus, the accumulation of the error can be denoted as  

E = (∆t)-1 · e                                                                   (2.20) 

It can be read that generally the global truncation error is of order p with respect to the 

step size t, when the local truncation error is O(tp+1). If a method has the global 

truncation error of O(tp), then it is said to be consistent with an order of accuracy p. The 

explicit Euler method therefore has a consistency of the first order. 

 One of the most important design goals of numerical methods is to get a good 

convergence with as small as possible computation cost. A method is said to be 

convergent if  
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Non-convergent methods are of no use because qualities of outcomes of simulations are 

not assured. 

 

Higher order methods 

Computation cost of numerical methods is proportional to the inverse of the step 

size, 1/t. One way of increasing the step size without a directly proportional increase in 

the error is use of methods of higher order consistency. Many algorithms of the second, 

higher, and variable consistency order have been proposed and being used, and most of 

them can be classified into two categories: single- and multiple-step methods. Multi-step 

methods make use of the information calculated in some past steps to conduct the current 

simulation step. Single-step methods are ’closed’ in this sense; these methods utilizes 

only the current state of the system. Although historically the multi-step methods once 

had been a standard, and many popular software packages including LSODE and DASSL 

are based on this class of methods, recent advancements in single-step methods, 

especially variants of the Runge-Kutta method [63], is changing the picture. When the 

applications in computational cell biology simulation is under consideration, single-step 

methods have some favorable features over the multiple-step methods; it is (1) easier to 

implement the real-time user interaction efficiently, and (2) better suited in uses in 

conjunction with other algorithms in multi-formalism simulations (see the next section). 

Also, it often results in simpler implementation, and unlike multi-step methods, no 

special procedure is necessary in simulation start up. For those reasons, here mainly 

discusses about the Runge-Kutta methods. 
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The general form of an s-stage, single-step Runge-Kutta method is: 
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Where a, b, and c are called Runge-Kutta coefficients, or collectively Butcher array. 

Setting s = 2, a second-order explicit Runge-Kutta method can be derived in this way: 

Xn+1 = Xn + ∆t · (b1k1 + b2k2),                                                 (2.23)   

            k1 = f(tn, Xn), k2 = f(tn + c2 ∆t, Xn + ∆t k1 a2,1)                        (2.24) 

where a2,1, b1, b2, and c2 are the Runge-Kutta coefficients to be decided. Now Taylor 

series expansion of k2 to the first order gives 
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Putting (2.25) into (2.23), 
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Now we want to compare this with the Taylor series (2.8), which, curtailing the third and 

higher order terms, becomes: 
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Then we now have three equations for the four coefficients; 

b1 + b2 = 1, b2c2 = ½, b2a2,1 = ½                                                    (2.29) 
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These relations are under determined, and there can be infinite number of second-order 

explicit Runge-Kutta methods. For example, setting b1 = 0 gives the midpoint method 
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In this way, higher order methods of arbitrary high order can be derived from 

comparison between (2.22) and the Taylor series. Use of higher order methods is 

preferable. As it can be understood from the equation (2.8) of the Taylor series, the scale 

of error term decreases rapidly with regard to the order of the method, and we can take 

exponentially large step sizes with the same level of truncation error. This in turn means 

that we can complete the simulation with less number of steps, and therefore less 

accumulation of round-off error. 

It is known, however, the fourth order is a kind of optimum and most frequently 

used. Up to the fourth order it just requires the same number of stages of right-hand side 

evaluations as the consistency order, while fifth and higher order methods involve more 

stages than the order of the method. For example, at minimum 6 stages are necessary for 

the fifth order method, s = 7 for sixth order, s = 9 for seventh, and s = 11 for eighth. 

 

Error control 

A commonly used error control scheme of numerical methods is based on the 

local truncation error as follows: 

|)),|||((|:| iirelabsi ftbxasafetyei                                                (2.31)   
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Where ei  e is the error of this step of the variable xi, safety is a safety factor (usually ~ 

110%), σabs and σrel are absolute and relative error tolerances, a and b are scaling factors 

for the value and derivative of the variable, respectively. In each step, numerical methods 

control the error by means of the step size and other parameters such as the order of the 

calculation. If the error of at least one variable violates the criteria (2.31), the solver 

rejects the step and redoes the calculation with a shrunken step size. Conversely, if the 

error is sufficiently smaller (say, ~ 50%) than the right hand side of (2.31), the step size 

can be elongated to reduce the computation cost. There can be many strategies of 

deciding step sizes. Two most frequently used methods are step halving/doubling and 

variations of the following basic equation 
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tt
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where Tolerance is the right hand side of (2.31), and n is the index of the variable which 

gave the maximum error in the current step. It must be noted that generally it is 

impossible to obtain the exact values of the local truncation errors, and an integrator must 

somehow numerically estimate the en. 

A frequently used strategy to estimate the local error is to have a pair of Runge-

Kutta calculations of orders p and p + 1. The difference between solutions from these 

calculations gives a good approximation of the local error, because as the Taylor series 

expansion implies, the value of error term diminishes rapidly to the order. A neat trick to 

obtain this estimation of the local truncation error efficiently is the embedded Runge-

Kutta method, devised by Fehlberg [18]. The underlying idea is to embed a Runge-Kutta 
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calculation of the order p into that of the order p + 1. Table 2.3 is the Butcher array of a 

method called Fehlberg 2(3), which specifies Runge-Kutta coefficients. Calculating the 

equation (2.22) using the coefficient in the bi and b*
i columns give the second and the 

third order solutions, respectively, and it requires only three RHS evaluations. 

Table 2.3 Butcher array for Runge-Kutta Fehlberg 2(3) 

 

 

Stability and stiffness 

Some differential systems are stiff. Although stiffness is not defined in a 

mathematically rigid way, here we give it a casual definition as follows: when the system 

has at least two very different time scales, and the trajectory is dominated by the slow 

movement, then it is stiff. To put this in a bit more formally, if the fast mode of the 

system has a stable manifold, and the state point of the system is captured by it, the 

system is stiff. Thus a system can become stiff and non-stiff according to where the state 

point is. For example, when the system is making a transition from one state point to a 

distant stable manifold, it is non-stiff, while as long as the trajectory is on the manifold, it 

is said to be stiff. 

Stiffness can be understood in terms of the Jacobian matrix which is 
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Stiffness is sometimes defined as 

1|| 



Ct
x

f
                                                       (2.34) 

where C is a positive constant which represent a typical number of simulation steps (say, 

106 or 1012). 

When the system is stiff, all the explicit methods explained so far experience 

hardship. Consider the exact solution at time tn, x(tn), on the slow manifold. All the 

explicit methods primarily uses values of the derivative functions at the current state 

point of the numerical solution, xn, to estimate the state of the system after the some 

amount of time t. Any numerical computation involves some amount of error ε, and it 

puts the numerical solution slightly off the slow manifold, thus, xn = x(tn) + ε. When the 

Jacobian is very large, this error ε magnifies the error in the next numerical solution point 

xn+1, and the assumption behind (2.20), that is, the global error is a simple accumulation 

of the local error, no longer holds. Although the convergence of the computation (2.21) 

itself is not necessarily affected, the effectiveness of the error control scheme in (2.31) is 

destroyed. Because slow manifolds are often stable, the fast flows toward the center of 

that manifold appear in values of Jacobian around there, and in this case the trajectories 

disastrously show diverging oscillations. Even if the solver managed to detect the error in 

the step, it results in frequent step rejections, and forces the solver to take extremely 

small step sizes to converge. 
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A measure of tolerance against stiffness is stability of numerical methods. 

Consider a scalar system 

)(xf
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                                                        (2.35) 

If the system is linear, 

x
dt

dx                                                           (2.36) 

the stability of a method is defined by the stability function R(·), which is defined as 

nn xtRx )(1                                               (2.37)      

In the case of the explicit Euler method it is, 

nn xtx )1(1                                             (2.38) 

Setting t · λ = z, 

nn xzx )1(1                                               (2.39) 

Thus the stability function of the method is 

R(z) = 1 + z                                              (2.40)       

Now the stability region of the method is given by 

|R(z)| = |1 + z| ≤ 1                                         (2.41)       

and it is shown that the explicit Euler method is stable only in a very narrow range −2 ≤ 

t · λ ≤ 0. More generally, when it is a linear vector system, the constant λ is an eigen 

value of the constant coefficient matrix A in 

XA
dt

dX
                                                    (2.42)   

and thus a complex number. 
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Use of implicit methods overcomes this stability problem. The implicit Euler 

method, in a scalar form, has the following form: 

),( 11   nnn xtfxx                                                     (2.43) 

Putting the linear scalar system (2.36) into this and rearranging to the form of the 

stability function (2.37) gives the stability function of this method: 
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Therefore this method is stable in the region |1 − z| ≤ 1, or, it is stable in an open region 

except for the domain 0 < t · λ < 2 in the case of the scalar system. 

If the stability region of a method includes the whole left-half of the complex 

plane of z, which is the case of the implicit Euler method, it is called absolutely stable, or 

A-stable. That is, when the real part of λ is zero or negative, the method is guaranteed to 

be stable. Similarly, if the same condition is satisfied for general non-linear systems, it is 

said to be B-stable. The order of the global error of the method for the general non-linear 

systems is called B-convergence. 

The exact solution of the linear problem (2.36) at the next time point tn+1 is easily 

derived as eλt xn. Now recall the definition of the local error (2.13) again, and using 

(2.37): 
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A method is called stiffly accurate if 
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Now check if the implicit Euler method is stiffly accurate: 
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If a method is both A-stable and stiffly accurate, it is said to be L-stable or stiffly 

A-stable or strongly A-stable. The point here is that no matter how large the damping 

force of the system is (even in the case it is infinite), the numerical solution does not, at 

least, diverge. This property is important in very stiff problems and some DAE systems. 

It is desirable that all numerical methods used are L-stable, but only a few A-stable 

methods are known to be L-stable. 

 

Implicit methods 

Implicit Euler method imposes solution of non-linear equations to conduct a step 

of computation. Newton’s method [19] is most popularly used for this purpose. A 

Newton iteration to get xn+1 of (2.43) using the first order Taylor series expansion is: 
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or in a programmable form, 
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where m is the counter of the Newton iteration, and I is an identity matrix. The iteration 

is terminated when the difference |x m n+1 − xm−1 n+1| goes below a pre-defined threshold. 

In the same way, it is possible to derive implicit variations of higher order methods. 

Despite their good stability of implicit methods that is necessary to solve stiff 

systems efficiently, a drawback is computation cost. In addition to that of its explicit 
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counterpart, it requires m iterations of (2.49) involving a calculation of the Jacobian 

matrix and a matrix inversion. Generally, in non-linear computational cell biology 

problems, Jacobian cannot be obtained analytically, and numerical differentiation is 

necessary. Although the precision of this calculation of Jacobian does not affect the 

accuracy of the simulation itself as long as the Newton iteration converges, the cost of 

this computation is not negligible. The computation cost of a matrix inversion is in the 

order of O(N 3), where N is the size of the matrix. N becomes proportionally bigger when 

higher order methods such as implicit Runge-Kutta are used. 

Therefore, a good ODE simulator is supposed to be able to adaptively switch 

between explicit and implicit methods automatically detecting stiffness of the system. 

The best combination that this thesis suggests is a pair of the fourth order Runge-Kutta 

with adaptive step-sizing such as Dormand-Prince [20] or Runge-Kutta Fehlberg [18] 

method and Radau IIA [21] methods. Radau IIA is the best implicit Runge-Kutta 

equation ever known, and is L-stable, and B-convergent of the order s for the consistency 

of 2s − 1. Three-stage (s = 3) version of Radau IIA with the fifth order consistency, 

sometimes called Radau 5, is often used. 

 

2.3.2 Special types of differential system solvers 

 In cellular and biochemical simulations, specialized differential equation solvers 

are sometimes used. For example, power-law canonical differential equations are often 

used to model various types of cellular phenomena such as gene expression and 

metabolic systems. Two of these formalisms are S-System: 
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where N is the size of the system, and αi, βi, gi,j, hi,j are S-system coefficients, and 

Generalized Mass Action (GMA): 
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where i and fi,j are GMA coefficients. 

A distinct feature of this kind of formalisms is that it does not distinguish the 

structure of the system from its dynamics. The whole properties of a system can be 

described by a single S-System or GMA matrix. When used in simulation, it provides 

good means of estimating the network structure of the system as well as kinetic orders. In 

other words, by using S-System and GMA formalisms, the difficult problem of network 

structure determination can be converted to a matter of numerical parameter estimation, 

which is compatible with well established technique of non-linear optimization with 

numerous powerful algorithms such as Genetic Algorithms and the modified Powell 

method. A special algorithm called ESSYNS method can be used to solve these power-

law systems efficiently [22]. 

 

2.3.3 Stochastic algorithms for chemical systems 

All numerical treatments explained above are continuous and deterministic, which 

means that those descriptions of chemical processes are macroscopic and approximate. 

Chemical systems are, at the bottom, composed of discrete molecules, and the 

assumption behind differential formalisms that state variables change continuously and 
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their trajectories are differentiable does not hold, and thus, the differential descriptions 

fail to correctly reproduce the stochastic fluctuation in the number of molecules that 

becomes evident when copy numbers of involving molecular species of reactions are 

small. 

Some variations of stochastic simulation algorithms for chemically reacting 

systems in some exact consequences of the chemical master equation are introduced here. 

Also stochastic simulation methods can be approximate using many possible ways. One 

of the best known procedures is given in Gillespie and Petzold [23]. 

 

2.3.3.1 Chemical master equation 

Consider a finite and fixed volume Ω in which M reaction channels connect N 

molecular species. Temperature and other physical parameters that affect the reaction rate 

are all constant. In meso-scopic representation of the system, we do not track motion of 

each molecule. Then the state of the system is a vector of random variables X(t)  NN. It 

also assumes that occurrences of non-reactive collisions are so frequent that (1) it stirs the 

system between any two reactive collisions, and (2) each occurrence of reaction is a 

Markov process. Strictly speaking, in cell biology, most systems are in liquid phase and, 

unlike gas phase, once two solute molecules encounter, it is highly probable that these 

molecules experience numerous successive collisions because of the existence of solvent, 

making reactions non-Markovian. However, here we neglect this in the following 

discussions because experiences so far have shown that we can construct precise 

simulation methods without taking this non-Markovian argument into account. 
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Now the propensity function 

aj(X)dt                                                         (2.52)  

is defined as the probability that the j-th reaction will occur in Ω in an infinitesimal time 

interval [t, t + dt), given X = X(t). The state change vector 

νj,                                                               (2.53) 

whose each element νj,i specifies the number of molecules of the i-th species changed by 

an occurrence of the j-th reaction. 

If the reaction is elementary, the propensity function has the following form: 

aj(X) = cj ηj,                                                    (2.54) 

where cjdt gives the probability that a pair of reactant molecules will collide and react in 

a unit time interval, and ηj is the number of distinct combinations of such reactant 

molecules in the state X. If the reaction has the form of (1) X1 → X2 · · ·, ηj = X1, if it is (2) 

X1 + X2 → X3 · · ·, then ηj = X1X2, and if (3) 2X1 → · · ·, then ηj = max(X1(X1−1)/2, 0). The 

macroscopic rate constant kj of the reaction is related with cj in: (1) kj = cj, (2) kj/Ω = cj, 

(3) 2kj/Ω = cj. 

Given the propensity function and the state change vector, an exact and complete 

description of the chemically reacting system evolving from the initial condition X0 at 

time t0 can be derived: 
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This is called the chemical master equation (CME). This formalism was initially 

proposed as a simple stochastization of macroscopic rate equations [24], but has recently 

given a rigid micro-physical ground [25]. 

 By definition of X, (that is  NN), CME (2.55) is a system of a huge number of 

differential equations, and cannot be solved in any way (analytical or numerical) unless it 

represents a very simple system (for example, a single ion channel whose state is either 

open or close). 

 

2.3.3.2 Exact stochastic simulation algorithms 

Although the CME describes everything about a chemical system, it cannot be 

used in simulations directly. What we need is a method of trajectory realization based on 

the CME, which does not require evaluation of the whole state space defined in the 

system. One way to reduce the computation cost to a point where we can handle with our 

digital computers is a kind of lazy evaluation, which is, at each simulation step, 

calculating the values of propensity functions at neighboring state points to the current 

state point. 

Gillespie proposed the next reaction density function [26] [25], 
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k
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which defines the probability that the next reaction in the system occurs in the 

infinitesimal time interval [t + τ, t + τ + dτ), and the reaction is the j-th reaction. 
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With this next reaction density function, a step of simulation is defined as a 

procedure of generating a pair of numbers (τ, μ), that indicates the step size and the state 

transition difference function X(t + τ) = X(t) + νj. There can be some possible ways of 

generating this real-integer pair of random numbers, and one of the straightforward ways 

is called the Direct method. The joint density function (2.56) can be rewritten as a 

composition of two simple functions for τ and j, respectively. 

),|(),|(),|,( 21 tXptXptXp                                 (2.57) 

where p1(τ |X, t) is the probability that the first firing of any of the reaction channels 

occurs at time t + τ, and p1(μ | X, t) is the probability that μ is the reaction that fired. 

These two functions are defined as: 
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In numerical computer simulations, a type of random numbers that is available in 

the most efficient way is the uniform, unit-interval random distribution U(0, 1). To 

generate τ according to (2.58) from a sample of the uniform distribution, u1, the following 

Monte Carlo inversion function of (2.58) is used: 
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Determining μ is then a simple task. Using another number u2 taken from the uniform 

random number generator, 
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Main portion of the computation cost of the Direct method comes from two random 

number generations and calculation of M propensity functions per a simulation step. 

Here is a procedural definition of the Gillespie’s Direct method: 

1. Initialize: set initial number of molecules, and reset t (t ← 0). 

2. Calculate the values of the propensities (ai) for all the reactions. 

3. Choose τ according to (2.60). 

4. Determine the next reaction μ according to (2.61). 

5. Change the number of molecules: X ← X + νμ. 

6. t ← t + τ. 

7. Go to (2). 

Another approach to the generation of the (τ, μ) pair is the First Reaction method, 

also devised by Gillespie [26]. It generates tentative τ s for all reaction channels, 
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where u is a unit-interval uniform random number. Adopt the smallest τl as τ: 

l
l min                                                             (2.63) 

μ is then the reaction which got the smallest τl: 

μ = l    s.t.    τl  =  τ                                                       (2.64) 
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This algorithm requires M random numbers and M calculations of the propensity 

functions, thus runs slower than the Direct method. However, it gives a basis for the 

recently proposed Next Reaction method, which we will discuss next. 

The First Reaction method in a procedural appearance is like this: 

1. Initialize: set initial numbers, and t ← 0. 

2. Calculate the values of the propensities (ai) for all the reaction channels. 

3. For each of the reactions, calculate a putative time τi of the next occurrence of the 

reaction, according to the propensity calculated in (2). 

4. Pick a reaction whose τμ is the least, τ ← τμ. 

5. Change the number of molecules: X ← X + τμ. 

6. t ← t + τ. 

7. Go to (2). 

Twenty four years after Gillespie’s original work [26], Gibson published a paper 

that proposes a vastly improved version of the First Reaction method, called the Next 

Reaction method, in 2000 [27]. The core idea of the new method is to limit recalculation 

of τl to really necessary cases. In the First Reaction method, τl for each reaction is 

calculated in each simulation step. But with the Markovian assumption of the meso-

scopic formalism, the recalculations are not necessary for reactions not affected by the 

current reaction μ. To take full advantage of this good opportunity of optimization, this 

method (1) uses absolute time, rather than relative time in the Direct and the First 

reaction methods, (2) dependencies between reactions are pre-calculated at simulation 
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start-up, and (3) the absolute putative time τl of each reaction is stored in a dynamic 

priority queue data structure to speed up the operation of changing the value of τl. 

The cost of this algorithm is just one random number generation and evaluations 

of the propensity functions affected by the current reaction. This is supposed to be near or 

perhaps on the theoretical limit as long as the simulation precisely tracks each occurrence 

of reaction events. This method has to, however, maintain the priority queue, of which 

cost is typically O(log2(M)) integer operations. Because the numbers of other operations 

such as the random number generation and propensity function evaluations grows 

proportionally to the density of the stoichiometry matrix, this logarithmic term can form a 

bottleneck in computation speed for large Ms. The point of equilibrium between costs of 

the priority queue and other operations is implementation and platform dependent. It is 

worth noting, however, that recent advancements in pseudo random number generation 

methods such as the Mersenne Twister algorithm [28] and integration of multiple high-

performance floating-point operation units into CPU chips have been lowering the 

equilibrium point of M. Vasudeva and Bhalla [29] has some practical performance 

comparisons of these methods. 

Below are the step-by-step instructions for the Next Reaction method: 

1. Initialize: set initial numbers, t ← 0, and for each reaction i, calculate a putative 

time τi. 

2. Pick the reaction with the least putative time τμ. 

3. Change the number of molecules: X ← X + τμ. 

4. t ← τμ. 
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5. for each affected reaction α, 

(a) Calculate new aα, new. 

(b) If α = μ, calculate new τα. 

(c) If α ≠ μ, 

tt
a

a
a

new

old
a  )(

,

, 


  

6. Go to 2. 

The scaling operation in step 5(c) is an optimization to avoid using extra random 

numbers, which is effectively equivalent as reusing the random numbers generated in the 

previous step. Legitimacy of this random number reusing is discussed in detail in Gibson 

and Bruck [27]. Of course, generating a new random number here and doing the same as 

5(b) yields the same result. 

 To summarize, as long as the number of reactions is sufficiently large, and the 

computation needs to be exact (each occurrence of a reaction must be counted), Gibson’s 

Next Reaction method is the best known way of realizing simulation trajectories 

according to CME. 

 Stochastic simulation methods also can be approximate using many possible ways. 

Gillespie in 2001 [30] defined a simulation procedure called as tau-leaping method. 

Continuously one of the best known approximate procedures is given in Gillespie and 

Petzold [23] later. 

 

2.3.4 Other methods 
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We reviewed some simulation methods in computational cell biology, and there 

are several more schemes those are already in popular use or still under development.  

Cellular automata (CA) is an important structure.  The origin of CA traces back to 

John von Neuman’s work [31] in theoretical computer science. Subsequently, it became a 

major way of investigating qualitative simulations of complex phenomena in diffusion-

reaction systems, such as for excitable media and Turing patterns. Recently it is 

becoming popular as a means of quantitative modeling and simulation of physical 

phenomena such as fluid dynamics and diffusion-reaction [32]. Related to computational 

cell biology is a type of CA for enzymatic reaction networks with spatial extent 

represented by molecular diffusion proposed in Weimar [33]. Patel et al. [34] has an 

application of CA to the model of tumor growth. Ermentrout and Edelstein-Keshet [35] 

has some more references. 

Another instance of a recent development is a hybrid dynamic/static pathway 

simulation method that combines conventional ODE-based rate equations with static, 

flux-based subcomponents [36]. The static part is based on a time-less metabolic flux 

analysis (MFA), and its (re-)calculation is triggered by simulation steps of the dynamic, 

ODE sub-components. Some more examples are Monte-Carlo Brownian dynamics 

method originally developed for simulation of micro-scopic simulation of synaptic 

transmission [37], boolean network, coupled map lattice, and difference equations. 

This diversity in computational approaches is a natural consequence of the 

heterogeneity and multiple scales of the cell as a dynamical system, and therefore is an 



 52

obvious reason of the need for the multi-formalism modeling and multi-algorithm 

simulation discussed in the next section. 

 

2.3.5 Multi-algorithm simulation 

 In the cell, as we have seen in the previous sections, various components with 

different properties interact in diverse manners. All cellular subsystems are highly non-

linear, and couplings of the subsystems are often non-linear as well. The nonlinearity 

indicates that the whole system is not equivalent to the sum of the subsystems. Although 

a subsystem in isolation can be investigated to some extent by assuming steady and 

simplified boundary conditions, the real behavior and role of the subsystem cannot be 

elucidated unless it is considered as part of the whole. 

Cell simulators must therefore allow simulation of cell subsystems in both 

isolated and coupled forms. Simulation of coupled subsystems requires performing 

computations on mutually interacting subsystems with different computational properties 

on a single platform. There is, however, no universal algorithm which can efficiently 

conduct simulation of all the subsystems at once, and so simulators must allow multiple 

computation algorithms to coexist in a single model. 

In order to support multi-algorithm computation, the scheme of the computing 

must therefore provide a single abstract programming interface, which allows 

indiscriminate interaction among the modules, and gives the front-end programs a 

standard means of visualizing and manipulating these modules. This also means that the 
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implementations of the algorithm modules must be isolated from the system-provided 

common interface. 

Related to this necessity of the multi-algorithm simulator are the representation 

schemes of the target physical entity (the cell) in the computer. The primary state 

variables of a cell model are the quantities of species, and these can be modeled using 

two different approaches. In the first, each state variable is a positive real number, and the 

fractional parts are not discarded; this number format is suitable for working with the 

empirical rate equations of biochemistry. The second approach keeps molecular 

quantities as natural numbers, and a variety of methods may be used to maintain the 

semantics of the fractional part, and these can be either stochastic or deterministic. In 

addition, realistic cell models usually require a mixture of continuous state variables like 

temperature, electric potential, and free energy, and discrete variables like the state flags 

of multi-state molecules (e.g. transiently modified proteins). Therefore, the simulator 

needs to handle types of positive, non-zero molecular quantities, real negative or positive 

numbers, and discrete states of molecules. 

As discussed design options, there are two design schemes of multi-formalism 

simulation frameworks: embedding and combining approach. 

A major source of strengths of the embedding approach is that it enforces 

modularity, or context-independent design, on implemented modules. Each simulation 

algorithm module and thus sub-model is required to have a well-defined interface of 

time-scheduling and communications with other modules. Good outcomes of the 

modularity of the embedding algorithm are: 
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• Once an algorithm is implemented in a modular way, it can be used in 

combination with any other algorithm modules. 

• Implementations of algorithm modules are often simpler and more maintainable 

than combined forms of the same set of algorithms. 

In fact, the embedding framework supports combining by allowing algorithms in 

combined forms to be implemented as algorithm modules. Also the embedding 

framework itself could be extended to support adaptive switching between algorithms by 

providing a mechanism of ’Process migration’, which allows Process objects to migrate 

among multiple Steppers of different algorithms during a simulation. This is one of our 

future works. 

On the other hand, one drawback in this modular design is that, because of the 

inherent ’interface barriers’ between sub-models, dynamic switching between algorithms 

implemented in different modules is still a future work, and currently not available. This 

is immediately an advantage of the combined approach. For example, Gillespie’s tau-

leaping method can be viewed as a combination of an exact method and the approximate 

tau-leaping scheme, and it switches to the exact method when the approximation 

becomes inappropriate. These methods connect smoothly to each other in a natural way 

as the scales of concentration and propensity changes. 

Let’s take a closer look at this problem.  A combination of two completely 

different simulation algorithms treats different formalisms. An example is a combination 

of a stochastic elementary reaction sub-model, for which Gillespie algorithm is often 

used, and an ODE sub-model of Michaelis-Menten-type enzymatic complex reactions. In 
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a biochemical sense, these two sub-models require different types of kinetic parameters 

and modeling approaches, and these are not inter-convertible. Another example is when 

we have a model of metabolism as diffusion-reaction cellular automata, and want to co-

simulate this with a boolean-network model of gene expression. This case calls the 

multiple modeling formalisms combined different simulation algorithms. Generally, this 

approach only occasionally results in a good simulator design, as it requires a new 

simulation algorithm to be developed for each distinct combination of modeling 

formalisms, unless there is an existing algorithm generic enough to run these formalisms 

simultaneously. Zeigler’s DEV&DESS [61] is an exceptionally useful example here, 

because it combines two very general formalisms: discrete event and differential equation. 

In this thesis we will introduce DEVS framework to solve system biological processes. In 

the next chapter we will review some basic DEVS concepts, formalisms and the 

implementation of the quantized integrator to Differential Equation models in 

DEVSJAVA. 

 

2.4 Existing software platforms and projects 

Cell simulation is a relatively new area of computational science, but attempts to 

numerically simulate biochemical pathways has a considerable history. This section 

briefly reviews available software related to this work. 

 

2.4.1 General purpose simulation software 
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One of the oldest publicly available software packages specialized for rate 

equation based numerical simulation of cellular processes is KINSIM [38]. It is a DOS 

application which is still actively used by biochemists for kinetic analysis of enzyme 

reaction systems. GEPASI [39] is also a rate equation based simulator with an integrated 

and easy to use interactive Windows GUI, and is widely used by biochemists for both 

research and education. GEPASI’s successor, COPASI, is being developed with a focus 

on large scalability and distributed parallel computing. DBSolve [40] is another ODE-

based simulator. ProMoT [41] is a Lisp based object-oriented modeling environment that 

uses the DIVA numeric’s solver as a simulation backend. A commercial tool for block-

oriented generic simulation of complex systems, SCoP [42] is used to run differential and 

difference equation based cell models. A-Cell [43] is a GUI-based piece of software used 

to construct biochemical reactions and electro-physiological models of neurons and other 

types of cell. Bio/Spice [44] was initially intended for genetic circuit simulation, and is 

now being developed as a generic modeling and simulation environment linked to object-

relational databases. Jarnac, or SCAMP II, is a successor of the SCAMP simulator [45], 

and equipped with a powerful and flexible scripting language that enables users to 

program a dynamic object-oriented cell model. Virtual Cell [46] provides an intuitive 

WWW Java applet based modeling environment which allows modelers to construct 

spatial and biochemical models in both biological and mathematical semantic planes, and 

has support for empirical 3D data from microscopy. PLAS [47] is a simple yet powerful 

tool for modeling, simulation, and analysis of S-Systems. And still many groups use a 
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generic modeling package such as Mathematica or MatLab, although these tools are not 

customized to support bio-simulation per se. 

 

2.4.2 Specialized simulation software 

StochSim [48] is a stochastic biochemical simulator in which individual 

molecules and molecular complexes are represented as individual software objects. Its 

unique algorithm makes for effective simulation of biochemical systems like the bacterial 

chemotaxis signaling pathway, where only a small number of molecules are involved and 

some of them are multi-state. MCell [37] is another simulator in which individual 

molecules are treated not statistically, but individually, with a Monte-Carlo type random-

walk algorithm for Brownian dynamics. MCell is designed for the simulation of 

interactions between ligands and binding sites on receptors, enzymes, and transporters 

(amongst other molecules). Both simulators, StochSim and MCell, are somewhat 

infrequently used for simulation of sub-cellular dynamics because of high computational 

costs, yet the algorithms employed are likely to become indispensable if given 

appropriate roles in a multi-algorithm whole cell model. 

 

2.4.3 Software platforms and languages 

The Caltech ERATO Kitano Systems Biology Project is developing an XML-

based Systems Biology Markup Language (SBML) as a means of interchanging bio-

simulation models [49]. The group has set out to encompass all the features of Bio/Spice, 

DBSolve, E-Cell, Gepasi, Jarnac, StochSim, and Virtual Cell. A similar modeling 
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language being developed by the University of Auckland and Physiome Sciences is 

CellML [50]. The Systems Biology Workbench (SBW) is also being developed by the 

Caltech ERATO team [51]. SBW is a distributed object computing environment for 

biological modeling and simulation. It provides an infrastructure that unifies various 

software components like model editors, simulators and data analyzers/visualizers. Using 

SBML as its language, it may well become the standard platform of model exchange, 

data exchange, and inter-operation. 

 

2.5 Systems Biology Markup Language  

Systems biology is characterized by synergistic integration of theory, 

computational modeling, and experiment [52]. Many contemporary research initiatives 

demonstrate the growing popularity of this kind of multidisciplinary work (e.g. Abbott, 

1999 [53]). There now exists a variety of computational tools for the budding systems 

biologist (see below); however, the diversity of software has been accompanied by a 

variety of incompatibilities, and this has lead to numerous problems. For example: 

 Users often need to work with complementary resources from multiple 

simulation/analysis tools in the course of a project. Currently this involves 

manually re-encoding the model in each tool, a time-consuming and error-prone 

process. 

 When simulators are no longer supported, models developed in the old systems 

can become stranded and unusable. This has already happened on a number of 

occasions, with the resulting loss of usable models to the community. Continued 
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innovation and development of new software tools will only aggravate this 

problem unless the issue is addressed. 

 Models published in peer-reviewed journals are often accompanied by 

instructions for obtaining the model definitions. However, because each author 

may use a different modeling environment (and model representation language), 

such model definitions are often not straightforward to examine, test and reuse. 

 The current inability to exchange models between different simulation and 

analysis tools has its roots in the lack of a common format for describing models. To 

address this, a Software Platforms for Systems Biology forum under the auspices of the 

ERATO Kitano Systems Biology Project was formed. The forum initially included 

representatives from the teams developing the biological software packages.  

 The forum decided at the first meeting in April 2000 to develop a simple, XML-

based language for representing and exchanging models between simulation/analysis 

tools: the Systems Biology Markup Language (SBML). They chose XML, the eXtensible 

Markup Language [54], because of its portability and increasingly widespread acceptance 

as a standard data language for bioinformatics [55]. SBML is formally defined using 

UML, the Unified Modeling Language (Object Management Group, 2002), and this in 

turn is used to define a representation in XML. The base definition, SBML Level 1[56], is 

the result of analyzing common features in representation languages used by several 

ODE-, DAE- and stochastic-based simulators, and encompasses the minimal information 

required to support non-spatial biochemical models. Subsequent releases of SBML 

(termed levels) will add additional structures and facilities to Level 1 based on features 
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requested and prioritized by the SBML community. By freezing sets of features in SBML 

definitions at incremental levels, they hope to provide software authors with stable 

standards and allow the simulation community to gain experience with the language 

definitions before introducing new elements. 

 

2.5.1 Structure of Model Definitions in SBML 

A chemical reaction can be broken down into a number of conceptual elements: 

reactant species, product species, reactions, stoichiometries, rate laws, and parameters in 

the rate laws. To analyze or simulate a network of reactions, additional components must 

be made explicit, including compartments for the species, and units on the various 

quantities. A definition of a model in SBML simply consists of lists of one or more of 

these various components (Figure 2.2, Figure 2.3): 

 

Figure 2.2 an SBML Document Structured 

 

Figure 2.3 a model according to SBML 
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Compartment: A container of finite volume for well-stirred substances where reactions 

take place. 

Species: A chemical substance or entity that takes part in a reaction. Some example 

species are ions such as calcium ions and molecules such as ATP. 

Reaction: A statement describing some transformation, transport or binding process that 

can change one or more species. Reactions have associated rate laws describing 

the manner in which they take place (Figure 2.4).  

Parameter: A quantity that has a symbolic name. SBML provides the ability to define 

parameters that are global to a model, as well as parameters that are local to a 

single reaction.  

Unit definition: A name for a unit used in the expression of quantities in a model. This is 

a facility for both setting default units and for allowing combinations of units to 

be given abbreviated names. 

Rule: A mathematical expression that is added to the model equations constructed from 

the set of reactions. Rules can be used to set parameter values, establish 

constraints between quantities, etc. 

Function: A named mathematical function that may be used throughout the rest of a 

model. 

Event: A statement describing an instantaneous, discontinuous change in a set of 

variables of any type (species quantity, compartment size or parameter value) 

when a triggering condition is satisfied. 
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Figure 2.4 Reactions According to SBML 

 

Figure 2.5 the skeleton of a model definition expressed in 
SBML, showing some possible top-level elements. 

Figure 2.5 shows the skeleton of an SBML model description. It exhibits the 

standard characteristics of an XML data stream [54]: it is plain text, each element 

consists of a matched pair of start/end tags enclosed by ‘<’ and ‘>’ characters, some 

elements can contain attributes of the form attribute =‘value ’, and the first line contains 

a particular sequence of characters (beginning with ‘<?xml’) declaring the rest of the data 

stream as conforming to the XML encoding standard. 

 

2.5.2 CellDesigner: a structured diagram editor 
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CellDesigner [57] is a structured diagram editor for drawing gene-regulatory and 

biochemical networks. Networks are drawn based on the process diagram, with graphical 

notation system proposed by Kitano [52], and are stored using SBML, a standard for 

representing models of biochemical and gene-regulatory networks. 

 

            Figure 2.6 the user interface of CellDesigner ver.3.5.2 

 

2.5.3 LibSBML 

LibSBML [58] is a library designed to help you read, write, manipulate, translate, 

and validate SBML files and data streams. It is not an application itself (though it does 

come with many example programs), but rather a library you can embed in your own 

applications.  

LibSBML is written in ISO C and C++ but as a library it may be used from all the 

programming languages C++, C, Java, Python, Perl, Lisp, Matlab, and Octave. In fact, 

they strive to adhere to the natural idioms of each particular language to make the 
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libSBML programming experience seamless. For example, SBML <listOf> elements 

behave like lists and sequences in Python, but vectors in Matlab. Also, the C and C++ 

interfaces are completely distinct (it's possible to program in pure C), but in C++ the C 

APIs may be called without sacrificing type safety.  

The LibSBML code is very portable and is supported on Linux, Windows (native), 

and Mac OS X.  



 65

 

CHAPTER 3 DEVS AND DEVSJAVA 

 

In this chapter, firstly we review some basic DEVS concepts, formalisms and 

algorithms.  Secondly Multi-algorithm framework and Differential Equation models were 

introduced. And lastly the implementation of the Quantized integrator to Differential 

Equations was given in DEVSJAVA. 

 

3.1 DEVS 

3.1.1 DEVS and DEVS Formalism 

 Discrete Event System Specification (DEVS) is a mathematical formalism to 

describe real-world system behavior in an abstract and rigorous manner. Compared with 

traditional methodology for modeling and simulation, DEVS formalism describes and 

specifies a modeled system as a mathematical object, and such object based 

representation of the targeted system can then be implemented using different simulation 

languages, especially modern object-oriented ones. In general, a system has a set of key 

parameters when being modeled in a modeling framework, which include time base, 

inputs, states, outputs, and functions for determining state transitions. Discrete event 

systems in general encapsulate these parameters as object entities, and then use modern 

object oriented simulation languages to describe the relationship among the specified 

entities. As a pioneering formal modeling and simulation methodology, DEVS provides a 
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concrete simulation theoretical foundation, which promotes fully object-oriented 

modeling and simulation techniques for solving today’s simulation problems required by 

other science and engineering discipline. The insight provided by the DEVS formalism is 

in the simple way that it characterizes how discrete event simulation languages specify 

discrete event system parameters [59]. Having such an abstraction, it is possible to design 

new simulation languages with sound semantics that are easier to understand than 

traditional ones. Figure 3.1 presents a DEVS concept framework to show the basic 

objects and their relationships in a DEVS modeling and simulation world. These basic 

objects include [60]: 

• The real system, in existence or proposed, which is regarded as fundamentally a 

source of data 

• model, which is a set of instructions for generating data comparable to that 

observable in the real system. The structure of the model is its set of instructions. The 

behavior of the model is the set of all possible data that can be generated by faithfully 

executing the model instructions. 

• simulator, which exercises the model's instructions to actually generate its behavior. 

• experimental frame, which captures how the modeler’s objectives impact on model 

construction, experimentation and validation. As implemented in DEVSJAVA, such 

experimental frames are formulated as model objects in the same manner as the 

models of primary interest. In this way, model/experimental frame pair’s form 

coupled model objects with the same properties as other objects of this kind. It will 
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become evident later, that this uniform treatment yields immediate benefits in terms 

of modularity and system entity structure representation. 

These basic objects are then related by two relations [60]: 

• modeling relation: linking real system and model, defines how well the model 

represents the system or entity being modeled. In general terms a model can be 

considered valid if the data generated by the model agrees with the data produced by 

the real system in an experimental frame of interest. 

• simulation relation, linking model and simulator, represents how faithfully the 

simulator is able to carry out the instructions of the model. 

 
Figure 3.1 Basic Entities and Relations [60] 

In the view from DEVS, the basic items of data produced by a system or model 

are time segments. These time segments are mappings from intervals defined over a 

specified time base to values in the ranges of one or more variables [60]. These variables 

can either be observed or measured. An example of a data segment is shown in Figure 3.2, 

where X is inputs, S is states, e is time elapsed, and Y is outputs. 
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In fact, DEVS formalism provides a formal definition to describe the data 

segment depicted above in Figure 3.2, and the history of DEVS can be traced back to 

decades ago. 

 

Figure 3.2 Discrete Event Time Segments [61] 

A standard and classic DEVS formalism is defined as a structure [61]: 

DEVS = (X, Y, S, ext, int, , ta) 

Where 

X  is the set of inputs; 

Y  is the set of outputs; 

S  is the set of sequential states; 

ext: Q  X  S is the external state transition function; 

int: S  S is the internal state transition function; 

: S  Y  is the output function; 

ta: S  
 is the time advance function; 

With Q = {(s, e) | s  S, 0≤ e ≤ ta(s)} is the set of total states. 
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Figure 3.3 illustrates the key concept of above classic DEVS formalism. Assuming 

the system is in state S after a previous state transition, it will stay in state S for a duration 

determined by ta(s). When this resting time of ta() expires (or say the elapsed time 

e=ta(s)), the system gives output (s) and changes its state from s to s’. This state 

transition is exactly determined by the internal transition function int as mentioned in 

the formalism. However, if an external event occurs through the input X before the 

duration specified by ta(s) (or say, the system is in total state (s, e) with e = ta(s), the 

system will change to a state determined by ext (s, e, x). After the system changes its 

state to a new state, the same rules in the formalism are applied to govern how the system 

responses to discrete events. DEVS makes an explicit difference between internal and 

external state transitions, where the internal transition function determines the system’s 

new state when no events have occurred since the last transition, while the external 

transition function determines the system’s new state when an external event occurs 

between 0 and ta(s). It is worth to note that ta(s) is a real number including 0 and, where 

“0” means that the system is a so-called “transitory” state that no external events can 

intervene, and “” means that the system is in a so-called “passive” state that is 

unchanged forever until an external event wakes it up. 
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Figure 3.3 an Illustration for Classic DEVS Formalism [61] 

The above classic DEVS formalism does not take into account of concurrent 

events, and therefore, has relatively limited usage for real-world application. With the 

consideration of concurrent events and parallel processing on a discrete event system, 

parallel DEVS system specification is developed from classic DEVS. The key 

capabilities of Parallel DEVS beyond the classical DEVS are [61]: 

▪ Ports are represented explicitly – there can be any of input and output ports on 

which values can be received and sent. 

▪ Instead of receiving a single input or sending a single output, basic parallel DEVS 

models can handle bags of inputs and outputs. It should be noted here that a bag 

can contain many elements with possibly multiple occurrences of its elements. 

▪ A transition function, called confluent, is added, which decides the next state in 

cases of collision between external and internal events. 

Such parallel DEVS formalism consists of two parts: basic and coupled models. A 

basic model of a standard parallel DEVS is a structure [61]: 

DEVS = (X, Y, S, ext, int, con, ta) 

With X is the set of input events; 
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S is the set of sequential states; 

Y is the set of output events; 

int: S  S is the internal transition function;  

ext: Q x Xb  S is the external transition function, 

  Where Xb is a set of bags over elements in X, 

con: S x Xb S is the confluent transition function, 

Subject to con(s, ) = int(s)  

: S  Yb is the output function; 

ta: S  
 is the time advance function, 

 Where Q = {(s, e)  s  S, 0 < e < ta(s)}, and e is the elapsed time since 

last state transition. 

Such basic model as defined in parallel DEVS captures the following information 

from a discrete event system: 

▪ the set of input ports through which external events are received 

▪ the set of output ports through which external events are sent 

▪ the set of state variables and parameters 

▪ the time advance function which controls the timing of internal transitions 

▪ the internal transition function which specifies to which next state  

▪ the system will transit after the time given by the time advance function has 

elapsed 
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▪ the external transition function which specifies how the system changes state when 

an input is received. The next state is computed on the basis of the present state, 

the input port and value of the external event, and the time that has elapsed in the 

current state 

▪ the confluent transition function which decides the next state in cases of collision 

between internal and external events 

▪ the output function which generates an external output just before an internal 

transition takes place 

Basic model is a building block for a more complex coupled model, which defines 

a new model constructed by connecting basic model components. Two major activities 

involved in coupled models are specifying its component models and defining the 

couplings which create the desired communication networks. A coupled model is defined 

as follows [61]: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}> 

Where X is a set of external input events; 

Y is a set of outputs; 

D is a set of components names; 

for each i in D, 

Mi is a component model 

Ii is the set of influences for i 

for each j in Ii, 

Zi,j is the i-to-j output translation function 



 73

A coupled model template captures the following information: 

▪ the set of components 

▪ for each component, its influences 

▪ the set of input ports through which external events are received 

▪ the set of output ports through which external events are sent 

▪ the coupling specification consisting of: 

▪ the external input coupling (EIC) connects the input ports of the coupled to 

one or more of the input ports of the components 

▪ the external output coupling (EOC) connects the output ports of the 

components to one or more of the output ports of the coupled model 

▪  internal coupling (IC) connects output ports of components to input ports of 

other components 

As we have seen in this section, DEVS formalisms are strictly defined and it 

evolves continuously to satisfy the requirement of today’s large and complex system 

modeling and simulation. It has been extended by a lot of researcher around world; 

however, its core concept is unchanged as we can see from the classic and parallel 

formalisms. In the next section, we will discuss DEVS modeling framework. 

 

3.1.2 Basic systems modeling formalisms 

The basic systems modeling formalisms can be classified into three categories: 

Differential Equation System Specifications (DESS), Discrete Time System 

Specifications (DTSS), and Discrete Event System Specifications (DEVS) (Figure 3.4) 
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[61]. However, many real world phenomenons cannot be fit into the Procrustean bed of 

one formalism at a time.  More generally, the ambitious systems now being designed, 

such as an automated highway traffic control system, cannot be modeled by a pure 

discrete or continuous paradigm. Instead, they require a combined discrete/continuous 

modeling and simulation methodology that supports a multi-formalism modeling 

approach and the simulation environments to support it.  

 
Figure 3.4 Basic Systems Specification Formalisms 

 

3.1.3 Multi-algorithm framework 

Skipping many years of accumulating developments, the next major advance in 

systems formalisms was the combination of discrete event and differential equation 

formalisms into one, the DEV&DESS.  This formalism subsumes both the DESS and the 

DEVS and thus supports the development of coupled systems whose components are 

expressed in any of the basic formalisms. Such multi-formalism modeling capability is 
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important since the world does not usually lend itself to using one form of abstraction at a 

time. For example, a chemical plant is usually modeled with differential equations while 

its control logic is best designed with discrete event formalisms. 

Two approaches to multi-formalism modeling are depicted in Figure 3.5. To 

combine formalisms we have to come up with a new formalism that subsumes the 

original ones. This is the case with DEV&DESS, which combines DEVS and DESS, the 

discrete event and differential equation system specification formalisms.  Another 

approach to multi-formalism modeling is to embed one formalism into another.  

Embedding the other formalisms (DESS and DTSS) into DEVS is attractive since 

then both discrete and continuous components are naturally included in the same 

environment. But, with continuous and discrete components interacting, we still need the 

DEV&DESS formalism to provide the basics of how such interaction should occur and to 

provide formalism in which embedding DESS into DEVS can be rigorously analyzed.  

Moreover, for combined models that cannot be feasibly embedded into DEVS, we must 

employ the DEV&DESS formalism. 

 

Figure 3.5 Multi-formalism Approaches 
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Figure 3.6 illustrates the DEVS and DESS combined model concept which has 

both DEVS and DESS elements working together. Input ports of Xdiscr accept event 

segments and input ports of Xcont accepts piecewise continuous or piecewise constant 

segments. The latter influences both model parts, while the event input only influences 

the DEVS part. Each part produces its own corresponding outputs, Ydiscr and Ycont, 

respectively.  The parts can also influence each other’s states. 

DEVS

Sdiscr

DESS

Scont

Xdiscr

Xcont Ycont

Ydiscr

 

Figure 3.6 DEVS and DESS combined model 

Fundamental for the understanding of combined modeling is how the discrete part 

is affected by the continuous part, that is, how the DESS part causes events to occur. 

Figure 3.7 illustrates this. In the intervals between events, the DESS input, state, and 

output values change continuously. In a combined model, events occur whenever a 

condition specified on the continuous elements becomes true.  Typically, the condition 

can be viewed as a continuous variable reaching and crossing a certain threshold or 

whenever two continuous variables meet (in which case, their difference crosses zero). In 

such situations, an event is triggered and the state is changed discontinuously. An event 
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which is caused by the changes of continuous variables is called a state event (in 

distinction to internal events of pure DEVS which are scheduled in time and are called 

time events). 

state event

scont

threshold

t T

threshold reached

discrete change

 

Figure 3.7 state event 

In the subsequent section, DEVSJAVA, a known implementation of parallel 

DEVS formalism, is reviewed with the focus on how to solve the Differential Equation 

using DEVS view.  

 

3.2 Differential Equation Models 

Recall that in discrete time modeling there is a state transition function which 

computes the state at the next time instant given the current state and input.  In the 

classical modeling approach of differential equations, the state transition relation is quite 

different. For differential equation models we do not specify a next state directly but 

instead, use a derivative function to specify the rate of change of the state variables.  At 

any particular time instant on the time axis, given a state and an input value, we only 

know the rate of change of the state. The state at any point in the future must compute 

from this information.  
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3.2.1 Basic Model: The Integrator 

To see how this form of modeling works, let us consider the most elementary 

continuous system – the simple integrator (Figure 3.8). The integrator has one input 

variable x and one output variable y. One can imagine it as a reservoir with infinite 

capacity. Whatever is put into the reservoir is accumulated – with a negative input value 

meaning outflow.  The state of the reservoir is its current contents. When we want to 

express this in equation form we need a variable to represent the current contents. This is 

our state variable q. The current input x represents the rate of current change of the 

contents which we express by equation  

dq(t) / dt = x(t) 

and the output y is equal to the current state 

y(t) = q(t) 

x

x(t)

y

t

x(t)y(t)

input

contents =  input dt

 

Figure 3.8 Basic Integrator Concepts 

Usually continuous systems are expressed by using several state variables.  

Derivatives are then functions of some, or all, the state variables. Let q1, q2, ..., qn be the 
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state variables and x1, x2, ..., xm be the input variables, and then a continuous model is 

formed by a set of first-order differential equations  

d q1(t)/dt = f1(q1(t), q2(t), ..., qn(t), x1(t), x2(t), ..., xm(t)) 

d q2(t)/dt = f2(q1(t), q2(t), ..., qn(t), x1(t), x2(t), ..., xm(t)) 

... 

d qn(t)/dt = fn(q1(t), q2(t), ..., qn(t), x1(t), x2(t),..., xm(t)) 

 
Figure 3.9 the Integrator 

Note that the derivatives of the state variables qi are computed respectively, by 

functions fi which have the state and input vectors as arguments.  Representing the 

integrator in diagrammatic form as in Figure 3.10, we can represent a set of first order 

differential equations in the coupled model form of Figure 3.10. The state and input 

vector are input to the rate of change functions fi. Those provide as output the derivatives 

dqi/dt of the state variables qi which are forwarded to integrator blocks. The outputs of 

the integrator blocks are the state variables qi.  

d q1/dt q1
f1x

d q2/dt q2f2

d qn/dt qn
fn

q
x

q
x

q
x

...

 

Figure 3.10 Structure of differential equation specified systems 
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3.2.2 Continuous system simulation  

The diagram above reveals the fundamental problem that occurs when a 

continuous system is simulated on a digital computer. In the diagram we see that given a 

state vector q and an input vector x for a particular time instant ti we only obtain the 

derivatives dqi/dt.  But how do we obtain the dynamic behavior of the system over time?  

In other words, how do we obtain the state values after this time?   This problem is 

depicted in Figure 3.11. In digital simulation, there is necessarily a next computation 

instant ti+1 and a nonzero interval [ti, ti+1]. The model is supposed to be operating in 

continuous time over this interval, and the input, state and output variables change 

continuously during this period. The computer program has available only the values at ti 

and from those it must estimate the values at ti+1 without knowledge of what is happening 

in the gaps between ti and ti+1. This means it must do the calculation without having 

computed the input, state, and output trajectories associated with the interval (ti, ti+1). 

1

f(s(ti),x(ti))

x(ti)

q

x

q(ti)

 
Figure 3.11 Continuous system simulation problems 

Schemes for solving this problem are generally known as numerical integration 

methods.  A whole literature deals with design and analysis of such methods [62] [63].  
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The basic idea of numerical integration is easily stated  an integration method 

employs estimated past and/or future values of states, inputs and derivatives in an effort 

to better estimate a value for the present time ( 0) (Figure 3.12).  Thus to compute a state 

value q(ti) for a present time instance ti, may involve computed values of states, inputs 

and derivatives at prior computation times ti-1, ti-2, ... and/or predicted values for the 

current time ti and subsequent time instants ti+1, ti+2, ... 

  Notice that the values of the states and the derivatives are mutually interdependent 

– the integrator itself causes a dependence of the states on the derivatives and through the 

derivative functions fi the derivatives are dependent on the states. This situation sets up an 

inherent difficulty which must be faced by every approximation method - the propagation 

of errors. 

q

x

q(ti)

titi-1ti-2 ti+1 ti+2  

Figure 3.12 Computing state values at time ti based on estimated values at 
time instants prior and past time ti 

We consider the simplest integration method, generally known as the Euler or 

rectangular method. The idea underlying the Euler method is that for a perfect integrator  

h

tqhtq

dt

tdq
h

)()(
lim

)(
0





 

thus for small enough h, we should be able to use the approximation  



 82

dt

tdq
htqhtq

)(
)()(   

Now the input to an integrator, as in Figure 3.9, is the derivative x(t) = dq/dt.  So we have  

q(t+h) = q(t)  + h x(t) 

With h fixed, we can iterate to compute successive states at time instants 0, h, 2h, 3h, … 

given the initial state at time 0 and the input values x(0), x(h), … Although 

straightforward to apply, Euler integration has some drawbacks. On one hand, to obtain 

accurate results the step size h has to be sufficiently small. But the smaller the step size 

the more iterations are needed and hence the greater the computation time for a given 

length of run. On the other hand the step size also cannot be decreased indefinitely, since 

the finite word size of digital computers introduces round-off and truncation errors.  

Therefore, a host of different integration method have been developed which often show 

much better speed/accuracy tradeoffs than the simple Euler method.  However, these 

methods introduce stability problems as we discuss in a moment. 

We now describe briefly the principles of some frequently employed integration 

methods. We can distinguish methods according to whether or not they use estimated 

future values of variables to compute the present values. We call a method causal if it 

only employs values at prior computation instants. A method is called non-causal if in 

addition to prior values it also employs estimated values at time instants at and after the 

present time. The order of a method is the number of pairs of derivative/state values it 

employs to compute the value of the state at time ti. For example, a method employing 
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the values of q and its derivative at times ti-2, ti-1, ti, and ti+1 are of order 4. Table 3.1 

summarizes the pros and cons of integration methods. 

Table 3.1 Summary of Integration Method Speed-Accuracy Tradeoffs 

Integration 
Method 

Efficiency Start-up Problems Stability Problems Robustness 

Euler low none not for sufficiently 
small step sizes 

high 

Causal methods high yes yes low 
Non-Causal 
methods 

high no, if only future 
values used 

yes low 

 

3.3 Differential Equation Models in DEVSJAVA 

 

3.3.1 DEVSJAVA 

DEVSJAVA [64] is an implementation in Java of DEVS framework that has been 

used for solving real-world simulation problem as well as serving as an openly available 

teaching tool. It is a fully object orient implementation of standard parallel DEVS 

formalism, and therefore, provides a very dynamic and flexible modeling and simulation 

framework. DEVSJAVA has relatively complex class hierarchical structure. The base 

classes of the DEVS sub-hierarchy are Atomic and Coupled as the main derived classes of 

it [64]. Class digraph is a main subclass of class coupled to define coupled model as 

described in previous subsection. For DEVS model developers, the user-defined model 

classes should derive from these basic classes and such model classes then become new 

components in DEVS for later reuse. The implementation of DEVSJAVA supports the 

fundamental concept of DEVS hierarchical construction and makes it easier to build 

complex model. 
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3.3.2 DEVS representation of discrete event integrators 

It is useful to have a compact representation of the integration scheme that is 

readily implemented on a computer, can be extended to produce new schemes, and 

provides an immediate support for parallel computing. DEVS satisfies this need. A 

detailed treatment of DEVS can be found in [61]. Several simulation environments for 

DEVS are readily available online (e.g. PowerDEVS [65], adevs [66], DEVSJAVA [67], 

CD++ [68], and JDEVS [69] to name just a few). 

DEVS uses two types of structures to describe a discrete event system. Atomic 

models describe the behavior of elementary components. Here, an atomic model will be 

used to represent individual integrators and differential functions. Coupled models 

describe collections of interacting components, where components can be atomic and 

coupled models. In this application, a coupled model describes a system of equations as 

interacting integrators and function blocks. 

An atomic model is described by a set of inputs, set of outputs, and set of states, a 

state transition function decomposed into three parts, an output function, and a time 

advance function. Formally, the structure sees the basic model of a standard parallel 

DEVS in section 3.1.1. The external transition function describes how the system 

changes state in response to input. When input is applied to the system, it is said that an 

external event has occurred. The internal transition function describes the autonomous 

behavior of the system. When the system changes state autonomously, an internal event 

is said to have occurred. The confluent transition function determines the next state of the 
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system when an internal event and external event coincide. The output function generates 

output values at times that coincide with internal events. The output values are 

determined by the state of the system just prior to the internal event. The time advance 

function determines the amount of time that must elapse before the next internal event 

will occur, assuming that no input arrives in the interim. 

Coupled models are described by a set of components and a set of component 

output to input mappings. For our purpose, we can restrict the coupled model description 

to a flat structure (i.e., a structure composed entirely of atomic models) without external 

input or output coupling (i.e., the component models can not be affected by elements 

outside of the network). With these restrictions, a coupled model is described by the 

structure  

N =< {Mk}, {zij} > 

Where 

{Mk} is a set of atomic models, and 

{zij} is a set of output to input maps zij:  Yi  Xj Φ 

Where the i and j indices correspond to Mi and Mj in {Mk} and Φ is the non-event: 

The output to input maps describe which atomic models can affect one another. 

The output to input map is, in this application, somewhat over generalized and could be 

replaced with more conventional descriptions of computational stencils and block 

diagrams. The non-event is used, in this instance, to represent components that are not 

connected. That is, if component i does not influence component j, then zij (xi) = Φ, where 

xi  Xi. 
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These structures describe what a model can do. A canonical simulation algorithm 

is used to generate dynamic behavior from the description. The algorithm is given in the 

following DEVS algorithm. Algorithm assumes a coupled model N, with a component set 

{M1, M2,…, Mn}, and a suitable set of output to input maps. For every component model 

Mi, there is a time of last event and time of next event variable tLi and tNi, respectively. 

There are also state, input, and output variables si, xi, and yi, in addition to the basic 

structural elements (i.e., state transition functions, output function, and time advance 

function). The variables xi and yi are bags, with elements taken from the input and output 

sets Xi and Yi, respectively. The simulation time is kept in variable t. 

Each of the x variables is associated with an atomic model called an integrator. 

The input to the integrator is the value of the differential function, and the output of the 

integrator is the appropriate y variable. The integrator has four state variables  

 ql, the last output value of the integrator, 

 q, the current value of the integral,  

 dq/dt, the last known value of the derivative, and  

 σ, the time until the next output event. 

The integrator's input and output events are real numbers. The value of an input 

event is the derivative at the time of the event. An output event gives the value of the 

integral at the time of the output.  

 

DEVS simulation algorithm 

t ← 0 {Initialize the models}  
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for all i  [1, n] do 

tLi ← 0 

set si to the initial state of Mi 

end for 

while terminating condition not met do 

for all i  [1, n] do 

tNi ← tLi + ta(si) 

Empty the bags xi and yi 

end for 

t ← min{tNi}  

for all i  [1, n] do 

if tNi = t then 

yi ←i(si) 

for all j  [1, n] & j ≠ i & zij (yi) ≠  do 

Add zij (yi) to the bag xj 

end for 

end if 

end for 

for all i  [1, n] do 

if tNi = t & xi is empty then 

si ← int,i(si) 

tLi ← t 
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else if tNi = t & xi is not empty then 

si ← con,i(si, xi) 

tLi ← t 

else if tNi  ≠  t & xi is not empty then 

si ←  ext,i(si,t – tLi,xi) 

tLi ← t 

end if 

end for 

end while 

 

3.3.3 Mapping Differential Equation Models into DEVS Integrator Models  

 Figure 3.13 shows the mapping Differential Equation Systems to DEVS 

Simulators in DEVSJAVA Simulation of Continuous Systems.  

 
Figure 3.13 Mapping Differential Equation Models into DEVS Integrator Models 
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3.3.4 DEVS Representation of Quantized Integrator in DEVSJAVA 

The DEVS realization of the quantized integrator has the simple definition: 

M = (X, Y, S, ext, extint, , ta). 

Where X = Y = R,   S = R  R I   and 

 ext((q, x, n), e, x’) = (q + x*e, x’, n)       

 int(q, x, n) = (n + D*sign(x), x, n + sign(x) )       

 con((q, x, n), x’) = (n + D*sign(x), x’, n + sign(x)) 

 (q, x) = (n + sign(x))*D 

  ta(q, x, n)  = | ((n+1)D - q)/x |          if  x > 0 and  (n+1)D - q > 0 

                               = | (q - nD)/x |                 if x < 0 and if   |q-nD| > 0 

                               = | D/x |                           if   x 0 and none of the above 

                               = otherwise (i.e., x = 0) 

Here we keep track of the boundary below (or at) the current state q, i.e, the 

integer floor (q/D).  Recall that even if we start on a boundary, the state may eventually 

be inside a block (hence not a multiple of D) as a result of an external transition. If, as in 

Figure 3.14(a), we are on a boundary, the time advance computation merely divides D by 

the current input x (which is the derivative, or slope, after all). If we reach the upper 

boundary (n+1) or lower boundary (n–1), we output and update the state accordingly. 

Note that so long as the input remains the same, the time to cross successive boundaries 

will be the same. Figure 3.14 (b) shows that when a new input is received, we update the 
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state using the old input and the elapsed time. From this new state, q, the new time to 

reach either the upper or lower boundary is computed. 

The Quantized DEVS integrator greatly reduces the number of transitions and 

output messages needed to simulate an integrator. It also reduces the message size from 

double to integer. Actually since the only possible transitions are to the upper or lower 

boundaries, only one bit to represent the binary valued set +1, -1 need be sent.  

 

Figure 3.14 DEVS simulator of a Quantized Integrator 

The implementation of the Quantized Integrator and Instantaneous Functions is 

given in DEVSJAVA Continuous package [70].   
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CHAPTER 4 DEVS COMBINED WITH SBML SYSTEM IN 

CELL BIOLOGY  

In the previous chapters, an implication of the ’ontological complexity’ of the cell 

that leads to need for a sophisticated software platform has been discussed. Unlike some 

of conventional approaches to physical and biochemical systems, such complicated 

nature of the cell as a target system is inevitably reflected by the design and 

implementation of the software. 

In this chapter, we introduce a new technique DEVS to solve the Cell Biology 

Processes.  We will discuss design and implementation of DEVS-SBML Platform, a new 

simulation platform based on DEVS and SBML to enable sharing of biological models. 

This platform will be compatible DEVS model with SBML model to solve Biology 

Processes using DEVS ODE solver. We put an emphasis on architecture and 

implementation of DEVS-SBML Simulation Platform, a part of the DEVS-SBML 

Platform of which core is an object-oriented simulation engine that implements the cell 

simulation using DEVS algorithm discussed in the previous chapter. 

 

4.1 Introduction 

Computational cell biology is a rapidly growing simulation-oriented research field 

that has been greatly stimulated by the array of high throughput methods developed in 

recent years. In a previous chapter, we have argued that cell simulation poses many 
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significant computational challenges that are distinct from those encountered in problems 

of other disciplines such as molecular dynamics, or computational physics, and even 

conventional biochemical simulations (see also in [71]).  A vast array of molecular 

processes occurs simultaneously in the cell. The involved physical and chemical 

processes include molecular diffusion, molecular binding, enzymatic catalysis and higher 

order phenomena such as cytoplasmic streaming, complex macromolecular interactions 

(such as the dynamics of RNA polymerase on the DNA molecule), and global structural 

changes caused by cell division and cell differentiation. Many different kinds of 

simulation algorithms have been proposed and are currently being used for simulation of 

cellular processes. Different algorithms have different strengths, and are often suited to 

different spatial and temporal scales.  In here we will use DEVS views to solve system 

biological processes, a new simulation platform, DEVS-SBML Platform. In the next 

section we will introduce the layer architecture of DEVS-SBML Platform. 

 

4.2 Layered Architecture of Cell Biology with DEVS and SBML 

The layered architecture of DEVS-SBML Platform is shown in Figure 4.1 and 4.2. 

At the top is the application layer that contains model in SBML model and DEVSJAVA 

or DEVSML. Generally, biology processes can be described by chemical reactions. 

Chemical reactions can be represented by kinetic rate equations or Michaelis-Menten and 

King-Altman rate equations to Complex enzymatic reactions. SBML is a language to 

describe the biological processes. So the designer can start with SBML model in the 

system cell biology. The SBML representation of the system biology model, which is 
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essentially XML validated by the standardized Document Type Definition (DTD) (shown 

in section 2.5 of Chapter 2), can now participate in model composition. The system 

biology model can also verily be stored in the Library for reuse; this is one of the main 

goals of the creation of SBML.  Then the SBML model can be translated into the DEVS 

model by the translator based on the development tool, libSBML (described in the section 

2.5.3 of Chapter 2).  The DEVS integrator is ready for simulating DEVS model in 

DEVSJAVA. The DEVS model also can be translated into the DEVS Modeling 

Language (DEVSML) [72] model. 

 

SBML  DEVSJAVA  DEVSML  JAVAML / CPlusML 

 

 
Figure 4.1 Layered Architecture of System Cell Biology 

processes with DEVS and SBML 

The DEVSML model is then sent to various remote locations or specific Server, 

wrapped in Simple Object Access Protocol (SOAP) message to the destination host 

(Server in our case). Based on the information contained in the DEVSML model 

description, corresponding simulator is called for to instantiate the model and executes 

the simulation with the designated simulator. 
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Figure 4.2 the Architecture of System Cell Biology processes with DEVS and SBML 

 

DEVSML 

The second layer is the DEVSML layer itself that provides seamless integration, 

composition and dynamic scenario construction resulting in portable models in DEVSML 

that are complete in every respect. These DEVSML models can be ported to any remote 

location using the net-centric infrastructure and be executed at any remote location. 

Another major advantage of such capability is total simulator ‘transparency’. The 

simulation engine is totally transparent to model execution over the net-centric 

infrastructure. The DEVSML model description files in XML contains meta-data 

information about its compliance with various simulation ‘builds’ or versions to provide 

true interoperability between various simulator engine implementations. This has been 

achieved for at least two independent simulation engines as they have an underlying 

DEVS protocol to adhere to. This has been made possible with the implementation of a 
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single atomic DTD and a single coupled DTD that validates the DEVSML descriptions 

generated from these two implementations. Such run-time interoperability provides great 

advantage when models from different repositories are used to compose bigger coupled 

models using DEVSML seamless integration capabilities. 

 

JavaML / CPlusML 

JavaML [73] is an XML-Based source code representation for Java programs. The 

JAVAML DTD specifies various elements of a valid JavaML document. It is well-suited 

to be used as canonical representation of Java source code for tools. It comes with an 

XSLT-based back-converter that translates a JavaML document back into java source 

code. More details about JavaML can be found at [73]. CPlusML also is an XML-Based 

source code representation for C++ programs. CPlusML is still under development.  

 

4.3 DEVS with SBML Platform 

 We want to develop a platform for the DEVS with SBML (DEVS-SBML) to 

model and simulate biological processes. Through this modeling and simulation platform, 

we hope to increase the productivity of biologists.  

 

4.3.1 DEVS-SBML Platform 

DEVS-SBML Platform is a chemical kinetics simulation software platform 

implemented in Java. It provides a model definition environment and various simulation 

engines for evolving a dynamical model from specified initial data. A model consists of a 
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biological process of interacting chemical species, and the reactions through which they 

interact. The software can then be used to simulate the reaction kinetics of the biological 

system of interacting species. The software will consist of the following elements: 

 A scripting engine to define a model and run simulations on the model, and to 

export a model defined in the Systems Biology Markup Language 

 An implementation of the translator from the SBML model to the DEVS model 

 An implementation of the DEVS algorithm for simulating chemical reaction 

kinetics 

 An implementation of the simulation engine to invoke the different algorithms 

such as Stochastic algorithms,  Deterministic Algorithms etc., for simulating 

chemical reaction kinetics 

 A graphical user interface (GUI) application that can be used to run simulations 

and export a model defined in the Systems Biology Markup Language 

Models are defined in text files that you can edit, or generate using an external tool (e.g., 

Celldesigner or Jdesigner). The DEVS-SBML Platform can read and write SBML Level 

1 specification. The file extension of the SBML language is: “.xml”.  

 

4.3.2 The design of DEVS-SBML Platform 

 

Figure 4.3 Overview DEVS with SBML Platform Development 
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This DEVS-SBML platform will be described by Figure 4.3. First part, SBML 

editor will be described by Celldesigner or Jdesigner free software (shown in section 

2.5.2 of Chapter 2), a structured diagram editor. We also already implemented a text-

based editor of the SBML model. Second part, the translator of SBML model to DEVS 

model reads all of information such as the species (reactants and products of the chemical 

reactions), the parameters and the whole chemical reactions, from the SBML model files, 

then translates the chemical reactions into the differential equations based on the kinetic 

law by the translator based on libSBML. We can calculate these differential equations by 

using the DEVS ODE solver. Third part, the DEVSML translator will be performed from 

the DEVS model to DEVSML model, then DEVSML model will be distributed by the 

web service. The DEVSML translator will be implemented by Saurab [72]. 

 

4.3.3 The translator from SBML model to DEVS Model 

 The translator modular is described in Figure 4.4. Model Builder (depicting the 

 

Figure 4.4 Translator Modular from SBML model to DEVS model 
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classes related to ModelBuilderMarkupLanguage.java) builds a model from SBML input 

(SBML files).  The SBML must be valid SBML level 1 (version 1 or 2). 

ModelBuilderMarkupLanguage.java class uses the SBMLValidate.SBMLReader class 

(based on the development tool, libSBML) to parse and query an SBML document 

contained in a String. This String includes all biological process information such as 

models, compartments, reactions, species, parameters etc. TranslatorSbmlToDEVS.java 

class will manipulate this string and translate this information into Ordinary Differential 

Equations (ODEs) by chemical reaction kinetics law. Then based on buildDESS classes, 

TranslatorSbmlToDEVS.java class writes a DEVS model file of biological process. And 

then DEVS simulator can run the DEVS model using Quantized DEVS Integrator. DEVS 

simview.java class can display this biological process. 

 The translator modular can process the SBML model to DEVS model file, and 

display the biological process using DEVS view. 

 

4.3.4 DEVS-SBML GUI framework 

The notable software features of DEVS-SBML are: portability across many 

computer architectures, integration with external software programs, and a graphical user 

interface (GUI). In this section, these software features are described. 

DEVS-SBML is implemented in the Java programming language, which enables 

DEVS-SBML to execute on any computer platform for which a Java 2 Runtime 

Environment of version 1.4.1 or newer, is available. DEVS-SBML has been optimized 

for efficient numerical computation in the Java Runtime Environment.  



 99

DEVS-SBML is capable of simulating models expressed in the Systems Biology 

Markup Language (SBML) Level 1 [49], [56]. DEVS-SBML can also export a model 

into SBML.  

Several simulation algorithms within DEVS-SBML may be invoked, such as the 

DEVS ODE, Runge-Kutta ODE, Gibson-Bruck, and Gillespie Direct simulators etc. 

DEVS-SBML employs a modular design in which each simulator is a software unit that 

conforms to a simple, well-defined interface specification. This feature will be described 

in next section.  

DEVS-SBML provides a menu-driven graphical user interface. This user interface 

includes screens for simulation control, model editing, and plotting simulation results. 

Also we can output the results of the simulation by plotting, a tabular format or the stored 

files. A screen capture of the DEVS-SBML graphical user interface is implemented to 

solve the biology processes in Figure 4.5.  

 
Figure 4.5 the GUI of the DEVS-SBML Simulation platform 
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4.3.5 Modular Simulation Framework 

DEVS-SBML has a modular design in which a simulator is a plug-in that 

conforms to a well-defined software interface. Each simulator is implemented as a self-

contained unit that creates all of the internal data structures it needs to function. This 

allows for a variety of simulation techniques to be applied to a single model description, 

and for the clean separation of the simulation method from the model description. The 

model definition is focused on the biochemical semantics of defining chemical species 

and reactions. The technique and parameters for simulating the model are specified in the 

simulation controller, and do not require changes to the model. 

DEVS-SBML will include both stochastic and deterministic simulators. The 

stochastic simulators will use discrete-event or multiple-event Monte Carlo algorithms. 

The deterministic simulators model the dynamics as a set of ODEs which are solved 

numerically. 

One benefit of this modular design is that one may use a deterministic ODE-based 

solver for optimization and parameter fitting, and switch to a stochastic simulation 

technique for exploring the stochastic dynamics, once the model parameters have been 

established. This modularity also simplifies the task of implementing a new simulator and 

integrating it into the system. The simulators described in this section will be available in 

our software system. 
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CHAPTER 5 RESULTS AND DISCUSSIONS 

 

In the last chapter, we have been described a new simulation platform based on 

DEVS and SBML, also called DEVS-SBML Platform. Some features of DEVS-SBML 

Platform were reviewed.  

In this chapter we will analyze the efficiency and performance of DEVS-SBML 

Platform by comparing the different simulation algorithms to biological processes. And 

we also show the simulation procedure of DEVS-SBML Platform, and how to work using 

the translator from SBML model to DEVS model. Two simple biological processes 

examples were given using DEVS-SBML Platform. 

 

5.1 Introduction 

Two relatively simple models have been constructed. The first is a heat-shock 

response to examine the performance and efficiency using DEVS solver with SBML by 

comparing the different deterministic algorithms, Deterministic and Stochastic algorithm 

respectively. The second example is a Hypothetical single-gene oscillatory circuit in a 

eukaryotic cell to show how to work using DEVS framework with SBML and how to 

translate SBML model to DEVS model in programming level. The accuracy and error 

analysis of DEVS-SBML Platform also were discussed in the single-gene oscillatory 

circuit model.  
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All the timings and results given in this work have been taken on a PC running 

RedHat Linux 9 operating system with a dual Hyper-Threading-enabled Intel Xeon 

2.8GHz CPU and 2 GB of RAM. This implementation is a single-thread application. 

 

5.2 The efficiency analysis of DEVS-SBML Platform 

5.2.1 Heat-shock model 

When cells are exposed to high temperature, the synthesis of a small number of 

proteins known as heat-shock proteins becomes selective and rapid [74]. This process is 

called the heat-shock response. σ32, a variation of the σ subunit of RNA polymerase, has 

been implicated as the global regulator for this system [75]. DnaJ is a molecular chaperon 

that plays an important role in regulating the activity and stability of σ32 [76]. Many 

molecular species involved in this process are present in small numbers, most of which 

relate to gene expression processes, and require stochastic simulation. In contrast, protein 

folding involves large quantities of molecules, making stochastic simulation 

computationally challenging.  

To evaluate the performance of a DEVS simulation scheme, we set up an ODE 

model and a stochastic model based on the E. coli heat-shock model [77]. Protein 

folding/unfolding processes have been added to the model, and modeled as differential 

equations in the ODE and using the Gillespie algorithm in the stochastic model (Figure 

5.1). The list of reactions and initial values of this model are shown in Table 5.1 and 5.2, 

respectively. The difference between Srivastava’s original model and the model used in 
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this work is also described in the legend for Figure 5.1. All parameter settings in the two 

variations of the model are identical. 

 
Figure 5.1 the heat-shock demonstration model 

Model scheme for the heat-shock model. S32 means σ32; E_S32 means the RNAP core 
enzyme with σ32; Protein means folded protein and UnProtein means unfolded protein. 
Dashed lines in the upper-right corner represent reaction modeled using Gillespie in the 
stochastic model. Rate constants for σ32 transcription and translation are 1.4×10−3 and 
7×10−2, respectively, which are the only different parameters from the Srivastava’s model. 
k_unfold = k_binding = 0.2, and k_refold = 9.73 ×106. 

Table 5.1 Reactions list of heat-shock model 

 
Except the parameters for σ32 transcription, translation, and the last three 
reactions, all the parameters are from Srivastava’s model. The partitioning 
of this heat-shock model for the composite run was based on the 
propensities of the reactions. When reactants are in small numbers, the 
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propensity of the reaction is smaller and the fluctuation or noise is bigger, 
which make stochastic method essential. Reactions with asterisks (*), 
which consume protein molecules, have at least two order higher numbers 
of reactant molecules than most of the other reactions. All the reactions 
were modeled using ODE method in the deterministic model and Gillespie 
in the stochastic model.  

Table 5.2 List of initial values used in heat-shock model 

 
 

We ran the heat-shock model for 100 seconds and traced the quantities of σ32 and 

DnaJ to benchmark the performance. These two species were selected because σ32 is 

biologically important, as it controls the expression level of heat-shock proteins, and 

DnaJ is on the boundary of the algorithms in the DEVS composite model. The total 

number of protein molecules in this example model is of order 106 – 107.  Figure 5.2 (a) 

and (b) are the simulation results of the heat-shock model of (a) σ32 and (b) DnaJ time 

courses using the DEVS ODE solver and E-cell system. It can be seen that the results of 

the DEVS ODE solver and the E-cell system models almost match both in σ32 and DnaJ 

cases. This is shown that DEVS method also is a correct way to simulate the biological 

process. 
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Figure 5.2 Simulation results of the heat-shock model using DEVS ODE 
solver (fine curve) and the E-cell system (dot curve). Comparisons of (a) 
DnaJ and (b) σ32 time courses of the first 65 seconds of the simulation for 
the DEVS ODE solver and the E-cell system.  

 

5.2.2 Efficiency analysis of the DEVS-SBML platform 

Table 5.3 shows some results using different software tools, E-cell [78], CVODE 

[79] and DEVSJAVA in the deterministic model. We can see DEVS integrator is faster 

and more efficient than other tools to calculate the biological process, the heat-shock 

response.  
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Table 5.3 the results from the different tools in the heat-shock response 

Tools Running Time(sec.) σ32 Level DnaJ Level 

E-cell System[78] 3.703  0.21 15.01 464.4 

CVODE 2.952  0.037 15.23 464.97 

DEVSJAVA 2.673   0.051 14.89 463.95 

These models were run for 100 seconds. Each timing is an average of five 
runs. The results do not include times for program invocation and parsing of 
the XML model file.  

In this heat-shock response model, DEVS integrator is more efficient method to 

simulate the heat-shock response process. This is immediately an advantage of the 

combined DEV&DESS approach.  This method connect smoothly to DEVS and DESS 

each other in a natural way as the scales of concentration and propensity changes of 

chemical species, such as reactants or products of chemical reactions.  In many instances, 

the discrete event approximation enjoys a computational advantage as well [80] [81].  

The reason for the performance advantage can be understood intuitively in two 

related ways. The first is to observe that the time advance function determines the 

frequency with which state updates are calculated at a cell. The time advance at each cell 

is inversely proportional to the magnitude of the derivative, and so cells that are changing 

slowly will have large time advances relative to cells that are changing quickly. This 

causes the simulation algorithm to focus effort on the changing portion of the solution, 

with significantly less work being devoted to portions that are changing slowly. A second 

explanation can be had by observing that the number of quantum crossings required for 

the solution at a grid point to move from its initial to final state is, approximately, equal 

to the distance between those two states divided by the quantum size. This gives a lower 

bound on the number of state transitions that are required to move from one state to 
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another. It can be shown that, in many instances, the number of state transitions required 

by the DEVS model will closely approximate this ideal number [80]. 

 

5.2.3 ODE Deterministic Algorithm and Gillespie Stochastic Algorithm 

In the limit of large numbers of reactant molecules, stochastic and deterministic 

simulations are equivalent [82]. In contrast, if the system has low copy numbers of 

species, the deterministic law of mass action breaks down because the steady-state 

fluctuations in the number of molecules (which is proportional to the square root of the 

number of molecules) becomes a significant factor in the behavior of the system [83]. 

ODE models isolate the biochemical system into a group of deterministic and continuous 

reactions, and tacitly ignore fluctuations in the pathway [84]. With identical parameter 

settings, the stochastic and deterministic models can produce different results, and 

stochastic models are generally believed to be more accurate [85] [86]. Figure 5.3 shows 

the simulation results of the heat-shock model of (a) σ32 and (b) DnaJ using the DEVS 

ODE solver and Gillespie stochastic algorithm. The mean levels of DnaJ and σ32 were 

calculated over the simulation results, and trapezoid method was used for the mean 

calculation in the stochastic run. It can be seen that means of the DEVS ODE solver and 

the stochastic models agree well both in σ32 and DnaJ cases. The mean levels of σ32 and 

DnaJ were calculated: 15.02  0.421 and 464.23  0.452 in the stochastic run. 
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Figure 5.3 Simulation results of the heat-shock model using the DEVS 
ODE solver (fine curve) and Gillespie stochastic algorithm (dot curve). 
Comparisons of (a) DnaJ and (b) σ32 time courses of the first 65 seconds of 
the simulation for the DEVS model and the stochastic model. Each timing 
is an average of five runs.  

Despite its advantages, however, Gillespie’s scheme of exact stochastic 

simulation has limited utility due to its computational cost which is proportional to the 

number of molecules. Maybe the composition of the different simulation methods is a 

good way [78].  We can combine DEVS ODE model with the stochastic model together 

to form multi-formalism simulation frameworks to improve the performance of the 
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original purely stochastic model. A logical extension to this “static” combination of the 

deterministic and stochastic schemes would be “dynamic” switching between these 

different simulation methods. This will be further explored in future work. 

 

5.2.4 Performance analysis in the deterministic and stochastic schemes 

The DEVS ODE heat-shock model runs faster than the Gillespie’s stochastic 

model. The following crude approximation of computational costs of the ODE models 

withstands some discussion. 

OODE     [∂f /∂x] N                                                (5.1) 

OGillespie  [ a] logN                                               (5.2) 

Where [∂f /∂x] is a measure of the degree of stiffness, N is the number of reactions, [ a] 

denote the total propensity, and   is a constant parameter to relate [∂f/∂x] and [ a]. 

Computational cost of explicit ODE solvers is largely determined by the degree of 

stiffness, which is dominated by [∂f/∂x] (where x is a dependent variable, and f is the 

derivative function for x). The large performance difference between the ODE and 

Gillespie implies the following: 

 [∂f /∂x] N   <<   [ a] logN                                             (5.3) 

In fact, the step size of the ODE Stepper was about 10−3, while the step size of the 

Gillespie-Gibson Stepper was typically in the range of 10−6 – 10−9. 

The performance of the deterministic and stochastic simulation algorithms 

described above has been benchmarked using a variant of the heat-shock response model 

for Escherichia coli proposed by Srivastava et al. [77] and adapted by Takahashi et al. 
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for benchmarking the performance of the E-Cell simulator [78]. This model includes a 

large separation of dynamical time scales, which is typical of complex biochemical 

networks described in section 5.2.1. The benchmark results for the heat-shock model are 

summarized in Table 5.4.  The results show large performance difference between the 

deterministic and stochastic algorithms, the same as what we discussed above in section 

5.2.2. The results also show in the stochastic schemes, the efficiency of the Gibson-Bruck 

algorithm relative to the Gillespie Direct algorithm, and the significant speed 

improvement of Tau-Leap algorithms over the Gibson-Bruck and Gillespie algorithms.  

Table 5.4 the results in the deterministic and stochastic schemes 

Algorithm Running Time(sec.) 
Deterministic method DEVS ODE 2.673   0.051 
 
Stochastic method 

Gillespie Direct 514.6  28.2 
Gibson-Bruck 404.9  10.7 

Tau-Leap Simple 35.53  0.43 
Tau-Leap Complex 9.55  0.15 

Benchmark results for solving the dynamics of the E. coli heat-shock 
model out to 100 seconds. The heat-shock model was solved for 100 
seconds of simulation time, using five algorithms: DEVS ODE, 
Gillespie, Gibson-Bruck, Tau-Leap Complex, and Tau-Leap Simple. 
The ensemble size for the stochastic simulators was one. For each of 
the five simulators, the simulation was repeated five times, in order to 
obtain an average. The error tolerance for the Tau-Leap algorithms 
was 0.01. Both the relative and absolute error tolerances for the ODE 
solver were 10-4. 

 
It should be emphasized that no modifications of the model definition file were 

necessary in order to switch between the various simulation algorithms shown above. 

This is made possible because our model definition language is simulation algorithm-

agnostic. Furthermore, the Tau-Leap method does not require an ad hoc partitioning of 

the model into stochastic and deterministic reaction channels. This is a potential 
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advantage in analyzing a complex model for which the “fast” and “slow” degrees of 

freedom are not known a priori. This will be one of future research topics. 

  

5.3 The simulation procedure of DEVS-SBML Platform 

5.3.1 Hypothetical single-gene oscillatory circuit in a eukaryotic cell 

Our example is a two-compartment model of a hypothetical single-gene 

oscillatory circuit in a eukaryotic cell [49]. The model is shown diagrammatically in 

Figure 5.4 and the list of chemical reactions for the model is given in Table 5.5. In this 

highly simplified model, the nucleus of the cell is represented as one compartment and 

the surrounding cell cytoplasm as another compartment. Let us suppose that there is a 

gene G which encodes its own repressor and is transcriptionally activated at a constant 

rate, Vi, by a ubiquitous transcription factor U. Transcriptional activation involves several 

enzymatic reactions summarized here as the production of active RNAP (from source 

material, src) and its degradation (to waste). The transcribed mRNA is then transported 

out of the nucleus and into the cytoplasm, where it is translated into the product (P) of the 

gene G from constituent amino acids (AA) and where it is also subject to degradation. P 

travels from the cytoplasm back into the nucleus to repress further transcription of G, but 

is itself also subject to degradation. Eventually, the concentration of P becomes so low 

that G can be reactivated by U, and the cycle repeats itself. To simulate the model, Table 

5.6 also shows the initial value of all species. 
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Figure 5.4 Schematic diagram of the hypothetical single-gene oscillatory circuit model 

Table 5.5 Reactions list in the single-gene oscillatory circuit model.  

 
mRNAnuc: mRNA in nucleus. mRNAcyt: mRNA in cytoplasm. RNAcyt, 
RNAnuc: RNA constituents. The terms beginning with the letters ‘K’ 
and ‘V’ are parameters given values in Table 5.7. 

Table 5.6 the initial value of Species list in the single-gene oscillatory circuit model 

name Compartment Position To 
Compartment 

quantity 
type 

initial 
Quantity 

src C2:nucleus inside Amount 0 
waste C2:nucleus inside Amount 0 
RNAP C2:nucleus inside Amount 0.66 
RNAnuc C2:nucleus inside Amount 96 

mRNAnuc C2:nucleus inside Amount 0.003 
mRNAcyt C1:cytoplasm inside Amount 3.8 
RNAcyt C1:cytoplasm inside Amount 0.005 

P C1:cytoplasm inside Amount 20 
AA C1:cytoplasm inside Amount 90.465 
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Table 5.7 the parameters of the reactions in the single-gene oscillatory circuit model 

name Vi Ki Vkd Vm1 Km1 Vm2 Km2 Vm3 Km3 Vm4 Km4 k1 k2 
value 10 0.6 1 50 1 50 0.5 50 80 50 1 100 100

 
 

5.3.2 The simulation procedure of DEVS-SBML Platform 

Base on the above of the hypothetical single-gene oscillatory circuit model’s 

description and section 4.3 in last chapter, First step we can use the SBML specification 

[56] to describe the model, in detail refer to Appendix A: singleGene.xml (SBML model 

description file). Also we can use a structured diagram editor: CellDesignerTm [57] to 

draw this model diagram to get the SBML model description file. Figure 5.5 is the 

process diagram using software tool CellDesigner v3.5.2. The process diagram is a state 

transition diagram that represents transition of the state of each molecule using arrows 

that indicate transition and circle-headed arrows and bar-headed arrows to specify 

promotion and inhibition of such transitions. We can use this tool to edit or change the 

model, include initial value of the species, the parameters of reactions etc.  

 
Figure 5.5 the process diagram of the single-gene oscillatory circuit model 
using software CellDesigner v3.5.2. 
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 The following step we will translate SBML model into DEVSJAVA model, called 

translator based on the development tool of SBML, libSBML [58]. LibSBML can read, 

write, manipulate, and validate SBML files and data streams. So the translator reads all of 

information of the single-gene oscillatory circuit model from the SBML file, 

singGene.xml, to a string contained all of biological model information such as the 

species, chemical reactions etc. And all chemically reacting information can be 

represented by a means of kinetic rate equations or Michaelis-Menten and King-Altman 

types of rate equations (see section 2.3.1). Then by the translator class, we construct 

DEVS model files, package singleGene (refer to Appendix B). Then DEVSJAVA can 

solve these differential equations by DEVS quantization integrator. The Figure 5.6 is the 

viewer of DEVSJAVA ODE solver for the single-gene oscillatory circuit model. 

 
Figure 5.6 the DEVS viewer for the single-gene oscillatory circuit model 

 To evaluate the performance of a DEVS simulation, we set up a DEVS ODE 

model of the single-gene oscillatory circuit with the initial value of species in Table 5.6 
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and the parameters of the reactions in Table 5.7 respectively. We ran the single-gene 

oscillatory circuit model for the first 20 seconds to trace the quantities of all species, 

which is given in Figure 5.7.  

 
Figure 5.7 Simulation results with Quantum Size (D) = 0.001 of all 
species for the single-gene oscillatory circuit model 

 

5.3.3 Accuracy of DEVS-SBML simulation 

The specie amino acids (AA) were selected to analyze the single-gene oscillatory 

circuit model, because AA is biologically important, as it controls the expression level of 

the proteins directly.  

For the discussing the accuracy of DEVS-SBML Platform, we like to introduce 

the result of CVODE as a benchmark. So the estimation and control of errors of CVODE 

is very important. In CVODE, local truncation errors in the computed values of y are 

estimated and the solver will control the vector e of estimated local errors in accordance 
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with a combination of input relative and absolute tolerances. Specifically the vector e is 

made to satisfy an inequality of the form [87] 

║e║WRMS, ewt   ≤ 1                                                      (5.4) 

where the weighted root-mean-square norm ║e║WRMS, w  with weight vector w is defined 

as  

    

    

(5.5) 

The CVODE error weight vector ewt has components 

 

(5.6) 

where the non-negative relative and absolute tolerances RTOL and ATOL are specified by 

the user.  Here RTOL is a scalar, but ATOL can be either a scalar or a vector. 

The CVODE integrator computes an estimate ei of the local error at each time 

step and strives to satisfy the inequality (5.4). ║e║WRMS, w is the weighted root-mean-

square norm defined in terms of the user-defined relative and absolute tolerances (see 

(5.5) and (5.6)). Since these tolerances define the allowed error per step, they should be 

chosen conservatively. Experience indicates that a conservative choice yields a more 

economical solution than error tolerances that are too large. The error control mechanism 

in CVODE varies the step-size and order in an attempt to take minimum number of steps 

while satisfying the local error test (5.4). Therefore it is important to pick all the tolerance 

values conservatively, because they control the error committed on each individual time 
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step. The final (global) errors are some sort of accumulation of those per-step errors. A 

good rule of thumb is to reduce the tolerances by a factor of .01 from the actual desired 

limits on errors. So if you want .01% accuracy (globally), a good choice is RTOL = 10-6. 

But in any case, it is a good idea to do a few experiments with the tolerances to see how 

the computed solution values vary as tolerances are reduced. In the following calculation 

using CVODE solver, we setup RTOL = 10-6 and ATOL = 10-5, because the calculation 

results of single-gene oscillatory circuit model using CVODE method are no big change 

as RTOL is reduced from 10-6.  So the final (global) errors of running single-gene model 

using CVODE method are controlled to .01%.  

The single-gene oscillatory circuit model was run using the DEVS (fine curve) 

and CVODE (dot curve) methods, the simulation results for the first 10 time courses is 

shown in Figure 5.8. We can see the trajectory of AA in the DEVS model almost matches 

that of the CVODE method. No difference is by observing the simulation results between 

the DEVS and CVODE in the first and second moments of the time course. An analysis 

of higher moments showed a slight difference (Figure 5.8). However, as the overall 

behavior of AA exemplifies, it can be seen that the simulation results of the DEVS and 

the CVODE models agree well. It has been verified DEVS-SBML Platform is a right and 

accurate software tool to the simulation of the biological process.    
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Figure 5.8 Simulation results of AA of the single-gene oscillatory circuit 
model for the DEVS model and the CVODE model. Comparison of AA 
time courses of the first 10 seconds of the simulation.  

 

5.3.4 Error analysis in DEVS algorithm 

Figure 5.9 (a) shows the simulation result with different values of Quantum Size 

D.  Even with large values of D, it can be seen that the simulation result remains bounded. 

Figure 5.9 (b) shows the error in the simulation result for the more reasonable choices of 

D. From the figure, the correspondence between a reduction in D and a reduction in the 

computational error is readily apparent.  
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Figure 5.9 DEVS simulation results analysis of AA for the single-gene 
oscillatory circuit model (a) with different values of D. (b) absolute error 
of AA as a function of D.  

Figure 5.10 demonstrates the execution time with Quantum Size D in DEVS 

framework for the single-gene oscillatory circuit model. It can be seen that as the 

quantum size D becomes bigger, the execution time becomes smaller. The execution time 

reduction highly depends on the quantum size D.  In Figure 5.9 (b) we already see that as 

quantum size grows, the absolute error also grows. However, the model having bigger 
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quantum size shows the better execution time as shown in the Figure 5.10. In other word, 

the model has a better execution time as the quantum size become bigger, but it triggers a 

bad error rate. So this is a trade off between execution time and accuracy.   

 
Figure 5.10 Execution time as a function of D for the single-gene 
oscillatory circuit model 

 

5.4 Discussions of DEVS algorithm 

Due to the non-linear nature of the sub-systems and the intimate couplings 

between them, simulation is crucial for cell biology research. In the past, however, it has 

been the norm to adopt different simulation algorithms for different sub-systems of the 

cell. This had made it difficult to combine the sub-cellular models, and in many cases this 

also limited the applications of the simulation to single-scale, sub-cellular problems. 

In this chapter, we have provided a DEVS algorithm that incorporates the 

differential equations as a Multi-formalism approach. In the section 5.3 we had given two 

examples to analyze the DEVS algorithm combined with SBML. From the numerical 
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experiments performed before, they were shown that this DEVS algorithm combined 

with SBML can efficiently drive simulation models. We already analyzed the error and 

execution time of DEVS combined with SBML which is shown that as quantum size D 

grows, the absolute error also grows, but it triggers a bad execution time. The effects also 

show that means of the DEVS ODE model and the stochastic Gillespie’s model agree 

well.  We also calculated the simulation result using the CVODE model and DEVS 

model; it can be shown the results almost match. 

The best algorithm for a specific model is determined by the nature of the target 

system. Our DEVS algorithm combined with SBML provides a solution for situations in 

which it is necessary to simulate processes concurrently across multiple scales of time, 

space or concentration [84]. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 

 

6.1 Conclusions 

In a summary, this thesis discussed numerical simulations in more details in 

computational cell biology in three parts.  

First we overviewed the area of research, cell biology, from the viewpoint of 

simulation studies, and commonly used modeling schemes and numerical methods have 

been reviewed. We performed an analysis of some computational techniques in the 

design of simulation algorithms and software platforms in this field of research.  

Secondly, we reviewed the basic DEVS concept and DEVS formalism. We also 

have inspected three basic system modeling formalisms: DEVS, DTSS and DESS. Multi-

algorithm framework, the combination of the DEVS and the DESS formalism, was 

reviews in this thesis. The implementation of the integrator and Instantaneous Functions 

to differential equations is given in DEVSJAVA Continuous package. 

Lastly, a novel computational framework for cell biology simulation that can 

drive different simulation models with DEVS combined with SBML, DEVS-SBML 

Platform, has been introduced. This object-oriented framework based on DEVS defines 

discrete and continuous ’transition functions’, and can incorporate virtually any discrete 

and continuous simulation algorithms. By comparing the different deterministic 

algorithms, Deterministic and Stochastic algorithm respectively, it is shown that DEVS-
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SBML Platform can efficiently handle the biological models. Also one example is given 

to show how to work using DEVS framework with SBML and how to translate SBML 

model to DEVS model. Two relatively simple models, (1) the E. coli heat-shock response 

model and (2) the single-gene oscillatory circuit model, are constructed. It was suggested 

that this framework will likely be scaled up to more realistic, complex and large-scale 

computational cell biology problems.  

In a conclusion, we already have introduced new techniques to solve Biology 

Processes using DEVS algorithm in this thesis. We can share biological models described 

by DEVS-SBML Platform, which will be developed a new simulation platform. It was 

shown that it enable biological simulations more efficient and faster using DEVS than 

other methods, such as CVODE, the E-cell system etc. The performance measurement 

shows how the quantum size of DEVS integrator affects execution time and error rate. 

The numerical experimental result shows the followings clearly: the bigger quantum size 

the biological models have, the higher error rate and the better execution time they have. 

DEVS-SBML Platform, a generic software environment for computational cell biology, 

is being under development. We also show the simulation procedure of DEVS-SBML 

Platform, and how to work using the translator from SBML model to DEVS model. It has 

been verified that, owing to its object-oriented design, DEVS-SBML Platform will be 

implemented on a real software platform using Java language in an intuitive and efficient 

way. 

 

6.2 Future works 
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We achieve both evaluating the efficiency of the simulation results of biological 

processes and performing the changes of the simulation results with Quantum Size D 

over system cell biology. In addition, we also accomplish some comparisons DEVS ODE 

models with stochastic models. However, there are further research works: developing 

more realistic, complex and large-scale computational cell biology problems such as 

metabolism, signal transduction pathways and gene expression systems etc., and further 

investigating how to use the stochastic algorithm in the DEVS framework, due to the 

stochastic models are generally believed to be more accurate to the real biological 

processes.  For the future work, it will be implemented the combination of the 

deterministic and stochastic schemes into the DEVS framework to simulate the biological 

models.   

Another future work need to be continuously developed and implemented DEVS-

SBML Platform, a generic software environment. Design and implementation of a 

generic computational framework and scientific software demand a way of thinking that 

is completely different from ordinary virtues in many other scientific disciplines. Well 

defined and concrete problems often characterize good problem-driven scientific projects, 

whilst abstraction and generalization of the problems are the driving forces for the 

algorithm and software developers. Although at the time of writing this it is somewhat 

unclear that what extent of application domains are to be given to the algorithmic, 

computational and software frameworks developed in this work successfully, we strongly 

believe that, at least, necessity of the novel approach, DEVS combined with SBML, to 

the computational problems those characterize the new field of computational cell 
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biology, including multi-formalism and multi-scale simulations, poses genuine challenges. 

We hope that the ideas described in this thesis stimulate further discussions and 

developments. 
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APPENDIX A: SingleGene.xml 

<?xml version="1.0" encoding="UTF-8"?> 
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"> 
<model id="Single_Gene"> 
<listOfCompartments> 
<compartment id="default" size="1"/> 
<compartment id="c1" name="Cytoplasm" size="1" outside="default"/> 
<compartment id="c2" name="nucleus" size="1" outside="c1"/> 
</listOfCompartments> 
 
<listOfSpecies> 
<species id="s1" name="src" compartment="c2" initialAmount="0" 
boundaryCondition="true" charge="0"/> 
<species id="s2" name="waste" compartment="c2" initialAmount="0" 
boundaryCondition="true" charge="0"/> 
<species id="s3" name="RNAP" compartment="c2" initialAmount="0.66" charge="0"/> 
<species id="s4" name="RNAnuc" compartment="c2" initialAmount="96" charge="0"/> 
<species id="s5" name="mRNAnuc" compartment="c2" initialAmount="0.003" 
charge="0"/> 
<species id="s6" name="mRNAcyt" compartment="c1" initialAmount="3.8" 
charge="0"/> 
<species id="s7" name="RNAcyt" compartment="c1" initialAmount="0.005" 
charge="0"/> 
<species id="s8" name="P" compartment="c1" initialAmount="20" charge="0"/> 
<species id="s9" name="AA" compartment="c1" initialAmount="90.465" charge="0"/> 
</listOfSpecies> 
 
<listOfReactions> 
 
<reaction id="re1" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s1"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s3"/> 
</listOfProducts> 
<listOfModifiers> 
<modifierSpeciesReference species="s8"/> 
</listOfModifiers> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
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<divide/> 
<ci> Vi </ci> 
<apply> 
<plus/> 
<cn type="integer"> 1 </cn> 
<apply> 
<divide/> 
<ci> s8 </ci> 
<ci> Ki </ci> 
</apply> 
</apply> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="Vi" value="10"/> 
<parameter id="Ki" value="0.6"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re2" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s3"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s2"/> 
</listOfProducts> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<times/> 
<ci> Vkd </ci> 
<ci> s3 </ci> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="Vkd" value="1"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re3" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s4"/> 
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</listOfReactants> 
<listOfProducts> 
<speciesReference species="s5"/> 
</listOfProducts> 
<listOfModifiers> 
<modifierSpeciesReference species="s3"/> 
</listOfModifiers> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<divide/> 
<apply> 
<times/> 
<ci> Vm1 </ci> 
<ci> s3 </ci> 
<ci> s4 </ci> 
</apply> 
<apply> 
<plus/> 
<ci> s4 </ci> 
<ci> Km1 </ci> 
</apply> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="Vm1" value="50"/> 
<parameter id="Km1" value="1"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re6" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s6"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s7"/> 
</listOfProducts> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<divide/> 
<apply> 
<times/> 
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<ci> Vm2 </ci> 
<ci> s6 </ci> 
</apply> 
<apply> 
<plus/> 
<ci> s6 </ci> 
<ci> Km2 </ci> 
</apply> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="Vm2" value="50"/> 
<parameter id="Km2" value="0.5"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re7" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s9"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s8"/> 
</listOfProducts> 
<listOfModifiers> 
<modifierSpeciesReference species="s6"/> 
</listOfModifiers> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<divide/> 
<apply> 
<times/> 
<ci> Vm3 </ci> 
<ci> s6 </ci> 
<ci> s9 </ci> 
</apply> 
<apply> 
<plus/> 
<ci> s9 </ci> 
<ci> Km3 </ci> 
</apply> 
</apply> 
</math> 
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<listOfParameters> 
<parameter id="Vm3" value="50"/> 
<parameter id="Km3" value="80"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re8" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s8"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s9"/> 
</listOfProducts> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<divide/> 
<apply> 
<times/> 
<ci> Vm4 </ci> 
<ci> s8 </ci> 
</apply> 
<apply> 
<plus/> 
<ci> s8 </ci> 
<ci> Km4 </ci> 
</apply> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="Vm4" value="50"/> 
<parameter id="Km4" value="1"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re9" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s5"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s6"/> 
</listOfProducts> 
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<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<times/> 
<ci> k1 </ci> 
<ci> s5 </ci> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="k1" value="100"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
<reaction id="re10" reversible="false" fast="false"> 
<listOfReactants> 
<speciesReference species="s7"/> 
</listOfReactants> 
<listOfProducts> 
<speciesReference species="s4"/> 
</listOfProducts> 
<kineticLaw> 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 
<times/> 
<ci> k2 </ci> 
<ci> s7 </ci> 
</apply> 
</math> 
<listOfParameters> 
<parameter id="k2" value="100"/> 
</listOfParameters> 
</kineticLaw> 
</reaction> 
 
</listOfReactions> 
</model> 
</sbml> 
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APPENDIX B: Package singleGene using DEVS model 

 

Package singleGene describe the hypothetical single-gene oscillatory circuit 

model in DEVS framework using Java language. Package singleGene is generated 

automatically by the translator from the SBML model to the DEVS model. Package 

singleGene include several Java source code files: 

singleGene.java: display chemical reactions of the single-gene model using DEVS 

Integrators 

x_AARate.java: the kinetic Law rate of the specie AA 

x_mRNAcytRate.java: the kinetic Law rate of the specie mRNAcyt 

x_mRNAnucRate.java: the kinetic Law rate of the specie mRNAnuc 

x_PRate.java: the kinetic Law rate of the specie P 

x_RNAcytRate.java: the kinetic Law rate of the specie RNAcyt 

x_RNAnucRate.java: the kinetic Law rate of the specie RNAnuc 

x_RNAPRate.java: the kinetic Law rate of the specie RNAP 

x_srcRate.java: the kinetic Law rate of the specie src 

x_wasteRate.java: the kinetic Law rate of the specie waste 


