PAGE
129

RTDEVS/CORBA: A DISTRIBUTED OBJECT COMPUTING ENVIRONMENT FOR SIMULATION-BASED DESIGN OF REAL-TIME DISCRETE EVENT SYSTEMS

By

Young Kwan Cho

[image: image50.emf]

The number of correct confluent messages

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 1

THE UNIVERSITY OF ARIZONA ®
GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have

read the dissertation prepared by

 Young Kwan Cho

entitled
RTDEVS/CORBA: A Distributed Object Computing

Environment for Simulation-Based Design of Real-Time

Discrete Event Systems

and recommend that it is accepted as fulfilling the dissertation

requirement for the Degree of

Doctor of Philosophy.

Bernard P. Zeigler, Ph.D.

Date

Ralph Martinez, Ph.D.

Date
Jerzy Rozenblit, Ph.D.

Date

D. Phillip Guertin, Ph.D.

Date
George L. Ball, Ph.D.

Date

Final approval and acceptance of this dissertation is contingent upon

the candidate’s submission of the final copy of the dissertation to the

Graduate College.

I hereby certify that I have read this dissertation prepared under my

direction and recommend that it be accepted as fulfilling the dissertation

requirement.

Dissertation Director
 Bernard P. Zeigler, Ph.D.

Date

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interest of scholarship. In all other instances, however, permission must be obtained from the author.

[image: image51.emf]Server

Server

Workstation Workstation

Laptop

Computer Computer

NTP Server

NTP Server

SIGNED:

ACKNOWLEDGEMENT

First of all, I would like to thank my advisor, Bernard P. Zeigler, for his guidance and help on my research in the Ph.D. program. Without his support and guidance, this dissertation would have not been completed. Thank you, Professor Zeigler! I also thank Dr. Ralph Martinez, Dr. Jerzy Rozenblit, Dr. Phillip Guertin, and Dr. George Ball for their review of this dissertation and comments as committee members.

I thank Dr. Tag Gon Kim, who is a professor at KAIST, for his valuable comments and ideas on my dissertation while visiting the ACIMS Lab. I would like to express gratitude to my colleagues in the ACIMS Lab, Mr. Sunwoo Park, Mr. Xiaolin Hu, and Mr. Saehoon Cheon; and previous Lab members Dr. Hyup Jae Cho, Dr. Jong Sik Lee, and Dr. Jerry Couretas for their help. I especially thank Mr. Sunwoo Park for his support and help in implementing actual software systems with his ample knowledge on programming languages.

The Republic of Korea Air Force which made it possible for me to take this great opportunity also deserves to get my appreciation.

To My Family: Wife Sooyoung, Daughter Ahyeon, and Son Hyokeun

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………………... 8

LIST OF TABLES ..……………………………………………………... 10

ABSTRACT …………………………………………………………..... 11

131
INTRODUCTION

161.1
Real-time Simulation and Execution

181.2
Layered Design Approach

211.3
Event-Based Control

221.4
DEVS Modeling and Simulation Environment

241.5
Summary of Contributions

251.6
Dissertation Organization

272
DEVS FORMALISM AND REAL-TIME EXTENDED DEVS FORMALISM

272.1
Introduction

272.2
DEVS (Discrete Event System Specification) Formalism

322.3
Real-Time DEVS Formalism

343
CORBA AS REAL-TIME MIDDLEWARE

343.1
An Overview of Middleware

363.2
Current Research on Real-time Middleware

373.3
Common Object Request Broker Architecture (CORBA)

433.4
TAO (The ACE ORB): Implementation of Real-Time CORBA

443.4.1
Time Service in TAO

463.4.2
TAO’s Real-Time Event Service

493.5
Interoperability between different vendor ORBs

524
DEVS/CORBA: DISTRIBUTED MODELING AND SIMULATION ENVIRONMENT

524.1
Introduction

TABLE OF CONTENTS - Continued
524.2
Implementation of Parallel DEVS Simulation Protocol over CORBA

554.2.1
Parallel and Distributed DEVS Simulation Protocol

584.2.2
Routing DEVS messages with CORBA Interfaces

635
IMPEMENTATION OF DISTRIBUTED REAL-TIME DEVS/CORBA

635.1
Introduction

655.2
Time Issues

675.2.1
Clock Synchronization in Distributed Computing Environment

725.2.2
Clock Synchronization in Real-Time DEVS/CORBA

775.3
Implementation of Real-Time DEVS/CORBA

775.3.1
Real-time Simulator

835.3.2
Delivering Messages in Real-Time

875.3.3
Handling Confluent problems in Real-Time distributed environment

975.3.4
Getting Data from External Environment Systems

1005.3.5
Implementation of Activity

1036
APPLICATION EXAMPLES

1036.1
Distributed Temperature Control with Hierarchical Scheduling

1036.1.1
An Overview

1076.1.2
Model Construction

1106.1.3
Simulation and Execution of the Model

1136.2
Real-Time Concurrent Execution of Multi-resolution Models

1136.2.1
Introduction

1146.2.2
Real-time Multi-Resolution Model Example

1187
CONCLUSIONS AND FUTURE WORK

1187.1
Conclusions

1217.2
Future Work

124REFERENCES

LIST OF FIGURES
17Figure 1. Real-Time Simulation and Execution

19Figure 2. Layers in distributed event-based control

20Figure 3. Flow Diagram of Event-Based Control

29Figure 4. Logic and Dynamics of a Basic Parallel DEVS Model

31Figure 5. Coupled DEVS Model

35Figure 6. Overview of Middleware

37Figure 7. OMG Reference Model Architecture

40Figure 8. ORB Architecture in CORBA Reference Model

45Figure 9. A Distributed Time Service

48Figure 10. COS Event Service Architecture

49Figure 11. Structure of Real-Time Information in TAO rtEC

50Figure 12. Conceptual diagram of interaction between different vendor ORBs

51Figure 13. Interaction between ORBs in different languages

53Figure 14. DEVS/CORBA Client and Server Model

57Figure 15. Sequential Representation of Parallel and Distributed DEVS Simulation Cycle

59Figure 16. DEVS coupling and routing

61Figure 17. DEVS coupling through IDL interfaces

69Figure 18. Slow, Perfect, and Fast Clocks

74Figure 19. Distributed Time Synchronization in RTDEVS/CORBA using NTP Time Server

75Figure 20. Distribution for Error of Time Reference to TAO Time Service

76Figure 21. Distribution for Error of Time Reference to the System Call

79Figure 22. Real-time Simulator and its Model

80Figure 23. Simulator Algorithm

82Figure 24. Time discrepancy between Scheduled and Actual Event Time

85Figure 25. Mapping Suppliers/Consumers to DEVS ports

LIST OF FIGURES - Continued

86Figure 26. Mapping DEVS message to TAO Event

90Figure 27. An Overview of Confluent Problem in Logical Time Simulation

92Figure 28. Confluent Problem in Real-Time Simulation

95Figure 29. Result of Confluent Experiment

96Figure 30. Two different confluent cases

98Figure 31. Distribution of Jitter

99Figure 32. Design of External Interface for Real-Time Simulator

100Figure 33. Class hierarchy of activity

101Figure 34. Example of Activity in a DEVS model

105Figure 35. Overall Structure of Distributed Temperature Control Model

106Figure 36. System Entity Structure of Distributed Temperature Control Model

108Figure 37. Minimized Model Architecture

110Figure 38. Sub-Controller Model

111Figure 39. Result of Temperature Control without User Interruption

112Figure 40. Result of Temperature Control with User Interruption

115Figure 41. Overview of Multi-resolution Model Simulation

LIST OF TABLES

65Table 1. A Time Taxonomy

76Table 2. Statistics for Time Reference Errors (ms)

98Table 3. Statistics for Jitter of Event Arrival (ms)

117Table 4. Result of Concurrent Execution of Multi-resolution Models

ABSTRACT

Ever since distributed systems technology became increasingly popular in the real-time computing area about two decades ago, real-time distributed object computing technologies have been attracting more attention from researchers and engineers. While highly effective object-oriented methodologies are now widely adopted to reduce the development complexity and maintenance costs of large scale non-real-time software applications, real-time systems engineering practice has not kept pace with these system development methodologies. Indeed, real-time design techniques have not fully adopted the concepts of modular design and analysis which are the main virtues of object-oriented design technologies. As a consequence, the demand for object-oriented analysis, design, and implementation of large-scale real-time applications has been growing.

To address the need for object-oriented real-time systems engineering environments we propose the Real-Time DEVS/CORBA (RTDEVS/CORBA) distributed object computing environment. In this dissertation, we show how this environment is an extension of previously developed DEVS-based modeling and simulation frameworks that have been shown to support an effective modeling and simulation methodology in various application areas. The major objective in developing Distributed Real-Time DEVS/CORBA is to establish a framework in which distributed real-time systems can be designed through DEVS-based modeling and simulation studies, and then migrated with minimal additional effort to be executed in the real-time distributed environment. This environment provides generic support for developing models of distributed embedded software systems, evaluating their performance and timing behavior through simulation and easing the transition from the simulation to actual executions. In this dissertation we describe, in some detail, the design and implementation of the RTDEVS/CORBA environment. It was implemented over Visibroker CORBA middleware along with the use of ACE/TAO real-time CORBA services, such as the real-time event service and the runtime scheduling service. Implementation aspects considered include time synchronization issues, priority-based message dispatching for timely message delivery, implementation of activity with threads, and other features required for simulating and executing real-time DEVS models. Finally, application examples are presented in the last part of the dissertation to show applicability of the environment to real systems-engineering problems.

 INTRODUCTION

Real-time distributed object computing technologies have been attracting more attention from researchers and engineers in the real-time computing area during recent years since distributed systems technology became increasingly popular in the area about two decades ago. Because of the effective object-oriented methodologies which enable engineers to reduce the development complexity and maintenance costs of large scale software applications, object-oriented computing technology has been successfully applied to non-real-time software systems. However, real-time systems engineering techniques have not fully adopted the concept of modular design and analysis which are the main virtues of object-oriented design technologies. As a consequence, the demand for object-oriented analysis, design, and implementation of large-scale real-time applications has been growing these days.

One of the solution approaches to such demand could be a DEVS-based real-time modeling and simulation environment that provides capabilities mentioned above. DEVS (Discrete Event System Specification) is a sound formal modeling and simulation (M&S) framework based on generic dynamic systems concepts [6]. DEVS is a mathematical formalism with well-defined concepts of hierarchical and modular model construction, coupling of components, support for discrete event approximation of continuous systems and an object-oriented substrate supporting repository reuse. DEVS is not, however, a just mathematical framework but also a practical M&S tool implemented in various object-oriented languages such as Scheme, C++, and Java. Recently DEVS modeling and simulation environments also have been combined with midddlewares like HLA (High Level Architecture) RTI (Runtime Infrastructure) and CORBA (Common Object Request Broker Architecture) to support fast and easy construction of distributed models, and simulation of such models. These DEVS-based modeling and simulation environments have been shown to support an effective modeling and simulation methodology in various application areas including design and implementation of real-time control systems [10].
Real-time systems design connotes an approach to software design in which timeliness (or timing correctness) is as important as the correctness of the outputs (or logical correctness) [24]

 REF _Ref473479341 \r \h
 * MERGEFORMAT [25]. Timeliness of response does not necessarily imply speed -- although, this may be important -- as much as predictability of response and reliable conformance to deadlines. Timeliness and logical correctness may be traded off against each other, which results in two categories of real-time systems: hard real-time and soft real-time. In hard real-time systems, timeliness is so critical that it cannot be sacrificed for logical correctness. However, in soft real-time systems, timeliness is important but not critical. Therefore timeliness of soft real-time systems is not constrained by absolute deadlines, although it is still one of the timing requirements for the systems.

Real-time systems usually interact with the environment which consists of real world systems such as hardware components, software modules, and human operators. Therefore, real-time systems must accept input events that come from the external real world (through sensors) and respond with outputs such as commands sent to real world actuators. Often real time considerations must be made for embedded systems, in which control is exerted through software modules built into, and distributed throughout, operational systems such as aircraft, nuclear reactors, chemical power plants and automated houses. Performance estimation and design to meet performance requirements are crucial in real-time systems. Performance analysis often concerns schedulability, checking of the task schedule for feasibility or conformance with the required timing constraints. In distributed networked systems, quality of service (QoS) characteristics of the network, such as the timely delivery of events between system components, must necessarily be included in performance evaluation.

Real-time considerations enter into the world of modeling and simulation in various ways. A real-time simulation is a real-time system where some portion of the environment or portions of the real-time system itself, are realized by simulation models [12]. When a simulation model interacts with a surrounding environment, such as software modules, hardware components or human operators, the simulator must handle external events from its environment in a timely manner [4]. In more general terms, interfacing of abstract models with real world processes requires that the (logical) time base of the simulation be synchronized as closely as possible to the clock time of the underlying computer system [10]. Work related to real-time simulation and control includes early research in DEVS-Scheme [10], the extension of the Discrete Event System Specification (DEVS) formalism to the DEVS Real-time Formalism [4] and its application to process control [11]. Current projects include PORTS: A Parallel, Optimistic, Real-Time Simulation [12], OPERA (Operators Training Distributed Real-Time Simulation) [13], Ptolemy (Concurrent Discrete Event Simulation) [17]

 REF _Ref473479612 \r \h
[18], Time-triggered Message-triggered Object (TMO) based Distributed Real-Time System Development Environment [34]

 REF _Ref501213036 \r \h
[35], and Cluster Simulation – Support for Distributed Development of Hard Real-Time Systems using TDMA-Based Communication [46].

In this dissertation the development of Distributed Real-Time DEVS/CORBA is discussed as an extension of previous research related to DEVS-based modeling and simulation including both non-real-time and real-time simulation [4]

 REF _Ref473479484 \r \h
[10]

 REF _Ref501207607 \r \h
[11] in either a distributed or non-distributed environment. The major objective of developing Distributed RTDEVS/CORBA is to establish a framework in which distributed real-time systems can be designed, analyzed, and tested through DEVS-based modeling and simulation studies, and then migrated with minimal additional effort to be executed in the real-time distributed object computing environment by the use of a design methodology suggested and reviewed in previous works [4]

 REF _Ref500171366 \r \h
 * MERGEFORMAT [5]. In other words, this framework provides generic supports for developing models of distributed embedded systems, evaluating their performance and timing behavior through DEVS-based modeling and simulation, and easing the transition from the simulation to actual executions.

1.1 Real-time Simulation and Execution

Real-time systems deal with external stimuli from outside of the systems with time constraints. Therefore, real-time systems usually interact with environmental systems which could be hardware, software, human operators, etc. that want to get timely responses from the real-time systems. When a real-time system is developed, the best way might be to interact directly with the existing environmental systems while developing the real-time system. However, this is usually limited by cost and some other limitations such as safety and availability. Hence, it is good to have capabilities that provide a real-time modeling and simulation environment in which the environmental models can be modeled and simulated along with the real-time systems under development. Once these real-time systems are developed, they should be easily deployed in the execution environment which provides the same interfaces between the environment systems and the real-time systems as those between the environment models and the real-time systems.

[image: image1.png]Environment Model
(Real-Time DEVS Modlel)

DEVS-based
Real-time System

- Environment Model: DEVS abstract model of
environment systems running in real-time

“DEVS-based Real-time System: Event-based control
system

System Developrment (Sirmlation)

Network

DEVS-based

Real Environment Systemn| | p S WS

Network

System Deployment (Execution)

Figure 1. Real-Time Simulation and Execution

The DEVS M&S environments developed so far have been proved to be a sound and formal basis for modeling and simulation of such systems. Figure 1 illustrates a conceptual overview of the relationship between real-time simulation and real-time execution in the RTDEVS/CORBA environment. High level abstract models that provide logical and timing behaviors like the real environment systems can be modeled and simulated in this environment so that real-time systems can be developed based on the interactions with those simulation models. After finishing the development, the real-time systems could be easily migrated into the execution environment with minimal modifications.

1.2 Layered Design Approach

To address real-time design issues in the context of embedded system and event-based control in the distributed computing environment, we adopt a layered approach to software design in which there is a separation of concerns underlying the layers. The network, or lowest layer in Figure 2 (a), represents the actual physical hardware, computers, cables, routers, and so forth. The second, or real-time middleware layer, refers to newly emerging software that provides services to mediate the communication among nodes in the network with some degree of assured performance levels. For example, the middleware might be configured to assure a tolerably small degree of jitter while not necessarily reducing the average latency to zero, thus supporting good event-based control. Finally, the event-based control layer provides the constructs needed to design and implement event-based control as discussed above. Note that without this separation of concerns, one has much greater difficulty in trying to formulate and disentangle the control and network response issues just mentioned. Moreover, the layering makes it possible to reuse the software developed at the layers, or indeed to purchase COTS (commercial-off-the-shelf) software if that is available.
The principles of separation of concern and reuse suggest further extending the layered architecture as illustrated in Figure 2 (b). Here the event-based control layer is stratified into 3 layers: 1) event-based control per se, 2) the DEVS modeling formalism in which event-based control can be specified and implemented, and 3) the environment in which DEVS models can be simulated and executed in real time. Based on this layered architecture, the Distributed Real-Time DEVS/CORBA is being developed.
[image: image2.png]@ ®)

Figure 2. Layers in distributed event-based control

[image: image3.png]seti=1

L — LY
A2

set phase:= WAIT
set sigma:= trmin(Pi)

- i clapser wihol Send
seti=i+1 interruption? T00_EARLY.
T
ves
¥
set phase = WINDOW
set sigma = window(Pi)
wait for sigma
Sensor
Data -
" Send ot
Within window (P oo Lte

ves

Send aut VES e om0, | st

conTROL CHvD. ERROR_MSG

Figure 3. Flow Diagram of Event-Based Control

1.3 Event-Based Control

The theory of event-based control of systems has been developed by Zeigler [27]. This approach is a different way to control systems from the conventional control logic. In the conventional approach to control, the controller sends out a command to the data acquisition sub-system to sample the process at regular intervals. When the sampled value returns, it is stored and tested. Depending on the outcome of the test, a corrective control action command is emitted. Testing of the sampled value is performed by determining whether it lies within a window, i.e., a sub-interval of the sensor output range.

In the alternative control logic, called event-based control, a model moves through its checkstates in concert with the received input, as long as that input arrives in the expected time window. Figure 3 illustrates the flow of the event-based control logic [2]. Each checkstate Pi is associated with a minimum time, tmin(Pi), and a window, window(Pi). The model starts in some assumed checkstate P1 with phase WAIT P1 during tmin(P1). This means that it will stay in phase WAIT P1 for the duration of tmin(P1). If a sensor input is received during this period, the model recognizes this as an error since it is too early for the expected sensor response. If tmin(P1) has elapsed without any sensor input, the model transits to phase WINDOW. The model is scheduled to stay in this phase for the duration of window(P1). If a sensor input is received during this period, the model tests it for validity. If the test succeeds, an appropriate control command is issued from a transition phase SEND-COMMAND, checkstate is updated to P2 with phase WAIT P2 during tmin(P2). If the test fails, an error is reported. Finally, the model causes an error transition if the period, window(P1) has elapsed without receipt of the expected sensor input.

The conventional sample data approach requires that the sensor reading be sufficiently precise to be compared with the window requirements. In contrast, event-based logic does not require sensor output precision. Sensors can have threshold-like characteristics. Only two output states are needed although more may be employed. An essential advantage of event-based control is that the error messages it issues can bear important information for diagnostic purposes.
1.4 DEVS Modeling and Simulation Environment

The DEVS (Discrete Event System Specification) is a sound formal modeling and simulation (M&S) framework based on generic dynamic systems concepts [6]. DEVS is a mathematical formalism with well-defined concepts of hierarchical and modular model construction, coupling of components, support for discrete event approximation of continuous systems and an object-oriented substrate supporting repository reuse. Advantages of the DEVS methodology for model development include well-defined separation of concerns supporting distinct modeling and simulation layers that can be independently verified and reused in later combinations with minimal re-verification. The resulting divide-and-conquer approach can greatly simplify and accelerate model development leading to greater credibility at reduced effort. DEVS has a well-defined concept of system modularity and component coupling to form composite models. It enjoys the property of closure under coupling which justifies treating coupled models as components and enables hierarchical model composition constructs.

DEVS is not just a theoretical framework, as it has been operationalized to serve as a practical simulation tool in a variety of implementations. For example, DEVS is the basis for DEVS/HLA [29]

 REF _Ref517174449 \r \h
[30], a High Level Architecture (HLA) [42] compliant distributed modeling and simulation environment formed by mapping the DEVS-C++ system to the HLA Runtime Infrastructure. Formal properties of the DEVS methodology enable DEVS/HLA to support high-level federation development and execution. Modularity, in which component models are coupled together through input/output ports, allows messages to be sent from one federate to another using the underlying HLA interaction messages. Models developed in a DEVS/C++ or DEVSJAVA (C++ and Java based DEVS implementations, respectively) can be directly simulated in the DEVS/HLA environment over any TCP/IP, ATM, or other network of hosts executing the HLA RTI.
DEVS has also been implemented to execute over CORBA (Common Object Request Broker Architecture) middleware in a distributed manner to address the requirements of scalable and efficient model execution. It also supports flexible extensibility based on the open industry standard, CORBA promulgated by the Object Management Group (OMG), a consortium of over 800 companies. DEVS/CORBA [9] is a realization of a run-time infrastructure on top of CORBA middleware to support distributed simulation of DEVS components. Combining the advantages of CORBA and DEVS provides a heterogeneous, network-centric, distributed computing environment that includes modeling and simulation as well as real-time execution.
1.5 Summary of Contributions
Overall, the main contribution of this research is in establishing a framework in which distributed real-time systems can be designed, analyzed, and tested through DEVS-based modeling and simulation studies. This framework provides a formal basis for design and implementation of a software system that enables DEVS-based modeling and simulation of real-time systems in the distributed object computing environment. Establishing the framework is mainly involved in activities such as developing real-time simulator (or executor) algorithm and addressing issues related to distributed time synchronization and message delivery in real-time. Additionally, the concept of the confluent window to handle jitter problems was first developed in this framework. The concept of coupling information download was also first introduced in this framework. This concept enables distributed simulators to communicate directly between each other without the mediation of the coordinator.

After the framework has been developed, the RTDEVS/CORBA environment was implemented based on the framework. The implementation of the environment was done in three major parts: implementation of the real-time simulator algorithm, implementation of priority-based message delivery, and other features required for simulation of real-time systems such as activity threads and external interfaces for input/output from environment systems.

To demonstrate the applicability of the RTDEVS/CORBA environment, we developed various application examples and two of them were included in this dissertation. Since the current implementation was done in a mixed environment, which means that the environment includes mixture of non-real-time and real-time software systems, we only demonstrated limited applicability of the environment in terms of time resolution, i.e., the scale of seconds. However, if the framework is implemented in a vertically integrated real-time system this time resolution can be reduced in the scale of milli-seconds.

1.6 Dissertation Organization
The remainder of the dissertation is organized as follows: Chapter 2 discusses the formal basis for the distributed real-time DEVS/CORBA environment, DEVS formalism and real-time DEVS formalism. Real-time DEVS is one of many extended DEVS variants aimed at modeling and simulation of real-time systems. Chapter 3 overviews the concept of middleware and current research related to real-time middleware. In this chapter, Common Object Request Broker Architecture (CORBA) and The ACE ORB (TAO) are introduced and discussed as low level middleware to support our environment in model connection and message passing between models. Chapter 4 describes DEVS/CORBA which is a DEVS-based distributed modeling and simulation environment implemented on CORBA. In chapter 5, design and implementation details about RTDEVS/CORBA are presented. In this chapter, we overview the meaning of time in modeling and simulation area, and time issues related to the distributed computing environment. Physical time sources, which provide standard time (UTC) through various methods, are also surveyed and discussed as background information for our environment. After discussion of background information, the main features of our environment are introduced and discussed among many functionalities implemented to support real-time simulation and execution of discrete event models. Time synchronization between the real-time simulators in the environment, priority-based message delivery, confluent functions that handles jitter problems among distributed simulators, and implementation of external interface and activity with threads are selected topic that would be presented in this chapter. In chapter 6, application examples implemented in our environment to show applicability of the environment in simulation-based design and execution are presented. Chapter 7 concludes this dissertation with summaries and proposes some possible future work to be done.

 DEVS FORMALISM AND REAL-TIME EXTENDED DEVS FORMALISM

1.7 Introduction

The Discrete Event System Specification(DEVS) formalism [1]

 REF _Ref500043490 \r [6] was introduced in the early 70’s and later extended to enable constructing discrete event simulation models in a hierarchical and modular manner. It is theoretically well-defined system formalism. The original DEVS formalism is called the Classic DEVS because a revision was introduced later called Parallel DEVS. Parallel DEVS removes constraints that originated with the sequential operation of early computers and hindered the exploitation of parallelism, a critical element in modern computing. Parallel DEVS was the basis for the DEVS/CORBA environment and the environment was further extended as the Real-Time DEVS/CORBA (RTDEVS/CORBA) environment based on Real-Time DEVS (RTDEVS) which is one extension of the Parallel DEVS formalism. In this chapter, the Parallel DEVS formalism and the RTDEVS formalism are introduced.

1.8 DEVS (Discrete Event System Specification) Formalism

The DEVS formalism consists of two parts, basic and coupled models. A basic model of a standard DEVS is a structure:

M = <X, S, Y, (int, (ext, (con, (, ta>

where,

 X : set of external input events;

 S : set of sequential states;

 Y : set of outputs;

 (int: S (S : internal transition function

 (ext : Q (Xb (S : external transition function

 (con: Q (Xb (S : confluent transition function

Xb is a set of bags over elements in X,

 (: S (Yb : output function generating external events at the output;

 ta : S (
[image: image4.wmf]+

¥

,

0

R

: time advance function;

 Q = { (s,e) | s (S, 0 (e (ta(s) } is the set of total states where e is the elapsed time since last state transition.

A basic model template captures the following information:

· the set of input ports through which external events are received

· the set of output ports through which external events are sent

· the set of state variables and parameters

· the time advance function which controls the timing of internal transitions

· the internal transition function which specifies to which next state the system will transit after the time given by the time advance function has elapsed

· the external transition function which specifies how the system changes state when an input is received. The next state is computed on the basis of the present state, the input port and value of the external event, and the time that has elapsed in the current state.

· the confluent transition function which decides the next state in cases of collision between internal and external events.

· the output function which generates an external output just before an internal transition takes place.
[image: image5.png]Legend

> input to function

—— result of function

> trigger function

Figure 4. Logic and Dynamics of a Basic Parallel DEVS Model

Basic models may be coupled in the DEVS formalism to form a coupled model. A coupled model tells how to couple (connect) several component models together to form a new model. Two major activities involved in coupled models are specifying its component models and defining the couplings which create the desired communication networks. A coupled model is defined as follows:

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>

where,

 X : set of external input events;

 Y : a set of outputs;

 D : a set of components names;

for each i in D,

Mi is a component model

Ii is the set of influencees for i

for each j in Ii,

Zi,j is the i-to-j output translation function

A coupled model template captures the following information:

· the set of components

· for each component, its influencees

· the set of input ports through which external events are received

· the set of output ports through which external events are sent

· the coupling specification consisting of:

· the external input coupling (EIC) connects the input ports of the coupled to one or more of the input ports of the components

· the external output coupling (EOC) connects the output ports of the components to one or more of the output ports of the coupled model

· internal coupling (IC) connects output ports of components to input ports of other components
[image: image6.png]Coupled DEVS R

Figure 5. Coupled DEVS Model

1.9 Real-Time DEVS Formalism

In previous works, the classic DEVS formalism was extended as the real-time version in various ways. The first attempt was done by Kim and Zeigler [10]. In their work, they tried to extend DEVS-Scheme for the real-time event-based control. After this effort by Kim and Zeigler, Hong et al. [4] tried to redefine the real-time version of DEVS formalism in another way. In this work, they first introduced the usage of activities to fill virtual time advances with executable activities. They added two elements to the real-time DEVS formalism; an activity mapping function and a set of activities which are mapped into each state in the state set S. Cho and Kim [11] are trying to apply the previously defined real-time DEVS formalism in processor control applications. Despite of the previous efforts on real-time DEVS extensions, none of them were trying to extend the DEVS formalism into the distributed real-time environment. Nevertheless, we are trying to define the real-time DEVS formalism based on the previous works so that event-based control can be designed and implemented in the distributed real-time DEVS/CORBA environment.

Real-Time DEVS (RTDEVS) formalism extends the classic DEVS formalism only in atomic DEVS models. The RTDEVS formalism for coupled models remains the same as the original except that a coupled RTDEVS model has no specification. This is because a simulation clock in RTDEVS is no longer a virtual clock but a real-time clock, which is not controlled by a simulation algorithm. An atomic RTDEVS model, RTAM, is defined as follows:

RTAM = < X, S, Y, (int, (ext, (con, (, ta, A, (>

where,

X, S, Y, (int, (ext, (con, (: remains the same as conventional DEVS;

ta : S (
[image: image7.wmf]+

¥

,

0

I

 : time advance function,

 where
[image: image8.wmf]+

¥

,

0

I

 is the non-negative integers with
[image: image9.wmf]¥

adjoined;

A : a set of activities with the constraints

(: S (A : an activity mapping function

In the classic DEVS formalism, simulation time advances only when a simulator calls the time advance function ta of the associated model. The time advance function ta in the RTDEVS formalism behaves the same as that in the classic DEVS formalism except that the function calculates the next event time of integers, which is a real number in the classic DEVS formalism. The time calculated by the time advance function also synchronized with the wall clock time.

An activity is an operation that takes a certain amount of time to complete the assigned task [4]. This was adopted by [4] to represent some time-consuming operations such as waiting for a message, processing a job, and so forth. Originally this was used to fill virtual time advances with real-time advances. However, the usage of activities is somewhat different here. In this version of the RTDEVS formalism, the activity is used to perform some real computations such as running simulation model faster than real time, checking the correctness of the input from sensors, and so forth. The activity mapping function maps a state into an activity.

 CORBA AS REAL-TIME MIDDLEWARE
1.10 An Overview of Middleware

Middleware is software that simplifies the use of network technologies in network-centric distributed applications. Middleware is sometimes used to denote custom-programmed “glue” that allows a collection of existing applications to federate into a subsuming integrated application. Nevertheless, middleware is defined as reusable, expandable set of services and functions that benefit many applications in a networked environment [65]. Middleware represents an expansion of the infrastructure to:

· subsume functions needed by many applications

· improve certain characteristics of the applications

· enhance interoperability among applications

· reduce the complexity encountered by application developers and end users

· improve the usability to end users

Middleware provides services for sending message packets from one node to another that would otherwise have to be programmed from the scratch, i.e., from the socket level. It enables large mainframe applications to migrate to distributed client/server applications across smaller heterogeneous platforms with communication facilities. This technology has evolved during the 1990’s to provide with interoperability in support of the move to client/server architectures. The most widely-publicized middleware initiatives are the Object Management Group’s Common Object Request Broker Architecture (CORBA) [37], Microsoft’s Distributed Component Object Model (DCOM) [42], and Department of Defense’s High Level Architecture (HLA) Run-Time Infrastructure (RTI) [42]. Middleware simplifies the integration of heterogeneous systems so that users can share information more efficiently, more cost-effectively, more flexibly and more extensively. Middleware will playing more critical roles as the World Wide Web technology matures, and systems become even more complex and distributed.
As shown in Figure 6, middleware services are sets of distributed software that exist between the application and the operating system and network services on a system node in the network. Middleware services provide a more functional set of Application Programming Interfaces (API) than the operating system and network services to allow an application to locate transparently across the network, be independent from network services, be reliable and available, and scale up in capacity without losing function.

[image: image10.wmf]Application

API

Middleware

Application

Platform

Platform

Interface

Platform

Platform

Interface

Figure 6. Overview of Middleware

1.11 Current Research on Real-time Middleware

Ability to operate in real-time imposes additional stringent requirements on services that are not part of the middleware standard. Operating in real-time implies not necessarily speed, but consistency or predictability, of response, as measured for example, by small jitter. Real-time object-oriented middleware attempts to provide parameterized objects that can be composed to provide quality of service (OoS) guarantees to application layer software.

TAO (The ACE ORB) which is an extension of CORBA is being developed to demonstrate the feasibility of using CORBA for real-time applications versus direct socket level programming [15]. Another current effort is trying to develop standards for Real-time extensions to the Message-Passing Interface (MPI/RT) [16]. Real-Time Dependable (RTD) Channel [45] is also being developed in another research effort. This RTD is based on CactusRT [45] which was developed in the Computer Science Department at The University of Arizona. In their effort, they tried to make communication services provide enhanced QoS guarantees related to dependability and real time in the context of distributed real-time computing. ARMADA [51] is set of communication and middleware services that provide support for fault-tolerance and end-to-end guarantees for embedded real-time distributed applications.
[image: image11.png]APPLICATION DOMAIN COMMON
INTERFACES INTERFACES FACILITIES

OBJECT

SERVICES

Figure 7. OMG Reference Model Architecture

1.12 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is a distributed object computing middleware specification defined by the Object Management Group (OMG) [37]. The CORBA supports the construction and integration of object-oriented software components in heterogeneous distributed environments. In other words, CORBA automates many common network programming tasks such as object registration, location, and activation; request demultiplexing; framing and error-handling; parameter marshalling and demarshalling; and operation dispatching.

The CORBA was defined by the Object Management Group (OMG) coalition, a consortium of over 800 companies. Major industry giants including Sun, IBM, Netscape, Apple, Oracle and HP have voiced their support for the CORBA technology. The CORBA was initiated to provide the specification for an object-oriented middleware that would allow programmers to develop objects that could interact with other objects without requiring any knowledge as to how or where the object was implemented.

As shown in Figure 7, the core of the CORBA specification is the Object Request Broker (ORB) which allows clients to invoke operations on target object implementations over heterogeneous distributed computing environments. Other than the ORB, the CORBA consists of components such as object services, application interfaces, domain interfaces, and common facilities.

· CORBA Object Services (COS) are domain-independent interfaces that are used by many distributed object programs. For example, the Naming Service allows clients to locate objects transparently based on names provided by the objects. The Event Service provides basic asynchronous communications between event suppliers and event consumers.

· Common Facilities are also horizontally-oriented, but unlike Object Services they are oriented towards end-user applications. An example of such a facility is the Distributed Document Component Facility (DDCF), a compound document Common Facility based on OpenDoc. DDCF allows for the presentation and interchange of objects based on a document model, for example, facilitating the linking of a spreadsheet object into a report document.

· Domain Interfaces fill roles similar to Object Services and Common Facilities but are oriented towards specific application domains. For example, one of the first OMG RFPs issued for Domain Interfaces is for Product Data Management (PDM) Enablers for the manufacturing domain. Other OMG RFPs will soon be issued in the telecommunications, medical, and financial domains.

· Application Interfaces are interfaces developed specifically for a given application. Because they are application-specific, and because the OMG does not develop applications (only specifications), these interfaces are not standardized. However, if over time it appears that certain broadly useful services emerge out of a particular application domain, they might become candidates for future OMG standardization.
In the heart of the CORBA there is the Object Request Broker (ORB) which allows clients to invoke operations on distributed objects without concerning issues such as object location, programming languages, OS platform, hardware, communication protocols and interconnections. Figure 8 depicts the ORB architecture in the CORBA reference model. Each component is outlined as follows:
· Object is a CORBA programming entity that consists of an identity, an interface, and an implementation which is known as a Servant. This is an instance of an Interface Definition Language (IDL) interface.

[image: image12.png]IDL

COMPILER
in args
CLIENT OB " operation(OBJECT
F (Servant)
P
; IDL DS
LETO
IDL ORB OBJECT
D.

P *‘DA”“

‘ ORB CORE

Figure 8. ORB Architecture in CORBA Reference Model

· Servant is an implementation programming language entity that defines the operations that support a CORBA IDL interface. Servants can be written in a variety of languages, including C, C++, Java, Smalltalk, and Ada.

· Client is the program entity that invokes an operation on an object implementation. Accessing the services of a remote object should be transparent to the caller. Ideally, it should be as simple as calling a method on an object, i.e., obj->op(args). The remaining components in Figure 8 help to support this level of transparency.

· Object Request Broker (ORB) provides a mechanism for transparently communicating client requests to target object implementations. The ORB simplifies distributed programming by decoupling the client from the details of the method invocations. This makes client requests appear to be local procedure calls. When a client invokes an operation, the ORB is responsible for finding the object implementation, transparently activating it if necessary, delivering the request to the object, and returning any response to the caller.

· ORB Interface: An ORB is a logical entity that may be implemented in various ways (such as one or more processes or a set of libraries). To decouple applications from implementation details, the CORBA specification defines an abstract interface for an ORB. This interface provides various helper functions such as converting object references to strings and vice versa, and creating argument lists for requests made through the dynamic invocation interface described below.

· CORBA IDL stubs and skeletons serve as the ``glue'' between the client and server applications, respectively, and the ORB. Stubs on the client side marshal typed data objects from a high-level application representation to a low-level packet representation. Skeletons on the server side demarshal the low-level packet representation back into a typed data object that is meaningful to the application. The transformation between CORBA IDL definitions and the target programming language is automated by a CORBA IDL compiler. The use of a compiler reduces the potential for inconsistencies between client stubs and server skeletons and increases opportunities for automated compiler optimizations.

· Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI): The DII allows a client to directly access the underlying request mechanisms provided by an ORB. Applications use the DII to dynamically issue requests to objects without requiring IDL interface-specific stubs to be linked in. Unlike IDL stubs, the DII also allows clients to make non-blocking deferred synchronous and oneway calls. The DSI is the server side's analogue to the client side's DII.

· Object Adapter assists the ORB with delivering requests to the object and with activating the object. More importantly, an object adapter associates object implementations with the ORB. Object adapters can be specialized to provide support for certain object implementation styles, e.g., OODB Object Adapters for persistence, library Object Adapters for non-remote objects, and real-time Object Adapters for applications that require Quality of Service guarantees.

· General Inter-ORB Protocol (GIOP) / Internet Inter-ORB Protocol (IIOP): These are the protocols to facilitate interoperability for ORB’s provided by different venders. The GIOP specifies a standard transfer syntax and a set of message formats for communications between ORB’s whereas the IIOP specifies how GIOP messages are exchanged using TCP/IP connections.
1.13 TAO (The ACE ORB): Implementation of Real-Time CORBA

Using conventional CORBA implementations is not suited for high-performance, real-time applications for the following reasons [15]:

· Lack of QoS specification interface

· Lack of QoS enforcement

· Lack of real-time programming features

· Lack of performance optimizations

To overcome these shortcomings, Schmidt developed an integrated middleware framework called The ACE ORB (TAO) [40]. TAO is a real-time CORBA-compliant ORB endsystem developed using the ACE framework, which is a highly portable object-oriented middleware communication framework [41]. Since TAO is based on ACE, it runs on a wide range of OS platforms including general-purpose operating systems, such as Solaris and Windows NT, as well as real-time operating systems such as VxWorks, Chorus, and LynxOS.

TAO is compliant with the most of the features and components in the CORBA 2.4 specification and contains the components like: IDL Compiler, IIOP Engine, ORB Core, Portable Object Adapter, and CORBA Object Services. These CORBA Object Services include Concurrency Service, Event Service, Lifecycle Service, Logging Service, Naming Service, Notification Service, Property Service, Security Service, Time Service, and Trading Service. In addition, TAO also provides real-time CORBA services like the real-time Event Service, the real-time Scheduling Service. Among these services, the real-time Event Service, and the Scheduling Service are used to support the RTDEVS/CORBA environment.
3.4.1 Time Service in TAO
Figure 9 shows a distributed time service implemented in TAO. This service is supposed to provide accurate, fault tolerant clock synchronization for computers collaborating in local area networks and wide area networks. Synchronized time services are important in distributed systems that require multiple hosts to maintain accurate global time.

As shown in Figure 9, the architecture of the distributed time service contains the following Time Server, Clerk, and Client components:

· Time Servers answer queries about the time made by Clerks.

· A Clerk queries one or more Time Servers to determine the correct time, calculates the approximate correct time using one of several distributed time algorithms [47]

 REF _Ref501263921 \r \h
[48], and updates its own local system time.

· A Client uses the global time information maintained by a Clerk to provide consistency with the notion of time used by clients on other hosts.

The current version of time service is a complete implementation of the CORBA time service specification. The service offers a globally synchronized time to a requesting client.

[image: image13.png]TIME

SERVER

CLIENT

CLERK

CLIENT

TIME
UPDATE

CLIENT

TIME
UPDATE

TIME
UPDATE

4 TIME
UPDATE

Figure 9. A Distributed Time Service

3.4.2 TAO’s Real-Time Event Service
The standard CORBA operation invocation model supports twoway, oneway, and deferred synchronous interactions between clients and servers. The twoway model provides intuitive mappings onto the object(operation() paradigm supported by Object-Oriented languages. Generally twoway models support an implicit request/response protocol that makes remote operation invocations transparent to the client invocations, which simplifies the development of distributed applications. However, the standard CORBA operation invocation models are too restrictive for real-time applications. In particular, these models lack asynchronous message delivery, do not support timed invocations or group communication, and can lead excessive polling by clients. Moreover, standard oneway invocations might not implement reliable delivery, and deferred synchronous invocations require the use of the CORBA Dynamic Invocation Interface (DII), which yields excessive overhead for most real-time applications [19].

To alleviate some of the restrictions with standard CORBA invocation models, the event service is designed as one of CORBA Object Services (COS). The COS Event Service supports asynchronous message delivery and enables multiple suppliers to send messages to multiple consumers. In addition, suppliers can send messages to consumers without the explicit knowledge about the location of the consumers. Two models, push and pull, of participant collaborate in the COS Event Service architecture as depicted in Figure 10. In the push model, suppliers use Event Channels to push data to consumers. Likewise, consumers can explicitly pull data from suppliers in the pull model. The push and pull semantics of event propagation help to free consumers and suppliers from the overly restrictive synchronous semantics of the standard CORBA twoway communication model.
Even though the CORBA Event Service provides a flexible model for asynchronous communication among objects, the standard CORBA Event Service specification lacks important features required by real-time applications. These features include timed delivery, event filtering, and event correlation. The TAO community has extended the COS Event Service to the real-time Event Service so that the new service can provide features required for real-time applications [20]

 REF _Ref473480797 \r \h
[22]. The real-time Event Service only implements the pull model with the following enhancements:

· real-time event dispatching: priority-based queueing and preemption mechanism

· centralized event filtering and correlation: source/type-based filtering

· periodic and aperiodic processing

An event consumer in the real-time Event Service specifies the type and source ID for each event it is interested in receiving. In hard real-time applications, a consumer must also specify RT_Info data for each event that it wants to receive, and any other events on which that event depends. The RT_Info structure resides in the real-time Scheduler, and is accessed through the scheduler interfaces. A unique handle is returned to the consumer when an RT_Info is created, which can be used to set the information in the RT_Info. An RT_Info handle may be also be obtained via the Scheduler’s lookup method. An event supplier must also specify its source ID, and the type of event it will generate. A supplier also specifies RT_Info data for the events it will generate.
[image: image14.png]SUPPLIER

SUPPLIER

Figure 10. COS Event Service Architecture

The real-time Scheduler is working with the Event Service to support static rate monotonic scheduling and dynamic maximum urgency first scheduling to assign priorities and validate schedulibilty. The real-time Schedule Service enables the Event Service to implement the priority-based event dispatching scheme. Based on the RT_Info data that consumers and suppliers provide, the Scheduler calculates and assigns appropriate dispatching priorities. At run-time, the Event Service consults the Scheduler for the dispatching priority of each event.

[image: image15]
Figure 11. Structure of Real-Time Information in TAO rtEC
1.14 Interoperability between different vendor ORBs

TAO is just one of many implementations of the CORBA standard. TAO covers non-real-time CORBA standards as well as real-time specifications. As far as this dissertation is written, TAO is the only implementation of real-time CORBA specifications which is freely available. However, there are many other CORBA implementations available, either freely or commercially. The most commercially prevalent CORBA implementation is Visibroker [76] which is available in multiple languages like Java, C++, and Ada. Other commercially available ORBs are OrbixWeb, CorbaPlus, OAK, and so on. Non-commercial free ORBs are available over the Internet and TAO is one of them. Others include JacORB, MICO, JORBA, OmniORB, JavaORB, and so on. These are various types of CORBA implementations available but they are

[image: image16.png]Mame DEVS
Server Coord

The ACE ORB { 1op Visibroker ORB

NETWORK

Figure 12. Conceptual diagram of interaction between different vendor ORBs

supposed to use the same CORBA standards to get them to work together through ORB interaction over IIOP (Internet Inter ORB Protocol). Figure 12 shows a conceptual diagram of inter-communications between different vendor ORBs through IIOP.

As the CORBA philosophy declared, any ORBs based on the CORBA standard should be able to communicate with each other. This is possible through IIOP (Internet Inter ORB Protocol). No matter what language is used for the implementation, ORBs are supposed to talk to each other as long as they are using the same standards. Visibroker and TAO were used for the implementation of our environment. Although, Visibroker is available in many languages, the Java version of Visibroker was used so as to maintain the consistency of models used in all DEVS M&S environments. On the other hand, TAO is only available in C++ at the moment. A Java version of real-time CORBA, named ZEN [77] is under development. Figure 13. Interaction between ORBs in different languages how it is possible for ORBs implemented in different languages to interact with each other. This interoperability allowed us to employ Java for model development and C++ for distributed model execution and simulation.

[image: image17.png]IDL definitions

Stub code Skeleton code
R —
Java
———\compiley
User-defined ! ; User-defined
client code | : servant code
Client : Servant
Stub i L Skeleton
Object Request op Object Request
Broker Broker

Figure 13. Interaction between ORBs in different languages
 DEVS/CORBA: DISTRIBUTED MODELING AND SIMULATION ENVIRONMENT

1.15 Introduction

The Distributed RTDEVS/CORBA environment was developed as an extension of the DEVS/CORBA simulation environment [9]. We therefore review the design of DEVS/CORBA as a basis for the development of real-time capabilities in the Distributed RTDEVS environment. In this chapter the implementation of Parallel DEVS simulation protocol in the CORBA environment.. Basically DEVS models are distributed over the network as CORBA object implementation which serves like servers and clients at the same time.
1.16 Implementation of Parallel DEVS Simulation Protocol over CORBA

The DEVS formalism focuses on the changes of variable values – discrete events – and generates time segments that are piecewise constant. In essence the formalism defines how to generate events and their times of occurrence. There are two major classes in object-oriented implementations of DEVS from which all user-defined models can be developed (atomic and coupled. The atomic class realizes the basic level of the DEVS formalism, while the coupled model embodies DEVS hierarchical model composition constructs. DEVS has a well-defined concept of system modularity and component coupling to form composite models. It enjoys the property of closure under coupling which justifies treating coupled models as component models of other coupled models, and thus enables hierarchical model composition constructs. In the DEVS formalism one must specify 1) basic models from which larger ones are built, and 2) how these models are connected together in hierarchical fashion.

A coupled model can be expressed as an equivalent basic model in the DEVS formalism. This follows from the fact that the formalism is closed under coupling. (Expressing a coupled model as an equivalent basic model captures the means by which the components interact to yield the overall behavior.) Such a basic model can itself be employed in a larger coupled model as required for hierarchical model construction. Closure under coupling implies that when networking DEVS components, one CORBA interface will suffice for all model classes.

[image: image18.wmf]Coord

Genr

Proc

Control messages

Simulator

(

ModelServer

)

Network

Transd

data messages

Simulator

(

ModelServer

)

Simulator

(

ModelServer

)

Coordinator

GPT

Devs/Corba

Interfaces

DEVS models

CORBA

Name Server

out

in

ariv

solved

out

Figure 14. DEVS/CORBA Client and Server Model

Execution of a coupled DEVS model is mediated by coordinator and simulator servers as showed in Figure 14. The coordinator server is assigned the coupled model with the premise that simulator servers for its model’s components have already been established and registered with the CORBA naming service. To find the appropriate servers for the components specified by its coupled model, the coordinator employs the CORBA naming server. Then to reduce the potential bottleneck at the coordinator, the coupling information available to the coordinator is downloaded and distributed to each simulator server. This allows simulators to exchange messages bearing inputs and outputs without mediation by the coordinator. Each simulator server keeps track of the time-of-last-event, tL and time-of-next-event, tN of its assigned DEVS component. Using the parallel DEVS simulation protocol, execution proceeds through iteration of a basic cycle as controlled by the coordinator server. The interaction between coordinator and simulators can be implemented in CORBA by suitable interface definitions and implementations. The interface that a simulator presents to a coordinator can be expressed in an IDL definition. For example, a simulator server can be told to start up by invoking its component’s initialization method. It can respond to a request for the time-of-next-event of its component by querying for its component’s timeAdvance function. It can receive a global time-of-next-event, determine if its component is imminent, and if so, return its component’s output. Finally, it can be sent its component’s input and told to determine and apply the appropriate version of its component’s transition function (or none). The coordinator issues these method invocations in the correct order to implement an iteration of the simulation cycle. In the next section the parallel and distributed DEVS simulation protocol is explained in detail.
4.2.1 Parallel and Distributed DEVS Simulation Protocol

Each component in a coupled model has two time keeping variables, tL (time-of-last-event) and tN (time-of-next-event). Before starting a simulation run, each component is initialized to its designated initial state, and its time keeping variables set: tL = 0, tN = the time advance of the initial state.

We present a somewhat simplified version of a DEVS simulation protocol for a single level coupled model:

1) Set the current global time, tcurrent = the minimum of the components’ tN’s
2) Send tcurrent to each component

3) Each component, C, then compares tcurrent with its local tN, if tcurrent = tN, then this component is said to be imminent and C generates its output (if any) stamped with time tcurrent.

4) The collected outputs move, as dictated by the coupling specification, to the input ports of other components. If the destination component is in another simulator, messages are to be sent across the network and delivered to the input ports of the destination component.

5) Each component examines its input ports and:

· If tN (tcurrent and no input, then just return;

· If tN = tcurrent and the input is not empty, then C applies its confluent transition function ((con) with this input, using the elapsed time, tcurrent – tL
· Else if tN = 0 and no input, then c executes its internal transition function ((int)

· Else if input message is not empty, then C applies its external transition function ((ext) with this input, using the elapsed time, tcurrent - tL
· C sets tL = tcurrent and tN = tL + ta(time advance) of the new state

6) If not at the end of the run, return to 1).

The coordinator and simulators interact through the means of control messages as shown in Figure 14. Once simulation starts, the coordinator iterates each control step until the specified condition meets, i.e., the designated iteration number is reached or tN of all the components’ become infinity. Figure 15 depicts interactions between the coordinator and its simulators. The control steps that the coordinator goes through are executing the compute_input_output function (Figure 15B), performing delta (internal transition, external transition, and confluent) functions (Figure 15C), and getting tN’s from all the component simulators (Figure 15D).

[image: image52.png]Model

Simulator

CoordThread

Coordinator

next event time

doneNextTN(t)

E
E
3
:

Figure 15. Sequential Representation of Parallel and Distributed DEVS Simulation Cycle
4.2.2 Routing DEVS messages with CORBA Interfaces

1.16.1.1 DEVS Ports and Routing Mechanism
In general, systems have input and output interfaces through which they can interact with other systems. Systems receive external stimuli through their input ports, and respond on their output ports. Therefore, modeling of systems is much easier with the introduction of input and output ports. DEVS models have input and output ports as channels for external stimuli and responses of the models, and these are the only channels for all the interactions with other models. A coupled model maintains coupling information of its component models so that output from source models can be routed correctly to destination models. Figure 16(a) shows an example of coupled model (GPT) with two components models (EF, P), one of which is another coupled model. The coupling information is kept as an instance of a relationship table between elements of a pair which has a set of source and destination pairs as shown in Figure 16(b). Currently coupling is specified by three parts:

· The external input coupling specifies couplings from input ports of a coupled model to input ports of its component models (e.g., coupling from start of GPT to start of EF in Figure 16(a)).

· The external output coupling specifies couplings from output ports of component models to output ports of a coupled model (e.g., coupling from out of T to out of EF in Figure 16(a)).

· The internal coupling specifies couplings from output ports to input ports of component models (e.g., coupling from out of G to ariv of T in Figure 16(a)).

 [image: image19.png]start | sten] stop|

thopa] ot | ont

po— source | outport | destin_|_inport
GPT | stan | EF | stan
st EF o out P in
G Ly TP out EF s0v
EF owt_|_GPT | throuput
S opt
= P EF start G start
o= G owt_ | EF out
[P E[G out T ariv
F[_EF_| sov T solv
T out G stop
T o | EF ot

(a) An cxample of coupled model

element element
message entity | right T entity | right
head
content content
v Frvspaaval v Frvspaav
1 port name
devs: devs model
add: address

vl message data

(c) DEVS message structure

(b) Coupling information table

ot | G

addr

vl

I convert_input()

aw | T

addr

vl

(d) convert_input() function

before

after

Figure 16. DEVS coupling and routing

Whenever messages are produced from component models, a coupled model is supposed to route the messages based on the coupling information. Since the DEVS formalism is closed under coupling, component models of a coupled model could be atomic models or other coupled models, but only atomic models produce messages. When an atomic model produces a message which has the structure illustrated in Figure 16(c), each content of the message contains the name of the source model and the name of output port. Before routing the message to the destination model, the coupled model must convert these names into the name of destination and the name of input port respectively. This operation is performed by the ‘convert_input()’ function as shown in Figure 16(d). Once this converting operation is completed the messages are delivered through the coupling network.

1.16.1.2 Routing DEVS messages in DEVS/CORBA

Routing DEVS messages between distributed DEVS models in the DEVS/CORBA environment is implemented by downloading coupling information and mapping DEVS ports into CORBA interfaces. As discussed in the previous section, coupling information is kept only in coupled models. Therefore, all the messages from the component models should be delivered only through the coupled model. Since the component models are assigned to simulators and the coupled model is assigned to the coordinator in DEVS/CORBA, all the messages from the simulators should go through the coordinator. This is not an efficient method because the coordinator might become a bottleneck of the network communication. In fact, simulators exchange messages without mediation by the coordinator in the DEVS/CORBA environment. The coordinator just controls the simulation cycle. Therefore, simulators should know the coupling information so that they can directly communicate with each other. As shown in Figure 15(a) the coordinator downloads coupling information to the simulators by the means of the informCoupling() method before the simulation cycle. When the coordinator downloads the coupling information, each simulator identifies its source and destination simulators and keeps them in an indexed table.

[image: image20.png]Simulator IDL

struct Content (

stingport;
any value;

)
interface Simalator

sendMescages();
pulessages(Content m);

¥

SimulatorB

SimulatorA
decoding

pllecsied)

encoding

Model A| l
call

Figure 17. DEVS coupling through IDL interfaces

Once a simulator creates its coupling table, it can directly communicate with other simulators through CORBA interfaces. The Content structure and two methods such as sendMessages() and putMessages() are defined in the Simulator IDL to support communications between simulators. As shown in Figure 17, the Content structure only has two elements port and value which are mapped into those of the DEVS message. Therefore, the DEVS message from the model must be transformed into the Content format so that CORBA can handle messages properly before the DEVS message is sent out to the remote simulator. The sendMessages() encodes the DEVS message from the source model into the Content format while the putMessages() decodes it back into the DEVS message.

 IMPEMENTATION OF DISTRIBUTED REAL-TIME DEVS/CORBA

1.17 Introduction
Implementation of Distributed Real-Time DEVS/CORBA (RTDEVS/CORBA) is based on the previous framework for the DEVS/CORBA distributed modeling and simulation environment. As we discussed earlier, the DEVS formalism focuses on the changes of variable values – discrete events – and generates time segments that are piecewise constant. In essence the DEVS formalism defines how to generate events and their times of occurrence, and how to route those events to the destination models. In the logical DEVS simulation environment, generation and delivery of events occur at the same logical time. In the real-time simulation environment, however, this is not the case any more. There exist some time differences between event schedule and actual generation in one model, and between event generation in the model and event delivery to another model.
In RTDEVS/CORBA all the simulators maintain their own clock which is tightly synchronized with the system clock on the host computer. And again the system clock on each computer is globally synchronized with each other across the network. In addition to being synchronized across a distributed computing environment, the system clocks are also synchronized with the human or system clock perception of time. As synchronized with other simulators, a simulator maintains its own schedule provided by the associated model. The way that the model provides event schedule is the same as that of other DEVS implementations, which means that interfaces between models and simulators are the same in all the DEVS implementations. Main concerns about the design and implementation of the real-time simulator in RTDEVS/CORBA are how to synchronize simulation time with the physical time and how to manage time differences in generating events at the scheduled time which is defined in the model and delivering them to the destination models in valid time boundaries, which requires QoS capabilities. These concerns were specified as the requirements for RTDEVS/CORBA framework in [28] and modified slightly in this dissertation. These requirements are summarized as follows:

· Simulator must execute the associated DEVS model in real-time, which means that the simulator must be able to generate events specified in the associated model in real-time. This model usually handles two kinds of events: one is a periodic event and the other is a reactive event. The simulator must be able to schedule and process these events in real-time.

· There must be an entity that ensures that messages exchange among distributed models are delivered in real-time (i.e., delivery within some valid time intervals) no matter where the models are located on the network. This entity must also be able to schedule high priority threads first.

· The framework must provide a method for a modeler to be able to specify real-time constraints through DEVS models.

· In real-time distributed computing a precise time synchronization between participating models is crucial. Therefore time service guarantees that consistent readings of a global clock no matter where the reading is done in a distributed system. The simulators must use such a time service to state in synchronization with each other.

· Handling of confluent inputs (multiple events arriving at the same model at the same time) may be problematic. In the Parallel DEVS Protocol, the model must process all simultaneously arriving events as a collection (bag). Network latency and jitter may make it difficult to know when all messages for a given time have been received.
Table 1. A Time Taxonomy

	
	Logical / Physical

	
	Logical Time
	Physical Time

	Location of Time Observer
	Global Time
	All components operate on the same abstract time base.
	All components operate on the same system clock.

	
	Local Time
	A component operates on its own abstract time base.
	A component operates on its own system clock.

1.18 Time Issues

Before we discuss implementation of the real-time simulator in detail, it is necessary to clarify time synchronization issues in the distributed computing environment, and how such issues are resolved in RTDEVS/CORBA. Time is a crucial factor in modeling and simulation, especially in real-time modeling and simulation. Table 1 shows a time taxonomy in modeling and simulation. A time base is formally characterized as an ordered set for indexing events that models the flow of actual time. If the interpretation of such a time base is left abstract in this manner, it is referred as logical time. In contrast, when the events are happening in real time as in the real world, time variables are measured by an actual clock. These are referred as physical time, which is also called as metric time or wall-clock time. In short, physical time is measured by ticks of a physical clock whereas logical time is measured by ticks of a clock somehow embedded in a model. Also, time can be either local or global based on the location of an observer. Local time is valid only within a component of a system while global time is valid in the whole system.
Conventionally modeling and simulation has considered mainly the first combination (global and logical) in Table 1, which means that all components in a modeled system have the same reference time frame and time is considered as an abstract quantity. However, it is not very easy to maintain this story consistently when a model is executing in a simulator which may be distributed over computer nodes in a network, and may also be interacting with the real world. Synchronization between different time bases requires maintaining a correspondence between the time bases. For example, a distributed simulation protocol synchronizes the local, logical times maintained by the individual simulation nodes. DEVS/HLA and DEVS/CORBA are maintaining these kinds of time bases. Another example of synchronization occurs in a real-time, human-in-loop simulation-based pilot training system. Here the simulator employs a physical time base to synchronize between a pilot’s physical perceived time base and the logical time of a model of the aircraft being simulated. This is the time base that RTDEVS/CORBA must maintain. In the RTDEVS/CORBA, the time base will be remained as a global, physical time base such that all the simulators are synchronized with a single standard clock.

5.2.1 Clock Synchronization in Distributed Computing Environment

Now we want to consider how we can maintain a global and physical time base closely synchronized. Before we discuss this topic, we want to mention why it is so hard to keep the same time in the distributed computing environment. Most of the computers have two time keeping clocks inside: a hardware clock (or timer) and a software clock. The hardware clock usually has a quartz crystal which is supposed to oscillate at a predefined frequency so that the hardware clock can produce clock ticks precisely. The software clock maintains current time by getting these ticks from the hardware clock. Since the software clock is kept up to date by getting clock ticks from the hardware clock, it is important for the hardware clock to keep a constant rate of clock ticks. However, real hardware clocks do not generate clock ticks at the exact frequency as defined. For example, a hardware clock whose clock ticking rate is 60 ticks per a second should generate 216,000 ticks per hour. In practice, however, the relative error that modern timer chips can produce is about 10-5, which means that the actual clock ticking rate ranges from 215,998 to 216,002 [54].

With a single computer and a single clock, it does not matter if this clock is off by a small amount. Since all processes on the machine use the same clock, they will still be internally consistent. However, it is not true any more in the distributed computing environment where each distributed machine maintains its own clock. In practice, it is virtually impossible to maintain the crystals in different computers at the same frequency. Therefore, there must be some ways to keep them synchronized. Synchronizing distributed clocks introduces two different aspects: one is how to keep clocks synchronized with each other, which is referred as internal synchronization; and how to keep them synchronized with the world standard time, which is referred as external synchronization. External synchronization provides distributed real-time systems with the use of a synchronized time base on a global scale, which again enables the systems synchronized with the time base of surrounding environment systems. In this section we want to introduce some of distributed clock synchronization algorithms generally used and practical methods that are used currently.
1.18.1.1 Distributed Clock Synchronization

The major goal of distributed clock synchronization is to keep all the clocks distributed over a network synchronized within a time boundary (δ) which is called the synchronization precision [55]. Internal synchronization is to keep the machines in a distributed system within this boundary and external synchronization is to keep the machines with the external time source within the boundary.

[image: image21.png]Clock Time, C

Standard Time, t

Figure 18. Slow, Perfect, and Fast Clocks

There are many synchronization algorithms have been proposed (i.e., [47],[48], [61],[62],[63],[64]) and all the algorithms have the same underlying model of the system. Each machine is assumed to have a hardware timer that causes an interrupt H times a second. When this timer goes off, the interrupt handler adds 1 to a software clock that keeps track of the number of ticks since some agreed time in the past. Let the value of this clock be C, then the value of the clock on machine p is Cp(t) where the standard time is t. In a perfect world, the following equation holds at any time:

[image: image22.wmf]1

=

dt

dC

,
for all p and all t
In real world, however, the timers do not interrupt exactly H times a second. Consequently, the value of C is only maintained within some boundary given by the following inequality:

[image: image23.wmf]r

r

+

£

£

-

1

1

dt

dC

The constant ρ is specified by the manufacturer and is known as the maximum drift rate. Figure 18 shows slow, perfect, and fast clocks. If two clocks are drifting from the standard time in the opposite direction, at a time (t after they were synchronized, they may be as much as 2ρ(t apart. Clocks must be resynchronized at least every δ/2ρ seconds to keep the two clocks within δ synchronization precision [54].
1.18.1.2 Physical Clock Sources
All modern civil timekeeping is based on Universal Coordinated Time (UTC) which was commonly referred to as Greenwich Meridian Time (GMT). UTC is world standard time that is maintained by the Bureau International de l’Heure (BIH) in Paris with about 50 laboratories scattered all over the world. UTC is provided as a binary number which tells how many seconds have elapsed since midnight on January 1 of year 1900. In the United States, the National Institute of Standards and Technology (NIST) provides UTC to the public through various ways. Some of those available are as follows:

· Radio Broadcasts: NIST distributes time-of-day information to the public using radio broadcasts [56]. The low frequency (LF) station WWVB is located in Fort Collins, Colorado and broadcasts on 60 kHz. The high frequency (HF) stations WWV and WWVH are located in Colorado and Hawaii respectively, and broadcast on five different frequencies ranging from 2.5 to 20 MHz. At least one HF signal should always be usable at any given time anywhere in the United States. The accuracy of this service is no better than ±10 milliseconds because of random atmospheric fluctuations that can affect the length of the signal path.
· Telephone Time Service: The audio portions of the WWV and WWVH broadcasts can also be heard by telephone. The time announcements are normally delayed by less than 30 ms when using land lines from within the continental United States, and the jitter (delay variation) is generally < 1 ms. When mobile phones are used, the delays are often more than 100 ms due to the multiple access methods used to share cell channels. In rare instances when the telephone connection is made by satellite, the time is delayed by 250 to 500 ms [56].
· Internet Time Service: The NIST Internet Time Service (ITS) provides UTC through the Internet connection. The service basically consists of multiple stratum-1 time servers all around the Internet and these servers respond to time requests from any Internet client in several formats including the DAYTIME, TIME, and NTP protocols [58][59]

 REF _Ref523469083 \n \h
 * MERGEFORMAT [60]. This service is good for most computer users but provides less accurate time than radio broadcasts.
The Global Positioning System (GPS) is another source of standard physical time which is maintained by the United States Department of Defense (DoD) [52]. As the name implies, the system was originally invented to provide positioning signals. Twenty four GPS satellites distribute positioning signals with time information. A receiver located at any place on the earth can calculate the distance with the signal traveling time from the satellite to the receiver antenna. When the distances to at least three satellites are available the receiver can determine its location. Since the receiver calculates relative distance from a GPS satellite based on the signal traveling duration, correct time information is critical for the receiver to calculate the distance. The GPS satellites transmit time information from their internal atomic clocks along with location data, and these atomic clocks are synchronized with UTC provided by the U.S. Naval Observatory with an accuracy of less than 340 ns for 95% of the time [53]. This time information can be used as a time source for those systems requiring a high resolution physical time base or distributed real-time systems with mobile components.

5.2.2 Clock Synchronization in Real-Time DEVS/CORBA

Clock synchronization is definitely necessary in RTDEVS/CORBA. We can select one of many clock synchronization methods available in the public domain. Among many alternatives there are two clock synchronization methods that seem suitable to our environment. One is TAO’s Time Service and the other is free software named ‘AboutTime’ which implements the Network Time Protocol (NTP) [57]. In this section we discuss these two time synchronization methods based on their functionalities and accuracies. We measured and compared time accuracies of the two methods. The result of our measurement will be the basis for our decision of which to use.

As we discussed in Section 3.4, TAO provides the Time Service as one of their Object Services. The TAO’s Time Service provides global time readings to time clients from the time server through time clerks running on local hosts. There may be one or more time servers in the network but there should be at least one time clerk on the local machine where a time client is running. The time servers get their time references from the machine on which they are running. The time clerk on the local machine is a local time server to time clients. It maintains a globally synchronized local time and updates the local time by acquiring time values from the time servers on the network. This update does not change the local computer’s clock. If there are two or more servers that are running at the same time, then the time clerk averages the time values from the servers. Whenever necessary, a time client can request the global time reading from the local time clerk.

AboutTime is both a time client and server. It acquires a time value from the Internet and sets the local computer's clock. It acts as a time server as well. It provides time signals to the local network using four internet time protocols discussed in the previous section. AboutTime uses advanced techniques and protocols to permit clock setting accuracies of ±50 milliseconds in most cases, using only a modem connection to the Internet. When using NTP and a faster connection to the Internet, the error values are rather low, especially if AboutTime resynchronizes. This is because, after the first contact with the timeserver, the Internet knows how to route the request more efficiently and the network delays tend to be smaller and more consistent. AboutTime uses an advanced strategy to assure maximum time-setting accuracy. The program measures the time required to contact the server and for the server to reply, and it takes half this delay time and adds it to the received time signal. This is a feature that is not implemented in TAO’s Time Service.

[image: image24]
Figure 19. Distributed Time Synchronization in RTDEVS/CORBA using NTP Time Server
[image: image53.emf]Server

Server

Workstation Workstation

Laptop

Computer Computer

NTP Server

NTP Server

[image: image54.png]Coordinator | | Simulator A Simulator B Simulator C

(GPT) (Genr) (Proc) (Transd)

3 start | start start
I start 2

findObject()
mformCOHpIing()':: |: l:
SR =

initializeTime() '
| R =

§simulationCycleo 3 3
B b

(4)

Within programs, getting time references from AboutTime is rather easier and faster than the TAO’s Time Service. All the time clients to this service can get time references directly from the local machine’s clock through system calls since AboutTime resets the computer clock with the standard time when it resynchronizes. In contrast, time clients must maintain ORB interfaces to get time references from the TAO’s Time Service. Furthermore, the TAO’s Time Service provides time references in the form of Object structure ‘UTO’ which requires a small operation:

We measured time reference errors from the both time sources to choose one as the global physical time source in RTDEVS/CORBA. For the measurements, we sampled 1,000 time references from the both sources in three different time intervals: 10ms, 100ms, and 1,000ms. Figure 20 and Figure 21 show the distributions of time reference errors. As shown in Figure 20, the time reference errors from the TAO’s Time Service span from -9 to 140 milliseconds while most of them are bounded within 20 milliseconds. In contrast, most of errors from the system call are bounded within 5 milliseconds even though some of them are distributed a slightly larger area which is from -15 to 15 milliseconds. Based on the statistical characteristics summarized in Table 2, we chose to use system calls from the system clock synchronized by AboutTime as our physical time source in RTDEVS/CORBA.

[image: image25.jpg]Number of Samples

600 o

500 4

400 4

300 4

200 4

100 4

—10ms
—=—100ms
—+— 1000 ms

T T
60 80

Error (ms)

T
100

T T
120 140

!
160

Figure 20. Distribution for Error of Time Reference to TAO Time Service

[image: image26.jpg]Number of Samples

— 10ms

1000 —=— 100 ms
—+— 1000 ms

800 4

600

400

200 4

-
0] eesess vesessds
T T T T T T T T
-15 -10 5 0 5 10 15 20

Jitter (ms)

Figure 21. Distribution for Error of Time Reference to the System Call

Table 2. Statistics for Time Reference Errors (ms)

	Time Source
	Sample Interval
	Mean
	Standard Deviation
	RMS
	Pk - Pk
	Max
	Min

	TAO Time Service
	10
	8.36
	15.77
	17.84
	140
	140
	0

	
	100
	9.57
	15.16
	17.92
	120
	111
	-9

	
	1000
	9.01
	9.09
	12.79
	114
	111
	-3

	System Call
	10
	0.10
	1.05
	1.05
	21
	20
	-1

	
	100
	0.34
	1.45
	1.49
	13
	11
	-2

	
	1000
	1.25
	5.32
	5.46
	30
	15
	-15

1.19 Implementation of Real-Time DEVS/CORBA

In logical time DEVS simulation, the coordinator maintains the logical DEVS time and strictly controls the entire simulation cycle. All the participating simulators are closely synchronized with the logical DEVS time under the control of the coordinator. It is the same story for any conservative parallel DEVS implementation in the distributed computing environment, i.e., DEVS/HLA and DEVS/CORBA, which performs logical simulation. In the RTDEVS/CORBA environment, however, the coordinator no longer controls the DEVS time since each simulator maintains a real-time clock which is tightly synchronized with the system clock. This system clock is again closely synchronized with the global standard time (UTC) as explained in the previous section. Based on this fact, implementation of the real-time simulator and other issues related to the real-time simulator are explained in this section.
5.3.1 Real-time Simulator

In the distributed real-time DEVS simulation/execution context, running models in real time means that a model must be able to generate an ‘event’ at the scheduled time and change its state based on the calculation caused by events. Furthermore, events generated by a model should be delivered to a remote model within some valid time boundaries specified as QoS by a modeler. The design and implementation of a real-time simulator is focusing on this fact. The RTDEVS formalism defines two kinds of events, internal and external which are handled by the internal transition function ((int) and the external transition function ((ext) respectively. An internal event is an event generated by a model itself according to the time schedule specified in the model whereas an external event is an event delivered from other models.
In Figure 22, the real-time simulator is illustrated as a model which shows the state transition flow of the simulator. The upper box in the figure represents the real-time simulator and the other box is a DEVS model. The real-time simulator basically behaves almost the same as the previously implemented simulators except that the time base is synchronized with the physical time. When a simulation cycle begins, the simulator initializes and goes into the ‘nextTN’ phase in which the simulator calculates a time-of- next-event (tN) based on the schedule specified in the DEVS model. Once the simulator gets the time-of-next-event it determines an amount of wait time by subtracting the current time from the time-of-next-event and then goes into the ‘waitFor’ phase where the real-time simulator performs a ‘synchronization’ step. In this phase the simulator waits for either the time-of-next-event (an internal event) or an external event. Either event triggers the real-time simulator to move out of the waitFor phase. Getting out of the ‘waitFor’ phase is handled by two different simulator algorithms as shown in Figure 23.

One in Figure 23(a) shows the internal transition handling algorithm whereas the other one shows the external transition handling algorithm. In the beginning of each algorithm, the simulator moves into the confluent phase in which the simulator is supposed to handle confluent problems caused by clock and network delay jitter. To compensate jitter the real-time simulator wait for a certain amount of time before it goes into the next step. This is explained in detail in the next section. After the confluent phase the simulator goes through the same simulation steps such as computeInputOutput, wrapDelFunc, and nextTN as in the simulator of DEVS/CORBA.
[image: image27.png]Simulator

clock [sigra

Model

Figure 22. Real-time Simulator and its Model
 The real-time simulator iterates one cycle of phases from waitFor to nextTN while the simulator keeps interacting with the DEVS model whenever an event, either an internal or external event, arrives to the real-time simulator. In ideal case, this iteration takes a zero time unit as in the logical simulator. In the real world, however, each step of the iteration takes non-zero time units, which introduces the time discrepancy problems between the time of event and the actual transition in the model as shown in Figure 24. Even if the time base is perfectly synchronized with UTC, the time discrepancy problem cannot be resolved completely.

[image: image28.png]while(true)
wait for o
t := checkCurrentTime();
checkConfluent();

end

when receive an external event
t := checkCurrentTime();
checkConfluent();

end

Figure 23. Simulator Algorithm

There are some aspects that should be noted on the time discrepancy problem. The first aspect is delay accumulation. We break this problem into two cases: one case is that only internal events are scheduled in a model, and the other case is that internal and external events are scheduled together. Figure 24(a) shows the case of an internal event followed by an internal event. Let t1 and t2 be model specified times of successive internal events. Suppose that the real-time simulator has reached t1 which was tN for the previous event, then the simulator would create an internal event which would, in turn, make the simulator execute the internal transition handling algorithm. Since executing this algorithm takes non-zero time (1, the actual internal transition in the model is carried out at time tN+(1. Therefore, if the model calculates its new time-of-next-event, tN’, from this moment then tN’ would be t1+(1+ta which is not the same as t2, the time required according to the original schedule. To make this happen, the simulator should calculate the delay (1 and compensate the new time-of-next-event for the delay so that tN’ is scheduled at t2. Without delay compensation, accumulation of delay would continue to build up during the simulation cycle until the simulator misses the event schedule.
In the case of an internal event followed by an external event as shown in Figure 24(b), the delay still exists. Let t1 be the model specified time of internal event. As the previous case, the model carries out its internal transition function at t1+(1 and schedules the next-event-time at t2. Suppose that an external event occurs at time tx which is the arrival time of the external event to the receiving simulator between t1 and t2. Then the simulator would call the model’s external transition function at tx, and the external transition function in the model is actually executed at time tx+(2 where (2 is a delay error measured between the moment when the external event has arrived and the moment when the external transition function is actually called. When the simulator calls the model’s external transition function it is supposed to provide an elapsed time to the model. The simulator calculates the elapsed time as e = tx - t1 which should be the point that the time-of-next-event t2 is scheduled from. However, the actual schedule is scheduled from time tx+(2. This would also build up errors and should be compensated.

[image: image29.png]e

€3

+elbedted

oe

W

et

N2

€3

e

€2

W

et

2

[

1

3

2

®)

@

Original Event Schedhle

inModsl

Tiz Recqured for Actual
Exeoution of Program

Actual State Trazsition

inModsl

Actual Event Schedule

inReal- Tiwe Sinulator

1

X external event
* internal event

Figure 24. Time discrepancy between Scheduled and Actual Event Time

in the Real-Time Simulator

To compensate the erroneous delays in the simulator, we employed the time compensation routine. As explained earlier, when a next event is scheduled in a DEVS model, the simulator determines an amount of wait time by subtracting the current time from the time-of-next-event and then goes into the waitFor phase to stay there for the amount of wait time. If no external event occurs during this phase, the simulator must start the internal transition function at the time-of-next-event which is ideally the same as the sum of the current time – in fact, this is the last time checked right before the simulator went into the waitFor phase - and the amount of the wait time. However, the internal transition function actually occurs at tN+delay. If we set this as the time-of-last-event, tL, then the new time-of-next-event tN’ will be tN+delay+sigma which is not correct. Therefore, tL is calculated by the sum of the current time that has been checked right before the waitFor phase and the wait time, which would be the tL for the new time-of-next-event tN’. This routine is for the internal transition without any external events between each schedule. When an external event occurs, the simulator checks the current time, tx, right after the external event has arrived, and then calls the external event handling routine. In this routine, the time-of-next-event scheduled by the external event is tx+sigma instead of tx+delay+sigma.

5.3.2 Delivering Messages in Real-Time

Delivering messages in real time is crucial for the RTDEVS/CORBA framework. To enable this feature, the real-time Event Service in TAO [15] is used. As discussed earlier the TAO’s real-time Event Service provides end-to-end QoS guarantees between objects communicating over the network. To get the desired QoS, the real-time requirements for each operation must be provided on the supplier side. A real-time scheduler propagates this information to consumer RT_Infos based on the dependency graph. The scheduler then uses the propagated information to order dispatches within a set of operations whose dependencies have been met.

We mapped DEVS ports to suppliers and consumers in the real-time Event Service. Figure 25 shows the mapping. All the DEVS models which participate in a simulation session are coupled by DEVS ports so that messages generated by a source model can be routed correctly to the destination model based on the RT_Info specified. DEVS ports consist of two port classes: input ports and output ports. Output ports are mapped into suppliers and input ports are mapped into consumers of the Event Service architecture. To incorporate these mapping relations in the framework, pushInPort class and pushOutPort class were created. These two classes maintain port-name, source id, and RT_Info associated with an event to be handled as their member variables. When the coordinator downloads the coupling information at the initialization phase, the coordinator retrieves coupling information and the RT_Info table from the top coupled model assigned to the coordinator, and download it to simulators. The RT_Info table contains real-time parameters associated with each event, and the events are distinguished by the name which is created by combining the model-name and port-name. The modeler must identify QoS information for each event before the assignment, and provide the required QoS information through this RT_Info table. The coordinator parses the RT_Info table and then creates an event list based on the QoS information specified in the table before downloading the coupling information to the simulators. Upon receipt of the coupling information, each simulator creates pushOutPort and pushInPort accordingly, and makes connection to the Event Service, which makes a virtual event channel between the pair of pushOutPort and pushInPort. This virtual event channel is identified by the source id assigned to the supplier connected to the event channel.
[image: image30.png]~Name ~Name

pushOutPorts ~SourcelD pushInPorts ~SourceID
~RT_Info ~RT_Info
Source Destin
modell push() modell
\ push(
Source N
model2 Destin
model2

Figure 25. Mapping Suppliers/Consumers to DEVS ports

After downloading the coupling information, the coordinator requests the Scheduler to compute priorities based on the given RT_Info’s and assign dispatching priorities to each event. In this framework, each pushOutPort and pushInPort pair handles only one event, so that the priority assigned to the event can be inherited to the virtual event channel created between the pushOutPort and the pushInPort.
To deliver DEVS messages through the real-time Event Channel, the DEVS message must be converted into TAO’s Event format. The Event consists of two fields: the event header and the payload. The Event header contains routing information and the data must go into the payload. The data serialized into a byte stream before it goes into payload. As we discussed earlier, the DEVS message contains several fields as shown in Figure 26. Among these fields, only the value field is serialized and packed into the event payload. This greatly reduces the event payload size. Since the pair of ports is coupled through a dedicated virtual channel, other information fields specified in the DEVS message are not necessary for message deliveries.
[image: image31.png]Source |17 oot e
Model

pustOut \ encoding

Ieader | payload

Network

U | Ieader | payioad

Destin.

Model I

ot [aidress [valte

Figure 26. Mapping DEVS message to TAO Event

5.3.3 Handling Confluent problems in Real-Time distributed environment

5.3.3.1 Confluent Problems in Logical Simulation

The confluent problem was briefly introduced in Chapter 2 where the parallel DEVS formalism was discussed. The confluent problem in non-real-time (logical time) simulation is illustrated in Figure 27. A coupled GPT model is employed to explain confluent problem in this section. So far the GPT has been used an example in many places in this dissertation, but has been never discussed in terms of its behaviors. Therefore, we briefly review the GPT model before jumping into the confluent problem. The coupled GPT model has three atomic models: a Generator model, a Processor model, and a Transducer model. These atomic models are coupled as shown by a diagram in Figure 27 and each model is specified as follows:

· The Generator model produces jobs in a specified time interval (inter-arrival-time), and then sends them to the Processor model and the Transducer Model.

· The Processor model accepts jobs from the Generator model, and is supposed to process the arrived job during a predefined time interval (processing-time), and then sends it to the Transducer model. The Processor model accepts the jobs only when it is in ‘passive’ phase.

· The Transducer model collects unprocessed jobs from the Generator model and processed jobs from the Processor model. The Transducer model stamps time on each job upon receipt and compares the time difference between the timestamps of the unprocessed and processed jobs. By doing this, the Transducer model can get performance statistics of the Processor model.
Figure 27 (a) shows input and output trajectories of each model when we run the models in the non-confluent situation, which means that the inter-arrival-time (TG) of the Generator model and the processing-time (TP) of the Processor model are not equal. Especially this case shows that the inter-arrival-time is bigger than the processing-time. The Generator model produces J0 as soon as simulation starts at logical time t0, and J0 is delivered to the Processor model and the Transducer model at the same logical time t0. When the Processor model receives J0 it goes into ‘busy’ state and stays there for the processing-time which is smaller than the inter-arrival-time of the Generator model, while the Transducer model stamps the logical time t0 on the job J0 and then stores the time-stamped job J0 into a queue. After the processing-time is elapsed, the Processor model sends out the processed job J0’ to the Transducer model at logical time t1 and goes into ‘passive’ state. Meanwhile the Generator model stays in another ‘active’ state and then generates a new job J1 at logical time t1. This cycle goes until simulation ends.
Now let us consider the case that the inter-arrival-time and the processing-time are the same as shown in Figure 22 (b). When the durations of the inter-arrival-time of the Generator model and the processing-time of the Processor model are the same the confluent problem occurs. This problem is well handled in the confluent transition function (δcon) of the Parallel DEVS formalism. The confluent function allows a modeler to specify how to handle the internal and the external events that occur at the same time as discussed in CHAPTER 2. The Parallel DEVS formalism also allows multiple external events to arrive to a model. Since the length of the inter-arrival-time and the processing-time are the same, two confluent problems occur at the same time in the case of Figure 22 (b).
The first confluent problem, which involves both internal and external events, occurs in the Processor model. Every time when the Processor model gets an external event, it also has internal transition scheduled. Consequently, the model behavior should be different according to the order of transition functions executed. If the external transition is executed before the internal transition function, the Processor model will not get every other input event because the model is supposed to get external events only when it is in ‘passive’ phase. Therefore, the model must execute the internal transition function first to get every input event correctly. So, we specify that the confluent function should execute the internal transition function before the external transition function.

The second problem, which involves only external events, occurs in the Transducer model. The outputs from the Generator model and the Processor model arrive the Transducer model at the same time. This problem was handled by the SELECT function in the Classic DEVS formalism, which allowed only one output to the same influencee model at a given time. This way of tie-breaking function was eliminated when the Parallel DEVS formalism was introduced. In the Parallel DEVS formalism, multiple output events are allowed and delivered to the influencee model at the same time. Processing multiple input events correctly is now the responsibility of the external event function of the influencee model which the Transducer model in this case. The modeler should specify the correct order of external event processing in the external transition function.
[image: image32.png]GPT

o
Generator [+~ Processor [[Transdue
e
» n n » » n n »
atie | wtive | wtie atie | wtive | wtie
c
» w w
n owonowon owon » it n »
[e e * bwy tobwy *obwy
o e e o :
H d d d p L
» w w
» it n »
+ + + +
: 4 4 4
[S S S

Figure 27. An Overview of Confluent Problem in Logical Time Simulation

5.3.3.2 Confluent Problems in Real-Time Simulation

Due to the non deterministic delay or delay jitter, it is hard to get event messages as scheduled. According to ITU-T definition, jitter is defined as those phase variations with respect to a perfect reference that happens in a clock or data signal as a result of noise, patterns, or other cause. Jitter refers to delay variations in the network context. Jitter describes the variations in latency of a message transmission. In data networks, too much packet jitter causes voice to sound garbled. Network components usually compensate for jitter with buffers. Jitter buffers store incoming packets and send them in a more constant stream. In this case, the size of jitter buffers affects performance of the network. However, there is no optimal size of jitter buffer because the buffer size will vary from network to network.
We use a similar concept to control jitter in RTDEVS/CORBA. Sources of jitter in our environment vary. One of the main sources of jitter is the instability in the computer clock as discussed in the previous section. Other sources could be general purpose OS, network configuration, and software environment that are used in our environment. Any system involved to our environment could be the source of jitter. Our goal here is not to identify the major source of jitter nor to control the source, but to identify problems that jitter could introduce and to provide the simulator with a capability to handle jitter in a proper way.

Jitter hinders the real-time simulators from getting messages as scheduled in RTDEVS/CORBA. We use the same GPT model to explain this situation in the real-time distributed environment. Since all the models are tracking a real-time clock which is provided from the system, it is virtually impossible to make simultaneous events occur at the very same moment. In non-real-time logical simulation, logical time never proceeds until all the events scheduled are processed no matter how long it takes to process the events in the real physical clock
. In real-time simulation, however, the real-time clock proceeds continuously, which means that the simulator does not have any control over simulation time. Therefore, the confluent problems here are different from those in logical distributed simulation.
[image: image33.png]nn o=
st | e
! T
m L m2 (sec)
oo
w ol n
von v
T
Wb e
w o w
O

LEGEND

sttt it

sctual event 1 output
| v

I msolved job

I salved o

confluent window

n n n
ative | ative
m 0 w o T
wo o
mo o o
+ + +
M T (sec)
m w
+ nt
| .

Figure 28. Confluent Problem in Real-Time Simulation
The GPT model used in this example is the same one as discussed in the previous discussion of the confluent problem in logical distributed simulation. The Generator model in Figure 28 is supposed to generate a job at every second. And the Processor model is also supposed to process an incoming job in 1 second, which means that the schedule of the internal transition of the Processor model should be the same as the arrival of an incoming job to the model. As shown in Figure 28(a), however, even job generation in the Generator model does not occur at the exact moment that is scheduled in practice. Furthermore, it takes non-zero time to deliver the job to the Processor model. Therefore, an external event can be delivered right before or after the internal transition has been executed, which forces the Processor model to make unnecessary transitions. In the Transducer model, the same thing happens. Two external events scheduled to arrive at the same time could be delivered with small interval.

To reduce this kind of undesirable behavior, we introduce a confluent time window, which acts like the jitter buffer discussed earlier. As shown in Figure 22, the real-time simulator should perform the confluent checking routine right before it goes into the regular simulation cycle. Either an external or an internal event can trigger the simulator to move into the regular simulation cycle. In the beginning of the confluent checking routine, the simulator sets the confluent time window and waits for any successive events during this period. Figure 28(b) shows the confluent time windows set forth by an internal or an external event in the Processor model and the Transducer model. The end of the confluent checking routine, the real-time simulator executes the confluent function which specifies the state transition order between internal and external events that occur together.

The size of the confluent time window is provided by the modeler, and this size determines the time granularity of real-time simulation. It is desirable for the modeler to provide an optimal size of the confluent window based on the delay characteristics of the network environment. If the size of the confluent window is too small compared to jitter, it would not handle all the confluent problems. On the other hand, if the size is too larger than necessary, then the simulator has a processing time reduced by the size of the confluent window because the events are delivered to the model after the confluent window has been elapsed. This could result in overlapping with the next scheduled event. Figure 29 shows the result of the experiment with the GPT model to see how the model behaves with different size of confluent windows.

The experiment was performed with the modified GPT model which has multiple Generator models while the other two models are remained the same. The Generator models generated events at the same rate so that the Processor model got multiple events at every schedule time. We measured the correct confluent ratio as the size of the confluent window changed. Here, the correct confluent ratio was defined as the number of correct confluent messages divided by the total number of messages generated, where the correct confluent message is a message that contains the same number of contents as the number of the Generator models.

[image: image34]
As the result graph shows, the correct confluent ratio increases as the size of the confluent window increases. However, the correct confluent ratio decreases as the number of the Generator models increase with the same confluent window size, which implies the relationship between the size of jitter and the size of the confluent window. We also measured jitter with the same model configuration. Since jitter is defined as delay variation, we measured delay differences between the first event and the last event at every scheduled time as depicted in Figure 30. If the first event and the last event occur within the confluent time window, these events would be handled correctly as specified in the confluent function. Therefore, the main concern about jitter is delay variation between the first event and the last event.

[image: image35.png]Ratio of Correct Confluent (%)

100

90

80

70

60

50

40

30

20

10

thiot

2 gen.
5 gen.
10 gen.
15 gen.
20 gen.

60

Il Il Il
80 100 120
Size of Window (ms)

I
140

I
160

I
180

200

Figure 29. Result of Confluent Experiment

[image: image36.png]] -

wWuwe 8 LI

@)

Lo

twe B LI

®)

confluent window

Figure 30. Two different confluent cases

Figure 31 shows distribution of jitter with the different number of Generator models and Table 3 shows some statistical results. We measured jitter as the delay difference between the first event and the last event arrived at the Processor model for every event schedule cycle as explained above. For example, if there are 5 Generator models, each Generator model is supposed to generate 1000 jobs indexed with integers from 0 to 999 at the same rate (1 second). Therefore, 5 events indexed with the same integer are supposed to arrive at the Processor model at or near the same moment (at every second). We marked time stamp onto each job arrived and then calculated delay between the first and the last events. As expected, jitter keeps increasing as the number of Generator models increases. Note that statistical results provided in Table 3 are calculated only for steady-state, since there was a considerable amount of initial transient delay.
5.3.4 Getting Data from External Environment Systems

For the real-time simulation, there need means to get external input data from the sensors and to send out data to actuators. This feature is crucial for the real-time simulator to support real-time event-based control. It is important for the real-time model to handle all the external events in the same external transition function in the same manner regardless of their type. In RTDEVS/CORBA, a modeler can specify an external interface type using the model, setExternalInterface() method. When the simulator initializes the model, the simulator checks the specified external interface types and configures the interfaces accordingly. For example, as depicted in Figure 32, if the model expects external data through socket connections from the sensors, the modeler can specify a socket interface in the model, and the simulator sets up the connection. The real-time simulator creates proxies: sensor proxy and actuator proxy. These proxies are waiting for any data stream, and once data arrives, then they call the simulator’s external input handling method immediately. This method converts a socket stream data into DEVS message and puts it into the model as an external event message so that the model handles the external sensor data as a DEVS message. Of course, the simulator still can be coupled to the other simulators while also receiving the external interface data.

[image: image37.jpg]400+

300

200

Counts

100 o

——2gens.
—=—5gens.
—e—10gens.
—a—15gens.
—v— 20 gens.

aalh o St S e S S e o

T T T T T
100 200 300 400 500

Jitter (ms)

Figure 31. Distribution of Jitter

Table 3. Statistics for Jitter of Event Arrival (ms)

	Number of Generators
	Mean
	Standard Deviation
	RMS

	2
	17.87
	21.31
	27.58

	5
	26.67
	42.74
	53.92

	10
	38.44
	48.20
	59.52

	15
	52.12
	65.47
	84.23

	20
	54.88
	53.41
	93.11

To enable user friendly external interfaces, a specialized coupling concept is employed, namely Reserved Internal Coupling (RIC). The reserved internal coupling couples the ports attached to the model with the simulator. The real-time simulator has reserved internal ports like: extInputFromSocket, extInputFromKeyboard as input ports, and extOutputToSocket, extOutputToScreen as output ports. The interface between activities and the model is defined in the same manner. In this case the simulator starts an activity thread instead of proxies, and these are connected through other reserved internal couplings like resultFromActivity, cancelActivity, etc.
[image: image38.png]Message Encode: Dta Streaz to DEVS Message
Messege Decode: DEVS Message o Data Strear

Environment

System

Sensor

ctuato

Simulator
DEVS Model

essoge Encode iessoge Decode
Sensor “actuator
Prozy Prozy

Network

Figure 32. Design of External Interface for Real-Time Simulator

5.3.5 Implementation of Activity
As discussed in Chapter 2, an activity is defined to incorporate real computations within simulation models in the Real-Time DEVS formalism. Such activity is implemented as activityThread in RTDEVS/CORBA so that a modeler can assign a DEVS simulation or a piece of real computation software to the thread. The activity class is divided in two subclasses: the simActivity and the RTActivity, as shown in Figure 33. The simActivity class is for faster-than-real-time simulation whereas the RTActivity class is for the real computation module. Faster-than-real-time simulation refers to logical simulation that is embedded in real-time simulation. For example, one whole DEVS simulation model can be assigned into a simActivity thread which is running in logical time while the other models are running in real-time. The interface between the model and the activityThread is the same as the one discussed in the previous section.

[image: image39]
Figure 33. Class hierarchy of activity

[image: image40]
Figure 34. Example of Activity in a DEVS model

In the DEVS formalism, a model schedules the next event time using the hold_in method which has the format of hold_in(phase, sigma), where the phase is the control state in which the model must be kept for the amount of time specified by sigma. The hold_in method is also used in the RTDEVS/CORBA environment to schedule the next event time. In this case, however, sigma is mapped into the real-time clock, i.e., the value of 5 for sigma means 5 seconds in the physical real time clock. To assign an activity to a certain state for a certain time period, the modeler can use the extended version of the hold_in method, which has the format of hold_in(phase, sigma, activity). The activity is a real computation that must be performed to get some results. For example, this could be a DEVS simulation or a piece of computing software which takes some time to get the result. Through this version of the hold_in method, the modeler can assign a deadline to be associated with the activity. In this case, the modeler must make sure that the computation can be performed within the specified time window before he/she assigns the activity to the model. Figure 34. Example of Activity in a DEVS model shows an example of the usage of the activityThread in a DEVS model. This DEVS model is a model that is supposed to read images from a file through the imageReader activity.

One of the most important requirements for this environment is the model continuity (or model transferability) through the model development phases, which means that models developed in any DEVS-based M&S environments such as the DEVS-JAVA, DEVS/HLA, or DEVS/CORBA should be able to run in the RTDEVS/CORBA environment with minimal changes as long as they maintains the same interfaces. This model continuity could be made possible by the use of the activity. When a real-time model is developed in the DEVS-JAVA environment, the model can just use the old version of the hold_in method until the logical behavior of the model is verified. Once verified, the model can be migrated in the RTDEVS/CORBA environment with the extended hold_in method.

 APPLICATION EXAMPLES
This chapter provides application examples to demonstrate applicability of our environment. As we discussed in the first chapter, the RTDEVS/CORBA environment is intended to provide capabilities for modeling of systems with real-time constraints, and to support simulation and/or execution of such models in real time. The first example illustrates real-time simulation and execution of a distributed temperature model. It also illustrates model continuity from model construction in DEVS-Java environment to distributed execution in RTDEVS/CORBA environment. The second example demonstrates simulation-based decision support with the use of multi-resolution models.

1.20 Distributed Temperature Control with Hierarchical Scheduling

6.1.1 An Overview
In this example we show ability of the distributed real-time DEVS/CORBA environment to support development of a complex distributed real-time system using real-time simulation. We show how model continuity may be maintained from the very beginning of the development stage to the execution of the model. The example used here is a distributed intelligent temperature control applied to a building using a hierarchical scheduling scheme. The building could be a hotel, an office structure, a hospital or any other buildings that have many floors with multiple rooms on each floor. The requirement calls for each room in this building to be controlled individually as specified by a manager at all times. The overall model architecture is depicted in Figure 35 and the System Entity Structure (SES) representation of the model is shown in Figure 36. The model consists of three components: the control system, the monitoring unit, and the building unit. The control system is the real-time system that needs to be developed, and the building unit is the environmental system model that would provide a virtual environment for the real-time system to be developed. Therefore, the building unit must provide outputs through the specified interfaces with highly accurate timing. The system also has a monitoring unit to provide the real-time monitoring capability.

The control system is further divided into the master scheduler and several control units, each of which consists of a master controller and sub-controllers. A master controller is assigned to each floor and is supposed to control the sub-controllers, each of which is assigned to a room. The master scheduler is the main interface unit through which the manager can specify the master control schedule, and the master scheduler maintains and distributes the master control schedule to each master controller accordingly. The master controller delivers the control schedule to each sub-controller and monitors the behavior of the sub-controllers. If an error should occur in a sub-controller, then the sub-controller would send out an error message to the master controller, and the master controller is supposed to process an error routine for the sub-controller. The building unit consists of multiple floors each of which is again composed of many rooms.

[image: image41.png]]
Manager | Master Scheduler M“gﬁz{‘"g

1% Floor 4Floor 4 Floor, N&Floor

Figure 35. Overall Structure of Distributed Temperature Control Model
[image: image42.png]DTCS

DTCS-de
|
T T 1
ControlSystern MondorlJnit BuildingUrit
| | |
C-dee MU-dsc BU-de
| |
MondorWindows Florllits
MasterScheduler ControlUnits i I
11 MortorWindow FloorUnit
Controllzit 1
| FU-dec
CU-dse)
’_k—‘ RoonUits
MasterController Controllers 11
i Roonlnit
Controller |
Rl-dse

V—Y—‘_Y—\

Foom Semsor Actwter HC
11

HiC-spee

——

Codler Heater

Figure 36. System Entity Structure of Distributed Temperature Control Model

6.1.2 Model Construction

To construct the model we assumed that the building had the same floor plan on each floor. Since each floor of the building has the same structure, we only constructed a model for one floor with 10 rooms as shown in Figure 37. One control unit is assigned to one floor unit model while each sub-controller is interacting with its counterpart which is a room unit model. The real-time system which would be developed and migrated from the simulation environment to the execution environment is the control unit. As discussed in the previous section, the control unit model is composed of a master controller and sub-controllers, and the master controller is supposed to get updated control schedules from the master scheduler.

The master scheduler is to provide interfaces for a manager to input, to modify, to retrieve the schedule. And it is also required to store the schedule in an organized manner and to distribute the schedule to control units as time arrives. Kim [66] proposed a method for a hierarchical scheduling in environmental control. He used the System Entity Structure (SES) to organize the environmental control schedule in a hierarchical manner. This scheme is employed in the master scheduler to specify the overall control schedule in a hierarchically organized format, in which the control schedule for each room can be specified in multiple levels.

[image: image43.png]schedile

controlUnit

setPoint

Sub
Controller

floorUnit

[, Master

Controller

efPoint

Sub
Controller

ToomURE
cunentTemp|

sensor Room
comand

actutor

ToomURE

cunentTemp|

sensor [l Room
comand

actutor

Figure 37. Minimized Model Architecture

While the master scheduler maintains the master schedule, it periodically distributes the schedule to the master controllers. Upon receipt of the schedule, the master controller delivers it to sub-controllers, each of which controls its assigned room as scheduled. For example, the master scheduler dispatches a daily control schedule to each master controller and then the master controller similarly dispatches different set points to each sub-controller according to this time schedule. The sub-controller is the main controller which maintains room temperature as specified in the schedule. Even though the sub-controller maintains room temperature, a guest can adjust room temperature at any time, and this adjustment overrides the regular schedule.

The floor unit is a real-time simulation model that provides an artificial environment for the control system. This floor unit model consists of multiple room unit models, each of which is composed of a room model, a sensor model, and an actuator model. The room model calculates the current room temperature based on a given function, which is a simple linear function in this example, and provides the current room temperature upon request by the sensor model. The sensor model senses the room temperature and delivers it to the sub-controller every 10 seconds. The actuator model interprets commands from the sub-controller and delivers commands to the heater or the cooler in the room.
Figure 38 depicts the state transition diagram of the sub-controller model which actually controls the room temperature. The sub-controller implements the event-based control scheme. The sub-controller only accepts sensing data during the wait phase which is the time window (t seconds) for a valid input, and generates a command. Otherwise it goes into the error phase, and then generates an error message which goes to the master controller. When the master controller receives an error message from the sub-controller, it sends a restart signal along with a set point again. The master controller also provides a set point to the sub-controller at the beginning of every day.

[image: image44.png]LEGEND

2 Input Event
1 Output Event
“--- Tnternal Transition

ey

decision
making

—— Extemal Transition

Figure 38. Sub-Controller Model
6.1.3 Simulation and Execution of the Model

First we built the model in DEVS-Java and checked its behavior to see if it worked correctly in terms of logical dynamics. Then the model was moved into the real-time DEVS/CORBA environment to check its timing behavior. In this example a control schedule is provided to the master controller in a table format, which contains 10 different set points for each room. For the purpose of the example, we scaled down the time schedule for the master controller to distribute each set point at every 10 minutes. This time schedule can be adjusted up later on as needed. The model was executed in two ways: with and without user interruption. User interruption refers to the change of the set point by the user of the room. While running the model we attached a monitoring window to each room to see room temperature changes in real-time. One monitoring window is connected to the output port of each sensor model of the room unit so that the current room temperature can be monitored. Figure 39 shows the result of the temperature control of the first room without any interruption by the user whereas Figure 40 shows the result with interruption. These results indicate that all the models are working correctly in terms of both logic and timing.
[image: image45.png]Current Temp.
SetPoint
85]
=% 1
&
-
°7s A
|
T 1
65]
100 200 300 400 500 600

Time (10 sec.)

Figure 39. Result of Temperature Control without User Interruption
[image: image46.png]8

3 8

‘Temperature (degree F)

3

— Current Temp.
Set Point

Interruption

Original Schedule Original Schedule

100 200 300 400 500
Time (10 sec.)

600

Figure 40. Result of Temperature Control with User Interruption
Real-Time Concurrent Execution of Multi-resolution Models
6.2.1 Introduction
Recently multi-fidelity (or multi-resolution) algorithms are being employed in many engineering or scientific computation areas. A multi-fidelity algorithm is defined as “a sequence of computing steps that terminates, yielding a result that falls within a range of acceptable output specifications” [67]. With multi-fidelity algorithms, an application can provide a result as close as possible to the correct one within a given time period. Multi-fidelity algorithms are applied to areas where computers involve particularly stringent time constraints, which means that response time is critical for user comfort, and computing resources such as CPU, memory, or bandwidth are limited. Multi-fidelity algorithms allow the tradeoff between output quality and computation time. Examples of application areas are real-time visualization, real-time rendering, real-time interactive computing, and so on.
In real-time artificial intelligence studies similar concept has been applied for problem-solving methods that try to find a reasonable answer within the time available by dynamically constructing and executing a problem solving procedure [74]. This same concept can also be applied to real-time simulation-based decision support system such as C4I systems or other decision support systems. Instead of constructing dynamically adapting models in these cases, multi-resolution models, which represent different levels of abstraction, can be constructed in advance and then executed concurrently at runtime, assuming higher resolution models yield better results while these models take more time to execute.

Lee and Fishwick have proposed a multimodeling methodology for real-time simulation [68]. In their work they designed OOPM/RT (Object-Oriented Physical Modeler for Real-Time Simulation) to enable modeling with arbitrary real-time constraints at model design time, which supports model selection between a high resolution model and a low resolution model based on a given time frame. They used a base model to represent highest resolution of the modeled system and abstract models which have lower resolution. In this methodology, however, they only focused on the modeling aspect with real-time constraints. Hence, they just assumed a deterministic execution time and did not account for uncertainty issues that can arise at runtime. Sources of such execution time uncertainty are the behavior of the operating system (especially non real-time), dependence on external data values, external event timing, and so on. In our example we show real-time execution of multi-resolution models in the RTDEVS/CORBA environment, which handles uncertainty which can arise at runtime.

6.2.2 Real-time Multi-Resolution Model Example

Our example is comprised with a client model, a server model, a computation model, and three processor models which have different resolution activities assigned as shown in Figure 41. The client asks the server a request with some deadline, and the server hands over the request to processors which are supposed to provide different resolution results. While the processors are trying to find the solution, they are trying to access outside computation resources. The server waits for the results from the processors until the deadline is elapsed and then the server selects the result from the highest resolution model that has completed by that time, and sends it back to the client.

[image: image47.png]Client

Request

Response

Server

| High resatution

madel

| Med_ resofution

madel

| Lovw resotution

madel

Figure 41. Overview of Multi-resolution Model Simulation
In this example, the request of the client is a circumference computation with a given radius of a circle. Three different resolution processors compute a circumference of a circle by an approximation method instead of the well-known equation:
[image: image48.wmf]R

p

2

. Given a radius R, the processors compute the circumference by the equation:

[image: image49.wmf]÷

ø

ö

ç

è

æ

´

@

2

sin

2

360

q

q

R

nce

circumfere

where (is a central angle of an arc of the circle. With the above equation, the processor calculates the length of a chord, c, instead of the length of the arc, s, which gives an error, E, where E is the difference between the actual circumference and the estimated circumference. It is well known that the error, E is proportional to the size of the central angle, (. This means that the smaller the size of the central angle is, the closer we come to the correct circumference.

In the example, we assigned three different central angles (() to the processors: 2 degree to the highest resolution processor, 5 degree to the medium one, and 10 degree to the lowest one, respectively. Each processor iterates 360/(times, and asks the length of a chord to the computing server with R and (as inputs to the server during every iteration. Upon receipt of the request, the computing server waits for some random period before it returns any results, and then sends the length of a chord which is accumulated by the processor. This random waiting time represents uncertainty that may occur during real execution. Due to the random waiting time the lowest resolution processor does not always finish its computation earlier than the higher resolution ones, even though the higher ones take more time in general. Therefore, the server selects the highest resolution result from all the available results just before the deadline. Table 4 shows the result of concurrent execution of multi-resolution models. The example executed 1,000 times on a single Windows NT computer which has a Pentium II 300 Mega Hertz CPU and 256MB memory. The client requested each computation and then waited for 20 seconds to get the result from the server.

Table 4. Result of Concurrent Execution of Multi-resolution Models
	
	Low Resolution
	Med. Resolution
	High Resolution

	Central Angle (degree)
	10
	5
	2

	Number of Iterations
	36
	72
	180

	Average Compute Time
	15.6
	17.9
	32.8

	Num. Result within Deadline
	968
	576
	153

	Num. Result Selected
	392
	423
	153

As we can see from the result, the RTDEVS/CORBA environment supports concurrent execution of multi-resolution models successfully. Out of 1,000 requests, the low resolution model finished 968 requests within the deadline while the medium resolution model finished 576, and the high resolution model finished only 153 requests. The low resolution model even misses the deadline 32 times because of the random waiting time between iterations. Note that the number of requests finished within the deadline by the high resolution model is the same as the number of results selected by the server. This means that the server selected and returned the highest resolution result available within the deadline.

 CONCLUSIONS AND FUTURE WORK
1.21 Conclusions

In this dissertation we have proposed RTDEVS/CORBA to address the need for object-oriented real-time systems engineering environments. We have presented how this environment is an extension of previously developed DEVS-based modeling and simulation frameworks that have been shown to support an effective modeling and simulation methodology in various application areas. The issues that we discussed were related to the design and implementation of RTDEVS/CORBA, a distributed real-time modeling and simulation environment in which distributed real-time systems can be developed using the DEVS modeling and simulation methodology. A layered design approach was adopted to address real-time design issues in the context of embedded system and event-based control in the distributed object computing environment, which also separates concerns underlying the layers. The DEVS/CORBA framework has been reviewed as a basis for the RTDEVS/CORBA framework. DEVS/CORBA is implemented in Visibroker based on the experiences with DEVSHLA which is a DEVS-based distributed M&S environment implemented over the HLA Runtime Infrastructure. Coupling information downloading is a newly implemented feature that enables distributed DEVS models to communicate with each other directly without mediation of the root coordinator as implemented in the DEVS/CORBA environment.

The Real-Time DEVS formalism (RTDEVS) has also been reviewed as an extension of the original DEVS formalism and refined in this dissertation. Based on the RTDEVS formalism, the real-time simulator was designed and implemented. The real-time simulator executes a DEVS model in real-time, which means that the simulator creates internal events at the specified time in the model, and handles external events within the designated time interval while it maintains the globally synchronized time with other simulators. Time synchronization between distributed components is one of the most important issues in distributed real-time computing. Therefore, time synchronization issues in RTDEVS/CORBA have been reviewed, and implementation details of such time synchronization within the real-time simulator have been explained. To realize the real-time, priority-based message delivery among distributed objects, we used TAO as a middleware, which is a real-time implementation of CORBA specification based on the ACE framework. TAO provides end-to-end QoS guarantees between distributed objects through real-time CORBA services like the real-time Event Service and the Scheduling Service. While messages are delivered between distributed DEVS components in real-time, jitter naturally occurs. Jitter is delay variance in message delivery. To handle jitter properly a confluent time window has been proposed and implemented. Through experiments we showed that the confluent time window handles jitter accordingly.

In the RT-DEVS/CORBA framework, some of the other features required by real-time modeling and simulation were also added. These features include external data interfaces to/from real world environment systems, an activity thread which enables a DEVS model to perform real computations while it stays in a certain state or phase, and the dynamic priority assignment to event channels. With the existence of an activity thread a DEVS model can be transferred from the logical modeling and simulation environment like DEVS-Java to the distributed real-time modeling and simulation environment like RTDEVS/CORBA. Indeed, a DEVS model developed in any of DEVS-based modeling and simulation environments such as DEVS-Java, DEVS/HLA, DEVS/CORBA or RTDEVS/CORBA can be transferred between any one of these environments.

Application examples were also presented to show the applicability of the RTDEVS/CORBA framework in the areas like the simulation-based design of real-time control systems and concurrent execution of multi-resolution models with real-time constraints. For the design of real-time control systems, a distributed temperature control example applicable to multiple story buildings was presented. In this example, the model continuity concept was employed to design and implement the controller. The whole system which consists of three modules such as the environment, the control system which is the main target of development, and the monitoring system was implemented in the DEVS-Java environment to test logical behavior of the whole system. After the logical behavior test, the system was migrated into the RTDEVS/CORBA environment to check timing behavior. The other example showed the ability of our framework to cope with uncertainty of model execution time with multi-resolution models.

1.22 Future Work
After finishing our research for this dissertation, we are able to propose some possible future work as follows:

· The current RTDEVS/CORBA is implemented in Java with Visibroker for Java on Windows NT, all of which are non-real-time systems. Even though the RTDEVS/CORBA environment employed TAO’s real-time CORBA services, it is not feasible to support execution of real-time systems that require more stringent time constraints. To support maximum real-time execution capabilities, a vertically integrated real-time end-system is desirable. A vertically integrated real-time end-system refers to a system with real-time capabilities from the lowest layer to the highest layer, i.e., it requires real-time communication, a real-time operating system, real-time Java, and real-time middleware implemented in Java. Currently real-time Java and real-time middleware in Java are partially available. Once these entities are fully available, RTDEVS/CORBA can be transferred into a vertically integrated real-time distributed system.

· As introduced in Chapter 2, DEVS M&S environments have been implemented in various languages including Java and C++. Therefore, all DEVS models developed in either Java or C++ should be able to be migrated into the RTDEVS/CORBA environment. Now that the RTDEVS/CORBA framework is done in Java, the framework could be easily ported into C++.

· Having RTDEVS/CORBA, we now need to have real capability to interact between models in simulation federation and models in execution federation. This is matter of time coordination between logical time in simulation and real-time in execution. This should be implemented to get a fully integrated DEVS Enterprise M&S environment.

· In this dissertation, scheduling feasibility analysis has not been explicitly presented. Even though schedulibility is one of the most important issues in the real-time computing area, it should be noted that this issue arises because of limited computing resources. Since RTDEVS/CORBA is a distributed real-time computing environment, computing power in the environment is scalable. Therefore, the schedulibility issue in our environment can be resolved by adding computing power as necessary. To support this feature, however, schedulibility analysis is still required. Cho and Kim [75] are currently working on scheduling feasibility analysis with given RTDEVS models and computing power of given hardware resources. Using their work, RTDEVS models may be partitioned into multiple groups in terms of scheduling feasibility so that each partition can be distributed.

· The current implementation of the confluent time window does not explicitly handle network latency between distributed models. Since our experiment has been performed in a local area network, the size of network latency was relatively small enough so that network latency can be ignored. However, if the size of the network grows larger, network latency cannot be simply ignored any more. Therefore, we need more research on the issues related to latency between geographically dispersed models in a wide area network. One solution approach might be that network latency could be explicitly included in DEVSJava models so that the modeler can manipulate the delay properly in the models and then deploy the models in the real-time execution environment later.

REFERENCES

[1] B.P. Zeigler, Theory of Modelling and Simulation, Wiley, N.Y., 1976.

[2] B.P. Zeigler, Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems, Academic Press, San Diego, 1990.

[3] S. Pinker, How the mind works, W.W. Norton, New York, NY, 1997.

[4] J.S. Hong, and T.G. Kim, “Real-time Discrete Event System Specification Formalism for Seamless Real-time Software Development,” Discrete Event Dynamic Systems: Theory and Applications, vol. 7, pp.355-375, 1997.

[5] B.P. Zeigler, T.G. Kim, and H. Praehofer, “DEVS Framework for Modelling, Simulation, Analysis, and Design of Hybrid Systems,” in Hybrid II, Lecture Notes in CS, P. Antsaklis and A. Nerode, Editors. Springer-Verlag, Berlin, Germany, pp.529-551, 1996.

[6] B.P. Zeigler, T.G. Kim, and H. Praehofer, Theory of Modeling and Simulation. 2nd ed., Academic Press, New York, NY, 2000.

[7] T.H. Harrison, et al., “The Design and Performance of a Real-time CORBA Event Service,” IEEE J. on Selected Areas in Communications, 1999.

[8] R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA, Wiley Computer Publishing, New York, NY, 1997.

[9] D. Kim, S.J. Buckley, and B.P. Zeigler. “Distributed Supply Chain Simulation in a DEVS/CORBA Execution Environment,” in Proceeding of WSC. Phoenix, Arizona, 1999.

[10] B.P. Zeigler and J. Kim, “Extending the DEVS-Scheme Knowledge-Based Simulation Environment for Real-Time Event-Based Control,” IEEE Trans. On Robotics and Automation, vol. 9, no. 3, pp.351-356, June 1993.

[11] S.M. Cho and T.G. Kim, “Real-Time DEVS Simulation: Concurrent, Time-Selective Execution of Combined RT-DEVS Model and Interactive Environment,” in Proceedings of SCSC '98, pp.410-415, Reno, Nevada, 1998.

[12] K. Ghosh, et al., “PORTS: A Parallel, Optimistic, Real-Time Simulator,” in Proceedings of Workshop on Parallel and Distributed Simulation, pp.24-31, July 1994.

[13] T. Uslander, “OPERA: A CORBA-based Architecture Enabling Distributed Real-Time Simulation,” in Proceedings of ISORC ’99, May 1999.
[14] M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison-Wesley, 1999.
[15] D.C. Schmidt, D.L. Levine, and S. Mungee, “The Design of the TAO Real-Time Object Request Broker,” Computer Communications, vol. 21, no. 4, pp.294-324, April, 1998.

[16] A. Kanevsky, A. Skjellum, and A. Rounbehler, “Real-Time Extensions to the Message-Passing Interface (MPI),” January 1997.

[17] E. A. Lee, “Modeling Concurrent Real-Time Processes using Discrete Events,” UCB/ERL Memorandum M98/7, March 1998.

[18] S. A. Edwards, “The Specification and Execution of Heterogeneous Synchronous Reactive Systems,” Ph.D. Thesis, University of California, Berkeley, May 1997.

[19] A. Gokhale and D.C. Schmidt, “The Performance of the CORBA Dynamic Invocation Interface and Dynamic Skeleton Interface over High-Speed ATM Networks,” in Proceedings of GLOBECOM ’96, London, England, pp.50-56, November 1996.

[20] T.H. Harrison, D.L. Levine, and D.C. Schmidt, “The Design and Performance of a Real-Time CORBA Event Service,” in Proceedings of the OOPSLA ’97, Atlanta, Georgia, October 1997.

[21] C.D. Gill, D.L. Levine, and D.C. Schmidt, “The Design and Performance of a Real-Time CORBA Scheduling Service,” International Journal of Time-Critical Computing Systems, special issue on Real-Time Middleware, 1998.

[22] C. O’Ryan, et al., “Applying a Scalabe CORBA Events Service to Large-scale Distributed Interactive Simulation,” Proceedings of the 5th Workshop on Object-oriented Real-Time Dependable Systems, Montery, CA, November 1999.

[23] D.L. Levin, S. Flores-Gaitan, and D.C. Schmidt, “An Empirical Evaluation of OS Support for Real-Time CORBA Object Request Brokers,” Proceedings of the Multimedia Computing and networks 2000 Conference, ACM, San Jose, CA, January 2000.

[24] Phillip A. Laplante, Real-time systems: Design and Analysis, 2nd Ed. IEEE Press, Piscataway, NJ, 1997.
[25] C.M. Krishna and K.G. Shin, Real-time systems, McGraw-Hill, New York, 1997.
[26] Y.K. Cho, Parallel Implementation of Container Using PVM, M.S. Thesis, Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 1995.

[27] B.P. Zeigler, “The DEVS Formalism: Event-based Control for Intelligent Systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 72-80, 1989.

[28] Y.K. Cho, et. al., “Design Considerations for Distributed Real-Time DEVS,” Proceedings of AI and Simulation Conference, Tucson, AZ, 2000.

[29] B.P. Zeigler, et. al., “Implementation of the DEVS Formalism over the HLA/RTI: Problems and Solutions,” in Proceedings of Simulation Interoperability Workshop, Orlando, Florida 1999.
[30] H.J. Cho, Discrete Event System Homomorphisms: Design and Implementation of Quantization-Based Distributed Simulation Environment, Ph.D. Dissertation, Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 1999.

[31] H.J. Cho and Y.K. Cho, DEVS-Java Reference Guide, Artificial Intelligence and Simulation Research Group, Electrical and Computer Engineering Department, The University of Arizona, Tucson, Arizona, 1997. Available at http://www.acims.arizona.edu/SOFTWARE.
[32] B.P. Zeigler, D. Kim, and H. Praehofer. “DEVS Formalism as a Framework for Advanced Distributed Simulation,” First International Workshop on Distributed Interactive Simulation and Real Time Applications(in conjunction with MASCOTS '97 -- International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems). Eilat, Israel: IEEE Press, San Diego, CA, 1997.
[33] B.P. Zeigler and D. Kim, “Design of High Level Modeling/High Performance Simulation Environments,” in Proceedings of 10th Workshop on Parallel and Distributed Simulation. Philadelphia, 1996.
[34] K.H. Kim, “Object Structures for Real-Time Systems and Simulators,” IEEE Computer, pp.62-80, August 1997.

[35] K.H. Kim, J. Liu, and M.H. Kim, “Deadline Handling in Real-Time Distributed Objects,” Proc. ISORC 2000 (IEEE CS 3rd International Symposium on Object-oriented Real-Time Distributed Computing), pp.7-15, Newport Beach, CA, March 2000.

[36] K.H. Kim, “Analysis of Guaranteed Service Times of Distributed Real-Time Objects,” Proc. ISORC 2000 (IEEE CS 3rd International Symposium on Object-oriented Real-Time distributed Computing), pp.408-410, Newport Beach, CA, March 2000.

[37] Object Management Group, The Common Object Request Broker: Architecture and Specification, 2.2 ed., Feb. 1998.

[38] Object Management Group, Real-Time CORBA Joint Revised Submission, OMG Document orbos/99-02-12 ed., March 1999.

[39] Real Time Specification for Java Experts Group, JSR-000001 Real-Time Extension Specification, available from www.rtj.org.
[40] D.C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A High-Performance Endsystem Architecture for Real-Time CORBA,” IEEE Communications Magazine, vol.14, February 1997.

[41] D.C. Schmidt, “ACE: an Object-Oriented Framework for Developing Distributed Application,” in Prodeedings of the 6th USENIX C++ Technical Conference, Cambridge, Massachusetts, April, 1994.
[42] Department of Defense, High Level Architecture Interface Specification, Version 1.0, Defense Modeling and Simulation Organization, 1996.

[43] R.M. Fujimoto, “Parallel Discrete Event Simulation,” Communications of the ACM, vol. 33, no. 10, 1990.
[44] Ecoscope, “Is DCOM Truly The Object Of Middleware’s Desire?” available from the URL: http://techweb.cmp.com/nc/813/813r12.html
[45] M.A. Hiltunen, R.D. Schlichting, X. Han, M.M. Cardozo, and R. Das, “Real-Time Dependable Channels: Customizing QoS Attributes for Distributed Systems,” IEEE Transactions on Parallel Distributed Systems, vol. 10, no. 6, pp.600-612, June 1999.
[46] T.M. Galla and R. Pallierer, “Cluster Simulation – Support for Distributed Development of Hard Real-Time Systems using TDMA-Based Communication,” in Proc. Of 11th Euromicro Conference on Real-Time Systems, York, England, June 1999.
[47] R. Gusella and S. Zatti, “The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.3 BSD,” IEEE Transactions on Software Engineering, vol. 15, pp.847-853, July 1989.
[48] F. Cristian, “Probabilistic Clock Synchronization,” Distributed Computing, vol. 3, pp.146-158, 1989.
[49] P. Puschner, “A Tool for High-Level Language Analysis of Worst-Case Execution Times,” in Proc. Of Euromicro Workshop on Real-Time Systems, pp.130-137, Berlin, Germany, June 1998.
[50] P. Puschner and A. Schedl, “Computing Maximum Task Execution Times – A Graph-Based Approach,” Real-Time Systems, vol. 13, no. 1, pp. 67-91, July 1997.
[51] T. AbdelZaher, et. al., “ARMADA Middleware and Communication Services,” The International Journal of Time-Critical Computing Systems, vol. 16, pp.127-153, 1999.
[52] P.H. Dana, “Global Positioning System (GPS) Time Dissemination for Real-Time Applications,” Journal of Real-Time Systems, vol. 12, pp. 9-40, 1997.
[53] DoD, Global Positioning System Positioning Service Signal Specification, 2nd Edition, 1995.

[54] A.S. Tanenbaum, Distributed Operating Systems, Prentice Hall, New Jersey, 1995.

[55] L. Lamport, “Using time instead of timeout for fault-tolerant distributed systems,” ACM Journal of Programming Languages and Systems, vol. 6, no. 2, pp. 254-280, 1984.
[56] NIST, Time Services, Available at http://www.boulder.nist.gov/timefreq.

[57] P. Lutus, AboutTime, Available at http://www.arachnoid.com.
[58] J. Postel, “Daytime Protocol,” available online at http://www.rfc-editor.org/rfc/rfc867.txt.

[59] J. Postel and K. Harrenstien, “Time Protocol,” available online at http://www.rfc-editor.org/rfc/rfc868.txt.

[60] D. L. Mills, “Network Time Protocol (Version 3): Specification, Implementation and Analysis,” available online at http://www.rfc-editor.org/rfc/rfc1305.txt.

[61] J. Lundelius-Welch and N. Lynch, “A New Fault-Tolerant Algorithm for Clock Synchronization,” Information and Computation, vol. 77, pp. 1-36, January 1988.

[62] P. Ramanathan, D.D. Kandlur, and K.G. Shin, “Hardware-Assisted Software Clock Synchronization for Homogeneous Distributed Systems,” IEEE Transactions on Computers, vol. C-39, pp. 514-524, April 1990.

[63] T.K. Srikanth and S. Toueg, “Optimal Clock Synchronization,” Journal of the ACM, vol. 34, pp. 626-645, July 1987.

[64] G. Alari and A. Ciuffoletti, “Implementing a Probabilistic Clock Synchronization Algorithm,” Real Time Systems, vol. 13, pp. 25-46, 1997.

[65] NSF, “White paper on an NSF ANIR Middleware Initiative,” NSF CISE Advisory Committee Subcommittee on the Middleware Infrastructure Version 5: Last modified April 5, 2001.
[66] T. G. Kim, “Hierarchical Scheduling in an Intelligent Environmental Control Systems,” Journal of Intelligent and Robotic Systems, vol. 3, pp. 183-193, 1990.
[67] M. Satyanarayanan and D. Narayanan, “Multi-Fidelity Algorithms for Interactive Mobile Applications,” Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Seattle, WA, 1999.
[68] K. Lee and P.A. Fishwick, “OOPM/RT: A Multimodeling Methodology for Real-Time Simulation,” ACM Transactions on Modeling and Computer Simulation, vol. 9, no. 2, pp. 141-170, 1999.
[69] P. K. Davis and B.P. Zeigler, “Multi-resolution Modeling and Integrated Families of Models,” available from http://www.nap.edu/html/tech_21st/mse.htm.

[70] R. Radhakrishnan and P.A. Wilsey, “Ruminations on the Implications of Multi-Resolution Modeling on DIS/HLA,” Proceedings of the 3rd Intl. Workshop on Distributed Interactive Simulation and Real Time Applications (DIS-RT ’99), 1999.

[71] A. Natrajan, P.F. Reynolds, and S. Srinivasan, “MRE: A Flexible Approach to Multi-Resolution Modeling,” Proceedings of the ’97 Workshop on Parallel and Distributed Simulation, Austria, June, 1997.

[72] M. Kantner, “Hierarchical Modeling and Multiresolution Simulation,” Proceedings of the 1999 Winter Simulation Conference, 1999.

[73] S. Kasputis and H.C. Ng, “Composable Simulations,” Proceedings of the 2000 Winter Simulation Conference, 2000.

[74] B. D'Ambrosio, “Resource bounded-agents in an uncertain world,” presented at International Joint Conference on Artificial Intelligence, 1989.
[75] S.M. Cho and T.G. Kim, “Analysis of Feasibility for Real-Time Simulation of RT-DEVS Models,” Proceedings of 2001 IEEE International Conference on Systems, Man and Cybernetics, Tucson, AZ, October 7-10, 2001.
[76] Available at http://www.inprise.com/visibroker.
[77] Available at http://www.zen.uci.edu/.

The total number of messages generated

�

Correct confluent ratio (%) =

X 100

RT Simulators

JVM

NTP Client

Timer

	struct RTInfo {

		string entry_point;

		int handle;

		string criticality;

		int worst_case_execution_time;

		int typical_execution_time;

		int cached_execution_time;

		int period;

		string importance;

		int quantum;

		int number_of_threads;

	};

		

 TimeClerk myTimeServer;

 try {

 UTO utos = myTimeServer.universal_time();

 } catch (Exception e) {

 }

 long timeReference = utos.time()/(10*1000); //returns time in milliseconds

RTActivity

simActivity

activity

public void deltint() //internal transition function

{

 activity a = new activity();

 if(phaseIs("ready")) {

 String fileName = "d:/imageFolder/image.jpg";

 File fp = new File(fileName);

 if(lastUpdate != fp.lastModified()) {

 a = new imageReader(fileName);

 holdIn("active", 5000, a);

 lastUpdate = fp.lastModified();

 }

 else holdIn("ready",1000);

 }

 else if(phaseIs("active"))

 cancel(a);

 else if(phaseIs("send"))

 holdIn("ready",100);

 }

� EMBED Visio.Drawing.6 ���

 TimeClerk myTimeServer;

 try {

 UTO utos = myTimeServer.universal_time();

 } catch (Exception e) {

 }

 long timeReference = utos.time()/(10*1000); //returns time in milliseconds

� Reproduced from the figure on p.12 of � REF _Ref530757087 \n \h ��[14]�.

� Reproduced from the figure in � REF _Ref501127856 \n \h ��[15]�.

� Reproduced from the figure on p. 128 of [53].

� This is true for the conservative approach. For optimistic simulation, the local clocks may advance but are synchronized when necessary � REF _Ref529811711 \n \h ��[43]�

PAGE

[image: image55.png]Coordinator | | CoordThread || Simulator Model

3 eltaFunk(t ! !
- © »JwrapDeltFunc(t

waitf

unblock()

[image: image56.png]Coordinator Coord
Thread
computeInpletOutput(t)

Simulator A | | Model A | | Simulator B

puﬂVIessages(:inessage)

doneCIO()

i o '
computelnputOutput(t) I:l
PEE—

_1053281401.unknown

_1060290835.unknown

_1062939337.unknown

_1065473778.ppt

Coord

Genr

Proc

Control messages

Simulator

(ModelServer)

Network

Transd

data messages

Simulator

(ModelServer)

Simulator

(ModelServer)

Coordinator

GPT

Devs/Corba Interfaces

DEVS models

CORBA

Name Server

out

in

ariv

solved

out

_1068634053.vsd
�

�

�

Server�

�

Workstation�

�

Laptop�

Computer�

NTP Server�

NTP Server�

_1062936486.unknown

_1060289565.unknown

_1053281310.unknown

_1053281350.unknown

_1053280728.unknown

_949082653.ppt

Application

API

Middleware

Application

Platform

Platform Interface

Platform

Platform Interface

