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ABSTRACT

Socia scientists use artificial society simulations to explore complex behaviors that
result from the interaction of agents. One such artificia society is Epstein and Axtell’s
Sugarscape smulation. In Sugarscape, agents are born, eat ‘sugar’, travel, reproduce, and
diein atorus-shaped virtua world. Sugarscape uses simple rules to create a virtual society

where agent interactions aggregate to form surprisingly complicated social structures.

This thesis presents XeriScape, a Sugarscape-style artificial society based on the
Discrete Event System Specification (DEVS) formalism implementation in the Java
language (DEVS-Java). DEVS-Java is a powerful tool that makes XeriScape a more
efficient, flexible, and extensible artificial society smulation than Sugarscape. A number
of experiments illustrate the capabilities and advantages of the DEV S-Java environment for

artificia societies and other social science applications.
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1 INTRODUCTION

Xeri Scape — used for awater-conserving method of landscaping in arid or semiarid climates
— Merriam-Webgter's Collegiate Dictionary, Tenth Edition (1998)

1.1 Rationale

This thesis attempts the melding of two disparate worlds: social science research
and object-oriented modeling and simulation. In the intersection of these worlds lies a new
application of discrete event simulation technology, and specifically the Discrete Event
System Specification (DEVS) developed by Zeigler [1]. This application is the software

system called XeriScape.

Epstein and Axtell’s Sugarscape project [2] recelved much attention in the popul ar
press [3] [4] and among socid scientists.  While socid science and high performance
simulation are separate worlds, the attention Sugarscape received raised the possibility of
applying DEV S technology to a Sugarscape-style simulation. This possibility isintriguing
for two reasons: first, because DEV'S technology has primarily been applied to problem
spaces in the physical sciences, and second, because the power, flexibility and efficiency of
DEVS could result in a very capable system. In applying DEV S to an artificial society, it
would be possible to expand the DEV'S problem space in a fruitful and interesting way —
one that would be beneficia both to the sociad science community and to simulation

scientists.
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The name XeriScape reflects the Sonoran desert that is the setting of the University
of Arizona. In Epstein and Axtell's work, sugar is the resource for which al the agents
compete. As desert people, water is the resource that rules our lives and is the basis of our

civilization.

1.2 Research Questions

The research questions explored in thisthesis are:

» Can DEVSbe applied to artificial society simulations?

* CanDEVSdo atificia society smulations efficiently and quickly?

e Can aDEVSimplementation answer other socia science questions quickly and
easily?

» CanaDEVSartificia society simulation provide a more general and extensible
foundation for further research?

» CanaDEVSartificia society provide afeedback mechanism that allows agentsto
grow and learn, and to pass on what they have learned to their offspring?

1.3 Outline of the Thesis

Chapter 2 provides background information on artificia societies, and specifically
on the work of Epstein and Axtell that is the starting point for this thesis. Chapter 2 aso
includes more information on modeling and simulation in general as well as on the DEVS

formalism developed by Zeigler.

Chapter 3 discusses the XeriScape system smulation modd, its structure and

underlying concepts from the perspective of a socia science mode.
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Chapter 4 examines the XeriScape system from a software ssimulation perspective.
The DEV S-Java implementation of the XeriScape modd is explained in some detail, and

its structure is described.

Chapter 5 details the experiments undertaken with the X eri Scape system and relates
them to Epstein and Axtell's work. The results of the experiments are presented and

discussed.

Chapter 6 presents conclusions about the XeriScape system and the experiments
presented in thisthesis; it re-examines the research questions presented in section 1.2 above
and explores the answers presented in this thesis. Finally, Chapter 6 also outlines some
possibilities for future extensions of the XeriScape system and further artificial society and

social science research applications for DEVS.

Appendix A provides information on obtaining the XeriScape code and example
configurations. Appendix B documents the configuration file format used by XeriScape.
Appendix C offers some comparisons and contrasts between the X eri Scape implementation

and Epstein and Axtell's Sugarscape.
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2 BACKGROUND

In this chapter, two important concepts are presented. The first concept is artificia
societies, with specific emphasis on Epstein and Axtell's Sugarscape research. The second

concept is modeling and smulation, focusing on Zeigler's DEV S formalism.

2.1 Artificial Societies

Artificial society simulations are an outgrowth and specidization of two more
genera smulation paradigms, artificia life and agent-based modeling. Artificid life
simulations (the classic example is Conway’s Game of Life [5]) simulate an individud life
span; while there may be multiple agents, they are usualy considered individualy. Agent
based modeling involves a number of agents that interact in a smulated space of some

kind.

2.1.1 Overview of Artificial Societies

An artificia society is distinguished from artificia life smulations by the emphasis
on the communal aspect of the smulation; artificial societies focus not on individuals but
on the society as a whole. They may be composed of non-intelligent agents or intelligent
agents. One early artificia society is BioLand [6], a massively parald distributed
simulation of anima behavior that focused on exploring the capabilities afforded by the

availability of alarge number of processors.
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Early socia science attempts at artificial societies were not as sophisticated in their
hardware and software. Some examples are Nowak and Latané€' s work on emergence of
socia order [7] and Drogoul and Ferber’s simulation of an anthill [8]. The attempt to bring
more sophistication to artificia societiesis an ongoing one since the field is still immature.
Such basic questions as “what is an agent?’ are still being defined [9] and there is a

continued effort to establish basic tools and techniques [10].

Some particular ways in which artificial societies differ from artificial life and other

traditional smulations are given by Epstein and Axtell [2, pp. 14 - 17]:

» Heterogeneous agent populations. Instead of a population where each agent
behaves the same as every other agent, artificial societies are composed of
agents which have their own unique genetic makeup, cultura traits, and

experiences.

*  Spacedistinct from agents. Artificial societies have a spatia component that is
distinct from the agents themselves. Agents interact with the environment and

with each other.

» Interactions according to local rules. The interactions among agents and
between the agents and the environment are determined according to rules that

areloca to the agents themselves.
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2.1.2 Epstein and Axtell's Sugarscape

Epstein and Axtell developed the Sugarscape ssmulation over several years at the
Santa Fe Ingtitute in an attempt to bring a new methodology to socia science simulations.
They applied agent-based technology in an attempt to build an artificial society “from the
bottom up.” That is, instead of the previoudy common approach of imposing broad classes
of rules on a simulation, they define simple low-level rules of behavior for the agents and

observe what structures emerge:

...the defining feature of an artificial society model is precisdly that
fundamental social structures and group behaviors emerge from the
interaction of individual agents operating on artificial environments under
rules that place only bounded demands on each agent’s information and
computational capacity.[2, p. 6, emphasisin original]

Thus the subtitle of their book, “Socia Science from the Bottom Up.” In order to
grow their simulation their emphasis was primarily to define smple, readily understood

rules for agent interaction.

Sugarscape uses the Swarm agent-based smulation system [11] [12]. Swarm
combines object-oriented technology with agent-based modeling to produce a much more
capable toolkit for sociad science simulation than previous toolkits [13] [14] [15].
Sugarscape was developed on a Macintosh computer, and is composed of approximately

20,000 lines of code.
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The Sugarscape is made up of a 50 x 50 grid of cells that are the environment for
the smulation. On this grid are agents which gather and consume sugar in order to live,
they trade, reproduce, make war, form tribes, and so forth. They and their environment
follow a few simple rules that govern their behavior. Epstein and Axtell adopt a smple
notation for these rules, some 17 of which are described in their book. The rules that are

applicableto XeriScape are listed below [2, pp. 182-183]:

Gq Growback rule. In each cell sugar grows back at arate of a units per unit time.

M Movement rule. Each agent looks as far as its vison permits in the four
directions it can see, finds an optimum location, moves there, and collects al the

resources available.

Rian Replacement rule. When an agent dies, whether by starvation or old age, it is
replaced by a new agent with a given genetic endowment and random position.

Agents have alifetime randomly distributed in the range [a,b].

Supy Seasond growback rule. Seasons vary between summer and winter, each
season is y time periods long. The growback rate is a units per time period in

summer and a units per 3 time periodsin winter.
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Pog Pollution rule. Pollution is produced &t a rate of as + Bm, where a is a
multiplier and sis the amount gathered, 3 is another multiplier and mis the amount

consumed.

D, Diffusionrule. Pollution isdiffused from acell at arate of a time periods.

S Sexua reproduction rule. If the agent is fertile and has sufficient resources, it
attempts to mate with each of its neighboring agents if they are adso fertile, have
sufficient resources, and are of the appropriate sex, so long as there is an empty cell

available for the child to be produced.

The Sugarscape model provides significant data visudization and data
extraction/reduction facilities. These include the ability to call up multiple windows as the
simulation is running to display such data as socia networks of neighbors, Lorenz curves
and Gini coefficients, age and wedth histograms, and much more. The model aso has a
graphical user interface that provides the user a visua display of the agents in the

Sugarscape as the smulation runs.

2.2 Modeling and Simulation
2.2.1 General Concepts of Modeling and Simulation
Zeigler [1, pp. 27-32] identifies five semina concepts of modeling and ssimulation. They

are:
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. Thereal system — the system that we are attempting to model. For an artificial
society, the rea system is usualy a past, present, or possible future human

society.

. The experimental frame — the set of circumstances that are of interest for the
purposes of the simulation. For example, in XeriScape we are not interested in
such things as race, religion, diet, hair style, etc., so they are excluded from our
experimental frame. More broadly, the concept of experimenta frame can refer
to the configuration or set of components of the model (Ch. 5 uses the term in
thissense). The model need only be valid (that is, an accurate representation of

the real system behavior) within the experimenta frame in order to be useful.

. The base model —amodel that is capable of accounting for all the behavior of
thereal system for al alowable experimental frames. Often it is not possible to
actually create a base model due to its immense complexity. Thisis especialy

truein socia science applications.

. The lumped model — the relatively ssimple model constructed for the specified

experimental frame. Thisisthe mode that will actually be simulated.

. The computer — more generaly, the computational device used to generate
input and output from the model. This can dso be usefully thought of as the

simulator. It is important to keep in mind that the model is an abstraction,
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Separate from its potential implementation as a computer program. It is
common to identify the mode with its particular implementation (this

shorthand is often used in this thesis) but they are, strictly speaking, distinct.

One other related, important concept is the cellular automaton. This concept had its
origins with the great thinker John von Neumann [16] but was developed most fully by
Wolfram [17]. Cellular automata consist of agrid of cells each having a set of values. The
essential aspect of this concept is that the future values of each cell depend on the current
value of the cell, and the current values of its neighbor cells. Thus, looking back to section
2.1.2 it becomes evident that the Sugarscape is a combination of cellular automata and

agents.

2.2.2 Discrete Event Simulation

The DEVS formdism was developed by Zeigler in order to provide a solid
foundation for discrete event smulation. Discrete event simulation is a technique that, as
the name implies, is based not on time steps but on events. Where a discrete time
simulation has a clock that stepsin even increments (1, 2, 3 ...), adiscrete event smulation
steps from event to event (A, B, C, ...). Although discrete event smulations do have a
clock, it isnot constrained to step in even increments, but from the time of the first event to

the time of the second event, and so forth.

The classic discrete event system specification [18, pp. 75-76] is astructure
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M= {X, S: Y1 dnta @xt, A’ ta}

Where:

Xisthe set of input values

Sisthe set of states

Y isthe set of output values

ant: S - Sistheinternal transition function

ax. Qx X - Sistheexternal transition function, where
Q={(se)sJS 0= e<ta(s)} isthetotal state set
eisthetime elapsed since last transition

A: S - Yisthe output function

ta: S - R'o. isthe set of positive reals' from 0 to o

Briefly stated, at any given time the system is in some state s. If no disturbing
event occurs, the system will stay in that state until time ta has elapsed; at which point the
system will process its output (A(S)) and then change to state &(S) (i.e. an interna

transition occurs). If an external event occurs, the system will change to state dex(S,e,X).

DEV S models may be atomic (i.e. asingle, independent model) or coupled (models
hierarchically composed of other models). The particular strength of DEVS is that it has
been shown to be closed under coupling, that is, if amodd A is composed of models B, C,
and D, and B, C, and D are valid DEVS models, then A isalso avalid DEVS model. This
ability to compose complex models from simple building blocks makes it possible to build

very large models.

!DEVS-Javal5time steps are integers, however, not real numbers.
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The DEVS formalism has spawned a very large body of work and the extensive
DEV S literature isimpossible to summarize in thisthesis. Two particular DEV S variations

areworthy of note in this context, however, since they relate to Xeri Scape design choices.

The first of these is Barros' work on dynamic structure DEVS [19] [20]. Barros
extended DEV S to include the ability for DEVS models to change their structure and still
maintain an unambiguous network structure that was closed under coupling. This Dynamic
Structure Discrete Event (DSDE) formalism was considered for the XeriScape system

architecture but ultimately a static-structured DEV S architecture was chosen.

The second DEVS variation of interest is the work of Wainer and Giambiasi [21].
They described a variation of DEV'S oriented toward cellular automata that allowed for
transport and inertial delays between cells. Coincidentally, their work was conducted at the
same time that XeriScape was being developed, and was not available for consideration

until after the Xeri Scape design was complete.
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3 THE XERISCAPE MODEL
3.1 Overview

The XeriScape model is composed of agents, cells, and rules that interact to define
and guide the behavior of the XeriScape. Briefly stated, agents live in a space (the
XeriScape) made up of cells. Their behavior, and the behavior of the 'environment' in
which they exigt, isregulated by a number of rules which interact to control the behavior of

the agents and cells. XeriScape components are very general and are easily extensible.

The XeriScape Model
* Agents ¥

 Cdls

+ Rules QE?

Figure 1. The XeriScape Model
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3.2 Building Blocks
3.2.1 Agents

Agents are the dynamic part of the XeriScape. Their actions and interactions create
the artificia society of the XeriScape. Agents move from cell to cell seeking resources such
as water. Each agent is a unique individual with its own life cycle, attributes, history, and

resources (see Figure 2).

XeriScape Agents

» Agents move from cell
to cell seeking

resources
» Agents have definite

attributes (age,

metabolism, etc)

» Agent hasitsown life
cycle

Figure 2. XeriScape Agents

For the purposes of this thesis, there are four different types of agents to consider —

the basic agent definition (Agent) and its extension into three additional agent types. the
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Finite Agent, the Polluting Agent, and the Gendered Agent. These four agent types share

most propertiesin common.

32.1.1 Agent

Each Agent has anumber of attributes that defineit. The attributes that every agent
has are shown in Figure 3 below. Agents move from cell to cell, seeking resources they
need, gathering them and consuming them. Agents have a limited vision and movement
range. Vision and movement are linked; avision of n cells implies a movement capability
of n cells as well. The agent has an unlimited lifespan; given enough resources, it is

immortal. Each agent hasits own rate of resource consumption (metabolic rate).

Agent Attributes

* Age « Name
* Metabolic rate » Status (alive/dead)
* Vision (1-6) « Resource Comparison
e Resources—the Rule — used to select
resources of interestto ~ among possible
this agent (wealth) destinations

Figure 3. Agent Attributes
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The agent life cycleis shown in Figure 4 below.

Agent Life Cycle

Figure 4. Agent Life Cycle

3.2.1.2 Finite Agent
The Finite Agent is an agent that has a definite, determined lifespan. Finite agents

live to be a specific age that is determined when they are created; then they die.

Finite agents have one attribute in addition to the base attributes shown in Figure 3,

namely, their maximum age (i.e., the age at which they will die).
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3.2.1.3 Poalluting Agent

The Polluting Agent is afinite agent that creates pollution. Whenever the polluting
agent gathers resources or consumes them, pollution is produced as a side effect. The
amount of pollution produced is a multiplier of the amount of resources gathered or

consumed and a constant determined when the agent is crested.

The polluting agent is sensitive to the pollution it creates. When apolluting agent is
deciding where to move, it tries to avoid moving to areas that are polluted. In making its
movement decision the polluting agent takes into account the amount of pollution in
possible destinations and the amount of water available; al other factors being equal, it will

move to the site with the least pollution.

Polluting agents have two attributes in addition to the finite agent attributes: the
resource-gathering pollution multiplier constant a, and the resource-consumption pollution
multiplier constant 3. These constants are used to compute the amount of pollution

produced by the agent.

3.2.1.4 Gendered Agent

The Gendered Agent is afinite agent that has gender and the ability to reproduce.
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Gendered Agent Attributes

» Gender * Father’s name

* Age at puberty * Mother’'s name

» Agefertility ends * Initial resource
(menopause) endowment

Figure 5. Gendered Agent Attributes

Gendered agents have a number of attributes in addition to those of the finite agent.
They include age at puberty, age at which fertility ends (menopause), and the names of the

father and mother. These attributes are detailed in Figure 5.

The gendered agent has a modified life cycle as shown in Figure 6. After the
standard look, move, and consume activities, the gendered agent will look to its
neighboring cells to see if a suitable mate is available. If the gendered agent is fertile and
one or more fertile neighbors is found, mating will occur with the first suitable partner

found.
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Gendered Agent Life Cycle

Figure 6. Gendered Agent Life Cycle

Gendered agent fertility is determined by a number of factors. First, the agent must
be of childbearing age, i.e., older than puberty and younger than menopause. Second, the
agent must have an amount of water resources (wealth) equal to at least half of the amount
it had when it was born. These resources (haf each from mother and father) are given to
the child at birth. Children’s vision and metabolic rates are determined in a Mendelian
genetic cross, while smplistic, it is a reasonable approximation. Thus, the child will
receive either its mother’s or its father’s vision, and either its mother’s or its father's

metabolism.
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The child's inheritance from its parents consists solely of its genetic makeup and
the amount of water it receives when it is born. There is no other inheritance mechanism
for transfer of resources between generations currently implemented. The lack of an

inheritance mechanism can be thought of as being equivalent to a 100% inheritance tax.

3.2.2 Cells

The cdl is the basic unit of space in the XeriScape moddl. Each cell has four
neighbors. north, south, east, and west (diagonals are not used in the XeriScape). Thisis
called a von Neumann neighborhood (see Figure 7). The aternative Moore neighborhood

isnot used in XeriScape at thistime.

von Neumann vs. Moore
Neighborhoods

von Neumann Moore

Figure 7. von Neumann vs. Moore Neighborhoods
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Cells on the edge of the XeriScape wrap to the other side of the space, that is, the
space is not redlly a flat, two-dimensional space but is instead a torus (doughnut shape)
made up of two-dimensiona elements (see Figure 8). Each cdll is considered a point, that

is, everything inside the cell is present to everything else.

XeriScape Cedlls

* A 2-D block of cells
(m rows, n columns)
wrapped to be atorus

» Cellscontain
resources (“water”)

e Cdlshavedifferent
attributes and levels of
resources

Figure 8. XeriScape Cells

Cells contain resources that are consumed and replenished over time. In the case of
the XeriScape, the primary resource is water. Since the distribution of resources is not
uniform over the XeriScape, some resource “peaks’ and "valleys’ exist. Therate at which

resources are replenished is determined by arule (see section 3.2.3).
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Cells contain agents, and each cell can contain a pre-specified number of agents. In
Sugarscape, cells could only contain 1 agent at atime, and so the Xeri Scape defaults to this
behavior. XeriScape supports the ability to put an arbitrary number of agentsin each cdll,

although this ability is not demonstrated in thisthesis.

Cells can become polluted by the activities of the agents living in them. This
pollution increases as agent gathering and consumption activity continues, but is dispersed
gradualy by a diffusion process. Note that pollution is dispersed, but never disappears
from the environment, just asin thereal world. This dispersa process averages the amount

of pollution in acell with the pollution level in itsimmediate neighbors.

The topology of the XeriScape smulation is built to resemble that of Sugarscape,
with two “peaks’ or concentrations (oases) of water, one at the top right and another at the
bottom left of the smulation. See section 4.11 for an example and discussion of how this

appears in the Xeri Scape graphical display.

3.2.3 Rules

Rules are the laws of the XeriScape. The variety of rules available and the ease
with which new ones can be written is where the true power and flexibility of the
XeriScape model originates. Rules control such elements as the initia distribution of
agents in the XeriScape, the rate at which resources regenerate in a cell, the “genetic

makeup” of each agent, the criteria used to compare possible destination cells, and much
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more. There are four basic rules for each smulation: a resource comparison rule, a

resource initialization rule, an agent initialization rule, and an agent distribution rule.

3.2.3.1 Resource Comparison Rule

The Resource comparison rule (RCR) determines how an agent compares the
resource vaues of a cell into which the agent is considering moving. In the smplest case,
it involves a straight comparison of values, but in some cases, it is more complex. For
example, the presence of pollution in a cell may make it a less desirable destination than

another cell with lesswater but no pollution.

3.2.3.2 Resource Initialization Rule

The resource initidization rule (RIR) creates the basic landscape of the ssmulation.
It determines the types of resources, the resource capacity and initia resource alocation for
each cell. The RIR uses a sub-rule to determine the manner or rate at which resources are
replenished in each cell. Thisistermed the growback rate. The growback rate is expressed
in terms of units of resource per unit time. Note that it is aso permissible to have an

infinite growback rate, i.e., resources grow back to their full capacity immediately.

3.2.3.3 Agent Initialization Rule
The agent initidization rule (AIR) is responsible for creating new agents. The
smulation calls the AIR when the smulation starts in order to generate the initial

complement of agents. The AIR is aso used to generate replacement agents when new
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agents are injected into the simulation, for example by sexua reproduction, or when

replacement mode is on (see section 4.13).

3.2.3.4 Agent Distribution Rule
The agent distribution rule (ADR) determines where newly-created agents are
injected into the simulation. This distribution may be random, clustered, or organized in

some fashion. Only arandom distribution is used in this thesis.
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4 THE XERISCAPE SYSTEM

4.1 Overview

The XeriScape system is implemented in the Java language, and it utilizes DEVS-
Java 1.5 with some modifications and bug fixes.? Some parts of the X eriScape system are
DEVS models (the block, the cell, and the transducer), while other parts are Java objects
(agents, rules, and resources) (see Figure 9). In addition, a graphical user interface (GUI)
allows the user to manipulate the models and extract data. The XeriScape system has two

threads of execution: one for the simulation proper, and one for the graphical user interface.

DEV S Implementation
» XeriScape landscape \ /
is ablock model of N
cells

» Agents are objects ‘

* Rules are objects

. Cell model functions * |
implement agent life - \
=)

Figure 9. DEVS Implementation

2DEVS-Java 1.5 isno longer available from the University of Arizonaand is somewhat outdated. It may be made
available along with the X eri Scape code pending clearance from the University. See Appendix A for more information
on obtaining X eriScape or DEV S-Java code.
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4.2 Experimental Frame
The experimental frame for a XeriScape simulation run (Figure 10) is composed of
five elements. These elements are the four rules that control the configuration as it runs,

and the configuration file that controls the initia setup.

Figure 10. X eriScape Experimental Frame

4.3 Block Model

The XeriScape system uses a DEVS block model (XSBI ock) to contain the
individual cells. This block, a two-dimensional array of cells, is very smple and serves
only to initialize the cells in the appropriate configuration and pass messages to/from the
block. The size of the block is determined by the XeriScape configuration file (see
Appendix B) at runtime. A 50 x 50 block size (2500 cells, the size used by Sugarscape) is
used for al the ssimulation runs presented in Chapter 5. Other sizes can be selected, and the

XeriScape system will scale itself accordingly.
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4.4 Cells

The individua cells (each an instance of XSCel | ) are the heart of the XeriScape's
DEVS modd. Each cell extendsthe DEVS classcel | . The cells implement the full set
of DEVS trangition functions (interna transition, externa transition, output) and pass

messages among themselves via anumber of input and output ports (see Figure 11).

The XeriScape Cell

Figure 11. The XeriScape Cell

Because agents are not DEVS models, the cell itsdf implements the agent life
cycle. While this may at first seem odd, the result is the ability to support a broad variety

of agent types and agent behaviors with a unified cell moddl. Furthermore, because the
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model is static in structure (agents move, not cells) the result is a conceptually simple

architecture that is straightforward and easy to visualize.

Since the cell has to support al the known types of agents, it must be able to
determine what type(s) of agent(s) it contains; Java's reflection feature is used to determine
this information while the smulation is running. For example, the cell determines if the
agent is gendered, and if it is, the cell cals the agent’s r epr oduce() function. Rather
than sub-classing the cell model to match the different types of supported agents (i.e.,
having a cdl class hierarchy that matches the agent hierarchy), XeriScape has one cell
model that can support al of the agent types. This gives XeriScape the ability to mix

different agent types in the same running simulation.

Figure 12 shows the cell state transitions. XeriScape cells have only two states:
passive and busy. Cdls enter the busy state whenever an external transition (“deltext”)
occurs; this corresponds to an agent entering the cell. The cdl stays in the busy state as
long as agents are present and/or its resources are below their capacity; the interna
trangition (“deltint”) is used to implement the agent life cycle. The agent leavesthe cell via

the cell’ s output function (“out™).
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Cdll State Transitions

Figure 12. Cell State Transitions

The cell’s out () function is used to send agents to new cells and to send status

messages to the transducer.

4.5 Agents

The XeriScape agents (Agent, Fi niteAgent, Poll utingAgent, and
Gender edAgent ) are Java objects that extend the DEVS classenti ty. A number of
different agents can be implemented to support different experiments. Java inheritance is
used to make development of new types of agents smple and straightforward. Figure 13

shows the Java class rel ationships between the various agent typesin Xeri Scape.



Figure 13. XeriScape Agent Class Hierarchy

DEV S Functions
« External transition — e / Aget o
Agent enters cell
« Internal transition — |
Agent wakes up,

consumes, looks
* Output function —

Agent leaves cell \ -

Figure 14. DEV S Functions




41

As mentioned in section 4.4, the XeriScape cell implements the agent life cycle.
Figure 14 above shows how the standard DEV S state transition functions correspond to the

agent lifecycle.

4.6 Rules
XeriScape rules are Java objects that implement decision-making capability for the
simulation. They are created when the smulation isinitialized. Section 3.2.3 discussed the

various types of rules.

4.7 Resources

XeriScape resources are Java objects that represent various natural resources or
items of interest to agents and cells. The most basic resource for XeriScape is water,
however, other resources can be created and managed as well. For example, for the
pollution experiment described in section 5.5, a new resource (“TCE”, tricholoroethylene,

an insdious pollutant) is created and used by the smulation.

4.8 Agent Slots

In order to regulate agent movement so that the agent capacity of any cell is not
exceeded (i.e., so that no more agents are present in any cell than it allows), XeriScape
includes a reservation system.. Whenever an agent is considering a move, it determines
whether a potential destination has a free dot. If the agent decides to move to that cell, it

reserves the dot so that another agent cannot take its place.
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This implementation detail is transparent to the user. However, it is of interest
because it is one area that would need extensive modification to make the XeriScape
system capable of executing in multiple threads, such as in a distributed computing
environment. One possibility would be to move the slot reservation management function
from the transducer, where is currently resides, to the individua cells. Slot information

could then be transmitted in the messages transmitted from cell to cell (see section 4.9.2).

4.9 Messages
XeriScape uses two different types of Java objects to convey data within the

simulation: status messages and cell queries.

4.9.1 StatusMessage

St at usMessage objects (see Figure 15) are sent from each cell’ s output function
and received by the transducer. These objects report the address of the generating cell, the
live agents in the cell, the resources available in the cell, agents that are leaving the cdll,

agents that have died, and atime stamp.



StatusM essages

» Sent by cells to transducer

» Contain alist of the cell’ s current agents,
agents leaving the cell, destinations of
agents leaving the cell, the cell’ s current
resources, agents that have died

» Time-stamped by sending cell

Figure 15. StatusM essages

4.9.2 CellQuery

Cel | Query objects are created upon request by the transducer. They report the
number of agent dots and the resources available for a specified cell. These objects are
used to determine an agent’s destination when moving; they are aso used in the

reproductive process by gendered agents and for diffusion of pollution (see Figure 16).



CellQuery Messages

Used to convey cell datato other cells
Requested by acell, created by transducer

Contain cell address, resources, agents,
agent slots

Used for agent movement, reproduction,
and pollution diffusion

Figure 16. CellQuery Messages

4.10 Transducer and Data BExdraction

In order to allow the user to analyze the simulation's workings and record data as

the simulation runs, XeriScape includes a transducer and a data logging system.

The transducer (XSTransd) is implemented as a DEVS-Java model. The
transducer’s work is primarily done in its externa transition function, which processes
incoming status messages and does extensive reporting and data analysis. The transducer’s
output function is used to inject new agents into the simulation when the replacement mode

Ison (see section 4.13).
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XeriScape includes a logging function to extract data as the smulation runs. An
instance of the Logger classis used to log events to the Java console, a data file, or
both. A verbosity threshold (QUIET, NORMAL (default), or VERBOSE) can be set, and
individual log entries are also prioritized by verbosity level. Only log entries with a

verbosity level greater than or equd to the threshold are logged.

4.11 Visualization
XeriScape implements a visualization system that provides a display similar to

Sugarscape, as shown in Figure 17 below.

E%_%xeriScape - Experiment 1 -- Growback Rate Infinity = Il:llﬁ
File Tools Help

Start | stop | Step |

Elapsedtime: 0  Agents: 400

Simulation stopped.

Figure 17. XeriScape Graphical User Interface
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The XeriScape GUI displays the smulation results and provides basic controls to
start, stop, and step the smulation; load, create, and save configuration files; and change
the time step size. In Figure 17 the dots represent agents. The background of each cell is
colored to represent its water resource level: a black background indicates no water, a
lighter shade of yellow alow water level, and the brightest shade of yellow represents the
highest water level. The panel below the visual display indicates the elapsed simulation
time and the number of live agents currently in the ssimulation. The status bar at the lower
left shows whether the smulation is running, stepping, or stopped. The title bar at the top
of the display indicates the name of the configuration being run (in Figure 17, “ XeriScape -

Experiment 1 -- Growback Rate Infinity”).

4.12 Data Reduction

To reduce the data produced by the logger to a meaningful format, a ssimple data
reduction tool called Pr ocessLog has been written to support XeriScape. Thistool reads
in a data file produced by the logger and processes it into comma-delimited data files for
severa data points (see Figure 18). The reduced data is considerably more compact than
the raw data files and only includes data that is aways extracted regardless of the verbosity

level requested.



a7

XeriScape Data Points

* Agent counts

» Message counts
» Agentvision

» Agent metabolic rates

data data
e Waedth distribution
(histograms, Gini data data
coefficient, Lorenz
Curve) data data

» Agedistribution

Figure 18. X eriScape Data Points

4.13 Replacement Mode

As mentioned in section 4.10, the XeriScape simulation has a replacement mode
that can be turned on or off. When the replacement mode is on, agents that die are replaced
by new agents inserted into the smulation in a random position. These new agents are
generated using the same agent initiaization rule that was used to generate the initial

complement of agents. This mode is demonstrated in Experiment 3 (section 5.3).



5 EXPERIMENTS AND RESULTS

The experiments detailed below illustrate the operation of the XeriScape system in
anumber of different ways. Experiments 1 through 6 show that the X eriScape system can
generate results similar to those of Sugarscape. These experiments are based on simulation

runs described in Epstein and Axtell.

Experiments 7 and 8 show that the XeriScape system’s flexibility and extensibility
allow it to easily do things Sugarscape cannot. These experiments show the enhanced
capabilities that implementation in the DEVS-Java environment provides for artificial

society smulation.

For each experiment, a brief description of the experiment setup is given, followed
by adiagram of the experimenta frame for the experiment and sample GUI screen captures
of the smulation run (see section 4.11 for an explanation of the GUI visualization).
Finally, a discussion of the data produced by the experiment and the conclusions that may

be drawn is provided.

5.1 Experiment 1 — Basic Agents with Instantaneous Growback
5.1.1 Setup

The first experiment uses the basic agent class, a random spatia distribution of
agents in the environment, and a resource initiaization rule that alows resources to be

replenished instantaneously. Theinitial number of agentsis 400.
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5.1.2 Experimental Frame

The experimental frame for Experiment 1 is shown in Figure 19 below.

111

Figure 19. Experiment 1 Frame

5.1.3 Screen Captures

Figure 20 and Figure 21 show screen captures from the Experiment 1 ssimulation

run.

k& xeriscape - Experiment 1 - Growback Rate Infinity =101 x| [} xeriscape - Experiment 1 -- Growback Rate Infinity (0l x|

fie ook tiep [T ——
st | stop | step stant | _ston | (6]

Elapsedtime: 0 Agents: 400 Elapsedtime: 1 Agents: 300

Sirmulation stopped. Simulation stopped

Figure 20. Experiment 1 Screen Captures



k&% xeriscape - Experiment 1 - Growback Rate Infinity
Fle Tools Help

_tart | _ston | (8e

Elapsedtime: 2 Agents: 236

Simulation stopped.

wperiment 1 -- Growback Rate Infinity

Simulation stopped

tart| _ston | (Bfn]

Elapsedtime:3  Agents: 161

& xeriscape - Experiment 1 - Growback Rate Infinity

_start | _ston | [5fei]

Elapsedtime: 4  Agents: 155

Simulation stopped.

uperiment 1 - Growback Rate Infinity

Simulation stopped

start| _ston | [&en]

Elapsedtime &  Agents: 144

Figure 21. Experiment 1 Screen Captures (continued)

5.1.4 Discussion

Looking at Figure 20 and Figure 21, the following story can be told: a random

distribution of agentsis born on the XeriScape. Those close to the water oases migrate to

the areas of greatest water availability. Those born in the desert die from thirst more or less

rapidly depending upon their individua metabolic rates and how much water they had

initialy.
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Particularly interesting to note in this experiment, and throughout the XeriScape
simulation runs, is the effect of the von Neumann neighborhood on the behavior of the
agents. Since the agents cannot see diagonally, they tend to find themselves on water
resource “tiers,” each of which has an equa level of resources. There may be a richer

source of water on the diagonal, but they cannot see it and thus never move there.

Experiment 1 illustrates the concept of carrying capacity, that is, the population that
the environment can support over time. Figure 22 shows a graph of agent population over

time. Clearly, the Experiment 1 smulation has a carrying capacity of roughly 100 agents.

Experiment 1 Agent Population
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Figure 22. Experiment 1 Agent Population
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5.2 Experiment 2 — Basic Agents with Timed Growback
5.2.1 Setup

Experiment 2 isidentical to Experiment 1, except that instead of resources growing
back instantaneoudly (i.e., an infinite growback rate), they grow back at arate of 1 unit per

time period.

5.2.2 Experimental Frame

The experimental frame for Experiment 2 is shown in Figure 23 below.

Figure 23. Experiment 2 Frame

5.2.3 Screen Captures

Figure 24 shows screen captures of the Experiment 2 simulation run.
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Figure 24. Experiment 2 Screen Captures



5.2.4 Discussion

Experiment 2 builds on Experiment 1. In Experiment 2 we examine the principle
of sdection. While sdlection is usualy thought of in terms of sexual reproduction,
selection also occurs whenever agents are forced to respond to their environment or die.

The Darwinian concept of “surviva of thefittest” plays out in Experiment 2.

Reason tells us that those agents with the lowest metabolisms should stand the best
chance of survival, al other things being equal, because they can make the most of their
resources. Reason also tells us that those agents with the keenest sight should have a
greater chance of surviva than those with shorter vision. Both of these insights are borne
out in the Experiment 2 results. In Figure 25 we see that mean agent metabolism decreases
rapidly at the start of the simulation, then plateaus at a level of approximately 1.68.
Similarly, Figure 26 shows that mean agent vision increases rapidly, then plateaus at alevel

of roughly 4.08.

It is important at this point to recall that agent vison and agent mobility are the
same metric, that is, agents can move as far asthey can see. Thus not only does the society
select for higher vision but also for agents which can travel farther and thus gather more

resources.
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Figure 25. Experiment 2 Mean Agent Metabolism
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Figure 26. Experiment 2 Mean Agent Vision
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5.3 Experiment 3 — Finite Lifetimes
5.3.1 Setup

In this experiment agents have afinite lifetime. This lifetime is established at the
agents' creation and is random in a predetermined range (in this caseg, it varies from 60 to
100). When the agent dies (whether by starvation or old age), it is replaced by a new agent
of age 0 that isinjected into the smulation at arandom location. This replacement is called
replacement mode (see section 4.13). The number of agents in this experiment was

lowered to 125 to approximate the carrying capacity of the XeriScape.

5.3.2 Experimental Frame

The experimenta frame for Experiment 3 is shown in Figure 27 below.

Figure 27. Experiment 3 Frame

5.3.3 Screen Captures

Figure 28 shows the screen captures from Experiment 3.
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Figure 28. Experiment 3 Screen Captures
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5.3.4 Discussion

Experiment 3 provides a platform for examining water resource (wealth)
distributions and how they change over time. Figure 29, Figure 30, Figure 31, and Figure
32 show histograms of wesalth distribution in the XeriScape at times 0, 5, 10, 25, 100, and
500. Inthese histograms, the vertical bars represent the number of agents for each decile of
the total wedlth of the simulation. In general we can see from the histograms that as time
goes on agent wealth becomes more concentrated. The top decile of the societal wedlth is
held by fewer and fewer individuals. Thisis due to the fact that longer-lived agents which
are born in resource-rich areas of the XeriScape can accumulate relatively great wedth,

especidly if they have alow metabolism and a high vision.
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Figure 29. Experiment 3 Wealth Histograms
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Experiment 3 Time 500 Wealth Distribution
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Figure 32. Experiment 3 Wealth Histograms (continued)

Also ingtructive are the Lorenz curves for the same sample times (see Figure 33,
Figure 34, and Figure 35). The Lorenz curve [22] is one measure of wealth distribution in
a society; a perfectly equitable wealth distribution would be a straight line at a 45° angle.
The more the curve fals short of the 45° line, the more unequa the distribution. The
horizontal axis represents the agent population, ordered from poorest to wedthiest. The
points on the curve are the amount of wedth of that agent summed with the agents that are

poorer, that is, the fraction of wealth owned at that fraction of the popul ation.
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Figure 33. Experiment 3 Lorenz Curves
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Figure 34. Experiment 3 Lorenz Curves (continued)
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Figure 36 shows the Gini coefficient for Experiment 3 as a function of time. The
Gini coefficient [23] is used to gauge the equity of wealth distribution in a society (0.0 is
perfectly equitable; 1.0 is perfectly inequitable). The Gini coefficient is calculated as the
ratio of the area between (1) the 45° line and the Lorenz curve, and (2) the area below the
Lorenz curve. Figure 36 shows that the wealth distribution rapidly becomes more skewed,

then settlesinto arange from roughly 0.4 to 0.5.
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Figure 36. Experiment 3 Gini Coefficient

The wedlth distribution is a statistic of note for social science and economics

becauseit is considered aleading indicator for a number of issues: societa stability, capital
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formation, economic efficiency, and others. The ability to change agent rules and readily
see the effect on wedlth distribution is a key reason artificial societies are a useful research

tool.

5.4 Experiment 4 — Seasonal Variations
5.4.1 Setup

Experiment 4 introduces seasona variations into the XeriScape. The XeriScape is
divided into two hemispheres, north and south. Each hemisphere aternates between a
monsoon season and a dry season; when it is monsoon season in the northern hemisphere,
it is dry in the southern, and vice versa. During monsoon season, the water resource is
replenished at a normal rate. During the dry season, the water resource is replenished a a
gresatly reduced rate, 'z of the monsoon rate. Each season lasts approximately 50 cycles. In

other respects, this experiment resembles Experiment 2.

5.4.2 Experimental Frame

The experimental frame for Experiment 4 is shown in Figure 37 below.

Figure 37. Experiment 4 Frame
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5.4.3 Screen Captures

Figure 38 and Figure 39 show the screen captures from Experiment 4.

[R5 xeriscape - Experiment 4 - Geasons =] ] [ xeriscape - Experiment 4 - Seasons. =] ]
Fle Tools Help Fle Taoks Hel

start | stop | Eiep] start | stop | [Sep ]

Elapsedtime: 0 Agents: 400 Elapsed time: 25 Agents: 94
Sirmulation stopped. Simulation stopped
ioix| LT

st | stop | | stant | _ston | (6]

Elapsedtime: 75 Agents: 80 Elapsed time: 12¢ Agents: 78

Sirmulation stopped. Simulation stopped

Figure 38. Experiment 4 Screen Captures
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_tart | _ston | (8e tart| _ston | (Bfn]

Elapsed fime: 250 Agents: 78 Elapsed time: S0C Agents: 76

Simulation stopped. Simulation stopped

Figure 39. Experiment 4 Screen Captures (continued)

5.4.4 Discussion

Experiment 4 shows agents reacting to their environment. The agents outside the
oases die off rapidly, and the stress of the seasonal variations results in even more agent
mortality than in Experiment 2. Selection favors a low metabolic rate for the best chance

of survival.

One might expect that agents would migrate with the seasons, seeking the more
abundant water resources of the rainy season. Their limited vision rules this out, and the

von Neumann neighborhood’ s lack of diagonals means that they cannot see the other oasis.

5.5 Experiment 5 — Pollution
5.5.1 Setup

This experiment explores the role of pollution in atering agent behavior and the
environment. The experiment starts with 400 agents. As in Experiment 3, these agents

have a finite lifetime that is randomly fixed between 60 and 100 time steps. Unlike
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Experiment 3, these agents are not replaced when they die. A new rule, the
TwinPeaksPollutionResourcelnitRule, is used to set up the XeriScape cels. A new
PollutingAgentInitRule creates these new agents (see section 3.2.1.3). The agents use a
new rule, PollutionResourceComparisonRul e, to determine their movements. According to

thisrule, agents will move to cells with the highest ratio of water to pollution.

5.5.2 Experimental Frame

The experimenta frame for Experiment 5 is shown in Figure 40 below.

Figure 40. Experiment 5 Frame

5.5.3 Screen Captures

Screen captures from Experiment 5 are shown in Figure 41 bel ow.
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Figure 41. Experiment 5 Screen Captures
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5.5.4 Discussion

Experiment 5 demonstrates agents reacting to their environment in a clear and
smpleway. As Figure 41 illustrates, as time progresses pollution levels in the oases build
up so that, except for afew hardy souls, most agents flee for less inviting but cleaner areas.
Since the replacement mode is off (see section 4.13), by the time of the last screen capture

many of the agents have died.

5.6 Experiment 6 — Sexual Reproduction
5.6.1 Setup

Experiment 6 introduces the GenderedAgent class. Agents grow, consume, and
gather as before. If they are fertile, have enough resources and are adjacent to an agent of
the opposite sex who is aso fertile, they also mate and produce a child. Agents will mate
once every cycle if they have enough resources and a suitable partner is available. As
explained in section 3.2.1.4, children receive a Mendelian cross of their parent’s
metabolism and vision attributes. The smulation starts with 400 agents randomly

distributed (roughly 50% male and 50% femal e, randomly generated).

Other than their initial endowment of water, children receive no inheritance from
their parentsin this setup. This can be considered the equivaent of a 100% inheritance tax;
there is no transmission of weath between generations. The resources that an agent has

gathered when it dies disappear from the environment.



5.6.2 Experimental Frame

The experimental frame for Experiment 6 is shown in Figure 42 below.

Figure 42. Experiment 6 Frame

5.6.3 Screen Captures

Experiment 6 screen captures are shown in Figure 43 and Figure 44 bel ow.

Elapsedtime: 0 Agents: 400 Elapsed time: 10 Agents: 152

Sirmulation stopped. Simulation stopped

Figure 43. Experiment 6 Screen Captures
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Figure 44. Experiment 6 Screen Captures (continued)

5.6.4 Discussion

In many respects, this experiment is the most interesting of al the XeriScape

simulation runs; it is certainly the most complex in terms of data gathered.

In examining

the large amount of data generated in this smulation run, we can observe a number of

interesting trends.
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One example of an unexpected trend is shown in Figure 45 below. In previous
experiments (see section 5.1.4) the population dropped off precipitousy and then stabilized
at alevel much lower than the initial population. In Experiment 6, the population (that is,

the carrying capacity) of the XeriScape with gendered agents actually increases with time.
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Figure 45. Experiment 6 Agent Population
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Figure 46 and Figure 47 below show the effects of natural selection in action.
Mean agent vision increases over time and mean agent metabolism decreases. Thisis due
to the genetic selection occurring with each generation selecting for increased vison and
decreased metabolism. Agents with these characteristics are more likely to breed, and will

breed more often since they generally will have greater wealth.

This effect dso explains the increase in carrying capacity; as mean metabolism
decreases and mean vision increases, agents become more efficient gatherers and use fewer

resources, so the XeriScape can support more of them.

Experiment 6 Mean Agent Vision

Mean Agent Vision
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Time

Figure 46. Experiment 6 Mean Agent Vision
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Experiment 6 Mean Agent Metabolism

Mean Metabolic Rate

1 51 101 151 201 251 301 351 401 451 501 551 601
Time

Figure 47. Experiment 6 Mean Agent Metabolism

Figure 48, Figure 49, and Figure 50 below show an age histogram for Experiment 6 at
times 100, 200, 300, 400, 500 and 600. The horizonta axis of the histogram represents the
population age broken out by decile of the maximum age. The vertical bars represent the
number of agentsin each decile. When looking at these histograms, it is important to bear
in mind the agent population (carrying capacity) fluctuations seen in Figure 45. In generd,
we would expect that once the population level stabilizes the age distribution should be
relatively equal. It would seem, however, that some fluctuations are still seen even at times

500 and 600.
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Figure 48. Experiment 6 Age Distribution
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Figure 49. Experiment 6 Age Distribution (continued)
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Figure 51, Figure 52, and Figure 53 show the wealth distribution histograms for
Experiment 6. In these histograms, the vertical bars represent the number of agents for

each decile of the total wealth of the simulation.
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Figure 51. Experiment 6 Wedlth Distribution
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Figure 53. Experiment 6 Wealth Distribution (continued)

Figure 54, Figure 55, Figure 56, and Figure 57 show Lorenz curves for Experiment
6; the corresponding Gini coefficients are shown in Table 1. Figure 58 shows perhaps
more intelligibly the trend: after an initial increase, the distribution of wealth stabilizes

somewhat to be relatively more equitable than was seen in Experiment 3.
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Gini Coefficient Time
0.2216689 100
0.20001036 200
0.17675966 300
0.17704827 400
0.19694364 500
0.18891907 600

Wealth

Table 1. Experiment 6 Selected Gini Coefficients
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Figure 54. Experiment 6 Lorenz Curves
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Figure 55. Experiment 6 Lorenz Curves (continued)
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Figure 56. Experiment 6 Lorenz Curves (continued)
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Figure 57. Experiment 6 Lorenz Curves (continued)
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One may well ask why the society of Experiment 6 would be more equitable than
that of Experiment 3. One explanation would lie in the effect of the large families the
wedlthy tend to have in this society. Weadlth in Experiment 6 tends not to accumulate, but
instead enables the agent to have more children. Since there is no inheritance mechanism
the resource wedlth in the society is passed on to children at their birth. The result is that

the wealth is spread throughout the society and not concentrated as it might otherwise be.

5.7 Experiment 7 — Mixed Finite and Polluting Agents
5.7.1 Setup

Experiment 7 illustrates the enhanced capabilities made possible by DEV S-Java.
Sugarscape is not capable of mixing different classes of agents in one simulation, but
DEV S-Java alows XeriScape to do this readily. In this experiment, finite (non-polluting)
and polluting agents (see the class hierarchy in Figure 13) are mixed in the smulation and
coexist side by side. Recall that the polluting agents produce and are sensitive to pollution;
finite agents do not produce pollution and are not sensitive to it. The Java reflection
mechanism alows the smulation to determine the type of each agent and process it
appropriately. Java's inheritance and polymorphism allow agent classes to be written as

easily and efficiently as possible, taking advantage of common traits.

The smulation starts with a mix (50% finite, 50% polluting) of 400 agents

randomly dispersed throughout the environment.
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5.7.2 Experimental Frame

The experimental frame for Experiment 7 is shown in Figure 59 below.

Figure 59. Experiment 7 Frame

5.7.3 Screen Captures

The Experiment 7 screen captures are shown in Figure 60 and Figure 61 below.

[F&xeriscape - Experiment 7 - Mixed Finite and Polluting Agents I [ 5 [ xeriscape - Experiment 7 - Misted Finite and Polluting Agents o [=[ ]

Fie Tools Heln Fie Tods Help
start | stop | [iep]
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Figure 60. Experiment 7 Screen Captures
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Elapsedtime: 75 Agents:§1 Elapsed time: 100 Agents: 3

Simulation stopped. Simulation stopped

Figure 61. Experiment 7 Screen Captures (continued)

5.7.4 Discussion

Experiment 7 shows the enhanced capabilities of XeriScape, its flexibility and
extensibility. Figure 60 and Figure 61 show behavior similar to that seen in Experiment 5,
except that since the finite agents are not sengitive to the pollution being generated by the
polluting agents, they continue to occupy the areas of the XeriScape that have the most
water resources even though those areas are heavily polluted. The polluting agents move

off the resource peaks due to the pollution present there.
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As in Experiment 5, since these agents have limited lifetimes and replacement

mode is off, by the time of the last screen capture many of the agents have died.

5.8 Experiment 8 — Variable Time Steps
5.8.1 Setup

Experiment 8 illustrates another capability made possible by DEVS-Java
Experiment 8 is based on Experiment 7's mixing of finite and polluting agents. In addition,
each agent has its own time step, that is, each agent has its own level of activity, which
determines the rate at which itslife cycle (see Figure 4) is executed. The time step varies
from agent to agent, but it is fixed for the life of each agent. The time step values are
randomly distributed from 5 to 15 time units. Since agents will not be waking up as often,

they are given alarger initial resource value to prevent them from dying before they wake

up.

This variable time step trandates the discrete time simulation approach of
Sugarscape into atrue discrete event smulation. 1t can be viewed as a measure or indicator
of the agent’s vitdity or energy level, or perhaps of its will to survive or alertness. Since
the agents do not cycle in lock step the simulation is more like a rea society, where

individuals move at their own pace.

Asin Experiment 7, Experiment 8 starts with 400 mixed finite (non-polluting) and

polluting agents distributed randomly throughout the environment.



5.8.2 Experimental Frame

The experimental frame for Experiment 8 is shown in Figure 62 below.

Figure 62. Experiment 8 Frame

5.8.3 Screen Captures

Screen captures for Experiment 8 are shown in Figure 63 and Figure 64 below.
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Figure 63. Experiment 8 Screen Captures
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Figure 64. Experiment 8 Screen Captures (continued)

5.8.4 Discussion

This experiment shows, in a particularly striking fashion, the enhanced capabilities

DEV S-Java makes possible. While the results in general resemble those of Experiment 7,

the ability of the ssmulation to respond to each individua agent meansthat eachtime step is

reached only if one or more agents wake up at that time step. Thus, during a smulation

run, the clock may step from 5, to 7, to 8, to 10, and so forth. This means the smulation is

as efficient as possible since no computations are done for the time steps that are stepped
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over. For example, executing the Experiment 8 simulation for the first 50 time units
required only 33 computation cycles instead of the 50 that Sugarscape would have

required.
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6 FUTURE DIRECTIONS AND CONCLUSIONS

6.1 Research Questions
Can DEVS be applied to artificial society smulations? Clearly, the answer is a
resounding “yes.” The XeriScape system is a straightforward implementation of a

Sugarscape-style artificial society.

Can DEVS do artificia society smulations efficiently and quickly? Again, the
answer is “yes.” DEVS-Java's object-orientation and discrete event formalism mean that
only the minimum computation is performed. Figure 65 below is agraph of the cumulative
active cdls in XeriScape vs. a discrete time smulation of equivaent size, that is, the
cumulative number of cell computation cycles performed by each vs. time. It shows quite
well that the computational burden of XeriScape is much less than that of a discrete time
simulation such as Sugarscape. Thisis in spite of the fact that in Experiment 6 each cell
that has agentsis cycling every time step. The efficiency gainis entirely due to the fact that
dormant cells don't require any computationa effort. Experiment 8 shows an even greater
performance increase due to its variable time step. In the first 30 time units of simulation
for Experiment 8, only 3,332 cumulative active cells existed. In the corresponding discrete
time simulation the number would be 30 time units x 2,500 cdlls, or 75,000. The DEVS-
Javaimplementation is over 22 times faster! Furthermore, as the calculation above shows,
the larger the environment the greater the performance increaseis likely to be. DEVS-Java

is ahigh-performance ssmulation environment.
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Experiment 6 Cunulative Active Cells

Total Messages

1 51 101 151 201 251 301 351 401 451 501 551 601

Time

XeriScape - - - - Discrete-Time Simulation

Figure 65. Experiment 6 Cumulative Active Cells

Can a DEVS implementation answer other socia science questions quickly and
easlly? While the question is not directly answered by the research, in looking at the
results the answer is affirmative. DEV S is a broad-based tool that can easily be applied to
other social science questions besides artificial societies. The genera concepts explored in
XeriScape can be readily generalized to other kinds of problems. For example, the cellular
automaton developed as the environment for XeriScape could itself be the basis for
experimentation in environmental studies such as pollution generation and diffusion. The
agents developed for XeriScape could be the basis for a stand-alone multiple agent

smulation. Since much of social science research deals with interactions among
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individuals (i.e., events), any bottom-up approach to social science simulation can benefit

from discrete event s mulation.

Can a DEVS artificial society simulation provide a more general and extensible
foundation for further research? The object-oriented nature of Java and the genera design
of XeriScape make it easy to develop new rules and new types of agents and insert them
into the simulation environment. The inheritance property of Java means that new agents
and new rules can inherit most of their code from previous work, only writing the new code
that differentiates them from their predecessors. An examination of the agent code for
XeriScape, for example, shows that a great deal of code for the more sophisticated agents

(GenderedAgent, for example) isinherited from the base Agent class.

Can aDEVS atificia society provide a feedback mechanism that alows agents to
grow and learn, and to pass on what they have learned to their offspring? This has been
demonstrated in XeriScape. Whileit is true that there is no explicit learning mechanism as
such incorporated in XeriScape, the genetic selection seen in Experiment 6 shows that
agents can pass their properties on to their offspring in such a way that they improve on

their ancestors. Over the course of time the society as awhole learns to be more efficient.

6.2 General Conclusions
In the course of this work, a number of general conclusions about socid science

simulations and DEV S-Java presented themselves.
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Probably the most obvious conclusion is that the Sugarscape approach is
fundamentally a discrete time oriented simulation. In adapting the concept to a discrete
event orientation, some awkwardness arose in trandating between the two. Thus,
Experiments 1 through 7 are not as efficient as they might be if they were approached more
as adiscrete event system. Experiment 8 shows that the discrete event simulation can work

for an artificia society.

A second conclusion is that there are many ways to design a simulation, both
architecturaly (its structure) and philosophically. In the course of development, several
observers suggested that it would have seemed more “natural” to make everything in the
simulation a DEVS model, especidly the agents themselves. In this approach, a variable
structure DEV S would have been required in order for the agents to move between cells.
While this approach would be worth exploring, it seemed to lack a certain transparency and
simplicity of design. In order to accommodate the static structure it became necessary to
implement the agent life cycle in the cell and not in the agent itself. This proved both a
help and a hindrance in certain respects: it made the cells flexible and able to ded with all
the different agent types, but it aso made the cell more “aware” of the agent life cycle than

seems prudent.

Findly, the XeriScape project showed that the worlds of socia science and
simulation science are not well connected, and there is little communication between the
two. Technology used by socia scientists has not benefited from the extensive research in

modeling and simulation of the last few years, in particular efforts at massively pardlé,
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collaborative, and distributed simulation. In order for socia science to take advantage of
all that is available in the best of simulation science, more collaboration is needed. Social
scientists are not smulation experts. Similarly, simulation scientists are not socia
scientists, and their favorite problems do not usualy intrude into the socia science problem
space. There is a large, fruitful area to be explored in creating more common ground
between the two groups. Such efforts would undoubtedly prove helpful to both and to

sciencein general.

6.3 Future Directions
There are two main directions for future research using the XeriScape system. The
first is extension of the model via new components. new agents, rules, etc. The second

direction involves enhancements and extensions of the capabilities of the system itself.

6.3.1 New XeriScape Components
Epstein and Axtell’s work provides a rich environment for additional XeriScape

components. Some possibilities worth exploring in future versions include:

Merchant agents that trade resources on the XeriScape

» Triba alegiances or nation-states that compete for resources and space and wage war
to get them

» Diseasesthat infect agents and spread throughout the X eri Scape

» Agentsthat use cloning for reproduction

e Agentsthat limit their reproduction
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* Agentsthat develop atolerance for pollution
* Agentsthat matefor life
* Rulesthat select for offspring of aparticular sex (e.g., female infanticide)

6.3.2 Enhanced System Capabilities

During the course of software devel opment and experimentation, many possibilities

for new capabilities for XeriScape presented themselves. Some of them include:

» Distributed processing capability — the ability to use multiple processors to run larger
simulations, and to run simulations more quickly

» Enhanced graphica interface — the ability to click on a cell and inspect its contents,
reset parameters, drag-and-drop agents from cell to cell, etc.

» Enhanced dtatistics processing — the ability to display statistics (mean agent vision,
mean metabolic rate, Gini coefficients, etc.) asthe smulation runs

» Flexible neighborhoods — the ahility to use Moore neighborhoods in addition to von
Neumann neighborhoods

* Agent clustering — allowing multiple agents to inhabit the same cell

» Variable density — alowing the number of agents per cdll to vary, either statically or
dynamically
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APPENDIX A XERISCAPE SOFTWARE

The XeriScape software and accompanying documentation may be obtained from
http://www.zaft.org/gordon/X eri Scape/index.htm. Note that the software described in this
thesis requires a license for DEV S-Java, which can be obtained from the Arizona Center

for Integrative Modeling and Simulation (ACIMS) at http://www.acims.arizona.edu.
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APPENDIX B XERISCAPE CONFIGURATION FILE

The XeriScape configuration files store the setup for a specific smulation run. The
XeriScape configuration file is a Java properties file stored in text format. The
configuration file for Experiment 3 is shown below as an example. Configuration files can
be loaded from the XeriScape GUI or specified on the command line when the simulation

isrun.

# Xeri Scape Experinent 3

# Copyright (c) 2001 Gordon C. Zaft

# $1d: Experinent3.cfg,v 1.5 2001/ 07/22 04:13:49 zaft Exp $
rons=50

col s=50

nanme=Experinent 3 - Finite Agent Lifetinmes wth Repl acenent
repl ace=true

gr owbackrate=1.0

resconpr ul e=Si npl eResour ceConpari sonRul e

resini trul e=Twi nPeaksResour cel ni t Rul e

agentinitrul e=FiniteAgentlinitRule

agent di st rul e=RandonmAgent Di st Rul e

nunmagent s=125

adrseed=17171717

ai rseed=77777777

Configuration file lines that begin with “#’ are comments and are ignored by
XeriScape. Blank lines are also ignored. Non-comment lines are key-value pairs; the keys
and their values are described in Table 2 below. Configuration files may be created and
edited manualy, or they can be created by using the File, New command from the

XeriScape GUI and saved using File, Save.
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Key Value

rows Number of rows in the smulation (integer).

cols Number of columnsin the ssimulation (integer).

name Title of the simulation as it should appear in the title
bar.

replace “true’ turns replacement mode on (see section 4.13). If
the parameter is “fase,” replacement is off. If replace
Is omitted, the default is for replacement off.

growbackrate Number of units to grow back per unit time period
(floating point value). If growbackrate is not specified,
the default is an infinite growback rate.

rescomprule The name of the resource comparison rule.

resinitrule The name of the resource initiadization rule.

agentinitrule The name of the agent initialization rule.

agentdistrule The name of the agent distribution rule.

numagents The number of agents for the smulation (integer).

adrseed The random number generator seed value for the agent
distribution rule. 1f adrseed is not specified, the random
number generator is seeded from the system clock.

airseed The random number generator seed value for the agent

distribution rule. If airseed is not specified, the random
number generator is seeded from the system clock.

Table 2. Configuration File Entries

XeriScape assumes that al rules are in the package XeriScape.Rules. XeriScape

uses Java's reflection capability to create instances of the rules specified in the

configuration file so that they may be mixed and matched without recompilation, that is, at

runtime. XeriScape alows specification of the random number generator seeds for the
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agent distribution rule and agent initialization rule so that the same sequence of random

numbers can be generated from run to run, resulting in consistently repeatabl e results.
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APPENDIX C COMPARISON OF XERISCAPE AND
SUGARSCAPE

While XeriScape is intended to be an implementation and adaptation of the
Sugarscape concept to the DEV S formalism and DEV S-Java technology, it is not a perfect

representation of Sugarscape. This appendix details some of the differences.

C.1 Von Neumann vs. Moore Neighborhoods
While Epstein and Axtell report on Sugarscape only as a von Neumann
neighborhood system, in passing they claim that Sugarscape can run as ether a von

Neumann or Moore neighborhood system.

XeriScape runs only as avon Neumann neighborhood system.

C.2 XeriScape Topology
While the XeriScape topology is designed to be an approximation of the
Sugarscape topology, a close examination of Epstein and Axtell shows resources dispersed

more diffusely than in the XeriScape “ Twin Peaks’ layout.

C.3 Agent Reproductive Frequency

In the Sugarscape implementation, agents can mate multiple times in a single cycle
if they have the resources and opportunity. The XeriScape implementation alows agents
to mate only once per cycle. Also, thereis currently no rule for selecting the best possible

mate; the first available mate is chosen.
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C.4 Pollution Generation/Diffusion Immediate
In Sugarscape, there is a delay factor before pollution is generated or diffused.
XeriScape does not insert a delay, but immediately begins generating and diffusing

pollution.

C.5 Multiple Agents in a Cell

In Sugarscape each cell could have only one agent at atime. XeriScape allows an
arbitrary number of agentsin acell. The number of agents per cdll (i.e. number of dots,
see section 4.8) is determined at the time the cell is created. It would be possible to create
another rule that would vary the number of dotsin each cell. It isaso possible to vary the

number of slotswhile the smulation is running.
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