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ABSTRACT

This research examines an approach to modeling and simulating distributed object

computing (DOC) systems as a set of discrete software components mapped onto a set of

networked processing nodes.  Our overall modeling approach has clearly separated

hardware and software components enabling systems level, distributed co-design

engineering.  The distributed co-design engineering refers to a formal approach to

concurrent hardware and software systems engineering that provides a tractable method

for analyzing the inherent complexities that arise in distributed systems.  The software

abstraction forms a distributed cooperative object (DCO) model to represent interacting

software objects.  The hardware abstraction forms a loosely coupled network (LCN)

model of processing nodes, network gates, and interconnecting communication links.

The distribution of DCO software across LCN processors forms an object system

mapping (OSM).  The OSM provides a sufficient specification to allow simulation

investigations.  During simulation, the behavioral dynamics of the interacting DCO

software components "load" the LCN processing and networking components in terms of

memory utilization, computational demands, and communications traffic.  The resource

constraints of the LCN components, likewise, impose performance constraints on the

associated software objects.  Class models of the DCO, LCN, and OSM component

structures and behavior dynamics were formally developed using the Discrete Event

System Specification (DEVS) formalism.  These class model specifications were

implemented in DEVSJAVA, a Java implementation of DEVS.  Class models of
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experimental frame components were also developed and implemented to facilitate

analysis of individual DCO and LCN components, as well as interdependent system

behaviors, during simulations.  The resulting DEVS-DOC environment enables

distributed systems architects, integration engineers, and automated system designers to

conduct performance engineering and trade-off analysis of distributed system structures,

topologies, and technologies.  This research utilized the resulting DEVS-DOC

environment in four case studies.  These case studies demonstrate the structural

independence and behavioral interdependence of the hardware and software abstractions,

the ability to model and simulate real world systems, and the complex interactions that

arise in distributed systems can be methodically analyzed.



13

1.   INTRODUCTION

Dramatic increases in both networking speeds and processing power has shifted

the computing paradigm from centralized to distributed processing.  The economics of an

increasing performance-to-cost ratio is continuing to drive this shift with more and more

emphasis on building networked processing capabilities.  Concurrently, a shift is

occurring in the software industry with a move toward object-oriented technologies.  This

object orientation trend is creating more and more interacting software components.

Distributed object computing represents the convergence of these two trends.

This convergence results in a highly complex interaction of the hardware and

software components forming the distributed object computing system.  Two sets of

challenges associated with developing distributed computing systems are inherent

complexities and accidental complexities [Sch97].  Inherent complexities are a result of

building systems that are distributed.  Developers of distributed systems need to resolve

issues of distribution; e.g., how to detect and recover from network and host failures; how

to minimize communications latency and its impacts; and, how to partition software

objects to optimally balance computational loads across host computers with traffic loads

across networks.  Accidental complexities are a result of inadequate tools and techniques

selected to construct distributed systems.  Examples of accidental complexity include the

use of functional design methodologies; the use of platform specific coding tools; and the

use of concurrency and multithreading techniques in coding software components.

Functional design methodologies add complexity when attempting to extend or reuse
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software components.  Platform specific coding tools add complexity when porting code

to additional platforms or interfacing components in a heterogeneous environment.

Concurrency and multithreading techniques can add unnecessary complexity to software

implementation, testing, and maintenance activities.

To attain a level of tractability in developing a distributed object computing

system, we advocate the use of modeling and simulation tools to explore design

alternatives.  We take a "co-design" and synthesis approach in considering the software

and hardware implications as well as the communications design issues.  In modeling a

distributed system, our constructs deal with the partitioning of functionality into software

objects, defining software object interactions, distributing software objects across

processing nodes, selecting processing components and networking topologies, and

structuring communication protocols supporting the software object interactions.

1.1. Motivation

This research is motivated by the growing need for methodologies and

mechanisms to support the design and analysis of complex distributed computing

systems.  Distributed systems approaches are being pursued for a growing variety of

business endeavors, including process control and manufacturing, transportation

management, military command and control, finance, banking and medical records and

imaging.  Often, technical conflicts arise in analyzing the user requirements and

constraints.  For example, military command and control systems may need to exchange

large data loads over bandwidth limited networks.  A process control system may need
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guaranteed job throughputs from remote multi-tasked processors.  The complex

interactions of such distributed systems make static analysis of behaviors and resource

utilization intractable.

To support dynamic analysis, we need a means to generate formal dynamic

models of the distributed object computing system of interest.  A prime purpose of such

dynamic models is the use of simulation to facilitate the needed analysis.  In this context,

there are three general approaches to system simulation: emulation, quantum simulation,

and directed simulation.  Emulation refers to highly detailed simulations based on

modeling virtually complete system specifications.  However, rapidly evolving studies of

system alternatives becomes more difficult at this level of specificity.  At the other end of

the spectrum is quantum simulation.  Quantum simulation is based on more abstract

descriptions (incomplete specification) of system behaviors, which rely on random

variables to model bulk behavior.  Generally, such abstractions enable one to rapidly

analyze several alternatives at a distinctly lower level of precision.  In between these

extremes lies directed simulation.  Directed simulations focus on modeling a specific

aspect of system behavior.   Directed simulation requires detailed specifications around

the aspect being modeled while ignoring or abstracting away many other aspects.

Within the domain of distributed object computing, commercial products are

available to provide directed modeling of the communications network (e,g,, COMNET

[CAC99] and OPNET [MIL99]); or, of the software components and their interactions

independent of  hardware constraints (e.g., WRIGHT [All97]); or, of hardware

components via various computer aided engineering tools (e.g., VHDL tools).  A
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limitation of these available analysis tools, however, is a convenient mechanism to model

the software components independent of the hardware components and then explore

alternative mappings (distribution) of the software components across the hardware.

The goal of this research is to develop a means of modeling software systems

independent of the hardware architecture; modeling hardware architectures as networked

computing systems; and coupling these models to form a dynamic system of systems

model.  Furthermore, this research aspires to have modeling mechanisms that support

early-on design analysis using quantum techniques, as well as, enabling specification

refinements for more directed analysis of system designs.

1.2. Enterprise Computing

The behavioral complexity associated with distributed object computing systems

arises from both the dynamics of individual components and the structural relationships

between components.  Design decisions affecting the dynamics of individual components

and in coupling and structuring these components often have significant impacts on the

overall behavior and performance of the system under development or modification.  For

example, processor speed and memory selections impact job throughputs.  Buffer size

and network bandwidth drive the queuing and dropping of traffic.  Choices in networking

technologies constrain communication protocol options, and impact channel error rates.

Communication failure and recovery schemes and mechanisms control network behavior

under stress and load.  Distribution of software objects across processing nodes affects

processing workloads and network traffic loads.  The level of multi-threading
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implemented within software objects determines behavior in handling multiple,

simultaneous invocation requests.  Exploring these design decisions and alternatives is

the focus of our interest.

The results of this research provide a modeling and simulation framework to

enable exploring the dynamic behavior consequences of design decisions.  This

framework enables system designers to model software objects, hardware components,

networking protocols, and distribution of the software objects across the networked

hardware components.  We call the resulting framework DEVS-DOC.  DEVS refers to

the underlying model specification formalism, the Discrete Event System Specification;

and DOC refers to the application context, Distributed Object Computing systems.  In the

following, we briefly review related technologies and their relationship to DEVS-DOC.

1.2.1. Java

Java has generated a lot of excitement in the programming community with its

promise of portable applications and applets. In fact, Java provides three distinct types of

portability: source code portability, CPU architecture portability, and OS/GUI portability.

These three types of portability result from the packaging of several technologies – the

Java programming language, the Java virtual machine (JVM), and the class libraries

associated with the language.  The Java programming language provides the most

familiar form of portability – source code portability.  A given Java program should

produce identical results regardless of the underlying CPU, operating system, or Java

compiler.  The JVM provides CPU architecture portability.  Java compilers produce
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object code (J-code) for the JVM and the JVM on a given CPU interprets the J-code for

that CPU.  To facilitate OS/GUI portability, Java provides a set of packages (awt, util,

and lang) for an imaginary OS and GUI [Rou97].

The Java programming language embraces the object-oriented paradigm and

provides a means for developing distributed software objects and applications.  DEVS-

DOC is intended to provide a means to model the dynamics of such distributed objects

and simulate the resulting models to support design decisions on structuring and

distributing the software objects being coded.

A DEVS-DOC environment has been implemented using Java technologies.  As

complex simulations tend to be computationally demanding, and any non-trivial DEVS-

DOC model will be, improving Java performance is advantageous.  Improving Java

runtime performance is an active area of research [Fox96, Ins98, and Wir99].

1.2.2. Unified Modeling Language

The software systems being developed today are much more complex than the

human mind can generally comprehend.  To simplify this complexity, software

developers often model target systems.  Typically, no one model is sufficient; so, several

small, nearly independent models are developed.  The Unified Modeling Language

(UML) [OMG99] is a graphics based language for specifying, visualizing, constructing,

and documenting such software models.  The development of UML has incorporated

ideas from numerous methodologies, concepts, and constructs.  The common syntactic
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notation, semantic models, and diagrams of UML facilitate comprehension of the

designed structure, behavior, and interactions of the software system under development.

UML collaboration diagrams and sequence diagrams provide a static illustration

of behavior.  UML deployment diagrams provide a mapping of software to hardware

configurations.  UML component diagrams illustrate software structures.  These UML

diagrams provide a graphical complement to the DEVS-DOC specification of the

software components and the software distribution across hardware.  Extending these

UML diagrams with details on object size, message size, and object method

computational workload estimates provides a complete set of parameters needed for a

DEVS-DOC model and simulation.

1.2.3. Rational Unified Process

The UML is a generic modeling language that can be used to produce blueprints

for a software system.  To better leverage the UML, Rational Software has developed the

Rational Unified Process (RUP) [Rat99] as a generic set of steps to develop such

software blueprints using the UML.  The idea behind the RUP is to define who does

what, when, and how during the development of a software system.  RUP defines a

process for constructing models of a software system.

The RUP has steps for an architect to develop an architectural view of the target

software system, early on, during the analysis and design workflow.  In particular, the

architect develops the software architectural design, flushes out software concurrency
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issues, and determines software object distribution.  The details of these steps

complement development of DEVS-DOC components and couplings.

1.2.4. Co-design

Co-design is a set of engineering processes to simultaneously consider hardware

and software constraints.  Traditional co-design efforts are focused on enabling better

communications between hardware and software developers in the design of embedded

systems, such as portable devices.  Our intent is to expand such capabilities into the arena

of distributed co-design.  We define Distributed Co-design as the activities to

concurrently design hardware and software layers within a distributed system.

Distributed Co-design can be characterized in terms of its underlying hardware and

software options.  Traditional Co-design assumes single or multiple software components

(possibly multithreaded) being executed on a single machine having one or more

processors.  Distributed Co-design, however, assumes a network of distributed machines

servicing parallel and/or distributed software components.  Specifically, distributed

hardware-layer design efforts study alternative high-level hardware topologies whereas

distributed software-layer design efforts study software components characteristics and

interoperability.

1.3. A Distributed Object Computing Model

The conceptual approach for this research was inspired with the Distributed

Object Computing (DOC) modeling framework proposed in [But94].  This modeling

framework is defined with two layers   Distributed Cooperative Objects (DCO) and
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Loosely Coupled Networks (LCN)   and a mapping (Object System Mapping(OSM))

between the two layers.  Part of this research involved implementing key DOC

framework objects in DEVSJAVA [AIS99] and extending them to enable not only

quantum simulations   the modeling of bulk behavior with random variables   but,

also, directed simulations   the means to model specific underlying system

technologies, structures, and behaviors.

Distributed Cooperative Objects

Object
System
Mapping

arc

Loosely Coupled Network

processor

link

gate

software
object domain

FIGURE 1.  Butler’s Distributed Object Computing Model

For a DOC model, Butler developed a formal set-theoretic representation of the

LCN, DCO, and OSM structures.  Development of behavior specification for these
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structures, however, was not addressed.  A central contribution of this dissertation is a

formal development of such behaviors to support both quantum and directed simulations.

Figure 1 depicts the LCN and DCO layers and their mappings.  Appendix A provides a

summary of Butler’s formal set-theoretic representation.

The LCN layer provides the means to define and structure (couple) hardware

components.  Developing an LCN model results in the definition of the hardware

architecture for a set of networked computers.  The components of the LCN are

processors, networking devices (hubs and routers), and network links.  A processor

performs computational work at a rate based on resource constraints, e.g., processor

speed and memory capacity.  A network device provides communication services in

routing network traffic between incident network links under the constraints of buffer

sizes and internal data rates. A hub device will broadcast incoming traffic out to all other

outgoing links, while a router device will route traffic out to a single link towards its

destination.  Network links connect one or more processors and/or network gates.

Network links constrain inter-processor communications based on bandwidth, channels,

and error rates associated with the link.

The DCO layer provides the means to define software components and their

interactions using a distributed object paradigm.  Software objects within the DCO model

follow a traditional object orientation metaphor; namely, they contain a set of attributes

to define the state of the object, and a set of methods that operate on those attributes.  The

collective allocation requirement for the attributes determines the size of the software

object.  Each method has an associated computational workload.  Software objects
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interact based on computational progress.  They interact via invocation and message arcs.

Invocation arcs may represent either synchronous or asynchronous client-server

interactions.  Message arcs represent peer-to-peer message passing interactions.  DCO

software objects can also be organized into computational domains, which represent

independent executable programs.

The OSM defines the distribution of the DCO software objects across the LCN

processors.  Individually, neither the LCN nor the DCO models are of any great value in

modeling the behavior or performance of a distributed object computing system.  The

LCN provides a model of a target hardware architecture that imposes time and space

constraints, but lacks a specification of dynamic behavior.  Dynamic behavior is specified

in the DCO model with the definition of computational loads and object interactions,

which provide a model of the target software architecture.  Yet, the DCO representation

is independent of time and space.  Mapping DCO software objects onto LCN processing

nodes results in constraining the abstract dynamics of the software architecture in

accordance with the time and space limitations of the hardware architecture.

1.4. A Modeling and Simulation Formalism

Using set theory, Butler provides a mathematical basis for specifying a static,

structural model of a DOC system. While the intention to develop a simulation facility is

clear, a target system specification formalism was not identified.
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FIGURE 2.  System Specification Formalisms

Four fundamental methods [Cel91, pp. 11-15] for specifying dynamical system

models are Differential Equation System Specification (DESS)1[Cel91], Discrete Time

System Specification (DTSS)2 [Cel91], Qualitative System Specification (QSS)3 [Cel91],

                                                          
1 The Differential Equation System Specification (DESS) assumes that the time base is continuous and that
the trajectories in the system database are piecewise continuous functions of time.  The models (system
specifications) are expressed in terms of differential equations (ordinary differential equations and/or
partial differential equations) that specify change rates for the state variables. The corresponding
simulation concept is that of numerical solvers   numerical integrators and differential algebraic equation
(DAE) solvers.
2 The Discrete Time System Specification (DTSS) assumes that the time base is discrete so that the
trajectories in the system database are sequences anchored in time. The models are expressed in terms of
difference equations that specify how states transition from one step to the next. A forward marching time-
stepping algorithm constitutes the associated simulator.
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and Discrete Event System Specification (DEVS)4.[Zei76, Zei84, Zei91, and Zei99c].

Figure 2 depicts the basics of these four fundamental specification methods.  In order to

develop a dynamic system specification for DOC models, we needed to select one of

these fundamental approaches.  As is detailed later, the behavior of interest in DOC

components is piecewise constant over variable periods of time.  Thus, the DEVS

formalism provides a straightforward means to specifying the necessary DOC component

behaviors.

1.5. The DEVS-DOC Framework

The remainder of this dissertation introduces the DEVS-DOC modeling and

simulation environment.  This environment enables system designers and developers to

independently model the hardware and software architectures and then map software to

hardware to form a distributed object computing model ready for simulation.  The model

is easily wrapped within an experimental frame   instrumentation to collect simulation

results, statistics, and trajectories   to aid evaluation and analysis of the system

behavior.

The capability to independently model the hardware and software architectures

facilitates concurrent engineering practices, as well as introduces the concept of

                                                                                                                                                                            
3 The Qualitative System Specification (QSS) assumes a continuous time base and a finite set of values for
state variables.  The models are a posteriori derived patterns of system states.  Simulators evaluate inputs
against these patterns to determine system outputs and responses.
4 The Discrete Event System Specification (DEVS) assumes that the time base is continuous and that the
trajectories in the system database are piecewise constant, i.e., the state variables remain constant for
variable periods of time. The jump-like state changes are called events. The models specify how events are
scheduled and what state transitions they cause.  Associated simulators handle the processing of events as
dictated by the models.
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distributed co-design.  This approach provides a means to bridging the gap between

hardware, software, and systems engineering, and enables system designers and

developers to focus on the complexity issues associated with the interdependencies and

inter-dynamics of processor behaviors, communication protocols, networking topologies,

and software structures.

1.6. Summary of Contributions

Overall, the primary contribution of this thesis is in the demonstration of a

practical methodology for modeling and simulating the complex dynamics and

interactions of distributed computing systems.  Additionally, this thesis demonstrates the

suitability of DEVS in representing and simulating DOC models; reveals how

maintaining a separation of concerns contributes to structural modeling; introduces the

concept of Distributed Co-Design; advances the experimental frame concept with layers;

and shows the expediency and simplicity of aggregated couplings.

This research demonstrates a practical methodology to modeling and simulation

DOC systems with a concrete realization of Butler’s conceptual model.  Using formal

methods (DEVS), the realization involved identifying and developing behavioral

representations of the critical dynamics associated with hardware and software

components.  Conversely, the representation of DOC models in DEVS demonstrates the

applicability of DEVS in the distributed computing problem domain.

A key aspect within our DEVS-DOC realization is a separation of concerns; in

particular, maintaining independence of the software (DCO) and hardware (LCN) models
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and only introducing interdependencies in the distribution (OSM) of software across

hardware.  Under this approach, the software behavior is modeled independent of time

and space constraints, whereas the networked hardware components impose such

constraints.  The networked hardware imposes time constraints in the processing of

software object jobs and the communication of software object interactions.  The

networked hardware imposes space constraints based on the mapping of software objects

onto the hardware and the networked topology of the hardware components.  This level

of independence between the DOC components (LCN, DCO, and OSM) facilitates

structural approaches to implementing the models.

The concept of Distributed Co-Design expands on the idea of concurrent

engineering of hardware and software constraints with the added dimension of networked

systems.  Through the DEVS-DOC environment, we advance an approach of

independently modeling the hardware and software systems.  The hardware

representations explicitly support investigations into the implications of distributed

processors, networked components, communication protocols, and network topologies.

The software representations explicitly support investigations into multi-threading,

invocation queuing, parallel processing, and software object interactions.  The coupling

of the hardware and software representations enables investigations into computational

load balancing across processors, message traffic loading across network components,

and execution latency as a combination of computational loading, job queuing, and

communications latency.
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The experiment frame concept is advanced with the idea of layered frames.  In

particular, in the case studies of this thesis, a layered experimental frame is utilized to

investigate model sensitivities.

In realizing the DEVS-DOC environment, object-oriented techniques are applied

to facilitate a modular and hierarchical system construction.  With this object-orientation,

DOC specific "aggregated coupling" mechanisms are developed to significantly simplify

the specification of the LCN topology, the OSM specification of software to hardware

mappings, and the specification of the experimental frame couplings.

With the DEVS-DOC environment and case studies, we shall demonstrate

systems analysis of DOC implementation technologies, DOC designs against “inherent”

and “accidental” complexities, software multithreading behavior and performance,

network topology and protocol selections, and software partitioning across hardware.

1.7. Plan of Dissertation

The next chapter of this dissertation surveys literature related to the research

presented in subsequent chapters.  In chapter 3, the conceptual constructs and formalisms

used to develop the DEVS-DOC environment are outlined.  Chapter 4 introduces the

DEVS-DOC modeling and simulation environment.  This chapter provides details on the

structural representation of the DEVS-DOC modeling components and experimental

frame.  Chapter 5 complements the structural details of chapter 4 with details on the

formal specification of behavior dynamics for the DEVS-DOC components.  Then, in

chapter 6 we present four distributed system case studies using the DEVS-DOC modeling
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environment.  The first case study models Simple Network Management Protocol

(SNMP) interactions between a network management station and a set of networked

devices; the second study models the interactions of an HLA-compliant distributed

simulation federation [Zei99c]; the third models the interactions of an email application

[Hil98b]; and the fourth case study looks at LCN alternatives for the email application.

Chapter 7 concludes the dissertation with a summary of contributions and a discussion of

future work.
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2.   RELATED WORK

This chapter presents an overview of work related to this research.  We organize

this synopsis of related work along the lines of our DOC abstractions.  Related to the

LCN abstraction is work in the area of networked information technology modeling:

communications, protocol, network, and processor modeling; related to the DCO

abstraction is work in the area of software systems modeling; and the most closely related

work to the OSM abstraction is research in the area of Co-design.  Finally, we relate this

modeling and simulation research to alternate distributed system design and analysis

approaches.

2.1. Networked Information Technology Modeling

2.1.1. Queuing System Approaches

A key performance metric of an information system is average delay or waiting

time.  Queuing theory is a formal methodology for analyzing network delays based on

statistical predictions.  Queuing theory has its roots in the early twentieth century studies

of the Danish mathematician A. K. Erlang on telephone networks and in the creation of

stochastic models by the Russian mathematician A. A. Markov.  The simplest queuing

model consists of a single queue and server.  Using Little’s Theorem, Ν = λ / µ, we can

analyze a variety of situations based on the mean arrival rate λ, the mean service rate µ,

and the mean number of customers or objects being served by the system Ν.  Queuing

theory continues to evolve, and enables analytical analysis of more complex queuing
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systems, networks of queues and servers, and various statistical behaviors associated with

arrival rates and service rates.

The approach taken in this research, however, has attempted to avoid some of the

simplifying assumptions required when taking a queuing theory approach.  One objective

is to enable modelers with a means to construct arbitrary structures of software objects,

network components and topologies, and their subsequent coupling.  Arbitrary networks

of queuing systems tend to be problematic and can often violate assumptions about the

random distributions of arrivals.

2.1.2. Discrete Event Approaches

Our discrete event systems approach to modeling and simulating communications

networks and processors is not unique.  A variety of commercial and academic efforts

have been invested in developing modeling and simulation capabilities to support

analysis of network components and technologies, routing strategies, protocols, network

controls and recovery mechanisms, traffic flows and loads.  OPNET  Modeler [MIL99]

and COMNET III  [CAC99] are two examples of commercially available tools for

discrete event modeling and simulation of communications networks, devices, and

protocols.  In these tools, modeling of the information flows and loads to stimulate the

system under investigation is accomplished with setting traffic parameters associated

with selected nodes in the model.  With DEVS-DOC, we take a more direct means of

modeling distributed software systems and then support investigating alternative

mappings of the software across the networked components.
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2.2. Software Systems Modeling

2.2.1. Object-Oriented Design

Several prominent object-oriented design notations have recently been combined

to form the Unified Modeling Language (UML) [OMG99].  The UML provides a family

of graphical notations for describing the attributes and relations between objects under

design.  These graphical notations support the production of static structure diagrams and

behavior diagrams.  The structure diagrams include class and object diagrams, while the

behavior diagrams include use-case, interaction, and activity diagrams.  The structure

diagrams identify definitional and referential relationships among components.  The

definitional relationships create taxonomic hierarchies, and the referential relationships

create compositional hierarchies.

While the structure diagrams do not describe the interaction and behavior of

components, UML behavior diagrams can provide a static view.  UML sequence and

collaboration charts are interaction diagrams that depict the flow of events, messages, and

actions among interacting software components.  UML state charts depict component

behavior in terms of state changes and transitions.  However, these diagrams are

independent of each other and do not systematically relate patterns of interaction and

state changes and transitions,  nor do these charts relate resource dependencies,

workloads, or relative timing implications.  Thus, reasoning about, and evaluating,

software component interaction performance and behavior is difficult.  Within the DEVS-

DOC environment, we couple the software component workloads and interactions to the
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LCN, which imposes resource constraints, enabling the evaluation of these interactions

and the resulting resource utilization impacts.

2.2.2. Software Architecture Modeling

To deal with the increasing complexity of software systems, the overall system

structure   or software architecture   is gaining increasing attention as a central design

problem.  WRIGHT [All97] is a software architectural description language that provides

a formal means to describe architectural configurations and architectural styles.  The

software architectures are defined in terms of software components and connectors

(interaction patterns).  The descriptions of software components and connectors are

"architectural" in that the notation defines behavior independent of implementation or

formal programming language constructs.  The practicality of a formal architectural

description language is in the ability to analyze component interactions and patterns of

interactions for semantic correctness.

2.3. Co-design

Research in co-design is closest to our work when viewed from an abstract view

of concurrent hardware and software analysis and design within a framework.  Given

research activities in Co-design since the 1980s, many of the developed methodologies

are primarily focused on real-time embedded systems such as portable devices [Yen97,

Roz94, Sch98, and Fli99].  These Co-design methodologies and their supporting

environments primarily emphasize concurrent engineering of hardware and software

constraints (e.g., size, timing, weight, cost, reliability, etc.) for a given a piece of
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hardware.  While Co-design and the work described in this dissertation are both focused

on concurrent hardware and software engineering issues, this dissertation is distinguished

by its focus on analysis and design of distributed systems; systems where networked

hardware components enable physically distributed cooperating software components to

interact.  DEVS-DOC expands the basic ideas of Co-design system development from the

execution of one or more processes on a single device (embedded system) to the inter-

dependent execution of many processes running on multiple, distributed and networked,

heterogeneous devices (system of systems).

Examples of research activities in Co-design include CASTLE at GMD Germany

[GMD99], Model-based Co-design at the University of Arizona [EDL99], and POLIS at

the University of California, Berkeley [Chi94].  CASTLE is a set of tools to support

synthesis of embedded systems.  CASTLE’s tool set can be used to convert system’s

software and hardware specifications via System Intermediate Representation using input

and output processors from one to the other.  For example, CASTLE’s co-synthesis

environment can generate a processor’s VHDL description, and a compiler can translate

any C/C++ program from a given application domain into the operational code of the

intended processor.  Similarly, POLIS provides a Co-design Finite State Machine

representation that can be used to characterize both hardware and software components of

a system using tools such as VHDL or graphical FSMs.  The environment supports

formal verification, simulation, and HW/SW system level partitioning as well as HW and

SW synthesis and their interfacing.  Model-based Co-design (and its computer-based

design environment, SONORA [Roz99]) provides a methodology that is comprised of
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five stages: (1) specification (requirements and constraints), (2) modeling, (3)

simulation/verification, (4) model mapping to hardware/software components, (5)

prototyping and implementation.  Given CASTLE, POLIS, and Model-based Design,

from a framework approach, the latter is the closest to our work.  However, while this

framework and others promote system specification into hardware/software architectures,

they do not support concurrent hardware/software analysis and design within a

distributed context.  DEVS-DOC does support this distributed context.

2.4. Alternative Analysis and Design Approaches

2.4.1. Distributed Simulation Exercise Construction Toolset (DiSect)

An environment known as DiSect has been proposed to aid the development,

execution monitoring, and post execution analysis of a distributed simulation [STR99].

DiSect is comprised of three software tools.  The Exercise Generation (ExGen) tool aids

developers in composing simulations from a web-based simulation object repository.

The Distributed Exercise Manager (DEM) is the simulation execution monitoring tool,

which controls simulations and monitors the distributed simulation infrastructure:

workstations loads, network loads, and the High Level Architecture (HLA) Run Time

Infrastructure (RTI) [DMS99].  The Modular After Action Review System (MAARS)

provides tools for visualization and analysis of data collected during a DEM simulation.

DiSect was implemented to support evaluation and analysis of Army training simulation

exercises during, and after, the execution of the simulation exercise.
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While such an environment can aid in the re-design of systems of interest, this

approach is limited to a narrow scope of distributed systems   Army training simulation

exercises in an HLA/RTI environment   and to post-mortem system evaluation.  System

analysis is based on the monitoring of the operational system.  The DEVS-DOC approach

provides a modeling and simulation environment enabling system evaluation and analysis

prior to composing and running the real target system.

2.4.2. Petri Nets

Petri Nets provide an abstract state-machine model of a system.  Petri Net models

allow analysis of system concurrency, asynchronous operations, deadlocks, conflicts, and

event-driven actions.  In short, they offer a means to develop and evaluate the logical

structure of a system.  Petri Nets are composed as directed graphs consisting of two

classes of nodes, called places and transitions, that are interconnected with arcs.  The

state, or marking, of a Petri Net is defined with the placement of tokens on places.

Allowed state changes are defined with the association of firing rules to transitions.

Variations on the Petri Net methodology can add attributes to tokens   called colored

Petri Nets   as well as timing, conditional, and probabilistic firing details to arcs.

Petri Nets provide a means to define the set of possible execution traces through a

system.  Each trace represents a possible path through the state graph.  This modeling

approach is often used to ensure that there is always a transition possible for any input,

and that selected, undesired states are not reachable.
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With only two types of nodes, places and transitions, the Petri Net modeling

notation makes no distinction between hardware and software components.  Due to this

semantic limitation, Petri Nets provide no direct means to model a distributed object

computing system.  Use of the Petri Net formalism as the basis for building higher level

abstractions of DOC hardware and software components is a potential area of research.
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3.   DEVS-DOC BUILDING BLOCKS

In developing an environment for modeling and simulating distributed object

computing systems, we utilize the DEVS formalism to develop specifications of DOC

components; implement these representations using DEVSJAVA; and, utilize the

experimental frame concept to define simulation experiments.  As already mentioned, the

DEVS formalism provides a systems theoretic basis for specifying component behaviors.

Implementing in DEVSJAVA enables object-oriented modeling, concurrent simulations,

concurrency among interacting simulation objects, and web-enabled simulations.  The

experimental frame concept provides a formal structure when specifying the simulation

conditions to be observed for analysis.  These conceptual constructs are outlined in this

chapter as background for the following two chapters that detail the DEVS-DOC

modeling and simulation environment developed during this research.  We begin this

chapter with an overview of Butler’s formal structure for modeling a DOC system.

3.1. A Distributed Object Computing Model

Butler developed a formal representation for modeling DOC systems.  This

formalism allows for independent development of representations for the hardware and

software architectures, and then coupling these models into a systems representation.

The hardware architecture, called the Loosely Coupled Network (LCN) model, defines

the real-world network topology interconnecting computing systems.  The software

architecture, called the Distributed Cooperative Object (DCO) model, defines object-

oriented software components and structures.  The DCO software objects are mapped
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onto LCN hardware components to couple the two models to form an Object System

Mapping (OSM).  These components are assigned random variables (e.g., bandwidth,

error rates, compute loads, data sizes, etc.) to provide the basis for simulating dynamic

behavior.  A summary of Butler’s formal notation is provided in Appendix A.

3.1.1. Hardware: Loosely Coupled Networks

The LCN representation of networked computer components results in the

specification of processors, network gates, and links.  The processors serve as nodes, on

which software objects of the DCO abstraction may be loaded and executed.  The two

critical parameters for these processing nodes are processor storage size and processor

speed.  The storage size of the processor constrains software objects in their competition

for memory resources.  The processor speed constrains the rate at which software jobs are

processed.  The network gates in the LCN represent hubs and routers in a computer

network.  The critical parameters constraining the performance of the gates are operating

mode (hub or router), buffer size, and bandwidth.   The links model the communication

media between processors and gates.  Critical parameters for links include number of

channels, bandwidth per channel, and error rates.  The LCN network topology is defined

by mapping the processors and gates onto the links.

Figure 3 depicts an example LCN structure of two computing locations

interconnected with a T1 carrier link, L0.  The left-side local area network (LAN) has a

gate, G0, configured as a router to interconnect the two ethernet links, L1 and L2, and the

T1 carrier link.  The right-side FDDI star LAN has a gate, G1, configured as a router, to
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interconnect the T1 carrier with the FDDI star LAN.  Gate G2 is configured as a hub to

create the FDDI LAN star topology.

Legend:
L0 = T1
L1,2 = Ethernet
L3-7 = FDDI star LAN
G0,1 = Router
G2 = Hub
P0-8 = Processors

G0 G1 G2

L1 L4 L5

L6 L7

L2

L0 L3

P3 P4

P0 P1 P2 P5 P6

P7 P8

FIGURE 3.  Example LCN Structure

3.1.2. Software: Distributed Cooperative Objects

The DCO abstraction of software components results in the specification of

computational domains, software objects, methods, and object interaction arcs.  A set of

software objects forms a computational domain.  Any software object may belong to

more than one computational domain.  A computational domain represents an executable

environment or program and identifies initializer software objects.  These initializer

software objects stimulate the initial execution order of software objects in a domain.

A software object is based on the object-oriented concept of an object that

contains both attributes (data members) and methods (functions) that operate on the

attributes.  The collective memory requirements of these attributes and methods

characterize the object’s size.  When the software object is invoked, the size parameter

loads the supporting LCN processor memory.  The object may be invoked autonomously

or on the receipt of an object interaction arc.  The software object has a thread mode

parameter that defines the granularity of its multi-threaded behavior: method, object, or
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none.  This thread mode determines the level of execution concurrency the software

object supports.  At the method level, all requests to the object may execute concurrently.

At the object level, only one request per method may execute concurrently; additional

requests against an executing method get queued.  At the none level, only one request per

object may execute at a given time; each additional request to the object gets queued.

The methods of a software object are characterized as a computational work load

factor and an invocation probability.  The work load factor represents the amount of

computational work required to fully execute the method.  The invocation probability is

an artifact of the quantum modeling technique.  From the quantum perspective, when a

software object is invoked, it is irrelevant which method is actually selected as long as all

the methods of the object are invoked in correct proportion.

Two types of software object interactions are identified, message arcs and

invocation arcs.  A message arc represents peer-to-peer exchanges between objects.

When a source object sends a message, it may target several destination objects.  The

frequency of firing a message arc is based on the computational progress of the source

software object.  The message size parameter characterizes the amount of data

transmitted.  An invocation arc represents client-server type interactions between two

software objects.  When a client object fires an invocation arc, the message size

parameter specifies the amount of data sent.  The destination server object invokes a

method and, on method completion, sends a response back to the client.  Invocation arcs

have either a synchronous or asynchronous blocking mode.  In synchronous mode, the
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firing method is blocked from further execution until the return message is received.  In

asynchronous mode, the firing method is allowed to continue execution.

D1D0

...

S0S16

S17

S19

S20

S21 S15

S1

S22

S23

S24 S18

A3

A2 A4

A8

A1

A0

M0

A5

A6

A7

Legend:
D0,1 = Software Domains
S0-24= Software Objects
A0-8 = Invocation Arcs
M0 = Message Arc

FIGURE 4.  Example DCO Software Structure

Figure 4 depicts an example DCO abstraction of 25 software objects organized

into two computational domains.  Domain D1 acts as a compute server with 16 parallel

compute objects.  Client S23 from D0 requests service with invocation arc A8 and invokes

S24 to wait for the results via message arc M0.  When S17 receives a request from the

client, it invokes S18, and S18 distributes the required computation over S0-15.  When all 16

compute objects complete and return results to S18, the results are sent back to the client

domain to S24.

Software object methods and arc interactions stimulate the dynamic behavior of

distributed object computing systems.  DCO software objects interact with other objects

via invocation and message arcs.  In cases where software objects are executed on
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different processors, the invocation and message arcs are routed as network data traffic

through the LCN processors, gates, and links.  When invoked by an incoming arc, a

software object is loaded into processor memory.  Arc reception also triggers selection of

a method for execution.  The selected method is either fired for execution or queued

based on the multi-threading mode and the current state of the software object.  Fired jobs

go to the OSM-assigned processor for execution.  Completed jobs are returned from the

processor indicating computational progress for the software object.  Based on

computational progress, additional interaction arcs are selected for exchanges with other

DCO software objects.  Selected arcs are fired / transmitted across the LCN.  Methods

that trigger arc firings continue execution unless blocked by the firing of a synchronous

arc.  In this case, the method continues execution after the associated return for the

synchronous arc is received.  When all methods complete execution, and when all fired

arcs expecting return arcs are received; the object unloads processor memory and

inactivates.

3.1.3. Distribution: Object System Mapping

Individually, neither the LCN nor the DCO models are of any great value in

modeling the behavior or performance of a distributed object computing system.  The

LCN provides a model of the target hardware architecture that imposes time and space

constraints.  The LCN, however, lacks a specification of dynamic behavior.  Dynamic

behavior is specified in the DCO model with the definition of initializer objects, object

methods and arc interactions.  These DCO definitions provide a model of the target
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software architecture.  However, this DCO behavior representation is independent of time

and space.  By mapping the DCO software objects onto LCN processing nodes, the

abstract behavior dynamics of the software architecture are coupled with and constrained

by the capacity of resources (processor speed, memory, bandwidth, buffer size, etc.) and

topology of the hardware architecture.  The DCO onto LCN mapping is referred to as the

Object System Mapping (OSM).

The performance and behavior of the resulting distributed object computing

system can support design analysis with simulation.  During simulation, the invocation of

a software object competes for processor resources in terms of storage space to load the

object and processor speed to execute its methods.  These dynamics drive the

performance of the processor as it serves OSM-assigned software objects.  Processor

performance also impacts performance of OSM-assigned software objects in terms of

completing computational tasks (object methods) and speed of network data (DCO arc)

exchanges between software objects.  These data exchanges also drive the dynamics of

the network performance as well as the performance of the DCO domain (application) as

software object exchanges denote computational progress between objects.

In addition to mapping DCO software objects onto LCN processors, the OSM

model defines a set of communication modes and maps the DCO interaction arcs into

these communication modes.  The communication modes specify how DCO interaction

arcs are processed into packets that will transit the LCN.  The communication mode

defines constraints on packet size, packet overhead size, and packet acknowledgment

size.
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3.2. Discrete Event System Specification

The DEVS modeling approach supports capturing a system’s structure from both

functional and physical points of view.  A DEVS model can be either an atomic model or

a coupled model [Zei84].  The atomic class realizes the basic level of the DEVS

formalism with specifications of the elemental components of the system of interest.

The coupled class realizes the compositional constructs for structuring DEVS models into

system hierarchies.  Atomic and coupled models can be simulated using sequential

computation or various forms of parallelism [Cho96].

A DEVS atomic model specification defines the states (variable values) and

associated time bases resulting in piecewise constant trajectories over variable periods of

time (see footnote 1).  The atomic model specification also defines how to generate new

state values and when new states should take effect.  A Parallel DEVS atomic model

[Cho96] is formally defined as:

M = < XM, YM, S, δint, δext, δconf, λ, ta >
where

XM = {(p,v) | p∈ IPorts, v∈ Xp}    is a set of input ports and values
YM = {(p,v) | p∈ OPorts, v∈ Xp}  is a set of output ports and values
S is a set of states
δint:  S → S  is the internal transition function
δext:  Q × XM

b → S  is the external transition function
δconf:  Q × XM

b → S  is the confluent transition function
λ:  S → YM

b  is the output function
ta:  S → ℜ +

0,∞  is the time advance function.
with

Q = {(s,e) | s ∈  S, 0 ≤ e ≤ ta(s)}  is the set of total states
e  is the time elapsed since last transition
XM

b is a bag of inputs (a set with possible multiple occurrences)
YM

b is a bag of outputs (a set with possible multiple occurrences)
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A DEVS coupled model designates how (less complex) systems can be coupled

together and how they interact with each other.  Given atomic models, DEVS coupled

models are formed in a straightforward manner.  Two major activities involved in

coupled models are specifying its component models, and defining the coupling that

represents desired interactions.  A Parallel DEVS coupled model [Cho96] is formalized

as:

DN = < X, Y, D, {Mi}, {Ii}, {Zi,j} >
Where

X is a set of input values
Y is a set of output values
D is a set of the DEVS component names.
For each i ∈  D,
    Mi  is a DEVS component model
    Ii  is the set of influencees for I.
For each j ∈  Ii,
    Zi,j  is the i-to-j output translation function.

The sequential and parallel views play a central role in modeling and simulation

of coupled models since each coupled model is essentially comprised of multiple atomic

models.  Two different formalisms have been introduced.  The sequential formalism

[Zei84] treats components’ simultaneous transitions (δext and δint) sequentially, while the

more recent Parallel DEVS formulation [Cho96] treats them concurrently.  Parallel

DEVS supports (1) processing of multiple input events and (2) local control on the

handling of simultaneous internal and external events.

3.2.1. DEVSJAVA

Using the Java programming language, the basic DEVS constructs have been

implemented in an environment called DEVSJAVA [AIS99 and Sar97].  This
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environment provides the foundation upon which higher constructs of DEVS (e.g., endo-

morphism and variable structure) [Zei90] can be created using the basic, as well as the

internet-based features, of the Java environment.  The DEVS atomic and coupled models

can be developed and simulated as standalone applications or as applets.  Since

DEVSJAVA is a multi-threaded implementation, each simulation model is assigned a

unique thread allowing for simultaneous execution of several models.  Similarly, in

DEVSJAVA, each atomic model can be assigned a unique thread allowing for

simultaneous execution of the DEVS atomic components.  These multi-threading features

enable handling multiple events concurrently within the component models of a

distributed object computing system.

In developing the DEVS-DOC environment, we use the DEVSJAVA

implementation along with the experimental frame concept described later.

Implementation of DEVS-DOC on top of DEVSJAVA enables object-oriented modeling,

concurrent simulations, concurrency among interacting simulation objects, and web-

enabled simulations.

3.2.2. DEVS Object-Orientation

Implementing DEVS in an object-oriented computational form leads to a natural

and easy to comprehend modeling framework.  A generic DEVS class hierarchy is given

in Figure 5.  The parental class is entity, from which devs is derived.  The devs class is

specialized into two sub-classes: atomic and coupled.  Each of these classes enables

system models to be expressed within the DEVS formalism outlined above.
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devs

digraphatomic

entity

FIGURE 5.  Generic DEVS Object-Oriented Hierarchy

A second class hierarchy is the heterogeneous container class library (HCCL)

[Zei97a], as depicted in Figure 6, which enables easier manipulation of sets of entities.

Again, the parental class is entity.  The container class is a generalized form of a linked

list that is based on set theory, and provides methods to store, retrieve, and organize

objects.  The container class is to define objects that contain other objects.  To facilitate

modeling the exchange of events between DEVS atomic and coupled models, the

message class is used to structure the event information as output from source models and

as input to destination models.  The content of a message can be any instance of an entity

or entity derived class.
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entity

elementcontainer

pairbag

set

relation

function

order

list

stackqueue

floatEnt

intEnt

doubleEnt

dateEnt

shortEnt

nameGenmessage

content

FIGURE 6.  Heterogeneous Container Class Library

3.3. Experimental Frame

An experimental frame is an artifact of a modeling and simulation enterprise

[Zei84].  It is a specification of the conditions under which a system is observed and

experimented with.  The experimental frame is the operational formulation of the

objectives motivating a modeling and simulation project.  A typical experimental frame,
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as depicted in Figure 7, consists of a generator, an acceptor, and a transducer.  The

generator stimulates the system under investigation in a known, desired fashion.  The

acceptor monitors an experiment to see that desired conditions are met.  The transducer

observes and analyzes the system outputs.  The experimental frame concept provides a

structure to specifying the simulation conditions to be observed for analysis.  DEVS-

DOC specific experimental frame components are discussed later in this disseration.

SYSTEM
(under investigation)

EXPERIMENTAL FRAME

generator transduceracceptor

FIGURE 7.  Experimental Frame

3.4. System Entity Structure

The System Entity Structure (SES) is a means of formally organizing a family of

possible configurations for a system under investigation [Zei90].  This formal

organization of possible system configurations bounds the system design space as a set of

design alternatives.  The SES formalism provides an operational language for specifying

hierarchical structures.  The hierarchical structures are a declarative knowledge

representation of decomposition, taxonomic, and coupling relationships among entities

forming the system.  The decomposition scheme allows representing the construction of a
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system from a set of entities.  The taxonomy is a representation of possible variants of an

entity; i.e., how the entity is categorized or sub-classified.  The coupling knowledge

identifies constraints on ways in which entities may be coupled together in compositions.

The SES knowledge of a system is often depicted graphically as a labeled tree.

Within the SES tree, an entity represents a real world object that is a component of the

system in one or more decompositions.  An aspect represents how an entity may be

broken down into sub-entities.  A specialization is a means of classifying an entity; it

expresses alternative choices for components in the system being modeled.

The nodes in an SES graph may also have attached variables.  Attached variables

are a means for associating attribute knowledge with the nodes.  The following six

axioms formally characterize the SES framework.

Uniformity: Any two nodes that have the same labels have identical
attached variable types and isomorphic sub-trees.

Strict hierarchy: No label appears more than once down any path of the tree.
Alternating mode: Each node has a mode that is either entity, aspect, or

specialization; if the node mode is entity then the modes of
its successors are aspect or specialization; if the node
mode is aspect or specialization then the modes of its
children are entity.  The mode of the root is entity.

Valid brothers: No two brothers have the same label.
Attached variable:No two variable types attached to the same node have the

same name.
Inheritance: Every entity in a specialization inherits all the attached

variables, aspects, and specializations from the parent of
the specialization.

For example, in an SES for a wristwatch, the entity wristwatch may have an

aspect that decomposes into a wristband entity and a clock entity.  Furthermore, the clock

entity may have a specialization that classifies the clock as either an analog or digital

clock.  A style attribute may also be associated with the wristwatch to specify its style as



52

a men’s or lady’s watch.  The wristband may also have an attribute to specify its color.

This simple SES example for a wristwatch is depicted in Figure 8.

Wristwatch-decomposition

Analog Digital

Wristband Clock

Wristwatch

Clock-specialization

~ color

~ style

FIGURE 8.  Wristwatch System Entity Structure

The entity-aspect relationship represents decomposition knowledge.  The entity-

specialization relationship represents taxonomic knowledge.  As coupling knowledge

defines how entities (models) communicate with each other, this knowledge is associated

with the respective SES aspects.

The SES is a powerful mechanism for identifying the components and structure of

model bases.  We use the SES in section 6 as a means to depict the design space for each

of the case studies.
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4.   DEVS-DOC MODELING AND SIMULATION ENVIRONMENT

This research has focused on developing an environment to model and simulate

distributed object computing systems in support of system design and design evaluation.

In this section, we describe the DEVSJAVA implementation of the DCO, LCN, OSM,

and the associated experimental frame components.  The implementation discussion of

this section focuses on the structural representation and highlights deviations taken from

Butler’s approach.  Throughout this section, qualitative behavior descriptions are

provided to assist in defining, and rationalizing the need for the various structural

elements and attributes.  In the next section, we provide rigor to the specification of the

behavioral representations.

The DEVS-DOC implementation has been successful in leveraging the object-

oriented paradigm to maintain a separation of concerns and to encapsulate abstractions of

behaviors and data.  A primary separation of concerns is between the LCN and DCO

abstractions.  The resulting LCN model describes the networked computing hardware

architecture under investigation, while the resulting DCO model describes the distributed

object software architecture.  The OSM abstraction describes the “mapping” of the DCO

software objects onto LCN processor nodes to form a dynamic systems model.

Within the DEVS formalism, atomic models interact via DEVS messages.  For

the DEVS-DOC implementation, DEVS messages between DCO software objects and

LCN processors contain one of two object class types: job or msg.  A DCO software

object sends (a DEVS message containing) a job to an LCN processor to signify the
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execution of a method and the LCN processor returns the job to the DCO software object

to signify execution completion.  Similarly, a DCO software object sends (a DEVS

message containing) a msg to an LCN processor to interact with other DCO software

objects and the LCN processor routes the msg to LCN links towards the destination DCO

software object.

In this chapter, we provide details on the implementation of a DOC modeling and

simulation environment in DEVS.  In several areas, the implementation deviates from

Butler’s formal structure to simplify the implementation effort, simplify the user’s (a

modeler’s) effort, or both.  In other areas, we extend the structure to enable quantum and

directed modeling.  These deviations and extensions are detailed within each section.

4.1. A Process For DOC Modeling

To bring a level of tractability into the design and analysis of a distributed object

computing system, we decompose the modeling effort into five steps:

1) state the modeling and simulation objectives;

2) define the processing nodes and interconnection network;

3) define the software objects and their interactions;

4) associate software objects with processing nodes; and,

5) configure simulation control components.

The first step determines the target system performance and behavior questions of

interest.  Following the terminology and conventions of Butler, the next three steps result
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in the specification of a Loosely Coupled Network (LCN), a set of Distributed

Cooperative Objects (DCO), and an Object System Mapping (OSM).  The fifth modeling

step involves defining an experiment to stimulate the model during simulation and to

collect data needed for performance and behavior analysis.  This fifth step produces an

Experimental Frame [Zei84].

Map software
onto processors

(OSM)

Define processors,
routers, hubs,

links, and network
topology (LCN)

Define software
objects and

interactions (DCO)

DOC

Configure simulation control
and data collection components

(Experimental Frame)

Run simulation and
analyze results

Desired
performance
& behavior?

no

Refine distribution?

stop
yes

Refine software design?

Refine hardware design?
State M&S
objectives

FIGURE 9.  DEVS-DOC Modeling and Simulation Process

This process and the DEVS-DOC environment enable modeling the behavior of

the software components independent of modeling the computing and networking

hardware components.  The resulting software and hardware components are then

coupled together to form a dynamic model of the distributed object computing system of
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interest.  Software applications are modeled in the DCO following a distributed object

paradigm.  Hardware for networked computing components is modeled in the LCN.

Mapping DCO software objects onto LCN processors creates the desired DOC model.

Adding experimental frame components (acceptors, generators, transducers) prepares the

model for simulation and data collection.  Analyzing the simulation results may drive

decisions to try different software distributions, LCN structures, or DCO configurations.

This process is depicted as a flowchart in Figure 9.

Worth noting is the degree of modularity and independence between the LCN,

DCO, and OSM representations, as implied within Figure 9 by the iteration loops that

refine a DOC model.  The DEVS-DOC modeler may choose to evaluate alternative

software distributions across processors within the OSM representation reusing the same

LCN and DCO models.  Alternatively, the modeler may choose to simulate and analyze

different LCN topologies and, thus, have no need to rework or modify the DCO or OSM

models.  Similarly, the modeler may refine and simulate various DCO configuration and

interaction structures with no need to revisit the LCN or OSM.  However, if a refinement

results in the addition or omission of an LCN processor or a DCO software object,

obviously, the OSM will also require attention to add or adjust pertinent software -

processor mappings.

4.2. Loosely Coupled Networks

The LCN hardware architecture is described in terms of processors, gates, and

links.  LCN processors are capable of performing computational work for DCO software
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objects and transmitting and receiving software object interaction messages.  LCN gates

interconnect two or more network links and operate in one of two modes: hub or router.

As a hub, packets from one link are broadcast out on every other link.  As a router, packet

address information is used to make routing decisions and switch a packet down a

specific link.  LCN links provide a communication path between processors and gates.

4.2.1. LCN Links

LCN links describe the communication medium that interconnects two or more

LCN nodes.  Butler’s specification for a link is an object with an assigned error

coefficient and a set of one or more channels, where the bandwidth on each link is a

random variable to account for servicing actions external to the scope of the simulation

space.  Our implementation extends on this concept with the specification of technology

specific links.  In [Hil98a and Hil99] we developed a model of an ethernet link.  This

ethernet link model allows us to simulate and evaluate DOC systems that employ ethernet

technologies within the networking topology.

4.2.2. LCN Gates   Hubs and Routers

LCN gates are objects that interconnect two or more network links.  Behavioral

attributes for these gates are mode (hub or router), bandwidth for processing traffic, and a

buffer size for queuing traffic.  The key distinction between router and hub mode is

routing decision logic.  In hub mode, the gate broadcasts traffic out on each incident link;

while in router mode, the gate routes traffic only on the incident link necessary for end-

to-end communication.
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Router models require routing decision logic to select an outgoing link for end-to-

end communication.  We opted to not burden the DOC modeler with developing and

defining routing tables.  Our desire to support technology specific link models has also

required the development of technology specific models of media access units (MAUs) or

network interface cards (NICs).  To separate these two concerns – routing and technology

specific NICs – we choose to implement LCN gates as separate object classes.  For hubs,

a technology specific NIC model class is implemented for each corresponding link

technology model.  For a router, a single router class model is implemented with the

required routing logic.  To couple a router to a technology specific link, a DEVS coupled

model is used to define the LCN gate.  To model a router interconnecting two ethernet

links and a T1 carrier link, as in the Figure 3 gate G0 example, the DEVS coupled model

of the gate is composed from two ethernet hub models and a T1 hub model as depicted in

Figure 10.

Gate

Hether1

Hether2

HT1

Router
IN0 / OUT0

IN1 / OUT1

IN2 / OUT2

ININ0

IN1

IN2

OUT0

OUT1

OUT2

IN

IN OUT

OUT

OUT

INLOOP   OUTLOOP

INLOOP   OUTLOOP

INLOOP   OUTLOOP

FIGURE 10.  DEVS Coupled Model of Figure 3 G0 Gate
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Populating routing tables within LCN routers requires knowledge of the LCN

topology and the mapping of DCO software objects to LCN processors.  To avoid

burdening the DOC modeler with developing this information and maintaining

consistency with alternative LCN topologies and alternative DCO to LCN mappings,

route discovery logic is encoded into the DEVS atomic router model and into the DCO

software object model.  When a DEVS-DOC simulation starts, the DCO software objects

announce themselves, via DEVS messages, to their assigned processors.  The processors

then broadcast this information on their assigned LCN links.  LCN routers receive these

broadcasts, load their routing tables, and forward the broadcast.  In this way, all LCN

routing components learn which incident LCN links service each DCO software object.

4.2.3. LCN Processors

The LCN processor object is capable of performing computational work for DCO

software objects and it enables these software objects to interact via the LCN.  Butler

identifies only two specification parameters for a processor – a computational speed and

a storage capacity.  If a processor is connected to multiple LCN links, routing decision

logic is necessary and we have elected to implement it within the processor.  Butler also

identified a need to define communication modes – segmenting interaction arcs into

packets, dealing with packet overhead, packet acknowledgments, and time-outs – in the

OSM abstraction.  Again, we have opted to implement these mechanisms within the LCN

processor model.
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The resulting LCN processor is implemented as a DEVS coupled model of a

central processing unit (CPU), a router, and a transport component.  The router

component is simply a reuse of the router class model just described as part of an LCN

gate.  Technology specific NIC models are coupled to the processor as needed for the

LCN link technologies and topology.  The couplings for this DEVS coupled processor

model are depicted in Figure 11.

Processor

cpu

transportinMsgs

inLink

inSW

inJobs

inMsgs outMsgs outMsgs

inLink1 outLink1 outLink

inLoop

inSW

router

inJobs outJobs outJobs

inPkts   outPkts

outLoop   inLoop

FIGURE 11.  DEVS Coupled Processor Model

The CPU is modeled as a DEVS atomic model with two input ports, one output

port, six state variables, and three parameters.  The inJobs input port accepts requests

from DCO software objects to execute jobs.  The inSW input port accepts requests from

DCO software objects to load and unload software into, and out of, memory and disk
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space.  The outJobs output port emits jobs that have completed execution.  A cpuSpeed

(cycles per second) parameter determines how quickly data processing operations

associated with accepted jobs are executed.  When processing multiple jobs, the effective

cpuSpeed is divided equally across each job.  Thus, jobs with equal loading factors are

completed on a first-in, first-out basis; whereas, in the case of jobs with unequal loading

factors arriving at the same time, the smaller jobs will complete first.  A memSize (bits)

parameter defines the memory usage constraint, and triggers job swapping dynamics as

the CPU processes jobs.  A swapTimePenalty parameter specifies a job processing time

loading factor when memory usage becomes constrained during simulation runs.

The transport component is modeled as a DEVS atomic model and segments a

DCO software object interaction msg into packets for transport across the LCN.  The

transport component at a destination node receives and collects packets.  When all

packets for an interaction msg are received, the destination transport component delivers

the interaction msg to the destination DCO software object.  In future versions of this

transport implementation, we plan to support packet acknowledgment schemes and time-

outs.  With the transport model, we define the communications modes within the LCN,

while Butler opted to define them in the OSM.  By extending the functional behavior of

the transport component, we can define additional communication modes.  Added

communication modes will be named.  Thus, the user/modeler will be able to map DCO

invocation and message arcs onto appropriate communications modes by naming the

required communication mode during DCO arc declaration.  For more detail see the

"Invocation and Message Arcs" description in section 4.3.3.
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4.2.4. LCN Topology Mappings

Butler defined two distinct function mappings as part of the LCN representation:

processors to links and gates to links.  For our DEVS-DOC implementation, these

function mappings are implemented directly within a DEVS coupled model as internal

couplings between the DEVS models representing the processors, gates, and links.  For

example, the topology mappings of the example LCN structure in Figure 3, may be coded

within a DEVS coupled model as:

// map processors to links

Add_coupling ( p0,"outLink", n1,"in"); Add_coupling ( n1,"out", p0,"inLink");

Add_coupling ( p1,"outLink", n1,"in"); Add_coupling ( n1,"out", p1,"inLink");

Add_coupling ( p2,"outLink", n1,"in"); Add_coupling ( n1,"out", p2,"inLink");

Add_coupling ( p3,"outLink", n2,"in"); Add_coupling ( n2,"out", p3,"inLink");

Add_coupling ( p4,"outLink", n2,"in"); Add_coupling ( n2,"out", p4,"inLink");

Add_coupling ( p5,"outLink", n4,"in"); Add_coupling ( n4,"out", p5,"inLink");

Add_coupling ( p6,"outLink", n5,"in"); Add_coupling ( n5,"out", p6,"inLink");

Add_coupling ( p7,"outLink", n6,"in"); Add_coupling ( n6,"out", p7,"inLink");

Add_coupling ( p8,"outLink", n7,"in"); Add_coupling ( n7,"out", p8,"inLink");

// map gate0 to links

Add_coupling ( g0,"out0", n0,"in"); Add_coupling ( n0,"out",  g0,"in0");

Add_coupling ( g0,"out1", n1,"in"); Add_coupling ( n1,"out",  g0,"in1");

Add_coupling ( g0,"out2", n2,"in"); Add_coupling ( n2,"out",  g0,"in2");

// map gate1 to links

Add_coupling ( g1,"out0", n0,"in"); Add_coupling ( n0,"out",  g1,"in0");

Add_coupling ( g1,"out1", n3,"in"); Add_coupling ( n3,"out",  g1,"in1");

// map gate2 to links

Add_coupling ( g2,"out0", n3,"in"); Add_coupling ( n3,"out",  g2,"in0");

Add_coupling ( g2,"out1", n4,"in"); Add_coupling ( n4,"out",  g2,"in1");

Add_coupling ( g2,"out2", n5,"in"); Add_coupling ( n5,"out",  g2,"in2");

Add_coupling ( g2,"out3", n6,"in"); Add_coupling ( n6,"out",  g2,"in3");

Add_coupling ( g2,"out4", n7,"in"); Add_coupling ( n7,"out",  g2,"in4");
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To further simplify the process of defining such couplings for a DOC modeler, the

DEVS-DOC digraphDOC class extends the DEVS digraph class model to provide

specific procedures for coupling LCN components.  The following code example results

in the same topology mappings / couplings as above but with half as many Add_coupling

statements.  Such aggregated coupling statements simplify the modeling effort.

// map processors to links // map gate0 to links

Add_coupling_LCNtoLCN ( p0, n1 ); Add_coupling_LCNtoLCN ( g0,0, n0 );

Add_coupling_LCNtoLCN ( p1, n1 ); Add_coupling_LCNtoLCN ( g0,1, n1 );

Add_coupling_LCNtoLCN ( p2, n1 ); Add_coupling_LCNtoLCN ( g0,2, n2 );

Add_coupling_LCNtoLCN ( p3, n2 ); // map gate1 to links

Add_coupling_LCNtoLCN ( p4, n2 ); Add_coupling_LCNtoLCN ( g1,0, n0 );

Add_coupling_LCNtoLCN ( p5, n4 ); Add_coupling_LCNtoLCN ( g1,1, n3 );

Add_coupling_LCNtoLCN ( p6, n5 ); // map gate2 to links

Add_coupling_LCNtoLCN ( p7, n6 ); Add_coupling_LCNtoLCN ( g2,0, n3 );

Add_coupling_LCNtoLCN ( p8, n7 ); Add_coupling_LCNtoLCN ( g2,1, n4 );

Add_coupling_LCNtoLCN ( g2,2, n5 );

Add_coupling_LCNtoLCN ( g2,3, n6 );

Add_coupling_LCNtoLCN ( g2,4, n7 );

4.3. Distributed Cooperative Objects

The DCO software architecture is described in terms of computational domains,

software objects, invocation arcs, and message arcs.  A computational domain is a set of

software objects that comprise an independent executable program.  Following the

traditional object orientation concept, software objects represent software components

composed of data members (attributes) and functions (methods) that operate on the

attributes.  Invocation arcs define client–server type software object interactions.

Message arcs define peer-to-peer type software object interactions.
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4.3.1. Computational Domains

Butler had two purposes for defining computational domains: 1) grouping

software processes to extract simulation results, and 2) program scheduling.  For program

scheduling, Butler identifies initializer objects (objects that represent the main program)

by assigning them a duty-cycle.  The duty-cycle triggers multiple executions of the

program during a simulation.

In considering these two purposes for domains, the first purpose is really an

experimental frame issue while the second issue is a DCO behavior issue.  To maintain a

separation of these concerns in our DEVS-DOC implementation, we have opted to

identify computational domains within the confines of the experimental frame and drop

the initializer and duty-cycle attributes from its definition.  This makes the role of a

computational domain in our implementation strictly an experimental frame issue.  To

address the program scheduling issue, we add a duty-cycle parameter to the definition of

software objects.  Thus, initializer objects within a computational domain are simply

those DCO software objects that have a duty-cycle (set to something less than infinity).

Consistent with this role shift, we describe our computational domain implementation

further in the experimental frame discussion of section 4.5.

4.3.2. Software Objects

DCO software objects represent the interacting processes of executable programs.

Within Butler’s structure, software objects have four parameters: a thread mode, a

memory storage size, a set of method computational workloads, and a set of method
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invocation probabilities.  The thread mode determines the multi-threading granularity of

the object: none, object, or method.  The memory storage size represents the total (data

and methods) storage requirement of the object when loaded into processor memory for

execution of its methods.  Each method is represented by a computational workload

factor (e.g., processor cycles) and an invocation probability.  The invocation probability

is an artifact of the quantum modeling approach and represents the probability that an

invocation method will call (invoke) that method.

swObject
state variables initial value range

sigma: 0, [0 .. ∞]
phase: fire, {passive,active,fire}
activeJobs: empty relation 0 or more thread-Job pairs
commJobs: empty function 0 or more Job-blockedStatus pairs
queuedJobs: empty relation 0 or more thread-Job pairs
timerMsgs: empty relation 0 or more timeOut-Msg pairs
fireJobs: empty set 0 or more Jobs
fireMsgs: empty set 0 or more Msgs
loadStatus: unloaded, {unloaded,onDisk,inMem}

parameters default value range
objectSize: 0 bytes [0 .. ∞]
threadMode: none, {none, object, method}
methods: empty set 0 or more methods
arcs: empty set 0 or more dcoArcs
dutyCycle: ∞ [0 .. ∞]
initMsg: null msg a Msg

inMsgs

inJobs

outMsgs

outJobs

outSW

FIGURE 12.  DEVS Atomic Model For swObject

Our software object (swObject) is implemented as a DEVS atomic model.  Figure

12 depicts this model, highlighting the inputs, outputs, state variables, and parameters.

For state variables, Figure 12 identifies the initial value settings and the range of

acceptable values.  For the parameters, Figure 12 identifies the default values and range

of acceptable values.  This swObject model extends Butler’s software structure of object
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size, thread mode, and a set of methods with the definition of a set of interaction arcs, a

duty cycle, and an initialization message.

As previously described in “Computational Domains”, our software object

representation includes a duty-cycle parameter, which enables identifying and

configuring initializer objects.  The duty-cycle parameter sets the duration between

program executions.  Setting the duty-cycle to infinity indicates that the object is not an

initializer.  If the DOC modeler is detailing specific method and arc sequences in

modeling the DCO, an initialization message (initMsg) is also defined to start each

program execution with the invocation of a target method.

Counter to Butler's approach of modeling interaction   invocation and message

  arcs as DCO components on a level peer to software objects, we define the interaction

arcs as components of software objects.  In particular, we model interaction arcs as a set

of entities that the source software object uses to create messages that are "fired" across

the associated LCN during simulations.  With this approach, the set of interaction arcs is

a parameter in the swObject declaration.  The implementation of interaction arcs is

discussed in more depth in section 4.3.3.

The structure used in defining a set of methods for a software object depends on

the DOC modeler’s intent and desired level of detail in modeling the selection and

sequencing of methods and interaction arcs.  Following the quantum (probabilistic)

approach, methods are defined as a set of computational loads paired with a set of

invocation probabilities.  This implementation satisfies the argument that, in a quantum

sense, it is irrelevant which method is invoked by an interaction arc, only that each
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method of the object is invoked in correct proportion to the aggregate invocations of all

methods of the object.  We have also extended this implementation to enable direct

modeling of specific sequences of methods and interaction arcs.  In particular, interaction

arcs can be defined to call (invoke) a specific method on a targeted software object, and

the targeted software object method can also declare a specific computational workload

and interaction arc firing sequence.  These extensions offer a DOC modeler the ability to

do directed simulations of specific real-world software interactions.  This quantum and

directed sequencing approach to modeling method behavior results in two constructor

types.

The constructor for a method defined under the quantum approach has three

parameters: a name, a workload, and an invocation probability.  The method name simply

provides a means to identify the method.  The workload parameter is used to define LCN

processor computational loads for jobs that get processed when the method is selected for

execution.  The invocation probability identifies the relative probability that this method

is invoked whenever the software object receives an invocation or message.  For

example, in the Email Application case study discussed in Chapter 6, the email client

software objects have two methods: sendMail and resolveNames.  Both methods are

defined with a workload of 400000 computational cycles and with invocation

probabilities of 30% and 70% respectively.  The email client set of methods is specified

with the following three Java statements:

methods = new set();

methods.add(new method("sendMail",    400000, 30));

methods.add(new method("resolveNames",400000, 70));
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At first glance, the constructor for a method defined under the directed

sequencing approach appears simpler, but it is actually a bit more complex.  The

simplistic view is that the method is constructed with a method name and a task queue.

Again, the name provides a means to identify the method.  The task queue defines a

sequence of computational workloads and interaction arcs.  The software object uses the

computational workload to construct a job for the LCN processor to execute, and then

fires the associated interaction arc once the LCN completes the job.  Then the next

workload in the task queue is used to construct the next job in the sequence.  For

example, in the Distributed Federation Simulation case study in Chapter 6, the federate

executive (fedex) software object has a single method called "run()" with a task queue

(fedexCycle) to model the repetitive cycling of time-advance-grant messages from the

fedex to the other distributed federate software components.  This fedex method set is

defined with two statements.

methods = new set();

methods.add(new method("run()",   fedexCycle  ));

The definition of the fedexCycle task queue is a bit more complex.  The fedexCycle has

four key steps to compute the next-time-advance-grant and three intermediate time-

advance-grants for an interleaved DEVS cycle [Zei99c].  The task queue is configured to

run this cycle for a specified number of iterations, which results in the following Java

code to define the fedexCycle task queue.
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queue fedexCycle = new queue();

for (int i=0; i<Iterations; i++) {

fedexCycle.add(new task(timeAdvGrant_workload, arc_timeAdvGrant_n));

fedexCycle.add(new task(timeAdvGrant_workload, arc_timeAdvGrant_n_1));

fedexCycle.add(new task(timeAdvGrant_workload, arc_timeAdvGrant_n_2));

fedexCycle.add(new task(timeAdvGrant_workload, arc_timeAdvGrant_n_3));

}

4.3.3. Invocation and Message Arcs

Butler defines invocation and message arcs independent of computational

domains and software objects.  In defining the DCO representation, mapping functions

are used to relate a source (calling) software object to each arc and to relate one or more

target (called) software objects to each arc.  Both arc types are defined by a firing

frequency parameter and a message size parameter.  The firing frequency is expressed as

the amount of computational progress to be made by the source software object between

arc firings (software object interactions).  The message size parameter represents the

number of bytes sent across the LCN.  Invocation arcs are further defined with two

additional parameters, a return message size and a blocking mode.  As invocation arcs

represent a client–server interaction, the return message size represents the number of

bytes returned by the target software object at the completion of its method execution.

The blocking mode parameter is set as either synchronous or asynchronous.  A

synchronous setting causes the source software object to be blocked from continuing

method computation, while an asynchronous setting allows method execution to continue

at the source software object.
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To reduce the number of DCO modeling constructs, we implement a single

dcoArc class as an extension of the DEVS entity class to represent both types of

interaction arcs.  Collections of such arcs are defined within a DEVS set, which serves as

a parameter to the source software object and defines the arc to target object mapping.

Using the quantum modeling approach, an arc is declared by specifying an arc name, a

target set of software objects, a message size, a return size, a message type (synchronous,

asynchronous, or message), and a firing frequency.  As an example, in the Email

Application case study discussed in Chapter 6, email clients make invocation queries to

the name server object.  This name server invocation arc is defined as:

//arc to query NameServer

//arc: name, dstList, msgSize, returnSize, msgType, firingFreq

dcoArc query=new dcoArc("queryName","NameServer",100,200,"invokeSync",200000);

Using a directed modeling approach, the interaction arc constructor drops the "firing

frequency" parameter and adds a "called method" parameter.  The "firing frequency" is

no longer needed as arc firing is made an explicit part of the task queue defined within a

method, and the "called method" parameter explicitly identifies the method to be executed

on the targeted software object.

4.3.4. DCO Mappings

Bulter defined five distinct function mappings as part of the DCO representation.

As our implementation has aligned the need for computational domains with

experimental frames, the mapping of DCO software objects into computational domains
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is also shifted into the experimental frame representation.  The remaining four function

mappings relate arcs to source and destination software objects.  As detailed in the

preceding two sections, the mapping of arcs to source objects is part of the swObject class

declaration, and the mapping of arcs to destination objects is part of the dcoArc class

declaration.

4.4. Object System Mapping

The OSM representation assigns DCO software objects to LCN processors.  As

depicted in Figure 12, each swObject has two input ports and three output ports.  Each of

these ports is coupled to input and output ports on the assigned LCN processor.  These

couplings can be defined within a DEVS digraph model with five Add_coupling()

statements for each assigned swObject.  To simplify this for a DOC modeler, the DEVS-

DOC digraphDOC class extends the DEVS digraph class to implement an

Add_coupling_swObject_to_processor(swObjects, processor) statement.  This

single statement implements all five of the needed couplings and can accept the

swObjects argument as a reference to a single DCO swObject or a set of DCO swObjects

being mapped to the processor.  For example, when the DEVS set container swObjects

contains swObject1, swObject2, and swObject3, the statement

Add_coupling_swObject_to_processor( swObjects, processor );

adds all the needed couplings as depicted in Figure 13.  In particular, this statement

couples the outMsgs port of each component in swObjects to the inMsgs port of the

processor.  Similar couplings are made for outJobs to inJobs and for outSW to inSW.  The
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statement also couples the outMsgs port of the processor to the inMsgs port for each

component in swObjects.  Similar couplings are made, as well, for outJobs to doneJobs.

This aggregated coupling statement significantly simplifies the modeling effort.

outMsgs

outJobs

outSW

outMsgs

outJobs

outSW

outMsgs

outJobs

outSW

inMsgs

doneJobs

swObject1
inMsgs

inJobs

inSW

outMsgs

outJobs

processor
(see figure 11)inMsgs

doneJobs

swObject2
inMsgs

doneJobs

swObject3

outLinkinLink

FIGURE 13.  DCO Software Objects and LCN Processor Couplings

These couplings and mappings facilitate the following dynamics and interactions.

A software object is invoked by receiving a msg on its inMsgs port, where the msg

contains the name of the software object in its destination address list.  Once invoked, the

software object loads itself into processor memory by sending a load software message to

the processor inSW port.  The invocation also causes a method of the software object to

be selected for execution, and a computational job is sent to the processor inJobs port.

Once the processor completes executing the job, the job is returned to the software object

via the outJobs port of the processor.  Each software object receives the job completed by

the processor and must check whether the job on the doneJobs port originated from itself.
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If so, the software object marks computational progress, selects a dcoArc, creates a msg,

and sends it to the processor port inMsgs for transmission across the LCN.  When the

processor receives a msg destined for one of its associated software objects, that msg is

sent on the outMsgs port.  Again, each mapped software object receives the msg and must

verify whether it is the targeted (destination) software object prior to servicing the msg.

At this level of abstraction, the DCO to LCN mapping may be more appropriately

characterized as a software to firmware mapping in that the processor components

represent an aggregation of hardware and software functional resources.  The LCN cpu

actually represents a combination of processor subsystems: central processing unit, disk

and system memory system, system bus and input/output ports.  Likewise, the gate

actually represents a combination of network interfaces and intra-processor

communication channels for co-hosted interacting software objects.

4.5. DEVS-DOC Experimental Frame

For distributed object computing systems, Table 1 depicts a set of metrics to

observe and assess dynamics and behaviors in running a simulation of a DOC model.

Table 1 is revised from [But94] and lists some of the major sets of information metrics

that may be derived from simulation of the DCO and LCN interactions.  Metrics marked

with a "∗ " are applicable for components of that class.  Metrics marked with a "Σ"

indicates that an aggregation of the metric is applicable over the set of components in that

class.  For example, the "Σ" under the Domain DCO Class for the metric Computational

Work Performed indicates this statistic is a summation of the computational work
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completed for each software object within the domain.  These information elements

define the objectives for the distributed computing system modeling and simulation

enterprise and specify the major functional components for the experimental frame.

LCN Classes DCO Classes
Description of Metric Processor Gate Link Domain Object Interaction Arc

Computational Work Performed ∗ ∑ ∗
Active Time/Utilization ∗ ∗ ∗

I/O Data Load ∗ ∑ ∗
Utilization of Storage ∗

Percentage of Active Objects ∗ ∗
Degree of Multithreading ∗ ∗

Length of Execution Queues ∗
# of Initialization Invocations ∗ ∗

Total Execution Time ∗ ∗
Coefficient of Interaction ∗

Data Traffic ∗ ∑ ∗
Utilization of Bandwidth ∗ ∑

% of Packet Retransmission ∑ ∗
Length of Packet Buffer ∗
Net Throughput of Data ∗ ∑ ∗

Rate of Overhead ∗ ∑ ∗
Gross & Net Response Time ∗

TABLE 1.  Major DOC System Simulation Metrics

This research effort has developed a set of transducers for the processor, link,

domain, object, and the interaction arc classes listed in Table 1.  The current link

transducer is specifically for ethernet links.  Development of a gate (hub and router)

transducer and a generic link transducer are planned as part of future directions.
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FIGURE 14.  Layered Experimental Frame

Given the number of random variables in a DOC model, we have also developed

a tuples transducer to collect results across multiple simulation runs.  The tuples

transducer collects the results of each transducer from a single simulation run and

computes the mean, variance, lower and upper bounds for the metrics of Table 1.  This

approach can be viewed as an experimental frame containing two operational layers: the

first layer to support individual simulation runs, and a second layer to drive multiple

simulation runs and aggregate the results into statistical quantities.  A traditional

experimental frame (EF-1) is constructed with a generator to stimulate the model, an

acceptor to control the simulation, and a transducer to collect simulation data and

summarize the results.  The second operational layer experimental frame (EF-2)

stimulates, controls, collects and summarizes the results of the first experimental frame

layer.  Figure 14 depicts this layered experimental frame concept.
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4.5.1. Computational Domains

As pointed out in the DCO Computational Domains section, the prime purpose

for defining computational domains is to group related software processes for extraction

of simulation results across the aggregate.  For this reason, we implement the definition

of computational domains as part of the experimental frame.  The implementation is a

DEVS set class.  A set is declared for each computational domain being represented, and

appropriate swObjects are added to each domain (set).  The set of software objects is then

used in declaring the domain transducer that monitors the software objects of the domain

during simulation.

4.5.2. DOC Transducers

This research has implemented a transducer for the DOC classes of domains,

swObjects, interaction arcs (msgs), processors, and ethernet links.  Implementing a

transducer for gates and generic links is planned for future efforts.  Each of these

transducers is implemented as an extension of the DEVS atomic class.  As previously

described, a tuples transducer class is implemented to collect and compute the mean,

variance, lower and upper bounds for these class specific transducers.  The tuples

transducer is also a child of the DEVS atomic class.  To simplify the coupling of these

transducers to DCO and LCN components, the digraphDOC class provides procedures

that aggregate the otherwise multiple Add_coupling() statements to a single

Add_coupling_transducerCLASS(monitoredObjects,interactingObjects,transducer);

statement.
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4.6. DEVS-DOC Class Hierarchy

In section 3.2.2, DEVS Object-Orientation, we provide a short overview of the

DEVS class hierarchy.  In implementing the DEVS-DOC modeling and simulation

environment in DEVSJAVA, we have extensively used the object-orientation property of

inheritance to simplify the implementation effort.  To realize LCN, DCO, and

experimental frame component classes, we implement them as extensions of the DEVS

atomic class.  The one exception is the LCN processor class, which is implemented as an

extension of the coupled class, as the processor model is a composition of the DEVS

atomic model for LCN cpu, router, and transport components.  This inheritance

hierarchy is depicted in Figure 15.

Within the DOC model, as devised as part of this research, several inert or passive

components are characterized   e.g., dcoArc for invocation and message arcs, and job

for cpu workloads.  To simplify implementing these DOC specific passive components,

we extend the DEVS entity class to create the needed classes in the same fashion as the

HCCL outlined in section 3.2.2.   Figure 16 depicts the inheritance hierarchy for these

passive DOC container components.
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FIGURE 15.  DEVS-DOC Class Hierarchy
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FIGURE 16.  DEVS-DOC Container Class Hierarchy
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5.  DEVS-DOC COMPONENT BEHAVIOR

In section 4, we detailed the structural representation used to model distributed

object computing systems.  In this section, we provide behavioral specifications for the

various DEVS-DOC components.  In particular, we focus on defining the input events,

states, state transitions, outputs, output functions, and time advance functions needed to

implement the dynamics of the various DEVS-DOC components. These behavioral

representations were developed and refined throughout the research effort behind this

dissertation.  The Parallel DEVS formalism is utilized to succinctly and rigorously define

these dynamics.

5.1. LCN Component Behavior

The overall behavior of an LCN model is an aggregation of the individual LCN

component behaviors, which form the LCN.  The behavior of the individual components

within the LCN model, however, is constrained by the couplings that define the LCN

composition and topology.  In this section, the dynamic behaviors developed for the

atomic LCN components are defined.

5.1.1. Ethernet Link

The LCN link_ethernet model represents the ethernet cable interconnecting two or

more devices.  The basic behavior required is to receive transmitted messages   data

frames   from connected nodes; after an appropriate propagation delay time, output a

preamble to signal the start of a frame; and then after an appropriate transmit delay time,
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output the transmitted data frame to signal the end of the transmission.  If any new

frames are received during this process, a collision has occurred.  In the case of a

collision, after the propagation delay time the model outputs a null frame, which signals

the collision event to all connected nodes.  On detection of a collision, the ethernet

standard requires nodes to emit a noiseburst.  So after a collision and the appropriate

propagation delay time, the ethernet link model outputs a noiseburst.  For connected

nodes, the preamble output signals that the ethernet is busy, the null frame output signals

a collision, and a data or noiseburst frame output signals the end of a transmission, i.e.,

the ethernet is idle.

The dynamics of this model need to account for the propagation delay of

transmissions from one node to all other ethernet connected nodes.  The propagation

delay is the time for a signal from one node to reach another node, which depends on

cable length.  To keep it simple, we assume a worst case propagation time between all

nodes.  Thus, we only need a single input port to receive transmissions, a single output

port to broadcast the signal, and a single time delay state variable to track the delay for all

connected nodes.  From the IEEE 802.3 standard, an ethernet may have one to five 500

meter segments (using four repeaters) with the worst-case propagation delay per segment

being 25.6 micro-seconds.

To further simplify the model and enhance simulation performance, our model

also accounts for the time to transmit each frame.  Thus, an input message from a node is

a pair of values representing the data frame to be transmitted and the time to transmit the

data frame   the time between putting the first and last bits of the data frame on the
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ethernet.  This approach improves model simulation performance by only requiring a

single message exchange from a transmitting node model to the ethernet link model

rather than two exchanges   one for the preamble (start of transmission) and one for the

data frame (end of transmission).

noiseburst
∞, (∅ , ∅ )

preamble
pt, (f2, r2)

passive
∞, (∅ , ∅ )

passive
∞, (∅ , ∅ )
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xmitting
r1, (f1, r1)
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X
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e
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FIGURE 17.  LCN Ethernet Link Discrete Event Time Segments

The discrete event time segment trajectories for the required dynamics of this

ethernet link model are depicted in Figure 17.  The dynamics are plotted over time and

represent the input events, X; the model state changes, S; the elapsed time in a given

state, e; and the model output events, Y.  The depicted dynamics start with the ethernet in

a "passive" state with the time advance function set to infinity (∞) and the pair of values

representing the data frame being transmitted and the time to transmit both set to null.
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The next event is the input event "x1" that contains a pair of values, f1 being a data frame

and r1 being its transmit time.  The "x1" input event sets the model into a "preamble"

state with the time advance function set to the propagation time (pt) and the frame and

transmit time pair set to (f1,r1).  With the elapse of the propagation time, the model has

an internal event that causes the output of a preamble and sets its internal state to

"xmitting" with a time advance of r1.  With the elapse of r1, the internal event causes the

output of the data frame f1 and sets the model back to its "passive" state.  The next event

sequence depicts the progression of a collision scenario.

A Parallel DEVS representation for this LCN link_ethernet model follows.  This

representation is also included in Appendix C, DEVS-DOC Behavioral Specifications.

DEVSlink_ethernet = < X, Y, S, δint, δext, δconf, λ, ta >, where

InPorts = {"in"}
OutPorts = {"out"}
X = {(f,r) | f ∈  F, r ∈  ℜ }
Y = {preamble, noiseburst} ∪  F
S = {"passive","xmitting","collisions","noiseburst"} × ℜ +

0 × X

δext((phase,σ,xlast),e,("in",x)) = case phase is
("preamble",propagtionTime,x) "passive"
("collisions",σ-e,x) "preamble"
("collisions",σ-e,x) "xmitting"
("collisions",σ-e,x) "collisions"
("noiseburst",propagationTime,x) "noiseburst"

δint(phase,σ,xlast) = case phase is
("passive",∞,(∅ ,∅ )) "passive"
("xmitting",rlast,xlast) "preamble"
("passive",∞,(∅ ,∅ )) "xmitting"
("noiseburst",∞,(∅ ,∅ )) "collisions"
("passive",∞,(∅ ,∅ )) "noiseburst"

δconf(s,ta(s),x) = δext(δint(s),0,x)
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λ (phase,σ,xlast) = case phase is
("out",preamble) "preamble"
("out",flast) "xmitting"
("out",f∅ ) "collisions"
("out",noiseburst) "noiseburst"

ta(phase,σ,xlast) = σ

where xlast=(flast,rlast) represents the last input pair received
F = frames, to include the null frame f∅

5.1.2. Ethernet Hub

The LCN hub_ethernet model represents a multi-port communications device that

receives LCN traffic on one port and broadcasts that traffic out on all other ports, where

all but one set of ports follow the IEEE 802.3 ethernet protocol.  The exception port set,

the "inLoop" port and "outLoop" port, provides a means for interconnecting other LCN

devices   processors and routers   to ethernet links.  The number of ethernet ports

modeled is a configuration parameter.

The discrete event time segment trajectories for three scenarios of a single

ethernet hub system are depicted in Figure 18.  In the first scenario, traffic is received on

the local loop port while the ethernet is idle; the model immediately sends the traffic out

over the ethernet; and no collisions are detected.  In the second scenario, traffic is

received from the ethernet and is immediately sent out the local loop.  For the third

scenario, local loop traffic is again sent over the ethernet; however, this time a collision is

detected; the model waits, and then tries to send the traffic again; this time successfully.



84

A complete specification of the LCN hub_ethernet dynamic behavior is provided

in Appendix C.  To simplify the specification, a single ethernet port was assumed.  Here,

we highlight extracts of the Appendix C dynamic behavior specification to embellish on a

few concepts.
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FIGURE 18.  LCN Ethernet Hub Discrete Event Time Segments
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The hub_ethernet state space matrix, S, is the cross-product of a number of

vectors and scalars.  In particular,

S = Phase × σ × XmitState × MediaState

× LoopDelay × LoopBuffer × PortDelay

× PortBuffer × BackOffCount

where the vector Phase and the scalar σ represent the two basic state variables of any

DEVS model.

The XmitState and the MediaState are two of the ethernet hub specific vectors.

The XmitState vector represents the transmission status of the hub on the outgoing

ethernet link, i.e., XmitState = {idle, waitingForIdle, xmitting}.  The XmitState is "idle"

when the hub has no traffic to send out the ethernet; is "waitingForIdle" when the hub has

traffic but, in following the IEEE 802.3 media access protocol rules, is unable to transmit;

and, is "xmitting" when the hub is transmitting queued traffic.  The MediaState vector

represents the detected state of the ethernet link, i.e., MediaState = {idle, singleCarrier,

collisions}.  The MediaState is "idle" when traffic has not been detected on the ethernet;

is "singleCarrier" when the start of traffic (a preamble) has been detected (received); and,

is in "collisions" when a collision (a null event) has been detected (received).

The LoopDelay scalar represents the time to transmit traffic out the local

"outLoop" port; while the PortDelay scalar represents the time to wait until attempting to

transmit traffic out the ethernet link port "out1".  When there is no traffic for these ports,

these scalars are set to infinity, ∞.
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The LoopBuffer and the PortBuffer are queues to hold traffic destined for

transmission out the local "outLoop" port and the ethernet link port "out1", respectively.

Following the IEEE 802.3 media access protocol, when a device has traffic to

send and detects traffic on the ethernet, the device waits (backs off) a random number of

time slots before attempting to send its traffic.  A time slot is equal to the worst-case

propagation time.  For each back off, the range of random numbers increases

exponentially. E.g., after the first collision, each station waits either 0 or 1 slot times

before trying again; the second time, either 0, 1, 2, or 3 time slots; in general, after i

collisions, a random number between 0 and 2^i-1.  The BackOffCount scalar in the state

space matrix represents the number of sequential collisions encountered.

The external transition function is defined with four sequential state change steps,

which are summarized as follows:

δext(s,e,(InPorts,X)) =

(,,,,loopDelay-e,,portDelay-e,,) 5 before processing input events X

(,,,,,,,P+.add(x,xt),) for each x event on "inLoop"

(,,xs,ms,ld,lb,pd,pb,boc) for each x event on "in"

(ph,sigma,xs,,,,pd,,boc) after processing input events X

As annotated, the first state change   (,,,,loopDelay-e,,portDelay-e,,)   is executed

before processing any of the input events X.  This state change step re-computes the

LoopDelay and PortDelay scalars based on the elapsed time, e.  If either LoopDelay or

                                                          
5 In this notation, commas are used to signify each of the state variables and any equations within them
signify the new value to be assigned.  In the (,,,,loopDelay-e,,portDelay-e,,) case, the first four state
variables, along with the sixth, eighth, and ninth state variables, remain unchanged.  The fifth state variable
is LoopDelay, which is set to a new value of loopDelay-e.  Similarly, the seventh state variable is
PortDelay, which is set to a new value of portDelay-e.
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PortDelay happen to be at infinity, then the subtraction of any arbitrary elasped time e

(which is less than infinity) results in infinity.  With the completion of this first sequential

state change step, these new delay values apply in the remaining three steps.

As annotated, the second sequential state change step (,,,,,,,P+.add(x,xt),) is applied

repetitively for each input event from the "inLoop" input port.  Likewise, the third step is

applied repetitively for each input event from the ethernet "in1" input port.  The fourth

and final step is applied once after processing all the input events.

Appendix C provides the complete specification with details on the variables used

in the sequential state change steps just described, as well as details on the other DEVS

functions.

5.1.3. Router

The LCN router model represents a multi-port communications device that

receives LCN traffic on one port and then, based on its routing table, forwards the traffic

over a link heading towards the destination.  The router has one set of ports, the "inLoop"

and "outLoop" ports, to provide a path for interconnecting DCO software objects local to

the router node to other LCN components via LCN link paths.  The number of router

LCN link ports modeled is a configuration parameter.

To avoid requiring a DEVS-DOC modeler to define routing tables, the router

model includes dynamic behavior mechanisms that automatically discover the routing

information needed to setup a routing table.  This route discovery behavior is triggered by

a DCO software object behavior that sends a "load" message over the LCN, at the start of
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a simulation.  On the receipt of this "load" message, the router updates its route table by

noting the source name and the link servicing it.  The router then broadcasts this "load"

message out all other links to share this knowledge with other LCN components.  Within

the experimental frame, these route table update dynamics can be defined as a simulation

startup sequence that the transducers (data collectors) can ignore.

The first discrete event trajectory plot in Figure 19 depicts the progression of a

"load address" event on a "loop" input port.  The scenario starts with an input event of

message X1 on the "inLoop" port.  Message X1 is from DCO software object "A", has a

size of "sizeX1", and is a "load" message.  The state change reflects X1 being queued for

output on outLink1 and outLink2, and the AddressList being updated to associate traffic

destined for software object "A" to the "Loop" output port.

In similar fashion, the second event plot in Figure 19 depicts the progression of a

"load address" event on a "link" input port.   In particular, message X2 arrives on the

"inLink1" port and is a "load" message from software object "B".  The model queues

message X2 for forwarding on the outLink2 port and updates the AddressList to associate

traffic for "B" to the "Link1" output port.
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FIGURE 19.  LCN Router Discrete Event Time Segments

The third and fourth plots in Figure 19 depict traffic reception and forwarding

scenarios.  In plot c, traffic X3 is from the local loop DCO software object A and is

destined to software object B.  In this scenario, the router is initially passive.  In

receiving X3, it is queued for "outLink1" (based on the prior occurrence of scenario b),
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and the next internal event for the router is scheduled by setting σ to the transmit time of

sending X3 over "outLink1", i.e., the size of X3 divided by the link rate of "outLink1".

Similarly, plot d is the event scenario for traffic received on "inLink2", where X4

is from software object C and destined to B.  In this scenario, the router is already

transmitting traffic over "outLink1" when X4 is received.  So, the schedule for

completing the current "outLink1" transmission event is reset based on the elasped time

eX4; and traffic X4 is queued on the "outLink1" buffer.  Once, the current "outLink1"

transmission completes, the output event of sending X4 over "outLink1" is scheduled

based on the transmit time needed for X4.

A complete specification of the LCN router behavior is provided in Appendix C.

For the external transition function, a sequential set of state change steps is specified in

the same style described in section 5.1.2 for the ethernet hub.

5.1.4. Central Processing Unit (CPU)

The LCN cpu model represents the behavior of LCN processors as they compute

jobs generated from DCO software objects.  The model has two input ports; "inJobs" for

receiving jobs that are to be processed, and "inSW" for receiving requests to load and

unload software in memory.  The "memSW" and "memInUse" state variables maintain

the status and resource demands of these loads and unloads.  Plots a and b in Figure 20

depict event sequence scenarios for such loads and unloads.
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      a.  LCN cpu load memory scenario                             b. LCN cpu unload memory scenario

FIGURE 20.  LCN cpu "inSW" Discrete Event Time Segments

Two cpu model types are available in the DEVS-DOC framework   a single-

tasking cpu and a multi-tasking cpu.  While the behavior resulting from events on the

"inSW" port is the same for both cpu types, the behavior resulting from jobs on the

"inJobs" port can vary significantly.  The single-tasking cpu accepts and queues multiple

job requests, processing them one at a time on a first-in, first-out (FIFO) basis.  The

multi-tasking cpu accepts multiple job requests and processes all jobs concurrently.  The

effective cpu speed available to each job, however, is an equally divided fraction of the

total cpu speed based on the number of jobs in the cpu.
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FIGURE 21.  LCN cpu Discrete Event Time Segments

Figure 21 depicts the scenario of two jobs, X5 and X6, arriving at the cpu at the

same time.  Plot a depicts the scenario for the single-tasking cpu and plot b for the multi-
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tasking cpu.  In this example, we assume the work load of job X5 is larger than the work

load of X6 and that the speed of the two cpu’s is the same.  The single-tasking cpu treats

one of the jobs (X5) as the first arrival, processes it, and outputs it on "outJobs"; the

single-tasking cpu then processes job X6 and outputs it.  The job outputs of the single-

tasking processor are quite staggered in comparison to the multi-tasking cpu.  We can

also note that while the duration to compute both jobs is equal, the multi-tasking

processor completes job X6, with the smaller work load, first.

A specification of behavior for both cpu types is provided in Appendix C.

5.1.5. Transport

The LCN transport model is a component to represent behaviors of various

communication modes.  The current DEVS-DOC transport model supports only one

communication mode.  The required behavior of the model is to partition DCO software

object messages into packets for transmission over the LCN, and to reassemble received

packets into messages for delivery to software objects.  The model receives software

object messages of arbitrary length on the "inMsgs" input port; partitions them into

packets of a set maximum length; and sends the resulting packets out the "outPkts" port.

The model collects incoming packets via the "inPkts" input port; stores these inbound

packets in a receiving queue buffer; and when all the packets for a message have been

collected, delivers that message to the DCO software object via the "outMsgs" port.
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The Parallel DEVS with Ports specification is provided in Appendix C.  Figure 22

depicts a discrete event scenario with the transport model partitioning a message into

packets and with the model receiving a series of packets to form a message.
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FIGURE 22.  LCN transport Discrete Event Time Segments

5.2. DCO Software Object

The only DCO component is the software object model, swObject.  This model

represents software components as the interacting processes that constitute executing

programs.  The swObject model has two input ports, "inMsgs" and "doneJobs".  The

"inMsgs" port is to receive exchanges (invocations, invocation responses, and messages)

from other software objects.  The "doneJobs" port is to receive completed jobs from the

LCN processor.  The swObject has three output ports, "outMsgs," "outJobs," and
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"outSW."  The "outMsgs" port is to send out invocations and messages to other software

objects.  The "outJobs" port is to send jobs to the LCN processor for execution.  And the

"outSW" port is to signal the loading and unloading of the software object onto the

processor disk and memory resources.  Loading the processor disk also triggers the LCN

router mechanism for automatic route discovery, see section 5.1.3.
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FIGURE 23.  DCO swObject Discrete Event Time Segments: Simple Scenario

Figure 23 illustrates a relatively simple event and state transition scenario of a

software object receiving an invocation request, selecting the method, processing the job,

interacting with other software objects, and then returning a response to the initial

invocation.  For this simple scenario, the multi-threading mode of the object has no
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impacts on its resultant behavior as we have only considered a single invocation.  On

receiving the invocation message M1, the object selects method O1 (based on the

modeler’s configuration for the object) to create job J1, and immediately sends two events

to the processor: a trigger to load software into memory and the job J1 to execute.  The

software object is now active and waits (σ = ∞), for an external event.  Note, J1 is

configured to execute in two steps, 50 work load units at a time.  On receipt of the

completion of the first half of J1, the software object selects interaction arc A1 (based on

the modeler’s configuration for the object) to create an interaction message M2 to send

out.  The object then immediately sends out two more events: job J1 to the processor for

the second half of its execution and message M2 to the LCN for delivery to its destination

object.  Note, in this scenario M2 is an asynchronous message as job J1 continues on with

execution rather than waiting for a response to M2 before continuing execution.  Again,

the software object waits for an external event.  On receipt of the completion of the

second half of J1, the software object again selects an interaction arc A2 to create

message M3, which is an asynchronous message.  As job J1 has completely executed, the

object creates the return message to the M1 invocation; and, as the object has no

outstanding jobs, the object triggers the processor with an event to unload memory.

More complex scenarios are described in the following sub-sections, which depict

the behavioral differences that can be encountered based on the setting of the software

object thread mode.  To help highlight some of these behavioral differences, some

common configuration assumptions about the object and its environment are summarized

here:
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1) the object has two operation methods defined:  O1 and O2;

2) the object has two arc interactions defined:  A1 and A2,

where A1 and A2 are asynchronous arcs;

3) the execution of operation O1 fires arc A1; O2 fires A2;

4) the processor for this object is multi-tasking and no other

software objects are interacting with it;

5) the object initially receives three messages:  M1, M2, and M3;

only message M1 requires a response; M1 and M2 trigger

selection of method O1 for execution while M3 selects O2.

The Parallel DEVS with ports specification for the behaviors of the swObject model is

provided in Appendix C.

5.2.1. swObject Dynamics For Thread Mode None

In the "none" level thread mode, a swObject only executes one job at a time and

any additional requests are queued.  So this scenario, as shown in Figure 24, results in the

sequential execution of jobs J1, J2, and J3.  Job J1 is the initial active job, with jobs J2

and J3 being queued.

At the completion of J1, the M1 return message is sent as well as the new

message M4, which was created based on the definition of interaction arc A1 and the

completion of method O1.  Similarly, with the completion of job J2, message M5 is

created from A1 and sent.  Finally, with the completion of J3, message M6 is sent based

on arc definition A2, and the software object sends an event to "unload" memory.
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FIGURE 24.  DCO swObject Discrete Event Time Segments:
Thread Mode None

5.2.2. swObject Dynamics For Thread Mode Object

In the "object" level thread mode, a swObject can have one job per defined

method concurrently active.  So initially, our swObject has two active jobs: J1 associated

with method O1 and J3 associated with method O2.  As shown in Figure 25, job J2 is

queued until completion of method O1 via the execution of J1.

As job J3 has the smaller work load and our processor is multi-tasking, J3

completes first and is the next external event.  As J1 is still executing, J2 remains in

queue, but the completion of method O2 triggers the sending of arc A2 with the creation

of message M6.
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FIGURE 25.  DCO swObject Discrete Event Time Segments:
Thread Mode Object

With the completion of job J1, J2 becomes the remaining active job.  The M1

response message is sent along with the message M4 based on method O1 being

executed.  Completion of job J2 closes out this scenario with the release of message M5

and the "unload" memory event.  In contrast to the "none" thread mode event scenario,

the queuing of jobs in the "object" thread mode scenario imparts prominent behavioral

differences that are manifest in the relative timing and sequencing of output jobs and

messages.

5.2.3. swObject Dynamics For Thread Mode Method

In the "method" multi-threading mode, a swObject reacts to all incoming requests

with the generation of active jobs.  Hence, a swObject in "method" mode starts out with

the production of three active jobs: J1, J2, and J3.  With J3 having the smallest work load
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of the three, and since the processor is multi-tasking, the completion of J3 is our next

external event as shown in Figure 26.  The completion of J3 drops it from the active job

list and also creates the M6 interaction message for output.
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FIGURE 26.  DCO swObject Discrete Event Time Segments:
Thread Mode Method

The next external event is the completion of jobs J1 and J2.  This clears out the

active job list and creates three outgoing messages.  The completion of J1 creates the

return message for M1 and the new message M4 for executing method O1.  Likewise, the

execution of method O1 via J2 creates message M5.  With no more active jobs, the

swObject also sends an event to "unload" memory.

In contrast to both the "none" and the "object" level multi-threading modes, we

observe another distinctly different behavior scenario for the same given input.  The

resulting job execution sequence and relative timings between the output messages have

changed.



101

5.3. The OSM Component

The OSM component of the DEVS-DOC framework is the mapping of DCO

software objects onto LCN processing nodes.  In this mapping role, the OSM provides

structural knowledge about the combined hardware and software system.  The OSM,

however, does not introduce any new behavior.  Rather, the structures defined within the

OSM impose constraints and limitations on the behavior of the individual components

forming the DOC system.

5.4. Experimental Frame Component Behavior

The dynamic behaviors developed for DEVS-DOC experimental frame

components are summarized in this section.

5.4.1. Acceptor

In an experimental frame, an acceptor monitors a simulation experiment to see

that desired conditions are met.  In the DEVS-DOC case studies described in chapter 6,

we developed an acceptor to provide synchronization and coordination functions during

the simulation experiments.  The phases this acceptor cycled through are shown in the

discrete event segment plots of Figure 27 a and b.

The time segment scenario depicted in Figure 27 is for the acceptor controlling

two simulation runs of the same experiment (numSimRuns=2).  The first plot depicts the

time segments for acceptor control in running the first simulation experiment.  The

second plot, b, continues with showing the control of the second simulation experiment.
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FIGURE 27.  Acceptor Discrete Event Time Segments
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The acceptor starts out in a "starting" phase, which allows the DCO software

objects time to send a load disk event to their respective processors.  The router

component of the processor model uses this event to begin configuring routing tables and

forwards this routing information around to the other LCN components.  The acceptor

waits for these routing table configurations to complete based on the startupTime

parameter.

The acceptor next signals all transducers to start collecting data by sending the

"collect" event out the "control" port.  The acceptor also stimulates the DEVS-DOC

system model by sending an initial invocation message out the "invoke" port.  For three

repetitions, the acceptor continues to periodically   based on the invokeDutyCycle

parameter   stimulate the system with invocation messages.  The acceptor subsequently

waits, for a period set by the simDutyCycle, for this first simulation run to complete.  The

acceptor then signals the transducers with a "report" event on the "control" port.  The

acceptor completes this first simulation control cycle by entering an "initializing" phase

in preparation for controlling the second simulation run.

As shown in plot b, control of the second simulation run starts with the acceptor

signaling all the DEVS atomic models to initialize themselves.  The acceptor then cycles

through the same sequence just described, with the exception of the acceptor ending the

cycle by entering a passive state, rather than an initializing state, at the end.

A Parallel DEVS with ports specification of the behavior of this acceptor is

included in Appendix C.
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5.4.2. LCN and DCO Control Instrumentation

The behavior of the just described acceptor has control interactions with the

atomic models of the LCN and DCO components.  In order for these control interactions

to have the intended effect, the LCN and DCO components must be capable of receiving

and reacting to these control events.  The following DEVS specification, which is also

listed in Appendix C, is incorporated into the LCN and DCO atomic models to provide

this experimental frame control instrumentation.

DEVSLCN_and_DCO_Control= < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = { control }
X = { (control, controlMsg) },    where controlMsg = {passivate, initialize}
S = Phase × σ

Phase = defined in LCN or DCO model
σ = ℜ +

0

δext(s,e,(InPorts,X)) = (ph,sigma) for each x event on "control"
where ph is new Phase, and

sigma is new σ,
if  x=passivate ph=passive

sigma=∞
else if  x=initialize initialize_LCN_or_DCO_model

δint(s) = (s)
δconf(s,ta(s),x) = δext(δint(s),0,x)
λ (s) = ∅
ta(s) = σ

5.4.3. Transducer

The transducer, in an experimental frame, observes and analyzes the outputs of

the system model under investigation.  As previously described, our DEVS-DOC

transducers need to respond to both control events from the acceptor and to statistical
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events from the LCN and DCO components under observation.  So, we develop a generic

transducer behavior model to respond to the acceptor and then extend the generic

transducer model to construct specific transducers to collect data for the metrics outlined

in Table 1 of Chapter 4.

e1 e2
e3 e4

passive, ∞
ObservTime=0

passive,∞ 
ObservTime
   =e1+e2+e3+e4+e5

X
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e

Y
(results,report)

(control,collect)

collecting, ∞
ObservTime=0

collecting, ∞
ObservTime=e1

collecting, ∞
ObservTime=e1+e2+e3+e4

(statisticPort,someStatistic)
(statisticPort,someStatistic)
     (statisticPort,someStatistic)
          (statisticPort,someStatistic)

reporting, 0
ObservTime=e1+e2+e3+e4+e5

e5

(control,report)

FIGURE 28.  Transducer Discrete Event Time Segments

As illustrated in Figure 28, the generic transducer receives control events on its

"control" input port.  With receipt of a "collect" control event, the transducer begins

collecting statistic events on specific ports.  While in this collecting phase, the transducer

keeps track of the observation interval with the "ObservationTime" state variable.  On

receipt of a "report" control event, the transducer generates a report on its observations

and passivates.

A Parallel DEVS with ports specification of this behavior is included in Appendix

C.  The behavior of specific LCN and DCO transducers to collect the metrics outlined in

Table 1 simply extend this generic behavior by defining the statistics to collect, the input
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ports to observe them on, and a generate report function for the generic transducer to call

as part of its output function.

5.5. Synopsis

Each component in the DOC systems model represents a real world entity.  These

DOC components characterize key structural and functional attributes associated with the

real world counterparts.  This chapter details a formal behavioral specification for each

component in our DEVS-DOC environment.  These behavior specifications define the

dynamic manner in which these components act and react.

For each component, its structural composition is defined in terms of input ports,

output ports, and a set of sequential states.  The behavioral specification defines the set of

input values allowed on each input port; the set of output values that can be sent on each

output port; the state transition functions (internal, external, and confluent) which define

the state sequences; the output function; and the time advance function.  Each of these

aspects is formally specified in DEVS.  Fragments of these specifications are discussed in

this chapter with complete specification listings provided in Appendix C.  To supplement

these component behavior discussions, discrete event trajectory diagrams depict how

various event scenarios affect component state transitions and outputs.
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6.   CASE STUDIES

This chapter of the dissertation presents four case studies that use DEVS-DOC to

model various distributed computing applications.  The four studies demonstrate the

breadth and depth of applicability for the DEVS-DOC environment.  The first case study

is of a network management application monitoring the status of managed devices across

a local area network [Hil99].  This study was not only modeled and simulated in the

DEVS-DOC environment, but was similarly configured and run in a real world

environment allowing for a comparison of the simulation results with real world

behavior.  The second case study is of an HLA-compliant distributed simulation

federation [Zei99c] that also has a real world counterpart to allow us to compare

simulation results against.  The third study is a model examining the interactions of an

email application involving an email server, a name server, and email clients [Hil98b].

Wherein the first two cases we used directed modeling to specify specific software object

method and arc interaction sequences, this study uses the quantum modeling approach.

In this study, we also present and discuss several of the more interesting simulation

results collected and plotted using the DEVS-DOC environment.  The final case study

revisits the email application case study with a focus on LCN alternatives.  This case

study demonstrates the degree of independence achieved in modeling the DCO, LCN,

and OSM components while also demonstrating the degree of interdependence on overall

system behavior.
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6.1. Simple Network Management Protocol (SNMP) Monitoring

In this DEVS-DOC case study, we have modeled and simulated an Internet

Engineering Task Force compliant SNMP management system [IET90].  Such a system

has four essential elements: management stations, management agents, management

information bases (MIBs), and a management protocol.  Management stations, using the

management protocol, request management agents to perform management operations on

MIB objects, and the agents respond to these requests.  MIB objects represent

manageable attributes.  For our scenario under study, the manager requests agents to

provide status on selected MIB objects via the snmpget command.

Ghub
L4

L6
L15 L17

L19

Pasc15 Pasc17 Pasc19Pasc6Pasc4

Ghub

loop

snmp4 snmp6 snmp15 snmp17 snmp19

mgr
snmpwalk #

snmpget #

FIGURE 29.  SNMP Monitoring

The DOC system under study is depicted in Figure 29.  The LCN consists of five

host processors interconnected with 10 Mbps ethernet links through a central hub to form
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a network with a star topology.  For the DCO, each processor has an SNMP agent.  One

of the five processors (Pasc6) also has an SNMP manager software object (mgr) and a

loop controller software object (loop).  For the experimental frame, a single

computational domain is defined to encompass all five SNMP agents, the manager and

the loop software objects.

The loop controller drives the overall system dynamics for this scenario.  The

loop object fires an snmpwalk interaction arc to invoke the manager object to “walk” the

MIB of one of the five host processors.  With this invocation, the manager fires a series

of snmpget commands.  These commands translate into snmpget jobs that load the

processor's cpu and then fire snmpget interaction arcs that query (invoke) the targeted

SNMP agent.  The SNMP agent fires a job to process the request and then fires a return

arc representing the response to the query.

The system entity structure for this case study is depicted in Figure 30.  The

system is decomposed into the LCN components consisting of processors, media access

units (MAUs), links, and gates; the DCO swObjects; and the Experimental Frame

components consisting of a domain transducer and an acceptor.  Key couplings for this

decomposition are annotated directly under the "SNMP System-aspect."  For instance,

coupling of the LCN is summarized in the five lines listing the coupling of a processor to

its MAU, to its link, to a numbered port on the hub.  Attribute settings used within this

case study are also annotated next to the appropriate entities in the SES.  The DEVS-

DOC code to model and simulate this system is provided in Appendix B.
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SNMP System

SNMP System-aspect

        swObjects

~ # of = 5
    * = 

Pasc4
Pasc6
Pasc15
Pasc17
Pasc19

      swObject

     Processors GatesLinks

     processor

         hub_ethernet

        link_ethernet

~ # of = 1
   * =

hub
~ set of link speeds

10e+6
10e+6
10e+6
10e+6
10e+6

~ bandwidth = ∞
~ bufferSize = 16e+6

~ # of = 5
    * = 

link4
link6
link15
link17
link19 ~ # of = 7

    * = 
loop
mgr
snmp4
snmp6
snmp15
snmp17
snmp19

~ name = *
~ size = 32e+3 * 8
~ threadMode
~ methods
~ arcs
~ dutyCycle
~ initializationMethod

~ name = *
~ set of link speeds
~ bandwidth
~ bufferSize transd_domain

~ name = *
~ # segements = 5

     processor-aspect

cpu router transport
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~ headerSize
~ set of link speeds

= linkSpeed
~ bandwidth
~ bufferSize
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~ headerSize = 28 * 8
~ linkSpeed = 2e+9
~ bandwidth = ∞
~ bufferSize = ∞
~ cpuSpeed = 200e+6
~ memSize = 64e+6 * 8
~ maxPktSize = 1500

~ name = *_cpu
~ cpuSpeed
~ memSize

singleTask multiTask
For * = Pasc6
~ swapTime = 1.1

  cpu-type

~ name = *_tcp
~ maxPktSize

OSM
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~ set of link speeds
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~ bandwidth = ∞
~ bufferSize = 16e+6

acceptor
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~ set of swObjects

loop
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snmp17
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~ name = acceptor
~ startTime = 1
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~ repetitions = 1
~ invokeMsgs = 
~ simDutyCyle = 500
~ numSimRuns = 10
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FIGURE 31.  SNMP Monitoring System Total Processing Time

During the investigation, we ran three series of simulations.  For each series, we

set the manager software object to none, object, and method level multi-threading on its

thread mode.  Within each series, we executed ten simulations with the loop software

object set to fire the snmpwalk arc the same number of times as the simulation iteration.

In other words, fire snmpwalk once for the first simulation; fire snmpwalk five times for

the second simulation; ten times for the third simulation; 15 times in the fourth

simulation; and 20 times in the fifth simulation.  So, the iteration count represents an

aggregate workload.  We also realized this DOC system in a lab environment and
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collected data on the execution times.  Figure 31 depicts plots of the total processing time

results for the simulation runs (simulated) and the real system measurements (real),

where the iteration count represents the aggregate workload to be processed.

From these results we see that the total processing time begins to rapidly increase

for the real system when the manager is set for a method level of granularity.  We

explored this behavior further using the system activity reporter (sar) utility on the Unix

system running the manager object.  From the sar report, we found that after ten

iterations significant amounts of time accumulated for block transfers into and out of

memory.  Our real system manager configuration is such that it actually starts a new

process for each snmpget method, and with the method level granularity, ten loop

iterations, and 35 snmpgets per iteration, it equates to 350 concurrent execution requests.

The block transfers end up swapping out the processes executing these requests.

Our simulation results for this case study correspond well with most runs.  For the

method level configuration, however, our poor results are strongly attributable to a weak

representation of memory swapping dynamics within our DEVS-DOC cpu model.

Developing an improved cpu memory representation is one instance of where an

improved representation of information technologies is needed within DEVS-DOC.  This

need is discussed further in the information technologies sub-section in the final chapter

of this dissertation.
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6.2. Distributed Federation Simulation

This case study is of a DEVS/HLA7-compliant distributed simulation federation

[Zei99c] that also has a real world counterpart to allow us to compare simulation results

against.  In [Zei99a] a pursuer-evader federation is implemented in DEVS/HLA to

investigate predictive contract mechanisms.  Now, the same pursuer-evader federation is

studied to show applicability of the DEVS-DOC environment and to demonstrate DEVS-

DOC as a means of exploring the tradeoffs in message traffic and computational loads in

a complex distributed computing environment.

6.2.1. Predictive Contracts and DEVS/HLA

DEVS/HLA is an HLA-compliant modeling and simulation environment formed

by mapping the DEVS C++ system [Zei97b] to the C++ version of the DMSO RTI

[DMS98a and DMS98b].  While HLA supports interoperation at the simulation level,

DEVS/HLA supports the hierarchical and modular modeling construction features

inherited from DEVS.

The operational form of the HLA is a Run Time Infrastructure (RTI) that supports

communication among simulations, called federates.  DMSO (Defense Modeling and

Simulation Office) has developed an RTI in C++ for use in the public domain [DMS98a].

HLA supports a number of features including establishing, joining, and quitting

federations, time management, and inter-federate communication [Dah98].

                                                          
7 HLA is the DoD Modeling and Simulation Office (DMSO) High Level Architecture for implementing
distributed simulations [Dah98], [DMS98a], [DMS98b], and [DMS99].
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Predictive contract mechanisms are an active area of research into technologies to

support large distributed simulations [Cha79, Cho99, Zei98, Zei99a, and Zei99c].  The

idea behind predictive contract mechanisms is to reduce the message traffic exchanged

between distributed simulation federates while incurring only marginal additional

computational overhead.  In [Zei99a, Zei99c, and Cho99], tradeoffs between

computational overhead and bandwidth requirements for various predictive contract

mechanisms were examined using the concept of quantization [Zei98].

In [Zei99a], three predictive contract mechanisms were studied using a pursuer-

evader model to illustrate performance impacts within the simulations.  The first

mechanism was called non-predictive quantization, wherein a sender federate updates the

receiving federate with a numerical, real-valued, state variable, each time an agreed upon

(contracted) threshold is crossed.  The second mechanism was called predictive

quantization.  In predictive quantization, only a one-bit message is sent when a contracted

threshold is crossed; the one-bit message signals a crossing of the next higher or next

lower boundary.  The third mechanism was called multiplexed predictive quantization,

which expanded on the predictive quantization concept.  As mentioned above, predictive

quantization reduces the information sent about boundary crossings to a single bit.  Given

the overhead bits associated with creating a packet to send this information, reducing the

payload from 64 bits to 1 may not produce a significant overall reduction.  However,

when large numbers of interacting entities reside on each federate, it is possible to

multiplex their reduced outputs into a single packet and exploit the message size benefits
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of predictive quantization.  This concept defined the multiplexed predictive quantization

mechanism.

The pursuer-evader federation depicted in Figure 32a was used in [Zei99a] to

explore these predictive contract mechanisms.  The pursuer and evader components were

implemented as DEVS coupled models of vehicles and drivers that follow simple rules

for pursuit and evasion.  The Pursuer component contains a red tank model that reflects

its state to the EvaderWEndo component.  The EvaderWEndo component contains an

endo-model [Zei90] of the red tank, which receives the reflected state values from the

Pursuer.  The EvaderWEndo component also contains an Evader model, which itself

contains a blue tank model.  A simple federation, Figure 32b, is formed of two federates

– a Pursuer federate and an Evader federate.  Matched pursuer - evader pairs create

dynamics for federate interactions during simulations.

Pursuer Federate Evader Federate

Pursuer

Pursuer

Pursuer

Evader

Evader

Evader

DEVS/HLA

EvaderWEndoPursuer   

Red Tank

position

Red Tank
Endo Model

position

drive

  in             out

out             in
fireOut

fireIn

update (quantizer)

interaction (coupling)

Evader

perceive

Blue
Tank

             a. Pursuer-Evader Pairs                                              b. Pursuer-Evader Federation

FIGURE 32.  Pursuer – Evader Federation
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In studying the effects of the two extreme quantization mechanisms within a

distributed simulation setting, a DEVS/HLA model with the two federates was

configured to hold an arbitrary number of matched pursuer-evader pairs.  An experiment

consisted of a number of randomly initialized identical pairs being simulated for a set

simulation time (100 cycles) and quantum size.  In successive experiments, the number of

pairs was increased to approach network saturation.
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FIGURE 33.  DEVS/HLA Federation Infrastructure

In implementing the federation, each federate was configured on a Unix

workstation with the two workstations being interconnected via an Ethernet link.  Figure

33 depicts the DEVS/HLA federation infrastructure used to implement the simulation

federation.  Federate P and E are formed to support the Pursuer and Evader federates.

The time manager federate is formed to enable the DEVS coordinator as described in
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[Zei99b].  The RTIexec and Fedex are DMSO HLA standard components [DMS98a

DMS98b].
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FIGURE 34.  Combined DEVS/HLA Simulation Cycles

Due to a constraint imposed by the HLA RTI rules, see [Zei99b], the RTI Time

Management mechanisms are used to synchronize the DEVS Simulation Cycle as

illustrated in Figure 34.  Logical time (DEVS time) proceeds along a separate axis, as

shown, and advances each cycle in the phase where the coordinator updates each federate

with the DEVS global time.

The results of the study reported in [Zei99a] are summarized in Figure 35.  As the

number of pairs increased, the simulation execution time increased in a highly non-

linearly fashion for the non-predictive quantization mechanisms.  In contrast, simulation

execution time for the multiplexed predictive quantization mechanism demonstrated a
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significant performance improvement with only a very marginal increase in execution

times for 1000 pairs or less.

FIGURE 35.  Combined DEVS/HLA Simulation Cycles

6.2.2. Predictive Contracts and DEVS-DOC

We have employed the DEVS-DOC environment to model and simulate this

distributed federation simulation.  For our DEVS-DOC case study, the LCN simply

consists of the two processors using media access units (MAUs) to interconnect with the

ethernet link.  For the DCO, seven software object models were defined as numbered in

Figure 33; one each for the Fedex, RTI Exec, DEVS coordinator (time manager),

Federate P coordinator endo-model, and the Federate E coordinator endo-model.  For the

set of pursuer models in Federate P, a single software object representing an aggregation
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of the pursuers is defined.  Similarly, for the set of evader models in Federate E, a single

aggregate object is defined.  The OSM places the Federate E coordinator and the evader

aggregate software objects on one processor and all the other DCO objects on the other

processor.  The Experimental Frame consists of two transducers and an acceptor.  A

software object transducer collects data on the RTI Exec, and an ethernet link transducer

monitors the network link.  An acceptor monitors and controls the simulation runs.

As the number of pursuer-evader pairs increases, the performance of the

simulation under each predictive contract mechanism is a central focus of the

experiments.  Defining the set of pursuer models and the set of evader models as

aggregate software objects provides a simpler means of scaling the complete DEVS-DOC

system model.  The computational workloads for the pursuer aggregate DCO object is a

function of the number of objects being represented.  Similarly, the communications

traffic load placed on the LCN by the DCO is scaled by increasing message sizes based

on the number of pursuer-evader pairs.

For experiments, we ran 100 DEVS simulator cycles.  During each cycle, we

assumed that 50% of the pursuer-evader pairs were active with interactions.  To model

the non-predictive quantization mechanism, we assumed the contracted threshold settings

resulted in a five-fold decrease in message traffic, i.e., only 1 in 5 of the interacting pairs

actually triggered a threshold crossing.  The message size payload is based on the 64 bits

needed to represent the numerical, real-valued, state variable.  For the predictive

quantization mechanism, the same five-fold decrease in traffic is assumed, but now the

message size payload is one bit long.  For the multiplexed predictive quantization
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mechanism, a 1-bit payload is again assumed, however, these 1-bit payloads are

multiplexed into a single message for routing through the RTI Exec.

Interactions for the DCO software objects were defined based on the abstract

interactions depicted in Figure 34.  To help elaborate these DCO software object

interactions and associated method invocations, the UML interaction sequence diagram

in Figure 36 was developed as a detailed refinement of Figure 34.  Message sizes

associated with the pursuer and evader interactions were set as outlined in [Zei99a].  The

message sizes associated with the federate coordinators, Fedex, and RTI Exec objects

were qualitatively estimated to reflect the complexity of information contained in these

exchanges.  Similarly, the computational workloads for the methods associated with each

software object were qualitatively estimated to reflect the relative computational

complexity of the functions represented.

Figure 37 depicts the system entity structure for the set of DEVS-DOC models

developed under this case study.  As in the SES diagram of the previous case study, the

key couplings associated with this decomposition are annotated directly under the

"Pursuer-Evader Federation-aspect," and attribute settings used within the case study are

also annotated next to their associated entities.  The DEVS-DOC code for this model is

provided in Appendix B.
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FIGURE 36.  DEVS/HLA Pursuer - Evader Federation Interaction Sequence
Diagram
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Pursuer-Evader Federation

Pursuer-Evader Federation -aspect

        swObjects

~ # of = 2
    * = 

proc_1
proc_2

      swObject

      Processors

      processor

        link_ethernet

~ # of = 7
    * = 

fedex
rtiEx
devsCoord
fed_P
fed_E
pursuers
evaders

~ name = *
~ size =64e+3 * 8
~ threadMode =

if fedex   none
else        method

~ methods
~ arcs
~ dutyCycle = ∞
~ initializationMethod =“”

transd_swObject

~ name = Ethernet
~ # segements = 5

      processor-aspect

cpu router transport
~ name = *_nic
~ headerSize
~ set of link speeds

= linkSpeed
~ bandwidth
~ bufferSize

~ name = *
~ headerSize = 40 * 8
~ linkSpeed = 2e+9
~ bandwidth = ∞
~ bufferSize = ∞
~ cpuSpeed = 10e+3
~ memSize = 64e+6 * 8
~ maxPktSize = 1500
~ swapTime = 1.1

~ name = *_cpu
~ cpuSpeed
~ memSize

multiTask
~ swapTime

   cpu-type

~ name = *_tcp
~ maxPktSize

OSM
fedex -- proc_1
rtiEx -- proc_1
devsCoord -- proc_1
fed_P -- proc_1
pursuers -- proc_1
fed_E -- proc_2
evaders -- proc_2

LCN
proc_1 -- mau1 -- Ethernet
proc_2 -- mau2 -- Ethernet

acceptor

~ name = rtiEx_Transd
~ swObject = rtiEx

~ name = acceptor
~ startTime = 1
~ invokeDutyCycle = 10000
~ repetitions = 1
~ invokeMsgs 
~ simDutyCyle = 10000
~ # of SimRuns = 4

~ # of pairs
~ multiplexedPredictive
~ predictiveFilteringFactor

Experimental Frame
rtiEx -- rtiEx_Transd
Ethernet -- Ethernet_Transd
rtiEx_Transd -- tuple_Transd
Ethernet_Transd -- tuple_Transd

transd_ethernet
~ name = Ethernet_Transd

transd_tuples
~ name = tuple_Transd

MAUs

            hub_ethernet

~ # of = 2
    * = 

mau1
mau2

~ set of link speeds
10e+6

~ bandwidth = ∞
~ bufferSize = 16e+6

~ name = *
~ set of link speeds
~ bandwidth
~ bufferSize
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Comparing Quantization - Total Processing Time
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FIGURE 38.  Federation Total Processing Time versus
Number of Pursuer-Evader Pairs

Results from simulating this DEVS-DOC federation model are depicted in Figure

38.  The absolute magnitudes associated with these results are not that interesting as they

can be easily shifted by changing each processors’ speed parameter or with adjustments

to the computational workloads associated with the methods in each software object.  The

relative trajectories for each simulation series – non-predictive, predictive, and

multiplexed predictive – are quite interesting in that they strongly reflect the behaviors

found in the original study [Zei99a].

As will be shown, the simulated computational loads dominate the total

processing time by more than an order of magnitude.  Adjusting the modeled

computational loads to better characterize the real system would result in stronger



124

network effects and a closer correlation of these simulated total processing time results

with the real system measurements.

Comparing Quantization - Ethernet Busy Time
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FIGURE 39.  Ethernet Busy Time versus Number of Pursuer-Evader Pairs

During this DEVS-DOC investigation of the federation model, we also collected

results on the cumulative time the ethernet link was busy with transmissions.  These

results are shown in Figure 39.  Within DEVS-DOC, this "busy" time represents the time

spent on successfully transmitting traffic as well as time spent transmitting and

recovering from collisions.  However, no collisions occurred during any of the

simulations.  This simulated busy time represents only a fraction of the simulated run

time plotted in Figure 38.  The simulated computational load dominates the simulated run

time.
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Observing no collisions is reasonable as only two workstations are modeled; no

other traffic source is represented; the traffic load occurs in lock step with the simulated

DEVS cycle; and the simulated computational load significantly dominates the overall

simulated run time.

Comparing Quantization - Ethernet Data Load
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FIGURE 40.  Ethernet Data Load versus Number of Pursuer-Evader Pairs

The simulated total data load transmitted across the ethernet is depicted in Figure

40.  As no collisions occurred in any of the simulation scenarios, the data load

transmitted is a direct complement to the previously discussed Ethernet Busy Time plot.
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Wall Clock Time To Simulate The DEVS-DOC Federation Model 
on a Multi-User Computer
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FIGURE 41.   Simulation Execution Time For DEVS-DOC Federation Model

In Figure 41 we depict the real (wall clock) execution time to run these DEVS-

DOC simulations of the distributed DEVS/HLA federation.  For example, the Predictive

simulation of 1000 sender/receiver pairs took just over 1000 minutes (approximately one

day) to run.  This one-day run actually is executing the scenario four times with the

average of these results being used to generate the plots in figures 38 through 40.  These

simulation runs were executing on a 4 processor, 250 Mega-hertz, 1 Giga-byte, multi-

user machine.  Processing loads from other users during these simulation runs was not

monitored.
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6.3. Email Application

In this case study we consider an email application comprised of three specific

components: an Email Client, an Email Server, and a Name Server.  Within the Internet

Engineering Task Force (IETF) architecture and standards, the Email Server represents a

Simple Mail Transfer Protocol (SMTP) server, while the Name Server represents a

Domain Name Service (DNS) server.  Within the International Standards Organization

(ISO) architecture and standards, the Email Server represents an X.400 server and the

Name Server represents an X.500 server.  In both cases, the Email Client represents an

end user’s client application.

The Email Client component is modeled as a DCO software object (swObject)

that has a specification of two methods and two interaction arcs: an invocation arc and a

message arc.  The two methods represent a function to resolve email names to addresses

within an email, and a function to send an email to the Email Server.  The invocation arc

represents a request to the Name Server to resolve names associated with an email.  The

message arc represents the sending of an email message via the Email Server.

Similar to the Email Client, the Email Server component is modeled as a DCO

swObject with its own specific methods and arcs representing an electronic mail service.

The Email Server has three methods, three message arcs, and one invocation arc.  The

three methods represent functions to receive email messages, forward email messages,

and resolve addresses.  The three message arcs represent three different email messages

that are processed through the server.  Two of these messages have Email Clients as
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destinations.  The invocation arc represents requests to the Name Server for resolving

addresses.

The remaining software object for this Email Application is the Name Server

component.  Its DCO swObject model has specific methods and arcs for a name service

object.  The Name Server has a single method defined to look up names (resolve names).

No invocation or message arcs are defined.  Thus, incoming arcs invoke the lookup

method, and on completion, the Name Server object simply fires return arcs for each

invocation arc that activated the server.
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FIGURE 42.  Email Application LCN Topology and OSM
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For the LCN in this study, we explored a slightly more complex network.  In

particular, we modeled three routers, each interconnected with the other two.  This

configuration begins to test and demonstrate the routing logic within the LCN.  The

interconnection of the routers is via 10 megabits per second ethernet links.  Off of each

router is a set of two or more processors.  Each processor has a dedicated link to its LCN

router.  This LCN structure forms a router-star topology as depicted in Figure 42.  For the

OSM, we mapped one software object onto each processor.

Each of the fifteen Email Clients exhibits the same behavior as expressed above.

Each client is set with an object level multithreading mode.  Each client is also

configured to select the "resolve names" method 70% of the time it is invoked, and the

"send email" method the remaining 30%.  The Email Server is set to a method level of

multithreading and selects the "receive email" method 20% of the time it is invoked,

"forward email" 60%, and "resolve names" the remaining 20%.  In investigating this

system, two sets of simulations are run.  One set has the Name Server set at no (none)

multithreading and the other at method.  As the Name Server only has one method, it is

always selected when invoked.

For the experimental frame, an acceptor is coupled to each Email Client to invoke

it forty times at the start of each of twenty simulation runs.  Each run is allowed to

progress until all the objects passivate.  A software domain transducer for the email

application is connected to each software object.  Software object transducers are

connected to the Email Server, Name Server, and one of the Email Client software

objects.  Ethernet transducers are connected to each ethernet.  The transducers collect
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system events from their components throughout each simulation run.  The layered

experimental frame concept described in section 4.5 is used to compute, from the

transducer reports, the maximum, mean, and minimum statistical values across the twenty

simulation runs for each of the two Name Server configurations.

The system entity structure for this Email Application case study is provided in

Figure 43.  This SES highlights the LCN, DCO, and Experimental Frame components

and their couplings.  The attributes settings used are also annotated.
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~ name = Client11_Transd
~ swObject = Client11

~ name = EmailServer_Transd
~ swObject = EmailServer

~ name = NameServer_Transd
~ swObject = NameServer

Email Application

Email Application-aspect

        swObjects

~ # of = 2
    * = 

p01
p02
p11
p12
p13
p21
p22
p23
p24
p25
p26

      swObject

       Processors

        processor

~ # of = 11
    * = 

EmailServer 
NameServer
Client11
Client12
Client13
Client21
Client22
Client23
Client24
Client25
Client26

~ name = *
~ size =8000
~ threadMode

if EmailServer   method
if Client              object
else                    nameServer_threadMode

~ methods
~ arcs
~ dutyCycle = ∞
~ initializationMethod =“”

                                 transd_EmailAppDomain

       processor-aspect

cpu router transport
~ name = *_nic
~ headerSize
~ set of link speeds

linkSpeed
~ bandwidth
~ bufferSize

~ name = *
~ headerSize = 28 * 8
~ linkSpeed = 2e+9
~ bandwidth = 4e+9
~ bufferSize = 1e+9
~ cpuSpeed = 100e+6
~ memSize = 1e+9
~ maxPktSize = 1500

~ name = *_cpu
~ cpuSpeed
~ memSize

singleTask

    cpu-type

~ name = *_tcp
~ maxPktSize

OSM
EmailServer -- p01
NameServer -- p02
Client11 -- p11
Client12 -- p12
Client13 -- p13
Client21 -- p21
Client22 -- p22
Client23 -- p23
Client24 -- p24
Client25 -- p25
Client26 -- p26

LCN
p01 -- m01 -- e0 p21 -- m21 -- e2
p02 -- m02 -- e0 p22 -- m22 -- e2
p11 -- m11 -- e1 p23 -- m23 -- e2
p12 -- m12 -- e1 p24 -- m24 -- e2
p13 -- m13 -- e1 p25 -- m25 -- e2

p26 -- m26 -- e2
r1,1 -- mR1 -- e0 r1,3 -- r2,3
r2,1 -- mR2 -- e1 r2,4 -- r3,3
r3,1 -- mR3 -- e2 r1,4 -- r3,4

MAUs

             hub_ethernet

~ # of = 2
    * = 

m01
m02
m11
m12
m13
m21
m22
m23
m24
m25
m26
mR1
mR2
mR3

~ set of link speeds
10e+6

~ bandwidth = ∞
~ bufferSize = 16e+6

~ name = *
~ set of link speeds
~ bandwidth
~ bufferSize

acceptor

~ name = EmailApp_Domain_Transd
~ swObjects = 

EmailServer
NameServer
Client11
Client12
Client13
Client21
Client22
Client23
Client24
Client25
Client26

~ name = acceptor
~ startTime = 1
~ invokeDutyCycle = 0
~ repetitions = 40
~ invokeMsgs 
~ simDutyCyle = 10
~ # of SimRuns = 40

~ nameServer_threadMode

Experimental Frame
EmailServer -- EmailServer_Transd EmailServer -- transd_EmailAppDomain
NameServer -- NameServer_Transd NameServer -- transd_EmailAppDomain
Client11 -- Client11_Transd Client11 -- transd_EmailAppDomain
Ethernet0 -- Ethernet0_Transd Client12 -- transd_EmailAppDomain
Ethernet1 -- Ethernet1_Transd Client13 -- transd_EmailAppDomain
Ethernet2 -- Ethernet2_Transd Client21 -- transd_EmailAppDomain

Client22 -- transd_EmailAppDomain
*_Transd -- tuple_Transd Client23 -- transd_EmailAppDomain

Client24 -- transd_EmailAppDomain
Client25 -- transd_EmailAppDomain
Client26 -- transd_EmailAppDomain

transd_ethernets
~ name 
    * = 

Ethernet0_Transd
Ethernet1_Transd
Ethernet2_Transd

transd_tuples
~ name = tuple_Transd

Links

        link_ethernet

~ # of = 3
    * = 

e0
e1
e2

~ name = *
~ # segements = 5

Gates

router

~ # of = 
   * =

r1
r2
r3

~ headerSize = 28 * 8
~ set of link speeds

10e+6
10e+6
10e+6
10e+6

~ bandwidth = 4e+9
~ bufferSize = 1e+9

~ name = *
~ set of link speeds
~ bandwidth
~ bufferSize

transd_swObjects

                    transd_swObject
~ name
~ swObject

                    transd_swObject
~ name = *
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Email Application - Total Processing Time
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FIGURE 44.  Email Application – Total Processing Time8

When the Name Server thread mode is set to none, only one resolve name request

is processed at any point in time; subsequent requests get queued and processed on a

first-in, first-out (FIFO) fashion creating a pipeline effect.  We expect this pipelining to

also impact the dependent processes (Email Clients and Email Server) and effectively

reduce the amount of concurrent processing across the system.  Thus, the "none"

configuration should result in slightly longer run times than when the Name Server is

configured for method level multithreading.  Figure 44 plots the maxima, means, and

minima collected from the twenty simulation runs for the two Name Server thread mode

settings.  While the simulation results do not demonstrate a significantly shorter total

processing time for the method setting, they do show a smaller variation in the total time

required to process the aggregate workload of the experiment.

                                                          
8 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Email Client 11 - Message Count
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FIGURE 45.  Email Application – Message Counts9

We expect the number of messages exchanged between DCO objects to vary

between simulation runs.  However, from a quantum perspective, we expect to see

consistency on the mean number of messages as well as consistency on the range across

the two simulation sets of runs for the two Name Server configurations.  The plots in

Figure 45 depict the message counts for incoming and outgoing traffic on three of the

DCO software objects.  These plots reflect this consistency.

                                                          
9 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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The key configuration difference between the two sets of simulation runs is the

thread mode on the Name Server object.  When set to none, one and only one Name

Server thread can process at any point in time, and new requests get queued for

execution.  When set to method, each incoming invocation or message results in a new

Name Server thread starting immediately, and no requests get queued.  The following

plots depict various implications of this behavior on various components.
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FIGURE 46.  Email Application – Degree of Multithreading Maxima10

The degree of multithreading is a count of the number of concurrent jobs from a

given software object.  In Figure 46, one and only one thread is active when the Name

Server is set to none.  However, when it is set to method, it shows a maximum (for any

one simulation run) multithreading range of 11 to 25 active threads.  The multithreaded

mode setting for the Name Server, however, shows no impact on the multithreading

behavior of the Email Client or Email Server, as their respective multithreading behaviors

are directly controlled by their own multithreaded mode settings, object and method level

respectively.

                                                          
10 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Software Object - Execution Queue Length Maximums
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FIGURE 47.  Email Application – Queue Length Maxima11

Figure 47 shows the impact of the Name Server thread mode setting on the

maximum queue lengths seen in each software object during each simulation run.  For the

maximum queue length, the Name Server mode setting directly impacts the queuing

behavior of itself.  Yet, it also indirectly impacts the queuing behavior of the Email

Client, which is set to an object level multithreaded mode.  For the Name Server set to

none, as the Email Client receives and processes incoming messages, Email Client jobs

that are dependent on invocation requests to the Name Server get queued as those

requests get queued at the Name Server.  From this none scenario, we see the Email

Client having maximum queue lengths in the range of 1 to 14.  For the method level

configuration, however, a queue at the Name Server does not grow – each incoming

request being immediately turned around into a job –, and so there is a significantly lower

opportunity for a queue to build at the Email Client.  So, the Email Client maxima queue

length drops to a range of 2 to 5.

                                                          
11 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.



136

Software Object  - Invocation Message Response Time
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FIGURE 48.  Email Application – Invocation Message Response Times12

In distributed systems, response time is often an issue of particular interest.  For

this case study, the response time of the Name Server to the Email Clients and Email

Server is of interest.  The results are plotted in Figure 48.  These response time statistics

reflect the time for an invocation request to transit the LCN, plus the time to process at

the Name Server, plus the time for the response to return over the LCN.

During any given simulation, the average response time is computed over all the

invocations a software object makes during that simulation.  Similarly, the maximum

response time is the one that takes the longest to get a response.  Across the 20

simulations for a given Name Server configuration, Figure 48 plots the highest (max),

lowest (min), and mean of the average response times collected during each simulation.

                                                          
12 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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The figure also plots the highest (max), lowest (min), and mean of the maximum

response times collected during individual simulation runs.  For instance, the max, min,

and mean of "Email Client 11 (average) - none" (plot column 2) are all approximately

0.01 seconds, whereas the max, min, and mean of the "Email Client 11 (maximum) -

none" (plot column 4) are approximately 0.4, 0.06, and 0.02 seconds respectively.  From

these plots, we see that using the Name Server in the method thread mode has a

negligible impact on the average response time, but that it can have a significant impact

on reducing the maximum response time.
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FIGURE 49.  Email Application – Ethernet Transmission Times13

Figure 49 depicts transmission time statistics on the three ethernets providing

connectivity between the routers.  This transmission time is the amount of time the

                                                          
13 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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ethernet was busy transmitting successful frames; in other words, it does not account for

time the ethernet was idle or active with collisions.
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FIGURE 50.  Email Application – Ethernet Collisions14

Extensive collisions on an ethernet can have significant impact on the throughput

performance of a distributed system.  Increasing the number of devices on an ethernet

increases the probability of a collision, as does increasing the traffic load on the ethernet.

In this case study, the acceptor (as part of the experimental frame) invokes all fifteen

Email Clients simultaneously.  Since all fifteen Email Clients and their associated

processors exhibit the same behavior, collisions are highly likely to occur due to the

simultaneous introduction of traffic on the LCN.  Figure 50 plots the collision results on

each of the three ethernet links, as collected during the two sets of simulation runs.

                                                          
14 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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FIGURE 51.  Email Application – Ethernet Bandwidth Utilization15

Bandwidth utilization is another metric that is often used in evaluating network

performance and potential bottlenecks to system throughput.  Figure 51 depicts the

utilization measured during the email application simulations.  Since this utilization

metric is the percentage of time each ethernet spent successfully transmitting data, the

results display the same qualitative trajectories we observed in Figure 49 for the ethernet

transmission times.

6.4. Email Application LCN Alternatives

For this case study, we consider the same email application as described in the

previous study, but now our focus is on alternative LCN configurations.  In particular, the

DCO and OSM models remain unchanged in this investigation; only the LCN and the

                                                          
15 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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experimental frame (for LCN dependent components) are modified.  This case study

demonstrates the degree of independence between the LCN, DCO, and OSM models

while signifying the interdependence of distributed systems behavior.

RTR1 RTR2 RTR3
Hub1 Hub2 Hub3E1 E2

P26P21 P22 P23 P24 P25

client
21

client
22

client
23

client
24

client
25

client
26

client
27

client
28

client
29

P29P27 P28

P11 P12 P13P01 P02

client
11

client
12

client
13

name
server

email
server

P14 P15 P16

client
14

client
15

client
16

Alternative 1: Hub-Bus

E1

P11 P12 P13

P26P21 P22 P23 P24 P25

P01 P02

client
11

client
12

client
13

client
21

client
22

client
23

client
24

client
25

client
26

name
server

email
server

P14 P15 P16

client
14

client
15

client
16

client
27

client
28

client
29

P29P27 P28

Alternative 2: Bus

FIGURE 52.  Email Application Alternative LCNs
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We consider two LCN alternatives to the baseline Router-Star configuration of

the original case study.  For the first alternative, the Hub-Bus configuration, the LCN

network consists of three ethernet hubs that provide "bus" connectivity to the three sets of

processors.  For the second alternative, the Bus configuration, the entire LCN network

consists of a single shared ethernet "bus" link.  The baseline Router-Star configuration is

as depicted in Figure 42.  The Hub-Bus and the Bus alternate LCN configurations are

both depicted in Figure 52.

The experimental frame for each alternative is very similar across each

alternative.  Just as in the baseline configuration, an acceptor is coupled to each Email

Client to invoke it forty times at the start of each of twenty simulation runs.  Each

simulation executes until all objects are passive.  The software domain transducer

monitors the entire collection of email application software objects.  The Email Server,

Name Server, and one of the Email Client software objects are each monitored with a

software object transducer.  Three processors are also monitored: P01, P02, and P11.  For

the Router-Star configuration, the three ethernets interconnecting the routers are

monitored.  For the Hub-Star configuration, the two ethernets interconnecting the hubs

are monitored.  In the last alternative, the single ethernet link is monitored.  Again,

transducers collect system events from their components throughout each simulation run

with statistical maxima, means, and minima collected and computed across the twenty

simulation runs for each alternative and for each of the Name Server thread mode

settings.
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FIGURE 53.  Email Application – Total Processing Time16

Figure 53 plots the total processing time maxima, means, and minima collected

across the 20 simulation runs for each configuration.  Within each alternative

configuration, the thread mode setting for the Name Server has no significant impact on

total processing times.  The LCN configuration, however, has significant impact on the

total processing times, with the baseline Router-Star configuration providing the shortest

processing times.  This is expected as the routers enable the traffic to be routed.  In

particular, the expectation is that ethernet E1 and E3 will load balance the LCN traffic

between the Email Clients and the Email and Name Servers.  We will confirm this as we

examine the results further.

                                                          
16 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Baseline Router-Star LCN:  Software Object Degree of MultiThreading
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FIGURE 54.  Email Application – Degree of Multithreading Maxima17

The degree of multithreading is a count of the number of concurrently active jobs

from a given software object.  The degree of multithreading maxima is a look at the

maximum value this count achieved during a simulation run.  For the three monitored

software objects, the plots in Figure 54 show the range of maximum values observed over

                                                          
17 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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the twenty simulation runs for each alternative configuration.  The first plot in Figure 54

is of the baseline alternative and shows the same results depicted earlier in Figure 46.

The second and third plots reflect the results observed for LCN alternatives 1 and

2, respectively.  While these two plots show no significant difference between each other,

they are drastically different from the baseline Router-Star configuration.  In the Hub-Bus

and Bus configurations, the transit time for an interaction arc across the ethernet is longer

than the computational time required for any method within the Email Server and Name

Server software objects.  Thus, the Email Server and Name Server only have a single

thread active at any point in time during the simulation for these two configurations.  In

the baseline Router-Star configuration, however, the star configuration to the processors

does not delay the interaction arcs as much, and the Email Server services several

requests at once generating several concurrent threads.  Concurrent threads in the Name

Server, however, are dependent on the thread mode setting. When the Name Server is set

to none, one and only one thread is active at any time for the Name Server.  With the

method setting in the Router-Star LCN configuration, the Name Server maximum

multithreading range is 11 to 25 with a mean of 18.
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FIGURE 55.  Email Application – Invocation Message Response Times18

                                                          
18 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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The average and maximum invocation message response times for Email Client

11 and the Email Server are plotted in the graphs of Figure 55.  For the baseline

configuration, these are the same results as previously presented in Figure 48.  In general,

these results show that the Router-Star configuration offers a significantly better

performance with respect to the average and worst case maximum response times.

While both alternative LCN configurations show the same basic behavior, closer

inspection of the results reveals an interesting occurrence for the Email Client 11.  While

the average response times for Email Client 11 are lower in the Bus versus Hub-Bus

configuration, the maximum response times tend to be higher in the Bus versus Hub-Bus

configuration.  This response time behavior reflects that the average invocation request

typically experiences the transit delay of only one ethernet link in the Bus configuration

and it typically experiences the transit delay of three ethernet links in the Hub-Bus

configuration.  In the worst case maximum response time scenario, the traffic loading is

such that an invocation request will often experience contentions and collisions on the

single ethernet, which often exceed the collective transit delay of the multiple ethernet

links in the Hub-Star configuration.
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FIGURE 56.  Email Application – Processor CPU Busy Times19

From our three processor transducers, we generate the plots depicted in Figure 56,

which reflect the amount of time the processors were busy processing jobs during each

simulation run.  Noting the relative magnitude associated with each plot, the Name

Server processor had the longest busy times, and the Email Client 11 processor had the

shortest busy times.  Since all the processors have equal cpu speed, this difference is

attributable to the computational demands placed on each processor by the software

objects.  Since all fifteen Email Clients are configured to only interact with the Email and

                                                          
19 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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Name Servers and the method work loads of all software objects are relatively equal, the

Email and Name Server processors receive the higher computational demands causing

these relatively longer cpu busy times.  The Name Server processor is the "busiest" due to

the configuration of the Email Clients to invoke and interact with the Name Server more

often than with the Email Server.

In the first plot, no significant deviation in the Email Client processor P11 busy

time is observed across the various configurations.  In the second plot, the Email Server

processor P01 shows higher cpu busy times in the Router-Star LCN configuration.  In the

third plot, the Name Server processor P02 shows a higher cpu busy time for the Router-

Star configuration when the thread mode setting is method.  These higher cpu busy times

in these configurations are attributable to the multi-threading concurrency effects.  In the

LCN cpu model, a small overhead processing time tax is associated with each concurrent

thread in the multi-tasking processor.  As seen in Figure 54, a significantly larger number

of concurrent threads occur for the Email Server and Name Server software objects in the

Router-Star LCN configuration.  This multi-threading concurrency effect is also seen in

the concurrency of tasks that are running on these processors.  The processor task

concurrency results are depicted in Figure 57.
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FIGURE 57.  Email Application – Processor Degree of Multitasking20

The degree of software multi-threading depicts a measure of system concurrency

from the software perspective.  From the hardware perspective, this concurrency can be

shown as the degree of multi-tasking in the LCN processors.  Figure 57 shows the multi-

tasking behaviors for the three observed processors.  As only one software object is

assigned to each processor in this case study, Figure 57 shows the same concurrency

results as Figure 54.

                                                          
20 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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FIGURE 58.  Email Application – Ethernet Link Performance21

The ethernet performance results for the main LCN links and each configuration

are depicted in Figure 58.  The transmitting time is the time the ethernet was busy with

successful transmissions; it excludes ethernet collision time.  The collisions graph reflects

the maximum, mean, and minimum number of observed collisions.  The bandwidth

utilization is the percent of transmitting time over the observation time.  The observation

time starts with the first transmission over the link and ends with the completion of the

last.  As expected from the simulation execution time results in Figure 53, ethernet links

E1 and E3 in the Router-Star configuration experience roughly equal traffic loads.

                                                          
21 Note, the none and method labels in these plots reflect the thread mode setting of the Name Server object
during the simulation runs.
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6.5. Case Studies Synopsis

This chapter details the results of four DEVS-DOC case studies.  These case

studies exhibit the power of the DEVS-DOC environment in modeling and simulating the

dynamics of distributed computing systems.  The first two studies use a directed

modeling approach   specific software method and arc interaction sequences   and

provide a comparison of DEVS-DOC simulations to real world results.  The third and

fourth studies use a quantum modeling approach providing a less rigid specification of

software object behaviors.

In the first case study of the network management application, the key dynamics

investigated involved the workload placed on the management application and the degree

of concurrency exploited in processing that workload.  The degree of concurrency was

determined by the thread mode setting of the manager software object.  The simulation

results were fairly good for the none and object thread modes, but rather poor at the

method-level.  Analysis of these results identified a need for a better representation of the

processor memory dynamics.

In the second case study, a DEVS/HLA-compliant distributed simulation

federation is explored.  In the real world system, the distributed performance effects of

different predictive contract mechanisms are explored.  In this DEVS-DOC case study,

we investigate how to model the complex interactions of the DEVS/HLA software

components and how well the simulation results reflect reality.  From this experience, we

discovered the utility of exploiting UML interaction diagrams to facilitate defining the

DEVS-DOC software object interactions, which represent the DEVS/HLA software
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component interactions in the real system.  The implication here is the dual use of UML

interaction diagrams to engineer the software system design and to simulate that design.

The simulation results also show that, with only crude guesses (qualitative estimates) of

computational loads associated with the software objects, generally correct performance

behaviors emerge.

The third case study examined an email application scenario.  This scenario had

only three types of software objects   Email Clients, an Email Server, and a Name

Server   and examined the impact of switching the thread mode of the Name Server.

The simulation results of this study highlight the influence that this one setting can have

on system performance as it impacts a system’s overall processing time, the queuing of

requests and jobs, and the response times experienced by clients of the service.

The fourth case study further analyzed the email application under alternative

LCN configurations.  Three alternative LCN configurations were investigated: Router-

Star, Hub-Bus, and Bus.  This study highlights the independence that exists in the LCN,

DCO, and OSM modeling structures.  In particular, only the LCN and its associated

experimental frame required modification in exploring these alternatives.  As expected,

the simulation results confirmed that the Router-Star LCN configuration provides the best

overall system performance.
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7.   CONCLUSION AND FUTURE WORK

In this dissertation, we have shown that:

A distributed systems modeling and simulation

environment, based on a formal system specification

methodology for developing abstract models of software

behaviors and workloads, and abstract models of

networked processing technologies and structures, can

provide a practical means to describe and analyze

Distributed Object Computing systems.

This is demonstrated in the context of the DEVS-DOC modeling and simulation

environment.  DEVS-DOC models object-oriented software behaviors and networked

computing technologies independently and then enables unifying them into a dynamic

system of systems model.  In chapter 3, we introduced the formal concepts behind the

DOC ontology for the LCN, DCO, and OSM models; the DEVS formalism for specifying

the DOC representations; and the Experimental Frame for prescribing simulation

investigations.  Chapter 4 detailed the structural implementation of the LCN, DCO, and

OSM representations within the DEVS formalism.  In chapter 5, we formally specified

the behavioral dynamics developed for the LCN, DCO, and experimental frame

components.  In Chapter 6, we explored the representational power and practicality of the

DEVS-DOC environment through four case studies.   The first two case studies

demonstrate the ability of DEVS-DOC to model real world distributed systems.  The
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second two studies demonstrate the structural independence and behavioral

interdependence of the DEVS-DOC hardware and software abstractions.  This chapter

summarizes these contributions and outlines future work.

7.1. Contributions

The primary contribution of this thesis is the realization of a formal approach to

modeling and simulating a distributed object computing system.  This realization

provides an example of how the dynamics of object-oriented software systems   the

invocation and exchange of messages in concert with the computation of methods   can

be modeled and joined with representations of networked computing technologies to

construct a formal and practical system of systems specification.

Additionally, this thesis makes contributions to advances in modeling and

simulation in general, and to the modeling and simulation of computing systems

specifically.  The general modeling and simulation contributions are the concept of a

layered experimental frame to control and manage a series of simulations; the notion of

aggregated couplings to enhance and simplify modeling portrayals of modular,

hierarchical components; the introduction of the distributed co-design scheme; and a

demonstration of the versatility of DEVS.  Contributions to the modeling and simulation

of distributed computing systems specifically fall into the areas of networked systems

modeling, software modeling, and distributed systems modeling.  These specific and

general contributions are detailed below.
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7.1.1. Networked Systems Modeling

We have shown how a formal, high-level representation of networking and

computing technologies and components can support modeling distributed hardware

architectures.  Moreover, in the case studies we demonstrated how these components can

be joined together to represent network topologies with the combined (components and

topology) specification defining the loosely coupled network.  The resulting LCN

represents a distributed hardware architecture that imposes time and space constraints on

associated software components.

Within the LCN component models, we have demonstrated a means to

automatically register software components and develop routing tables.  This automated

routing table discovery service not only unburdens the DOC system modeler of these

concerns but, eliminates potential problems in keeping routing tables consistent with

OSM distribution alternatives.  Thus, the automated routing table discovery approach

avoids creating a dependency relationship between the LCN topology and the OSM

distribution specification.

Current limitations within the LCN components are attributed to modeling

granularity of the selected components.  Three key examples are: the dynamics of cpu

memory in response to the demands of associated software objects is limited; support for

multiple communication modes and protocols is limited to one mechanism; and

representation of link error rates and communication error recovery mechanisms require

development.
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7.1.2. Software Systems Modeling

We have shown how a formal, high-level representation of software components,

following an object-oriented paradigm, can support modeling distributed software

architectures.  This representation accounts for computational loads associated with

methods and data loads associated with object interactions.  The object interactions have

been shown to model synchronous and asynchronous client - server interactions as well

as peer-to-peer messaging exchanges.  We have also demonstrated how the multi-

threading granularity of a software object can affect its performance and behavior.

This research has developed a means of modeling software independent of

hardware imposed time and space constraints22.  It is through the OSM distribution of the

software objects onto the hardware components that such constraints impact the

computing performance of software methods and the interaction performance of software

object exchanges.

Two limitations exist within the DCO software representation.  The first

limitation is that it lacks mechanisms to support modeling software hierarchies.  The

current DCO software model only supports identifying peer-to-peer interactions; no

constructs exists for identifying hierarchical relationships between the DCO components.

The second limitation is a restricted representation of the semantics associated with the

methods and interactions defined for a software component.  Being able to associate

semantic properties with a software object’s methods and interactions, as demonstrated in

[All97], would add a significant software architectural analysis capability.
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7.1.3. Distributed Systems Modeling

The object system mapping component of this research presents an approach to

explore issues of software distribution across networked hardware.  In particular, the

OSM enables investigating many inherent complexities associated with distributed object

computing, such as computational load balancing, network traffic load balancing, and

communications latency.  Through the OSM, the systems modeler can support evaluation

of the distribution alternatives to identify key performance tradeoffs and system

performance optimizations.

7.1.4. Layered Experimental Frame

The contemporary experimental frame is a modeling and simulation artifact that

specifies the conditions under which to observe and test a system for a given simulation.

In this research, we expand on this idea with the specification of an experimental frame to

control and observe a series of simulations.  Under this scheme, an experimental frame is

defined to control and collect data on a single simulation run; this artifact forms the base

layer EF.  An additional experimental frame can be specified to control and collect the

results of a series of simulations.  Such additional EF layers may control the initial

simulation parameter settings, such as the number of pursuer-evader pairs in the

DEVS/HLA Federation case study.  Alternatively, the additional EF layers may collect

results from a series of simulation runs to calculate performance and behavior statistics,

                                                                                                                                                                            
22 The software object duty-cycle parameter is the only exception.
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such as in the average, and maximum, invocation message response time in the Email

Application case studies.

7.1.5. Aggregated Couplings

DEVS models have input and output ports, which enable coupling individual

component models together to form system hierarchies.  The fundamental DEVS

coupling construct is an "add_coupling()" method, which is used to define couplings

between one component and its output port and another component and its input port.

Within the DEVS-DOC environment, each mapping of a DCO software object onto an

LCN processor requires five of these fundamental DEVS coupling statements to fully

specify the mapping.  Similarly, the coupling of two LCN components into a network

topological hierarchy may require multiple coupling statements, as may the coupling of

DOC experimental frame components.

This research contributes the concept of aggregated couplings wherein the object-

oriented coupled class model is extended with specific knowledge of the modeling

domain.  Such knowledge includes details on the types of components, the input and

output ports associated with those components, and the allowed couplings of the output

ports to input ports.  With this domain specific coupling knowledge encoded, the systems

modeler can maintain a focus at the higher level of abstraction of the component to

component relations; the details of the individual port to port relations for such

component relationships is handled automatically with the aggregated coupling

knowledge.
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7.1.6. Distributed Co-design

Contemporary co-design research has focused on tools and methods aiding the

concurrent and cooperative design of the hardware and software elements of a target

system.  Often, these efforts focus on integrated approaches to specifications, designs,

analyses, and simulations of the overall system under development.  Systematic,

computer aided approaches to requirements definition, specification, design,

implementation, verification and validation are the objectives.

Through this research, we have introduced and developed a distributed aspect to

co-design.  This aspect provides a means to formally account for the distributed nature of

networked hardware-software systems, which we call Distributed Co-design.  Distributed

Co-Design is defined as the activities to simultaneously, and collectively, design the

hardware and software layers of a distributed system.  The distributed hardware layer

allows for exploring the design space for alternative high-level topologies and

configurations, while the distributed software layer allows for exploration of the software

design space from an object-oriented perspective.  The independence maintained between

the DEVS-DOC hardware and software representations allows the systems modeler to

easily explore alternative distributions of the software objects across the hardware

processors.

7.1.7. DEVS Versatility

DEVS is a system-theoretic based approach to the modeling of discrete-event

systems.  The DEVS modeling formalism enables characterizing systems in terms of
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hierarchical modules with well-defined interfaces.  The mathematical formality of DEVS

focuses on the changes of state variables and generation of time segments that are

piecewise constant.  In essence, the formalism defines how to generate new state values

and the times when these new values should take effect.  An important aspect of the

formalism is that the time intervals between event occurrences are variable.

Due to the system-theoretic foundations, the DEVS modeling paradigm is

naturally rendered within object-oriented implementations.  Consequently, DEVS has

been implemented in sequential, parallel, and distributed environments.  The

DEVSJAVA implementation provides the benefits of the system-theoretic foundations,

object-orientation, multi-threading concurrency, and simulation flexibility through the

generation of traditional stand-alone applications or web-enabled applets.

The DEVS-DOC environment takes advantage of, and demonstrates the power of

each of these features.  The DEVS DCO and LCN component models demonstrate the

suitability of the DEVS mathematical formalism to representing software, processing

hardware, and communication systems, devices, and components.  The DEVSJAVA

object-orientation eases the structural construction and modularization of the LCN, DCO,

OSM, and EF models.

The DEVSJAVA multi-threaded implementation permits simultaneous execution

of several models, which aids the simulation of, and investigation of, concurrency issues

among the DOC component models.  Each model may be assigned its own thread, which

is critical to the concurrent handling of the multiple internal and external events within

the models.
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Additionally, the DEVSJAVA implementation allows generation of traditional,

stand-alone simulation applications or web-enabled applets.  The generation of applets

provides a means to run simulations within a browser.  Web browser access provides a

critical enabling mechanism for introducing a collaborative modeling and simulation

environment.  Enabling collaboration is a key feature to the realization of a Distributed

Co-Design capability.  Likewise, DEVSJAVA allows generation of stand-alone

simulation applications.  When simulation execution time becomes critical, these Java

applications can then be processed through a Java optimizing compiler to improve

execution performance on a target platform.  Within DEVS-DOC, applets were used

extensively for the development of the LCN and DCO component models, while stand-

alone simulation applications were generated for the case study simulations.

7.2. Future Work

One basis for this work is the assumption that each processor will have its own

unique memory.  So, from a basic inquiry into the limitations of the proposed framework,

support for system architectures of distributed shared-memory, object computing is

inevitable and remains open for future research.  A second basis of this work is the static

distribution of software across hardware.  Meanwhile, a growing part of today’s

computational needs are based on agent-oriented systems with inherently dynamic

topological structures (e.g., mobile networked tele/video-conferences not only depend on

varying network topologies, but also varying software computational characteristics such
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as load and response time).  Therefore, representation of variable-structure systems

[Zei90] is believed to be of importance to future developments.

7.2.1. Real Time Distributed Object Computing

Increasingly, applications with stringent timing requirements are being

implemented as distributed systems.  These timing requirements mean that the underlying

networks, operating systems, and middle-ware components forming the distributed

system must be capable of providing quality of service (QoS) guarantees to the supported

applications.  Implementation mechanisms and technologies for such real time systems is

an active area of research.  A key issue in providing a QoS guarantee within a real-time

system is resource utilization.  DEVS-DOC provides a potential means to model and

simulate proposed mechanisms and technologies and focus evaluation of resource

utilization issues.  To enable modeling of real time systems, DEVS-DOC will need to be

extended with a means for DCO software objects to specify QoS requirements in

methods and arcs and for LCN components to respond to QoS requests.

7.2.2. Mobile Software Agents

Mobile software agents are autonomous, intelligent programs that move through a

network, searching for and interacting with services on a user’s behalf.  These systems

use specialized servers to interpret the agent’s behavior and communicate with other

servers.  A mobile agent has inherent navigational autonomy and can ask to be sent to

other nodes.  Mobile agents should be able to execute on every machine in a network, and

the agent code should not have to be installed on every machine the agent could visit.
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Therefore mobile agents use mobile code systems like Java with Java classes being

loaded at runtime over the network.  DEVS-DOC provides a potential means to model

systems with mobile agents.  Extensions would be needed in the DCO software objects to

allow for an object to wrap and unwrap itself for firing across the LCN.  The LCN also

needs extensions to support dynamic routing of traffic to an agent that is moving or has

moved.

7.2.3. Information Technologies and Standards

In [Car99], technologies are classified as either being sustaining or disruptive to

successful business endeavors.  In either case, information technologies and their

application are continuously changing and evolving.  To explore these technologies in the

context of existing distributed systems or newly proposed systems, models of these

technologies can be developed and coupled with existing DEVS-DOC components for

investigation via simulation.

7.2.4. Integration

Integration of DEVS-DOC with other commercially supported modeling and

simulation packages is another direction of interest.  For example, several commercial

packages support modeling and simulating communications networks, e.g., OPNET by

MIL3 and COMNET by CACI.  Rather than continue to develop and maintain LCN

component models, the LCN components could be reconfigured to integrate into these

existing commercially supported packages.  The DCO and OSM abstractions would

continue to be used to model the software architecture and map its objects onto the new
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LCN components.  These new LCN components would then translate arc firings into

traffic loads for simulation through the commercial package.  On the receiving side, the

commercial package results would be translated by the LCN components back into arcs

for delivery to target DCO software objects based on OSM mappings.

7.2.5. DEVS-DOC In Collaborative and Distributed Modeling and Simulation

At the University of Arizona, several projects are underway to extend

collaboration support to modeling and simulation capabilities.  These projects seek to

build on experience with GroupSystems, a University of Arizona spin-off groupware

environment [Nun95] in combination with advances in modeling and simulation

methodology and high performance, distributed simulation support environments

[Zei97b].  Research concepts evolving from these projects form the basis of a conceptual

collaborative modeling and simulation architecture.  This conceptual architecture is under

investigation and the DEVS-DOC capability is being explored as a means to study

alternative implementation designs for the collaboration architecture.

Figure 59 shows a component-based architecture for the DEVS Collaborative and

Distributed Modeling and Simulation environment [Sar97, Sar99a, and Sar99b].

Components are broadly categorized into three layers.  The lowest layer provides

standard services such as persistent storage and middleware supporting distributed

computing.  In the middle layer, domain neutral modeling and simulation capabilities

enable representations of hierarchical, heterogeneous models (of software and hardware).

The Co-Design Modeling component provides modeling constructs enabling
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representations of software objects, hardware components, and their associations (as

detailed in this dissertation).  Well-defined modeling constructs offered by the Co-Design

Modeling component provide the basis for domain-dependent model development via

model construction and composition components.  The top layer role is to provide

domain-dependent features built on the services provided by the lowest and middle

layers.  This architecture, based on the fundamental DEVS paradigm, facilitates extension

of DEVS-DOC modeling to be used in collaborative settings with distributed simulation

support.

Model Composition Model Construction

Collaborative/Distributed M&S Environment

Auxiliary
Features

DEVS
Simulation

DEVS
Modeling

Operating System

Database: Persistent
Object Store

Distributed
Object Management

CoDesign
(DEVS-DOC)

Modeling

FIGURE 59.  Collaborative/Distributed M&S Architecture
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APPENDIX A.  BUTLER’S DOC FORMALISM

A.1 Hardware: LCN Model

The formal LCN representation is a 5-tuple set H containing a set P of processors,

a set K of network gates, a set N of network links, and mapping functions f and g of

processors and gates, respectively, onto a power set of network links.  This 5-tuple LCN

set is summarized in the following equations.

H ≡ ( P, K, N, f, g )

f :  π → L;   π ∈  P,   L ⊆  N,   L ≠ ∅

g : φ → L;   φ ∈  K,   L ⊆  N,   L ≠ ∅

A processor π is an LCN component capable of performing computational work

under the resource constraints of its processor speed S and its storage capacity D.  The

processor speed S is defined as a random variable since, during the processing of any

given job, CPU time is that portion when it is not engaged in servicing overhead tasks,

operating system daemons, and other processing requests external to the scope of the

modeled simulation space.  Similarly, the storage capacity D is a random variable

accounting for swap space, operating system overhead, and other storage requirements

outside the scope of the modeled simulation space.  The following equation summarizes

this representation.

π ≡ ( S, D );   π ∈  P,   S > 0,   D > 0

A network gate φ is an LCN component capable of passing data traffic from an

incident link to other incident links.  Gates have two operational modes: hub or router.

Hub mode results in all incident links passing the same data traffic.  Router mode
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switches inbound data trafffic from one incident link to one outbound link that provides

direct or indirect connectivity to the targeted destination.  Data traffic is processed

through the gate based on constraints of buffer size R and bandwidth B.  As R and B

represent available resources to the system being modeled, they are defined as random

variables due to the dynamics of external (to the model) conditions.  Thus, a gate is

defined as follows.

φ ≡ ( m, R, B );   φ ∈  K,   m ∈  {hub, router},   R ≥ 0,   B > 0

A network link η is an LCN component connecting one or more processors and

network gates to provide a communications path.  A link may have one or more

independent channels that have a bandwidth B.  A link is also assigned an error

coefficient ε (of units errors/second), which influences data retransmissions.  The

bandwidth B is a random variable in representing resources available to the system being

modeled and excluding bandwidth consumed by external conditions.  The error

coefficient ε is a random variable to account for the non-deterministic nature of all real

communications channels.  A network link is defined with the following two equations.

η ≡ ( ε, C );   η ∈  N,   ε ≥ 0,   C ≠ ∅

( i, B ) ∈  C;   B > 0

A.2 Software: DCO Model

The formal DCO representation is a 9-tuple set S containing a set D of domains, a

set T of software objects, a set A of directed invocation arcs, a set G of directed message

arcs, and mapping functions u, v, x, y, and z.   Function z maps software objects of T

onto a power set of domains D.  Functions x and y map the calling ends of invocation
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arcs A onto software objects of T and the target ends of A onto a power set of T.

Functions u and v map the source ends of message arcs G onto software objects of T and

the target ends of A onto a power set of T.  This representation is summarized in the

following six equations.

S ≡ ( D, T, A, G, u, v, x, y, z )

u : γ → τ;   γ ∈  G,   τ ∈  T

v : γ → L;   γ ∈  G,   L ⊆  T,    L  ≥ 2

x :  α → τ;   α ∈  A,   τ ∈  T

y : α → L;   α ∈  A,   L ⊆  T,   L ≠ ∅

z :  τ → L;   τ ∈  T,   L ⊆  D,   L ≠ ∅

A domain δ is a DCO component representing a set of software objects that form

an independently executable program.  Software objects may be mapped to more than

one domain.  Domains serve two purposes, organizing software objects for the extraction

of simulation data and for scheduling program initiations.  For scheduling program

initiations, selected objects in a domain are defined as initializer objects Q and assigned a

duty cycle U representing the time between program executions.    The duty cycle U is set

as a random variable.

δ ≡ ( Q, U );   δ ∈  D,   Q ⊆  { τ; z(τ)=δ },   U > 0

A software object τ is a DCO component representing a software object in the

traditional object-oriented concept of an object, composed of attributes defining the

objects state and a set of methods that operate on the attributes.  Software objects are

formally defined with a 4-tuple set τ.  The object’s size C refers to its collective memory

allocation requirement.  The object has a thread mode m specifying the granularity of
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multithreading behavior to be object, method, or none (single thread capable only).  Each

method of the software object is characterized by a computational work load factor x and

an invocation probability ρ.  In a quantum simulation, it becomes irrelevant which

method is invoked on a given invocation; rather, methods need to be invoked in correct

proportion across the aggregation of invocations on the object.

τ ≡ ( C, m, X, Ρ );   τ ∈  T,   C > 0,   m ∈  { Object, Method, None }

X ≡ < x1, …, xn >;   xi > 0,   1 ≤ i ≤ n

Ρ ≡ < ρ1, …, ρn >;   ρi ≥ 0,   Σρi = 1,   1 ≤ i ≤ n

An invocation arc α is a DCO component representing client-server request and

response exchanges between calling (client) and called (server) software objects.

Invocation arcs have a firing frequency F, a request size P, a response size R, and a

blocking mode b.  The firing frequency F is a random variable that is dependent on the

computational progress of the source software object, i.e., how much work must be

completed between invocations.  The invocation request size P and response size R are

both random variables.  The blocking mode b may be either Synchronous or

Asynchronous.  For synchronous invocations, the client object is blocked until the server

response is received, while asynchronous invocations allow the client object to continue

processing.

α ≡ ( F, P, R, b );   α ∈  A,   F > 0,    P > 0,    R ≥ 0,   b ∈  { Sync, Async }

A message arc γ is a DCO component representing peer-to-peer message passing

between a source software object and a set of destination objects.  The message arc is

defined as having a firing frequency F and a message size M.  The firing frequency F is a
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random variable that is dependent on the computational progress of the source software

object, i.e., how much work must be completed between messages.  The message size M

is a random variable denoting the size of the message being exchanged.

γ ≡ ( F, M );   γ ∈  G,   F > 0,   M > 0

A.3 Distribution: OSM Model

The formal OSM representation is a 5-tuple set Ψ containing an LCN

representation H, a DCO representation S, a set of communication modes C, and mapping

functions λ and µ.  Function λ maps DCO software objects TS onto LCN processors PH.

Function µ maps DCO invocation arcs AS and message arcs GS onto communication

modes C.  A communication mode c is defined by random variables representing packet

size P, packet overhead V, and acknowledgment packet size R.  This representation is

summarized in the following four equations.

Ψ ≡ ( H, S, λ, C, µ )

λ : τ → π;   ∀τ  ∈  TS,   π ∈  PH

c = ( P, V, R );   c ∈  C,   P > V ≥ 0,   R ≥ 0

µ : ω → c;   ∀ω  ∈  {AS ∪  GS },   c ∈  C
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APPENDIX B.  CASE STUDY CODE

B.1 Simple Network Management Protocol (SNMP) Monitoring

/*
 *  Filename   : snmp.java
 *  Version    : 1.0
 *  Date       : 01-13-99
 *  Author     : Daryl Hild
*/

//package DOCapp;

import DOC.*;
import Zdevs.*;
import Zdevs.Zcontainer.*;

public class snmp extends digraphDCO {

//simulation run parameters
protected String threadMode;
protected int    loopCount, simRuns;
protected double simTime, Mem, BFhub, BFmau;

//system under study components
protected atomic loop, mgr,

agent4,   mau4,    link4,   agent6,   mau6,    link6,
agent15,  mau15,   link15,  agent17,  mau17,   link17,
agent19,  mau19,   link19;

protected digraph asc4,     asc6,    asc15,    asc17,    asc19;
protected atomic hub;

//experimental frame components
protected atomic tLoop,     tMgr,

tAgent4,   tAsc4,   tAgent6,   tAsc6,   tLink6,
tAsc_snmp, tTuple,  acceptor;

protected set snmpSW, processors;

public snmp() {
super("snmp");
threadMode="object"; loopCount=20;
simTime=500; Mem=1E+4; BFhub=2E+6; BFmau=2E+6; simRuns=10;

Loosely_Coupled_Network();
Distributed_Cooperative_Objects();
Object_System_Mapping();
Experimental_Frame();

initialize();
}
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public void Loosely_Coupled_Network() {
//declare LCN components
double udpHS    = 8*8;      //udp header size in bytes * 8 bits/byte
double ipHS     = 20*8;     // ip header size in bytes * 8 bits/byte
double LS       = 2E+9;     //proc nic speed bits/sec
double BW       = INFINITY; //proc nic bandwidth bits/sec
double BFinf    = INFINITY; //buffer size in bytes * 8 bits/byte
double BF_hub   = BFhub*8;  //buffer size in bytes * 8 bits/byte
double BF_mau   = BFmau*8;  //buffer size in bytes * 8 bits/byte
double cpuSp    = 200E+6;   //cpu speed ops/sec
double memSz    = Mem*8;    //cpu mem in bytes * 8 bits/byte
double swapTime =  1.1;     //cpu-mem swapTimePenalty
double ES       = 10E+6;    //ethernet speed bits/sec
int    etherSeg = 5;        //number of Ethernet Segments
int    MPS      = 1500;     //maxPktSize

//processors
asc4=new processor("asc4",udpHS+ipHS,LS,BW,BFinf,cpuSp,memSz,MPS);
add(asc4);
asc6=new processor("asc6",udpHS+ipHS,LS,BW,BFinf,cpuSp,memSz,

swapTime,MPS);
add(asc6);
asc15=new processor("asc15",udpHS+ipHS,LS,BW,BFinf,cpuSp,memSz,MPS);
add(asc15);
asc17=new processor("asc17",udpHS+ipHS,LS,BW,BFinf,cpuSp,memSz,MPS);
add(asc17);
asc19=new processor("asc19",udpHS+ipHS,LS,BW,BFinf,cpuSp,memSz,MPS);
add(asc19);
//processor mau’s
mau4  = new hub_ethernet("mau4",  ES, BW, BF_mau);   add(mau4);
mau6  = new hub_ethernet("mau6",  ES, BW, BF_mau);   add(mau6);
mau15 = new hub_ethernet("mau15", ES, BW, BF_mau);   add(mau15);
mau17 = new hub_ethernet("mau17", ES, BW, BF_mau);   add(mau17);
mau19 = new hub_ethernet("mau19", ES, BW, BF_mau);   add(mau19);
//ethernet links
link4  = new link_ethernet("link4",  etherSeg);   add(link4);
link6  = new link_ethernet("link6",  etherSeg);   add(link6);
link15 = new link_ethernet("link15", etherSeg);   add(link15);
link17 = new link_ethernet("link17", etherSeg);   add(link17);
link19 = new link_ethernet("link19", etherSeg);   add(link19);
//hub
queue etherSpeeds = new queue();
for(int i=1; i<6; i++) etherSpeeds.add(new doubleEnt(ES));
hub = new hub_ethernet("hub", etherSpeeds, BW, BF_hub);   add(hub);

// couple LCN
Add_coupling_LCNtoEthernet( asc4,   mau4,   link4);
Add_coupling_LCNtoEthernet( asc6,   mau6,   link6);
Add_coupling_LCNtoEthernet( asc15,  mau15,  link15);
Add_coupling_LCNtoEthernet( asc17,  mau17,  link17);
Add_coupling_LCNtoEthernet( asc19,  mau19,  link19);

Add_coupling_LCNtoEthernet( hub,1,  link4);
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Add_coupling_LCNtoEthernet( hub,2,  link6);
Add_coupling_LCNtoEthernet( hub,3,  link15);
Add_coupling_LCNtoEthernet( hub,4,  link17);
Add_coupling_LCNtoEthernet( hub,5,  link19);

}

public void Distributed_Cooperative_Objects() {
//declare DCO components
dcoArc noArc = new dcoArc();

set methods = new set();
set iArcs   = new set();
set mArcs   = new set();

//loop
int loop_WL  = 2103792;
int no_WL    =      10;
//loop
// loop methods:  methodName, queue_of(pairs_of(workLoad, arc))
queue lp = new queue();
//msgingArc:arcName,dstAddr,msgSize,returnSize,mmsgType,methodCalled
lp.add(new task(no_WL,  new dcoArc("snmpwalk asc4",

"mgr",48*8,"message","snmpwalk asc4")));
lp.add(new task(no_WL,  new dcoArc("snmpwalk asc6",

"mgr",48*8,"message","snmpwalk asc6")));
lp.add(new task(no_WL,  new dcoArc("snmpwalk

asc15","mgr",48*8,"message","snmpwalk asc15")));
lp.add(new task(no_WL,  new dcoArc("snmpwalk

asc17","mgr",48*8,"message","snmpwalk asc17")));
lp.add(new task(no_WL,  new dcoArc("snmpwalk

asc19","mgr",48*8,"message","snmpwalk asc19")));
// messagingArc:  arcName, dstAddr, msgSize, methodCalled
methods = new set();
methods.add(new method("loop", lp));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
loop = new swObject("loop",32000*8,"method",methods,new

set(),INFINITY,"loop");
add(loop);

//mgr
int mgrSize = 32000*8; //bytes * 8 bits/byte
int    snmpget_WL = 13160000;
double timeOut    = 0.8;
// mgr methods:  methodName, queue_of(pairs_of(workLoad, arc))
queue snmpwalk4 = new queue();
snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4

1","agent4",42*8,84*8,"invokeSync","snmpget",timeOut)));
snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4

2","agent4",44*8,54*8,"invokeSync","snmpget",timeOut)));
snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4

3","agent4",44*8,48*8,"invokeSync","snmpget",timeOut)));
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snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4
4","agent4",44*8,44*8,"invokeSync","snmpget",timeOut)));

snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4
5","agent4",44*8,48*8,"invokeSync","snmpget",timeOut)));

snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4
6","agent4",44*8,44*8,"invokeSync","snmpget",timeOut)));

snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4
7","agent4",44*8,45*8,"invokeSync","snmpget",timeOut)));

snmpwalk4.add(new task(snmpget_WL,new dcoArc("snmpget asc4
8","agent4",44*8,45*8,"invokeSync","snmpget",timeOut)));

queue snmpwalk6 = new queue();
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

1","agent6",39*8,81*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

2","agent6",41*8,51*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

3","agent6",41*8,45*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

4","agent6",41*8,47*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

5","agent6",41*8,45*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

6","agent6",41*8,41*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

7","agent6",41*8,42*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

8","agent6",41*8,42*8,"invokeSync","snmpget",timeOut)));
snmpwalk6.add(new task(snmpget_WL,new dcoArc("snmpget asc6

9","agent6",41*8,42*8,"invokeSync","snmpget",timeOut)));
queue snmpwalk15 = new queue();
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

1","agent15",39*8,64*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

2","agent15",41*8,50*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

3","agent15",41*8,45*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

4","agent15",41*8,67*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

5","agent15",41*8,55*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

6","agent15",41*8,82*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

7","agent15",41*8,42*8,"invokeSync","snmpget",timeOut)));
snmpwalk15.add(new task(snmpget_WL,new dcoArc("snmpget asc15

8","agent15",41*8,42*8,"invokeSync","snmpget",timeOut)));
queue snmpwalk17 = new queue();
snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17

1","agent17",39*8,100*8,"invokeSync","snmpget",timeOut)));
snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17

2","agent17",41*8,60*8,"invokeSync","snmpget",timeOut)));
snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17

3","agent17",41*8,45*8,"invokeSync","snmpget",timeOut)));
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snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17
4","agent17",41*8,41*8,"invokeSync","snmpget",timeOut)));

snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17
5","agent17",41*8,46*8,"invokeSync","snmpget",timeOut)));

snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17
6","agent17",41*8,41*8,"invokeSync","snmpget",timeOut)));

snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17
7","agent17",41*8,42*8,"invokeSync","snmpget",timeOut)));

snmpwalk17.add(new task(snmpget_WL,new dcoArc("snmpget asc17
8","agent17",41*8,42*8,"invokeSync","snmpget",timeOut)));

queue snmpwalk19 = new queue();
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

1","agent19",42*8,115*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

2","agent19",44*8,54*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

3","agent19",44*8,48*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

4","agent19",44*8,44*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

5","agent19",44*8,44*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

6","agent19",44*8,44*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

7","agent19",44*8,45*8,"invokeSync","snmpget",timeOut)));
snmpwalk19.add(new task(snmpget_WL,new dcoArc("snmpget asc19

8","agent19",44*8,45*8,"invokeSync","snmpget",timeOut)));
int methodMemLoad = 716800*8;//bytes * 8 bits/byte
methods = new set();
methods.add(new method("snmpwalk asc4", snmpwalk4, methodMemLoad));
methods.add(new method("snmpwalk asc6", snmpwalk6, methodMemLoad));
methods.add(new method("snmpwalk asc15",snmpwalk15,methodMemLoad));
methods.add(new method("snmpwalk asc17",snmpwalk17,methodMemLoad));
methods.add(new method("snmpwalk asc19",snmpwalk19,methodMemLoad));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
mgr = new swObject("mgr",mgrSize,threadMode,methods,new

set(),INFINITY,"snmpwalk");
add(mgr);

//Agents
int agentSize            = 32000*8; //bytes * 8 bits/byte
int snmpget_response_WL  = 2470600;
int snmptrap_WL          = 1560000;
// Agent methods:  methodName, queue_of(pairs_of(workLoad, arc))
queue snmpget = new queue();
snmpget.add(new task(snmpget_response_WL,noArc));
queue snmptrap = new queue();
snmptrap.add(new task(snmptrap_WL,  new

dcoArc("snmptrap","mgr",48*8,"message","snmptrap")));
methods = new set();
methods.add(new method("snmpget",  snmpget));
methods.add(new method("snmptrap", snmptrap));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod



176

agent4  = new swObject("agent4", agentSize,"method",methods,new
set(),INFINITY,"snmptrap");

add(agent4);
agent6  = new swObject("agent6", agentSize,"method",methods,new

set(),INFINITY,"snmptrap");
add(agent6);
agent15 = new swObject("agent15",agentSize,"method",methods,new

set(),INFINITY,"snmptrap");
add(agent15);
agent17 = new swObject("agent17",agentSize,"method",methods,new

set(),INFINITY,"snmptrap");
add(agent17);
agent19 = new swObject("agent19",agentSize,"method",methods,new

set(),INFINITY,"snmptrap");
add(agent19);

}

public void Object_System_Mapping() {
//couple DCO and LCN
Add_coupling_swObject_to_processor( loop,    asc6  );
Add_coupling_swObject_to_processor( mgr,     asc6  );
Add_coupling_swObject_to_processor( agent4,  asc4  );
Add_coupling_swObject_to_processor( agent6,  asc6  );
Add_coupling_swObject_to_processor( agent15, asc15 );
Add_coupling_swObject_to_processor( agent17, asc17 );
Add_coupling_swObject_to_processor( agent19, asc19 );

}

public void Experimental_Frame() {
//define DCO domain of study
snmpSW = new set();
snmpSW.add(loop);
snmpSW.add(mgr);
snmpSW.add(agent4);
snmpSW.add(agent6);
snmpSW.add(agent15);
snmpSW.add(agent17);
snmpSW.add(agent19);

processors = new set();
processors.add(asc4);
processors.add(asc6);
processors.add(asc15);
processors.add(asc17);
processors.add(asc19);
//declare transducers
String T = " Transducer";
tAsc_snmp = new transd_domains(get_name()+" Domain"+T,snmpSW);
add(tAsc_snmp);
tTuple    = new transd_tuples("tuple"+T);
add(tTuple);
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// declare acceptors
String acceptorN = "acceptor";
//set of: invocation msg: name,src,dst,msgSize,returnSize,msgType,

firingJob,calledMethod
set invoke = new set();
for (int i=0; i<loopCount; i++)

invoke.add(new msg("invoke loop",acceptorN,loop.get_name(),
0,0,INFINITY,"invokeAsync",new job(),"loop"));

//acceptor(Name,StartTime(sec),InvokeDutyCycle(sec),Repetitions,
InvokeMsgs,SimDutyCyle(sec),NumSimRuns

acceptor = new acceptor(acceptorN,1,simTime,1,invoke,
simTime,simRuns);

add(acceptor);

//couple DCO and LCN to Acceptors and Transducers
set asc6SW = new set();
asc6SW.add(loop);
asc6SW.add(mgr);
asc6SW.add(agent6);

Add_coupling_ethernetTransducer( link6, tLink6);

Add_coupling_domainTransducer(    snmpSW, processors, tAsc_snmp );
Add_coupling( tAsc_snmp,"results",   tTuple,"in");
Add_coupling( tMsgs,    "results",   tTuple,"in");
Add_coupling( tLink6,   "results",   tTuple,"in");
// coupling for Acceptor
Add_coupling( acceptor,"invoke",   loop,"inMsgs");
Add_coupling_acceptorControl(acceptor, components);

}
}
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B.2 Distributed Federation Simulation

/*
 *  Filename   : peFed.java
 *  Version    : 1.0
 *  Date       : 07-27-99
 *  Author     : Daryl Hild
*/

import DOC.*;
import java.lang.*;
import Zdevs.*;
import Zdevs.Zcontainer.*;

public class peFed extends digraphDCO {

//simulation run parameters
protected int    numPairs, simRuns, simulationIterations;
protected double simTime;
protected int    percentInteractionPairs, predictiveFilteringFactor;
protected boolean multiplexedQuantizer;
protected atomic ether;

public peFed(int numPrs, boolean muxQ, int filterFactor) {
super("Pursuer-Evader_Federation");
// 1 - no filtering; 5 - five-fold decrease in message traffic
predictiveFilteringFactor = filterFactor;
// multiplexed predictive quantization - "on" or "off"
multiplexedQuantizer = muxQ;
numPairs=numPrs;
simulationIterations=100;
simRuns=4;
simTime=10000.0;
int numProcs=2;
peFed_construct(numProcs, numPairs);

}

public void peFed_construct(int numProcs, int numPairs) {
//% of pursuer-evader pairs interacting in any simulation cycle
percentInteractionPairs = 50;
queue    processors = Loosely_Coupled_Network(numProcs);
relation swObjects = Distributed_Cooperative_Objects(numPairs);
Object_System_Mapping(swObjects, processors);
Experimental_Frame(swObjects, processors);
initialize();

}
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public queue Loosely_Coupled_Network(int numProcessors) {
//declare LCN components
double rtiHS    = 20*8; //HLA RTI header size in bytes * 8 bits/byte
double ipHS     = 20*8; // ip header size in bytes * 8 bits/byte
double LS       = 2E+9; //proc nic speed bits/sec
double BW       = INFINITY; //proc nic bandwidth bits/sec
double BFinf    = INFINITY; //buffer size in bytes * 8 bits/byte
double BF_hub   = 2E+6*8;   //buffer size in bytes * 8 bits/byte
double BF_mau   = 2E+6*8;   //buffer size in bytes * 8 bits/byte
double cpuSp    =  10E+3;   //cpu speed ops/sec
double memSz    = 64E+6*8;  //cpu mem in bytes * 8 bits/byte
double swapTime = 1.1;      //cpu-mem swapTimePenalty
double ES       = 10E+6;    //ethernet speed bits/sec
int    etherSeg = 5;        //number of Ethernet Segments
int    MPS      = 1500;     //maximum packet size for LCN
queue  procs    = new queue();

ether = new link_ethernet("Ethernet",  etherSeg);   add(ether);

for (int i=0; i<numProcessors; i++) {
int j=i+1;
digraph proc = new processor("proc_"+j,rtiHS+ipHS,LS,BW,

BFinf,cpuSp,memSz,swapTime,MPS);
add(proc);
if (numProcessors>1)  {

atomic mau = new hub_ethernet("mau"+j, ES, BW, BF_mau);
add(mau);
Add_coupling_LCNtoEthernet( proc,  mau,  ether);

}
procs.add(proc);

}
return procs;

}

public relation Distributed_Cooperative_Objects(int numPairs) {
//declare DCO components
dcoArc noArc = new dcoArc();

set methods = new set();
set arcs    = new set();

//double timeOut = 4.0;
double timeOut = INFINITY;

int ACK   =  1*8; //  1 byte acknowledgement
int RTIoh = 20*8; // 20 bytes RTI overhead
int Sd    =  8*8; // attribute size for a "double" value
int Si    =  2*8; // attribute size for an "int" value

// fedex
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int timeAdvGrant_wl =  20; // time advance grant workload
// methods:  methodName, queue_of_tasks
queue fedexCycle = new queue();
for (int i=0; i<simulationIterations; i++) {

fedexCycle.add(new task(timeAdvGrant_wl,
new dcoArc("timeAdvGrant(n)","rtiEx",RTIoh+Sd,ACK,
"invokeSync","timeAdvGrant(n)",timeOut)));

fedexCycle.add(new task(timeAdvGrant_wl,
new dcoArc("timeAdvGrant(n+0.1)", "rtiEx",RTIoh+Sd,ACK,
"invokeSync","timeAdvGrant(n+0.1)",timeOut)));

fedexCycle.add(new task(timeAdvGrant_wl,
new dcoArc("timeAdvGrant(n+0.2)","rtiEx",RTIoh+Sd,ACK,
"invokeSync","timeAdvGrant(n+0.2)",timeOut)));

fedexCycle.add(new task(timeAdvGrant_wl,
new dcoArc("timeAdvGrant(n+0.3)", "rtiEx",RTIoh+Sd,ACK,
"invokeSync","timeAdvGrant(n+0.3)",timeOut)));

}
methods = new set();
methods.add(new method("run()",   fedexCycle  ));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
atomic fedex = new swObject("fedex",64e+3*8,"none",methods,arcs,

INFINITY,"run()");
add(fedex);

// rtiEx
int tick = RTIoh;
int tag_wl      =  10;
int tick_wl     =  10;
int send_wl     =  30;
int next_wl     =  20;
// methods:  methodName, queue_of_tasks
set federates = new set();
    federates.add(new entity("fed_P"));

 federates.add(new entity("fed_E"));
queue n00 = new queue();

n00.add(new task( tag_wl,
new dcoArc("timeAdvGrant(n)","devsCoord",RTIoh+Sd,
tick,"invokeSync","timeAdvGrant(n)",timeOut)));

n00.add(new task( tick_wl, noArc));
queue n01 = new queue();

n01.add(new task( tag_wl,
new dcoArc("timeAdvGrant(n+0.1)",federates,RTIoh+Sd,
tick,"invokeSync","timeAdvGrant(n+0.1)",timeOut)));

n01.add(new task( tick_wl, noArc));
queue n02 = new queue();

n02.add(new task( tag_wl,
new dcoArc("timeAdvGrant(n+0.2)",federates,RTIoh+Sd,
tick,"invokeSync","timeAdvGrant(n+0.2)",timeOut)));

n02.add(new task( tick_wl, noArc));
queue n03 = new queue();
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n03.add(new task( tag_wl,
new dcoArc("timeAdvGrant(n+0.3)",federates,RTIoh+Sd,
tick,"invokeSync","timeAdvGrant(n+0.3)",timeOut)));

n03.add(new task( tick_wl, noArc));
queue send_GtN  =  new queue();

send_GtN.add(new task( send_wl,
new dcoArc("send(Global_tN)",federates,RTIoh+Sd,
0,"message","send(Global_tN)",timeOut)));

queue send_iaP  =  new queue();
if (multiplexedQuantizer)

send_iaP.add(new task( send_wl,
new dcoArc("send(interactions)","fed_P",
RTIoh+2*numPairs,0,"message","send(interactions)",tim
eOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

send_iaP.add(new task( send_wl,
new dcoArc("send(interactions)","fed_P",
RTIoh+Sd,0,"message","send(interactions)",
timeOut)));

queue send_iaE  =  new queue();
if (multiplexedQuantizer)

send_iaE.add(new task( send_wl,
new dcoArc("send(interactions)","fed_E",
RTIoh+2*numPairs,0,"message","send(interactions)",
timeOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

send_iaE.add(new task( send_wl,
new dcoArc("send(interactions)","fed_E",
RTIoh+Sd,0,"message","send(interactions)",
timeOut)));

queue send_uaP  =  new queue();
if (multiplexedQuantizer)

send_uaP.add(new task( send_wl,
new dcoArc("send(updates)","fed_P",RTIoh+2*numPairs,
0,"message","send(updates)", timeOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

send_uaP.add(new task( send_wl,
new dcoArc("send(updates)","fed_P",RTIoh+Sd,
0,"message","send(updates)",timeOut)));

queue send_uaE  =  new queue();
if (multiplexedQuantizer)

send_uaE.add(new task( send_wl,
new dcoArc("send(updates)","fed_E",RTIoh+2*numPairs,
0,"message","send(updates)",timeOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

send_uaE.add(new task( send_wl,
new dcoArc("send(updates)","fed_E",RTIoh+Sd,
0,"message","send(updates)",timeOut)));

queue send_LtN  =  new queue();
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send_LtN.add(new task( send_wl,
new dcoArc("send(Local_tN)","devsCoord",RTIoh+Sd,
0,"message","send(Local_tN)",timeOut)));

queue nextEvRq  =  new queue();
nextEvRq.add(new task( next_wl, noArc));

methods = new set();
methods.add(new method("timeAdvGrant(n)",       n00 ));
methods.add(new method("timeAdvGrant(n+0.1)",   n01 ));
methods.add(new method("timeAdvGrant(n+0.2)",   n02 ));
methods.add(new method("timeAdvGrant(n+0.3)",   n03 ));
methods.add(new method("send(Global_tN)",       send_GtN ));
methods.add(new method("send(interactionsToP)", send_iaP ));
methods.add(new method("send(interactionsToE)", send_iaE ));
methods.add(new method("send(updatesToP)",      send_uaP ));
methods.add(new method("send(updatesToE)",      send_uaE ));
methods.add(new method("send(Local_tN)",        send_LtN ));
methods.add(new method("nextEventReq()",        nextEvRq ));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
atomic rtiEx = new swObject("rtiEx",64e+3*8,"method",methods,arcs,

INFINITY,"");
add(rtiEx);

// devsCoord
int send_GtN_wl =  50;
int nxtEvtRq_wl =  10;
int rcv_LtN_wl  =  20;
// methods:  methodName, queue_of_tasks
queue tag_n00  =  new queue();

tag_n00.add(new task(send_GtN_wl,
new dcoArc("send(Global_tN)","rtiEx",RTIoh+Sd,
0,"message","send(Global_tN)",timeOut)));

tag_n00.add(new task(nxtEvtRq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

queue rcv_LtN  =  new queue();
rcv_LtN.add(new task(rcv_LtN_wl, noArc));

methods = new set();
methods.add(new method("timeAdvGrant(n)", tag_n00));
methods.add(new method("send(Local_tN)",  rcv_LtN));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
atomic devsCoord = new swObject("devsCoord",64e+3*8,"method",

methods,arcs,INFINITY,"");
add(devsCoord);

// DEVS federates
// fed_P and fed_E
int computeIO_wl =  10*numPairs;
int askallOUT_wl =  10*numPairs;
int whichDevs_wl = 200*numPairs;
int tellall_wl   =  10*numPairs;
int next_tN_wl   =  10*numPairs;
int interactQ_wl = 100*numPairs;
int updateQ_wl   = 100*numPairs;
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int nxtEvtReq_wl =  10;
int rcv_GtN_wl   =  10;
int rcv_ia_wl    =  10;
int rcv_up_wl    =  10;
// fed_P
// methods:  methodName, queue_of_tasks
set Pursuers = new set();

 Pursuers.add(new entity("pursuers_"+numPairs));
int numP=numPairs; //model Pursuers as aggregate swObject
queue compute   = new queue();

compute.add(new task(computeIO_wl,
new dcoArc("compute_input_output(t)",Pursuers,numP*4*8,
0,"invokeAsync","compute_input_output(t)",timeOut)));

compute.add(new task(askallOUT_wl,
new dcoArc("get_output()",Pursuers,numP*1*8, numP*40*8,
"invokeSync","get_output()",timeOut)));

if (multiplexedQuantizer)
compute.add(new task(whichDevs_wl,

new dcoArc("send(interactionsToE)","rtiEx",
RTIoh+2*numPairs,0,"message","send(interactionsToE)",
timeOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

compute.add(new task(whichDevs_wl,
new dcoArc("send(interactionsToE)","rtiEx",  RTIoh+Sd,
0,"message","send(interactionsToE)",timeOut)));

compute.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

queue tellall = new queue();
tellall.add(new task(whichDevs_wl, noArc));
tellall.add(new task(tellall_wl,

new dcoArc("wrap_deltfunc(tN,input)",Pursuers,numP*42*8,
0,"invokeAsync","wrap_deltfunc(tN,input)",timeOut)));

if (multiplexedQuantizer)
tellall.add(new task(whichDevs_wl,

new dcoArc("send(updatesToE)","rtiEx",RTIoh+2*numPairs,
0,"message","send(updatesToE)",timeOut)));

else  for (int i=0; i<(numPairs*percentInteractionPairs)/
(100*predictiveFilteringFactor); i++)

tellall.add(new task(whichDevs_wl,
new dcoArc("send(updatesToE)","rtiEx",RTIoh+Sd,
0,"message","send(updatesToE)",timeOut)));

tellall.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

queue next_tN = new queue();
next_tN.add(new task(next_tN_wl,

new dcoArc("next_tN()",Pursuers,numP*1*8,
numP*4*8,"invokeSync","next_tN()",timeOut)));

next_tN.add(new task(whichDevs_wl,
new dcoArc("send(Local_tN)","rtiEx",RTIoh+Sd,
0,"message","send(Local_tN)",timeOut)));
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next_tN.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

queue rcv_GtN  =  new queue();
rcv_GtN.add(new task(rcv_GtN_wl, noArc));

queue rcv_ia   =  new queue();
rcv_ia.add( new task(rcv_ia_wl, noArc));

queue rcv_up   =  new queue();
rcv_up.add( new task(rcv_up_wl, noArc));

methods = new set();
methods.add(new method("timeAdvGrant(n+0.1)", compute ));
methods.add(new method("timeAdvGrant(n+0.2)", tellall ));
methods.add(new method("timeAdvGrant(n+0.3)", next_tN ));
methods.add(new method("send(Global_tN)",     rcv_GtN ));
methods.add(new method("send(interactions)",  rcv_ia  ));
methods.add(new method("send(updates)",       rcv_up  ));
// fed_P
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
atomic fed_P = new swObject("fed_P",64e+3*8,"method",methods,

arcs,INFINITY,"loop");
add(fed_P);
// fed_E
// methods:  methodName, queue_of_tasks
set Evaders  = new set();
Evaders.add(new entity("evaders_"+numPairs));
numP=numPairs; //model Evaders as aggregate swObject
compute   = new queue();
compute.add(new task(computeIO_wl,

new dcoArc("compute_input_output(t)",Evaders,numP*4*8,
0,"invokeAsync","compute_input_output(t)",timeOut)));

compute.add(new task(askallOUT_wl,
new dcoArc("get_output()",Evaders,numP*1*8,
numP*40*8,"invokeSync","get_output()",timeOut)));

compute.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

tellall = new queue();
tellall.add(new task(whichDevs_wl, noArc));
tellall.add(new task(tellall_wl,

new dcoArc("wrap_deltfunc(tN,input)",Evaders,numP*42*8,
0,"invokeAsync","wrap_deltfunc(tN,input)",timeOut)));

tellall.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

next_tN = new queue();
next_tN.add(new task(next_tN_wl,

new dcoArc("next_tN()",Evaders,numP*1*8,
numP*4*8,"invokeSync","next_tN()",timeOut)));

next_tN.add(new task(whichDevs_wl,
new dcoArc("send(Local_tN)","rtiEx",RTIoh+Sd,
0,"message","send(Local_tN)",timeOut)));
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next_tN.add(new task(nxtEvtReq_wl,
new dcoArc("nextEventReq()","rtiEx",RTIoh+Sd,
0,"message","nextEventReq()",timeOut)));

methods = new set();
methods.add(new method("timeAdvGrant(n+0.1)", compute ));
methods.add(new method("timeAdvGrant(n+0.2)", tellall ));
methods.add(new method("timeAdvGrant(n+0.3)", next_tN ));
methods.add(new method("send(Global_tN)",     rcv_GtN ));
methods.add(new method("send(interactions)",  rcv_ia  ));
methods.add(new method("send(updates)",       rcv_up  ));
// fed_E
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
atomic fed_E = new swObject("fed_E",64e+3*8,"method",methods,

arcs,INFINITY,"loop");
add(fed_E);

// DEVS Models:  Pursuers and Evaders
int return_wl     =   1*numP; // return w/o processing    workload
int out_wl        = 100*numP; // out()                    workload
int get_output_wl =  10*numP; // get_output()             workload
int deltint_wl    = 200*numP; // deltint()                workload
int deltext_wl    = 300*numP; // deltext(e,x)             workload
// methods:  methodName, queue_of(pairs_of(workLoad, arc))
queue out = new queue();

out.add( new task(75, return_wl, noArc));
   out.add( new task(25, out_wl,    noArc));

queue getOut = new queue();
getOut.add(new task( get_output_wl, noArc));

queue wrap = new queue();
wrap.add( new task( 60,return_wl, noArc));
wrap.add( new task( 10,out_wl+deltint_wl+deltext_wl, noArc));
wrap.add( new task( 10,out_wl+deltint_wl, noArc));
wrap.add( new task( 10,deltext_wl, noArc));

queue next = new queue();
next.add( new task( next_tN_wl, noArc));

methods = new set();
methods.add(new method("compute_input_output(t)",out   ));
methods.add(new method("get_output()",           getOut));
methods.add(new method("wrap_deltfunc(tN,input)",wrap  ));
methods.add(new method("next_tN()",              next  ));
//swObject: name,size,threadMode,methods,arcs,dutyCycle,initMethod
queue pursuers = new queue();
for (int i=0; i<numPairs; i++) {

atomic pursuer;
if (numP==1)

pursuer = new swObject("pursuer_"+i,64e+3*8,"method",
methods,arcs,INFINITY,"");

else
pursuer = new swObject("pursuers_"+numPairs,64e+3*8,"method",

methods,arcs,INFINITY,"");
add(pursuer);
pursuers.add(pursuer);
if (numP>1) break;
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}
queue evaders = new queue();
for (int i=0; i<numPairs; i++) {

atomic evader;
if (numP==1)

evader = new swObject("evader_"+i,64e+3*8,"method",
methods,arcs,INFINITY,"");

else
evader = new swObject("evaders_"+numPairs,64e+3*8,"method",

methods,arcs,INFINITY,"");
add(evader);
evaders.add(evader);
if (numP>1) break;

}
relation swObjects = new relation();

swObjects.add(new entity("fedex"),       fedex);
swObjects.add(new entity("rtiEx"),       rtiEx);
swObjects.add(new entity("devsCoord"),   devsCoord);
swObjects.add(new entity("fed_P"),       fed_P);
swObjects.add(new entity("fed_E"),       fed_E);
swObjects.add(new entity("pursuers"),    pursuers);
swObjects.add(new entity("evaders"),     evaders);

return swObjects;
}

public void Object_System_Mapping(relation swObjects, queue processors)
{

//get processors
digraph proc_1 = (digraph)processors.list_ref(0);
digraph proc_2 = (digraph)processors.list_ref(1);
//map fedex, rtiEx, devsCoord, fed_P, and pursuers to proc_1
Add_coupling_swObject_to_processor( (atomic)

swObjects.assoc("fedex"),     proc_1 );
Add_coupling_swObject_to_processor( (atomic)

swObjects.assoc("rtiEx"),     proc_1 );
Add_coupling_swObject_to_processor( (atomic)

swObjects.assoc("devsCoord"), proc_1 );
Add_coupling_swObject_to_processor( (atomic)

swObjects.assoc("fed_P"),     proc_1 );
queue pursuers = (queue)swObjects.assoc("pursuers");
int numPursuers = pursuers.get_length();
for (int i=0; i<numPursuers; i++) {

atomic pursuer = (atomic)pursuers.list_ref(i);
Add_coupling_swObject_to_processor( pursuer, proc_1 );

}
//map fed_E & evaders to proc_2
Add_coupling_swObject_to_processor( (atomic)

swObjects.assoc("fed_E"),     proc_2 );
queue evaders = (queue)swObjects.assoc("evaders");
int numEvaders = evaders.get_length();
for (int i=0; i<numEvaders; i++) {

atomic evader = (atomic)evaders.list_ref(i);
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Add_coupling_swObject_to_processor( evader, proc_2 );
}

}

public void Experimental_Frame(relation swObjects, queue processors) {
//get processors
digraph proc_1 = (digraph)processors.list_ref(0);
digraph proc_2 = (digraph)processors.list_ref(1);
atomic  fedex  = (atomic)swObjects.assoc("fedex");
atomic  rtiEx  = (atomic)swObjects.assoc("rtiEx");

set procs = new set();
 procs.add(proc_1);
 procs.add(proc_2);

set proc_1_sw = new set();
 proc_1_sw.add(fedex);
 proc_1_sw.add(rtiEx);
 proc_1_sw.add(devsCoord);
 proc_1_sw.add(fed_P);

for (int i=0; i<pursuers.get_length(); i++)
proc_1_sw.add(pursuers.list_ref(i));

set proc_2_sw = new set();
 proc_2_sw.add(fed_E);

for (int i=0; i<evaders.get_length(); i++)
proc_2_sw.add(evaders.list_ref(i));

set fedDomain = proc_1_sw.union_objects(proc_2_sw);

//declare transducers
String T = " Transducer";
atomic tRtiEx = new transd_swObj(rtiEx.get_name()+T,

rtiEx.get_name());
add(tRtiEx);
atomic tEther = new transd_ethernet("Ethernet"+T);
add(tEther);
atomic tTuple = new transd_tuples("tuple"+T);
add(tTuple);

// declare acceptor
String acceptorN = "acceptor";
//set of msgs:name,src,dst,msgSize,rSize,msgType,fJob,calledMethod
set invoke = new set();
invoke.add(new msg("run()",acceptorN,fedex.get_name(),

0,0,INFINITY,"invokeAsync",new job(),"run()"));
atomic acceptor = new acceptor(acceptorN, 1, simTime, 1, invoke,

simTime, simRuns);
add(acceptor);

//couple DCO and LCN to Acceptors and Transducers
Add_coupling_msgsTransducer(      fedDomain,  procs,  tMsgs  );
Add_coupling_swObjectTransducer(  rtiEx,      proc_1, tRtiEx );
Add_coupling_ethernetTransducer(  ether,      tEther );
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Add_coupling( tEther,     "results",   tTuple,"in" );
Add_coupling( tRtiEx,     "results",   tTuple,"in" );
// coupling for Acceptor
Add_coupling( acceptor,"invoke",   fedex,"inMsgs");
Add_coupling_acceptorControl(acceptor, components);

}
}
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APPENDIX C.  DEVS-DOC BEHAVIOR SPECIFICATIONS

In this appendix, dynamic behavior specifications for the DEVS-DOC

components are provided using the "Parallel DEVS with Ports" formalism.

C.1 LCN: link_ethernet

DEVSlink_ethernet = < X, Y, S, δint, δext, δconf, λ, ta >, where

InPorts = {"in"}
OutPorts = {"out"}
X = {(f,r) | f is arbitrary, r ∈  ℜ }
Y = {preamble, flast, f∅ }

where xlast=(flast,rlast) represents the last input pair received
S = {"passive","xmitting","collisions","noiseburst"} × ℜ +

0 × xlast

δext((phase,σ,xlast),e,("in",x)) = case phase is
("preamble",propagtionTime,x) "passive"
("collisions",σ-e,x) "preamble"
("collisions",σ-e,x) "xmitting"
("collisions",σ-e,x) "collisions"
("noiseburst",propagationTime,x) "noiseburst"

δint(phase,σ,xlast) = case phase is
("passive",∞,(∅ ,∅ )) "passive"
("xmitting",rlast,xlast) "preamble"
("passive",∞,(∅ ,∅ )) "xmitting"
("noiseburst",∞,(∅ ,∅ )) "collisions"
("passive",∞,(∅ ,∅ )) "noiseburst"

δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (phase,σ,xlast) = case phase is
("out",preamble) "preamble"
("out",flast) "xmitting"
("out",f∅ ) "collisions"
("out",noiseburst) "noiseburst"

ta(phase,σ,xlast) = σ
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C.2 LCN: hub_ethernet

To simplify the specification, only one ethernet port is assumed.

DEVShub_ethernet = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inLoop, in1}
OutPorts = {out Loop, out1}
X = { (inPort, pdu) },  where pdu = (source, dest, size, data)
Y = { (outLoop, pdu) }
       { (out1, (pdu,r)) | r ∈  ℜ  }
S = Phase × σ × XmitState × MediaState × LoopDelay × LoopBuffer

× PortDelay × PortBuffer × BackOffCount
Phase = {passive,busy}
σ = ℜ +

0

XmitState = {idle, waitingForIdle, xmitting}
MediaState = {idle, singleCarrier, collisions}
LoopDelay = ℜ +

0

LoopBuffer = L+   (a FIFO queue of pdu’s)
PortDelay = ℜ +

0

PortBuffer = P+   (a FIFO queue of pairs of pdu’s and xmitTimes)
BackOffCount = an integer ≥ 0

δext(s,e,(InPorts,X)) =

(,,,,loopDelay-e,,portDelay-e,,) before processing input events X

(,,,,,,,P+.add(x,xt),) for each x event on "inLoop"
where xt is xmitTime for x, i.e., xt=x.pdu_size/ethernetSpeed

(,,xs,ms,ld,lb,pd,pb,boc) for each x event on "in"
where ms is new mediaState,

if x.pdu=f∅   ms=collisions
else if x.pdu=preamble ms=singleCarrier
else if x.pdu=noiseburst ms=idle
else ms=idle

where xs is new xmitState,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState=xmitting

if P+.size=1 xs=idle
else xs=waitingForIdle
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where boc is new BackOffCount,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState=xmitting

if P+.size=1 boc=0
else boc=BackOffCount++

where pb is new portBuffer,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState=xmitting pb= P+.removeFrontPair

where pd is new portDelay,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState=xmitting

if P+.size=1 pd=∞
else pd=RandomInt[0..2^BackOffCount++-1]

where lb is new loopBuffer,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState!=xmitting lb=L+ .add(x.pdu)

where ld is new loopDelay,
if x.pdu!= f∅  and x.pdu!=preamble and x.pdu!=noiseburst
   and xmitState!=xmitting

if loopDelay=∞ ld= x.pdu_size/loopSpeed

(ph,sigma,xs,,,,pd,,boc) after processing input events X
where xs is new xmitState,

if xmitState=idle  and P+ .size>0 xs=waitingForIdle
where pd is new portDelay,

if xmitState=idle  and P+ .size>0  and  mediaState=idle
pd=0.0

else if xmitState=idle  and P+ .size>0  and  mediaState!=idle
pd=RandomInt[0..2^BackOffCount++-1]

else if xmitState=waitingForIdle  and portDelay=∞
pd=RandomInt[0..2^BackOffCount++-1]

else if xmitState=xmitting  and  mediaState=collisions
pd=0.0

where boc is new backOffCount,
if xmitState=idle  and P+ .size>0  and  mediaState!=idle

boc=BackOffCount++
else if xmitState=waitingForIdle  and portDelay=∞

boc=BackOffCount++
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where ph is new phase,
if minimum(loopDelay,pd)=∞ ph=passive
else ph=busy

where sigma is new σ,
sigma=minimum(loopDelay,pd)

δint(s) = (ph,sigma,xs,,ld,lb,pd,,boc)
where ld is new loopDelay

if loopDelay≤σ  and L+.size=1
ld=∞

else if loopDelay≤σ ld=L+.next_pdu.size/loopSpeed
else ld=loopDelay-σ

where lb is new loopBuffer
if loopDelay≤σ lb=L+ .removeFront_pdu

where xs is new xmitState
if portDelay≤σ  and  xmitState=waitingForIdle
    and  mediaState=xmitting
 xs=xmitting
if portDelay≤σ  and  xmitState=xmitting
    and  mediaState=collisions
 xs=waitingForIdle

where pd is new portDelay
if portDelay≤σ  and  xmitState=waitingForIdle
    and  mediaState=xmitting
 pd=∞
else if portDelay≤σ  and  xmitState=waitingForIdle
 pd=RandomInt[0..2^BackOffCount++-1]
else if portDelay≤σ  and  xmitState=xmitting
    and  mediaState=collisions
 pd=∞
else pd=portDelay-σ

where boc is new backOffCount
if portDelay≤σ  and  xmitState=waitingForIdle

boc=backOffCount++
where ph is new phase,

if ld=∞  and  pd=∞ ph=passive
else ph=busy

where sigma is new σ,
if ld=∞  and  pd=∞ sigma=∞
else sigma=minimum(ld,pd)
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δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (s) = y+

where y+  is a set of output (port, value) pairs
y+  = new empty set
if        loopDelay≤σ

y+.add(outLoop,L+ .front_pdu)
if portDelay≤σ  and  xmitState=waitingForIdle
   and  mediaState=idle

y+.add(out1,P+ .front_pair)
else if portDelay≤σ  and  xmitState=xmitting
   and  mediaState=collisions

y+.add(out1,(noiseburst,0.0))

ta(s) = σ
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C.3 LCN: router

To simplify the specification, only two router ports are assumed.

DEVSrouter = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inLoop, inLink1, inLink2}
OutPorts = {outLoop, outLink1, outLink2}
X = { (inPort, pdu) },  where pdu = (source, dest, size, data)
Y = { (outPort, pdu) }
S = Phase × σ × OutLoopBuffer × Out1Buffer × Out2Buffer

× OutLoopDelay × Out1Delay × Out2Delay × AddressList
Phase = {passive,busy}
σ = ℜ +

0

OutLoopBuffer = L+   (a FIFO queue of pdu’s)
OutBuffer1 = O1+   (a FIFO queue of pdu’s)
OutBuffer2 = O2+   (a FIFO queue of pdu’s)
LoopDelay = ℜ +

0

OutDelay1 = ℜ +
0

OutDelay2 = ℜ +
0

AddressList = A+   (a function of software names to output ports)

δext(s,e,(InPorts,X)) =

(,,,,,ld,od1,od2,) before processing input events X
where ld    is new LoopDelay, ld=LoopDelay-e
where od1 is new OutDelay1, o1d=OutDelay1-e
where od2 is new OutDelay2, o2d=OutDelay2-e

(,,,ob1,ob2,,od1,od2,al) for each x event on "inLoop"
where ob1 is new OutBuffer1,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink1

ob1=O1+ .add(x)
else if x.destination not in AddressList
   and x.data=load

ob1=O1+ .add(x)
where ob2 is new OutBuffer2,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink2

ob2=O2+ .add(x)
else if x.destination not in AddressList
   and x.data=load
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ob2=O2+ .add(x)
where od1 is new OutDelay1,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink1

od1=x.size/outLink1Speed
else if x.destination not in AddressList
   and x.data=load

od1=x.size/outLink1Speed
where od2 is new OutDelay2,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink2

od2=x.size/outLink2Speed
else if x.destination not in AddressList
   and x.data=load

od2=x.size/outLink2Speed
where al is new AddressList,

if x.destination not in AddressList
   and x.data=load

al= A+.add(x.destination,outLoop)

(,,lb,,ob2,ld,,od2,al) for each x event on "inLink1"
where lb is new OutLoopBuffer,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLoop

lb=L1+ .add(x)
else if x.destination not in AddressList
   and x.data=load

lb=L1+ .add(x)
where ob2 is new OutBuffer2,

if x.destination in AddressList
   and AddressList.association(x.destination)=OutLink2

ob2=O2+ .add(x)
else if x.destination not in AddressList
   and x.data=load

ob2=O2+ .add(x)
where ld is new LoopDelay,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLoop

ld=x.size/LoopSpeed
else if x.destination not in AddressList
   and x.data=load

ld=x.size/LoopSpeed
where od2 is new OutDelay2,
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if x.destination in AddressList
   and AddressList.association(x.destination)=outLink2

od2=x.size/outLink2Speed
else if x.destination not in AddressList
   and x.data=load

od2=x.size/outLink2Speed
where al is new AddressList,

if x.destination not in AddressList
   and x.data=load

al= A+.add(x.destination,outLink1)

(,,lb,ob1,,ld,od1,,al) for each x event on "inLink2"
where lb is new OutLoopBuffer,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLoop

lb=L1+ .add(x)
else if x.destination not in AddressList
   and x.data=load

lb=L1+ .add(x)
where ob1 is new OutBuffer1,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink1

ob1=O1+ .add(x)
else if x.destination not in AddressList
   and x.data=load

ob1=O1+ .add(x)
where ld is new LoopDelay,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLoop

ld=x.size/LoopSpeed
else if x.destination not in AddressList
   and x.data=load

ld=x.size/LoopSpeed
where od1 is new OutDelay1,

if x.destination in AddressList
   and AddressList.association(x.destination)=outLink1

od1=x.size/outLink1Speed
else if x.destination not in AddressList
   and x.data=load

od1=x.size/outLink1Speed
where al is new AddressList,

if x.destination not in AddressList
   and x.data=load
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al= A+.add(x.destination,outLink2)

(ph,sigma,,,,,,,) after processing input events X
where ph is new phase,

if minimum(LoopDelay,OutDelay1,OutDelay2)=∞
ph=passive

else ph=busy

where sigma is new σ,
sigma=minimum(loopDelay,pd)

δint(s) = (ph,sigma,lb,ob1,ob2,ld,od1,od2,)
where ld    is new LoopDelay, ld=LoopDelay-σ
where od1 is new OutDelay1, od1=OutDelay1-σ
where od2 is new OutDelay2, od2=OutDelay2-σ
where lb is new LoopBuffer,

if ld≤0 lb=L+.removeFront_pdu
if lb is empty ld=∞
else ld=lb.front_pdu.size/outLoopSpeed

where ob1 is new OutBuffer1,
if od1≤0 ob1=O1+.removeFront_pdu
if ob1 is empty od1=∞
else od1=ob1.front_pdu.size/outLink1Speed

where ob2 is new OutBuffer2,
if od2≤0 ob2=O2+.removeFront_pdu
if ob2 is empty od2=∞
else od2=ob2.front_pdu.size/outLink2Speed

where ph is new phase,
if minimum(ld,od1,od2)<∞ ph=busy
else ph=passive

where sigma is new σ,
sigma=minimum(ld,od1,od2)

δconf(s,ta(s),x) = δext(δint(s),0,x)
λ (s) = y+

where y+  is a set of output (port, value) pairs
y+  = new empty set
if        LoopDelay≤σ y+.add(outLoop, L+ .front_pdu)
else if OutDelay1≤σ y+.add(outLink1, O1+ .front_pdu)
else if OutDelay2≤σ y+.add(outLink2, O2+ .front_pdu)

ta(s) = σ
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C.4 LCN: cpu_singleTask

DEVScpu_singleTask = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inJobs, inSW}
OutPorts = {outJobs}
X = { (inJobs, job) },  where job = (swObject, workLoad)
       { (inSW, pdu) }, where pdu = (source, dest, size, data)
Y = { (outJobs, job) }
S = Phase × σ × memSW × Jobs

Phase = {passive,busy}
σ = ℜ +

0

memSW = a set of swObject names
Jobs = a relation of jobTime to job

δext(s,e,(InPorts,X)) =

(,,mSW,) for each x event on "inSW"
where mSW is new memSW

if  x.dest=mem  and  x.data=load
mSW=memSW.add(x.source)

else if  x.dest=mem  and  x.data=unload
mSW=memSW.remove(x.source)

(,,,Js) for each x event on "inJobs"
where Js is new Jobs

if  x.src is in memSW Js=Jobs.add(x)

(ph,sigma,,) process last
where ph is new phase

if  Jobs is empty ph=passive
else ph=busy

where sigma is new σ
if Jobs is empty sigma=∞
else if phase=busy sigma=σ-e
else sigma=Jobs.front_job.size/cpuSpeed

δint(s) = (ph,sigma,,Js)
where ph is new phase

if Jobs.size=1 ph=passive
else ph=busy

where sigma is new σ
if Jobs.size=1 sigma=∞
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else sigma=Jobs.next_job.size/cpuSpeed
where Js is new Jobs

Js=Jobs.remove_front_pdu

δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (s) = ("outJobs",Jobs.front_job) if  Jobs not empty

ta(s) = σ
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C.5 LCN: cpu_multiTask

DEVScpu_multiTask = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inJobs, inSW}
OutPorts = {outJobs}
X = { (inJobs, job) },  where job = (swObject, workLoad)
       { (inSW, pdu) }, where pdu = (source, dest, size, data)
Y = { (outJobs, job) }
S = Phase × σ × memSW × Jobs × memInUse

Phase = {passive,busy}
σ = ℜ +

0

memSW = a set of swObject names
Jobs = a relation of jobTime to job
memInUse = ℜ +

0

δext(s,e,(InPorts,X)) =

(,,mSW,,mIU) for each x event on "inSW"
where mSW is new memSW

if  x.dest=mem  and  x.data=load
mSW=memSW.add(x.source)

else if  x.dest=mem  and  x.data=unload
mSW=memSW.remove(x.source)

where mIU is new memInUse
if  x.dest=mem  and  x.data=load

mIU=memInUse+x.size
else if  x.dest=mem  and  x.data=unload

mIU=memInUse-x.size

oldJobCount=Jobs.length
(,,,Js,) for each x event on "inJobs"

where Js is new Jobs
if  x.src is in memSW

newJobTime=(e+x.workLoad/cpuSpeed)*oldJobCount
Js=Jobs.add(newJobTime,x)

newJobCount=Jobs.length
(ph,sigma,Js,,) for each (jobTime_i, job_i) pair in Jobs

where Js is new Jobs
newJobTime_i=(jobTime_i-e)newJobCount/oldJobCount
Js=Js.add(newJobTime_i,job_i)

where ph is new phase
if Jobs is empty ph=passive
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else ph=busy
where sigma is new σ

if Jobs is empty sigma=∞
else sigma= minimum(each jobTime_i in Jobs)

δint(s) =

oldJobCount=Jobs.length
(,,,Js,) for each (jobTime_i, job_i) pair in Jobs

where Js is new Jobs
if jobTime_i≤σ Js= J+ .remove_pair(jobTime_i, job_i)

newJobCount=Jobs.length
(ph,sigma,,Js,) for each (jobTime_i, job_i) pair in Jobs

where Js is new Jobs
newJobTime_i=(jobTime_i-sigma)newJobCount/oldJobCount
Js=Js.add(newJobTime_i,job_i)

where ph is new phase
if Jobs is empty ph=passive
else ph=busy

where sigma is new σ
if Jobs is empty sigma=∞
else sigma= minimum(each jobTime_i in Jobs)

δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (s) = y
where y is a set of output (port, value) pairs

y = new empty set
for each (jobTime, job) pair in Jobs

if        jobTime≤σ y.add(outJob, job)

ta(s) = σ
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C.6 LCN: transport

DEVStransport = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inMsgs, inPkts}
OutPorts = {outMsgs, outPkts}
X = { (inMsgs, pdu) , (inPkts, pdu) }, where pdu = (source, dest, size, data)
Y = { (outMsgs, pdu), (outPkts, pdu) }
S = Phase × σ × xmittingQ × deliveryQ × recvingQ

Phase = {passive,busy}
σ = ℜ +

0

xmittingQ = a set of msg, where msg=(src,dest,size,data)
deliveryQ = a set of  msg
recvingQ = a function of (msg → pktQ) pairs,

where pktQ is queue of pkt and pkt=(src,dest,size,data)

δext(s,e,(InPorts,X)) =
(ph,sigma,xQ,,) for each x event on "inMsgs"

where ph is new phase, ph=busy
where sigma is new σ, sigma=0
where xQ is new xmittingQ, xQ=xmittingQ.add(x)

(ph,sigma,,dQ,rQ) for each x event on "inPkts"
m=x.msg
pQ=recvingQ(m)
pQ.add(x)
where ph is new phase, ph=busy
where sigma is new σ,

if   x.num_fragments=pQ.length sigma=0
where dQ is new deliveryQ,

if   x.num_fragments=pQ.length dQ=deliveryQ.add(m)
where rQ is new recvingQ,

if   x.num_fragments=pQ.length rQ=recvingQ.remove(m→pQ)
else rQ=recvingQ.replace(m→pQ)

δint(s) = (ph,sigma,xQ,dQ,rQ)
where ph is new phase

if recvingQ is empty ph=passive
else ph=busy

where sigma is new σ, sigma=∞
where xQ is new xmittingQ,  xQ=empty set
where dQ is new deliveryQ,  dQ=empty set

δconf(s,ta(s),x) = δext(δint(s),0,x)
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λ (s) = y
where y is a set of output (port, value) pairs

y = new empty set
for each msg in xmittingQ,

partition msg into pkts of size maxPktSize
for each pkt,   y=y.add("outPkts",pkt)

for each msg in deliveryQ,
y=y.add("outMsgs",msg)

ta(s) = σ
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C.7 DCO: swObject

DEVSswObject = < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = {inMsgs, doneJobs}
OutPorts = {outMsgs, outJobs, outSW}
X = { (inMsgs, msg) , (doneJobs, job) },
   where msg=(name,src,dest,size,returnSize,timeOut,msgType,firingJob,method)
   where job = (swObject, method, workLoad, workLeft, invokingMessage)
Y = { (outMsgs, msg), (outJobs, job), (outSW, pdu) }
   where pdu = (src, dest, size, data)
S = Phase × σ × activeJobs × commJobs × queuedJobs × timerMsgs

× fireJobs × fireMsgs × loadStatus
   where

Phase = {passive, active, fire}
σ = ℜ +

0

activeJobs = relation of (method→job)
commJobs = set of jobs
queuedJobs = relation of (method→job)
timerMsgs = relation of (timeOut→msg)
fireJobs = set of jobs
fireMsgs = set of msgs
loadStatus = {unloaded, onDisk, inMem, unloadMem, unloadDisk}

δext(s,e,(InPorts,X)) =
   (ph, sigma, aj, cj, qj, tm, fj, fm, ls) for each inJob on "doneJobs"

and  inJob.swObject=self
where ph is new phase

sigma is new σ
aj is new activeJobs, aj=activeJobs
cj is new commJobs, cj=commJobs
qj is new queuedJobs, qj=queuedJobs
tm is new timerMsgs, tm=timerMsgs
fj is new fireJobs, fj=fireJobs
fm is new fireMsgs, fm=fireMsgs
ls is new loadStatus, ls=loadStatus

inJob.reset_workLoad
if  inJob.method=""

for each  arc_i in arcs
   if  arc_i.workLoad≤inJob.workDone

fm=fm.add(newMsg base on arc_i)
ph=fire
sigma=0
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if  arc_i.returnSize>0
cj=cj.add(inJob)
if  arc_i.invokeSynchronous inJob.set_to_blocked
if arc_i.timeOut>0  tm=tm.add(timeOut→newMsg)

arc_i.set_workLoad(arc_i.totalWorkLoad)
   else arc_i.set_workLoad(workLoad-inJob.workDone)

else
get next task_i in task based on inJobs.workDone
for each arc_i in task_i

fm=fm.add(newMsg base on arc_i)
ph=fire
sigma=0
if  arc_i.returnSize>0

cj=cj.add(inJob)
if  arc_i.invokeSynchronous inJob.set_to_blocked
if arc_i.timeOut>0  tm=tm.add(timeOut→newMsg)

if  inJob.is_not_blocked
if inJob.workLoad>0 fj=fj.add(inJob)

ph=fire
sigma=0

else
aj=aj.remove(inJob.method,inJob)
if  threadMode=none
     if   qj is not empty

nextJob=qj.front_job
qj=qj.remove_front_job
aj=aj.add(nextJob.method→nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0

     else if  cj is empty
ls=unloadMem
ph=fire
sigma=0

if  threadMode=object
    if  qj is empty   and   aj is empty   and    cj is empty

ls=unloadMem
ph=fire
sigma=0

    else if  qj is not empty
nextJob=qj.associated(inJob.method)
if  nextJob exists

qj.remove(inJob.method→nextJob)
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aj=aj.add(nextJob.method→nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0

if  threadMode=method
    if   aj is empty   and   cj is empty

ph=fire
sigma=0
ls=unloadMem

if  inJob.invokeMsg.returnSize>0
fireMsgs(inJob.invokeMsg.returnMsg)
ph=fire
sigma=0

   (ph, sigma, aj, cj, qj, tm, fj, fm, ls) for each inMsg on "inMsgs"
and  inMsg.dest=self

where ph is new phase
sigma is new σ
aj is new activeJobs, aj=activeJobs
cj is new commJobs, cj=commJobs
qj is new queuedJobs, qj=queuedJobs
tm is new timerMsgs, tm=timerMsgs
fj is new fireJobs, fj=fireJobs
fm is new fireMsgs, fm=fireMsgs
ls is new loadStatus, ls=loadStatus

if  inMsg.isReturnMsg
   if  inMsg.firingJob is in commJobs

tm=tm.remove(*→inMsg)
if  inMsg.firingJob.is_blocked
    firingJob.set_unblocked
    cj=cj.remove(firingJob)
    if  firingJob.workLeft>0

fj=fj.add(firingJob)
ph=fire
sigma=0

    else
aj=aj.remove(inJob.method,inJob)
if  threadMode=none
     if   qj is not empty

nextJob=qj.front_job
qj=qj.remove_front_job
aj=aj.add(nextJob.method→nextJob)
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fj=fj.add(nextJob)
ph=fire
sigma=0

     else if  cj is empty
ls=unloadMem
ph=fire
sigma=0

if  threadMode=object
    if  qj is empty   and   aj is empty   and    cj is empty

ls=unloadMem
ph=fire
sigma=0

    else if  qj is not empty
nextJob=qj.associated(inJob.method)
if  nextJob exists

qj.remove(inJob.method→nextJob)
aj=aj.add(nextJob.method→nextJob)
fj=fj.add(nextJob)
ph=fire
sigma=0

if  threadMode=method
    if   aj is empty   and   cj is empty

ph=fire
sigma=0
ls=unloadMem

if  inJob.invokeMsg.returnSize>0
fireMsgs(inJob.invokeMsg.returnMsg)
ph=fire
sigma=0

else
if  phase=passive aj=aj.add(newJob based on inMsg)

δint(s) = (ph, sigma, aj, cj, qj, tm, fj, fm, ls)
   where ph is new phase

if  phase=passive ph=fire
else if  loadStatus=inMem ph=active
else ph=passive

   where sigma is new σ
if  phase=passive sigma=0
else if  loadStatus=inMem sigma=min(each timeOut_i in timerMsgs)
else sigma=∞

   where aj is new activeJobs
if  phase=passive aj={newJob based on initialization_message}
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else aj=activeJobs
   where cj is new commJobs cj=commJobs
   where qj is new queuedJobs qj=queuedJobs
   where tm is new timerMsgs

for each (timeOut_i, msg_i) in timerMsgs
if  timeOut_i≤σ tm=tm.add(msg_i.timeOut, msg_i)
else tm=tm.add(timeOut_i-σ, msg_i)

   where fj is new fireJobs
if  phase=passive fj=aj.newJob
else fj=empty set

   where fm is new fireMsgs fm=empty set
   where ls is new loadStatus

if  loadStatus=unloaded ls=onDisk
else if  loadStatus=onDisk
   and  (fireJobs.length+fireMsgs.length)>0 ls=inMem
else if  loadStatus=unloadMem ls=onDisk
else if  loadStatus=unloadDisk ls=unloaded

δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (s) = y
   where y is a set of output (port, value) pairs

y = new empty set
if  loadStatus=unloaded

y=y.add((outSW,(myName,Disk,swSize,load))
else if  loadStatus=onDisk  and  (fireJobs.length + fireMsgs.length)>0

y=y.add((outSW,(myName,Mem,swSize,load))
else if  loadStatus=unloadMem  and  fireJobs.length=0

y=y.add((outSW,(myName,Mem,swSize,unload))
else if  loadStatus=unloadDisk

y=y.add((outSW,(myName,Disk,swSize,unload))
for each job_i in fireJobs

y=y.add("outJobs",job_i)
for each msg _i in fireMsgs

y=y.add("outMsgs",msg_i)
for each (timeOut_i, msg _i) in timerMsgs

if  timeOut_i=σ y=y.add("outMsgs",msg_i)

ta(s) = σ
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C.8 Experimental Frame: acceptor

DEVSacceptor= < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = { control }
OutPorts = { control, invoke }
X = { (control, controlMsg) }
    where controlMsg = {passivate, initialize}
Y = { (control, controlMsg), (invoke, msg) }
    where msg=(name,src,dest,size,returnSize,timeOut,msgType,firingJob,method)
S = Phase × σ × ControlMsg × NumSimRuns × Repetition

Phase = {passive, initializing, starting, collecting, stopping, reporting}
σ = ℜ +

0

ControlMsg = {∅ , passivate, initialize}
NumSimRuns = ℑ +

0

Repetition = ℑ +
0

δext(s,e,(InPorts,X)) =

   (,sigma,) before processing events
where sigma is new σ, sigma=σ-e

(ph,sigma,cM) for each x event on "control"
where ph is new Phase, ph=Phase
where sigma is new σ, sigma=0
where cM is new ControlMsg, cM=x

δint(s) = (ph,sigma,cM,nSR,rep)
where cM is new ControlMsg, cM=∅
where ph is new Phase

sigma is new σ,
nSR is new NumSimRuns
rep is new Repetition

if  Phase=initializing ph=starting
sigma=startupTime
nSR=numSimRuns-1

else if  Phase=starting ph=collecting
sigma=invokeDutyCycle
rep=repetitions - 1;
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else if  Phase=collecting
   and  repetition≥0 ph=collecting

sigma=invokeDutyCycle
rep=repetition--;

else if  Phase=collecting
   and  repetition=0 ph=stopping

sigma=simDutyCycle
rep=repetition--;

else if  Phase=stopping ph=reporting
sigma=0

else if  Phase=reporting
   and numSimRuns>1 ph=initializing

sigma=1
else if  Phase=reporting
   and numSimRuns=1 ph=passivate

sigma=∞
else ph=passivate

sigma=∞

δconf(s,ta(s),x) = δext(δint(s),0,x)

λ (s) = y
    where y is a set of output (port, value) pairs

y = new empty set
if  ControlMsg!=∅ y=y.add(control, ControlMsg)
if  Phase=initializing y=y.add(control, initialize)
if  Phase=starting y=y.add(control, collect)
if  Phase=starting

for each msg_i in invokeMsgs
y=y.add(invoke, msg_i)

if  Phase=collecting  and  repetition≥1
for each msg_i in invokeMsgs

y=y.add(invoke, msg_i)
if  Phase=stopping y=y.add(control, passivate)
if  Phase=reporting y=y.add(control, report)

ta(s) = σ
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C.9 Experimental Frame: LCN and DCO Control Instrumentation

This "control instrumentation" specification complements the DEVS specification

for the Experimental Frame Acceptor.  This behavior is incorporated into the LCN and

DCO atomic models to provide experimental frame control instrumentation.

DEVSLCN_and_DCO_Control= < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = { control }
X = { (control, controlMsg) },    where controlMsg = {passivate, initialize}
S = Phase × σ

Phase = defined in LCN or DCO model
σ = ℜ +

0

δext(s,e,(InPorts,X)) = (ph,sigma,) for each x event on "control"
where ph is new Phase, and

sigma is new σ,
if  x=passivate ph=passive

sigma=∞
else if  x=initialize initialize_LCN_or_DCO_model

δint(s) = (s)
δconf(s,ta(s),x) = δext(δint(s),0,x)
λ (s) = ∅
ta(s) = σ
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C.10 Experimental Frame: transducer

DEVStransducer= < X, Y, S, δint, δext, δconf, λ, ta >, where
InPorts = { control }
X = { (control, controlMsg) }

where controlMsg = { initialize, collect, report, passivate}
Y = { (results, report) }

where report is an accounting of the collected data
S = Phase × σ × ObservationTime

Phase = { passive, collecting }
σ = ℜ +

0

ObservationTime = ℜ +
0

δext(s,e,(InPorts,X)) =
    (,sigma,OT) before processing any events

where sigma is new σ,
sigma = σ-e
if  Phase=collecting ee=e
else ee=0

    (ph,sigma,) for each x event on "control"
where ph is new Phase, and

sigma is new σ,
if   x=initialize initialize_myself
else if  x=collect ph=collecting

sigma=∞
else if  x=report ph=reporting

sigma=0
else if   x=passivate ph=passive

sigma=∞
    (,,OT) after processing all events

where OT is new ObservationTime,
if  Phase=collecting OT=ObservationTime+ee

δint(s) = (ph,sigma,OT)
where ph is new Phase, ph=passive
where sigma is new σ, sigma=∞
where OT is new ObservationTime, OT=ObservationTime+σ

δconf(s,ta(s),x) = δext(δint(s),0,x)
λ (s) = y

where y is a set of output (port, value) pairs
y = new empty set
if  Phase=reporting report=generate_my_results_report

y=y.add(results, report)
ta(s) = σ
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APPENDIX D.  GLOSSARY OR TERMS

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCO Distributed Cooperative Object

DEM Distributed Exercise Manager

DESS Differential Equation System Specification

DEVS Discrete Event System Specification

DiSect Distributed Simulation Exercise Construction Toolset

DMSO Defense Modeling and Simulation Office

DNS Domain Name Service

DOC Distributed Object Computing

DTSS Discrete Time System Specification

EF Experimental Frame

ExGen Exercise Generation

FDDI Fiber Distributed Data Interface

FIFO First-In, First-Out

FSM Finite State Machine

GUI Graphical User Interface

HCCL Heterogeneous Container Class Library

HLA High Level Architecture

HW Hardware

IETF Internet Engineering Task Force

ISO International Standards Organization

JVM Java Virtual Machine

LAN Local Area Network

LCN Loosely Coupled Network

M&S Modeling and Simulation

MAARS Modular After Action Review System
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MAU Media Access Units

MIB Management Information Bases

NIC Network Interface Cards

OS Operating System

OSM Object System Mapping

QoS Quality of Service

RTI Run Time Infrastructure

RUP Rational Unified Process

SES System Entity Structure

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SW Software

SwObject Software Object

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
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