

ATTENTION-FOCUSING ARCHITECTURE FOR SCALABLE

NETWORK-SYSTEMS USING DEVS FORMALISM

By

Saurabh Mittal

Copyright © Saurabh Mittal 2003

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN COMPUTER AND ELECTRCICALENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

2003

STATEMENT BY AUTHOR

This thesis has been submitted in the partial fulfillment of requirements for an advanced

degree at the University of Arizona and is deposited in the University Library to be made

available to borrowers under rules of the library.

Brief quotations from the thesis are allowable without special permission, provided that

accurate acknowledgment of the source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the head of the major department or the Dean of the Graduate college when in his or her

judgement the proposed use of material is in the interests of scholarship. In all other

instances, permission must be obtained from author.

SIGNED: _____________________________

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

___________________________________ ________________________

Prof. Bernard P. Zeigler Date
ACIMS Center, Electrical and Computer Engg.
University of Arizona

ACKNOWLEDGEMENTS

I would like to thank Professor Bernard P. Zeigler, my advisor, for his invaluable

guidance and moral as well as financial support all through the MS studies. He gave the

freedom to explore uncharted waters and provided the encouragement to complete this

endeavor. I also would like to express my appreciation to Professor Srinivasan

Ramasubramanian whose suggestions helped in improving the thesis content, and

Professor Salim Hariri, who provided me the with the knowledge in networking domain

through various discussions, and both of whom served on my defense committee.

My sincere thanks to our family friend, Sunita Suri – Sports teacher at my High School,

for sponsoring my studies and V. P. Gupta – General Manager, State Bank of India,

without whose timely financial advice and help, it would be impossible to embark upon

this task. I shall be forever indebted towards their generous contribution.

I would like to express my gratitude to my family back at home that includes my parents,

my brother Vaibhav, Vandana mamiji, my sisters and my grandfather Moti Ram Garg,

who taught me the meaning of life and that simplicity and hardwork can accomplish any

dream that I could envision.

And, above all, I would like to express my thanks to God, who made it all possible.

To,

Madhu, Anand, and
Moti Ram Garg

TABLE OF CONTENTS

LIST OF FIGURES .. 3

LIST OF TABLES .. 5

ABSTRACT... 6

1. INTRODUCTION... 8
1.1 SCALABILITY ... 9
1.2 TOWARDS INTELLIGENT SYSTEMS ... 12
1.3 MOTIVATION.. 14
1.4 SYSTEM DESIGN & TOOLS ... 19

1.4.1 Java .. 20
1.4.2 Unified Modeling Language .. 21

1.5 MODELING & SIMULATION FORMALISMS .. 22
1.6 PLAN OF THESIS... 23

2. BACKGROUND AND RELATED WORK ... 24
2.1 ATTENTION-FOCUSING EXPERIMENT .. 32

3. ADSNET BUILDING BLOCKS ... 35
3.1 DEVS SPECIFICATION ... 35
3.2 EXPERIMENTAL FRAME.. 39
3.3 ADSNET MODEL.. 40

4. ADSNET COMPONENT BEHAVIOR .. 42
4.1 TOPOLOGICAL BEHAVIOR .. 42

4.1.1 Surveillance Area (searchCellSpace) .. 43
4.1.2 City (sensorNet) ... 47
4.1.3 County (attnNet)... 56
4.1.4 State (adaptiveSensorNet).. 60

4.2 EXPERIMENTAL FRAME COMPONENT BEHAVIOR... 62

5. SCENARIOS ... 63
5.1 STATIC TOPOLOGY AND FIXED NUMBER OF SENSORS... 63
5.2 STATIC TOPOLOGY AND VARIABLE NUMBER OF SENSORS.................................. 64

6. THEORETICAL ANALYSIS.. 67
6.1 PRESENCE OF RATE-ESTIMATOR WITH SENSOR .. 67

6.1.1 Estimator Threshold .. 67

2

6.1.2 Number of messages in System (Bandwidth Usage) .. 68
6.2 ALGORITHMS INSIDE THE SAMPLING MANAGER.. 71

6.2.1 Normalized-Sum Rule (NS Rule).. 72
6.2.2 Normalized-Max Rule (NM Rule) .. 73
6.2.3 Tunable Alfa-Beta Rule (TA Rule) ... 75

7. QUANTITATIVE RESULTS.. 78
7.1 FLAT SIMULATION ... 78

7.1.1 Response Time for a new Activity to grab attention .. 78
7.1.2 Estimator Threshold v/s Response Time.. 80
7.1.3 Scalability v/s Response Times .. 82

7.2 HIERARCHICAL SIMULATION (RESPONSE TIME V/S NEW INCOMING ACTIVITY) .. 84
7.2.1 Limited Resources at Level 1 and at Level 2 (NS Rule at both Levels) 84
7.2.2 Unlimited resources at Level 1 with limited resources at Level 2................... 86

8. EXPERIMENTS WITH A NETWORK MODEL HAVING LINK-DELAYS 89
8.1 NETWORK MODEL.. 89
8.2 EXPERIMENTS WITH ADSNET LAID OUT ON NETWORK MODEL 94

8.2.1 Response Time vs. New Incoming Activity... 94
8.2.2 Response Time with TA Rule.. 95

8.3 NETWORK UTILIZATION... 101
8.4 SYNOPSIS ... 103

9. APPLICATION AREAS.. 104

10. CONCLUSIONS AND FUTURE WORK.. 112

REFERENCES.. 116

3

LIST OF FIGURES

Figure 1: Scalability of Intelligent Systems.. 12

Figure 2: Focusing Attention on the Dots and their Aggregation..................................... 14

Figure 3: A blackbox view of the system ... 15

Figure 4: System model for Hierarchical multi-level architecture 17

Figure 5: the deployment of sensors and Allocation Managers for the AdSNet system .. 18

Figure 6: System Specification used in AdSNet Architecture.. 22

Figure 7: Focusing of Light beam on a target within an image .. 33

Figure 8: Definition of DEVS model.. 35

Figure 9: Definition of DEVS Atomic model... 36

Figure 10: Definition of DEVS Coupled model ... 37

Figure 11: Experimental Frame .. 40

Figure 12: Different models require different Experimental Frames 40

Figure 13: the entity-relationship diagram for the adaptive sensor system 41

Figure 14: The objects of cell space in communication with each other.......................... 45

Figure 15: Coupled model showing the Cell Space area components with 5 cells 46

Figure 16: Activity associated with the Surveillance Area... 47

Figure 17: A Sensor with its interfaces and I/O handling... 49

Figure 18: State diagram of a sensor staying in default activity as long it is alive........... 49

Figure 19: Behavior cycle of sensor ... 50

Figure 20:The collaboration of City coupled model... 51

Figure 21: Snapshot of the city in action displaying the statistics of each of the Sensor . 52

Figure 22: Components inside a Rate-estimator... 54

Figure 23: Sensor Estimator Pair .. 56

Figure 24:A snapshot of the County structure. City 2 is expanded for illustration 57

Figure 25: Showing the evolution of the Sampling Manager as sensors increase............ 58

Figure 26: Top level view of a State constituting Counties.. 60

Figure 27: Experimental Frame showing the model with Scheduler and Analyzer 64

4

Figure 28: Experimental Frame structure showing variable structure.............................. 66

Figure 29: Algorithm inside the Sampling Manager .. 71

Figure 30: Response Time for new activity to grab the attention..................................... 79

Figure 31: Graph for Response Time v/s Estimator Threshold .. 81

Figure 32: Response Time v/s Scalability .. 83

Figure 33: Response time v/s New incoming activity (Limited Resources at Level 1) ... 85

Figure 34: Response time v/s new Incoming Activity (Unlimited resources at Level 1). 87

Figure 35: Conceptual Model of Adapter System with Network Queue.......................... 90

Figure 36: A Sample Network with source-destination pair connected through the

Adapter System and Network Queue.. 92

Figure 37: Collaboration diagram for a source destination pair showing message path .. 92

Figure 38: AdSNet System consisting of three cities in a County connected to the

Sampling Manager using the Network Model described above. 93

Figure 39: Response Time vs. Incoming Activity with Network Model.......................... 95

Figure 40: Incoming activity 200 and alfa 0.9.. 96

Figure 41: Incoming Activity 120 and alfa 0.7... 96

Figure 42: Response Time for Incoming Activity with respect to different Alfa values . 98

Figure 43: Stabilization Time: Incoming Activity with respect to different Alfa values . 99

Figure 44: Sum of Appearance time and Stabilization Time v/s Incoming activity....... 100

Figure 45: Queue Activity when Rate-estimator is not operational (20 sensors) 102

Figure 46: Queue activity when Rate-estimator is used (20 sensors in system)............. 102

Figure 47: HDGA system and AdSNet System together.. 110

5

LIST OF TABLES

Table 1: Comparison of the sensitivity behavior of the two sensors…………………….53

6

Abstract

This research investigates the application of Modeling & Simulation as a potential tool in

the design and development of scalable Intelligent Systems. With the evolution of

Internet, scalability has gone to new dimensions and the journey isn’t complete yet. The

current tools aren’t equipped to study evolving networks, as the software architecture laid

underneath is not scalable and evolvable. This thesis outlines an architecture that is both

scalable and evolvable. The architecture is built on Discrete Event System Specifications

(DEVS) Formalism and is implemented in Java. The example considered in this research

is that of Homeland Defense Intelligence Surveillance and Reconnaissance. The

inspiration has been taken from Neuroscience and Brain Cognitive Science. The

architecture is named AdSNet implying Adaptive Sensor Network. It is designed to

display intelligent behavior and provide dynamic allocation of resources e.g. bandwidth,

channel capacity, to numerous computing decision-making components that are laid out

in a hierarchical manner. The smallest computing entity in the system is a Sensor that has

the capability to detect and sample information inside a surveillance area. Its ability to

detect any abnormal activity is based on its sensitivity, which is tunable. The sensor

follows the activity occurring in the area assigned to it and its sampling rate increases if

there is high activity and it decreases if the activity becomes low. The surveillance area,

assigned to a sensor, is designed to be a random phenomenon incorporating random loss

factor but displaying qualitative behavior. It’s a coupled model, composed of DEVS1-

1 Discrete Event System Specifications

7

cells (finite state machines) arranged in grid fashion. The architecture is modeled along

the geographical distribution of area and at the top level of the hierarchy is a State that

constitutes many counties, which constitutes many cities, which then is divided into

surveillance areas. The communication between these levels is filtered and condensed as

it travels up the hierarchy. The architecture is a multi-level hierarchically organized

system and its mapping to geographical area distribution is one example of its

application. It is capable of focusing attention to highly active components and allocating

resources to them and withdrawing resources from components that show under-activity.

The capability of system to evolve has been modeled by addition of new sensors during

high activity and removal of sensors corresponding to low activity, where it is not

predicted beforehand when the period of high activity is scheduled in Surveillance areas.

The resulting AdSNet Framework enables system architects and network designers to

study the pre-design issues concerning the scalable-evolvable networks and of hybrid-

autonomous systems. As the framework itself is scalable and evolvable, it provides a tool

to model and simulate the growth in any evolvable network composed of heterogeneous

components.

8

1. Introduction

With the Internet expected to touch 1 Billion nodes in the near future, scalability has

achieved new dimensions. Nobody ever envisioned that ARPANET [42] which was

designed as a test network between 5 Universities will evolve towards this huge network,

shrinking this globe into a village. As this network evolved, so did the discipline of

Computer Engineering specializing into a new branch of Computer Networks that

encompassed research areas like Queuing Theory, Distributed Computing, Network

Traffic Engineering etc. Initially when the networks were small, they were studied easily

in the labs, partly by creating prototype networks and partly by modeling and simulation.

The earlier simulators like NS-2 [43] and later Opnet [44] proved to be an ideal platform

to test small networks. Now, as the network systems are growing exponentially, these

static topology-generating simulators are ill equipped and are unable to predict the

performance of such evolving systems accurately. Their inability may be attributed to

insufficient understanding of these evolvable networks and also by the architectural

limitations inherent in these simulators. Although there are simulators like Glomosim

[45], [46] pdns [48], etc. that can model hundreds of thousand of nodes but none is able

to model a network that is evolvable, resizable and adaptive. Moreover, most of the

architectures are flat in operation i.e. all components at the same level with no

abstractions and hierarchies, and generate great overheads when it comes to message

passing as the messages are at the packet level resolution that is the lowest resolution

possible. The comparable analysis of these simulators can be seen at [22].

9

In the league of large scale, simulation architectures SSFNet [47] and DEVS-DOC [49],

[50] are the only architectures that are truly scalable and hierarchically constructed but

these two are also not capable to study the evolving nature of a network-system. As a

result, they do not have the functionality to study the scalability-evolvability aspect of the

system.

1.1 Scalability

So, how does one define a Scalable System? Is it just the increase in number of

components of a system? What if each component of the system is intelligent and has the

capability to take decisions independently? How is a “Scalable Intelligent System”

defined?

According to Zeigler [1],

 “A Scalable Intelligent System is a system that retains or evolves

 its capability as its size increases dramatically.”

Likewise, a scalable software system is a system that retains its basic services and the

inner components’ qualities, as the number of its components increases, for example, a

million. Scalability focuses on the architectural traits of a system that allow scaling up of

10

its basic information processing algorithms to continue to work, or to even work better, as

it grows by orders of magnitude. One such attempt to model a scalable Network System

([21],[23]) was made as a part of this research.

Consider the example of Internet. Its current architecture doesn’t support scalability, but

still its becoming ubiquitous. Its success is attributed to different factors but the failures

that have occurred in the past are due to the architectural makeup that have stalled the

Internet (for ex. Code Red Virus), which is flat. The point in consideration is that as the

Internet grows and increases in size, the Internet architecture requires disproportionate

amount of house-keeping i.e. maintenance of link information at routers, which is

generally more than the necessary house-keeping when compared with the hierarchical

architecture. This was used when foundations of Internet were being laid. This

housekeeping cumulatively adds up at the router, overloading it and finally resulting in its

crash or slower end-to-end response. The information flows through whole of the

network like a ripple thereby forcing each of the router to update its routing table. If this

router happens to be at the Backbone of the Internet and it crashes due to overload, its

periodic crashing can put the routing table of the entire backbone in a route-flap storm

which is triggered by its advertisement of “I’m dead…I’m alive”. This kind of behavior

that occurred at the backbone of the Internet has not occurred after 2001 (Code Red and

Nimda Worms.) Its degree of propagation was upto the lowest possible level i.e. home

PC. There is no hierarchy in the Internet architecture that could prevent and filter out the

11

information that was propagated from the backbone to the end-user (from the /8 CIDR

block to /24 CIDR block [27], [28]).

Some other examples of Scalability from real life [1] are depicted in Figure 1. The y-axis

denotes the number of nodes and increasing complexity. It represents four systems:

a) The Biological Brain

b) Human’s Knowledge System

c) E-Commerce

d) Homeland Defense

Its not surprising that most of the systems mentioned above are hierarchically organized.

Nature supports hierarchical architecture when considered the example of the biological

brain! At each level of the hierarchy in each of the system described above, the

information is processed, filtered, and then transferred to the higher level.

12

Figure 1: Scalability of Intelligent Systems

1.2 Towards Intelligent Systems

When Scalability and measurement of Intelligence is viewed from the Computer Science

perspective, then intelligent processing can be viewed as a subset of universal

computation. So, intelligence is measured by standard computational complexity.

Intelligent Systems are organization of Algorithms, each of which may become a

bottleneck for growth. Unfortunately, the only means to measure intelligence in a system

is through simulation, as it cannot be measured in advance and is not semantically rich

enough.

An Algorithm in such a system is considered practical if it completes in polynomial

execution time proportional to the input data. Likewise, a problem is tractable if it has a

13

polynomial algorithm solution. But there are intractable problems also known as NP

complete problems. These problems have non-deterministic polynomial execution time.

The problem of searching a visual space is one such intractable problem when the targets

are not known in advance. However, if the targets are given the problem becomes linear

and tractable ([5], [6]). Tsotos also showed that an attentional selection mechanism could

provide subsets to try, each subset being processed in real-time. Although, there is no

guarantee of its validity in general as the attention might be focused on a wrong area, it

provides a method to reduce a NP complete problem to a tractable one.

This paves the way for Decision Making Systems (DMS) [2] that make time-critical

decisions in real-time. The system is composed of semi-autonomous agents/components

i.e. each component has its own behavior and is able to change decisions on inputs by

environment and other components. There exists coordination between these components

to enable DMS to work towards group agenda. This coordination requires processing,

filtering of information as it travels, and changes hands between different components.

Thus, DMS has the capability to focus attention i.e. allocation of resources to certain

components relative to others. These components are distributed in space, sense

environment locally and have their own life cycle. DMS components are heterogeneous,

playing varied roles and having varied skill sets. All resources e.g. computational

platforms, communication links, etc. are maintained only if the DMS succeeds in

14

maintaining, repairing, replacing them, i.e. survival as an implemented architecture, along

with evolvability.

1.3 Motivation

The prime motivation of this thesis came from the involvement of Lockheed Martin’s

interest in the development of a decision-making simulation architectural framework

capable of attention management. Figure 2 gives a general idea of what they intent to

achieve.

Figure 2: Focusing Attention on the Dots and their Aggregation

15

They are working on How to design an attention management infrastructure to direct

computational resources to sensors in a large distributed network. Figure 3 shows an

infrastructural view of the system. The system receives input from various sensors

dispersed in the search Area. The system processes the information and sends commands

to the actuators located in the area that perform their respective jobs. It’s a battlefield

scenario where the intelligence is gathered through sensors and control is undertaken by

the actuators under direct control of the central Mission command. This is a flat

architecture. It is not clear from this diagram as to what is hierarchy of the decision-

making. Figure 4 shows the hierarchical representation of the system.

Figure 3: A blackbox view of the system

16

To specify these attention management systems in a little more detail, we specialize these

systems in the set of intelligent systems called LDRRT systems [3]. They are

characterized as:

a) Large number of components

b) Distributed in physical space

c) Real-time Behavior

d) Reactive

e) Time-critical reaction

Basic architectural insights from the LDRRT system are:

a) Focusing on bandwidth, latency, compute power constraints

b) To reduce communication data load, increase pre-processing at sensors

c) This requires increased local compute power

d) Requires hierarchy to relieve bottleneck at central decision node

e) Develop abstraction to reduce communication in upward direction

f) Develop dynamic models (with predictive capability) to increase local

decision-making power

g) Evolve attention allocation infrastructure to allocate bandwidth and compute

power to focus activity on the needs of the moment

Figure 4 depicts the layered-system approach and presents the hierarchical layout of

LDRRT system. The goals and commands follow the top-down approach, while the

17

resource allocation follows the bottom-up approach. At the lowest levels are sensors that

receive resources like bandwidth, channel capacity, sampling-rates from the Resource

Allocation Managers (acting as bandwidth brokers).

Figure 4: System model for Hierarchical multi-level architecture

Figure 4 shows different levels of the system mapped to geographical levels (based on

area covered). Taken the complete picture, the task is to design an Autonomous System,

Level1
(City)

Level2
(County)

Resource
Allocation
Manager1…n

Data-driven
Decision
Maker

1

Level3
(State)

1…n

Data-driven
Decision
Maker

Data-driven
Decision
Maker

Resource
Allocation
Manager
1…n

Information Rich Area

Sampling Rate Estimator(SRE)
for Sensor

Goal Directed
Attention Focus
Towards sensor

Goal Directed
Attention Focus

Resource
Allocation
Manager

Goal Directed
Attention Focus

Sensor

Level1
(City)

Level2
(County)

Resource
Allocation
Manager1…n

Data-driven
Decision
Maker

1

Level3
(State)

1…n

Data-driven
Decision
Maker

Data-driven
Decision
Maker

Resource
Allocation
Manager
1…n

Information Rich Area

Sampling Rate Estimator(SRE)
for Sensor

Goal Directed
Attention Focus
Towards sensor

Goal Directed
Attention Focus

Resource
Allocation
Manager

Goal Directed
Attention Focus

Sensor

18

that can get “information” from numerous wireless sensor components, static or mobile,

with the system working on a central goal and every sensor being fed (the resources) and

be controlled (active or dead) according to this goal, at appropriate times, and still

maintaining the self-constructed dynamic network.

The present thesis will focus on the bottom-up approach. It can be represented in figure 7

that shows the system deployment. At the lowest levels are different areas containing

numerous sensors and Resource Allocation managers. These sensors report the activity in

their assigned areas to these Allocation Managers that respond by allocating bandwidth to

the reporting sensors.

Figure 5: the deployment of sensors and Allocation Managers for the AdSNet system

There exist protocols like Common Open Policy Service (COPS) [38] that take care of

policy based message passing between different components of the system. The Resource

Area 2
Area 1

COPS communication from
sensors to resource allocators

SIBBS communication
between resource allocators at

the Peer level

SIBBS communication between
resource allocators ACROSS
different levels of Hierarchy

Resource
Allocator

Resource
Allocator

Resource
Allocator

Sensor

Level 0

Level 1

Level 2

Area 2
Area 1

COPS communication from
sensors to resource allocators

SIBBS communication
between resource allocators at

the Peer level

SIBBS communication between
resource allocators ACROSS
different levels of Hierarchy

Resource
Allocator

Resource
Allocator

Resource
Allocator

Sensor

Level 0

Level 1

Level 2

19

Allocation Managers may be hierarchically organized or on same level. They

communicate among themselves using protocols like Simple Inter-domain Bandwidth

Broker Signaling (SIBBS) [37] that enable them to make reservations regarding

bandwidth across different Allocation Managers. The focus of this thesis is not to model

these communication protocols but to assume that such type of communication exists

when the system is deployed.

1.4 System Design & Tools

The behavioral complexity associated with any ultra-large heterogeneous system arises

from both the dynamics of the individual components and the structural relationships

between components. Design decisions affecting the individual components often have

significant impact on the overall behavior of the system that can be either favorable or

disastrous. For example, activity in a search-area governing the sampling rate of the

assigned sensor. The sampling rate of a sensor is defined as the measurable activity of a

particular sensor in sampling the information out of the search space. Similarly, the

collective activities of all sensors in an area drive the traffic parameters. Exploring these

design decisions and alternatives is the focus of our interest.

The results of this work provide a modeling and simulation framework to explore the

dynamic behavior consequences of design decisions. This framework enables the system

designers to model sensors, surveillance areas and the communications hierarchy

20

according to the guidelines of the Homeland Security Systems and Attention-

Management paradigms. We call the resulting framework as Adaptive Sensor Network:

AdSNet. In the following sections, we briefly review the technologies used to design the

AdSNet.

The AdSNet architecture is different from Priority-bases architectures. In priority-based

systems, each activity is assigned a priority level and its then accordingly dealt with

based on the policy-mechanisms. In Attention-focusing architecture, the concept of

‘focusing’ attention is highlighted, which conversely, leads to the suppression of any

other running activities in the system. There is no suppression of any background activity

in policy-based mechanism.

1.4.1 Java

Java provides the most familiar form of portability – source code portability. A given

Java program produces identical results regardless of underlying CPU, Operating System,

or Java compiler. The JVM provides CPU architecture portability. To facilitate OS/GUI

portability, Java provides a set of packages (awt, util, and lang). Java programming

language runs on object-oriented paradigm and provides a means for the development of

software objects and applications. The software objects in AdSNet maps to the sensors

and managers and other different components that are physically realizable in the real

world. AdSNet is designed to model these components and simulate the resulting models

21

to support design decisions and observe the system behavior both qualitatively and

quantitatively.

1.4.2 Unified Modeling Language

The Unified Modeling Language (UML) [51] is a graphics based language for specifying,

visualizing, constructing and documenting models that have numerous components

interacting with each other. It provides a means to depict the relationship and collective

activity graphically. UML is well accepted in the Software Engineering Community and

is fast becoming a standard due to its inherent advantages that aid in comprehension of

the designed structure, behavior and interactions with the software System Under

Development (SUD). It provides visual aides like Collaboration and Activity diagrams

that help in understanding the message and control flow between the components of the

SUD. Also, there are sequence diagrams that help understand the collective behavior on a

time-line basis.

UML diagram complements the AdSNet architecture design with its graphical

representation. Extending these UML diagrams and appending details according to the

DEVS specification provides a complete set of parameters needed for AdSNet modeling

and simulation.

22

1.5 Modeling & Simulation Formalisms

Four Fundamental methods for specifying dynamical system of models are Differential

Equation System Specification (DESS) [19], Discrete Time System Specification (DTSS)

[18], Qualitative System Specification (QSS) [19] and Discrete Event System

Specification (DEVS) [18]. The figure below depicts the basics of these four

fundamental specification methods. In order to develop a dynamic specification for

AdSNet models, we need to work with these fundamental specifications. In AdSNet, we

use QSS and DEVS formalisms. The QSS is used to model the search space that is under

the sensor surveillance and has a random activity associated with it. Details of the

implemented QSS are explained in the Section 4.1.1. For the behavior of the overall

system DEVS is used, as the behavior of the components is piecewise constant over

variable periods of time. Thus, we see that in the design of architecture of a framework

that involves unpredictable environments (search-space) with predictable components

(sensors and actuators), we need to exploit both the QSS and DEVS specifications.

Figure 6: System Specification used in AdSNet Architecture

23

1.6 Plan of Thesis

The next chapter of the thesis discusses the background and related work. In Chapter 3,

the conceptual constructs used to develop AdSNet modeling environment are outlined.

Chapter 4 discusses the AdSNet Modeling and Simulation Environment and the process

of creating a scalable sensor Network. The components that make up the system are

discussed in detail and are analyzed using behavioral approach. Chapter 5 presents the

simplest of scenarios in which the designed network-system could be put. The theoretical

analysis of the System under design is taken up in Chapter 6 and boundary conditions of

various parameters involved are defined. This analysis is then followed by Chapter 7,

which deals with the Quantitative aspect of the system. The system is tested in two

different manners, namely, flat architecture, hierarchical. This chapter also compares the

performance of each of the experiments and the results are presented graphically. Chapter

8 introduces a new concept in modeling of Network delay. The designed AdSNet system

is run over this model and quantitative results are produced and compared with the results

of previous chapter. Chapter 9 mentions some application where this intelligent system

could be put to use. Finally, Chapter 10 concludes the thesis with a discussion for future

work.

24

2. Background and Related Work

How do we define intelligence and what are the parameters over which it can be

measured? Is it a behavior that emerges as a result of some problem-solving technique

and where does intelligence exists in the first place? Can we infuse intelligence in any

other organism or, say in a machine.

It is a fact that human beings are the most intelligent of all species and the level of

intelligence has increased with evolution. During the process of evolution from ape to

man, there has been a marked increase in the reasoning faculties and the ability to draw

conclusions in homo sapiens. Their problem-solving mechanism has become refined in

the process of maintaining survival and countering threats. Consequently, intelligence in

essence, is a problem-solving mechanism dedicated to the life and death of organism in

the real world [13]. Of course, animals do have their survival strategies (flight or fight

response) but the quality of reasoning is not as developed as it is in man. Apart from the

existence of remains of the reptilian brain in man, there exist structures, like thalamus,

that play integral role in the problem-solving mechanism.

In the brain, all the regions in cortex are connected with the thalamus and it is highly

probable that the triangular circuit exists wherever cortical columns in one area

communicate with columns in another area, completing this triangular circuit [16]. The

proposed triangulation circuit functions to amplify cortico-cortical connections in both

25

bottom-up and top-down directions. Taken together, and with other PET (Positron

Emission Tomography) studies show activations both in thalamic nuclei and the cortical

regions. We see here that in order to produce a reactive response, the attentional

expression (cortical areas activated by sensory neurons) has to contact thalamus, with

sufficient intensity [16]. Then the thalamus amplifies the signal and directs various

neurons in the motor cortex to facilitate an act of attentional control. Thalamus plays an

important part in getting attention of the sensory inputs and focusing of the brain’s

resources to address the activity that has newly gathered [17]. Now, which cortical

motor-areas need to be activated towards generating a reactive response depends upon the

concluding faculties of the thalamus and its decision making power [17], for it’s the

humans who have the “choice” with respect to any situation unlike other animals where

the response is generally hard-wired, as a result of millions of years of evolution.

Therefore, in a sense, the thalamus brings attention to any activity and awareness that the

activity is being addressed. In order to display an intelligent reactive time-critical

responsible behavior its important to have a component in the system, at every level in

the hierarchy, that is capable of analyzing, deducing, concluding, accumulating

information, directing, commanding, inhibiting, controlling and even enhancing the

signal or information, working in background continuously receiving inputs from all

types of sensors/lower levels.

26

Biologically implementable behaviors correspond to the environment in which the

organism is situated and it directly amounts to the survival of the organism. Fast and

Frugal (FFAs) heuristics work well with ecologically rational problem data sets that are

extracted from real-world situations [13]. FFA refers to fast, frugal and accurate

response behavior. FFAs are structured from the start to exploit ecologically rational

behavior. It’s a response behavior where an organism arrives at a decision that is fast,

accurate and made by its limited mental resources that facilitate its survival in its

environment. An organism’s FFAs are essentially reflections of the real environment in

which it has found its niche and to which it has been adapted.

FFA operates at the cognitive level where sequential processing predominates, but at the

perception level, processing is much finer grained and parallel. Its been concluded that

ecological rationality, fast and frugal heuristics at the cognitive level of processing and

the attention directed perceptual processing are the keys to understand the characteristics

of biological information processing [13]. Pinker [11] provides the fundamental

guidelines of an artificial system that tries to imitate natural systems.

“Any intelligent agent incarnated in matter, working in real-time and subset to the laws of

thermodynamics must be restricted in its access to information. Only the information that

is relevant should be allowed in. This does not mean that the agent should wear blinkers

or become amnesiac. Information that is irrelevant at one time for one purpose might be

relevant at another time for another purpose. So information must be routed. Information

27

that is always irrelevant to a kind of computation should be permanently sealed off from

it. Information that is sometimes relevant and sometimes irrelevant should be accessible

to the computations when it’s relevant, in so far as it can be predicted in advance”.

Pinker also presents evidence that our visual systems are tuned to recognize the

landscapes and the texture of scenes that are consistent and characterize the environments

of our evolutionary ancestors. Tsotsos had shown that even in such a scenario, the

problem of visual processing is inherently intractable and is NP-hard if the targets are not

identified in advance [5],[7],[8]. He shows that an attentional selection mechanism is

needed to deal with such intractability. Once the targets are given then the problem

becomes linear in the size of the display [5],[6]. However, this mechanism is not

foolproof, and attention may become focused at a wrong target, a dynamic system

capable of switching attention may prove to be a reasonable solution.

Our work also takes help from the prototype systems that Tsotsos had done earlier with

attention-management systems [14], [15], and [10]. This research takes off form where he

left off by introducing new decision-making components in the system and giving the

system the additional capability to allocate resources and suggesting a means to

channelize them. This architecture is built using DEVS formalism that gives the

advantage of using component modeling. The use of variable-structure modeling [20]

makes the design of the system highly dynamic and evolvable. It gives us a tool to

28

change the interface of different components as well as the structure of the system to

manage resources efficiently.

Other work has been done by Hannon [29], [30] in the area of Agent Systems integrating

the emotions in the biological systems (particularly the humans) and the agent

technology. His work deals with Cognitive-based Agent Architectures. He has used the

emotion-based approach to improve the control mechanisms of several of his cognitive-

based agents models. This approach [34] when combined with his current models for

attention arousal, vision processing and natural language use and learning, using his

Goal Mind Architecture environment, (the early results) demonstrates a marked

improvement in the model’s ability to fuse language and vision in a sensor rich

environment. A number of efforts to incorporate emotions as a control mechanism in an

overall agent model are ongoing [31], [32] and [33]. However, Scheutz [36] points out

that unless an approach is cognitively deep enough to be explanatory, they may do little

overall good. Hannon’s approach is based on such explanatory mechanisms wherein the

emotions are considered not only for determining the reasoning strategies used by the

Higher Order Processes (HOPs) but also how they can control the amount and type of

information presented to the HOPs by the periphery processing layer, which may be the

sensors. When viewed a system as a whole, the decision-making is goal oriented and

follows the top-down approach (from HOPs to periphery) while the information flows

according to the bottom-up approach. One thing that is missing in the Hannon’s work is

the unpredictability in the environment under observation and the appearance of the

29

emergent phenomenon called “attention” in such complex sensor environment. His

architecture has the advantage of Goal-directed execution where the system goals are

decided by HOPs. The Emotion Control Model [34] use “fear” as a control mechanism to

control both the attention and arousal in a dangerous situation for the agent. Details of

attention–arousal model can be found in [30]. In the Goal-Mind Architecture [36], the

constituent models draw their explanatory depth from the environment’s ability to

support hierarchical cognitive processing. Using adaptive distributed processing and

generalized inter-process communication; cognitive functions can be modeled at different

levels of abstractions without changing the logical relationship between these functions.

Thus, a perception model of the world and the self can be created/simulated with a

reasoning and knowledge storage system that has far less capacity than that of real

human.

In the area of developing wireless sensor networks, many approaches have come forward

and all are working on creating “smart sensors”. The idea of sensor isn’t new and sensors

have been around for over a decade but the idea of sending the refined information to its

peers or superiors is what this research is all about. Rather than typecasting the sensor as

a dumb component that relays whatever it detects, the focus is towards arriving at a

localized scenario that is created by the sensor at its local end before its communicated

across the network channel. As every bit of communication requires power consumption,

reducing the amount of information at the sensor end is the only solution possible, and if

the sensor processes and refines this information, it makes the sensor apparently

30

“intelligent”. This research identifies sensor as an active component that has the capacity

to deliver information, not just numbers and it calls for a data-processor inside a sensor

(coupled with it) to validate data and make conclusions about the sensed activity. One

other major component is their networking. Being ubiquitous and pervasive, self-

organization is an important part of sensor networks and must be dealt quite fairly.

Various research groups have developed sensor applications [41]. Some of them are:

a) Intel and University of California, Berkeley have developed a wireless pager-

sized “chassis” that can be customized with various types of sensors. This is

being used to track microclimates and pests in vineyards, monitor the nesting

habits of rare sea birds, and control heating and ventilation systems.

b) At UCLA, researchers are deploying wireless sensors to gain detailed

measurements of the effects of seismic waves on buildings.

c) Sensoria in San Diego, is developing sensors that could turn cars into

traveling nodes urban wireless networks, allowing groups of vehicles to

automatically assemble real-time information about local destinations.

d) Culler’s Group at Berkeley and Intel along with Crossbow Technology in San

Jose has developed a potentially dominant design called “mote” and its

operating System “TinyOS”. These motes, tested by hundred of research

groups around the world, are smaller and use less power than other

commercial sensors.

31

Research is also undergoing in the area of developing protocols and the hardware

technology to bring about the realization of these sensor agent systems. Protocols like

Simple Inter domain Bandwidth Broker Signaling (SIBBS) protocol [37] have come up

that can create an overlay network of resource-managers and communicate among

themselves as well as to the levels above them. Similarly, protocols like Common Open

Policy Service Protocol (COPS) have been designed [38] that can communicate between

the sensors and the resource-managers/bandwidth-brokers. The work is currently in

progress and so is the design of a system that can maximize these protocols.

Architectures have been proposed [35] that are designed using these protocols in the

underlying network but a system is yet to be implemented on the magnitude of Internet

scale and be controlled remotely.

This works takes off from the research done in the area of Attention-focusing by Tsotos,

Cognitive architecture by Hannon and the general architectural problems faced during the

allocation of resources (like bandwidth, power, link capacity) and getting the required

information from a vast sensor network, by proposing a complete architecture. It brings

forward an architecture that is capable of both the peripheral level processing as well as

goal directed system execution. The experimentation for the goal-directed simulations is

beyond the scope of the present work and will be taken in the due course.

32

2.1 Attention-focusing Experiment

Tsotsos has conducted experiments with visual image pattern recognition. [5], [6] and

[10]. In [6] he has conducted an experiment where a light beam is made to focus on a part

of an image (target) after locating the target inside the image. He has demonstrated that if

a target is known in advance, then the problem of finding the target from a search space

can be solved in realistic time and the problems is no more NP-complete. Figure 7

explains the steps the light beam takes until it reaches the target. Consider an image in

Figure 7 at the bottommost layer of the triangle pyramid. Given a target image (at a

particular resolution, we need to find this target and focus a light beam as we increase our

resolution in approaching the target. Consider the different resolutions as different layers

in the pyramid (Figure 7b). As we localize our target within an area, at any particular

resolution, we also allow the light to pass through this area.

Figure 7a: Triangle representation of an Image

Figure 7b: Layers as representation of resolutions. Layer

1 has higher resolution than layer 2

33

Figure 7c: Light beam through Layer 3

Figure 7d: Light beam through Layer 2

Figure 7e: Light beam through Layer 1

Figure 7f: Black area representing inhibited solution sets

Figure 7: Focusing of Light beam on a target within an image

At each resolution, an area is obtained, and then a winner is calculated within that area.

The winner is decided based on weighted-sum rule [6]. All those pixels that qualify their

proximity to the target, at this particular resolution, are chosen as winners within that area.

This process is performed using an algorithm called Winner-take-all (WTA) algorithm

[6] and [10]. WTA is executed until a winner can be determined at any particular

resolution. Figure 7c, 7d and 7e show the path of the light beam as it reaches close to the

target. Another effect of WTA algorithm is the inhibition of the various other solution

sets amongst which the winner was chosen. The winner takes all the attention (passing of

light beam) while the others in that layer are ignored.

34

We attempt to implement this approach in our sensor network where at the bottom of the

pyramid are numerous sensors sending their activity rate up the hierarchical network. The

attention is focused in terms of assigning a sampling rate to the sensor that shows high or

important activity.

35

3. AdSNet Building Blocks

3.1 DEVS Specification

DEVS exhibits the concepts of systems theory and modeling and affords a computations

basis for implementing behaviors that are expressed in the other basic systems

formalisms – discrete time [18] and differential equations [19]. It supports capturing the

systems behavior from both the physical and behavioral perspectives. A Discrete Event

System Specification (DEVS) is a structure.

M = < X, Y, S, δint, δext, 8, ta >

where,
 X is the set of input values
 Y is the set of output values
 S is a set of States
 δint: S S is the internal transition function
 δext: Q X X S is the external transition function, where
 Q = {(s,e)| s ε S, 0 <= e <= ta(s)} is the total state set
 e is the time elapsed since last transition
 8: S Y is the output function
 ta :S R0

+
,infinity is the time advance function

Figure 8: Definition of DEVS model

A DEVS model can either be atomic or coupled, which is composed of many atomic

models [18]. Atomic and coupled models can be simulated using sequential computation

or various forms of parallelism. A parallel DEVS atomic model is defined as:

36

M = < XM, YM, S, δint, δext, δconf, 8, ta >
where,
 XM = {(p,v) | p ε IPorts, v ε Xp} is a set of input ports and values
 YM = {(p,v) | p ε OPorts, v ε Xp} is a set of output ports and values
 S is a set of States
 ∗int: S S is the internal transition function
 ∗ext: Q X XM

b S is the external transition function
 ∗conf: Q X XM

b S is the confluent transition function
 8: S –>YM

b is the output function
 ta :S –> R0

+
,infinity is the time advance function

with
 Q = {(s,e)| s , S, 0 <= e <= ta(s)} is the set of total states
 e is the time elapsed since last transition
 XM

b is a bag of inputs (a set with possible multiple occurrences)
 YM

b is a bag of outputs (a set with possible multiple occurrences)

Figure 9: Definition of DEVS Atomic model

As shown in the above figure, each DEVS atomic model has a state representation and it

exists in one state. It passes through different states on the basis of its internal function

after spending a finite time in a particular state. It executes its internal function in the

absence of any input at its interfaces. If the model receives any input at its ports in any

particular state, it executes its external transition function, and goes to another state

dictated by the external transition function. Thus, internal transition function dictates the

system’s new state when no events occurred since the last transition and the external

transition function dictates the system’s new state when the external event has occurred.

At this point the new state is determined by the input, current state and time duration for

which the system will stay in this new state. In both cases, the system is in some new

state and it will stay there for a duration dictated by its time advance function. This cycle

is repeated thourghout the life of the system. There is another transition function called

37

the confluent transition function which comes into play what the system is on the verge

of going to another state and an external event occurs. This allows the system to define its

behavior in case of this simultaneous occurrence of external event and internal transition.

It allows the system to execute either the external transition function or the internal

transition function first, depending on the behavioral characteristics of the system.

Just like the Atomic model, the coupled model is also defined in the similar manner. The

specification includes the external interface (input and output ports and values), the

components (DEVS models), and the coupling relations.

N = < X, Y, D, {Mi}, {Ii}, {Zi,j}>
where
 X is a set of input values
 Y is a set of output values
 D is a set of the DEVS component names
 For each i , D,
 Mi is the DEVS component model
 Ii is the set of influencees for I,
 For each j ε Ii,
 Zi,j is the i-to-j output translation function

Figure 10: Definition of DEVS Coupled model

The sequential formalism treats component transition functions (δext and δint)

sequentially, while the parallel DEVS treats them concurrently. By adding couplings

between output/input ports of different components, messages can be passed from one

component to another. Under the property of closure under coupling, a coupled model

itself can be treated as a sub-component of other models. This kind of hierarchical

modular construction makes each DEVS model a self-contained component that can be

38

easily reused. Because of this, DEVS component-based modeling and simulation

environment does not rely on the underlying implementation language.

Another addition to the current DEVS formalism is the Variable Structure DEVS [20]

with the capability of dynamic reconfiguration. For component-based modeling and

simulation, dynamic reconfiguration provides several advantages:

• It provides a natural and effective way to model those complex systems which

exhibit structure and behavior changes to adapt to different situations.

• It provides the additional flexibility to design and analyze a system under

development.

• Dynamic reconfiguration makes it possible to load only a sub-set of system’s

components for simulation. This is very useful to simulate very large systems

with tremendous number of components as only the active components can be

loaded dynamically to conduct simulation.

• It provides a mechanism to see the evolution of the system if the system has the

capability to expand and contract during its lifetime.

In DEVS, they are usually referred to as variable structure modeling. The update of a

component means a component is updated by a new version that might have a very

different behavior or interface from that of the old one. This new component can also

have additional functionality than its previous version. In a sense, its capable of

adaptation.

39

This research exploits the advantages of the variable-structure DEVS and attempts to

build an evolving architecture where the components have adaptive behavior.

3.2 Experimental Frame

An Experimental Frame is a specification of the conditions under which a system is

observed and experimented with. It is the operational formulation of the objectives

motivating a modeling and simulation project. Simulation based performance analysis

requires careful design of experimental frame, the concepts of which has been proposed

in [18]. It basically consists of three models: a generator model for generating inputs to a

model under evaluation, a transducer model for collecting output data and an acceptor

model for controlling simulation run.

Design of experimental frame is objective-driven, meaning that different design

objectives require different experimental frames. More specifically, a set of design

objectives is transformed into a set of performance indices. Then, an experimental frame

is designed such that the desired performance indices are measured by simulation. Thus,

simulation is done in a way that a model is simulated with a set of different experimental

frames, or a set of candidate models are simulated with an experimental frame until a

desired design is found.

40

Figure 11: Experimental Frame

Figure 12 demonstrates the existence of various models (Model 1, Model 2, etc.) that

exissts in the system and the corresponding Experimental Frame to test them.

Figure 12: Different models require different Experimental Frames

3.3 AdSNet Model

This section describes the problem using semantic language. The use of UML comes

handy at this stage and a general functionality of the system is described as follows:

41

We represent the components of the system in Entity-Relationship diagram using UML

as the tool in figure 13.

trial

SensorArea

AdaptiveSensorNetwork

1

1..2

1

3..10

50..300

1

AttnNet

trialWDiminReturns

Stateinstantiated class

AttnMgr

+County controller

+state area

County
1..*1..*

instantiated class +controller

+county area

1

1

1

1

1

1

1

Sum

+grid cell holding information

+information compiler/manager

searchCellSpace

ThresholdTesterNot

+information gatherer

+info-threshold comparator

StopWatch

+under-threshold indicator

ThresholdTester

+information gatherer

+Threshold-information comparator

+time-keeper

+over-threshold indicator

1

1 1

1

1

1

1

1

50..300

1
1

1

1

1

Acts as a controller of this search Space area. It also
introduces a random loss factor that increases as the
sampling rate of the sensor increases

Timer

ThresholdTester

QuantumTester

Accumulator+over-threhold indicator

+adds activity

+testing quantum

+adds Actvity

Cityinstantiated class

basicSensor1+

+sense

1+

+area under watch

+receives activity

+sends activity

Estimator

+sends activity

+validation

SamplingMgr

1+

+resource allocator/provider

+receive/report Allocation1+

+sensor contoller
+city area

1+

+Resource allocator/provider

+receive/report Allocation1+

+receives activity

+sends Validated Activity

Figure 13: the entity-relationship diagram for the adaptive sensor system

42

4. AdSNet Component Behavior

This chapter deals with the behavioral specification of the components that constitute the

AdSNet system. In particular, we focus on presenting the state charts for various entities

that behave due to the objectives laid under the problem definition area. We also view

these entities working in collaboration with other entities under the structural hierarchy

shown in Figure 13, using of the collaboration diagrams (UML) and the activity charts.

These behavioral representations were developed and refined all throughout this research

work even in defining the objectives.

4.1 Topological Behavior

The hierarchy of the AdSNet system maps with that of the land-planning administration

in a typical battlefield scenario. At the lowest level are the localized areas that are under

the investigation by the sensors. These are dealt under as Surveillance areas. Many

surveillance areas exists within a city but for simplification purposes there exists one

Surveillance area per city. The cities under consideration fall within the County limits

and there are numerous cities within a county. Likewise, we extend the topology one

more level up by having many counties under a state.

43

4.1.1 Surveillance Area (searchCellSpace)

A Surveillance area is an area that is under the observation by one or more sensors. This

is a highly dynamic environment where the activity level is unpredictable. Each

surveillance area is a collection of cells organized as a two dimensional grid. Since the

basic unit of this area is a Cell, its actually a Cell Space.

The basic characteristics of a single Grid cell are defined according to the requirements in

the problem statement. Its salient features are:

a) It represents a finite area which collectively taken (with all cells in the Cell

Space) amounts the total Surveillance area.

b) The Cell is either active or passive and these events are mutually exclusive.

c) The Cell is associated with a resource parameter (between 1 and 100).

d) The probability of the Cell becoming active is directly proportional to this

resource parameter

e) Every time the cell becomes active, the resource parameter is decremented,

giving the impression of exhaustion of resource as the cell is projecting active

behavior. Since the resource value gets decremented with time, the probability

of this cell becoming active also decreases.

f) Any Cell inside the Surveillance area can become active. Becoming active is

totally a random phenomenon and all cells are bound by their individual

44

probability of becoming active as each cell has a unique storage of resources

(resource parameter).

g) The Cell continues in the receptive mode till there is finite number of

resources left in the cell. Once the resources are reduced to zero, the cell turns

passive.

Along with this basic functional unit there are other components that integrate these

individual cells towards an area. The area is basically a DEVS coupled model with the

following four components in closed couplings with the grid Cells (as shown in the

figure). These components constituting an area, along with the Grid Cells are:

a) StopWatch

b) Sum

c) ThresholdTester

d) ThresholdTesterNot

The StopWatch keeps track of the time this area remains active. As long as the cells of

the area remain productive and the number of cells becoming active is over the minimum

threshold it stays active and outputs the time only when the area becomes dead. The Sum

component adds the number of grid cells becoming active at a particular instant. It’s a

gateway to the outer world that tells the sensors about the activity inside the cell space. It

is responsible to report activity to the sensors. It also introduces a loss factor which

diminishes the activity as it is relayed. The loss factor is a random parameter and it varies

45

according to either linear or square function. ThresholdTester checks if the number of

cells becoming active are over a certain threshold before it can trigger off the stop watch

to declare that they are dead. Likewise, ThresholdTesterNot keeps track of the situation

when the threshold hasn’t been reached. It keeps the stopwatch engaged in the active

state so that it continues to note time. The following table delineates their state diagrams.

Figure 14 shows the Cell Space structure containing 5 Grid cells. According to the

specifications given in the problem statement, the number of cells can be anywhere

between 50 and 300. The functionality of this surveillance area can best be

comprehended by the UML Collaboration Diagram below.

Figure 14: The objects of cell space in communication with each other

46

Figure 15: Digraph Coupled model showing the Cell Space area components with 5 cells

The whole of the cell space behaves according to the Qualitative Systems Specification

(QSS) where in it produces output only when this closed system reaches a certain

threshold. It operates within a certain boundary and gives a qualitative appearance of

showing ‘activity’ as a whole. When it produces output, it advertises to the external world

that this closed-coupled system is undergoing a quantum change in its state. However, its

internal components work according to their threshold values, the aggregated output

value that comes out of this closed system is not dependent on these threshold values.

The output value may be lower than the threshold of the components and it results due to

the loss factor that creeps in as the information (activity) leaves this closed system. The

incorporation of error factor and the system maintaining its behavior despite introducing

Sum

Stop Watch

ThresholdTesterNot

ThresholdTester

Grid Cell 1

Grid Cell 5

47

error and undergoing a quantum state change is what differentiates this system with the

normal DEVS.

Figure 16: Activity associated with the Surveillance Area

4.1.2 City (sensorNet)

The city structure is actually a sensor network wherein sensors are assigned a

Surveillance area. The details of Surveillance area are dealt in the previous section. For

simplicity purposes only one area is there in the City structure though in reality there may

be numerous areas within a city. Again for simplicity, the sensors that are assigned to a

surveillance area can be a maximum of 2. Attached to every sensor is an Estimator that

acts as a ‘thinking element’ capable of drawing conclusions about the sensor’s behavior.

Low probability not
enough for making cells
active

Even if some cells are in
receptive mode ready to become
active, they do not contain
enough information to advertise
it

48

It has a threshold level defined by the system parameters, that acts as a baseline to deduce

results about the sensor activity.

Sensor

A sensor is an atomic entity whose primary purpose is to acknowledge any activity in the

area that it is investigating. It has its own sensitivity level over which it can detect any

activity. The sensitivity in this context may be considered as the activity within the

Surveillance area at which the sensor detects this activity as the “activity” which then

calls for a corresponding response from the sensor. The first task that the sensor does is to

communicate the activity to the Estimator for further processing. This process is repeated

indefinitely and the sensor maps the area activity with the corresponding sampling rate.

The sampling rate of a sensor is the ability of the sensor to process information in unit

time. As in reality, these sensors do not always work an maximum allowable power but at

an ‘optimum’ level and can go to the maximum level if the need arises. They work at a

rate proportional to the information under processing and as a percentage of the

maximum capability. The sampling manager sends them this percentage value and the

sensor then works according to it. The sensor is both an active and a passive element. Its

“active” in the sense that it has its own discretion to detect activity and can differentiate

between a normal and an abnormal activity (though it needs to be programmed in terms

of its sensitivity) and “passive” as it calls upon the sampling manager for an updated

Sampling rate to process the information coming. A sensor has a typical structure as

shown in the Figure 17:

49

Figure 17: A Sensor with its interfaces and I/O handling

The Sensor has four states as shown in Figure 18. It continues to stay in the active mode

as it needs to continue to sample information at the default rate. It’s necessary as by being

in the active mode will enable it to detect any abnormal behavior in the surveillance area.

Figure 18: State diagram of a sensor staying in default activity as long it is alive

Receives the activity from the Surveillance area at this place

Receives the information content from
the Surveillance area

Receives the updated Sampling rate
from the Sampling Manager

Receives the sensitivity level according
to which it detects an activity

Address: Sensor placed in County1 city1
Sensor Id: with id 1

Receives the maximum
processing rate

Advertises activity
to the Estimator

Sends information to processing
element for evaluation and processing

To send out its coordinates in 2D
or 3D space for tracing its position

50

The ideal behavior of a sensor is displayed in Figure 19. It shows that the sensor

continues to stay in the receptive mode with a default sample rate and accumulates

information. It is when the information reaches/surpasses the sensitivity level, it switches

to the reporting mode, wherein it reports the activity to the Sampling Manager and is

assigned a new Sampling rate. This new sampling rate is higher than the default sampling

rate and the sensor starts sampling the information more rapidly. The different curves in

the figure show pathways of information gathered in different Surveillance areas. The

leftmost depicts the behavior of highly information loaded region containing large

number of cells and consequently a high amount of time to sample this information by

staying in the active mode. While the curve in bold depicts the boundary condition where

the sensor reports an activity that just equals its sensitivity threshold. It then receives the

sampling rate from the Sampling manager and processes the information. In the next step,

it turns from an active mode to receptive mode again.

Figure 19: Behavior cycle of sensor

Reporting mode
Threshold reached;
Information gathered
equals threshold

active mode
Processing the
information, so the
information detected
keeps on reducing at a

Receptive mode
Accumulating Information

Information Curve

51

The behavior of the sensor in action and its interaction with different components of the

system can best be seen in the UML collaboration diagram Figure 20. Apart from the

surveillance area, other component that it needs for its successful operation and desired

behavior is the Sampling Manager, a detail of which is presented in the Section 4.1.3.

Figure 20:The collaboration of City coupled model. The sensor area object shown above refers to the
City boundary that the sensor messages have to pass through to reach Sampling Manager and vice

versa

52

Figure 21: Snapshot of the city in action displaying the statistics of each of the Sensor

The UML diagram shown in Figure 20 describes only one sensor in operation. Figure 21

shows a typical city boundary that is composed of a surveillance area and two

accompanied sensors.

Notice that the two sensors are investigating the same area but each of them has unique

sensitivity index. Count1 CitySensor_1 has a sensitivity of 50 while the second sensor

County1 CitySensor_2 has a sensitivity of 70. Also notice, the time advance (sigma) of

Activity detected by the
sensor in Surveillance Area

Information gathered corresponding
to the activity in the area

Sensitivity tuned
to 70 cells

Sensitivity tuned
to 50 cells

Sampling rate
corresponding to the
activity detected

Sampling rate
corresponding to the
activity detected

53

the next event. The sensor that has a high Sampling rate is scheduled for a next event

first. However, the information reaching both the sensors is same, it is their sensitivity

that gives them the criteria to decide as to what will be their sample rate. Sensor 2 doesn’t

consider the activity in the area enough to declare it as an abnormal activity as its

threshold is 70 and the activity in the area is 66.165. On the other hand, the sensitivity of

the other sensor is 50. It also detects an activity of 66.165 in the area and declares it as

abnormal increase, which is above its threshold and starts sampling at a higher rate. A

typical snapshot of the system is presented in Figure 21 and the comparison of the

instantaneous values is shown below:

Table 1: Comparison of the sensitivity behavior of the two sensors observing same activity

Behavioral Statistic County1 CitySensor_1
(max Rate = 9.0)

County1 CitySensor_2
(max rate = 9.0)

Sensitivity 50 cells 70 cells
Activity detected 66.165 66.165
Information Gathered from
the active cells 15524 units 15524 units

Sampling Rate 0.264 of max rate 0.069 of max rate
Time Advance of next event 0.42 sec 1.587 sec

Thus, this section describes the City containing one Surveillance area with two sensors in

action.

Estimator

Each sensor has an attached rate estimator. It is a compound element composed of the

following basic functionalities:

54

a) Accumulation: This component accumulates the sensor activity sent by the sensor

for the processing inside the Estimator.

b) Threshold Estimation: This component evaluates the accumulated activity with

the threshold parameter that has been setup by the system specifications. This is

different from the sensitivity of the sensor (sensitivity applies when the sensor

detects an activity). This comes into operation when the area-sensor combination

reaches a meaningful threshold. It works on the accumulated activity in the

accumulation process and sends a signal when the area-sensor combination, the

accumulated activity, surpasses the defined threshold.

Figure 22: Components inside a Rate-estimator

c) Strength of the signal received from sensor: This is a timer. It keeps an account of

the time period over which the accumulator has been in session. This helps in

getting the strength of the accumulated activity. The more the time elapsed in

reaching the threshold, the less the strength of the activity and vice versa.

d) Quantum Testing: This is the component that helps integrating all the above three

components. This component advertises the signal along with its strength to the

outside world and generates a snapshot of the area depending upon the

Accumulator
Quantum Tester

Timer

Threshold Tester

55

information gathered by the accumulator. This component sends the processed

signal to the Sampling Manager that then sends the updated Sampling rate to the

sensor. At the instant it sends the communication to the Sampling Manager, it

creates the snapshot of the accumulated activity.

The working of the Estimator is analogous to the working of thalamus, the decision-

making entity that takes decision of the validity of the inputs from the sensors. The sensor

is independent of the operation of the Estimator and it continues to provide input to the

Estimator. This working is again taken from the biological domain where the sensors

(ear, eyes, touch, smell, taste) keep on sending information to the brain, but it’s the

decision making capability of the brain to process, integrate and give a comprehensive

picture [17]. In our model, every sensor is provided with an estimator to validate the

results of the sensor. The model of the Estimator is a basic and simple model to map the

analytical faculties of brain and has a very high level of abstraction. It is designed on the

FFA Heuristic mechanisms such that it sends a message as soon as it has enough

information. This is implemented using threshold mechanism. The message sent is

actually the strength of the activity received by the sensor.

56

Figure 23: Sensor Estimator Pair

4.1.3 County (attnNet)

The County is an aggregation of many cities. Apart from a collection of cities, a county

contains another important component, Sampling Manager. This component is

responsible for controlling and release of valuable resources to the sensors placed in the

city. As indicated in the problem statement, this manager has a maximum of resources

corresponding to the total area of the cities in its control i.e. the whole county. It assigns

the maximum allowable resources to the respective cities proportional to their area. As

the sensors report the state of activity in their assigned areas, the manager assigns them

their sampling rate to process the information released by their areas. The Sampling

Manager has a quantum over which any change reported by the sensors is considered for

a new assignment of the sampling rate to the sensor. The sensors continuously report

about their activity (through the Rate-estimator) to the manager. If the level of change in

activity is below this quantum, the Sampling Manager doesn’t revise the sampling rate of

the sensor. But, if the activity reported surpasses its quantum, then it revises the sampling

57

rate for that particular sensor. When the sensors do not report any abnormal increase or

decrease in the activity level of the area, i.e. the activity level is well within the quantum

range of the Sampling Manager, the continue to sample at their current rate, the rate at

which they reported the activity. If the activity level is below their individual threshold,

then the Sampling Manager assigns them a default Sampling rate, which make them

continue to sample at a minimum possible rate. This is required as the sensor can detect

any abnormal activity only when they are always investigating. To keep them in the ON

state, they are assigned this default sampling rate. A typical County scenario is displayed

in Figure 23. It contains three cities, the address of each is printed inside the top area of

each box e.g. County1 City1, county1City2, etc.

Figure 24:A snapshot of the County structure. City 2 is expanded for illustration

Figure 24 shows three cities in direct control of a Sampling Manager. The city as a black

box has 4 incoming ports and 2 outgoing ports. This corresponds to the number of

Sampling Manager

City 1

City 2

City 3

58

sensors contained in the city. Each sensor requires 2 incoming ports and one outgoing

port. The only information that comes out of the city boundary is the activity level

detected by the sensor, which then goes to the Sampling Manager.

 (a) (b)

Figure 25: Showing the evolution of the Sampling Manager as sensors increase

The Sampling Manager shown in the Figure 25(a) above shows the simplest construction

of the component. The left figure shows the structure of the interfaces when there exists

only one sensor assigned to the Surveillance area. The notation in2_1 implies that the

port in belongs to city 2 and within it, the sensor 1. The same address notation belongs to

the outports. So each sensor has been assigned one input port and two output ports:

Input port:

• in + location of sensor
(used as the interface for receiving activity from sensor)

Output port(s):

• Out + location of sensor
(used by Sampling manager to notify the sensor of its revised Sampling rate)

59

• outThresh + location of sensor
(used by Sampling Manager to updated the sensitivity of the particular sensor)

The rest of the ports (Inport(s): in and setMaxAlloc; Outport: out) are for the functioning

of the Sampling Manager and receiving and sending messages to the superior level. It

sends its resource distribution to higher level using the out port and receives its maximum

allocation from superior level at the inport setMaxAlloc. The Figure 25(b) shows a

modified version of Sampling Manager. This Sampling Manager is managing cities that

contain two sensors each. As in Figure 25(a), the number of cities is same, i.e. three.

Notice the address location as indicated by in2_1 and in2_2 (city 2 containing sensor 1

and sensor 2). The Sampling Manager is a dynamic structure that has the capability to

expand and contract on a need-to-basis. It is provided with a capability to evolve as the

sensor system evolves and modify its interfaces, though keeping the logic of providing

and distributing resources intact. This capability is facilitated by variable Structure DEVS

[20] that was built as a part of this research. The logic inside the Sampling Manager is

described in Section 6.2.

As shown in the City structure in the previous section, each city has its boundary and the

Sampling Manager and other entities communicate to the City using this boundary. The

information that comes into the city is the Sampling rate of the sensors inside this

boundary and the sensitivity index of the sensor. Both of these values are sent by the

Sampling Manager. Figuratively speaking, the sensors are acting with the outer world,

60

Sampling Manager specifically, and getting updates about their behavior. The

Surveillance area inside the city is a completely independent identity with its own

behavioral map, as discussed in Section 4.1.1

4.1.4 State (adaptiveSensorNet)

The State is one level up in hierarchy over the County level. Its structure maps that of a

county, except the fact that a State is aggregation of many counties controlled by an

Attention Manager. The description of county is addressed in the previous section. The

function of Attention Manager is analogous to Sampling Manager. At this level, each

county is allotted a maximum allocation of resources, which gets distributed to the

sensors inside the county via Sampling Manager. A typical state looks like:

Figure 26: Top level view of a State constituting Counties

It shows three counties under the control of a single Attention Manager, which assigns

them their maximum allocation rate. The manager may be considered as containing a

61

communication backbone that distributes bandwidth among different counties depending

upon their total activity. It is not responsible how the resources are distributed inside the

county and is totally ignorant of the structure inside the counties. The manager sees the

counties as they appear at this level, a black-box. Each county shown above have

different behavior and are not identical to each other. Each has a different loss factor of

how information gets transferred to the sensors. Its behavior along with the behavior

chart of the counties is shown below.

We expect a behavior of distribution of resources from this level to lower levels (inside

the counties) till the allocation reaches the sensor that displays the highest activity. The

algorithms implemented at different levels are independent of implementation of the

hierarchical construction as the Manager at every level distributes what’s available with

it. We observed a similar behavior when we ran experiments.

62

4.2 Experimental Frame Component Behavior

Each Simulation scenario is a controlled experiment. We have seen that the system when

left alone to run, displays a certain behavior. We need to test the boundary of our system

when its subjected to various strains through the experiments conducted using

Experimental Frame. In order to introduce external conditions that will drive the

simulation, we introduce a component called Scheduler. The job of this component is to

schedule events that bring about the change in the topology or the sensitivity of the

system. Although there is no real ‘generator’ in the system, as the Experimental Frame

formalism puts it, the scheduler may be considered as generator that generates selective

events pertaining to the scenarios that are discussed in the Section 5. The other

component that holds a place in the Experimental Frame is the Analyzer (transducer) that

gathers the results of the simulation and provides analysis. The Scheduler and the

Analyzer are the specialized versions derived from Generator and Transducer described

in Section 3.2.

63

5. Scenarios

As mentioned earlier, the experiments are conducted by using the concepts of

Experimental Frame. Our Frame has three components:

a) Scheduler

b) Model under Investigation

c) Analyzer

The component (b) changes according to the scenarios and so does the scheduler tasks.

The tasks of scheduler are explained in detail with reference to the scenarios discussed

below:

5.1 Static Topology and fixed number of Sensors

In this scenario, the topology of the system remains constant. There are no additional

sensors added, no additional cities added. The boundary of the model under consideration

ends at the county level and experimentation is done within the county. The number of

components in the experiment doesn’t fluctuate. Now, keeping the structure fixed we

introduce a disturbance in the system, instigated by the Scheduler. The disturbance may

be constructive or destructive depending upon the task it accomplishes and its effect on

the resource allocation.

64

Figure 27: Experimental Frame showing the model with Scheduler and Analyzer

The basic job of the Scheduler here is to cause external event into the system that would

bring about the change in the sensitivity of one of the sensors chosen. When the

sensitivity of one of the sensor changes, we expect to observe a change in the behavior of

the sensor Area as a whole.

5.2 Static Topology and variable number of Sensors

In this scenario, we introduce more sensors into a city when the activity of the city is over

certain threshold. The system is capable of adding and removing sensors and keeps the

sampling rate of sensors well within a range. As mentioned earlier, the activity in the area

is unpredictable; the decision to add/remove a sensor is taken on the run-time. This

experiment is conducted at the County level, composed of cities containing sensors. The

experiments demands the presence of a Sensor Manager inside the city that keeps the

65

count of the number of sensors in play and take the corresponding decisions based on the

activity of the area. The figure below explains the Experimental Frame.

The top part of Figure 28 displays the system at its normal state. To show a clear picture

only the couplings related to the expanded city 2 are shown, though couplings between

city1 and city3 with the Sampling Manager do exist. The lower part of Figure 28 shows

the resulting system after the addition of the third sensor in city2. Notice the updating of

city interfaces and the interfaces of the Sampling Manager to handle the new sensor that

has appeared on the scene. When the job of the sensor is complete the system is restored

to its original states. The status of the Sensor Manager is also shown in the figure which

displays that the system is aware of the arrival of the third sensor. Only the new

couplings that resulted from the arrival of third sensor are shown in the figure. The

Scheduler and the Analyzer do their respective jobs.

66

Figure 28: Experimental Frame structure showing variable structure

67

6. Theoretical Analysis

This chapter deals with the mathematical analysis of some of the key factors of the

system described in previous sections. It also tries to define the boundaries conditions for

the parameters involved therein. The parameters that will be discussed in the following

subsections are:

a) Incoming activity: A

b) Sampling Rate of Sensor: S

c) Threshold of Rate Estimator: T

d) Number of Data Messages in system per sec: m

e) Number of House-keeping Messages in system per sec: z

f) Rate of producing jobs (System Snapshot data) by sensor: R (R α S)

6.1 Presence of Rate-Estimator with Sensor

6.1.1 Estimator Threshold

The AdSNet System has a working delay of 1 sec. This implies that any change in

activity has to persist for around 1 sec to actually receive a new Sampling rate from the

Sampling Manager. It is kept as such so that any small accidental change in the Activity

measure doesn’t produce change in the Sampling rate updates thereby making system

more stable. The system makes sure that the incoming activity has persisted long enough

before it communicates this change to the next level. This buffering/working delay can be

68

defined based on the system requirements. It is approximately 1 sec for the default case.

Having set that, let us also define the maximum Job rate of sensor. Each sensor has a

maximum production-rate of R Jobs/sec. This implies that given a Sampling Rate of 1,

the number of jobs produced per sec is R. The default Sampling rate of a sensor is

certainly less than 1 and consequently, the default Job-rate will be less than R.

Let us assume that the default activity (background) activity is A units. So every time a

sensor reports activity (to the Rate-estimator), it reports this value (A units). Given a

system delay of 1 sec,

 Total amount of Activity reported per second ξ = A X R

Now the Rate-Estimator reports the Activity to the Sampling Manager when the Activity

surpasses the threshold T. As a result, if the delay factor is 1 sec, then T > ξ. This

condition will enable the Rate-estimator to report the Activity (after processing it, see

Section 4.1.2) after atleast 1 sec (iff the sensor is operating at Maximum Sampling Rate).

6.1.2 Number of messages in System (Bandwidth Usage)

 This section discusses the effect of the Rate-estimator on the bandwidth usage. The

Bandwidth usage is determined by the number of messages in the network queue at a

particular instant of time (see Section 7). Let that number be N.

So,

 N = No. of Data Messages + Housekeeping Messages

69

Consider the case when Rate-Estimator is not present. In such a scenario, every data

message (reporting of Activity) from the Sensor reaches the Sampling Manager. Let the

number of sensors in the System be n.

∴ Total data messages per sec = n X jobs produced by sensor per sec at default rate

 m = n R (R <≠ Max Job rate)

and, Total number of housekeeping messages = z per sec

Hence, Total messages in Network Queue N∉ = m + z (1)

Now, considering the case when Rate-estimator is present,

 Total data message per sec = n X T
R

 = T
m

 (using 1 from above)

As all the data message goes from the Sensor into the Rate-estimator and the Rate-

estimator produced only one data output once the threshold is reached, the effective data

message is reduced by a factor of T. The Rate-estimator is an integral part of the sensor

and the data messages from the sensors are not released into the network. In other words,

only an output from the Rate-estimator is used for communicating information.

And, House Keeping messages per sec = z

They are taken to be same for the above scenario. This assumption is based on the

simulation experiments that we performed in the following section.

70

Hence, Total messages in Network Queue N∈ = T
m

+ z (2)

The network bandwidth usage is proportional to the number of messages in the network

queue. Taking ratios of N∈ with N∉, gives the ratio of bandwidth usage for a system

with Rate-estimator and without Rate-estimator.

∴ k

k
T

zm

z
T
m

N
N

+

+
=

+

+
==

∉

∈

1

1

γ

where,

 m
zk =

Clearly,

γ can be approximated to T
1

 when m >> z i.e. when the data messages are

greater than the housekeeping messages. This is a practical assumption when the sensors

are in a steady state and no housekeeping is required to maintain the system•. Recall that

in a discrete event scenario, message passing only occurs when there is a change in the

state of the system. Consequently,

 N∈ ≅ T
1

 N∉, which implies that the messages in the Network Queue are reduced

by a factor of T, when Rate-Estimator is in operation.

• There are health-check protocols that maintain the system and are often periodic. Since we can’t reduce
the number of these messages, they are not considered for developing the relation for Bandwidth usage for
either case (using Rate-estimator or without Rate-estimator).

71

6.2 Algorithms inside the Sampling Manager

The Sampling Manager implements the algorithm to assign the Sampling Rates to

different sensors inside the Sensor-Areas. As described in Section 4.1.3, it receives the

Activity-strength from the Sensor-Area and responds back with an updated Sampling

Rate for the sensor. The underlying logic implemented has the general algorithm

described as follows:

1. Get activity value currVal (at the in+location_of_sensor port, see Section 4.1.3)
2. Get previous activity value associated with this sensor from its own database
3. Calculate the difference
4. Update the Sum parameter which reflects the total amount of resources being used by

all the sensors.
5. Update its own database with this new value currVal
6. Get the lastSum value from the database (total sum of resources in the previous

iteration and during the last assignment of sampling rates to sensors)
7. Compare lastSum and Sum values and get the difference
8. if the difference is greater than the quantum outQuant of this manager, then get ready

to send revised Sampling rate (outQuant may be referred as the sensitivity of the
Sampling Manager and its sends the revised rate to the sensors only if the difference
value in the above step i.e. the new total allocation Sum has made a quantum change)

9. replace the value of lastSum by Sum
10. Get the previous Sampling rate for this sensor
11. recalculate new Sampling rates based on either of

a) Normalized-Sum (NS) Rule (Section 6.2.1)
b) Normalized-Max (NM) Rule (Section 6.2.2)
c) Tunable Alfa-Beta (TA) Rule (Section 6.2.3)

12. Update the Sampling rate of this sensor in its own tables
13. Send new Sampling rates to the sensors.
14. Repeat the cycle with the above 13 steps indefinitely

Figure 29: Algorithm inside the Sampling Manager

Depending upon the experiment performed or the environment of AdSNet System

(constricted resources or unlimited resources), appropriate algorithm in Step 11 is chosen

and the sensors are assigned the updated Sampling Rates.

72

6.2.1 Normalized-Sum Rule (NS Rule)

The NS Rule is based on the condition of Limited Resources (the situation when there are

no free resources available and all the resources are already distributed). The Sampling

Manager has fixed resources (eg., bandwidth, channel capacity etc.) and it has to

distribute them among the sensors. Consequently, the most active sensor (Sensor-Area

reporting the maximum Activity) should be granted maximum amount of resources as

compared to other sensors. It can be represented as:

∑
= j

i
i

k
k

A
AS

where, i < k ≤ j i,j ⊂ N and j ≥ 2

Sk = sampling rate allotted to sensor k
Ak = the incoming activity rate of sensor k

This Rule has the following properties:

a) As Sampling Rate S is directly proportional to the percentage of resource

allocated, 1=∑S k

b) Any increase in the Sampling rate of any sensor brings about the decrease in

the rates of other sensors and vice versa. This is due to the limited capacity of

the system and the Sampling Manager having limited resources. The

Sampling Manager distributes 100% of its resources to the sensors.

Consequently, in order to address in demand, it has to withdraw some of the

resources from other sensors.

73

c) Every update in the Sampling Rate of a single sensor re-adjusts the Sampling

rates of all other sensors in the AdSNet system. Any single update disturbs the

current configuration of system. This is unacceptable when the incoming

activity A is of competing nature (A not very high as compared to background

activity. See Section 7.1.1)

d) As Job Rate R of sensor is also proportional to the Sampling rate of sensor,

high Sampling rate produces high Job Rate. If the numbers of sensors in

system is large, and in light of the property (a), the Job Rate greatly reduces.

6.2.2 Normalized-Max Rule (NM Rule)

The NM Rule is based on the condition of unlimited resources (situation when there is

always an amount of free resources available with the Sampling Manager). When the

resources are freely available with the Sampling Manager, it can distribute them to the

sensors and let them Sample at the maximum rate. This would enable each sensor

working at its maximum Sampling Rate. In order to focus and bring attention to the

highest Activity or highly active sensor, all the Activity reported by the sensors is

normalized by the Maximum Activity amongst them. As a result, the Sampling rate

becomes a function of Maximum Activity present in the system at a given time. It can be

represented as:

74

A
AS k

k
max

=

where,
 kS = sampling rate allotted to sensor k

Ak = Incoming Activity and

Amax = Current Maximum Activity available with the
Sampling Manager for any particular sensor.

This Rule has following properties:

a) The Maximum activity Amax at any given instant defines the state of the

system. If any sensor has a high Activity, it forces other sensors in the

neighborhood (under the same Sampling Manager) to increase their Sampling

rate (through the Sampling Manager).

b) If the incoming maxkA A< , then the sensor is assigned the Sampling Rate

according the definition said above, without changing or updating any other

Sampling rates of other sensors (provided Amax is constant during the arrival

of new activity). The arrival of any new Activity does not disturb the

configuration of the system as long as its less than the current maximum

value.

c) If the incoming maxkA A> , then the incoming Activity replaces the current

value of Amax and becomes Amax itself. As the system has new Normalization

factor, all the Sampling rates of other sensors are updated based on this

change, with the sensor reporting this Activity Ak receiving the Sampling rate

equal to 1 (according to the definition). As a result, the new activity grabs

75

hold of the maximum resources that it can utilize iff it has the Maximum

Activity as compared to other sensors in the system.

d) The definition of NM Rule is independent of the number of sensors in the

system as it is dependent only upon the new incoming activity Ak and the

maximum activity Amax amongst the sensors already present. The assigned

Sampling rate is independent of the number of sensors operating at any given

time in the system. As a result, the Job rate is also independent of the number

of sensors. The NM Rule promotes scalability.

e) Each sensor can work to its maximum potential (producing the max possible

Job Rate) unlike the NS Rule (where it has an upper bound) irrespective of the

loading of the system.

f) It helps us to define that providing resources and providing attention are

two different operations. Providing attention leads to providing resources but

not vice versa. Property (c) makes it more evident when the new incoming

activity registers itself with the Sampling Manager and causes reconfiguration

of the entire Sampling Rate table based on its value. On the other side,

property (b) provides the resources to the incoming activity but no attention.

6.2.3 Tunable Alfa-Beta Rule (TA Rule)

The TA Rule exploits the benefits of the NM Rule and makes it more realistic by using

negative feedback mechanism. It incorporates the previous sampling rate of the sensor

76

(reporting the new activity) in the determination of the new sampling rate. Though the

overhead increases at the Sampling Manager end as it has to maintain a separate table for

storing the previous Sampling rates, it makes the system more realistic. Keeping the

previous sampling rate in the calculation brings a little amount of “inertia” in the system.

This inertia factor is tunable and is presented as follows:

Let the change in Sampling Rate be defined by,
dt
dS k

k
kk S

A
A

dt
dS

−=
max

Sk(t + dt) = Sk(t) +)(
max

k
k S

A
A

dt −

 = Sk(t). (1 – dt. Sk) + dt (
maxA
Ak)

which gives us,

 Sk’ = α Sk + β
maxA
Ak

 where Sk’ is the new sampling rate of Sensor k

The TA Rule has the following properties

a) The determination of Sampling rate is tunable. Based on the values of α and

β, the system can be made more sensitive or more sluggish.

b) α and β are correlated by the function α+β = 1.

77

(boundary condition when Sk’ = Sk)

c) Increasing the sensitivity (β) automatically reduces the inertia factor (α)

d) This Rule makes the transition to new Activity level smoothly. There are no

sharp rises and falls in the values of new Sampling rate when compared with

previous Sampling rate.

e) Higher the β, the fast the responsiveness of the System (through Sampling

Manager) and higher the α, the more inertia the system has and more averse to

change to new Sampling rate.

f) Striking a balance between α and β defines the responsiveness of the System.

78

7. Quantitative Results

This section presents the analytical results obtained after conducting experiments in the

fixed topology scenario with minimum ten sensors at level 1 (County level). The system

has two independent invariants:

a) The new incoming activity that tries to grab the attention

b) Estimator-threshold of the sensors already working.

The threshold of the activity considered here is the threshold of the attached Estimator

that advertises the findings of the sensor. Various experiments are devised that show the

relationship between the said invariants and their effect on the response time of the new

incoming activity. The response-time is defined is the time it takes for the new activity to

grab attention and the required resources.

7.1 Flat Simulation

7.1.1 Response Time for a new Activity to grab attention

This experiment depicts a scenario when the sensors are running at a default activity and

a new activity tries to break in the system. The new activity is varied from an activity

value lower than that of the default activity level and is increased to a value much higher

than the default level. Response time is defined as the time from the instant when the

sensor starts reporting the increased activity to the instant it receives the increased

79

sampling rate from the Sampling Manager. The resulting response time is plotted against

the corresponding activity value. Figure 30 shows the results in the graphical manner.

The threshold of Rate-estimator of all the sensors is kept constant and the only parameter

that is varied is the activity level of the new incoming activity. This is a single level

simulation and the Sampling Manager has finite resources. The environment consists of

three sensors at their default activity value 100 and Rate-estimator threshold =3500.

Maximum job production rate = 9 jobs/sec. The simulation experiment was run twice and

the same values were obtained in both the simulations.

Figure 30: Response Time for new activity to grab the attention

Comments and Inferences:

a) It takes less time for the new activity to break into the system when its

activity level is much higher than the activity level of already running

sensors. As the activity value is increased, the response time decreases

(see the curve for activity higher than activity =100).

Response Time for a new Activity to grab the Attention (Limited Resources)

0

4

8

12

16

20

24

28

70 80 90 100 110 120 150 200 250 300 350 400

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

NM Rule
NS Rule

80

b) When the new incoming activity level equals 100, there is a marked

increase in the response time, as the system takes quite a while to provide

attention to an activity of similar potential(competing nature). A bell curve

behavior is spotted at around value 100. As discussed in the Section 6.2,

NM Rule is more responsive and sensitive than NS Rule, we see much

expressed competition in the graph above.

c) The NM Rule takes less time for every reading on the scale (except at

incoming value of 100). The reason is attributed to the variation in the job

rate. NM rule has higher job rate (it can vary from 0job/sec to 9 jobs/sec

and it does go upto 9 jobs/sec when the activity gets Sampling rate equal

to 1 while the NS rule can never go to its maximum job rate).

d) For values lower than the default activity level, and region away from the

bell-curve, the system takes long time to provide attention and resources.

This is attributed to the fact that an incoming activity with low potential

takes more time to produce meaningful information and as a result high

response time.

7.1.2 Estimator Threshold v/s Response Time

This experiment calls for the behavior of the estimator attached to the sensor. It shows the

effect of the threshold of the estimator on the response time of the incoming activity. As

discussed earlier, the estimator is an abstract model for the validation model of the

sensor, its threshold value is a symbolism of its decision making power. Lower the

threshold, powerful and quick is the ability of the Estimator (with the caveat that it

satisfies the condition in Section 6.1.1) to come to conclusion and validate the

information sent by the sensor and vice versa. NM rule is used in this experiment for

81

better responsiveness. Maximum Job Rate is 9 jobs/sec and Maximum Activity values

taken by any incoming new activity is 300 units. The minimum threshold level of any

Rate-estimator can theoretically be not lower than 2700 (according to the conditions

described in Section 6.1.1). This experiment has ten sensors each working at an

estimator-threshold of 4000, while the incoming activity has its estimator-threshold

taking different values. Different lines in the graph depict different values of the

incoming activity. In addition, the default activity level of the sensors is again 100. The

response time is plotted against the estimator-threshold of the incoming value.

Figure 31: Graph for Response Time v/s Estimator Threshold

Comments and Inferences:

a) The threshold of the estimator has a strong impact on the response time of the

incoming activity and the higher the threshold, higher the response time.

Response Time v/s Estimateor threshold

4

9

14

19

24

29

2700 3000 3500 4000 5000

Rate Estimator Threshold

R
es

po
ns

e
Ti

m
e

(s
ec

)

Incoming Activity = 80
Incoming Activity = 100
Incoming Activity = 120
Incoming Activity = 150
Incoming Activity = 200

82

(assuming that the threshold of the estimators of already running sensors

remains constant).

b) If the incoming activity is higher than the populating sensor, the response time

increases along with the threshold of the estimator.

c) Maximum variation in response time occurs when the incoming activity is

same or close to the already running sensors-activity (incoming activity = 100

or a little less than 100).

d) An area irrespective of its Estimator-threshold value can grab attention if its

activity level is higher than the already running sensors.

e) When the incoming activity is lower (incoming values: 90 in the graph above)

than the activities of the older populating sensors then response doesn’t show

much of a different in response time as in the case when incoming activity is

greater than 100 (eg, 120). Notice that in Section 7.1.1 the response time stays

constant and close to activity value 100 for values less than 100.

In an environment where sensors are operating at a certain threshold, a new sensor can

report its activity and can get noticed by tuning its Threshold value. In case of noise

channels or chattering environment, this feature facilitates focusing of attention to the

new incoming activity.

7.1.3 Scalability v/s Response Times

This experiment calls for the scalability issues and the effect on the response time of the

incoming activity as the number of sensor increases. Sensor number is increases from a

total value of 3 to a number of 300. Different lines in the figure below show different

estimator-threshold values of the incoming activity. The default activity level of the

 83

sensors is 100 units and their estimator-threshold values equal 3000 units. The incoming

activity value is 150 units. As a result, the incoming activity level being higher, it must

break into the system and grab the attention and the resources. The figure below shows

the plot of Response time with the number of sensors.

Figure 32: Response Time v/s Scalability

Comments and Inferences:

a) Response time of any incoming activity at any threshold value is independent

of the number of sensors already active for NM Rule and directly proportional

for NS Rule

b) If the activity level of the incoming activity is higher, it will grab the attention

irrespective of the current resource distribution

c) The architecture with NM Rule is scalable and maintains its qualitative

behavior in the range of 3 – 300 sensors.

Response Time Vs Scalability

1

10

100

1000

3 10 30 90 200 300

No. of Sensors

R
es

po
ns

e
Ti

m
e

(s
ec

) Activity = 150 (NM
Rule)

Activity = 120 (NM
Rule)

Activity = 150 (NS
Rule)

Activity = 120 (NS
Rule)

 84

7.1 Hierarchical Simulation (Response time v/s new incoming activity)

This section deals with the experiments conducted with a 2-tier system. Previous section

consisted of only cities under the control of a Sampling Manager. This section analyses

the system of many cities under the control of another manager at County level. This

manager provides resources to the constituent cities. For more description, see section

4.1.4.

7.2.1 Limited Resources at Level 1 and at Level 2 (NS Rule at both
Levels)

This experiment deals with a finite capacity system that has fixed resources at any level

of the hierarchy. As a result, there exists competition with sensors in grabbing attention

when it comes to same activity level. The system is expected to behave according to the

results of experiment 7.1.1. Since this is the simplest n-tier architecture, the lower

hierarchy calls for resources from the higher level which again has the same behavior.

This experiment is designed to see two levels, one of them under the other’s supervision,

in interaction and their emergent behavior. This particular experiment is conducted with

three counties and each county contains 5 cities and each city contain one surveillance

area and one sensor. All the 15 sensors are working at the default activity level 100 and

the estimator-threshold 3500. The interaction of both Level 1 (city level) and Level 2

(County level) is studied by bringing a new incoming activity level and observing the

response time it takes to break-into the system. The experiment is done on the same lines

as that of Experiment 7.1.1 with adding another superior level to the system. The

 85

simulation results support the findings of Tsotsos (see [4],[9]). The legends in the graph

below have their usual meaning.

 Figure 33: Response time v/s New incoming activity (Limited Resources at Level 1)

Comments and Inferences:

a) Resources are demanded from the higher level 2 by the level 1 Sampling

Manager and is then allocated to the sensors at its own level

b) The Value of response time is less when compared to the values in experiment

6.1.1. (which constitutes only one level). Notice the Stabilization time in

particular. The Stabilization time is high corresponding to the high incoming

value. Higher the incoming value, the longer it takes for the system to come

back to steady state, after it has been disturbed by the advent of this high

activity.

c) The competition is now mitigated as the resources are provided by the above

level on demand by the City.

d) The response time of the new incoming activity still observes a bell-curve

when its activity level is equal to that of the sensors (activity value =100), but

the value of response time is less as compared to experiment 6.1.1

Response Time for a new Activity to grab the Attention (Limited
Resources at Level1 and Limited Resources at Level 2 in the Hierarchy)

0
4
8

12
16
20
24
28

50 80 90 100 110 120 150 200 250

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

Response Time
Appearance Time
Stabilization Time

 86

e) The system maintains its characteristic behavior with this hierarchical setup

with reallocation and redistribution of resources taking place dynamically.

The plot obtained above requires some explanation. Notice that it has three curves

depicting the Appearance time, the Stabilization time and the Response time. All the

plots in previous experiments showed only the Response time. In this particular

experiment, the Response time is the sum of the Appearance time and the Stabilization

time. The Appearance time is defined as the time at which the new activity grabs the

attention and receives its new updated Sampling rate. The Stabilization time is referred to

as the time taken till it continues to get a revised Sampling rate even after grabbing

attention or it the time taken for the background sensors to become steady in their

operation. This behavior is an emergent behavior of the system. We described NS Rule in

Section 6.2.1 that any new change in the system results in adjustment of the whole

system. This is evident in the Stabilization time as the system takes time to settle down.

The more the value of new activity, the more it takes time for the system to settle down to

steady state. On the contrary there exists no Stabilization time in NM Rule but there do

exist Stabilization in TA rule (for experiments see Section 8.2.2).

7.2.2 Unlimited resources at Level 1 with limited resources at Level 2

This experiment is designed on the same lines with the same specifications of the system

parameter as that of the previous experiment. The only difference lies in the way the

Sampling Manager at the City level behaves. Though, their inherent logic remains the

 87

same, the manager at City level is different to that of the manager at the County level.

The Manager at the County level has no change in the implementation but there is change

in one of the steps (Step 11, defined in section 6.2) for the City level Manager. The step

11 says that:

Recalculate new Sampling rates based on either of
a) Normalized-Sum (NS) Rule (Section 6.2.1)
b) Normalized-Max (NM) Rule (Section 6.2.2)
c) Tunable Alfa-Beta (TA) Rule (Section 6.2.3)

This experiment calls for the implementation of NM Rule at Level 1 of the hierarchy.

Whatever requirement Level 1 has, it is directed to Level 2 which is then addressed

accordingly. The experiment is done with the following setup. Each of the sensor has a

Rate-estimator threshold of 3500, with a maximum Job rate of 9 jobs/sec. Each County

has 5 sensors each and each sensor is having an activity of 100 units. The plot depicts the

Response time to gather attention by the Incoming Activity (when the Incoming activity

is greater than 100) and to gather resources (when the incoming activity is less than or

equal to background activity).

Figure 34: Response time v/s new Incoming Activity (Unlimited resources at Level 1)

Response Time for a new Activity to grab the Attention (Unlimited
Resources at Level1 and Limited Resources at Level 2 in the

Hierarchy)

0
4
8

12
16
20
24
28

50 80 90 100 110 120 150 200

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

Response Time

 88

Comments and Inferences:

a) The response time decreases as the incoming activity increases in its value

b) There exits fairly less competition when the incoming value (activity =100)

equals the already running sensors at the same value. The plot practically has

same Response time for values in the vicinity of activity-value 100.

c) The resources are demanded from the level 2 by the Sampling Manager at

Level 1 in case of any competition as the resources are always available on-

demand. The request is just forwarded to the next higher level and it is met

with, always.

The results of this experiment supports the finding of the work done by Tsotsos [9],

which says that the emergence of attention happens only in systems or organisms with

fixed limited capacity for information processing. As there is no fixed capacity at Level

1 and any requirement of resources is fed to the superior level, it gives an impression of

unlimited amount of resources available with the Sampling Manager of that County. This

implies that the sensors have never to compete with each other to grab the attention in

order to get the resources. As a result, no bell-curve behavior is ever observed in this

experiment even if the incoming activity is of competing nature.

 89

8. Experiments with a Network model having link-delays

This section describes the modeling of the underlying network over which the said

AdsNet system will be laid out. Its conjectured that the sensor network is more likely to

be a wireless network. Nonetheless, this network model works for wired systems too.

8.1 Network Model

The network is generally considered a queue. Every data packet passes through some

network delay, which constitutes the time spent by that packet in the network-links or

through network-components (e.g. Routers and switches). Since, it is difficult to get a

measure of how many links or components a packet goes through, it is impractical to get

a cumulative count of time spent. We also know that a packet suffers delay proportional

to the network loading. If the network is heavily loaded, the packet takes more time to

reach the destination. Consequently, we can represent the network as a single queue.

We could implement the network as a single queue such that each packet comes into the

queue and goes out of it in a FIFO manner, but this would restrict us to have only one

network channel that stays same for every network packet. It would bind us with a

network (a model of it) that has same properties and characteristics for every single

flowing entity, which is packet (message) in this case. We developed a network model

where in the network characteristics are programmable for every source destination pair

and we can have different network characteristics in different sub-networks. As the

 90

AdSNet is a hierarchical network and even in a single level we have different

independent areas. Although, the network model is incomplete without having a network

queue, it works in conjunction with this programmable model.

The conceptual models is shown in the figure below:

Figure 35: Conceptual Model of Adapter System with Network Queue

The model is implemented as a DEVS model shown in Figure 36. It has the following

components:

a) Network Queue

This atomic component keeps track of how many packets are there in the network.

It sends the Adapter system (of a source-destination pair) the delay time based on

the current active packets in the network.

b) Adapter System

Message path

Message delay

 91

Each source-destination pair has an Adapter system between them that puts on

additional delay to the default delay (value based on the Network Queue) in the

packet-transit time. It can be programmed as desired. It contains of the following

two components:

a) Output Adapter

This atomic component receives packet from the source and holds it for a

certain period. This time-period is the network delay. Once it gets the

packet it asks for the duration to hold from the Network Queue. If it is

programmed, it adds or subtracts the time from the default time that it

received from the Network Queue. After this duration has elapsed it passes

over the packet to the Input Adapter.

b) Input Adapter

This is another atomic component as a part of Adapter System. It receives

the packet from the Input Adapter and relays it to the destination. If there

is another delay that needs to be put up at the destination end, it is

programmed here.

The following figure shows a sample network of three source-destinations connected

through the Adapter System. The network channel is defined by the Network Queue-

Adapter System pair.

 92

`

Figure 36: A Sample Network with source-destination pair connected through the Adapter System

and Network Queue.

Figure 37: Collaboration diagram for a source destination pair showing message path

 : source

 : Output
Adapter

 : Input
Adapter

 : Network
Q

 :
destination

Process Delay at Destinationhold for Delay

1: data message

2: getDelay

3: NetworkDelay

4: data message from source

5: data message arrived from Source

93

Figure 37 shows a collaboration diagram for a source-destination pair with a message

flowing from source to destination. When applied to our AdSNet System, the resulting

system looks like Figure 38.

Figure 38: AdSNet System consisting of three cities in a County connected to the Sampling Manager
using the Network Model described above.

Network Queue

Sampling Manager

County1 City1

County1 City1

County1 City2
(Expanded View)

Adapter System to send
HOUSE-KEEPING messages
to the Sampling Mgr

Adapter System to send
processed DATA messages
from County 2

Adapter System to send
HOUSE-KEEPING messages
to one of the Counties

94

The figure above is a layout of the AdSNet System that is laid out on the Network Model

that is described previously. As described in Section 5, each city has two output ports: the

housekeeping port (that sends the Activity rate to the Sampling Manager) and the Data

output port (that sends out a meaningful snapshot of the County). Each of these ports is

associated with an Adapter System that couples the output ports to their respective

destinations. The figure above is similar to figure in Section 4.1.3 with the additions of

Adapter System and the Network Queue.

8.2 Experiments with AdSNet laid out on Network Model

This Section deals with simulation studies on AdSNet System running on the Network

Model described in the previous section. Some of the experiments done in Section 7 are

repeated again to compare the results and provide more understanding to the functioning

of AdSNet System. This section also contain new experiments that require Network

Model be a component in the System design.

8.2.1 Response Time vs. New Incoming Activity

This experiment is exactly same as done in Section 7.1.1. The environment consists of

five sensors at their default activity value 100 and Rate-estimator threshold = 3500.

Maximum job production rate = 9 jobs/sec. The experiment is done for both NM Rule

and NS Rule.

95

Figure 39: Response Time vs. Incoming Activity with Network Model

Comments and Inferences:

a) The above plot maps the behavior of experiment done in Section 7.1.1

b) It also maps the behavior of experiment in Section 7.1.3 which says that NS

Rule take more Response Time as the number of sensors increases while NM

Rule is independent of number of sensors in the network

c) The NM Rule shows a sharp rise in the vicinity of activity level 100 as to NS

Rule. (NM Rule being more expressive than NS Rule)

d) The AdSNet system works well with Network model and an activity can

break-into the system after passing through the network channel

8.2.2 Response Time with TA Rule

This experiment evaluates TA Rule. The previous experiment helps us arrive at a

conclusion that AdSNet System produces same behavior with or without the Network

Response Time for a new Activity to grab the Attention (Limited
Resources)

0
10
20
30
40
50
60
70
80
90

80 90 100 110 120 150 200 250 300

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

NS Rule (5 sensors)
NS Rule (3 Sensors)
NM Rule

96

model, but its advisable to do all the simulation with the Network model as it makes the

system more practical. The default setup is as follows: All the Rate-estimators have

threshold of 3500. The maximum job rate/sec is 9 and all the other parameters have their

usual meaning. The Simulation results are graphically plotted in Figures 50 and 51. In

order to comprehend these plots we need to understand the response time behavior of the

sensors. The following figure shows the actual plot during a simulation run with alfa= 0.9

and incoming activity of 200 (Fig. 50) and alfa= 0.7 and incoming value of 120 (Fig 51).

Figure 40: Incoming activity 200 and alfa 0.9
(top) Sampling Rate plot of the background sensors
(bottom) Sampling Rate plot of Incoming Sensor

Figure 41: Incoming Activity 120 and alfa 0.7
(top) Sampling Rate of the background Sensors
(bottom) Sampling Rate plot of Incoming Sensor

High Stabilization
Time for high Alfa

Incoming Activity (200
units) appears in the
AdSNet System at this

Low Response Time for
Activity much Higher
than already (running
sensors) Activity

High Response Time
for Activity close to
100 (running sensors)

Low Stabilization time as
the New Incoming Activity
has value close to already
running sensors Activity
(value 100)

97

Figure 40 depicts the case when the Incoming activity is very high as compared to the

already running Activity values of different sensors. Experiments in section 7.1.1 and

8.1.2 show that the response time is inversely proportional to the incoming Activity value

(for both NS and NM Rules). This graph shows that it is true for TA Rule also. The

description of TA Rule in Section 6.2.3 says that higher Alfa α is responsible for

increasing inertia of the system. This implies that the already running sensors will take

time to adopt any change in the system. Even after the new Incoming activity has grabbed

the attention, even then also the background sensors haven’t accepted this change and

they take their own time to come to steady condition. This time is termed as Stabilization

time. The figure has two plots; the top curve shows one of the sensors already running in

the system with Activity 100 and it represents the behavior of all other sensors having

same Activity value (as in this case of controlled experiment); the below curve shows the

plot of Sampling rate of the sensor with Incoming activity. Notice that after the Response

time, there is no change in the Sampling rate of the sensor (of Incoming activity) and its

constant but the Sampling rate of sensor in the top curve is continuously decreasing till it

gains steady state. To see the numerical value of Stabilization time, look at Figure 43.

Similarly, Figure 41 depicts a case when the Incoming activity has a value close to the

activity value of the background sensors (value 100). As the Incoming value is of

competing nature, the response time is more as compared to when the value is much

higher. The reasoning has been done in Section 7.1.1 and this graph shows the same

behavior for TA Rule. Notice that the Stabilization time is less in this case as the system

98

doesn’t have to shift to a completely new level (like in left graph with Incoming value of

200).

Figure 42 depicts the Response (Appearance) time of Incoming Activity at different Alfa

values.

Figure 42: Response Time for Incoming Activity with respect to different Alfa values

Comments and Inferences:

a) When the Incoming activity value is same as that of the background sensor

Activity (value 100), the Response time takes maximum value (when

compared to Response time values for activity higher than background

activity), irrespective of alfa value.

b) Alfa = 0.9 takes the least Response time and there is a marked difference in

Response time values for alfa >0.5.

Response (Appearance) Time for a new Activity to grab the
Attention (TA Rule)

0

5

10

15

20

25

30

80 100 120 150 200 250

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

alfa = 0.9
alfa = 0.8
alfa = 0.7
alfa = 0.5
alfa = 0.3
alfa = 0.1

99

c) Response time increases for 0.1≤ alfa ≤ 0.7 and for alfa > 0.7 Response time

starts decreasing.

Figure 43 plots the Stabilization time after the new Incoming activity has grabbed

attention.

Figure 43: Stabilization Time for Incoming Activity with respect to different Alfa values

Comments and Inferences:

a) Stabilization Time again takes a steep curve at value equal to 100 indicating

the competing nature of new Incoming Activity and is same for every value of

alfa when the Incoming activity is same as that of background activity

b) Stabilization time for alfa = 0.9 is unusually high

c) Stabilization time decreases when alfa increases from 0.1 to 0.7 (0.1≤ alfa ≤

0.7) and starts increasing for alfa greater than 0.7. Alfa = 0.7 has the lowest

Stabilization time.

Stabilization Time for the System (TA Rule)

0

5

10

15

20

25

30

80 100 120 150 200 250

New Incoming activity (activity units)

St
ab

iliz
at

io
n

Ti
m

e
(s

ec
)

alfa = 0.9
alfa = 0.8
alfa = 0.7
alfa = 0.5
alfa = 0.3
alfa = 0.1

100

d) The value of Stabilization time for alfa = 0.8 is in the same range as the

Stabilization time for 0.1≤ alfa ≤ 0.7

The above two plots bring about two surprising results:

a) the Response time is lowest when alfa is at maximum, which is contrary to the

TA Rule that says the Higher the alfa, more sluggish the system becomes.

b) The system is not at its maximum sensitivity when alfa is lowest i.e. 0.1 (Beta

is highest simultaneously as α + β = 1)

Figure 44: Sum of Appearance time and Stabilization Time v/s Incoming activity

Both the above anomalies are completely in accordance with the definition of TA Rule. If

we consider the sum of Response Time and the Stabilization Time, higher alfa do end up

making the system sluggish and lowest alfa (highest β) do makes the system more

responsive and bringing it quickly to steady state. In order to tune the values of alfa and

Response Time for a new Activity to grab the Attention (TA Rule)

0
5

10
15
20
25
30
35
40

80 100 120 150 200 250

New Incoming activity (activity units)

Ti
m

e
(s

ec
)

alfa = 0.9
alfa = 0.8
alfa = 0.7
alfa = 0.5
alfa = 0.3
alfa = 0.1

101

beta such that we can have minimum Response time as well as optimum Stabilization

time, we have to exclude all alfa > 0.8. The simulation results in Figure 44 indicate that

the range of alfa must confirm to the condition 0.3≤ alfa ≤ 0.8 for better Response time

and Stabilization time behavior in conjunction. The Response time in this range of values

displays the characteristic behavior that has been obtained previously with NS rule and

NM rule i.e. as the incoming activity is of competing nature, there is increase in the

Response time otherwise Response time decreases as the value of incoming activity

increases. For alfa ≤ 0.3, the Response time increases much sharply as the incoming

activity equals that of background activity and it continues to rise when the incoming

value is less than the background activity. This maps the behavior of NS rule (Figure 30).

For alfa > 0.8, the graph shows anomalous results and hence is discarded.

8.3 Network Utilization

This section deals with the experiment done to verify the result of Section 6.1.2 which

says that the Network Queue is loaded by T (threshold) times the number of messages

when the Rate-estimator is not operational in conjunction with the sensors. The

background threshold T is 3500 and the background activity is 100 units. The figure on

the top shows the case when Rate-estimator is not used in the system and the right side

plot the same Queue activity when estimator is operational. Notice the difference in

queue usage. As the data messages keep on coming directly to the Sampling Manager

without any estimator as an intermediate component, we see a continuous activity of the

102

Network Queue as the Job rate R Job/sec. When the estimator is operational, all the data

messages are filtered through it and as a result the number of data messages flowing

through the network are greatly reduced.

Figure 45: Queue Activity when Rate-estimator is not operational (20 sensors in system)

Figure 46: Queue activity when Rate-estimator is used (20 sensors in system)

103

8.4 Synopsis

This chapter has implemented AdSNet System over a Network Model implementing

single network queue. The system behaved according to the behavior described in

Section 4 when the communication between components happen through a single

network channel and each packet undergoing network-delay depending upon the state of

the network (determined at the run-time). The implementation of Network model enabled

to monitor the bandwidth usage and the simulation results concluded that even under

constant loading of the system, the high Incoming Activity is able to break-into the

system and grab attention as well as resources.

104

9. Application Areas

This architecture is a prototype of an intelligent system capable of focusing attention and

directing resources to the focused activity. Any natural or artificial system that has finite

amount of resources can be mapped onto this architecture. Any artificial system is

composed of sensors and actuators. A sensor is a component that detects the activity and

an actuator is a component that reacts to that activity. What happens in between and how

quickly it happens, is what this system attempts to accomplish. The capability to

acknowledge the detected activity, register it and then releasing commands to the

appropriate actuators is what this system is about. Following are some of the application

where this system could be put to test:

a) Human decision-making System

b) Autonomous Systems & Robotic Systems

c) Bandwidth Provisioning & QoS Management Systems

d) Applications involving Hierarchically distributed Genetic Algorithms

Since, its inspiration is mostly taken from the Cognitive Psychology domain, the first

application that comes to mind is a system that can map Human decision-making

system. Humans have quite evolved sensory apparatus that enables humans to see, hear,

taste, smell and touch. Corresponding to this there are cortical areas in brain dedicated to

processing information coming in from these highly complex sensory systems. The most

important feature of the brain, that integrates this multifarious information, is its capacity

105

to handle these parallel inputs and bring forward a complete picture rich in visual and

audio components along with their subtle and gross relationships. The sensory systems

can’t provide an integrated picture and they just communicate to the brain, what they

detect. The brain with its integration mechanism and with the help of memory systems

creates a unified picture. The ability to take a specific decision and giving us the power of

choice is provided by Thalamus that has the capability to analyze and evaluate the

situations by using information stored in various parts of the brain [17] and recalling

them on-demand. It helps us perceive the environment based on the information in our

memory. Once the decision has been made volitionally, it directs the cortical motor

neurons to engage the actuators to react to the environment and complete the cycle of

sense, perceive, decide, act. Any system that is provided with the components that

validates sensory inputs and is able to draw conclusions based on some formal symbolic

basis, like memory, threshold mechanism etc, along with a component that directs

resource energy to the appropriate apparatus, is an intelligent system. At the lowest level,

the AdsNet architecture has Estimator attached to every sensor that has the capability to

validate the sensory inputs based on threshold-mechanism. At the higher levels and at

every level, the AdSNet System contains a data-driven Decision Maker (not in scope of

this thesis) that helps the system to proceed and interact on achieving some specific goals

both local and global. It also has a component called Attention Manager that directs the

resources to the appropriate place. In a sense, the system has the basic functionality to

display intelligent behavior.

106

The other league of systems that this architecture can be used to is the Autonomous

Systems and the Robotic Systems. These artificial systems that respond to the situations

presented to them, but there scope is limited and much of their response is hard-wired and

generally predicted. The sense-respond pair is explicitly defined and the systems face

limitations due to the scalability and evolvability issues. The AdsNet system with is

variable-structure definition has capability to evolve both in terms of system structure

and component metamorphosis. The variable structure implementation help us analyze

the behavior of the network-system when its components count is increased or decreased

in run-time, for example, in a robot application consisting of swarm of robots focused

over a particular target. The target may be considered as an Activity area and the robots

may be considered sensors with different sensitivities and different processing powers. A

good amount of work has been done in this area that uses the modeling approach to

realize physical robotic systems [39].

The other major application of AdsNet architecture is in the area of Network

Management and QoS provisioning. With the tremendous growth of Internet, Network

Engineering & Management have developed in whole areas in itself and require sufficient

monetary and human effort to maintain network systems. Providing QoS is still a

challenge and appropriate measures and means are under research to do it efficiently. The

problem occurs with incomplete understanding of the traffic behavior and its

categorization with respect to network utilization, application specific requirements and

business application priorities. The basic task is to manage the link bandwidth capacity to

107

be allocated according to the priorities and economics. In a recent white-paper by Cisco

[25], a five step approach have been suggested for QoS provisioning and Collecting &

Reporting Capacity Information:

1. Determine your needs
2. Define a process
3. Define Capacity Areas
4. Define Capacity Variables
5. Interpret the data

This 5-step approach has been advised to System Administrators, Network Mangers, as

there’s a marked difference between what the software tools can do and the way they are

implemented by people. In defining the capacity areas in Step 3, they suggest that:

a) Different areas may have different thresholds (for example, LAN bandwidth is

much cheaper than WAN bandwidth so utilization thresholds should be lower)

b) Different areas may require monitoring different MIB variables (for ex, FECN

and BECN counters in frame relay are critical in understanding frame-relay

capacity problems)

c) It may be more difficult or time consuming to upgrade areas of network (for

ex, international circuits can have much longer lead times and need

corresponding higher level of planning)

The AdsNet system has the basic functionality to define and work on these capacity areas

(traffic rates) and act and assign bandwidth capacity to the area with high priority or

importance. The quantitative results show experiments done with threshold variation,

108

sensor sensitivities, and fixed capacity networks that map with the requirements

presented above as:

QoS Provisioning requirement AdSNet feature

Different Areas may have different
thresholds

The sensors lie in a specific area and the
attached Rate-estimator works on the
Threshold mechanism. The “Surveillance
Area” in this case is the Network
Utilization or Bandwidth usage

Different Areas may require monitoring of
different variables

In an area we have numerous sensors. Each
sensor has its sensitivity index which
allows it to detect any activity higher than
this index value. Different ‘variables’ in the
left columns can be quantified to different
sensitivity indexes.

Difficult and time-consuming to upgrade
some areas of network (generally
international circuits)

The expanding-contracting nature of the
AdSNet System structure is limited to
County levels and the levels underneath it
as its impractical to add/remove a whole
County from a Network-system operation.

The last application of AdSNet System that deals with resource allocation, that comes to

mind are the Design Applications involving Genetic Algorithms. On such work has

already been done in the area of Intelligent Control towards the design of a Fuzzy Logic

Controller [28]. It has been built on an architecture called Intelligent Machine

Architecture (IMA), which integrates non-deterministic symbol processing and

computationally intensive numerical processing. Hierarchical Distributed Genetic

Algorithm (HDGA) was developed within the IMA Framework. Genetic Algorithms

(GAs), which uses principal of biological evolution, simultaneously evaluate many points

in parameter space and converge towards a global solution. For optimal results, the

109

algorithm tunes each parameter to great precision. This issue has been addressed by using

multiresolutional search paradigm and by employing a variable structure (changes in

internal structure to achieve the goal).

The HDGA architecture consists of multi-level clusters that are created on the fly

depending upon the resolution demanded by the problem search space. Each cluster

consists of a Controller (a kind of expert system) and the agents (that solve an abstracted

version of the given problem). These clusters can collect information, process

information and pursue a goal. It also creates parent-child relations with other clusters.

HDGA uses a multiresolutional search strategy in which a higher-level cluster

investigates a search space at low resolution and creates child clusters with high

resolutions. This results in the creation of clusters in a hierarchical fashion, with each

level dealing with a certain problem space at a particular resolution (lower level in the

hierarchy with highest resolution). The Controller is a knowledge-based expert system

that is an autonomous entity in the cluster and one of its major task is to coordinate the

execution of agent GAs to solve a given problem. The job of the Controller is to execute

and coordinate GAs in a goal-oriented fashion and displaying a top-down control. An

agent GA is linked to a simulator and performs computationally intensive simulation

required to evaluate individual parameter sets in real-world problems. They report their

results to the Controller. GAs don’t need large population or chromosome sizes which

helps the HDGA architecture an efficient way of managing computing resources during a

search, thus allocating more resources to promising search regions.

110

The following figure shows the mapping of the HDGA architecture with that of the

AdSNet architecture. This mapping enables the HDGA system to manage the resources

also. Notice the presence of RAM in AdSNet system and the analogous behavior of

Controller in HDGA system mapped to the combination of GAFS and DDM. The

function of Rate-estimator provides a mechanism to allocate resources to the particular

sensor in the AdSNet System. When mapped with the HDGA System this Estimator may

contain the logic for threshold-mechanisms with respect to small population size or

chromosome size to the attached sensor (GA).

Figure 47: HDGA system and AdSNet System together

Level 1

Resource
Allocation
Manager

1…n

Information Rich Area

Sampling Rate Estimator(SRE)
for Sensor

Goal Directed
Attention Focus
Towards sensor

Sensor

Data-driven
Decision
Maker

DEVS Simulation Engine

Controller
(Expert System)

1…n

Agent (GA)

Simulator

Data Acquisition

Data Acquisition

1…n

HDGA System AdSNet System

1

1

1

1

Level 1

Resource
Allocation
Manager

1…n

Information Rich Area

Sampling Rate Estimator(SRE)
for Sensor

Goal Directed
Attention Focus
Towards sensor

Sensor

Data-driven
Decision
Maker

DEVS Simulation Engine

Controller
(Expert System)

1…n

Agent (GA)

Simulator

Data Acquisition

Data Acquisition

1…n

HDGA System AdSNet System

1

1

1

1

111

Both the architectures displayed above support variable structure and can expand &

contract at the run-time or on a need-to-basis. The AdSNet architecture takes the leverage

from DEVS Simulation Engine. The generic architecture of AdSNet sensor system

facilitates the mapping of its sensor apparatus in various settings, a Genetic Algorithm in

this case.

112

10. Conclusions and Future Work

This research has successfully implemented a scalable framework AdSNet capable of

focusing attention to components displaying high activity and directing resources towards

them so that they can accomplish their task efficiently. The framework has been built

over DEVS formalism and exploits the advantages of variable-structure DEVS, which

was designed during this research. This provides the components to exhibit adaptive

behavior as their environment changes. The architecture is multi-level hierarchically

organized modular system and can be mapped to any real life system that is hierarchically

organized working along the rule of “chains of command”, which implies that the

information is filtered and condensed as it travels up in the hierarchy. Here in this

research it has been mapped to geographical area distribution under the control of

managers that allocates resources (like bandwidth and channel capacity) to areas under

their control, which in turn distribute the resources to the end-user. The distribution is

done intelligently with the most active component receiving the maximum number of

resources. As the sensors display high or low activity (Figure 40 and 49) so does the

assignment of resources allocated to them, resulting in increased or decreased sampling

rate, respectively. The simulation results have confirmed that the system is capable of

directing and switching its focus to components that become active during simulation and

also can withdraw attention from components who are not displaying any activity. The

architecture has also displayed the capability to evolve, by bringing new components in

the system during the simulation run.

113

This work combines the WTA (Winner Take All algorithm) proposed by Tsotsos and the

Berger model to develop a system where the attention is focused on an activity of highest

importance. The criteria for deciding an activity important is based on the sensitivity of

the sensor and the threshold of the “Attention Control Center” associated with every

sensor, which in this case is called Rate-Estimator that validates the importance of any

activity sensed by the sensor. The WTA model enables the system to continually shift

focus and direct its attention to the most active component. This system has been

extended towards a Resource Allocation system, where the resources are directed towards

a focused activity, which makes the system a generalized architecture capable of focusing

attention and concentrating on the job at hand by providing more resource to it by

redistribution and reallocation. It calls for two entities in the system:

a) Entity (Rate Estimator) that is capable of drawing conclusions and analyzing

situations based on threshold mechanism

b) Entity (Sampling Manager) capable of focusing attention to the most needy one

The system has a n-tier hierarchical organization where there exists a Manager at every

level to direct focus and attention and an Estimator coupled to every sensory element.

The Estimator may or may not be present at the intermediate levels in the hierarchy but it

must be at the coarsest level, to deduce and validate what the sensors are witnessing. The

system also allows resources and peripheral attention to the ongoing working sensors and

doesn’t inhibit or stalls their operation in the pursuit of focusing attention to the important

114

one. For different WTA mechanisms, the sensor population is met accordingly and in no

case, the resources are completely withdrawn from the running sensors as its not

predictable which sensor might produce important information the next instant. The

system let the other sensors keep working at their default settings and provide resources

for their operation and when an activity of high importance is encountered as advertised

by any sensor, it provides resources required by that sensor.

Future work

As mentioned before, the present AdSNet system only studies the bottom-up flow of

information, the next step of the research is to cater the top-down communication aspects

of the System that drive the system towards a central goal. Once this part of the research

is done in the near future, the system will be ready to develop an autonomous system

capable of “perception” and responding towards the perceived situation, based on the

reasoning developed due to stored information and local memory. The other area where

this system can be extended is in the area of On-demand systems. A plausible scenario is

the situation when a Surveillance area displays a higher level of activity that its

neighboring areas. A little description of this kind of scenario has been presented in

Section 5.2. The further work will run rigorous experiments to test this scenario and the

Attention-Focus mechanism in this dynamic network.

The distributed operation of the system and its architecture being component based

facilitates its deployment in the real world in terms of federates. The system can be made

115

predictive and robust with more detailed modeling of the Estimator and WTA

mechanisms implemented in the Attention Manager, supported with efficient

synchronization strategies.

116

REFERENCES

[1]. Zeigler, B.P, “Scalability Considerations in Measuring Intelligence: Insights from Modeling and
Simulation”, ACIMS, University of Arizona, 2002

[2]. Zeigler, B.P., Hariri, S. , “Discrete Event Architecture for Time-critical Decision Making”, ECE

Dept, University of Arizona, 2002

[3]. Zeigler, B.P., “Design of Attention Management for Homeland Defense Intelligence Surveillance

and Reconnaissance”, Supplement to NSF Grant with Steve Hall of Lockheed Martin, Advanced
Simulation Center, Sunnywale, CA, 2002

[4] Tsotsos, J.K. , “Computational Resources do constrain behavior”, Behavioral Brain Sc., pg 506-

507, 1991

[5] Tsotsos, J.K. , Modeling Visual Attention via Selective Tuning, Artificial Intelligence 78, 507-

545, 1995

[6] Tsotsos, J.K. , An Inhibitory beam for attentional selection, In: Harris, L., Jenkin, M. (Eds),

Spatial Vision in Humans and robots, Cambridge University Press, Cambridge, pg 313-332. 1993

[7] Tsotsos, J.K., Triangles, Pyramids, Connections and Attentive Inhibition, PSYCHE: An

Interdisciplinary Journal of Research on Consciousness
 (http://psyche.cs.monash.edu.au/v5/psyche-5-20-tsotsos.html), July 1999.

[8] Tsotsos, J.K., On Behaviorist Intelligence and the Scaling Problem, Artificial Intelligence 75, p

135 - 160, 1995

[9] Tsotsos, J.K., Limited Capacity is a Sufficent Reason for Attentive Behavior, Cognition and

Consciousness 6, (invited Commentary on A.H.C. van der Heijden and S. Bem) , p.429 - 436,
1997

[10] Tsotsos, J.K., Milios, E., Selective Attention within a Visual Processing Pyramid, IEEE Workshop

on Nonlinear Signal and Image Processing, Neos Marmaras-Halkidiki, Greece, June 20-22, 1995.

[11] Pinker, S, How the Mind Works, W.W. Norton, New York, NY

[12] Zeigler B. P., Discrete event Abstraction: an emerging paradigm for modeling complex adaptive

systems, Festschrift in honor of John H. Holland, L Brooker

[13] Zeigler, B. P. , The brain-machine disanalogy revisited, BioSystems 64 (2002), 127-140

[14] Culhane, S. M., Tsotsos, J. K., A prototype for Data-driven Visual attention, Prodeedings of the

11th IAPR International Conference on Pattern Recognition, the Hague, The Netherlands,
September 1992, IEEE Computer Society Press, Los Alamitos, CA pp 36-40

[15] Tsotsos, J.K., Computation, PET Images and Attention, Behavioral and Brain Sciences 18:2,

(invited Commentary on Images of Mind, Posner and Raichle) p372 , 1995

117

[16] LaBerge, D. , Attention, Awareness and the Triangular Circuit, Cognition and Consciousness, 6,
149-181, 1997

[17] Nader, T., Human Physiology-Expression of Veda and Vedic Literature, Maharishi Management

University Press, 1995

[18] Zeigler, B.P., Kim, T.G., et al., 2000. Theory of Modeling and Simulation, Academic Press, New

York, NY

[19] Cellier, F.E., Continuous System Modeling, Springer-Verlag, NY, 1991

[20] Hu, X., Zeigler, B.P, Mittal, S. , Dynamic Configuration in DEVS Component-based modeling

and Simulation, to appear in Transactions: Society of Modeling and Simulation International,
2003

[21] Zeigler, B.P., Mittal, S., Modeling & Simulation Architectures for Autonomous Computing,

Autonomic Computing Workshop: The Next Era of Computing, January 2003

[22] Zeigler, B.P., Mittal, S., Modeling and Simulation of Ultra-large Networks: A Framework for

New Research Directions, supported by NSF Grant ANI-0135530, ULN Workshop, July 2002
(addendum to the ULN Workshop 2001)
http://www.acims.arizona.edu/EVENTS/ULN/ULN_doc2.pdf

[23] Mittal, S., Hierarchical scalable DEVS architecture for a Service discovery Network, ECE575

Project, 2001

[25] Cisco-Capacity and Performance Management: Best Practices, White Paper, 2003

[26] DeLong, D.F., Code Red Virus: “Most expensive in the history of Internet”, 2001

[27] http://www.caida.org/analysis/security/code-red/newframes-small-log.mov

[28] Kim, J. and Zeigler, B. P., Hierarchical Distributed Genetic Algorithms: A Fuzzy Logic Controller

Design Application, IEEE Expert, 1996

[29] Hannon, C. and D. J. Cook., “ A Parallel approach to Unified cognitive Modeling of Language

Processing within a Visual context.” In Hamilton, H. (Ed.) Advances in Artificial Intelligence,
1822. Springer Verlag, 151 –163, 2000

[30] Hannon, C., “Biologically Inspired Mechanisms for Processing Sensor Rich Environments”. In

Proceedings of FLAIRS 02, AAAI Press, 3-7, 2002

[31] Aylett, R and C. Delgado. “Emotion and Agent Interaction”. In AAAI Fall Symposium, 2001

[32] Reilly, S. W. and J. Bates. “Emotion as part of a Broad Agent Architecture”, http://www-

2.cs.cmu.edu/afs/cs.cmu.edu/user/wsr/Web/reserch/waume93.html, 2003

[33] Velasquez, J. D. “From Affect Programs to Higher Cognitive Emotions: An Emotion-Based

Control Approach”, In Proceedings of EBA 99.

[34] Hannon, C., “Emotion-based Control Mechanisms for Agent Systems”, International Conference

on Information Systems and Engineering, 2003

118

[35] Hwang, J and Revuru, R., “Inter-domain Diffserv Dynamic Provisioning and Ineterconnection

Peering Study using Bandwidth Management Point – A Simulation Evaluation. “, International
Conference on Information Systems and Engineering, 2003

[36] Scheutz, M., “Agents with or without Emotions?”, In Proceedings of FLAIRS 02, AAAI Press, 89-

94, 2002

[37] Qbone Signaling Design Team “Simple Inter-domain Bandwidth Broker Signaling (SIBBS)”,

http://qbone.internet2.edu/bb work in progress

[38] Durham, D., Boyle, J., Cohem, R., Heroz, S., Rajan, R., Sastry, A., “Common Open Policy

protocol (COPS),”, IETF RFC 2478, 2000

[39] Jamshidi, M., El-Osery, A., Fathi, M., et al., V-Lab :A Distributed Intelligent Discrete-Event

Environment For Autonomous Agents Simulation, Intelligent Automation and Soft Computing,
Vol.9, No.3, pp. 181-214, 2003

[40] Zeigler, B. P., Object-Oriented Simulation with Hierarchical, Modular Models, 1990, San Diego:

Academic Press

[41] http://www.technologyreview.com/articles/downloads/huang0703.html

[42] http://www.dei.isep.ipp.pt/docs/arpa.html, History of ARPANET

[43] Network Simulator-2, http://www.isi.edu/nsnam/ns/

[44] Opnet Modeler, http://www.opnet.com/products/modeler/home.html

[45] Xiang Zeng, Rajive Bagrodia, Mario Gerla; "GloMoSim: a Library for Parallel Simulation of

Large-scale Wireless Networks", Proceedings of the 12th Workshop on Parallel and Distributed
Simulations -- PADS '98, May 26-29, 1998 in Banff, Alberta, Canada

[46] Glomosim: http://pcl.cs.ucla.edu/projects/glomosim/

[47] SSFNet, http://www.ssfnet.org/

[48] Parallel/Distribute NS, http://www.cc.gatech.edu/computing/compass/pdns/

[49] DEVS-DOC http://acims.eas.asu.edu/PUBLICATIONS/PDF/hild_phd.pdf

[50] Hild, D.R., H.S. Sarjoughian, B.P. Zeigler, "DEVS-DOC: A Co-Design Modeling and Simulation

Environment." IEEE SMC-Part A, Vol. 32, No. 1, pp. 78-92.

[51] Unified Modeling Language, www.omg.org/uml/

