

DEVSJAVA: Basis for a DEVS-based Collaborative M&S Environment

Hessam S. Sarjoughian & Bernard P. Zeigler
AI & Simulation Research Group

Electrical & Computer Engineering Department
University of Arizona, Tucson, AZ, USA

{hessam | zeigler}@ece.arizona.edu
http://www-ais.ece.arizona.edu

ABSTRACT

A web-enabled DEVS modeling and simulation
environment (DEVSJAVA) based on the DEVS formalism
and implemented in Java language is discussed. This first
generation of DEVSJAVA is an amalgamation of the
proven object-oriented DEVS and key web-centric
capabilities offered by the Java language. DEVSJAVA
offers its users the ability to construct and experiment with
dynamic models based on web technology. This modeling
and simulation tool provides a graphically oriented interface
through which users can learn and study the fundamentals of
discrete-event modeling and simulation. It facilitates
model development and simulation independent of hardware
platform using Java-enabled browsers. Furthermore, it
provides the foundation to enable collaborative modeling
and simulation.

Keywords: Collaboration, Concurrent, Distributed, DEVS,
Hierarchical, Interactive Simulation, Internet, Java,
Modeling, Modular, Multimedia, Object Orientation,
Simulation, System Theory, Web-enabled

1. INTRODUCTION

Applications of Modeling and Simulation (M&S) span
numerous facets of science, technology, and business. An
increasing number of government, corporate and private
business decisions are based on simulation predictions and
analysis. The discipline of modeling and simulation is well

positioned to develop a genre of generic, yet
domain-tailorable, environments that exploit the fertile and
unexplored facets of the Internet and World-Wide-Web.

The Internet and World-Wide-Web are enabling a new
breed of systems far surpassing most of their predecessors in
terms of use, complexity, and scale. While the use of such
systems is primarily due to the Web, the complexity and
scale are not since it is the Internet capabilities that deal
with these issues. From this vantage point, the role of
M&S can be viewed from the intertwined perspectives of
the Internet and Web in terms of their capabilities and
limitations.

In the future, not only will there be demands for more
powerful M&S tools, but also the extent of their use is
expected to grow. The users and beneficiaries of modeling
and simulation are expected to multiply many fold due to
the ever increasing complexity and interdependencies of
present and future systems and especially those that are
distributed. The implication for these systems is that
single-user M&S tools will have to be supplemented with
those supporting collaborative engagement of individuals
ranging from end-users and subject matter experts to M&S
professionals. Therefore, it should not be surprising to the
M&S community that it will need to provide web-enabled
tools.

DEVSJAVA, an environment based on DEVS (Discrete
Event System Specification), is the most recent of a lineage
of earlier implementations of DEVS. The M&S framework
is, in part, based on system theory and object-oriented

software. However, since it is web-enabled, it also relies on
web-centric features. System Theory provides mathematical
underpinning and Object-Orientation provides sound
implementation practices and ensures computational
integrity. The discipline of M&S has introduced
fundamental concepts such as experimental frame,
model-base, System Entity Structure (SES), model
simplification, model validation, simulation verification,
and endomorphism. System theory has introduced
subsystem, system, decomposition, controllability,
observability, and homomorphism among others.
Object-orientation has introduced the concepts of
abstraction, encapsulation, modularity, hierarchy, typing,
concurrency, and persistence. Distributed collaboration,
utilizing features such as code platform independence
(write-once/run-anywhere), browser-enabled (applets),
security, and multi-threaded processing are what the Internet
and Web support.

DEVSJAVA
Modeling & Simulation

System Theory Object-OrientationWeb-Centrality

Figure 1: DEVSJAVA Modeling and Simulation
Framework

The amalgamation of system theory, web-centrality, and
object-orientation engineering (see Figure 1) provide a solid
foundation for modeling and simulation spanning a wide
range of areas. Being web-centric liberates M&S
environments from being single-user and single-platform in
a uniform manner. The DEVSJAVA environment is built
based on DEVS, Object-Orientation, and the Web/Internet.
In the remainder, we present the basis for a synergistic
environment, DEVSJAVA that can support distributed
collaborative modeling and simulation.

2. DEVS Foundation
The DEVS modeling approach supports capturing a
system’s structure from both functional and physical points
of view. A DEVS model can be either an atomic model or a
coupled model (Zeigler 1984). The latter models are
hierarchical with well-defined characteristic. While a part
of a system can be represented as an atomic model with
well-defined interfaces, a system represented as a DEVS
coupled model designates how (less complex) systems can
be coupled together and how they interact with each other.
Given atomic models, DEVS coupled models can be formed
in a straightforward manner. Atomic and coupled models
can be simulated using sequential computation and/or

various forms of parallelism (Zeigler 1990). A DEVS
model is defined as (Zeigler 1984):

M = <X, Y, S, int, ext, , ta > where
X set of internal input events;
S set of sequential state;
Y set of external output events;
ext external transition function specifying state transitions

due to external events;
int internal transition function specifying state transitions due

to internal events;
 output function generating external events as output;
ta time advance function.

The sequential and parallel views play a central role in
modeling and simulation of coupled models since each
couple model is essentially comprised of multiple atomic
models. Two different formalisms have been introduced.
The sequential formalism (Zeigler 1984) treats components’
simultaneous transitions sequentially, while a more recent
formulation (Chow 1996) treats them concurrently enabling
full parallelism.

3. DEVSJAVA

Using the Java programming language, the basic DEVS
constructs have been implemented in an environment called
DEVSJAVA. This environment provides the foundation
upon which higher constructs of DEVS (e.g., endomorphism
and variable structure) can be created using the basic, as
well as the internet-based features, of the Java
programming. The DEVS atomic and coupled models can
be developed and simulated both as standalone applications
and applets. The environment offers features that make
modeling and simulation more useful, powerful, and
attractive. In addition to being able to execute a simulation
model anywhere from a browser, DEVSJAVA provides
capabilities that are unique to DEVS modeling and
simulation.

3.1 User’s View

It is common practice to construct larger models from
smaller ones that is, build atomic models and synthesize
coupled models from them. In the case of atomic models in
the DEVSJAVA environment, the user not only is able to
control the execution of the model, but also can examine its
dynamics (receiving and processing inputs, state changes, or
producing outputs) visually. Figure 2 shows a snap shot of
an applet Graphical User Interface (GUI) in which a
processor (an atomic model) and two of its essential state
variables are shown. The user can examine an atomic model
state-set and outputs generated at any time during

simulation as well as viewing state changes as the models
traverses its state changes (AIS 1997).

Figure 2: Processor Atomic Model Applet

The applet viewer “atomicDraw” as shown in Figure 2
contains (I) a set of buttons, (II) text fields, and (III) dialog
boxes for any atomic such as “proc” which is the model for
a processor without a queue. This model receives and
processes jobs (input values) on its input ports. Upon
completing the jobs (output values), they are sent out on
output ports. The buttons are Inject External,
Toggle Step Mode, Step, Restart, quit, Show
Parameters, help, and Show state. The Inject
External button opens a dialog box to inject an input value
to the atomic model on a particular input port. This dialog
box displays a list of predefined input ports with their
assigned values. Selecting an entry from the list causes an
input value to be sent to the atomic model’s input port. The
input can be sent either instantaneously or scheduled for a
later time. Upon the receipt of a value on its input port, the
external transition function (ext) processes it. The Toggle
Step Mode button allows the user to alternate between
continuous execution and step mode. Step triggers the next
internal transition (int). Restart is used to start a new
execution for a given initial state. The simulation of a model
can be terminated using the Quit button. The Set Parameters
button opens a dialog box to reassign parameters. The Help
button displays the definition of all the other buttons.
The Show State button displays the current values of the
states of the atomic model in a dialog box. For example, in
the “proc” model, the dialog box says that the model is in
phase “passive” with sigma set to “infinity” (1000000),
name of the job being processed is “job”, and time to
process an incoming job is “1000”. The other dialog box in
Figure 2 is displayed every time an output is generated by

an atomic model such as the Processor. This output dialog
box contains information about the source and destination of
the generated output (proc proc) as well as the output
port (out) and output value (job).

The text fields display name of the model, tL, tN , and e. In
Figure 2, the name of a simple processor is “Proc”. The
last three provide the time of last event, time of next
scheduled internal event, and the time elapsed in the current
state, respectively. Given last event time (tL = 2100) and
elapsed time (e = 0), the processor’s current time is 2100.
The time of next event (tN = 10002100) says that the
processor is scheduled to undergo its next internal transition
function at time infinity (i.e., the model has entered its
passive phase and will not transition into another phase until
an external input is received). The significant state variables
phase and elapsed are displayed as the model dynamics
change over time. The state variable phase depicts the
current state the model is in and states changes due to the
internal and external transition functions.

The interactive GUI for digraph (coupled) models offer
greater capabilities as compared to atomic models since
coupled models contain higher level knowledge and
complexity. The user can study interactions among
component models of a coupled model visually by
examining outputs sent from one component model and
received by others. The capabilities supported for an atomic
model are also made available for coupled model due to the
closure property of the DEVS formalism. Therefore,
simulation of a coupled model offer not only insight into
their coupling interactions but also to the dynamics of the
individual atomic models used in synthesizing the former.
Figure 3 depicts a digraph coupled model called “GPT”
which is comprised of a Generator, a Processor, and a
Transducer.

The applet viewer “devsDrawPanel” contains the text field
clock instead of tL, tN, and e. The clock keeps track of a
global time that is used to coordinate the interactions among
the atomic models contained in the coupled model. This
panel contains buttons as defined for the “atomicDraw”
panel. In this panel, the buttons “show state” and
“show parameter” are shown for each atomic model
alone. The state variables and inputs/outputs can be
examined as before for each atomic model. Each atomic
model, just as in the “atomicDraw” panel, is identified with
its own name (e.g., Transducer). This modular treatment of
atomic models facilitates their individual examination.
During the simulation, the output messages transmitted
among components are displayed. In addition, the content
of output (input) can also be displayed (again due to the
modularity supported by DEVS).

Due to the web-centric features of DEVSJAVA, multimedia
features such as animation and sound are possible (AIS

1997). In particular, in DEVSJAVA every atomic model
can be animated as it goes through its phases. Also, sound
clips can be assigned to each phase leading to multimedia
simulation.

Figure 3 GPT Coupled Model Applet

3.2 Architecture/Design

The underlying structure for DEVSJAVA architecture
shown in Figure 4 is Object Behavior Specification (Zeigler
1997b; Zeigler 1997c). The Object Behavior Specification is
comprised of systems theory and object orientation
principles (Zeigler 1997b). The DEVS-OBS provides a
layer between DEVS set-theoretic formalism foundation and
its implementation in Java (see Figure 4). Given such an
architecture and OBS, an implementation of DEVS can be
streamlined leading to a more robust environment. In the
case of DEVSJAVA, new features of the JAVA language
(JDBC and object serialization) can be incorporated into the
middle layer OBS and used by the DEVS layer.

The design of DEVJAVA is based on the above architecture
along with special features offered by the Java language and
the Java Virtual Machine. The DEVS OBS class hierarchy
has two main classes with their subclasses container and
devs (see Figure 5) both derived from class entity. The
container class and its subclasses provide the primitive
utility classes such as set, function and relation (Zeigler
1997c). These classes provide the basic utilities to specify
OBS DEVS (such as removing atomic models from a
coupled model with its components stored in a set). The
devs class, with main subclasses atomic and coupled,
supports the means for DEVS modeling and simulation.
There are two other subclasses of entity: message and
content. The class content contains a name and a value
identifying port name and value (instance of entity or any

subclass) being sent from one model to anther. The class
message contains instances of class content with queries
(port? and value?) which return port name and value. For
details of how simulation engine is implemented refer to
(Zeigler 1997b).

One of the main features of Java is its support of
concurrency. While Java does not support a truly
multiprocessing system where each process can operate its
own private address space, it does support execution of
multiple processes using a shared address space. It allows
concurrent execution using threads where each thread can
step through its operation independently of others.

In DEVSJAVA, we have explicitly utilized threads so that
each atomic model runs independently of others (due to
modularity of OO-DEVS). The class devs has an instance
variable which is assigned an instance of Java class,
Thread. This leads to parallel execution of models in devs
or any of its subclasses. In particular, the atomic class is
assigned its own thread of control where it can be running
either alone or as part of a coupled model. The DEVSJAVA
environment utilizes this capability along with their
execution inside a Java-enabled browser to enable users to
experiment with any DEVS model from any machine at
anytime and anyplace. The utility of executing
multi-threaded simulation models from anywhere is further
enhanced with GUI. A user of DEVSJAVA is able not
only to run a simulation, but also interactively and visually
control the simulation execution. (Note that visual control is
in addition to the use of experimental frame.)

DEVS

sy
st

e
m

o
rie

n
te

d

JAVA Programming Language

co
nc

u
rr

e
nt

m
u

lti
-t

h
re

a
d

e
d

se
ri

a
l c

o
m

p
u

tin
g

p
la

tf
o

rm
/s

in
g

le
a

dd
re

ss
 s

p
a

ce

Object Behavior Specification

o
bj

e
ct

o
rie

n
te

d
JAVA Virtual Machine

Figure 4 DEVSJAVA Implementation Architecture

3.3 Model Composition

The System Entity Structure provides a well-defined
approach to represent a family of models depending on their
decomposition and particular aspect of interest (Rozenblit
1985; Zeigler 1984). The concepts underlying System Entity
Structure (SES) provide the basis for composing
(synthesizing) a family of pre-built models. Given an SES,
and an existing repository (model base), creating coupled
models can be enhanced and made easier given an
interactive GUI environment such as Graphical System
Entity Structure (Au 1997). The GSES provides an
interactive session (via a browser) in which hierarchical
models can be synthesized by choosing atomic/coupled
models and their interconnections through input/output ports
coupling. Furthermore, families of models can be
represented via decomposition and specialization given
different aspects of a system. The user can prune an SES to
select a well-defined model that satisfies the SES axioms.
Such a pruned SES can then be transformed into an
executable simulation model and simulated just as those
created directly in the DEVSJAVA environment. The GSES
provides a tree-structured representation of a system
containing multiple aspects and specialization. This
environment is also designed and implemented based on the
Object Behavior Specification using the Java programming
language .

DEVSDEVS

ENTITYENTITY

CONTAINERCONTAINER

ATOMICATOMIC

COUPLEDCOUPLED devsdevs

entityentity

LegendLegend

inherits

can hold

MESSAGEMESSAGE

contentcontent

CONTENTCONTENT

 components? components?

port?, value?

Figure 5 Simplified Class Hierarchy for DEVS Object
Behavior Specification

4. Collaborative Modeling & Simulation

Earlier, we indicated the proliferation of distributed
organizations that require M&S environments in support of
their design, analysis, and understanding. Assuming that
modeling of such entities requires the involvement of a
multitude of individuals, the need for a collaborative M&S
environment becomes evident. The concept of collaboration
spans applications from unstructured to structured and
highly controlled teamwork. We can think of a structured
collaborative environment as one in which its users conform
to well-defined engagement rules and protocols pertaining
to the application at hand. In contrast, the unstructured
collaborative environment provides a common denominator
set of engagement rules that are detached from the domain
and application itself.

Global operation and success of multi-organizations require
teamwork not only among its own dispersed entities, but
also with those of other businesses. The ability of team
members to work and cooperate with each other has
tremendous advantages. A team of simulation professionals,
for example, can embark on the design of a system
involving team members from different sub-organizations
(as well as external organizations) without being completely
restrained by time and space. Team members’ physical
locations, scarce resources, and conflicting schedules, for
example, can be much less inhibiting given group-enabled
technologies.
Group-enabled technologies refer to groupware that assists
groups of people as opposed to single users. The
functionality/limitation of these technologies depends on the
interplay of place and time constraints (Grudin 1994). Each
group-enabled technology provides a set of software and
hardware communication tools and protocols supporting
group interactions. Typical examples of these technologies

are, for example, electronic mail and meeting facilitation.
We can categorize these technologies as either distributed or
non-distributed. In our discussion, the term “distributed” is
used when collaboration takes place across a distributed
network (e.g., Wide Area Network). A distributed
collaborative modeling and simulation environment, with
its users located in physically distinct locations, would
support capabilities that are specific to its users. A
non-distributed collaborative M&S environment would
support interaction among its users located in a single place.

4.1 Collaborative DEVSJAVA Environment

Modeling and simulation activities include simulation
model formulation (construction, composition), simulation
(execution), and analysis. Verification and validation, as
part of model formulation, simulation, and analysis, are two
very important activities that need to be supported. Given
M&S activities, there exists an immense differential
between the unstructured and structured collaborative
environments. Using the basic model of a client getting
service from a web-server (see Figure 6), the DEVSJAVA
environment can support interactive model simulation,
composition, and analysis by multiple users via applets
given a model-base of pre-constructed and verified models.

Web-ServerClient A

Client B

simulation model
•execute simulation model
•compose models
•interact with simulation models

Network

Figure 6 Client-Server Representation Supporting Modeling
and Simulation

In this environment, for example, users can collaborate with
each other on simulation analysis using ad hoc means (e.g.,
using a chat session and running the same model
independently in their browsers). The solid arrows are
shown to be unidirectional since the client would not be able
to revise simulation models on the server.

ORB

TCP/IP

Generic Collaboration Support

• models
• results

client A
(DEC Alpha)

Client B
(MS NT)

• DEVS Modeling
• Model Simulation

ORB supports interaction among components
spread out across a hetrogenous environment

Server (Client) C
(SUN Sparc)

• DEVS Simulation

ODBMS

Database

Figure 7 A Collaborative M&S Environment

However, what if a group of individuals comprised of
end-users, subject matter experts, and M&S professionals
needs to construct new models in addition to using pre-built
and verified models? In this regard, it is helpful to look
another collaborative M&S environment model (depicted in
Figure 7). The basis for this model can be middleware such
as CORBA or DCOM which would provide the necessary
collaboration functionality (Evans 1997). For example,
using the distributed architecture based on ORB, multiple
clients (e.g., subject-matter-experts), can develop a model
together and have their work stored in a database regardless
of their whereabouts. The simulation can be performed on a
single machine (e.g., server) and made available to the
interested clients. There are numerous design issues related
to how best support collaboration among dispersed users of
a M&S environment. For example, what should be
performed on the client versus the server need to be
analyzed based on concerns such as latency, simulation
type, data storage, and complexity. Given the generic
DEVSJAVA framework and architecture, we believe an
extended DEVSJAVA architecture, as proposed in (Zeigler
1997a) and depicted in Figure 7, will provide a suitable
environment for collaborative DEVS modeling and
simulation.

5. RELATED/FUTURE RESEARCH

There have been research efforts on collaborative
applications from different directions . Chen and Cowie
(Begole 1997) discussed Java and its role in distributed
collaboration. Alexandrov et. al. have proposed an
infrastructure in support of Java-Based Global Computing
(Alexandrov 1996). Another technology, TANGOsim,
aimed at collaborative visualization and simulation, has also
been implemented (Fox 1996). This environment supports
M&S as a typical application and consequently it does not
take into account M&S dimensions explicitly.
The DEVSJAVA M&S environment presented is evolving.
Currently, it supports some forms of variables structure

modeling as well as endomorphism. We have two ongoing
efforts to extend DEVSJAVA to support collaboration.
One is based on HLA/RTI paradigm and the other on
DCOM. Furthermore, we are investing in what ways
JAVA specific technology such as RMI and JAVA-BEANS
can support collaborative M&S compared to other
approaches. In a more complete collaborative DEVSJAVA
environment, it is possible to support Geographic
Information System (GIS) databases as well as well as
object-oriented databases.

An important DEVSJAVA capability is for it to support
new application areas. One area of interest for DEVSJAVA
is modeling and simulation of Distributed Object
Computing (DOC) (Butler 1995). Since DOC deals with
large-scale systems by considering not only their dynamic
structures, but also their topologies, distributed DEVSJAVA
is well suited to handle the distributed nature of DOC. Many
interesting systems (e.g., airline corporations) can be
represented using DOC paradigm and therefore modeled
and simulated by DEVSJAVA. Another interesting area is
Business Process Reengineering. In BPR “to-be” processes
are engineered via dynamic modeling of multiple
organizations to better support business objectives
(Sarjoughian 1997).

6. CONCLUSIONS

We have presented and discussed web-enabled
object-oriented DEVSJAVA environment from the user’s
perspective. We described how users can use GUIs and
web-browsers to better interact remotely with a simulation
model by simply having access to the Internet. We also
briefly discussed how DEVSJAVA supports model
synthesis via a graphical-based SES. We argued that
DEVS, Object-Orientation, System Theory, and
web-centrality collectively provide a sound M&S
foundation upon which to build a comprehensive,
collaborative, DEVS modeling and simulation environment.

REFERENCES

AIS. (1997). “DEVSJAVA.”, AI & Simulation Research
Group, Electrical & Computer Engineering Dept.,
University of Arizona, http://www-ais.ece.arizona.edu/
SOFTWARE/.
Alexandrov, A. D., et. al. (1996). “SuperWeb: Research
Issues in Java-Based Global Computing.”,
http://www.npac.syr.edu/projects/javaforcse/javameettalks.h
tml.
Au, V. (1997). “Multimedia Support for DEVS Modeling
and Simulation in JAVA,” Masters Thesis, Electrical &

Computer Engineering Department, University of Arizona,
Tucson, AZ., http://www-ais.ece.arizona.edu/REPORTS/.
Begole, J., Struble, C.A., Shaffer, C.A. (1997). “Leveraging
Java Applets: Toward Collaboration Transparency in Java.”
Internet Computing, 1(2), 57-64.
Butler, J. M. “Quantum Modeling of Distributed Object
Computing.” 28th Annual Simulation Symposium, 175-84.
Chow, A. (1996). “Parallel DEVS: A Parallel, Hierarchical,
Modular Modeling Formalism and Its Distributed
Simulator.” SCS Transactions on Simulation, 13(2), 55-102.
Evans, E. a. R., D. (1997). “Using Java Applets and
CORBA for Multi-User Distributed Applications.” Internet
Computing, 1(3), 43-55.
Fox, G. C. a. F., W. (1996). “Java for Parallel Computing
and as a General Language for Scientific and Engineering
Simulation and Modeling. http://www.npac.syr.edu/
projects/javaforcse/javameettalks.html.
Grudin, J. (1994). “Computer-Supported Cooperative Work:
History and Focus.” IEEE Computer, 27(5), 19-26.
Rozenblit, J. R., Zeigler, B.P. “Concepts for Knowledge
Based System Design.” Winter Simulation Conference, San
Diego, 223-231.
Sarjoughian, H. S., Vahie, S., Lee, J. “Group-Enabled
DEVS Model Construction Methodology.” SPIE, Orlando,
FL, 256-267.
Zeigler. (1990). Object-Oriented Simulation with
Hierarchical, Modular Models: Intelligent Agents and
Endomorphic Systems, Academic Press, New York.
Zeigler, B. P. (1984). Multi-Facetted Modeling and
Simulation, Academic Press, New York.
Zeigler, B. P., Sarjoughian, H.S., Vahie, S. “An
Architecture For Collaborative Modeling and Simulation.”
11th European Simulation Multiconference, Istanbul,
Turkey, K3-K16.
Zeigler, B. P., Sarjoughian, H.S., Au, V. “Object-Oriented
DEVS.” SPIE, Orlando, Florida, 100-111.
Zeigler, B. P. (1997c). Objects and Systems: Principled
Design with C++/Java Implementation, Springer-Verlag,
New York, NY.

