
Ira A. Fulton School of Engineering

CSE 593 Applied Project

DEVS Hardware In The Loop (HIL) Mixed Mode

Simulation with Bi-Directional Support

Thomas Jackson

thomas.e.jackson@asu.edu

CSE 593

Modeling Simulation and Application

School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ, USA

Supervised by

Professor Hessam Sarjoughian

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 1

http://www.fulton.asu.edu/fulton/
http://www.fulton.asu.edu/fulton/

Abstract! 4

1. Introduction! 4

1.1 Motivation for HIL Mixed Mode Simulation! 5

2. Analysis ! 5

2.1 Initial Feasibility Test Report! 5

2.2 Execution Time Requirements (early stage)! 8

2.3 Kernel Libraries and Source Investigation! 8

3. Design! 9

3.1 Definition of DSHAL! 10

3.2 HIL Mixed Mode Use-Cases! 10

3.3 DSHAL Communication Layers! 12

3.4 Hardware Communication API! 13

3.5 Definition of DEVSPhidget API for DEVS-Suite! 14

3.6 DevsPhidget Bi-Directional Support! 15

3.7 Layers Specification! 16

3.8 Finite-State Machines! 17

4. Implementation! 18

4.1 Prototype Using COTS - Phidgets 4 port Relay I/O boards! 20

5. Testing & Experiments! 21

5.1 Real World Problem Examples! 21

5.2 Simulation / Hardware Coupling! 23

5.3 Hardware Input Port Analysis! 23

5.4 Software Tools! 24

5.5 Hardware! 24

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 2

Conclusions / Future Work! 25

References ! 26

Appendix I: Source Code - Sample Memory Read/Write! 27

Appendix II: Source Code - Sample Constructor! 27

List of Figures

Figure 1.!! ! PhidgetInterfaceKit 0/0/4 4 port digital relay
Figure 2.!! ! DEVS-Suite code example of output
Figure 3.!! ! Execution Timing - Relay Board
Figure 4.!! ! Coupled Model DEVS formalism
Figure 5.!! ! AGV Logic Model Use Case
Figure 6.!! ! AGV Domain Engineer
Figure 7.!! ! Communication Layers
Figure 8.!! ! DEVSPhidget USB Attach/Detach
Figure 9.!! ! Output change function - first prototype
Figure 10.! ! Layers Specification
Figure 11.! ! Side-by-Side Ports 1 and 2
Figure 12.! ! Side-by-Side Ports 3 and 4
Figure 13.! ! Side-by-Side Asynchronous Composition
Figure 14.! ! HIL Mixed Mode Implementation Running
Figure 15.! ! DEVSPhidget Initialization
Figure 16.! ! Early Prototype
Figure 17.! ! SDN State chart Example
Figure 18.! ! Sample Sequence of events - SDN
Figure 19.! ! Bi-Directional Communication - SDN
Figure 20.! ! Simple SPDT Digital Relay Schematic

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 3

DEVS HIL MIXED MODE SIMULATION

Abstract
This paper presents the hardware-in-the-loop (HIL) mixed mode simulation research using

DEVS-Suite simulator that supports parallel DEVS formalisms with visual experimentation

design and behavior modeling[2,3]. This paper proposes a DEVS Simulation Hardware

Abstraction Layer (DSHAL) with hardware communication API combined with Commercial

Off-The-Shelf (COTS) hardware to provide bi-directional communication for HIL mixed mode

simulation. Phase 1 of this research utilized COTS 4 and 8 port Relay 10Amp boards.

The mixed mode HIL simulation results show that this research can be extended to control

Motors, Servo Controllers, Servo Motors, DC Controllers, DC Motors, Stepper Controllers,

Stepper Motors or Sensors within DEVS-Suite simulator with full bi-directional communication.

1. Introduction
This project presents an innovative approach to augment existing DEVS analytical

simulations. There is a clear distinction from Distributed Interactive Simulation (DIS) and

Distributed Virtual Environments (DVEs) in that the primary objective of this proposal is to

define the mechanism for establishing a bi-directional communication for Parallel DEVS model

types directly from DEVS-Suite for COTS hardware. Minsky stated that “A Model (M) for a

system (S) and an Experiment (E) is anything to which E can be applied in order to answer

questions about S”[1]. This research presents an innovative alternative to answer even more

questions about “S” with the additional HIL mixed mode simulation analysis. The ability to

understand more about the system allows us to better predict the performance and behavior of

these systems under varying input and circumstances. Additionally, using DEVS analytical

simulations we can study the system behavior before it is actually built and possibly

communicate a better system design. “What-if” questions can also be asked about these systems

allowing us to have a deeper understanding of the behavior of these systems. Often these are

real-world parallel or distributed systems that are too costly or dangerous to experiment with in

order to answer these types of questions. This paper will discuss the analysis, design,

implementation, and testing of this research project. Starting with the motivation for the HIL

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 4

mixed mode simulation it will be shown how the project evolved and was refined to fit better

into existing DEVS models and simulations.

1.1 Motivation for HIL Mixed Mode Simulation
The motivation for HIL mixed mode simulation began with the question, can the parallel

DEVS formalisms or coupled models be also used to express interaction to cyber physical

systems or COTS hardware? In other words, can we establish a method for driving an external

physical device via one of the elements in the set of the output port and values in the DEVS

formalisms? This area of research has a wide range of potential applications for many

companies ranging from aerospace and defense, consumer electronics to networking. The

commonality among these applications is that all of them can benefit from the ability to conduct

mixed mode simulation in addition to the existing DEVS analytical simulations.

2. Analysis
The analysis of this project presents the analysis, in three parts, Initial Feasibility Test Report,

Execution Time Requirements (early stages) and Kernel Libraries and Source Investigation that

were taken before the initial design stage. Although Taxonomy I, II, and III are important model

types for analysis, this project focuses primarily on Taxonomy IV Model Types. Of particular

interest in this project are the I/O observation data points, in other words the trajectories of the

inputs and outputs that are observed over a specific period of time and the coupled system

trajectories based on interacting I/O systems. In our case, the interaction of the hardware and

simulation coupling.

2.1 Initial Feasibility Test Report
The initial feasibility test was a check to see if communication in parallel to power an

external device was even feasible directly from DEVS-Suite simulator while running a parallel

DEVS model simulation. For the initial feasibility test a simple digital output relay I/O board

was used as a basic building block with the following specifications:

• 4 Relay Outputs for switching AC or DC power

• Rated at 250VAC, 10 Amps or 100VDC, 5 Amps

• Connects directly to a computer’s USB 2.0 port

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 5

The I/O board was connected via USB and would allow to digitally control 4 SPDT (Single

Pole Double Throw) relay outputs. This was an important initial test because the relay provided a

mechanism to interface and control various higher-voltage devices. Figure 1 below is an image

of COTS hardware by Phidgets[6].

The actual feasibility test was to see if it was possible to drive external power from the output

function within a parallel DEVS model in DEVS-Suite. The feasibility test would pass if there

was the ability to conditionally control each of the relay ports to set state for power on/off to an

LEDS on any of the four digital 10 Amp relays while running a parallel DEVS model simulation.

Using the existing COTS USB drivers and open source libraries simple methods were developed

to communicate directly to the digital relays. At this stage there was no need for abstraction

layers or advanced API since this was a feasibility test of the hardware and open source libraries.

At this stage there was also no bi-direction communication. If the feasibility tests passed, the

design would include abstraction layers and API calls for further refinement.

Figure 2 below, shows the placement of two function calls driveRelayPortsOne() and

driveRelayPortsTwo() within the model’s lamda output function to drive the outputs of relays

port 1 and 2 respectively.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 6

Figure 1. PhidgetInterfaceKit 0/0/4 4 port digital relay

The feasibility tests passed: the relays could be controlled independently while performing

DEVS model simulation in parallel. Table 1. shows the results of the feasibility tests where

conditional and independent control of the relays were validated before going to the next level in

the research.

Feasibility Test Pass/ Fail

Independently control relay port# 1 Pass

Independently control relay port# 2 Pass

Independently control relay port# 3 Pass

Independently control relay port# 4 Pass

Turn off all ports at once Pass

Turn on all ports at once Pass

Table 1. Feasibility Test Report

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 7

Figure 2. DEVS-Suite code example of output

2.2 Execution Time Requirements (early stage)
This project uses “As Fast As Possible Execution Times” but can also be extended for real-

time. The primary consideration for using “As Fast As Possible Execution Times” is that the

target is cyber physical systems (CPS) and COTS hardware where mixed mode simulation can

either be real-time or as fast as possible execution. In Stage 1of this research we are targeting

CPS that do not have real-time constraints initially and are applying as fast as possible execution

times. For example, the relay boards in this project use As Fast As Possible Execution Time.

The entire process from receiving the relay's input to controlling the load is in the order of tens

of milliseconds. Real Time execution requires further work in this area. Figure 3 illustrates the

execution time at the hardware level for this project.

2.3 Kernel Libraries and Source Investigation
The open source libraries and drivers were reviewed for gap analysis to provide a better

understanding of what were the necessary modules and additions in order to satisfy the

requirements of HIL mixed mode with bi-directional support. From the review it was clear that

the reference board drivers are all based on Universal Serial Bus (USB) and the only pre-

requisite packages for 32-bit and 64-bit Windows, Mac OS X and Linux 2.6.30 kernel were

POSIX threads and USB 2.0 development header files such as "libusb”. For example, in most

Linux distributions libusb-1.0-0-dev is already installed because libusb is widely used for many

kernel drivers. The flexibility to customize the COTS drivers and libraries to our specific needs

was an important consideration during this stage. Since DEVS-Suite uses Java as the

programming language, we have ability to create new libraries written in Java as a JNI interface.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 8

Figure 3. Execution Timing - Relay Board

3. Design
In principle, the design had to provide the necessary abstractions for the various types of

COTS hardware by Phidgets without impacting the performance and execution of the DEVS

model simulations. Additionally, the goal was to provide the notion of a hardware port instead of

directly referring to a relay, servo motor, etc.

In the initial feasibility test the model had references to a relay port. However, the goal was

to create a higher level of abstraction so other COTS hardware can be used for HIL mixed mode

simulation. For Stage 1 of this project, digital relays were used but the research is not limited to

digital relays. The objective was to create a design approach that can be used for various types

of COTS hardware without the DEVS model having to know anything about the device. This

design approach fits perfectly within DEVS-Suite and Parallel DEVS coupled models.

Since a coupled model is a composition of models and by coupling together output ports of one

model to input ports of another, outputs are transmitted as inputs and acted upon by the receiving

model[3].

Figure 4. Coupled Model DEVS formalism

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 9

3.1 Definition of DSHAL
DEVS Simulation Hardware Abstraction Layer was defined to create the necessary

abstractions in order for the DEVS models to communicate with real hardware. With these

abstractions DEVS-Suite can be used for mixed mode HIL (hardware-in-loop) or RCP

(Rapid control Prototyping). DSHAL also brings real-time execution capability of DEVS-Suite

to real world use which is a key component for supporting all forms of HIL scenarios for future

work. For example, allowing DEVS-Suite to communicate with the real world hardware

increases the types of DEVS analytical simulations we can do to answer more questions about

the system. The main functions of the DSHAL abstraction are listed below.

•Serves as standard interface for COTS hardware communication

•Acts as a proxy server for both sides

•Hides various hardware types from the simulator by providing a common interface

When the DSHAL was defined a basic assumption was made that calls to the outside for HIL

capability incur a non zero time advance. The primary focus of the DSHAL is on parallel DEVS

in order to allow for coupling of other models.

3.2 HIL Mixed Mode Use-Cases
To better understand the HIL mixed mode DEVS hardware / software simulations, specific

use case examples of a simplified automated guidance vehicle (AGV) controller similar to that

used in autonomous robots were studied. The AGV controller is an ideal use case for the HIL

mixed mode simulation because at the low level controller it is heavily depending on time based

inputs into the model for its guidance. The use case for the AGV highlights the use of four

operating modes for guidance; straight, left, right and stop. Even with only four operating modes

we can demonstrate a mixed mode for DEVS hardware / software simulations. The example

uses the normal parallel DEVS input and output ports for the simulation and a separate DSHAL

port for interaction.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 10

Since in Stage 1 digital relays are proposed, the example use case above shows how we can use

electrical stimuli to each of the abstracted hardware ports with the use of the DSHAL imported

into DEVS-Suite. In this example, the abstracted ports are relays, but could be another type of

COTS hardware. Using an AGV controller attached to DEVS Suite while running the parallel

DEVS model allows us to study the exact behavior of the controller before deploying it in a

production environment. In the example below, an AGV domain expert can verify the

correctness of the model using the HIL mixed mode simulation.

Figure 5. AGV Logic Model Use Case

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 11

3.3 DSHAL Communication Layers
The communication use cases for DSHAL are defined in three different layers that aim at

different objectives for separating simulation from hardware communication to provide HIL

mixed mode simulation. Figure 7 below highlights the three distinct layers. Layer 1 is the

overall DSHAL layer which is the standard interface for all hardware communication and also

acts as a proxy for both sides. Layer 2 is the DEVSPhidget API communication layer with

Phidgets API developed specifically for DEVS-Suite. Although Layer 4 Connects higher layers

(DSHAL) to Phidget hardware drivers this layer can be easily extended to handle other COTS

hardware support. For example, in addition to supporting Phidget boards we can also support

various COTS sensors in a HIL mixed mode simulation environment. This is an important

factor in the design of communication layers because COTS is widely supported in many sectors

including Aerospace and Defense. Layer 3 is the hardware and driver layer which for this

research is using open source libraries for the hardware drivers. Each of these layers will be

described in further detail in the sections below.

Figure 6. AGV Domain Engineer

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 12

3.4 Hardware Communication API
The design philosophy for the hardware communication API is that regardless of the

hardware type or API the DEVS models should remain unchanged. In other words, the inclusion

of HIL mixed mode should not affect our models or their realization in DEVS-Suite. Different

hardware types can be used for mixed mode simulation as long as a kernel driver and API exists

similar to DEVSPhidget described in this paper. Since closure under coupling and the overall

hierarchical construction form the basis of the DEVS composition framework, the hardware

communication API was designed that the internal models do not directly call send/receive

functions of the hardware API.

Figure 7. Communication Layers

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 13

3.5 Definition of DEVSPhidget API for DEVS-Suite
The DEVSPhidget API is the level responsible for handling the events as well as reading and

writing into the hardware driver specified memory port. The DEVSPhidget API includes a

DEVSPhidget manager as a way to keep track of attached devices. The manager will send attach

and detach events as devices are added or removed from the system via USB. This was an

important consideration in the overall design because the attach and detach handlers are multi-

threaded. All of these events are handled in its own process thread so it does not affect DEVS-

Suite interaction. A hardware can be attached or detached from the system at any time. This

degree of separation allows for rapid control prototyping. The screen capture below illustrates

how the DEVSPhidget API announces the attachment of a HIL device and already knows the

capabilities. In this case, DEVSPhidget was aware that the new device attached is a 4 port digital

relay.

Figure 8. DEVSPhidget USB Attach/Detach

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 14

The manager also retrieves all pertinent hardware information including device type and

capabilities. Depending upon the type of hardware that is attached the HIL capabilities are

updated accordingly. For example, attaching a 4 port digital relay initializes the ports array to

hold 4 ports with the default value of and sets the output state to false. Attaching an 8 port

digital relay device initializes the ports array to hold 8 ports.

3.6 DevsPhidget Bi-Directional Support
In designing the hardware communication API we developed a communication mechanism

that does not assume that the hardware processing is reliable. That is to say, for every input

event sent to the hardware we cannot assume it is processed without fault. For that reason we

established bi-directional communication. Output change event listeners were added for

complete bi-directional communication within the DEVSPhidget API. The output change

listeners have the ability to provide a callback or notification to the coupled model described

earlier in this paper. The output listeners also captures the current state, new state and hardware

port associated with the event. With this support we know when any of the hardware ports have

changed its status. The example below was the first prototype of bi-directional support that

simply printed hardware state information to the console through the function “outputChanged”.

This function is called whenever an output for a device has changed. The DEVSPhidget API

would instantiate and add OutputChangeListeners automatically in its constructor so there is no

need to manually call this function.

Figure 9. Output change function - first prototype

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 15

The output change events listeners have been refined to handle non trivial communication

and communication to the coupled model to drive simulation.

This additional support increased the potential range of applications for this research. By

adding bi-directional support we are not only able to control the hardware from the DEVS model

simulations, but we can take it even further to enable the hardware to control the models and

simulation. This bi-directional support provides us with new trajectory data points that were not

possible before. This is a new area of research that has a wide range of application. This feature

also allows us to fine tune the research and choose real world systems with bi-directional

communication that will be discussed later in this paper.

3.7 Layers Specification
The five communication layers as described in the earlier section are something that was

proposed for this applied project. Below is an illustration that specifies each layer of DEVS/

Phidget. However, implementing all of the communication layers is something that is not

feasible in the short term allotted to this research. The amount of work that has to be done in the

area of layers specification is quite substantial and will be left for future work.

Figure 10. Layers Specification

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 16

3.8 Finite-State Machines
 The discrete dynamics of the HIL mixed mode components were studied with finite-state

machines in order to understand how each reaction maps valuations of the input valuations to

output valuations[5]. The first set FSM studied were the asynchronous side-by-side

composition of the Phidgets state machines .

 The composition is based on four asynchronous actors in parallel for each of the hardware

ports. The next FSM studied the asynchronous processing of events.

Figure 11. Side-by-Side Ports 1 and 2

Figure 12. Side-by-Side Ports 3 and 4

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 17

4. Implementation
New packages were added into DEVS-Suite with separation from the existing modeling base

classes under model.simulation.hardware and DEVSPhidget. The model.simulation.hardware

package includes the Communicator and DSHAL classes. The DEVSPhidget package includes

both DEVSPhidget and DEVSPhidgetMgr classes as described earlier in the paper. The primary

reason for the naming convention and ordering of the packages was the separation of concerns.

For the implementation a parallel DEVS coupled model was created to test the full interaction

between Communicator and the hardware. Figure 14 illustrates the hardware simulation coupling

and memory read and write interactions to control the hardware via the input and output ports

that are embedded in the top level coupled model.

Figure 13. Side-by-Side Asynchronous Composition

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 18

Figure 14. HIL Mixed Mode Implementation Running

Figure 14. HIL Mixed Mode Implementation Running

Figure 15. DEVSPhidget Initialization

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 19

4.1 Prototype Using COTS - Phidgets 4 port Relay I/O boards
The initial prototype to use Phidgets 4 port digital relay port was enough to conduct various

experiments and satisfy the mixed mode simulation requirements. The prototype consisted of a

A PhidgetInterfaceKit 0/0/4 connected via USB, four separate LEDs, battery connectors and 9

Volt batteries connected to the Normally Open load on the digital relay connected to Mac OS X

with DEVS-Suite Version 2.1.0. Normally Open was chosen for the load type because it most

closely resembles the real world scenarios. Normally Open loads will only be powered when the

relay coil is powered via USB. Normally Closed loads will remain powered as long as the relay

coil is not powered via USB. This is a good demonstration because some devices are potentially

dangerous when left on. By using separate colored LEDs it was easy to visualize which

hardware port is being controlled. Figure 15 is an image of the initial prototype using LEDs

connected to the Normally Open load on the digital relay.

Figure 16. Early Prototype

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 20

5. Testing & Experiments
Practical tests and experiments were performed against the DEVS HIL Mixed Mode

implementation. Real world problems were presented so that the issues van be better understood

and solved using the approach in this research.

5.1 Real World Problem Examples
As a means of evaluating the DEVS HIL Mixed Mode implementation it was necessary to

provide a world real problem example. Software Defined Networking (SDN) was chosen as the

real world example which is an emerging new approach to networking which basically allows

the decoupling of the control plane from the data plan in network switches and routers. SDN has

attracted a lot of attention recently from academia, industry, and government mainly because it is

an innovation that allows for the control and program of the network in a way to make it

responsive to networking events in a more proactive fashion. Data flow tables can be monitored

and controlled based on user-defined rules instead of fixed firmware defined rules. The new

approach allows for traffic reshaping. For example, reconfiguring a network dynamically to

enforce packet forwarding, blocking, redirection, reflection, MAC or IP address changing,

limiting the packet flow rate are all potential use-cases of SDN. Instead of user-defined rules,

the hardware itself created the SDN data flow rules. The SDN data flow rules are dynamically

generated based on the events at the network switch or router. The SDN is a real world problem

that can be understood better and solved with mixed mode simulation. This research allows for

the testing on any scale, small or large to see if they work. The following state chart is an

example to illustrate a possible data flow using bi-directional mixed mode simulation. In SDN,

the data flow tables can be monitored and controlled. This example shows simple traffic

reshaping for four states; {Normal_Network_Routing, Congested_Network_Routing,

Prioritized_Network_Routing, Full_Networking_Routing} based on the information received

from the OutputChangeListener event in the DEVSPhidget API. Based on the events coming

back from the hardware we can iterate through the various states. This real world example

highlights the capabilities of bi-directional mixed mode simulation to test the control data plane

for SDN.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 21

The following is an illustration of the sample sequence of software and simulation events and

responses during the operation of the SDN example.

Figure 17. SDN State chart Example

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 22

Figure 18. Sample Sequence of events - SDN

5.2 Simulation / Hardware Coupling
The bi-directional communication for the SDN example is illustrated in further detail in

Figure 19 below.

5.3 Hardware Input Port Analysis
At the hardware level each of the relays ports are truly independent since the electro-

mechanical relays are nothing more than a controllable switch and can receive current at ay time

in parallel to any of the other ports. There is a clear distinction with the software level. At the

software level each relay port is associated to a hardware device driver. For example, the 4 port

board used in this research is associated to a Phidgets InterfaceKit 0/0/4 which comprises of four

relay ports. There is no direct connection to a relay port without going through the device driver

which creates a relationship to the other relay ports on the board. Each hardware device is

independent of each other and within the device each relay port is considered asynchronous.

Figure 19. Bi-Directional Communication - SDN

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 23

5.4 Software Tools
The software stack consisted of the Phidget21.framework library, Phidget.kext kernel

extension, libphidget21.jnilib, DEVS-Phidget, DSHAL and DEVS-Suite Version 2.1.0. The

Phidget.kext is unique to Mac OS X but equivalent kernel extensions are available for Windows

and Linux operating systems. Phidget21.framework contains the actual Phidget C library, which

is used at run-time. libphidget21.jnilib is the JNI library for Java. DEVS-Phidget and DSHAL

which were described earlier provides the necessary hardware abstractions and support for two-

way communication within DEVS-Suite.

5.5 Hardware
In this research 4 port SPDT (Single Pole Double Throw) digital output relays were used

for switching AC or DC power. The relays are an electromagnetic switch consisting of a coil. If

a minimum current is present on input it creates a magnetic field to energize the coil which then

toggles the switch depending on how the load is connected, i.e. NO or NC. Digital relays were

proposed for Stage 1 of the research because if proven to work relays can also switch various

higher-voltage devices such as motors, servo controllers, servo motors, DC controllers, DC

motors, stepper controllers, stepper motors or sensors. The minimum switching current of the

relay in this experiment is 100mA @ 5VDC which is not ideal for switching signals. If signal

switching is desired an I/O board can be easily be used in the design which includes both analog

and digital inputs with digital outputs. However, DSHAL and DEVS-Phidget API proposed in

this paper can accommodate this board as well.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 24

Figure 20. Simple SPDT Digital Relay Schematic

6. Conclusions / Future Work
We have shown in this paper how Parallel DEVS model types directly from DEVS-Suite can

be combined with COTS hardware to create HIL Mixed Mode Simulation. We illustrated the

use of the system based on the real world problem SDN use case and studied the possibility of a

self-reconfiguring network routing made possible with bi-directional HIL support. Our goal is to

extend the DSHAL Communication Layers as described earlier in the Design section of this

paper to include more work around the Communicator Layer and Outer Coupled Model to allow

for non-trivial communication. For example, the next step in improving the system is to add

communication event handlers. This improvement will allow us to perform experiments with

various types of communication events for Parallel DEVS models. The second area of future

work is to extend the DEVSPhidget API to include more hardware types such as motors, servo

controllers, servo motors, DC controllers, DC motors, stepper controllers, stepper motors or

sensors that was described earlier in the Hardware Section. This research work is an interesting

prospect for V&V for Simulation Models. With this research one has the foundation to prove

that the simulation model and the original system are functionally identical.

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 25

References

[1] Minsky M., “Models, Minds, and Machines” Proceedings of IFIP Congress, pp. 45-49,
1965.

[2] Kim S., et al, H.S. “DEVS-Suite: A Simulator Supporting Visual Experimentation Design
and Behavioral Monitoring”.Arizona Center for Integrative Modeling and Simulation-
University of Arizona, Arizona State University (2009)

[3] Sarjoughian, H., Zeigler B., “Introduction to DEVS Modeling & Simulation with
JAVATM:Developing Component-based Simulation Models”, Arizona Center for Integrative
Modeling and Simulation- University of Arizona, Arizona State University (2003)

[4] Ziegler B.P., et al, “Theory of Modeling and Simulation” , “Integrating Discrete Event and
Continous Complex Dynamic Systems” Second Edition 2000

[5] Ziegler B., Sarjoughian, H.S. “Introduction to DEVS Modeling & Simulation with JAVA:
Developing Component-based Simulation Models”. 2003

[6] phidgets. “Products for USB Sensing and Control, 1014_2 - PhidgetInterfaceKit 0/0/4
Internet: http://www.phidgets.com/products.php?product_id=1014l, July, 2012 [Aug. 2,
2012].

[7] Sarjoughian, H., CSE561 Class Lecture, Topic: “A Real-Life V&V Example: NCES
Collaboration Tools”, Arizona Center for Integrative Modeling and Simulation- University
of Arizona, Arizona State University (Spring 2011)

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 26

http://www.phidgets.com/products.php?product_id=1014
http://www.phidgets.com/products.php?product_id=1014

Appendix I: Source Code - Sample Memory Read/Write
Example Memory Read/Write Functions

public boolean memRead(int hwport) throws PhidgetException {
	 System.out.println("DEVSPhidget memRead: Reading HWPort: " + hwport);

	 ik.openAny();
	 ik.waitForAttachment();
	 boolean state = ik.getOutputState(hwport);
	 ik.close();
	
	 return state;
}

public void memWrite(int hwport, boolean state) throws PhidgetException{
	
	 System.out.println("DEVSPhidget memWrite: Writing HWPort:" + hwport + " to
	 State " +state);

	 ik.openAny();
	 ik.waitForAttachment();
	 ik.setOutputState(hwport, state);
	 ik.close();

}

Appendix II: Source Code - Sample Constructor
Example DEVSPhidget Constructor

	 public DEVSPhidget() throws PhidgetException
	 {
	 	 ik = new InterfaceKitPhidget();
 // ========== Event Handling Functions ==========
 attachHandler = new AttachListener() {
 public void attached(AttachEvent event) {

 	 deviceName = new String();

 try {
 setSerialNo(((Phidget)event.getSource()).getSerialNumber());
 setHardwareName(((Phidget)event.getSource()).getDeviceName());
 setHILCapabilties();// Internal call to obtain the capabilities of the h/w
 } catch (PhidgetException exception) {
 printError(exception.getErrorNumber(), exception.getDescription());
 }

 System.out.println("DEVSPhidget Attach Hardware " + getHardwareName() +
	 	 ", Serial Number: " + getSerialNo());
 }
 };

 detachHandler = new DetachListener() {
 public void detached(DetachEvent event) {

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 27

 int serialNumber = 0;
 String name = new String();

 try {
 serialNumber = ((Phidget)event.getSource()).getSerialNumber();
 name = ((Phidget)event.getSource()).getDeviceName();
 } catch (PhidgetException exception) {
 printError(exception.getErrorNumber(), exception.getDescription());
 }

 System.out.println("DEVSPhidget Detach Hardware " + name + ", Serial Number: " +
	 	 Integer.toString(serialNumber));

 }
 };

 outputListener = new OutputChangeListener() {
 public void outputChanged(OutputChangeEvent outputChangeEvent) {

 System.out.println("DEVSPhidget Output changed - Send Event to DEVS-Suite HWPort:
	 	 " +outputChangeEvent.getIndex() +" New State " +outputChangeEvent.getState());
 activePort = outputChangeEvent.getIndex();
 newState = outputChangeEvent.getState();

 }

	 	 	
 };

 inputListener = new InputChangeListener() {
 public void inputChanged(InputChangeEvent inputChangeEvent) {

 System.out.println("DEVSPhidget Input changed - Send Event to DEVS-Suite HWPort:
	 	 " +inputChangeEvent.getIndex() +" New State " +inputChangeEvent.getState());
 }

	 	 	
 };

 // No exception thrown on create
 manager = new DEVSPhidgetMgr();

 manager.addAttachListener(attachHandler);
 manager.addDetachListener(detachHandler);
 ik.addOutputChangeListener(outputListener);
 ik.addInputChangeListener(inputListener);

 System.out.println("Opening DEVSPhidgetMgr....");
 try {
 manager.open();
 } catch (PhidgetException exception) {
 printError(exception.getErrorNumber(), exception.getDescription());
 }

 }

CSE 593 Applied Project: DEVS HIL Mixed Mode Simulation 28

