
Exploring Composability within Simulations-as-a-Service Paradigm 

by 

Chesley Montague and Robin Sexton 

 

 

 

 

 

An Applied Project Presented in Partial Fulfillment 

of the Requirements for the Degree 

Masters of Engineering 

 

 

 

 

 

 

 

 

 

 

Approved December 2012 by the 

Graduate Supervisory Committee: 

 

Hessam Sarjoughian, Chair 

 

 

ARIZONA STATE UNIVERSITY 

 

December 2012 



i 
 

ABSTRACT 
 

This capstone project examined in detail some of the aspects of Simulation-As-A-Service 

(SimAAS) concept.  The project included research and development in four of the five areas of a 

Software-as-a-Service (SaaS) system.  The four areas are Publishing, Discovery, Composition, 

and Deployment.  Monitoring and policy enforcement will not be examined in this project. 

This project produced three products: a web interface Composer, a simple simulation, and 

a discussion of the information required for the Publish/Discovery process. 

This project focused on the composition of basic and complex models into a system 

where a tenant controls what models are present in simulation built to the tenants needs.  This 

project demonstrated the ability and the actions required in a multi tenant environment for this 

process.  The investigation has shown that there needs to be further research into the areas of 

data management used to store the information on model composition.  There are other 

component based systems that have done research into alternate methods such as SOSA, FCINT 

simulation,  or web based services to describe the Simulation-as-a-Service paradigm that are 

worth further study. In addition more work needs to be done in IAAS, and PAAS domains to 

work requirements needed for large scale distributed simulation.  Lastly, security will become 

increasingly important if the architecture is used among tenants that do not want to share 

information with other tenants which leads to more research being done into encryption needed 

for all aspects of the Simulation-as-a-Service architecture and framework. 

 

 

 



ii 
 

ACKNOWLEDGMENTS 
 

First, we would like to express the deepest appreciation to our committee chair and 

advisor, Dr. Hessam Sarjoughian. His guidance and advice was always poignant and given in a 

friendly manner. We especially appreciate his patients with our long dissentience relationship. 

Without his guidance and persistent help this project and our career as students at ASU would 

not have been possible. 

We also recognize the help of the Fires Battle Lab, specifically Lt Col (Ret) Chris 

Niederhauser and Jeffrey Milam, for providing resources and allowing time in an already 

challenging schedule to work on this project. 

Finally we thank Arizona State University and there online graduate program for 

allowing non-traditional students to further their education.  The staff and administration have 

always been friendly and responsive. 

 
  



iii 
 

TABLE	OF	CONTENTS	
Objective ......................................................................................................................................... 1 

Motivation ....................................................................................................................................... 1 

Scope of Study ................................................................................................................................ 2 

Discussion ....................................................................................................................................... 3 

Publishing and Discovery ............................................................................................................... 4 

Composition .................................................................................................................................... 6 

Use-Case Diagram ...................................................................................................................... 6 

Composer .................................................................................................................................... 6 

Deployment ................................................................................................................................... 10 

Models....................................................................................................................................... 10 

Conclusion .................................................................................................................................... 12 

Demonstration Environment ......................................................................................................... 13 

List of References ......................................................................................................................... 14 

Appendix A - Simulation-As-A-Service Simulation Engine ........................................................ 16 

Use Case.................................................................................................................................... 17 

Initialization .............................................................................................................................. 18 

Runtime Input Arguments ..................................................................................................... 18 

Instantiate Simulation Engine ............................................................................................... 19 

Initialize Models and Scenario.............................................................................................. 20 

Create Entity ......................................................................................................................... 21 

Scheduler/Time keeper ............................................................................................................. 26 

Scheduling............................................................................................................................. 29 

Services ..................................................................................................................................... 31 

Common Environment .............................................................................................................. 32 

Current Time Function .......................................................................................................... 32 

Geo Location Table Function ............................................................................................... 32 

Entity Table Function ........................................................................................................... 33 

Appendix B – SimAAS Simulation Engine Federated Model Agreement ................................... 34 

General ...................................................................................................................................... 34 

Publishing ................................................................................................................................. 34 



iv 
 

Model Description ................................................................................................................ 34 

Data Description ................................................................................................................... 35 

Services and Models ................................................................................................................. 35 

Interactions between Models and the Common Environment .................................................. 40 

Geo Location Table Function ............................................................................................... 41 

Entity Table Function ........................................................................................................... 41 

Interactions between Models and the Time Keeper .................................................................. 42 

Scheduling............................................................................................................................. 42 

Current Time Function .......................................................................................................... 43 

Intra-Model interactions ............................................................................................................ 43 

Behaviors and Movement Models ........................................................................................ 44 

Behaviors and Sensor Models ............................................................................................... 44 

Initialization Requirements ....................................................................................................... 44 

Appendix C - Initialization file Structure ..................................................................................... 45 

Overview ................................................................................................................................... 45 

Keywords .................................................................................................................................. 45 

EndOfGame .......................................................................................................................... 45 

Entity ..................................................................................................................................... 45 

Physical ................................................................................................................................. 45 

Movement ............................................................................................................................. 46 

Behavior and Sensor ............................................................................................................. 46 

END ...................................................................................................................................... 46 

DataCollection ...................................................................................................................... 46 

Entity Creation .......................................................................................................................... 47 

Example File ............................................................................................................................. 48 

 

  



v 
 

LIST OF FIGURES 
Figure 1 SimAAS Environment ...................................................................................................... 3 
Figure 2 User Interactions with the Composer ............................................................................... 6 
Figure 3 Simulation-as-a-Service View .......................................................................................... 8 
Figure 4 Simulation Environment ................................................................................................. 10 
Figure 5 Inter-Model Interactions ................................................................................................. 12 
Figure 6 SE File Structure............................................................................................................. 16 
Figure 7 SE Use Case ................................................................................................................... 17 
Figure 8 Workflow for main ......................................................................................................... 18 
Figure 9 Instantiate Workflow ...................................................................................................... 19 
Figure 10 Initialize Workflow ...................................................................................................... 20 
Figure 11 Create Entity Workflow ............................................................................................... 21 
Figure 12Create Physical Model Workflow ................................................................................. 22 
Figure 13 Create Movement Model Workflow ............................................................................ 23 
Figure 14 Create Model Workflow ............................................................................................... 24 
Figure 15 Create Data Collection Model Workflow ..................................................................... 25 
Figure 16 Time Keeper Workflow ................................................................................................ 27 
Figure 17 Execute Event Workflow ............................................................................................. 28 
Figure 18 Sequence Diagram for Model Scheduling .................................................................... 29 
Figure 19 Data Structure for Event Scheduling ............................................................................ 30 
Figure 20 Schedule Workflow ...................................................................................................... 31 
Figure 21 Data Structure for Geo Location .................................................................................. 33 
Figure 22 Data Structure for Entity Table .................................................................................... 33 
Figure 23 Models Component View Example.............................................................................. 36 
Figure 24 Physical Model Relationships ...................................................................................... 37 
Figure 25 Movement Model Class Relationships ......................................................................... 38 
Figure 26 Behavior Model Class Relationships ........................................................................... 39 
Figure 27 Sensor Model Class Relationships ............................................................................... 40 
Figure 28 Event Scheduling Sequence Diagram .......................................................................... 42 
  



1 
 

Objective	
The intent of this capstone project is to examine in detail some of the aspects of 
Simulation-As-A-Service (SimAAS) concept.  The project included research and 
development in four of the five areas of a Software-as-a-Service (SaaS) system.  The four 
areas are Publishing, Discovery, Composition, and Deployment.  Monitoring and policy 
enforcement will not be examined in this project. 

The focus of this project is from a simulation point of view.  The completed system is a 
functional simulation (as opposed to the simulation and testing component of a traditional 
SaaS system). 

This project will produce three products: a web interface Composer, a simple simulation, 
and a discussion of the information required for the Publish/Discovery process. 

Motivation	
Since the early 90s the US Army uses distributed simulations for experimentation, 
analysis, and training. 

Experimentation and analysis with distributed simulation consists of federations of 
disparate simulations with each branch of the army being represented by their specialized 
federates and subject matter experts as role players, analyst and technical staff.  Role 
players are typically organized into Blue cells and Red cells.  The analyst and technical 
staff are included as a White cell.  Depending on a specific problem under study the 
number of federates involved can be over thirty and the number of personal involved 
reach over 500.  The testing, integration, and execution cycle can be as long as 9 months. 

In the training domain distributed simulation is used for command post staff training and 
unit mission rehearsal.  Staff training typically uses the simulation environment to 
produce a realistic scenario.  Emphasis is placed on stimulating the real go-to-war 
systems accurately.  The soldier operating the tactical box is presented with information 
that represents real scenarios in order to train the command post staff in proper decision 
making and reactions.  The scale of these exercise are typically smaller than an 
experiment.  The federation may have only a few simulations and the participants under 
100.  Complexity is added by the inclusion of command and control systems that are in 
use by the active military. 

Problems are inherent in this environment because these federations are composed of 
simulations built and managed by many different software development teams with 
various skills and development practices.  Integration and testing are costly and may not 
ensure a stable execution environment.  The simulation environment may not provide the 



2 
 

fidelity or capability required by a study director.  The study director is stuck with a 
limited number of options for the scale and composition of the federation. 
 
Simulation-as-a-Service may provide a solution to some of these problems.  Before 
resources are applied to a full scale investigation and test of a SimAAS environment 
preliminary investigation will need to be preformed and insights provided to leadership. 
 
This project will provide insight to a future Fires Battle white paper discussing the use of 
Simulation-as-a-Service as a potential component of Cloud-Based Training-As-a-Service 
(CBTAS).  If successful, this project will lead to future work within the US Army on 
Simulations-as-a-service. 

Scope	of	Study	
The goal of this project is to construct a Simulation-as-a-Service environment of 
sufficient scale in order to examine the requirements and intricacies of the Publish and 
Discovery phases within the Software as a Service (SaaS) paradigm.  Publishing and 
Discovery define the interactions between different models.  A firm understanding of the 
links between models is one of the first steps in developing interface specifications for 
engineers to work with. 

The complete environment for a Simulation-as-a-Service (SimAAS) system using a SaaS 
paradigm would consist of repository of models on multiple sites publishing to a 
Composer the information necessary to be included within a simulation environment. The 
Composer would discover the models available and present the proper information to a 
user allowing a rich and variable simulation capability. 

In order to determine the requirements for the publish/discover relationship between 
models and the user an end-to-end simulation system was constructed.  This system 
consists of a number of models, a composer, and a simulation engine. 

Component classification is used in some prescribed research to show how these 
components handle time.  This type of framework includes the definitions of component 
versus a logical process.  Whereas the component exchanges information through 
input/output ports and not events, and the components must be configured before the 
system is compiled. [CS01]  This last part is a central consideration in how the compositions 
of basic and complex models work, and is shown in how the auto-generated code and the 
simulation engine in this project are processed. 

 



3 
 

This project is implemented on a single Platform as a Service system with all model 
contained within the local repository. 

Discussion	
 

Cloud computing has been defined to include the following layers.  Infrastructure-as-a-
Service describes how the basic resources are provided such as data storage, data 
management, and network connectivity.  Platform as a Service describes environments 
where virtual machines are setup and maintained to provide toolkits for development, 
distribution, and financial services. Finally, there is the Software-as-a-Service that 
describes the software available to be used by tenants and tenant’s users that is 
maintained by other organizations and can be rented/bought to accomplish the tenant’s 
needs.[RW11] One concern pointed out by Rajaei and Wappelhorst is that interoperability 
of cloud services is not supported.[RW11]  This project takes the Software-as-a-Service and 
transforms this to a framework that can be utilized for distributed simulations where a 

Composer 

Simulation 

Deployment 

 Model 
Repository 

Model 
Repository 

Model 
Repository 

Local 

Offsite 

Publishing/Discovering 

User Driven 

Figure 1 SimAAS Environment



4 
 

tenant can create complex simulations based on models built by other tenants.  In 
addition once these models are created then compositions can be created to run in a 
distributed simulation environment where specific services can be selected to allow the 
simulations to communicate with other simulations through protocols such as Distributed 
Interactive Simulation or XML.   The concept for the Simulation-as-a-Service is to allow 
for interfaces to also be selected to allow for specific user visualizations to be used to 
replicate the view that the tenant wants to give the simulation user such as an interactive  
2D versus a 3D view of the simulation run.  Primary factors involved in cloud 
development deal with availability and security which are consistent with any use of a 
network based system.  

According to “Towards A COTS-Based Service-Oriented Simulation Architecture” paper 
there are three major areas of research into how distributed modeling and simulation 
systems will work.  One is the architecture driven approach as defined by systems like the 
High Level Architecture, the second is middleware driven such as having a intermediate 
translator that pulls in disparate protocols and translates them to the other systems, the 
third is the component based driven layouts where the tendency is to have expert builders 
who have to be experts in the designing and building of many different systems. This 
paper proposes the Service Oriented Simulation Architecture (SOSA) where the objective 
is to build more loosely coupled pieces than represented in most simulation architectures.  
[GY07] Another Service Oriented Architecture simulation approach is described in the 
paper “Integrating HLA and Service-Oriented Architecture in a Simulation Framework”.  
This paper explains the FCINT simulation engine and integrates HLA with the FCINT 
Simulation Framework.  This framework uses dynamic application composition, runtime 
behavior and performance, plus shows the concept of dynamic collaboration within the 
simulation framework.[DS12] 

Another framework proposed for using a service oriented architecture approach focused 
on loosely coupled services that were directed at the end user.  This framework involves 
the use of web-enabled applications, tools, and resources to build a distributed game 
simulations architecture based on usefulness, usability, and usage. [HJ04]  

Publishing	and	Discovery	
One of the main objectives of this project is to investigate the publishing and discovery 
relationship between models and a simulation in a Simulation-as-a-Service environment.  
A simulation environment was developed with an event sequenced simulation engine and 
along with several models.  These models were written to allow for a Composer to 
include them at a user’s discretions into an executable simulation.  In order to do this the 
Composer must discover what a model publishes. 



5 
 

The process of developing a working Composer/Simulation system allowed for the 
enumeration for some of the basic information that needs to be published.  For this 
project the publishing mechanics were manual.  The following solutions will need to be 
studied in more detail.  One possible publishing mechanism is for the model to be 
responsible to publish information to the composer.  An alternative publishing 
mechanism would be that the composer would actively discover information about the 
model.  For the purposes of this project this will not be covered in this paper.  There are 
four basic areas or information grouping needed for the Composer to allow a user to build 
a simulation.  These areas are: model identification, event linkages, linkage to other 
models, and data requirements. 

The model identification is a set of tags and descriptions necessary to indentify a model 
uniquely.  For this system the published information consisted of a model name, the 
model type, and a description.  The model name is the code ready handle of the model. 
This name can be wrapped in the appropriate syntax to be called by the simulation engine 
and is used at code auto-generation time. Paired with the model name is a user 
understandable long name.  The long name is used by the Composer to display model 
selection. The model type classifies the model for both Composer display and auto-
generation.  Model types are described in the appendixes below.  The item of the model 
identification is the description.  The description is a paragraph length dialog explaining 
to the user what this model dose.  The Composer displays this information for the user. 

The event linkage is the name of the scheduled event for this model (if any).  This name 
will be used by the composer to create the auto-generated file ExecuteEvent and must 
accurately reflect the model’s syntax. 

A model must also publish the linkages to other models needed. Currently this is used to 
include other models in the build and these interactions must be negotiated between 
model developers. 

The last publishing requirement is a description of the data needed to run the mode. The 
composer uses this description to prompt the user for information in the entity definition 
phase.  Further research can be done with regard to other publishing and discovery 
mechanisms.  One promising area is the publishing and discovery process that is 
managed by the Universal Description Discover and Integration (UDDI) registry method 
based on XML. [SZ09] 



6 
 

Composition	

Use‐Case	Diagram	

 

Figure 2 User Interactions with the Composer 

Composer	
 During the initial investigation into how a composer would work in a multi-tenant 
environment several requirements were discovered.[TS11]  One was that the system needed 
to be able to restrict other tenants from using models that another tenant did not want to 
share(protection of tenant sensitive information), a second was that the internal working 
of a model needed to be isolated from the tenant in order to reduce the complexity, 



7 
 

another item was that the system should follow the software-as-a-service paradigm where 
there exists only one version of the code base that is accessed during the creation of auto-
generated code and is based on the object model agreements in place.  This will help with 
the complexity of code maintenance involved with the various models and the 
simulations engine. A tenant is always guaranteed to be running the latest models and 
simulations engine during the creation of the composition. See appendix A and appendix 
B to look at the simulation engine details and simulations engine model agreement.  

During the literature search a paper by “SimSaaS:Simulation-as-a-Service” proposed an 
overall framework. This framework covered the multi-tenancy configuration model, 
along with how the multi-tenancy works during the simulation run-time.[TS11] This project 
focuses on how the composer would interact with a tenant and how the composer 
interacts with the auto-code generation and the running of the resultant simulation code. 
The composer consists of multiple parts. These parts include the following: A composed 
template describing all services, interactions, complex models, data output; a process to 
build, edit, delete, and share complex models created from models that have been 
published and discovered from the same tenant or other tenants within the  
SimSaaS framework; A process to create, edit, and share this composition; A process to 
create, edit, and delete simulation data through the creation of entities based on the 
complex model types created by the tenant;  A process to auto generate code based of the 
complex models created by the tenant to integrate the complex model behavior into the 
simulation engine; and  a process to run the simulation and save the simulation results 
based on the tenant.  

A point to concentrate on with regard to the composer is that it is a tenant based system 
as inherent in most Software-as-a-Service systems.  This allows flexibility in creating 
solutions that are based on what the user needs.   In addition there should be the ability to 
collaborate from multiple locations on the same composition process so that individuals 
will be able to give real-time input into the composition process.    The composer 
depends a great deal on the service level agreements/federation agreements to know what 
information to supply to the tenant doing the composition.  Through the service level 
agreements inputs/outputs, and data requirements are defined and agreed upon by the 
tenants/users of the simulation-as-a-service framework.  The composer discovers other 
created compositions, basic and complex models, services, interfaces, and data output 
methods that have been created by this tenant and also these items that have been shared 
by other tenants.  This is a data driven approach where during the publishing phase and 
according to the service level and object model agreements a tenant will publish the 
required information concerning their respective services, interfaces, and models.  A data 
repository contains this information and is accessed by the composer to provide a given 
tenant available options to build a composition from.  A primary distinction from most 
simulations in use today is that the SimSAAS system allows individual models to be built 



8 
 

and maintained by other tenants without the user being required to store and maintain a 
given model.  Maintaining a model requires the owner to work within the service level 
agreement to provide updates, fixes, and new code.  This is analogous with current 
“cloud” systems that are coming into play today, such as the ability to store and view 
photographs.  The viewing software is generally referred to as a thin client similar to 
what was used in the early computing days in what was called a remote terminal, and the 
data is stored on externally controlled and maintained hardware server farms.  The 
following diagram shows how the Composer would fit into an overall Simulation-as-a-
Service view. 

There is parallel work going on with Simulation-as-a-Service.  Specifically systems that 
describe cloud based simulation.  Most of this work is focused on scheduling, security, 
infrastructure as a service (IAAS), and platform as a service (PAAS). For instance 
scheduling methods for Cloud based simulation are described in the article “Cloud-based 
Simulation: the State-of-the-art Computer Simulation Paradigm” [LH12].   Another similar 

Figure 3 Simulation-as-a-Service View



9 
 

Simulation-as-a-Service modeling framework is described in “A Simulation Framework 
for Service-Oriented Computing Systems” is called the Discrete event System 
specification (DEVS) which is oriented to the Service Oriented Architecture 
methodology.[SY08]For this project demonstration architecture it was determined to locate a 
web hosting system that also hosts database resources as well as tools to interact with 
these resources.  This in effect will provide the IAAS and PAAS portion of our 
demonstration.  Multi-tenancy will be handled through a simple session control 
mechanism that uses MD5 generated strings to differentiate tenants and track models, 
interfaces, services, and compositions that can be shared or not shared by other tenants.  
Further research will need to be conducted to determine the collaboration mechanisms 
that would be the most beneficial to the scalability and real-time coordination that large 
scale simulations require.  In addition the services and interface pieces are not trivial and 
will require extensive research and development to provide the needed services such as 
different transport protocols such as Distributed Interactive Simulation (DIS) or High 
Level Architecture – Federated Object Model (HLA-FOM) variants.  The services that 
are a precondition for the composition of the complex models in this project are related to 
the coordinate/terrain service, timing service, and data services that have been built to 
allow for the demonstration of the composer concept.  Additional complex tasks will be 
the interface design and usage for human in the loop Simulation-as-a-Service 
participants.  These services will all separate users/tenants to do group collaboration 
across this framework.   For the purposes of this project the following tools were used to 
construct the composer demonstration.  Database storage MySQL 5.5.28,  Database 
administration: phpMyAdmin 3.4.11.1, Dynamic webpage construction : PHP 5.2, web 
client side validation and processing: Javascript:1.8.5, and Jscript version 9.0 

 	



10 
 

Deployment	
The deployment level of this system is a functioning simulation.  The simulation consists 
of a simulation engine (SE) and a composeable group of models and services. 

Models	
For this project 14 models of 5 types were developed.  The table below is the list of the 
available modes for the current Composer to Simulation Engine lash up. Entities are 
composed of several models with the minimal being a physical and a movement model. 

Model Type Description 

Null Model     

Behavior Aggressor Air Behavior 
This model will order the entity to follow a given 
path in the air 

Behavior Aggressor 
Ground Behavior 

This model will order the entity to follow a given 
path on the ground 

Behavior Observer Behavior 
This model will order the entity to search a given 
area 

Data Collection Observer Data This model will collect data on observer 

 

  

 

 

Simulation Engine 

Models 

Interfaces 

Inter‐
Simulation

Tactical 
Interface??

Data 
Collection 

 

 

 

  
 

Role Player 
Interface 

 

Figure 4 Simulation Environment



11 
 

acquisitions 

Movement Air Movement This entity will follow a given path in the air 

Movement Ground Movement This entity will move to a given point on the ground 

Movement Null Movement This entity will not have a location within the game 

Movement Stationary Movement
This entity will not move. It will remain stationary 
at its initial location 

Physical Life Form Physical This entity is a Life Form 

Physical Null Physical 

This entity will not have a Physical appearance. For 
example the entity may be off the map or a decision 
node 

Physical Vehicle Physical This entity is a vehicle 

Sensor Air Sensor This entity will search to a given area in the air 

Sensor Ground Sensor This entity search a given area on the ground 
 

Physical modes represent the material aspect of an entity and are one of the two required 
models.  This model type describes the shape of the entity and its side (red or blue).  A 
null model is provided for entities that do not appear on the map. 

Movement models are responsible for moving an entity from one point to another.  These 
models are commanded where and when to move by behavior models. 

Behavior models control movement model and sensor models.  Command them when 
and where to move to or when and where to search.  Behavior models will also link with 
data collection services. 

Sensor model search the geo-location table and report out to its controlling behavior 
mode the results. 

Data collection models (or services) are responsible for reporting results from behavior 
modes (currently only search results). 

 



12 
 

 

Conclusion	
In conclusion this project has focused on the composition of basic and complex models 
into a system where a tenant controls what models are present in simulation built to the 
tenants needs.  This project has demonstrated the ability and the actions required in a 
multi tenant environment for this process.  The investigation has shown that there needs 
to be further research into the areas of data management used to store the information on 
model composition.  There are other component based systems that have done research 
into alternate methods such as SOSA, FCINT simulation,  or web based services to 
describe the Simulation-as-a-Service paradigm that are worth further study. In addition 
more work needs to be done in IAAS, and PAAS domains to work requirements needed 
for large scale distributed simulation.  Lastly, security will become increasingly 
important if the architecture is used among tenants that do not want to share information 

 

Simulation Engine 

Models 

Interfaces 

Deployed Simulation 

Time 
Keeping 

Event 
Calendar 

Common 
Environment 

Model 
A 

Model 
B 

Data Collection 
interface 

Output 
Data 

Figure 5 Inter-Model Interactions 



13 
 

with other tenants which leads to more research being done into encryption needed for all 
aspects of the Simulation-as-a-Service architecture and framework. 

 

Demonstration	Environment	
A demonstration of the current state of the Composer is available through the web at 
http://www.composer.simaas.us/SimSAAS_registration.php. 

 

  



14 
 

List	of	References	
[CB12] Tony Clark and Balbir Barn. “A Common Basis for Modeling Service-Oriented and 
Event-Driven Architecture”.  Proceedings of ISEC ‘12.  Feb 22-25 2012:23-32. 
[SY08] Hessam Sarjoughian et al.”A Simulation Framework for Service-Oriented Computing 
Systems.” Proceedings WSC 2008. Dec 2008:845-853. 
[BO00] Perakath Benjamin et al. “A Model-Based Approach for Component Simulation 
Development”.  Proceedings WSC 2000, Dec 2000:1831-1839. 
[GG10] Guo Gang et al. “Architecture and Standard Proposals for Next Generation Modeling 
and Simulation”.  Proceedings GCMS ‘10, July 2010:12-19. 
[HP95] John Hamilton and Udo Pooch. “An Open Simulation Architecture for FORCE XXI.” 
Proceedings WSC 1995, Dec 1995:1296-1303. 
[BB09] E Baydogan, S Mazumdar, and L Belfore II. “Simulation Architecture for Virtual 
Operating Room Training”.  Proceedings SpringSim ‘09, Article No. 25, 5 pages. 
[TS11] Wei-Tek, et al. “SimSaaS:Simulation Software-as-a-Service.” Proceedings of the 44th 
Annual Simulation Symposium, ANSS ‘11. 2011:77-86. 
[HJ04] S Houten and P Jacobs. “An Architecture for Distributed Simulation Games”, 
Proceedings WSC 2004, Dec 2010:2081-2086. 
[CS01] G Chen and B Szymanski,” Component-Oriented Simulation Architecture: Toward 
Interoperability and Interchangeability”, Proceedings WSC 2001, Dec 2001:495-501. 
[GY07] T Gu, N Lo, and W Yang.  ” Towards a COTS-Based Service-Oriented Simulation 
Architecture”, Proceedings of the 2007 summer Computer Simulation conference SCSC ’07, 
2007:1128-1135. 
[RW11] H Rajaei and J Wappelhorst.  “Clouds & Grids: A Network and Simulation 
Perspective”, Proceedings of the 14th Communications and Networking Symposium CNS ’11, 
2011:143-150. 
[DS12] M Dragoicea, L Bucur, W Tsai, and H Sarjoughian. ”Integrating HLA and Service-
Oriented Architecture in a Simulation Framework”, Cluster, Cloud and Grid Computing 2012, 
CCGRID ’12,  13-16 May 2012:861-866. 
[TS09] W. T.Tsai, H Sarjoughian, W Li, and X Sun. “Timing Specification and Analysis for 
Service-Oriented Simulation.” Proceedings of the 2009 Spring Simulation Multi-conference, 
2009:Article 51 
[RU07] Mathias Rohl, Florian Marquardt, and Adelinde Uhrmacher. ”Exploiting Web Service 
Techniques for Composing Simulation Models.” Proceedings of Winter Simulation Conference 
2007, WSC’07, Dec 2007:833-841 
[EG06] Erek Gokturk. “Towards Simulator Interoperability and Model Interreplaceability in 
Network Simulation and Emulation through AMINES-HLA” Proceedings of Winter Simulation 
Conference 2006, WSC’06, Dec 2006:2170-2179 
[WL08] Wenquang Wang, et al. “Service-Oriented High Level Architecture” European 
Simulation Interoperability Worksop 2008 
[PC10] Pau Fonseca I Casas. “Using Specification and Description Language to Define and 
Implement Discrete Simulation Models” Summer Simulation Multi-conference 2010, SumerSim 
’10,  2010:419-426. 
[SZ09-1] Chungman Seo and Bernard Zeigler. “Interoperability between DEVS Simulators 
using Service Oriented Architecture and DEVS Namespace” Proceedings of the 2009 Spring 
Simulation Multi-conference, SpringSim ’09, 2009: Article No. 157. 



15 
 

[SZ09-2] Chungman Seo and Bernard Zeigler. “Automating the DEVS Modeling and Simulation 
Interface to Web Services.” Proceedings of the 2009 Spring Simulation Multiconference, 
SpringSim ’09, 2009: Article No. 158. 
 
[LH12] Xiaochang Liu, et al.”Cloud-based Simulation: the State-of-the-art Computer Simulation 
Paradigm”. Principles of Advanced and Distributed Simulation Workshop 2012, July 2012:71-
74.   



16 
 

Appendix	A	‐	Simulation‐As‐A‐Service	Simulation	Engine	
The Simulation Engine (SE) is an event sequenced stochastic system.  It is designed to allow 
models developed external to the simulation engine to be incorporate.  These models must 
adhere to the SE Federated Model Agreement. Additionally each model must publish the 
required information for the Composer to discover in order to allow a user to select the model.  

The Simulation Engine consists of 4 areas or sections: initialization, scheduling and time 
keeping, services, and a common environment. 

Models interface with the SE through auto generated code.  Each of the above areas contains 
code generated at composition time.  Models types will be described in detail in the SE 
Federated Model Agreement documentation (Appendix B).  

The SimAAS Simulation Engine is implemented in gnu c++.  It is organized into four 
compartments (SE, Services, AutoGen, and Models) each with its own file structure. 

Figure 6 SE File Structure 

Simulation Engine Services Auto Generated CodeModels 

SimAAS Simulation Engine 

src Include src Include src Include src Include 



17 
 

Use	Case	

Note: the terms model and entity are used interchangeably below.  Model represents the class and 
associated member functions while entity is an instantiation of a model or group of models 
containing the current state. 

 	

Scheduler/ 
Time keeper

Services 

Common 
Environment

 

Model 

Log File 

Initialization  

Initialization 
File 

Figure 7 SE Use Case 



18 
 

Initialization	
The Simulation Engine (SE) main will process run time input arguments, instantiate the 
Simulation Engine class and kick the Time Keeper off to run the simulation. The initialization 

file is open for latter processing in the initialize models section (see appendix C for an 
explanation of this file). 

Runtime	Input	Arguments	
Currently the only run time input argument is ‘-I’ for specifying the initialization file.  It is of the 
form –I file_name. If the ‘–I’ option is not present then a default file of test.ini will be used (this 

Figure 8 Workflow for main



19 
 

is useful for debugging).  The simulation can be run manually from the main directory on a 
Linux platform by: 

 bin/SE_linux –I test.ini > run.log 

A user will run the simulation from a user interface and will not be aware of this command. 

Instantiate	Simulation	Engine	
The Simulation Engine is a Singleton class and must be invoked through the Instantiate function.  
The constructor is private and cannot be called externally from the class thus ensuring only one 
instants of the SE will be available. The global pointer SimEngine gives each model access to 
any function needed.  Since entities are instantiated by the Simulation Engine this variable will 
available to all models invoked by the initialization process using information from the 
initialization file. 

Figure 9 Instantiate Workflow



20 
 

Initialize	Models	and	Scenario	
The initialization file contains the information necessary to insatiate each entity and its model. 
The initialization file is generated by the Composer in comma separated formant.  The first field 
is a keyword indicating the format of the record. This file is the main interface between the 
composer and the simulation.  The format of this file is defined in Appendix C.  

Figure 10 Initialize Workflow



21 
 

Create	Entity	
Create Entity uses the composer generated code to call the model constructor for each entity to 
be instantiated.  An entity as a minimum must have a physical and a movement model. 

Figure 11 Create Entity Workflow



22 
 

Create	Physical	Model	
Create Physical Model instantiates one of the two required models that compose an entity.  This 
is an auto generated file created by the composer at the instruction of the user.  Physical models 
represent the real world state of the entity such as its size and shape.  The data required by each 
model is specific to that model and a description must be provided (published) to the composer. 
Interactions between the Simulation Engine and physical model are described in SE Federated 
Model Agreement documentation (Appendix B). 

Figure 12Create Physical Model Workflow



23 
 

The shaded boxes in the diagram above are externally functions to the Simulation Engine.  The 
composer must discover these models and provide the information to the user at composition 
time.  

Create	Movement	Model	
Create Movement Model instantiates the other of the two required models that compose an 
entity.  This is also an auto generated file.  Movement models are responsible for maintaining the 
entity’s location in geo-space and how it moves.  The data required by each model is specific to 
that model and a description must be provided (published) to the composer. Interactions between 
the Simulation Engine and physical model are described in SE Federated Model Agreement 
documentation (Appendix B). 

Figure 13 Create Movement Model Workflow



24 
 

The shaded boxes in the diagram above are external functions to the Simulation Engine.  The 
composer must discover these models and provide the information to the user at composition 
time.  

Create	Model	
Create Model instantiates the other non physical or movement model that compose an entity.  
This is an auto generated file.  Currently there are three types of models available for selection 
by the user: Behavior, Sensor, and Data Collection.  This system is flexible enough to allow 
future expansion of model types. The data required by each model is specific to that model and a 
description must be provided (published) to the composer. Interactions between the Simulation 
Engine and physical model are described in SE Federated Model Agreement documentation 
(Appendix B).  

Figure 14 Create Model Workflow



25 
 

Behavior models control the timing of the ‘when’ and ‘why’ of an entity’s actions.  For example 
a sensor behavior model would command the sensor model when and where to look in the 
simulation geo-space. Sensor models will quire the geo-location data base.  Data logging 
services will record specific information based on stimulus form other models.  

As been stated above the shaded boxes in the diagram above are externally functions to the 
Simulation Engine.  

Create	Data	Collection	Model	
Create Data Collection Model instantiates the data collection services.  This is an auto generated 
file. 

 

Figure 15 Create Data Collection Model Workflow



26 
 

Scheduler/Time	keeper	
The Scheduler and Time Keeper add timing to the Models thus generating a Simulation (Models 
+ time = simulation).  The Scheduler /Time Keeper is responsible for: 

1. Maintaining the event calendar 
2. Maintaining time 
3. Calling a model at the proper time 

The Time Keeper once called will loop until there are no events remaining in the event 
calenderer or the end of game event is encountered.  The current implementation is a faster-than-
real-time event timed sequenced system.  The Time Keeper retrieves the next event from the 
event calendar advances the game clock to the time in the event and then calls the event. Since 
the current event is on the ‘top’ of the event calendar no other event will occur before it gaining 
run-time efficiency. The shaded box in the diagram below (Execute Event) is an auto generated 
routine. 



27 
 

 

Figure 16 Time Keeper Workflow



28 
 

 

Figure 17 Execute Event Workflow 



29 
 

 

Scheduling	
The SE is a event sequence simulation driver. When a model schedules an event it will do so 
through the SE Scheduling service. Multiple models can schedule events at the same time, 
possibly having some user-defined ordering consistent with the priority defined below). 

 

 

Scheduling an event is done by a call to the Simulation Engine member function Schedule.  The 
function: 

SimulationEngine:: Schedule(int EventIndex, int Time, int Priority, Void *Event) 

Where: 

EventIndex is a unique identifier for the scheduled model (in the diagram Model B). The 
composer must supply this handle to Model A (or any model needing to schedule Model 
B) 

Time is when this event will occur (in game time units).  This time must be in the future 
or the Scheduler will drop this event. 

Figure 18 Sequence Diagram for Model Scheduling 



30 
 

Priority is the importance of the event relative to other events occurring at the same time. 
This is a tie breaker and if two events with the same time and priority are scheduled then 
the first one scheduled it the first to execute. 

Event is a pointer to a block of data required by the scheduled model to function.  The 
structure of the event is unknown to the scheduler.  

Figure 19 Data Structure for Event Scheduling



31 
 

 

Figure 20 Schedule Workflow 

 

Services	
Services are a collection of common tools designed to aid in the development and execution of 
models.  Some examples of Services: 

1. Random number generation and distributions 
2. Coordinate conversion 
3. Unit conversions 
4. Math utilities 
5. Debugging tools 

For this project a limited number of services will be implemented.  The number and complexity 
of the Services implemented will be driven by the requirements of this study.   

Current services available: Print Event Calendar, Print Geo Location Table, and Print Entity 
Table.  These services are specific debug utilities; they aid in the debug and simulation 
verification and validation process. 

Services are implemented separately from the simulation engine and in theory can be published/ 
discovered.  However, further study may find limitations on this flexibility. 



32 
 

Common	Environment	
A Model will interface with the simulation environment through the Simulation Engine (SE).  
The common environment is a major interface mechanism between models.  Through the 
common environment models will be able to: 

1. Expos state variables 
2. Post current location 
3. Access search routines 

When designing a model a paradigm similar to publishing and subscribing to and HLA 
federation is useful to understand how models interface with the simulation common 
environment.  For example when a model exposes its entity’s state to the common environment it 
is similar to sending an entity object of entity state PDU in a distributed federation. 

Currently the common environment consists of the Geo Location Table, the Entity Table, and the 
current time (more environment tables will be added as the system matures).   

Current	Time	Function	
Models can access the current game time with: 

int GetCurrentGameTime(void);  
   void PrintTime(int Type); 
 

Geo	Location	Table	Function	
For an entity to be visible to other entities a model must add the entity to the Geo Location 
Table.  A model posts an entity to the Geo Location Table by invoking: 

GeoLocation *AddToGeoLocationTable(int X, int Y, int Z, GeoLocation *Loc); 
 
 A model can search a geographical area by calling: 

 EntityList *SearchGeoLocationBox(int MinX, int MinY, int MaxX, int MaxY); 



33 
 

 

Entity	Table	Function	
For an entities state to be viable to other entities the model must post the entities state to the 
Entity Table Using: 
 

void SetEntitySide(int EntityID, int In); 
void SetEntityLength(int EntityID, int In); 
void SetEntityWidth(int EntityID, int In); 
void SetEntityHeight(int EntityID, int In) ; 
void SetEntityCondition(int EntityID, int In) ; 
 

Currently no model has been implement requiring access to the entity table 

Figure 21 Data Structure for Geo Location

Figure 22 Data Structure for Entity Table



34 
 

Appendix	B	–	SimAAS	Simulation	Engine	Federated	Model	Agreement	

General	
Developers creating modes for inclusion within the Simulation-As-A-Service Simulation Engine 
must adhere to the process and interfaces described in this document.  This is a living document 
for an immature system and will be updated as needed. 

Currently all models must be written to standard c++ compliable on Linux. 

Not the SimAAS Simulation Engine and this document are not mature.  There are gaps in the 
martial provide and with time this document will become more useful. 

Publishing	
For the Composer to include a model for selection by a user a model must publish two set of 
data: Model Description and Data Description.  Currently the publishing/discovering process 
between a model and the composer is done manually. The required data is entered into a 
relational database assessable by the Composer. 

Model	Description	
The Model Description database contains eight fields described below. 

1. Name: an alpha numeric field representing the internal or class name of the model.  
This name will be used by the auto-code generation part of the composer to build 
the simulation executable. 

2. Long Name: a human understandable name for this model.  It will be used by the 
composer to display the model name for user selection. 

3. Type: an alpha enumeration of the class of model. See below for enumerate list of 
available model types. 

4. Event Name: identifies an event to be scheduled by the time keeper.  This field is 
used by the composer to auto generate the code needed to associate this event to its 
model.  This is an alphanumeric string unique to the federation (Note: currently a 
process to insure the uniqueness of this string dose not exists).  If the model will 
not schedule an event then this field will be set to ‘None’. 

5. Event Structure: identifies the c++ structure name needed to build the code for 
event scheduling.  Note: future implantation of the Simulation Engine may define a 
universal event structure making this field obsolete.  If the event name field is set to 
‘None” then this field will be set to ‘None’. 

6. Required Model: field indicates if this model required a link to another model 
type.  This field is limited to the same enumeration as the model type field.  If there 
are not any required links this field is set to ‘None’. 



35 
 

7. Optional Model: indicates if this model can link to another model type.  This field 
is limited to the same enumeration as the model type field.  If there are not any 
required links this field is set to ‘None’. 

8. Description: a user understandable description of the function of the model. 

Enumerated	Model	Types	
Currently available model types: 

1. Physical 
2. Movement 
3. Behavior 
4. Sensor 
5. Data Collection 

More model type will be added to the Federated Model Agreement as the environment mutures. 

Data	Description	
The data description documents the date requirement for the model.  This data allows the 
Composer to prompt the user for scenario information. 

The Data Description data base record consists of a model name and a series of  repeated (0 to n) 
tuples of input data required. 

1. Model Name: an alpha numeric field representing the internal or class name of the 
model.  This must match the model name in the Model Description database and is use to 
link the two databases. 

2. Repeated Tuples: Repeated from 0 to n required input data. Each tuple contains: 
a. Field Name: a short description of the data field. 
b. Field Type: currently limited to int, float, and Array.  A tuple of type Array 

indicated the following topple definitions is repeated to the end of the data set.  
That is if two tuples X and Y follow a tuple of type Array then the reaming data 
will be interpreted as an array of X, Y, X, Y… 

c. Field Documentation:  a user understandable description of the data required for 
this field.  It should contain units and bounds. 

Services	and	Models	
There will be a limited number of models implemented for this project.  The number and type 
will be determined by the need to understand the requirements for the Composer.  Implemented 
models will fall in to six general categories (see diagram below): Behavior models, Movement 
models, Physical models, Sensor models, Debugging services, and Data Logger services. 



36 
 

 

Figure 23 Models Component View Example



37 
 

Entities will be composed of a selectable group of models.  An entity may contain more than one 
a type of model (such as sensor of behavior models) but will be limited to one physical model 
and one movement model. 

Physical models will provide data and proprieties of the entities state and appearance. Each 
entity must have one physical model.   Physical models must inherit the base Model class. There 
are no virtual functions required. 

Figure 24 Physical Model Relationships



38 
 

Movement models will post the current location of the entity into the common environment geo-
location data base for other entities to interact with.  Movement models must inherit the 
Movement Model class which inherits the Model base class. Also, they must implement the 

virtual function MoveToPoint in order to interact with their controlling Behavior model.  

 

Figure 25 Movement Model Class Relationships



39 
 

Behavior models control the timing of the ‘when’ and ‘why’ of an entities actions.  For example 
a sensor behavior model would command the sensor model when and where to look in the 
simulation geo-space.  Behavior modes inherit the Behavior Model class which inherits the base 
Model class. Behavior models must implement the NextPoint function to interface with 
movement models and the SearchResults function to interface with sensor models.  

Figure 26 Behavior Model Class Relationships



40 
 

Sensor models will quire the geo-location data base. Sensor models inherit the Sensor Model 
class and are required to implement the SearchArea function. 

 

Data logging services will record specific information based on stimulus form other models.  
Data loggers inherit the DataCollectionModel class. 

Debugging services will record specific information independent of any entity or model.  An 
Entity Location data collecting service will be implemented for this project.  

Interactions	between	Models	and	the	Common	Environment	
Interactions between the Common Environment and model are a critical component of the 
simulation.  The Common Environment (CE) can be thought of as a distributed interface but 
local to a specific platform.  The information posted to the CE is similar to the information 
passed with messages such as an Entity State PDU from DIS federates (entity location and state).   

Each Model will be associated with the Simulation Engine class.  This will give access to the 
Simulation Engine’s member functions (services, environment, and time keeping). 

 

Figure 27 Sensor Model Class Relationships



41 
 

Services are a collection of common tools designed to aid in the development and execution of 
models.  Some examples of Services: 

6. Random number generation and distributions 
7. Coordinate conversion 
8. Unit conversions 
9. Math utilities 
10. Debugging tools 

A Model will interface with the simulation environment through the Simulation Engine (SE).  
The common environment is a major interface mechanism between models.  Through the 
common environment models will be able to: 

4. Expos state variables 
5. Post current location 
6. Access search routines 

Currently the common environment consists of the Geo Location Table, the Entity Table, and the 
current time (more environment tables will be added as the system matures).   

Geo	Location	Table	Function	
Non-null movement models must post initial location to the Geo Location Table.  This allows an 
entity to be visible to other entities.  The simulation engine uses a Cartesian X, Y, Z coordinate 
system.  A model posts an entity’s location to the Geo Location Table by invoking with the 
GeoLocation Loc pointer zero: 
 

GeoLocation *AddToGeoLocationTable(int X, int Y, int Z, GeoLocation *Loc); 
 
AddToGeolocationTable will return the GeoLocation pointer to be used latter to update the 
entity’s location. 
 
A movement model updates the coordinate by calling AddtoGeoLocationTable with its 
GeoLocation pointer. 
 
 A sensor model can search a geographical area by calling: 

 
 EntityList *SearchGeoLocationBox(int MinX, int MinY, int MaxX, int MaxY); 

 

The returned EntitList is a link list of all entities within the search box specified.  Any additional 
filtering must be done by the sensor model according to the type of sensor modeled. 

Entity	Table	Function	
Non-null physical models must post a minimum amount of state information. For an entities state 
to be viable to other entities the model must post the entities state to the Entity Table Using: 



42 
 

 
void SetEntitySide(int EntityID, int In); 
void SetEntityLength(int EntityID, int In); 
void SetEntityWidth(int EntityID, int In); 
void SetEntityHeight(int EntityID, int In) ; 
void SetEntityCondition(int EntityID, int In) ; 
 

Currently no model has been implement requiring access to the entity table.  Additional state 
variables will be added as the simulation matures. 

Interactions	between	Models	and	the	Time	Keeper	

Scheduling	
When a model schedules an event it will do so through the SE Scheduling service.  A model 
must provide a virtual function called Event in order to schedule events.  If a model needs to 
schedule more than one event then it must implement a sub event system and handle the different 
event internally. See the simulation header file for more details. 

 

Scheduling an event is done by a call to the Simulation Engine member function Schedule.  The 
function: 

SimulationEngine:: Schedule(int EventIndex, int Time, int Priority, Void *Event) 

Where: 

Figure 28 Event Scheduling Sequence Diagram



43 
 

EventIndex is a unique identifier for the scheduled model. This is the same string 
published in the Model Description database.  The composer will add this sting to the 
EventIndexs enumeration record created at code auto generation time.  This enumeration 
list can be found in the composer generated file include/Models.AG.hh. 

Time is when this event will occur (in game time units).  This time must be in the future 
or the Scheduler will drop this event. 

Priority is the importance of the event relative to other events occurring at the same time. 
This is a tie breaker and if two events with the same time and priority are scheduled then 
the first one scheduled it the first to execute. The legal values are: 

0: High 

1: Normal 

2: Low 

There is the enumerated field EVENT_PRIORITY located in the SE header file. 

Event is a pointer to a block of data required by the scheduled model to function.  The 
structure of the event is unknown to the scheduler.  

Current	Time	Function	
Time is maintained by the Time Keeper and is in integer seconds.  Models can access the current 
game time with: 

int GetCurrentGameTime(void);  
   void PrintTime(int Type); 

Intra‐Model	interactions	
Models interact with each other through two methods:  Event scheduling and model type specific 
interactions. 

Event scheduling is where one model schedules another through the simulation engine scheduler.  
This requires a understanding between model not covered within this document (and may not be 
properly handled by the composer). 

The other methods of intra model interactions are a series of model type specific behaviors.  
These exchanges can be like the Interactions in a HLA environment.  Currently there are two sets 
of interaction defined.  More interactions will be added as the environment matures. 



44 
 

Behaviors	and	Movement	Models	
Behavior models tell Movement models where to go with the virtual function MoveToPoint.  
Movement models inform their Behavior models when they have reached the target point with 
the NextPoint virtual function. 

Behaviors	and	Sensor	Models	
Behavior models request a Sensor model to search an area with the SearchArea virtual function.  
Sensor models respond with search results using the SearchResults function.  

Initialization	Requirements	
The initialization case will read the Initialization file created by the composer to: 

1. Register entity with the common environment. 
2. Initialize the base state of each entity. 
3. Schedule the first event of each entity. 

  



45 
 

Appendix	C	‐	Initialization	file	Structure	

Overview	
This document describes the data structure for the Composer generated simulation initialization 
file.  This file is text based with a string keyword indicating the data structure.  Below is a 
description of each keyword, how to define an entity, and an example. 

Keywords	
There are a limited number of keywords defined for the initialization file.  Each line begins with 
a text keyword. The keywords are case sensitive. 

EndOfGame	
The keyword EndOfGame specifies, in seconds, the length of the simulation run. 

Field  Type  Description 

EndOfGame  keyword    

Time  integer  Length of simulation run in seconds. Note: this is 
simulated time not real time.  The simulation will run 
as fast as the CPU will allow. 

 

Entity	
The keyword Entity is used to create each entity within the scenario.  A detailed description of 
how to create an entity is below.The next field will be the entities name and the last field will be 
the number of non-required models composing this entity.  Example: Enitiy,Truck1,2 

Field  Type  Description 

Entity  keyword    

Entity Name  string  Unique name of this entity 

Number of 
Non‐required 
Models 

 integer  Number of models needed by this entity beyond the 
two required. 

 

Physical	
The keyword Physical follows immediately after the Entity keyword. This specifies the physical 
model for this entity. This is a required model. 

Field  Type  Description 

Physical  keyword    

Model 
Index 

Enumeration  Enumerated ID for model.  This will be found in the 
auto‐generated file 
AutoGen/include/ModelIndex.AG.hh 



46 
 

Data[]     Additional data specific to this model.  This data will 
correspond to the model’s publish data requirements 

Movement	
The keyword Movement follows immediately after the Physical keyword record. This specifies 
the movement model for this entity. This is the second required model 

Field  Type  Description 

Movement  keyword    

Model 
Index 

Enumeration  Enumerated ID for model.  This will be found in the 
auto‐generated file 
AutoGen/include/ModelIndex.AG.hh 

Data[]     Additional data specific to this model. This data will 
correspond to the model’s publish data requirements 

Behavior	and	Sensor	
The keyword Behavior or Sensor specifies an optional model for this entity.  The number of 
optional models has to correspond to the ‘number of non-required models’ on the Entity record. 

Field  Type  Description 

Behavior or 
Sensor 

keyword    

Model  Index  Enumeration Enumerated ID for model.  This will be found in the 
auto‐generated file 
AutoGen/include/ModelIndex.AG.hh 

Data[]     Additional data specific to this model. This data will 
correspond to the model’s publish data 
requirements 

END	
The keyword END completes the list of models for a given entity. There is no data for this 
keyword 

DataCollection	
The DataCollection keyword is used to instantiates a data collection services. 

Field  Type  Description 

DataCollection  keyword    

Model  Index  Enumeration Enumerated ID for model.  This will be found in the 
auto‐generated file 
AutoGen/include/ModelIndex.AG.hh 

Data[]     Additional data specific to this model. This data will 
correspond to the model’s publish data 
requirements 



47 
 

 

Entity	Creation	
Data describing an entity is defined between the keywords Entity and END.  The entity must 
have a physical and a movement model (in that order).  Behavior and Sensor models are 
optional. The below is an example of an entity named Yankee 1 with only the required two 
models.  

 Entity, Yankee 1, 0 
 Physical, 3, 1.2, Red…  
 Movement, 6, 120 …  
 END 

 	



48 
 

Example	File	
The below is an example of an initialization file. This example has seven entities and one data 
collection service. This simulation will run for 100 seconds. 

EndOfGame, 100 
DataCollection, 4 
Entity, Off Map, 0 
Physical, 10 
Movement, 7 
END 
Entity, Stationary, 0 
Physical, 9, 0, 1, 1, 2 
Movement, 8, 12340, 23450 
END 
Entity, Ground Mover, 1 
Physical, 11, 0, 50, 50, 100 
Movement, 6, 11340, 22450, 3, 2 
Behavior, 2, 3, 11360, 22450, 11360, 22470, 11380, 22470 
END 
Entity, Ground Mover 2, 1 
Physical, 9, 0, 50, 50, 100 
Movement, 6, 11340, 22450, 3, 2 
Behavior, 2, 3, 12360, 23450, 12360, 23470, 11380, 22470 
END 
Entity, Air Mover, 0 
Physical, 11, 1, 50, 50, 100 
Movement, 5, 13000, 22000, 3, 2, 2 
Behavior, 1, 2, 13000, 22500, 100, 13000, 23000, 200 
END 
Entity, Ground Sensor, 2 
Physical, 11, 0, 25, 25, 75 
Movement, 8, 11300, 22400 
Behavior, 3, 12340, 23450, 13, 4 
Sensor, 13, 1000 
END 
Entity, Air Sensor, 2 
Physical, 11, 0, 25, 25, 75 
Movement, 8, 11300, 22400 
Behavior, 3, 13000, 22000, 12, 4 
Sensor, 12, 1000 
END	


