Modeling and Verification of Network-
on-Chip using Constrained-DEVS

Soroosh Gholami

Hessam S. Sarjoughian

School of Computing, Informatics, and Decision Systems Engineering
Arizona Center for Integrative Modeling and Simulation

Arizona State University
Spring Simulation Multi-Conference

FSC? ;{;}:DELLEGTL rg.?rﬁumnon April 23-26, 2017 ACIMNMS
h‘ NMTERMATIONAL™



Electronic Complex Systems

* Network/interaction is inherent to electronic complex systems

e Complexity arises from:

* Complexity of individual components
Functionality of individual components
* Software, hardware, or physical
* Interactions between these components
* Time-sensitive information
e Overall functionality

e Development steps:
 |dentifying requirements
* Multiple phases of modeling using variety of methods
* Multiple phases of model validation and verification
* Conversion of models to HW/SW pieces
e Develop communication modules
» System/subsystem validation and verification
* Deployment

ugisaq

uoI19NJISU0)




Complexity and Network-on-Chips

NoC is a communication system, connecting components of a chip

NoC design requires
e design of individual components within the network
e design of the communication subsystem and protocols

SoC as a set of software and hardware components interacting
through NoC

» Switches, Processing Elements, and Network Interfaces communicate
through links
Integrated Chip design process has three major phases
* Electronic System Level (ESL) Design
* Register Transfer Level (RTL) Design
e Physical Design




V&YV for NoC Models

* Models evaluation based on requirements
 Verification: building the model correctly
 Validation: building the correct model

* Model complexity should not be sacrificed for the sake of V&V
e Unified framework support is desirable




Overview

Problem Description/Goals

Background

Proposed Research
* Approach

Conclusion and Future Work




Limitations of V&V for NoC Design

 Verification is not trivial for DEVS
* DEVS language is undecidable
* |tis continuous time
* Simulation is the major means for model evaluation

* Model Evaluation is limited
* Models are repeatedly abstracted for evaluation

e Complex property (compound) expression
* Aspects required to check for them are not even modeled (exclusion of information flow)
* No method to check for them, no language to express them



Scope & Goals

* We limit the scope of the problem to:

* Modeling framework: Discrete Event System Specification (DEVS)
Target system: Network-on-Chip + Processing Element (PE)
Validation method: Discrete Event Simulation

Verification method: Model Checking - |
=APROJCCI p_

Tool: DEVS-Suitel? T NEAR et
i\

* Goals: = Wa
* Extending DEVS modeling with model checking capabilities
* Extending DEVS-Suite with both modeling checking and simulation of constrained-DEVS

1ACIMS, DEVS-Suite Simulator, https://sourceforge.net/projects/devs-suitesim/
2Kim, Sungung, Hessam S. Sarjoughian, and Vignesh Elamvazhuthi. "DEVS-suite: a simulator supporting visual experimentation design and behavior

monitoring." In Proceedings of the 2009 Spring Simulation Multiconference, Society for Computer Simulation International, 2009.



Elements of Research

Constrained-DEVS Modeling & Simulation
Constrained-DEVS Model Checking (State exploration)
Timed event-handling

Support for DEVS Simulation
Support for DEVS model checking
Experimental frame-based evaluation

P



Background




Network-on-Chip (1)

e Works as a communication subsystem for SoC

* Design factors
* Topology, routing algorithm, flow control, buffer size, hardware brand, flit size, ...

* Major parts:
e Chip Hardware

* The electronic components of the circuit Eh bty IdvE)

* Network Software Flit Level s
Hardware Level I ”D'Str'bUted

* The software modules controlling the circuit T

* Application Software . Probabilistic

Interface Level

N - ; |
N ~_ ! !

* The software running on this base ’

sapnpu|

[ Chip HW S A
Model J= 77" : " (‘Application ) ™,
| [y —— PR !
| i : ; WM ) -
' Network | ' . : - \S\r — ode ol
\ (LSW Model | .

s
»
~ s




Network-on-Chip (2)

» Similar to combinational logic, parts (or the entire) NoC may
operate independent of a clock signal
* Globally Asynchronous Locally Synchronous (GALS) for large chips
* Clock signal propagation issues

* NoC evaluation targets various aspects:
* Performance
* avg. latency, worst case latency, queueing time, network capacity

* Functionality
* deadlock freeness of routing, fairness of arbitration, error correction
* Time
* Intime delivery of time sensitive information
* Physical

* Energy consumption, heat generation



Model Checking (1)

e Exhaustively determining whether a model meets certain properties
* Properties are derived from requirements (QoS, safety, liveness, etc.)
* Why? Deciding whether a system meets a certain property is undecidable
* When? For critical systems as a full-proof method of verification

* |ssues
 State explosion problem

* The state space rapidly grows in size
* Various methods to manage the size
*  Symbolic model checking
* Bounded model checking
* Abstraction

12



Model Checking (2)

* Various formalisms/method are introduced for model checking systems:

e Timed Petri nets
* Timed Automata (and its variations)
* DEVS-based approaches (FD-DEVS, FP-DEVS)

* Major efforts for model checking

* Use abstraction to simplify the model
* Abstracting out information flow in basic Petri net and TA

* Remove stochasticity
* FD-DEVS! (finite deterministic DEVS)

* Use model conversion

* Conversion to timed automata for RTA-DEVS; model check
using UPPAAL

* Conversion to non-deterministic automata for FD-DEVS;
model check using SPIN/PROMELA

1Hwang, M., and B.P. Zeigler. "Reachability graph of finite and deterministic DEVS networks." IEEE
Transactions on Automation Science and Engineering 6, No. 3 (2009): 468-478.

nn

3

13



DEVS M&S (1)

 Parallel DEVS models are made by atomic/coupled models

Input Events
Output Events Time Advance Function
State Set ,
External Transition Function Output Function

Confluent Transition Function
Internal Transition Function

ta:S = R§ o
Ooxt: QXX > S where Q ={(s,e)|s€S5,0<e <ta(s)}

14



DEVS M&S (2)

* Coupled DEVS models define couplings between Atomic/Coupled models
* No behavior (external/internal transition functions or output function) for coupled models

Coupled DEVS : {X,Y,D,{My}, EIC,EOC,IC )

Input Events / \
Index set Internal Couplings

Output Events d €D

Set of atomic/coupled models
External Input Couplings

External Input Couplings

15



DEVS M&S (3)

PE1
. ikt recbata @
[ ] D EVS I\/I Od e | I n g ) linkin @ p_assi\{e g linknlut
PED inporD @ swnent @ sutpsn o= neinity sart a4 idle -8 outhata
* Features —
) ) ) inport! idle @ sutportd stop @  infinity
* Continuous t|me, discrete event start @ idle @ outbata -
PE2
inpartz @ e . T
* Para I Ie I stop @+ o = infinity o = infinity linkln @ p;lg:iz\{e & inkOut
 Synchronized time between models PV ae e e
* Reactive sor ®-
o = infinity

e DEVS Simulation Wy I

friomSuitchz g
toPE1 & start

* Can be conducted in el

* Logical time: time is advanced to the most urgent event
* Real-time: simulation time is synchronized with the physical clock

e Various implementations
* eCD++, DEVS-Suite, MS4Me



DEVS M&S (4)

e DEVS-Suite

* Model development through coding

Discrete Event Simulation
Model visualization, Simulation animation
Tracking

* Time View (basic types)

* Superdense time

Add-on libraries

Real-time simulation

Network-on-Chip

Real-time hardware interaction

RTL DEVS

EMF-DEVS (Eclipse Modeling Framework)

[ DEVS-Suite Ver 3.0.0

File Options Controls Help

=== =1[~}[=]

ogo

L]

Model Viewer
[=3 NoC Simple (1) 1~ MoC Sirmple (1)
[ tinkt PE1
[y Pe2 B recData @
[ tink2 = linkin - passive  -a linkdut
[ PEO switch1 o = infinity
[yPet PED inpatd @ . outportd start @ idle & oudsta
[ switch1 = i e
= - =top @
inpot1 @ -8 outportt
kusy = infinity
L start @ busy @ outdats
e inport2 @ @ sutpor2 b=
FPhase: reclata @
: ol a-0023 k2
Sigma: lindn @ passive - linaut
Input Ports: o=0211 o = infinity
OutputPorts: Mt @ idle & outData
stop @
0 = infiiity
fromSuwiteh1 g g
fromSuwitzh2 8- -
wpes o MIE
toPE2 81 e stop
toSwitch &g = infinity,
Inject Input 4] L T
[] always show couplings Console | PEO
SHkaarEontios Phase |+ | customize height___|width resize || default =
Run step ‘
step(n) tP Phase
Reset [] Enable Governor bus:
Real Time Factor: 1.0E4
Animation Speed: 9.0 £ e
Time View Update Speed: 20.0
Simulator State: Pause
Time of Last Event: 7.3131 = = o~ 2 L e - e . . =

Time of Next Event: 7.3362

H.S. Sarjoughian, S. Sundaramoorthi, 2015, “Superdense Time Trajectories for DEVS Simulation Models”, TMS/DEVS Symposium, Washington DC.

17




Constrained DEVS and Model Checking




Model Checking in DEVS — Example

* DEVS models are not well-suited for model checking

input —»

Phase sigma values index popped - OUtpUt
— ~~ ~ ~ ~
S = {Active,Idle} x o x N8 x N x g pop —»

X = {(input, N), (pop, 1)}

Y = {(output, N)}

(..., index + 1, Q)) where values [index] =x if index <7

Sext((ldle, o, values[O..7],index, (Z)),e, (input,x)) = {( index (Z)) it index = 7

(Active, .., index — 1, values[index]) if index >0

Sext((ldle, o,values [0..7],index, (Z)),e, (pop,x)) = {(Idle index (2)) ¢ e = 0

Oint (Active, o, values [0. . 7], index, popped) = (Idle, oo, values [0. . 7], index, (2))

A(Active, o,values [0. . 7], index, popped) = (output, popped)



Model Checking in DEVS — Shortcomings

 Earlier approaches have certain shortcomings

* Non-determinism and stochasticity
* Stochasticity: randomness in models
* Non-determinism: possibility of multiple states at one instance of time

* Property checking capabilities
* Specific languages for model checking
* Limited expressive power
* Deadlock detection vs. minimum accepted quality of service for specific data

* Data exchange constraints
* Some modeling languages do not support complex data flow
* Such as Petri net and timed automata
* NoC component models requires exchanging complex data types
¢ How does one verify those models?

20



Model Checking in DEVS — Requirements

* What do we need to make DEVS verifiable (via model checking)?

* Answer:
* Constrain state set and input set values
* Discretize time for input events
* Finite number of internal transitions

e Example:
» Complex data type containing an array of strings (of size 8 holding strings of size 24) and integers

under 10
Array of strings: ((Char)z“)8
Numbers: [(1]|2|3]4]5]6]7|8|9) € Integer]
Entire state space: ((Char)24)8 x (1]2]3/4|5/6]7|8]9) ————— ((Char)24)8 X [Integer < 10]



Model Checking in DEVS — NoC

How the stack model changes?

Answer:
* No more than 8 numbers in the stack
* Only positive numbers less than 10

* Time resolution for input events (new input or pop) has the granularity of 1 cycle

How do we leverage this for modeling NoC?
* Datais only limited to flits and flow control signals
* Events can only happen at clock edges

What is our property checking method?
* We use the experimental frame (EF)

input —»

POp —»

PE PE

——» Output

|55

PE ‘ PE

PE

PE

PE

22



ool Support

23



DEVS-Suite Extensions

e DEVS-Suite were extended to support

1.

Constrained-DEVS modeling

» Base classes for constrained state variables
* |nvalid state specification

* Initial state set

* Input/output value sets

Constrained-DEVS execution

» State space exploration for model checking mode

Invalid state reporting for model checking mode

Parallel DEVS execution for simulation mode

Model checking engine uses the simulation for state exploration

5%-

0

24



DEVS-Suite State Space Exploration Protocol

* In model checking mode, DEVS-Suite carries out the following steps:

* |nitialization
* Model is loaded, state variables are recognized, input ports identified
~

» \Verification Engine and Generator models are is instantiated
* Initial states are put into Unvisited data structure
* Main Loop: take state from Unvisited, set the state of the model

* Nested Loop: apply all combinations of input to the model
» Store resulting states (if not seen before) into the Unvisited

* Add the original state to the Visited data structure
* Continue until Unvisited is empty

* Transducer model(s) stores the trace and verifies properties

25



@ Instantiate Verification Engine and Generator classes

Add initial states @

If empty °

Verification Engine

Generator @

Move State to Visited




Atomic Model Verification

e DEVS-Suite experimentation is based on Experimental Frame (EF)

* Data generation by Generator
» Data collection and analysis by Transducer

* Model checking a minimal adaptive
router

* The Generator injects flits and traffic
information

* Transducer collects outgoing flits and verifies
whether the routing decision is correct

VerifierGenerator &-infiit
—& |oadEast
active & loadNerh
—& lvadSeuth
o = 0,000 e loadiast

Router Verifier
inFlit-a-  Transducer
passive
inFromRauter - u=inﬁnity

inFlit & Router
fvadEast &

loadMarth @ passiue —& outPart
loadSouth 3

loadirest 3 o= inﬁni‘ty




Adaptive Router — DEVS Model

Phase Load East Lead North Load West Load South target port xPos

sigma

YyPOS

Lain)

S ={Active,Idle} x T x {123} {123} x {1,23} x {1,23} x {0,1,23,4}x{x < 10}x {y < 10}
X = {(inFlit, {0,13%*), (loadEast, {1,2,3}), (lecadNorth,{1,2,3}), (loadWest, {1,2,3}), (loadSouth,{1,2,3})}

Y = {(outPort,{0,1,2,3,4}1)}
5ext((1dle, o, LE, LN, LW, LS, targetPort), e, (loadEast, x)) = (idle,o,x,LN, LW, LS, targetPort)
Sext((ldle, o, LE, LN, LW LS, targetPort), e, (ioadNorth,x)) = (ldle,a,LE,x, LW, LS, targetPort)
dext((Idle, o, LE, LN, LW, LS, targetPort), e, (loadWest, x)) = (Idle,o,LE,LN,x, LS, targetPort)
8exe((Idle, 0, LE, LN, LW, LS, targetPort), e, (loadSouth, x)) = (Idle,o, LE,LN,LW, x, targetPort)
Sexe((Idle, o, LE, LN, LW, LS, targetPort), e, (inFlit,x))

s (Active,o, LE,LN, LW, LS, targetPort) = (Idle,w,LE, LN, LW, LS, targetPort)
A(Active, o, LE, LN, LW, LS, targetPort) = (outPort, targetPort)

(Active,rDelay, LE, LN, LW, LS, 0)
(Active,rDelay, LE,LN,LW, LS, 1)
(Active,rDelay, LE,LN,LW kLS, 2)
(Active,rDelay, LE,LN,LW,LS, 3)
(Active, rDelay, LE,LN,LW,LS, 4)
(Active,rDelay, LE,LN, LW ,LS, 1)
(Active,rDelay, LE,LN,LW, LS, 1)
(Active,rDelay, LE,LN,LW kLS, 2)
(Active,rDelay, LE,LN,LW,LS, 2)
(Active,rDelay, LE,LN,LW,LS, 3)
(Active,rDelay, LE, LN, LW, LS, 3)
(Active,rDelay, LE,LN,LW,LS, 4)
(Active,rDelay, LE,LN,LW, kLS, 4)

if xPos=xAyPos =y

if xPos > x AyPos =y

if xPos = x AyPos <y

ifxPos < xAvyPos=y

if xPos = x AyPos > y

if xPos > x AyPoas < y ALW < LN
ifxPos > x AyPos >y ALW < LS
i xPos > x AyPos < yALN < LW
ifxPos < x AyPos < y ALN < LE
if xPos < xAyPos < yALE < LN
if xPos < xAyPos > yALE < LS

if xPos < x AyPos > yALS < LE

if xPos > x AyPos > y ALS < LW

28



Coupled Model Verification

* \Works similar to the atomic version

* The generator injects data based on the input ports of the coupled model

* The state of the coupled model is the aggregate state of inner models

YerifierGenerator
active -ov ini
o = 0.000

* Model checking a coupled model with two
inner components

» VerifierGenerator injects all combinations of input
values for modell

in A

coupled example

maodel1
passive o out
o = infinity

model2

in4&-  passive
O = infinity

—& o

ut

outl A




Analyzing Traces




Analyzing Traces




Analyzing Traces




Analyzing Traces




Demo




Conclusion & Future Work

35



Conclusion

* Model checking capability
e Constrained-DEVS formalism for model checking
 State exploration algorithm for constrained-DEVS models

e An attempt toward unified design environments
* With support for simulation & model checking
* EF-based experimentation and model evaluation



Future Work

* Ongoing
* Hardware-level model library for NoC using Constrained-DEVS

* Integration with multiresolution modeling — the right abstraction is chosen automatically
based on the property which is being verified

* A new version of DEVS-Suite (v 4.0) is scheduled for release by the end of
summer 2017

* Contains the verification engine for Constrained-DEVS models

' 4

37



Thank You



