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Abstract. Traditional teaching of the calculus rests on the firm foundations established in the 
pre-computer age by brilliant mathematicians. Despite marvelous advances in computer-
based support for calculus instruction, such non-intuitive and non-algorithmic definitions 
render the teaching of the calculus intrinsically difficult.  The success of  discrete event methods 
for simulating large continuous models suggests the applicability of computationally-based discrete 
methods to modeling of continuous phenomena and more fundamentally, for characterizing real-world 
continuity  We present a concept of event set and an associated measure of activity that are able to 
capture  the underlying intuition of continuity as well as to provide a direct measure of the 
computational work needed to represent continuity on a digital computer.  This suggests the possibility 
of dispensing with the mysteries of traditional calculus to teach an equivalent calculus based on finitary 
concepts of event sets and their straightforward algorithmic manipulation. 

 
 
Traditional teaching of the calculus rests firmly on the foundations established at the turn of the last 
century.  Likewise, developers of today’s marvelous technological support tools – graphing calculators, 
high speed computers, math analysis packages, and the like –  continue to work with the definitions of 
continuity as formulated in the pre-computer age. Developers are focused on increasing the power of digital 
automata to work with the artifacts of the “received” calculus such as derivatives and integrals, whose basic 
definitions remain unquestioned.  While this approach yields increasingly powerful math packages such as 
Matlab and Mathematica, it closes off development to potentially new approaches to representing 
continuous aspects of the real world and to more efficient computational means to model and simulate such 
phenomena. As we shall argue, it may also render the teaching of the calculus intrinsically difficult and 
vulnerable to being supplanted by more effective modern approaches.  
 
According to (Devlin, 2000) it is no wonder that students have extreme difficulty grasping the traditional 
Cauchy-Weierstrass definition of continuity since it fails to capture their intuitions about continuous 
change in the real world. From a modeling perspective, continuity is not an inherent property of the real 
world. Nevertheless, we seem to have strong perceptual and psychological propensities connect a series of 
discrete events in time and space with a smooth, gapless mental line. From an evolutionary biology 
perspective, such imagined continuity well be an ingrained illusion that evolved to enable prediction of 
motion of perceived objects whether threatening or full of meal-time prospects. In any event, the accepted 
mathematical definition of continuous function, while capturing some of our intuitions, also allows well-

known “pathological” cases that suggest it is not 
a good model of what we intuit as continuous 
phenomena. More particularly the standard 
epsilon-delta definition allows continuous curves 
that lack derivatives at some, or even, all of their 
points, a fact that seems to amaze most of us.  
Perhaps we tend to see continuity as relatively 
slow change and hence as also smoothly 
predictable at least in the short term, i.e., the 
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Figure 1 Traditional Introduction to Calculus1 -- Adapted from, Calculus
on the Web, cow.math.temple.edu



intuition of continuity includes existence of forward projecting derivatives.  The mismatch with intuition 
may be at the root of the difficulties that most students find in learning, and more importantly, applying the 
calculus.  It may also explain the deep chasm that separates current formulations of continuous, from 
discrete, mathematics.   
 
Today’s Calculus and Its Instruction 

Let’s review how the calculus is currently taught before going on to suggest alternatives. Despite numerous 
attempts, to modernize it, make it more palatable, graphically enhance it, and dumb it down, the content of 
introductory courses remains pretty much as depicted in Figure 1.  Key elements are the definitions of 
limits, continuity, the derivative and the integral. Nowadays, much time is spent on drills with graphing 
calculators that help compute derivatives and integrals, although much time is still devoted to analytical 
solution methods for symbolic differentiation and integration.  The epsilon-delta definition of continuity is 
the cornerstone of the approach.  It defines a limiting process, in a form requiring first order predicate logic 
to state (Vaananen 2004): 
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It goes on to define continuity of a function f  as holding at a given point a  if  
 

x( ) is defined and lim   ( )   ( )af a f x f a→ = . 
 
Finally, f is said to be continuous in an interval if it is continuous at each point in the interval. 
 
The basic problem with the epsilon-delta definition of continuous function is that it presumes, at the start, a 
mapping from a continuous domain to a continuous range – requiring us to deal with not only the real 
numbers (Cantor cardinality ) but the set of all mappings from the to  (Cantor cardinality ) as 
well. Let’s look at the problem from the point of view of a procedure to determine whether an arbitrary 
mapping :f →  is continuous in an interval of its domain.  To make this test requires that we check 
continuity at all (infinitely many) of its points. To determine continuity at a point requires taking limits, i.e., 
infinite sequences of points converging in both directions to the point in question.  
 
To decide whether a function is differentiable requires yet more limit tests: A continuous function, f  is 
has a derivative given point a  if 

0lim   | ( ) (  )|/h f x h f x h→ + −  exists. f  is differentiable if it has derivatives at 
each point in its domain.  Thus, the following procedure summarizes testing for differentiability: 
 
is f continuous?  

(check the epsilon-delta condition at each point in its domain) 
if no, exit with “f is not continuous” 
otherwise, is f differentiable?  

(check the epsilon-delta definition for  
its derivative at each point in its domain). 

if no, exit with “f is continuous but not differentiable” 
otherwise, exit with “f is smooth  

(i.e., continuous and 
differentiable)” 
 
The computational requirements of this 
procedure are mind-boggling. The epsilon-
delta requires testing all positive real values of 
delta, at a point, then doing this for each point 
in a continuum. Further, testing for a 
derivative requires doing the epsilon-delta test 

Figure 2. Blancmange Function, it is continuous, but nowhere differentiable
– taken from integrals.wolfram.com/



for all positive real values of the excursion, h , again doing this for each point in a continuum. 
 
Of course, students are never given arbitrary functions to which to apply this procedure. Indeed, they work 
symbolically and numerically with a class of examples drawn from well-understood elementary functions, 
such as polynomials, trigonometric functions, and logarithmic/exponential functions and their 
compositions.  
 
Known “pathological” constructions, such as that in Figure 2, provide examples of continuous functions 
that are nowhere differentiable.  They tell us not only that continuity does not guarantee differentiability, 
but also that differentiability at a point does not necessarily guarantee differentiability at neighboring 
points. Taken together, this means that the procedure for testing continuity/differentiability is not 
algorithmic in general, although, it can be made so for sub-classes of elementary functions. 
 
In modeling and simulation, however, we should be fundamentally prepared to deal with non-analytical, yet 
still, continuous, phenomena.  The general question is then: how then can we formulate continuity in such a 
way that algorithmic and practical approaches to detecting its presence or absence are possible?  More 
deeply, can we remove the dependence of differential equation models on the Cauchy-Weierstrass 
definition and re-ground them on a rigorous and algorithmic replacement?  More generally, can we 
stimulate development of new kinds of continuous model structures? As for education, how can we employ 
such a “constructivist” approach to teach a version of the calculus that is truly useable by learners? One that 
does not require, in principle, non-algorithmic computations— neither executable by digital computers nor 
by high-school juniors.  
 
Overview of an Alternative Approach  
We have seen that the classical definition starts with a complete mapping f  already given. However, this 
situation never actually pertains in real world circumstances where we start with sensed, measured and 
collected raw data.  Furthermore, in numerical solution of differential equations, we typically start generate 
finite set of events which characterizes the behavior of a system over an interval.  Starting with an initial 
step size, we perform successive simulation runs with smaller step sizes, generating more events, until 
some termination decision kicks in.   A similar situation holds for recent discrete event, or quantization-
based, simulations, except that the quantum size is the controlled parameter. In both cases, the output for 
each run is a series of time-stamped events that presumably approximate the continuous curves of the 
model.  It is natural therefore, to take a finite set of events as the working data set for any consideration of 
continuity.  
  
Starting from a finite set of events we consider a refinement process that adds more events on demand. We 
are interested in conditions where after some reasonably few steps, we can terminate the refinement process 
without sacrificing essential qualitative information that might be acquired were we to continue.  Consider 
the following as a paradigmatic example:  we use a regular polygon with n sides and compute the ratio of 
its perimeter to the distance from any vertex to its center.  Let’s do this for 2,3,...n =  after some small n , 
say 10, we notice that the successive differences in the computed ratio get small enough that we are willing 
to stop – we are willing to gamble that the ratios to be encountered if we persist will differ from the last one 
obtained by less than the smallest difference observed so far.  Of course, in this example, there is an 
analytical proof that the ratio will converge to 2π so there is no gambling involved. However, imagine 
doing the same process for an arbitrary planar figure where no such proof of convergence exists. We are 
making the claim that, in practice, working with continuous functions is governed by a process of 
refinement, in which we expect that after some initial data have been gathered, the information we are 
looking for can be accepted to some level of desired residual uncertainty. Practically speaking therefore, the 
adjective”continuous” is applied to situations in which there are no surprises to be expected after some 
point in the refinement process. 
 
In a word, continuity as currently formulated is a Platonic ideal resting on solid, but fundamentally non-
algorithmic, foundations. But there must be properties of continuous functions that make them practical to 
work with, otherwise, they wouldn’t dominate the tool chests of scientists and engineers?  What are such 
properties? More specifically, what information stabilizes and what incremental properties govern a 



refinement process whose data set is sampled from a continuous function? We would like these properties 
to be quite intuitive and lend themselves to algorithmic and efficient computations. More particularly, we 
would like the approach to be implementable in the discrete event simulation paradigm, as formalized by 
DEVS (Zeigler et. al, 2000). 
 
Refinement 
 
Let’s imagine that we are drawing successive sets of samples from a continuous curve that is defined on a 
finite interval as illustrated in Figure 3. Samples, i.e., pairs ( , ( ))t f t , are events and refinement means that 
successive sets of events are obtained by adding new samples without ever dropping old ones. We start 
with the intuition that as we add samples we expect that nearby domain points, t  will have nearby values or 
images, ( )f t  – the essence of intuitive continuity. If the values jump around too much – if there is too 

much “noise” – we are reluctant to accept that the 
underlying curve is continuous. As we continue to 
fill in the interval, eventually domain points will 
get closer and closer and we expect that their 
values will likewise get closer and closer.   
 
So let us do the following: define a measure of 
variation for an event set. We expect that the value 
of this measure will increase as we add samples. 
But what is critical is that once we have enough to 
get the qualitative characteristics of the curve, the 
measure will stop growing. Indeed, if we are lucky 
enough to start with the right samples then the 
measure should stay constant from the very start of 
the refinement process.  
 

 The measure we show to have these properties is the sum of magnitudes of successive differences of 
sample values.  By qualitative characteristics of the curve we mean its form factor defined to be the 
locations and values of its minima and maxima. We restrict the curves of interest to those for which there 
are only a finite number of such extreme points in the finite interval of interest.1 We can show that for such 

a curve, if the initial sample set includes 
all extrema, then the variation measure 
must remain constant as we add in new 
samples. If the sample set does not 
include these points, then the measure 
will grow rapidly until points are included 
that are close enough to the extrema so 
both the sum and the form factor  
information will stabilize. This 
convergence is illustrated in Figure 4 for 
the refinement sequence in Figure 3. 
 
The sum measure will converge for 
bounded piecewise continuous curves 
(with finite jumps) as well. To detect such 
curves, we can monitor the maximum of 
the successive difference magnitudes. 

This measure will decrease to zero for continuous curves, as illustrated in Figure 4, and to non-zero values 
for piecewise continuous curves (that are continuous except for a finite number of discontinuities.). More 
details and results that confirm agreement with intuition are presented in (Zeigler 2004). 

                                                 
1 More generally, we require that there be  a finite number of extrema  in any finite sub interval if we allow 
the function to be defined over an infinite interval.   
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Figure 3 Event set refinement sequence that samples a rectified sine wave 
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Figure 4.  Convergence of the Sum and Maximum variation measures.
Also shown is the convergence to the form factor.



 
The interesting thing about the sum measure is that it is actually the activity measure for DEVS simulation 
of continuous models (Jammalamadaka ,2003;Akerkar 2004).  The activity number divided by a quantum 
gives the smallest number of threshold crossings that are needed to simulate the behavior of the model 

using that quantum size. The number of 
transitions and hence the execution time are 
directly related to the threshold crossings. 
Thus we conclude that the activity measure is 
a fundamental characteristic of continuous 
phenomena that both captures the underlying 
intuition of continuity as well as providing a 
direct measure of the computational work 
needed to represent continuity on a digital 
computer. 
 
In sum, this formulation offers a new way to 
unify the computational representation of both 
continuous and discrete phenomena and 
simulate them with the greater efficiency and 
flexibility afforded by object-oriented discrete 

event environments.  Our interest in this paper is on the implications for improving the teaching of calculus 
to which we now turn. 
 
Introduction to Calculus Based on DEVS 
 
Originally developed for application to simulation of ordinary, and later, partial differential equations, the 
activity concept has become the starting point for a more general and fundamental formulation. The 
formulation is motivated by a desire to reconcile everyday discrete digital computation with the higher 
order continuum of traditional calculus. We believe that it succeeds in reducing the traditional calculus, at 
least in the basic form needed for an introduction, essentially to computer science without need for 
advanced analytical mathematics. A major application therefore is to the revamping education in the 
calculus to dispense with its mysterious tenets that are too difficult to convey to learners.   
 
Figure 5 outlines a course in calculus that would be the basis for training students in modeling and 
simulation. The pre-calculus requirements in this approach would be much more concentrated on 
fundamentals of set theory as suggested in Figure 6.  On the basis of such background, the concepts of 
event sets would be introduced and the two basic event set types, domain-based and range-based would be 
characterized and compared.  Note that these topics would precede any formal discussion of continuity. The 

emphasis is on what constitutes 
data in modeling and simulation, 
namely sets of events that are 
indexed by time and space.  
Domain-based event sets are 
characterized by having equally 
spaced domain points – for 
example, as gathered by fixed 
time stepped simulation (in 
which time is the domain) or by 
equal cell sizes spanning a spatial 
representation. Range-based 
events are characterized by 
having equally spaced range 
values. In quantization-based 
simulations, events are generated 
by crossing of thresholds that are 
spaced apart from each other by a 
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Figure  5  DEVS-based Introduction to Calculus 

Figure  6  Topics Covered in DEVS-based Introduction to Calculus 
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quantum. Such an event set has values (thresholds) differing by one quantum with times that are not 
necessarily equally spaced. Mapping between such event set types shows how to go from one to the other 
and the effect on the number of events that are employed. Range based event sets are much more efficient 
with respect to number of samples  needed, especially where there are periods of little change. The 
Integrals and derivatives of event sets are defined and related to each other by the analog of the 
Fundamental theorem of calculus. In contrast to the deep nature, and advanced proof mechanisms required 
for the latter, the inverse relation between integration and differentiation is immediately apparent in the 
event set formulation.  
 
Key to this development is the refinement process mentioned earlier and a particular form of refinement 
called within-the-box refinement. This refinement matches what is generated by sampling from a 
continuous function. However, it is a very simple rule that does not require anything like the complexity of 
the calculus to understand.  Likewise, the concepts of extrema (minima and maxima) are developed without 
reference to continuity. Furthermore, straightforward algorithms to generate the form factor of an event set 
are presented. The form factor, as discussed earlier, leads to a unique decomposition of an event set into a 
sequence of monosets, i.e., event sets whose events are either non-increasing or non-decreasing in value. 
Indeed, the monosets are easily seen to alternate between the non-increasing and the non-decreasing types.  
 
Finally, with this background, the event set representation of continuous functions is presented. This 
statement  should be clarified – we show that within-the-box refinement sequences preserve  the form 
factor as refinement proceeds.   The basic properties of continuity include the intermediate value property 
and the mean value property, and the relationship between integration and differentiation. There are as 
usually expressed as unproved theorems in calculus textbooks. In contrast, in the proposed approach, they 
are seen to be consequences of the preservation of the form factor by within-the-box refinement, the 
monoset decomposition it enables and the monoset characteristics of the integral and derivative forms.  
Carrying this one step further, we can formulate the event set version of differential equations. 
Interestingly, it becomes clear that in one dimension, the range-based event set is the preferred form that 
allows us to write an explicit solution to the equation (in the same way that integration by separation of 
variables enables a general analytical solution in the traditional approach). Further, we show how the range-
based representation of continuous functions can result in considerable efficiency of representation 
compare to that of its domain-based counterpart for the same uncertainty (as discussed earlier) in 
representation of continuous functions.  
 
Conclusions 
 
We have presented a concept of event set and an associated measure of activity that are able to capture  the 
underlying intuition of continuity as well as to provide a direct measure of the computational work needed 
to represent continuity on a digital computer.  We believe that this approach opens up the possibility of 
dispensing with the mysteries of traditional calculus to teach an equivalent calculus based on finitary 
concepts of event sets and their straightforward algorithmic manipulation.  We have presented the outlines 
of an introductory course in the calculus as taught on the proposed basis. Software tools have been 
developed to support such instruction. One next step is to try out such a course on appropriate sets of 
students and compare students’ abilities to grasp the concepts and use them to construct models of real-
world continuous phenomena with the outcomes of current instruction paradigms. Any volunteers? 
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