

DEVS-Suite: A Simulator Supporting Visual Experimentation Design and
Behavior Monitoring

Sungung Kim
Hessam S. Sarjoughian
Vignesh Elamvazhuthi

Arizona Center for Integrative Modeling & Simulation

Dept. of Computer Science and Engineering
Arizona State University
Tempe, AZ 85281, USA

Keywords: DEVSJAVA, DEVS-Suite, experimental de-
sign, simulation monitoring, visual complexity

Abstract
 Complexity associated with the design of experiments
for simulation models can be reduced through visualization.
DEVS-Suite, a new generation of the DEVS Tracking Envi-
ronment which itself was extended from DEVSJAVA, sup-
ports visual design of experiments and introduces simula-
tion data visualization. Data generated by the selected
models can be collected dynamically and displayed as time-
based trajectories. These capabilities complement animation
of DEVS model components and their interactions. A ser-
vice-oriented software system is modeled to illustrate the
novel modeling features for DEVS simulations. Another ex-
ample is developed in Ptolemy II and SimEvents to show
the reduced visual complexity afforded by DEVS-Suite.

1 INTRODUCTION

 Modeling is commonly used for understanding, engi-
neering, and operations of systems. Simulation tools such as
DEVSJAVA [1], SimEvent [8], and Ptolemy [6] can be
used for modeling complex discrete systems. Each provides
its own unique approach for model specification and simula-
tion visualization. A key capability for simulation studies is
automated design of experiments such that models can be
easily chosen and their simulated dynamics monitored at
run-time [2].

 Considering the DEVS modeling framework [16], a va-
riety of simulators have been implemented for it in different
programming languages. They are used for simulating dis-
crete event models, and in some cases continuous and dis-
crete, across various application domains. Tools such as
CD++ [14], DEVSJAVA, and DEVS Tracking Environment
(DTE) [13] conform either to parallel or classic DEVS for-
malisms and support visualization of pre-built models. For
example, DEVSJAVA, a Java-based implementation of Par-
allel DEVS, supports visualization of hierarchical model

components and animation of message exchanges among
atomic and coupled model components. However, it does
not support on-the-fly selection and monitoring of model
components and displaying data trajectories at run-time.
Similar to many other tools, models are embellished with
code to gather data of interest and are made available to
console or written to external files for post processing.

 A key advantage of simulators such as SimEvents and
Ptolemy II is support for viewing simulation data as time
trajectories. SimEvents, which is an extension of Simulink,
[8] supports hierarchical activity-based models from pre-
built components including queues, servers, switches, gates,
timers, and generators for entities, events, and signals.
These components can be visually composed to develop
bigger models. Model parameters such as congestion, re-
source contention and processing delays can be monitored at
run-time. The pre-built, strongly typed monitoring compo-
nents such as Signal Scope can be used to plot events or the
states of the models along time axes. Monitoring a model’s
input/output ports may require several plotters.

 Ptolemy II supports different types of models (e.g., con-
tinuous and discrete) using a graphical user interface called
Vergil. Pre-existing code with information about their cou-
plings allows automatic code generation in XML format.
Users can visually synthesize hierarchical models from pre-
built components which have symbolic representations. The
animation feature displays the models that are active at dif-
ferent instances of time. The simulation results can be moni-
tored with plotters which are part of the model layout. Simi-
lar to SimEvents, plotters in Ptolemy II are strongly typed.

 Given the importance of selecting components of a hi-
erarchical model with support for monitoring and visualiz-
ing inputs and outputs of any component, we developed the
DEVS-Suite simulator. We begin in Section 2 with a review
of the DEVSJAVA and DEVS Tracking Environment simu-
lators and the TimeView, a module that supports plotting
input, output, and state trajectories. In Section 3, we de-
scribe the DEVS-Suite simulator and use it to model a ser-

 2

vice-oriented computing system. In Section 4, we consider a
simple assembly line system. We model this system in
DEVS-Suite, Ptolemy II, and SimEvents and then compare
them to show their differences for design of experiments
and monitoring of simulation results with respect to a visual
complexity metric. In Section 5, we summarize and discuss
future research.

2 BACKGROUND

 As we mentioned in the previous section, a number of
simulators have been built for simulating modular, hierar-
chical DEVS models. Among these, we consider
DEVSJAVA and DEVS Tracking Environment (DTE) since
they are used for developing the DEVS-Suite simulator [1].
Here, we review the basic concepts for the DEVSJAVA and
DTE. The DEVS-Suite simulator offers new and integrated
features that can help users devise experiments and conduct
simulations more easily. There is no need to delve into the
details of the simulator protocol design and implementation
since the simulation engine used in DEVS-Suite is the same
as the one used in DEVSJAVA and DTE.

2.1 DEVSJAVA

 A commonly used tool for simulating parallel DEVS
models is DEVSJAVA. It displays a view of the entire hier-
archy of the simulation model using components-within-
components style. For any coupled model, one or more
messages simultaneously travel along coupling paths that
connect atomic to atomic, atomic to coupled, and coupled to
atomic model components [7]. The design of the
DEVSJAVA separates execution control from the tightly
integrated simulator kernel and view. That is, visualization
of models and their animations are supported by simView, a
module that supports user interactions and control of simu-
lation execution. The control supports logical- and soft real-
time simulation execution. The states for every model com-
ponents can be individually examined (viewed) when the
simulator is stopped or paused (i.e., at the end of a simula-
tion cycle). The visualization of the messages is allowed for
the entire model. Furthermore, animation of the messages is
not synchronized against the simulation’s execution speed.

2.2 DEVS Tracking Environment

 To support automated design of experiments through
observing inputs and outputs and as applicable common
state variables phase and sigma, the DEVSJAVA Tracking
Environment was developed. Its design is based on the
classical Model-View-Control (MVC) architecture [9]. In
addition to the Model, View, and Control modules, another
module called Façade layer is also used. The data available

in the Façade module can be accessed by the Controller and
the View. With the MFVC architecture, the simulation data
sets can be displayed with one or more views. The data gen-
erated by the Model module are obtained during simulation
execution and made available to the View module. The
separation between the Model and the View modules and
the presence of the Façade module, model components can
be arbitrarily selected for monitoring and their dynamics
displayed at run-time or exported for external use. The en-
capsulation and modularization through the Façade module
significantly reduce dependencies between the Model and
the Control and View modules.

 DTE’s key capability is simplifying design of experi-
ments for simulation models. Its graphical user interface al-
lows a user to select model components to be monitored and
thus design experiments in terms of components’ in-
puts/outputs and state variables. Simulation model data sets,
which include states such as Time of Next Event, Time of
Last Event, and user selected input/output ports, can be dy-
namically tracked. The user, therefore, is able to observe
simulation data for any number of atomic and coupled mod-
els without any code development. The data can also be dis-
played in a tabular format using a Tracking Logger or ex-
ported to CSV files.

2.3 TimeView

 The TimeView is a module developed for run-time dis-
play of data sets as two dimensional plots (every plot has x
and y coordinates). Its operation is similar to an oscillo-
scope. The TimeView is a passive module. It can display
sets of (x, y) values where x (or y) values are plotted with
respect to y (or x). In order to use it for plotting time-based
simulation data, the x-coordinate for all plots is defined to
represent time. The allowed values for the x-coordinate are
integers (e.g., natural numbers) and the unit can be alpha-
numeric (e.g., seconds). The y-coordinate can be numbers
(integer and real) and string. The values for the y-
coordinates are generated inputs and outputs that are gener-
ated by atomic or coupled models. As an example, size of a
queue can be plotted at time instances 0, 1, 2, ..., 100. The
time increment duration and the units for time and variable
to be plotted can be set by user.

 For every atomic and coupled model component, one or
all of its input and output ports can be viewed independ-
ently. The time trajectories for all variables of a model that
are selected to be tracked are combined into a single view.
There is no support for overlaying multiple variables into a
single plot and multiple time trajectories from different
models cannot be combined into a single trajectory (e.g.,
given model output port outA from model A and output port
outB from model B, a single trajectory cannot be created to
display data from both outA and outB ports).

 3

3 DEVS-SUITE SIMULATOR

 The architecture of the DEVS-Suite simulator is the
same as that of the DTE. The architecture separates simula-
tion models (i.e., the source of data) from how they are con-
trolled and viewed. As shown in Figures 1 and 2, the
DEVS-suite package diagram consists of Model, Façade,
Controller, and View packages and their sub-packages [5].
The design and implementation of the DTE’s Façade layer
is extended. Mainly, its connection to the Model is altered in
order to include DEVSJAVA’s simView to the View.
Therefore, the View module has the simView, TimeView,
and TrackingLog packages. Given the presence of the Fa-
çade, the View allows combined animation and tracking
(i.e., viewing at run-time trajectories and tabulation of simu-
lated data). Users, therefore, may choose simView and/or
Tracking. Similarly, the Controller design is extended to
handle simulation animation speed (i.e., the speed at which
messages are exchanged among atomic and coupled model
components).

ViewableComponentViewableComponent

Facade

Model
Modeling

ViewableAtomicSimulatorViewableAtomicSimulator

Simulation

FModelFModel

Modeling

FSimulatorFSimulator

Simulation

ControllerController
Controller

View

TimeViewTimeView

timeView

SimViewSimView

simView

View

TrackingControl

ModelTrackingComponent
[Tracking Log]

ViewableComponentViewableComponent

Facade

Model
Modeling

ViewableAtomicSimulatorViewableAtomicSimulator

Simulation

FModelFModel

Modeling

FSimulatorFSimulator

Simulation

ControllerController
Controller

View

TimeViewTimeView

timeView

SimViewSimView

simView

View

TrackingControl

ModelTrackingComponent
[Tracking Log]

Figure 1: DEVS-Suite MFVC Package Diagram

 From the scalability perspective, a representative set of
simulation models having 20 to 7000 model components
were devised and simulated for a service-oriented software
system called voice communication system (VCS)
[5][12][15]. We used a desktop machine with Core 2 Duo
2.66 GHz CPU and 4GB RAM. Obviously, the execution
speed afforded by the simulator depends on the number of
components that are chosen to be tracked and whether or not
the model is animated. The simView was turned off and no
data was tracked. Initially, the wall-clock simulation time
increases proportionally and then slowly becomes exponen-
tial.

atomic
(from modeling)

RTCentralCoord
(from realTime)

TunableCoordinator
(from realTime)

digraph
(from modeling)

SimViewCoupledCoordinator
(from simulation)

FAtomicModel
(from modeling)

ViewableAtomic
(from modeling)

TimeView
(from timeView)

ModelTrackingComponent
(from view)

FModelView
(from view)

SimView
(from simView)

TrackingControl
(from view)

FCoupledModel
(from modeling)

devs
(from modeling)

FAtomicSimulator
(from simulation)

FCoupledSimulator
(from simulation)

Tracker
(from view)

View
(from view)

ViewableDigraph
(from modeling)

FModel
(from modeling)

FSimulatorView
(from view)

Controller
(from controller)...)

FSimulator

(from simulation)...)

atomic
(from modeling)

RTCentralCoord
(from realTime)

TunableCoordinator
(from realTime)

digraph
(from modeling)

SimViewCoupledCoordinator
(from simulation)

FAtomicModel
(from modeling)

ViewableAtomic
(from modeling)

TimeView
(from timeView)

ModelTrackingComponent
(from view)

FModelView
(from view)

SimView
(from simView)

TrackingControl
(from view)

FCoupledModel
(from modeling)

devs
(from modeling)

FAtomicSimulator
(from simulation)

FCoupledSimulator
(from simulation)

Tracker
(from view)

View
(from view)

ViewableDigraph
(from modeling)

FModel
(from modeling)

FSimulatorView
(from view)

Controller
(from controller)...)

FSimulator

(from simulation)...)

Figure 2. DEVS-Suite Class Diagram

 4

3.1 Interface and Monitoring of Simulation Data

 DEVS-Suite user interface consists of four parts: (1)
Model Viewer at the top left corner, (2) Simulator Control
at the bottom left corner, (3) simView at the top right hand
corner, and (4) TimeView at the bottom right hand corner
(see Figure 3). In order to make better use of available dis-
play space, the Model Viewer and Simulator Control are
combined to form a part which we call MVSC. A user,
therefore, can choose to view any one of the TimeView,
SimView, or MVSC parts within the DEVS-Suite interface
since any two of the three parts can be hidden. A user may
also view MVSC with either TimeView or SimView. Alter-
natively, the user can hide the MVSC part and only view the
TimeView and SimView while executing the model using
the execution buttons provided in the menu bar.

 Both block and tree views of hierarchical model com-
ponents are available. It provides flexibility in that a user
can select animation and/or tracking of simulation model

components as time trajectories. The tree view is used for
choosing model components and deciding which input and
output ports to monitor. For atomic models, pre-defined
state variables and basic simulator variables can also be
chosen and tracked. The block model is used for animation.

 The dynamics of every atomic and coupled model can
be individually displayed with TimeView. The semantics of
the data generated by the Model module in DEVS-Suite is
applied to the TimeView. Therefore, to display time-based
state and input/output data, simulation time is used to syn-
chronize generation of the time trajectories. Users have the
flexibility to select animation and tracking view options for
any number of atomic/coupled models. They can set the unit
for data that is to be monitored as well as the time axis. The
time increment, units, and the selection of data to be ob-
served can be set as shown in Figure 4.

Figure 3: DEVS-Suite UI with Model Viewer, Simulator Control, simView, and TimeView

 5

 If the Tracking option is selected and one or more
model components are also chosen to be viewed via
TimeView and TrackingLog, a tracker collects simulation
data sets for each selected model. For example, we consider
an SOA-complaint DEVS model shown in Figure 3. This
model represents Voice Communication Service (VCS) and
Travel Agency Service (TAS). Voice communication ser-
vice called VoiceComm is an atomic service that broadcasts
voice data streams in response to Subscriber1 and Sub-
scriber2 atomic services. The system is devised to support
audio data that can be sampled at any of the following rates
– 44.1, 88.2, 136.4, 176.4, 220.5 KHz. For the VoiceComm
service, its input and output ports can be tracked. Figure 4
shows the VoiceComm requested and provided data rates
that are selected to be tracked.

Figure 4: Tracking VoiceComm Model

3.2 Simulation Control Logics

 The DEVS-Suite simulator supports the control logics
that are provided by DEVSJAVA and DTE. The simulation
execution can be controlled using Run, Step, Step(n), Re-
quest Pause, and Reset (see Figure 3). The other controls are
Show Coupling, real-time factor, and a new control called
Animation speed. The control logic manages the simulator
execution and the data that is provided to SimView. DEVS-
Suite handles the simView animation and TimeView trajec-
tories independently. This is advantageous since the speed
of animation for messages may not be the same as the speed
at which time trajectories can be displayed. The Controller
supports compilation of models at run-time. This is impor-
tant to allow users to configure the path to packages of
model classes and source files as well as model package
names as in DEVSJAVA. After the configuration, a user se-
lects a package name and then the list of available models in
the selected package can be displayed.

4 SIMULATION MODEL AND COMPLEXITY
EVALUATION

 To evaluate the tracking and viewing supported by
DEVS-Suite, we compared it with Ptolemy II and SimE-
vents simulators. The Assembly Line model [4] shown in
Figure 5 is included in Ptolemy II. In this model, jobs are
generated by a Generator model at predefined intervals and
are serviced by three processors P1, P2, and P3 in a cascade
fashion. The service time for each job is specified by a
Processor. We developed the same model in SimEvents and
DEVS-Suite simulation tools (see Figure 6) [3].

Figure 5: Conceptual Assembly Line Model

 We define a simple visual complexity metric as the
numbers of components that are displayed for a given
model. The total number is equal to the sum of the number
of block components (i.e., models that represent dynamics
of the modeled system) and their ports and couplings. The
block components are categorized into logical and monitor-
ing components. The number of logical component models
among SimEvents, Ptolemy II, and DEV-Suite vary due to
their underlying modeling approaches. A consequence of the
modeling differences is that the number of ports and cou-
plings for SimEvents and Ptolemy II are higher as compared
with DEVS-Suite.

 A key difference among these tools is the presence or
absence of monitoring components. As shown in Table 1,
the number of the displayed components for the Assembly
Line model varies significantly even for such a small model.
The visual complexity metrics for SimEvents is 58 vs. 23
for DEVS-Suite. The visual complexity for Ptolemy II is
better as compared with SimEvents, but not with respect to
DEVS-Suite. The complexity metric also depends on flat vs.
hierarchical models. In DEV-Suite, the hierarchy of a model
does not impact the visual complexity metric. In compari-
son, the visual complexity metric for hierarchical models
developed in Ptolemy II and SimEvents may be affected
given the necessity of couplings monitoring components to
logical components.

Figure 6: Models of the Assembly Line System in DEVS-Suite, Ptolemy II, and SimEvents Simulators

 The main cause for the different visual complexity met-
rics is the use of monitoring components. They increase the
number of ports and couplings for SimEvents and Ptolemy
II. It can be easily seen that TimedPlotter for Ptolemy II and
SignalScopes for SimEvents are required for monitoring in-
puts and outputs of components. They, therefore, add to the
visual complexity of model display. In contrast, in DEVS-
suite, the user selects model components that are to be
monitored using dialogue boxes. It is noted that the monitor-
ing components in SimEvents and Ptolemy II collect data,
but in order to observe this data, separate windows must be
created.

 Thus, it is straightforward to observe that the DEVS-
Suite visual model complexity is not affected by the number
of models to be monitored. However, the DEVS-Suite’s
block model component view suffers from the overlapping
of the couplings. This problem also can be seen to a lesser
degree in the other tools. Some research aimed at overcom-
ing the crossing of couplings has results in the visual model-
ing environment CoSMoS [11], which supports simulating
models using DEV-Suite.

 Some factors that are related to monitoring components
are shown in Table 2. All three tools support plotting num-
bers with DEVS-Suite also supporting strings. In contrast,

SimEvents and Ptolemy II plotters have user-friendly fea-
tures such as zoom in and zoom out. Ptolemy II supports
combing multiple variables which could be from multiple
logical components into a single plot (i.e., overlaying of tra-
jectories). DEVS-Suite allows viewing together independent
plots for a single model, but has no support for overlaying
time trajectories. The plotters for Ptolemy II and SimEvents
are specialized and efficient. In contrast, while the
TimeView for DEVS-Suite is generic, it lacks flexibility for
the resizing of plots. Finally, as noted above, the monitoring
components for SimEvents and Ptolemy must be coupled
with logical components.

Table 1: Visual Complexity Metric

 SimEvents Ptolemy II DEVS-
Suite

Logical com-
ponents 11 9 5

Ports 29 15 10
Couplings 14 11 4
Monitoring
components 4 2 0

Total number
of components 58 37 23

 7

Table 2: Comparison of Component-based Simulators

Plotters

SimEvents Ptolemy II DEVS-
Suite

Numbers Yes Yes Yes Data
Types String No No Yes
Consolidate into a

single plotter
No (single
plotter per

port)

Yes Yes (per
model)

Specialized Yes Yes No
Generic No No Yes

Require couplings
or an output port

Yes Yes No

5 CONCLUSION AND FUTURE WORK

 In this paper, we presented the DEVS-Suite simulator
and described its capabilities for designing experiments and
visualization of simulation executions both as time trajecto-
ries and animation. The simulator simplifies designing
simulation experimentations and observing their dynamics
without unnecessarily complicating the display of models.
Systems such as service-oriented software systems can be
more easily configured for colleting simulation data and
run-time examination of the model behavior via time trajec-
tories. The simulator can also be used for education [10].
This is because DEVS-Suite simplifies creation of simula-
tion scenarios (i.e., experimental designs) which in turn aids
verification and validation of systems. In terms of future
work, it is useful for the DEVS-Suite to support real-time
visualization when useful. It is desirable for animation and
visualization of time trajectories to be synchronized. Better
support for manipulating views of trajectories at varying
levels of details is also important.

Acknowledgement

This research was partially supported by NSF Grant num-
bers #BCS-0140269 and #CCF-0725340. The TimeView
module was developed by Robert Flasher as part of his un-
dergraduate senior project in the Computer Science and En-
gineering department at Arizona State University.

References

[1] Arizona Center for Integrative Modeling and Simula-

tion. 2007. http://www.acims.arizona.edu/
SOFTWARE.

[2] Dalle, O. 2007. An Instrumentation Framework for
Component-Based Simulations based on the Separa-
tion of Concerns Paradigm. 6th EUROSIM Congress,
Ljubljana, Slovenia.

[3] Elamvazhuthi, V. 2008. Visual Component-Based
System Modeling with Automated Simulation Data
Collection and Observation, MS Thesis, Department

of Computer Science and Engineering, Arizona State
University, Tempe, AZ, USA.

[4] Jayadev, M. 1986. Distributed discrete-event simula-
tion. ACM Computing Surveys, 18(1): 39-65.

[5] Kim, S. 2008. Simulator for Service-based Software
Systems: Design and Implementation with DEVS-
Suite. MS Thesis. Computer Science and Engineer-
ing. Arizona State University, Tempe, AZ, USA.

[6] Lee, E. A. 2003. Overview of the Ptolemy Project.
University of California, Berkeley, CA, USA.

[7] Mather, J. 2003. The DEVSJAVA Simulation
Viewer: A Modular GUI that Visualizes the Structure
and Behavior of Hierarchical DEVS Models, MS
Thesis, Electrical and Computer Engineering. Univer-
sity of Arizona, Tucson, AZ, USA.

[8] Mathworks. 2007. http://www.mathworks.com.
[9] Reenskaug, T. M. H. 1978. The Model-View-

Controller (MVC). http://heim.ifi.uio.no/~trygver/
themes/mvc/mvc-index.html.

[10] Sarjoughian, H.S., Y. Chen, K. Burger. 2008. A Com-
ponent-based Visual Simulator for MIPS32 Proces-
sors, Frontiers in Education, TIA1-TIA6, October,
Saratoga Spring, NY, USA.

[11] Sarjoughian, H. S. and V. Elamvazhuthi. 2009. CoS-
MoS: A Visual Environment for Component-based
Modeling, Experimental Design, and Simulation,
Proceedings of International Conference on Simula-
tion Tools and Techniques, Rome, Italy.

[12] Sarjoughian, H., S. Kim, M. Ramaswamy, S. Yau.
2008. An SOA-DEVS Modeling Framework for Ser-
vice-Oriented Software System Simulation, Proceed-
ings of the Winter Simulation Conference, 845-853,
December, Miami, FL, USA.

[13] Sarjoughian, H. S. and R. Singh. 2004. Building
Simulation Modeling Environments Using Systems
Theory and Soft-ware Architecture Principles. Pro-
ceedings of the Advanced Simulation Technology
Conference, 235-240, Washington DC, USA.

[14] Wainer, G. 2002. CD++: A Toolkit to Develop DEVS
Models, Software - Practice and Experience, 32:
1261-1306.

[15] Yau, S. S., N. Ye, H. S. Sarjoughian and D. Huang,
2008. Developing Service-based Software Systems
with QoS Monitoring and Adaptation. Proceedings of
the 12th IEEE Int'l Workshop on Future Trends of
Distributed Computing Systems, 74-80, October,
Kunming, China.

[16] Zeigler, B. P., H. Praehofer, T. G. Kim. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems,
Academic Press.

