

System Entity Structure For XML Meta Data Modeling;

Application to the US Climate Normals

Saehoon Cheon, Doohwan Kim,

RTSync Corp

cheon,dhkim@rtsync.com

Bernard P Zeigler

Arizona Center for Integrative Modeling and Simulation

The University of Arizona

Tucson, AZ

zeigler@ece.arizona.edu

Abstract
Data engineering becomes increasingly important with

the increasing popularity of service oriented architecture

(SOA) and web services. Such data engineering requires

a design methodology within an ontology framework. In

this paper, the System Entity Structure (SES) serves as an

abstract ontology framework for world state descriptions

particularly involving dynamics in space and time. It is

implemented within a software tool, the SESBuilder,

employing the extended markup language XML. Pruned

Entity Structures (PES) represent the logically possible

set of world state descriptions consistent with the SES. At

the implementation level, an SES is represented by a

schema or DTD whose instance documents represent

possible prunings. The SESBuilder supports convenient

specification of SESs, pruning to create PESs, and

transformation to XML representations, all through

natural language and graphical interfaces. Thus the

software provides a capable data engineering work space.

In this paper, we illustrate its application to data

modeling of US Climate Normals for the purpose of

automated generation of weather simulation models.

Key Words- SES, PES, SESBuilder, XML, Data

Modeling

1. Introduction
Data Engineering has become more necessary and

critical activity for business, engineering, and scientific

organizations as the move to service oriented architecture

(SOA) and web services become more popular. In these

web based technologies, data must be encoded into a

format to be sent from a producer to a consumer. The

Extensible Markup Language (XML), the standard format

on the web, is employed to encode such data sets.

The paper introduces a well-defined formalism, the

System Entity Structure (SES), and its role as an ontology

framework. The SES automates the creation of XML

schemata using a data model that reflects system

engineering concepts of hierarchical decomposition and

specialization. The SES may be represented as an instance

of a particular DTD and then transformed into an XML

DTD or schema. The instances of the latter represent the

pruned entity structures (PES) of the SES. These basic

concepts of SES and PES are introduced in section 2, and

constructing and representing the SES and the PES in

computational form are introduced in section 3.

Software named SESBuilder has been developing in

collaboration between RTSync Corp (www.rtsync.com)

and ACIMS (www.acims.arizona.edu), the University of

Arizona. The software provides data engineering work

space based on XML for syntax and validity check.

Moreover, it supports natural language input for an SES

definition. Users can define an SES by following

predefined syntax for the SES key components. All of the

XML metadata including DTD and schema are

automatically generated. A graphical tree view helps users

prune an SES. Further details of the SESBuilder are

presented in section 4.

A real application employing the US Climate Normal

time-indexed weather data is presented in section 5.

Encoding the US Climate Normals into XML metadata

and query creation to extract data subsets of interest from

a large database are automatically generated in the

SESBuilder workspace. Such data sets are intended to

support automated generation of weather simulation

models at various desired levels of resolution (see [4] for

details). For the future work, data harmonization issues,

and merging operations to create larger composites are

discussed.

2. System Entity Structure and Pruned Entity

Structure
2.1. Introduction to the System Entity Structure

(SES)

 The basic idea of system entity structure is that a system

entity represents the real system enclosed within a certain

choice of system boundary. Figure 1 shows a simple view

of entities and their relationship in a system entity

structure (SES).

The followings are the key components consisting of

system entity structure [2]:

Entity

An entity is intended to represent a real world object

which either can be independently identified or is

postulated as a component in some decomposition or a

real world object.

Aspect

An aspect represents decomposition out of many

possible of an entity. The children of an aspect are entities

representing components in a decomposition of its parents.

Specialization

A specialization is a mode of classifying entities and is

used to express alternative choices for components in the

system being modeled. The children of a specialization

are entities representing variants of its parent.

Multi-Aspect
A multi-aspect is aspect for which the components are

all of one kind.

Variables

A variable is a slot attached to an entity that can be

assigned a value from a given range set. It denotes a

property, quality, or attribute of an entity to which it is

attached.

Figure 1 Overview of SES Items and Relationships

2.2. Pruned Entity Structure(PES) and Its

Inheritance Representation

The process of pruning the SES is to construct a desired

entity structure to meet particular application objectives.

More specifically, a specialization may have several

entities to select from representing different ways of

specializing an entity. Ultimately, in a completely pruned

entity structure, every specialization has exactly on entity.

In other words, the process of pruning is that of reducing

the SES by making selections in all its specializations,

allowing for multi-aspect expansions.

PES Inheritance is defined so that the parent and any

child of a specialization combine their individual

variables, aspects and remaining specializations when

pruning is activated. Figure 2 illustrates how the

inheritance is processed in the case of multiple

decompositions.

Figure 2 SES and PES Inheritance

The SES framework is especially applicable to

simulation modeling of dynamical systems. Comparison

with other ontology frameworks is presented in [2].

3. Computational Representation of SES and

PES

In this section, we discuss a methodology to construct

and represent the SES in computational form.

Figure 3 Relating SES and XML through Ontology

and Implementation Level

As depicted in Figure 3, a designer creates an SES to

describe a given domain at the ontology level. The

designed SES is implemented by XML Schema or

document type definition (DTD) at the implementation

level. The Document Object Models (DOM) class is the

core class for representing XML documents in computer

memory. We employ Sun’s implementation of the DOM

specification and Java [6] for the implementation

language and is illustrated in Figure 4.

Figure 4 Implementing SES using DOM specification

4. Introduction to SESBuilder

The SESBuilder (http://www.sesbuilder.com) is an

integrated tool to provide a data modeling framework

supported by SES and PES concepts at the ontology level

and implemented in XML schema and XML instances.

Besides general data modeling, it supports features that

are useful for the development of simulation models

expressed in the Discrete Event Specification (DEVS)

formalism [1]. The software and extensive tutorials can be

downloaded from [5].

4.1. SES Design by Natural Language; syntax and

semantics

This section explain the methodology to define a SES

using natural language, and show its XML representation

with real example in SESBuilder. First natural language

forms for specification of SES elements are presented:

Aspect

From VIEW perspective, THING is made of

COMPONENT1, COMPONENT2, and COMPONENT3!

Ex) From the structure perspective, a bank is made of a

payment and a debt!

Results in:

entity: THING (bank)

--aspect: THING-VIEWDec (bank-structureDec)

----entity: COMPONENT1 (payment)

----entity: COMPONENT2 (debt)

Violations in “and” clause result in “entity: unknown”

Specialization

THING can be VARIANT1, VARIANT2, or VARIANT3

in CLASSFAMILY!

Ex) A payment can be credit, cash, or check in form!

Results in:

entity: THING (payment)

--specialization: THING-CLASSFAMILYSpec (payment-

formSpec)

----entity: VARIANT1 (credit)

----entity: VARIANT2 (cash)

----entity: VARIANT3 (check)

MultiAspect

From multiple perspective, THINGS are made of more

than one THING !

Ex) From the structure perspective, credits are made of

more than one credit!

Results in:

entity: THINGS (credits)

--multiAspect: THINGS-multipleMultiAsp (credits-

structureMultiAsp)

----numComponentsVar: numTHINGS, min: 0, max: 10,

----entity: THING (credit)

Variables

THING has VAR1, VAR2, and VAR3!

Ex) A check has a signature, a bank, and an

authorizedState!

The range of check's signature is string!

The range of check's bank is string!

The range of check's authorizedState is boolean!

Results in:

entity: THING (check)

--var: VAR1(authorizedState), rangeSpec: (boolean)

--var: VAR3(bank), rangeSpec: (string)

--var: VAR2(signature) ,rangeSpec: (string)

Restriction: THING must be an entity in some other

sentence.

4.2. SESBuilder View

The SESBuilder graphical user interface has several

tabs. Given some natural language input as in Figure 5, its

DTD, Schema, and XML output data are automatically

generated. The “TreeView” button opens a new window

showing a tree representation and allowing the user to

prune the SES. The inherited structure explained in

section 2 is shown in “PESInheritance” tab with XML

format. In addition, the SESBuilder currently is able to

generate both DTD and Schema output, and allows users

to set the values for variables in the “Tree View” window.

For more information, please visit

http://www.sesbuilder.com and download the software

and tutorial. In the next section, a real example illustrates

how the SESBuilder supports model selections and their

coupling.

Figure 5 SESBuilder View

5. Case Study ; Automatic Model Generation

for Simulation

5.1. Project Introduction and Purpose

Creating generators to provide input trajectories to a

system model is a critical task in modeling and simulation.

A methodology to automatically create DEVS generator

models was developed in [4] and briefly described here.

Event information consisting of time and value pairs is

derived from the time-indexed trajectories of variables.

This enables a DEVS model to be created from the given

event set. To enable meaningful model structuring based

on a model developer’s request, a search engine extracts

the specified data from the data base, and then a model

creation engine is launched to create the DEVS model.

The source data need to be organized within a metadata

format to support the flexible and efficient data handling

required for model creation. Therefore, the source data

designed by the SES contains only valuable information

with the XML format. A parsing engine is required to

retrieve the XML metadata containing the critical event

set.

5.2. US Climate Normals

Climate is an important factor in agriculture, commerce,

industry, and transportation. The National Oceanic and

Atmospheric Administration's (NOAA's) National

Climatic Data Center (NCDC) has a responsibility to

establish and record the climatic conditions of the United

States. The average value of a meteorological element

over 30 years is defined as a climatological normal. These

normals are summarized in daily, monthly, divisional, and

supplementary normals products. This data we

experimented with includes daily 1971-2000 normal

maximum, minimum, and mean temperature (degrees F),

heating and cooling degree days (base 65 degrees F), and

precipitation (inches) [7].

5.3. Metadata Representation for Source Data; US

Climate Normals

There are almost 6000 stations to observe the weather

in the United States. All of these station data have a same

format and these data are daily recorded, one data set per

day. The SES representation, illustrated in Figure 6, is a

simplified description and one of many possible

definitions to describe the weather station data. Indeed,

the choice represents a designer’s ontological

commitment and should be driven by the application in

mind.

Figure 6 SES for Weather Station

Figure 7 illustrates the natural language input to

describe the SES shown in Figure 6. Note that to save

space both figures concentrate only on the minimum

temperature normal for January.

Figure 7 Natural Language Input for Weather Station

The XML output for the input of Figure 7, is illustrated

in Figure 8. The PES inheritance output already explained

in section 2 illustrates that the minimum temperature and

January are selected, and these XML output is

automatically generated in the SESBuilder. The grayed

box focuses on the inherited entities. In this output, the

number of the event set is only 2, but it can have multiple

event sets as many as we want to add. Even though they

have same decomposition, eventSet-dailyDec, each event

set is unique. Using these predefined tags, unique tag and

temperature in each day can be filled. The SESBuilder has

been developing to support all this capability in the

“TreeView”.

Figure 8 XML Schema Metadata Output for Weather

Station

5.4. Query Generation for US Climate Normals

The query format to request a data is also developed

using the SES. The query in the example supports both

time and geographical spaces, and up to 6 kinds of

weather variables at once. The spaces have three different

types of specification. The Region entity has reflects the

regional division used by US Census Bureau.

GeographicalLocation was defined to support

geographical coordinates, both latitude and longitude. By

pruning the SES, users can specify a desired data set. In

addition This example shows that an SES specifies a

family of hierarchical modular structures. Once

constructed, such structures may be treated as components

to be used in creating larger composites. This task is

supported by a merge operation. These entities such as

regions, geographical locations, and states are merged by

their sub entities, and then merged to form one large

structure. Not all of the sub entities have been shown in

figure due to the space limitation. Please refer to [4, 8-10]

Figure 9 SES for Query

for more detailed information. In addition to

composition, decomposition is also available. The ability

to compose and decompose hierarchical modular structure

is the most important feature to manage the complexity of

data representation.

As before, an XML schema is auto-generated from the

input of Figure 10 and Figure 11 illustrates a PES to

specify a data set to support DEVS model generation.

Note that it describes just a few of all the possible

selections based on the SES in Figures 9 and 10.

6. Summary

 The Unified Modeling Language (UML [UML]) is a

software development language and environment that has

found application in data engineering. The Object

Modeling Group (OMG) has initiated a process for

developing an Ontology Definition Metamodel (ODM)

for modeling Semantic Web ontology languages within

the context of OMG’s Model-Driven Architecture (MDA).

A proposal for such a definition is presented in [11] which

develop an Ontology UML Profile [12-14].

Unfortunately, although UML was developed to support

interoperability of tools, few can actually exchange UML

models without information loss.

Further, the System Entity Structure (SES) ontology

framework provides unique support for data engineering

in the context of simulation modeling. Implemented

within a software tool, the SESBuilder, it supports

convenient specification of SESs, pruning to create PESs,

and transformation to XML representations, all through

natural language and graphical interfaces. Thus the

software provides a capable data engineering work space.

A full discussion of the strengths of the SES ontology

framework in relation to UML developments is provided

in [2].

Figure 10 Natural Language Input for Query

Figure 11 PES Inheritance XML Output

7. References

[1] Zeigler B.P. “Theory of Modeling and Simulation” Wiley

& Son, N.Y, 1976

[2] Zeigler, B.P. and Hammonds, P.E., “Modeling and

Simulation-Based Data Engineering: Introducing

Pragmatics into Ontologies for Net-Centric Information

Exchange”, Elsevier, 2007

[3] Zeigler B P, Herbert Praehofer, Tag Gon Kim, “ Theory of

Modeling and Simulation”, Academic Press, 2000

[4] Saehoon Cheon, “Experimental Frame Structuring for

Automated Model Construction: Application to Simulated

Weather Generation”, Doct. Diss. Dept. of ECE, U.

Arizona, Tucson, AZ,2007

[5] SESBuilder, http://www.sesbuilder.com/

[6] Document Object Model (DOM), http://www.w3.org/

DOM/

[7] National Climate Data Center,

http://www.ncdc.noaa.gov/oa/ncdc.html

[8] Saehoon Cheon, Bernard P Zeigler, “Experimental Frame

Structuring and Aggregation of Source Data: Application

to US Climate Normals”, SpringSim07, Norvolk, VA

[9] Saehoon Cheon, Zeigler. B.P “Web Service Oriented

Architecture for DEVS Model Retrieval by System Entity

Structure and Segment Decomposition”, scs2006, Alabama.

[10] DEVSJAVA3.0, http://acims.arizona.edu

[11] [GAVE] Gašević, D., Djurić, D, Devedžić, V, “Model

Driven Architecture and Ontology Development,”

Springer-Verlag, Berlin, 2006, ISBN: 3-540-32180-2 (in

press).

[12] Unified Modeling Language (UML) Superstructure,

version 2.0

http://www.omg.org/technology/documents/formal/uml.ht

m(accessed Nov. 2006)

[13] MOF 2.0 / XMI Mapping Specification, v2.1,

http://www.omg.org/technology/documents/formal/xmi.ht

m/ (accessed Nov. 2006)

[14] Meta Object Facility (MOF) Core Specification,

http://www.omg.org/technology/documents/formal/mof.ht

m/ (accessed Nov. 2006)

