

System Modeling with Mixed Object and Data Models

Hessam Sarjoughian

Robert Flasher

Arizona Center for Integrative Modeling & Simulation

School of Computing and Informatics

IRA Fulton School of Engineering

{sarjoughian | robert.flasher}@asu.edu

Keywords: data engineering, model persistent, model
transformation, system design, visual modeling.

Abstract

 System designs are described from object and data
centric perspectives. Component-based modeling
approaches are well suited to specify structure and behavior
of systems in terms of objects and relationships. Ontology-
based modeling approaches describe a system’s
specification using data types and relationships. The
Scalable Entity Structure Modeler is a component-based
modeling framework suitable for specifying alternative
system designs. This approach is extended with XML
Schema to support unified dynamic objects and static data
specifications for system design specifications. An example
illustrating mixed component and data modeling is
described using an extended realization of the SESM
environment.

1. INTRODUCTION

 Modeling is crucial for system analysis and design. An
important problem in system modeling is how to create and
manage multiple system architecture specifications.
Enabling modelers to develop multiple models of a system
based on sound principles, therefore, is highly desirable. To
this end, various modeling languages and approaches have
been developed to aid specifying hierarchical object and
data model specifications at varying levels of abstractions.

 Two of the main genres of modeling languages are
targeted for developing software and simulation models. A
common need is specifying alternative designs of a system.
For example, a computer network model may specify a set
of computers that are connected to one another using
wireless connectivity. Such a model can be used to evaluate
network topologies (e.g., communication range and its
impact of quality of service) or to develop a design that can
efficiently protect a wireless network against attacks. These

models may be specified at varying levels of resolution. A
computing node model may include probabilistic processing
time or network traffic may be specified as primitive data or
complex objects. Moreover, a complex system may have
different architectures. For example, the wireless computer
network may be modeled as a set of computers and switches
having a hierarchical topology.

 To support such needs, various modeling concepts
approaches have been developed. Two of these modeling
frameworks are DEVS [18] and UML [8]. They support
modeling dynamics of simulation software models. Each is
well-suited for a particular kind of modeling – i.e., DEVS is
targeted for simulation modeling and UML for software
modeling. A common theme among these approaches is to
describe specific system models with strong emphasis on
component. In contrast to these, XML [3, 14] is primarily
used to model the static view of a system. It can also be
used to describe static structures among simple and complex
data elements. Other modeling approaches are Scalable
Entity Structure Modeler (SESM) [2, 5, 7, 11], System
Entity Structure (SES) [9, 16, 19], XML Schema, and DoD
Architecture Framework (DoDAF). the Scalable Entity
Structure Modeler (SESM) emphasizes a unified logical,
visual, and persistent modeling framework for component-
based model development [12]. The SES emphasizes
modeling concrete alternative model structures. XML
Schema allows describing arbitrary structures, but it does
not have axioms that can establish similarity relationships
among different structures of a system. DoDAF focuses on
conceptual separation of models for describing
complementary systems, operational, and technical views.

 Given the above varying modeling approaches, it is
desirable to support detailed object and data modeling. To
achieve this goal, the importance of combined logical,
visual, and persistent modeling is briefly described in
Section 2. The SESM framework is detailed and the
conceptual basis for its extension with XML Schema is

described in Section 3. In Section 4, the XML Schema
models and its relationship with SESM are presented. In
Section 5, a realization of the SESM environment is
presented with an example model. A summary with a sketch
of future work is given in Section 6.

2. BACKGROUND

 Complex systems are commonly described by using a
set of model abstractions and relationships among them.
Modeling approaches such as Entity-Relation (ER) and
Unified Modeling Language (UML) are used to model a
system’s specification from specific points of view. ER is
used to describe a system’s structure in terms of data entities
and relations. The entities are generally simple, but can have
intricate relationships which together may describe complex
structures. UML describes objects and their relationships.
UML classifiers represent various kinds of structures and
behaviors. These classifiers may be combined together with
data entities to describe complex dynamic systems. The ER
and UML abstractions, therefore, support describing data-
centric and object-centric structures, respectively. These
modeling approaches are used to formalize different logical
model abstractions.

 The above modeling approaches offer capabilities to
describe different kinds of logical models. Each of these
approaches is grounded in a particular kind of modeling.
Entity-Relation is targeted for describing structural, non-
behavioral models. ER models lend themselves well for
standardized logical model representation and model
persistence in relational databases, but provide limited
concepts and capabilities for visual modeling. UML is
targeted for describing both object-oriented structure and
behavior (models). The UML standard supports logical and
visual modeling, but lacks a strong foundation for model
persistence [6].

 The System Entity Structure (SES) and XML modeling
frameworks are aimed at ontological representation of high-
level system and low-level data specification, respectively.
SES is a labeled tree with a set of axioms that constrain the
relationships among the tree’s entities. Entities represent the
parts of a system as a collection of similar, related
structures.

 As suggested above, models of a system can be given in
terms of logical, visual, and persistent abstract model types.
Each of these model types has its own syntax and semantics.
The logical model type describes structure and behavior.
The model specifications can be simple to complex – the ER
models are generally low-level and do not describe behavior
which makes them less complex as compared with the UML
models. A logical model conforms to a common set of
constructs and axioms. The syntax and semantics of the
logical model type defines all model structures that consist
of elements and relationships. The logical model may also

define behavior as is in UML. The visual model type defines
symbols for the logical models to support visual
specifications of models. The model components and their
relationships conform to the visual modeling language. The
persistent model type specifies persistent memory patterns
for the logical model structures across space and time. The
model entities and relationships comply with syntax and
semantics of databases.

 The principal features of the SESM are scalable multi-
aspect/resolution model specification, iterative/incremental
model development process, and quantifying complexity
metrics for models. The basic concept of the model types
and their synthesis facilitate visual and persistent modeling.
These capabilities afford automatic creation of well-formed
model specifications according to the DTD and XML data
language as well as object-oriented programming languages.

2.1. Data Engineering

 An important application domain for SESM is data
engineering which can be considered as system design with
emphasis on data modeling. A major area of interest is
handling of data sets obtained from Synthetic Aperture
Radar (SAR) system. Modeling (or more specifically
organizing) rich SAR data sets in a systematic way is
essential for data gathering, processing, and analysis. For
this purpose, the Universal Phase History Data (UPHD)
standard has been developed using the SES and XML
modeling approaches [17]. The SAR application domain is
used to represent geospatial data obtained from sensors.
Knowledge engineering of large data sets and complex
relationships using the above modeling concepts is
considered crucial for knowledge management, processing,
and dissemination. This is because data sets need to be
architected for data storage and making available processed
data using technologies such as web-services.

 Here, the data engineering concepts are used to extend
the SESM modeling framework to support mixed object and
data models. The extended approach described in the
remainder of this paper supports separately modeling data
and object models and their composition. The unified
logical, visual, and persistent modeling framework supports
developing data and object models that have rich structural
and behavioral specifications. This in turn supports
automatic transformations of SESM models to alternative
specifications including DTD and XML Schema and semi-
automatic transformation to simulation code.

3. SCALABLE ENTITY STRUCTURE MODELING
FRAMEWORK

 The Scalable Entity Structure Modeler is a modeling
framework based on Entity-Relation (ER), System Entity
Structure (SES), Object-Orientation (OO), visual modeling,
simulation modeling, and model transformation (see Figure

1). The ER concepts support scaleable representation and
storage of entities and their relations in databases. The
concept for representing a system’s structural representation
is given by SES. The object-orientation composition,
inheritance, and hierarchy are used for organizing
alternative structures of a system. The visual modeling
concepts offer visual abstractions that are key for systematic
handling of tedious, error prone modeling tasks faced by
designers and analysts. The simulation concepts are used to
account for behavioral modeling of system specifications.
Finally, well-formed exchangeable representations play a
crucial role for generating alternative models that conform
to standardized modeling languages such as XML and
programming languages that can be executed with
simulation engines.

Visual
Modeling

Model
Translator

Persistent
Modeling

Simulation
Code

Logical
Modeling

Scalable Entity Structure Modeler

Standardized
Models

Visual
Modeling

Model
Translator

Persistent
Modeling

Simulation
Code

Simulation
Code

Logical
Modeling

Scalable Entity Structure Modeler

Standardized
Models

Standardized
Models

Figure 1: Logical, visual, and persistent model types with
model translators

 SESM is a component-based modeling approach in
which families of system specifications are defined in terms
of elementary Template, Instance Template, and Instance
model types (refer to Figure 2) [10]. Each of the model
types is defined to have primitive and composite model
components. Every composite model component is a
hierarchical tree where its leaf nodes must be primitive
model components. A model component can be specialized
such that its specializations are distinguishable. SESM
defines a set of axioms that characterize compositional and
specialization relationships across the elementary model
types with support for object-oriented and markup
languages (see Section 3.1). Two kinds of models are
defined – i.e., simulatable components are used to define
simple and complex dynamic models and non-simulatable
models are used to define the static models (models that
describe structure, but not behavior).

 A realization of the SESM approach has been
developed using Java and DBMS technologies [1, 5, 7].
SESM’s underlying software architecture style is
client/server. The first generation of SESM used the Oracle
database [5] and subsequently was replaced with MS Access
[1, 7]. A modeler can have multiple, independent modeling

sessions, each with its own database. Next the specification
of logical models is presented. The details of the persistence
and visual models are deferred to [12].

simple

complex

non-simulatable
components

Component Modeling

primitive

composite

simulatable
components

specialized

simple

complex

non-simulatable
components

Component Modeling

primitive

composite

simulatable
components

specialized

Figure 2: SESM component models

3.1. Logical Models

 The primitive and composite model types are logical
models. Each of these two model types has Template,
Instance Template, and Instance models. A primitive
Template Model can have a finite number of state variables.
Each state variable is defined to have a type and may have
an initial value. State variable types can be simple or
complex objects including UML data types and classes. A
primitive Template Model can also have inputs and outputs.
Each input or output, which can be either simple or
complex, is defined to have a unique port name. The
collection of input and output ports for each component is
defined as its interface. Input and output ports may be used
to receive or send simple data or complex objects.

 A primitive component can correspond to either a
Template Model or an Instance Model. For the Template
Model, its primitive component can be specialized using the
is-a relationship. The term specializee is used to refer to the
component that has a specialization relation to a component
called specialized. The input/output interface of every
specialized component is defined to be the same as the
interface of its specializee. The state variables of specialized
components may be different. A pair of specializee and its
specialized can be distinguished based on their names.
There are no specializee components for Instance Models.
All primitive instance model components are
distinguishable based on their assigned (or given) names.

 A composite model corresponds to a Template Model,
an Instance Template Model, or an Instance Model. A
composite model consists of one to many primitive and/or
composite components. The composite model and its

components have the same model type. A composite model
may also have one or more states, inputs, outputs, and a set
of links connecting the components that are contained
within it. Any two components can send and receive
information using links. Every composite component for a
Template Model or Instance Template Model has a unique
name and tree structure.

 The allowed relationships among composite
components are whole-part and is-a. Given a component, a
sub-component and super-component composition
relationship may exist only when no sub-component can be
the same as its (immediate or higher) super-component. The
sub-component is referred to as part and the component and
super-component are referred to as whole. The number of
components of a composite model can be either specified or
left unspecified. A composite component can also be
specialized as in a primitive model. Composite components
can be used in multiple composite Instance Template
Models. The hierarchy depth of a composite component is
equal or greater than two. All instances of a composite
component (corresponding to the Instance Model) are
distinguishable from one another using their assigned (or
given) names. The primitive and composite Instance Models
are instances of their respective Instance Template Models.
The whole-part and is-a relationships are constrained as
described. The uniformity constraint – i.e., two components
which have the same name have identical structures.

 Instance models can only be generated from Instance
Template models. An Instance model can be total or partial
— i.e., a model hierarchy can be of any hierarchical depth
depending on the model that is being transformed. For every
model component that is specialized, one of its
specializations must be selected to replace its specializee. If
the number of sub-components of a component is left
unspecified, the number needs to be determined when an
Instance Template Model is transformed into an Instance
Model.

 The state variables and the input and output port
variables may also be specified using data and object
modeling languages. These simple and complex components
and their composition and specialization relationships are
defined with UML, DTD, or XML specifications.

3.2. Simulatable and Non-simulatable Models

 To represent different possible structures of a system, it
is important to use simple and complex non-simulatable
model types. These model types referred to as non-
simulatable models are distinguished from the simulatable
Template, Instance Template, and Instance models. A
simulatable model specification has a simulation protocol
that dictates how the simulatable model is to be executed in
(logical or real) time. In contrast, a non-simulatable models
specified in UML may or may not have behavioral aspects.

A model with behavior specification needs to provide its
own execution regime with or without use of logical or real
time.

 A simulatable structure of a system has non-simulatable
structures. In non-simulatable structures, it is important to
specify the types for state or port variables. A state variable
can have a complex type such as a list, and a port variable
can have a simple type such as a string.

 The semantics of the composition and specialization
relationships used in UML are distinct from those that are
defined for the Template, Instance Template, and Instance
Models. The composition relationship among non-
simulatable UML classes allows a class to have a
composition relationship with itself. A class may have a
dependency or realization relationship to another class.
These relationships are not allowed in the Template Model.
Similarly, the UML inheritance (i.e., specialization)
relationship allows a child component to extend or restrict
its parent component. In the Template Model, the
specialization relationship is restricted to a specialized
component to replace its specializee component. There are
no extensions or restrictions between the specialized and
specializee.

 Given the distinct roles the simulatable and non-
simulatable models play, the importance of differentiating
them becomes evident. The abstractions defined for the
Template, Instance Template, and Instance models are
principally targeted for specifying alternative architectural
system models, whereas the simple and complex models are
intended for the specifications encapsulated within them.
The simulatable model specifications can be transformed
into simulation models that can be simulated. The non-
simulatable model specifications can also be forward
engineered into programming code. In the following section,
the non-simulatable models are informally characterized in
terms of the XML Schema language.

4. XML SCHEMA MODELS

 Instead of using objects as basic ingredients for
specifying dynamics of systems, it is useful to use data
types as in XML Schema (XML-S). The data types, unlike
objects, are void of behavior. Data types, in contrast to
objects, offer a rich set of constructs to specify data
elements, attributes, and data. The XML Schema language
constructs allow describing structures having whole/part and
is-a relationship. Also, unlike object-based modeling
languages the language supports creating and using simple
and complex data types.. For example, an element can
contain text and unconstrained child elements or contain
text with strict rules.

 Conceptually XML-S primitive and complex data types
are similar to the SESM primitive and composite model

component (see Figure 3). The SESM primitive and
composite model components can be used to specify XML-
S primitive and composite data types. The state variables of
the SESM model components can also be specified as
XML-S primitive and composite data types. The state
variables can be specified using object-orientation and
XML-S modeling languages according to the degree of
sophistication required. For example, an element can have
simple content – a name having simple data type String. The
element containing text conforms to a specific data type
such as Integer. Alternatively, a simpleContent element
can have attributes with constrained content. The content is
simple data types and can hold attributes with extension or
restriction elements. While these kinds of specifications are
possible to specify using the extensibility afforded by UML
MOF or others (e.g., by extending the SESM modeling
approach), the XML-S standard is well suited for such data
modeling.

element

primitive
data type

complex
data type

attribute

Data Schema

element

primitive
data type

complex
data type

attribute

Data Schema

Figure 3: SESM XML Schema data models

 The XML-S sequence and choice elements serve a role
similar to the composition and specialization relationships
defined for SESM. The sequence element defines the
enclosed elements that appear both in the instance structure
and declaration. The choice element defines required and
exclusive elements that are enclosed in an element. These
elements can be combined to specify complex models as
supported in SESM using the whole/part and is-a
relationships defined in SESM.

 As shown in Figures 2 and 3, on the one hand, the
SESM simulatable components can be used to represent
XML-S primitive and complex data types. On the other
hand, UML and XML-S languages can be used to represent
SESM non-simulatable components. A key benefit is the
SESM foundational concept of a unified logical, visual, and

persistent modeling with capability to model object
structures and behaviors as well as complex structured data
models enabled by XML-S.

 The other capabilities are forward and reverse
engineering. With forward modeling, XSD and DTD
models can be derived from SESM specifications. With
backward modeling, XSD and DTD models that are
consistent with SESM can be put into the database and thus
support visual modeling, analysis of model complexity (i.e.,
using complexity metrics). These two capabilities offer a
round-trip modeling approach for specifying alternative
system designs. Furthermore, component-based simulation
code can be generated semi-automatically. In particular,
DEVSJAVA atomic and coupled models can be generated
from SESM models. The SESM environment supports
partial specification of atomic models (i.e., input/output
ports, state variables, and the skeletons of the transition
functions). Coupled models can be specified completely
(i.e., input/output ports, couplings, and hierarchical
decomposition).

5. SESM ENVIRONMENT

 Before presenting an example model, an overview of
the SESM environment is given. This environment consists
of three parts: Client, Server, and Network. All write
operations requested by a client are managed through the
Network part and processed by Server. The Server enforces
the axioms of SESM and consequently legitimate client
operations are handled by the database. All read operations
are directly handled by the database.

 As shown in Figure 4, a client can model a system in
terms of the simulatable and non-simulatable modeling
elements. In the left-hand frame, there are two main tabs:
Simulatable and Non-Simulatable. The Simulatable tab has
three tabs corresponding to the Template, Instance
Template, and Instance models. The menu item Model
shown in Figure 4 allows a user to create Template,
Instance, and Data Type models. The tree structures of the
Template, Instance Template, and Instance models are
shown in each tab and can be manipulated (i.e., new models
can be added, modified, and deleted). The Non-Simulatable
tab has two tabs corresponding to the non-simulatable
models (NSM) and Data Types. The simulatable and Data
Types models are stored in the database.

 In the right panel, a client can view the color coded
block models of the TM, ITM, and IM models. Rounded
rectangles are used to visually represent primitive
components. A rectangle is used to identify composite and
specializee components. Components with a multiplicity
range are shown as rectangles with dashed lines. The same
color coding is used to differentiate model types in the
model tree representations.

(a): Template tree and block models (b): Instance template model

Figure 4: SESM UI for tree and block model specification

The tree representation uses ‘folder’ and ‘page’ visual
notations with a letter S to distinguish specializee models.
The SESM naming convention tabs for the Template,
Instance Template, and Instance models include the SES
terms to aid modelers working with the SES concepts. The
SES trees can be represented with TM and IM models and
the pruned entity structure (PES) can be represented with
IM. The block model components are placed diagonally for
more efficient and simple visual representation and
manipulation. The ordering of the block models (which do
not have ports and couplings) for the WineOntology
composite model shown in Figure 4(a) does not have any
specific semantics within the SESM modeling framework.
The order of RegionGrows, Regions, and Wine is
based on the order in which they are added to the
WineOntology model.

 Visual modeling of coupling relationships, specification
of states (variables and types) and ports (port names,
variables, and types) are supported in this panel. Complexity
metrics and translation to XML and simulation code are
supported in the tree structures, block models, and the menu
items (Edit, Metrics/Views, and Transformations lists). The
Model menu item supports creating Template Model,
Instance Model, and Data Type elements. These Data Types
such as the one shown in Figure 5 complement the NSM
models [2, 11] (see Section 3.2).

 The Database menu item which is available in the main
menu can be used to initialize the model (i.e., removing all
entries in the database – simulatable and Data Type

models). Changes to NSMs are not supported within SESM;
instead creation, modification, and deletion can be
performed using other means (e.g., UML tools, Eclipse
Modeling Framework [4], and XML-Spy [15]). The
structural complexity of every template model is also
available (see Figure 6) [7, 11].

Figure 5: XML-S specification for dewPoint model

Figure 6: Behavioral metrics for Region model

Figure 7: Multiplicity for the WineCountry model

 Given the combined SESM and XML-S specification,
every Instance Template model can be transformed into an
XSD specification. Given the expressiveness of SESM, it
can be used to visually specify persistent SES models.
Given the Instance Template models such as those for the
WineOntology, Instance models can be generated from
them. If an Instance Template model has a multiplicity
range, the user first chooses a desired multiplicity. For
example, WineCountry has multiplicity ranging from 1 to
n (see Figure 4(b)). Figure 7 shows the multiplicity for the
WineCountry model to be 1.

Figure 8: WineOntology Instance model

 Once all multiplicities are determined, instance models
can be generated for every primitive and composite Instance
Template model. The Instance model for the
WineOntology model is shown in Figure 8. This model
has RegionGrows_1_1, Regions_1_1, and
RoseWineColor_0_2 which is a specialized from the
WineColor primitive Template model. Similarly,
Region_1_2 and RedWineColor_0_1 instance models
are generated for the WineCountry_1_2 instance model.
Finally, Region_2_3 and Region_3_4 instance models
are generated for the Regions_1_1 instance model.

 The element Region, shown in Figure 9, is a well-
formed XML-S model transformed from the SESM
primitive component Region along with XML-S
dewPoint and GeoPosition data types. Such XML-S
or DTD models can be automatically generated for every
model that is developed using DTD and XML-S translators
added to the SESM environment. The generation of an
instance model in SESM results in a model that can have the
same representation as those that can be generated with the
SES/DTD and SES/XML translators developed for SES-
Java [13]. This requires (i) there is a correct mapping
between SES and SESM and (ii) the representation of XML
or DTD data types is also supported in the same way for
SES and SESM [12]. For example, the resulting XML-S
shown in Figure 9 represents a leaf entity of an SES model
that has attributes specified according to the XML-S data
types.

Figure 9: XML-S Region model

6. CONCLUSIONS

 The importance of modeling complex systems from
complementary object and data perspectives were described.
This offered a motivation for extending the SESM modeling
framework with XML. The simulatable and non-simulatable
model types, roles, and relationships were presented. The
collective capabilities of object and data model development
were demonstrated using the extended SESM realization. It
offers a step forward toward realization of multifaceted
model development as proposed with DoDAF. The SESM
framework supports system design from object-centric and
data-centric perspectives. With the addition of the XML
models, design specifications can be supported from
simulation and non-simulatable perspectives. The use of the
SESM modeling framework for specifying the class
SES/XML models was described. Future work includes
application of the SESM framework for simulation-based
design and automated testing. The SESM environment may
be used toward engineering of data intensive systems with
capability to process data available across grid networks and
delivery of information using web-services.

Acknowledgement

 This research is supported in parts by grants from NSF,
Intel Corporation, and Northrop Grumman. We would like
to acknowledge the fruitful discussions regarding the Data
Engineering project with Bernard Zeigler of the University
of Arizona and Philip Hammonds, Rodney Leist, Steven
Madden, and Chad Schulenberg of JITC/DISA and
Northrop Grumman.

References

1. Bendre, S., Behavioral Model Specification Towards
Simulation Validation Using Relational Databases, in
Computer Science and Engineering, 2004, Arizona
State University: Tempe, AZ, p. 1-150.

2. Bendre, S. and Sarjoughian, H.S. Discrete-Event
Behavioral Modeling in SESM: Software Design and
Implementation, Advanced Simulation Technology
Symposium, 2005. p. 23-28, San Diego, CA.

3. Bradley, N., The XML Schema Companion, 2004:
Addison Wesley.

4. Budinsky, F., Steinberg, G., Merks, E., Ellersic, R., and
Grose, T., Eclipse Modeling Framework, 2003:
Addison-Wesley.

5. Fu, T.-S., Hierarchical Modeling of Large-Scale
Systems Using Relational Databases, in Electrical and
Computer Engineering, 2002, University of Arizona:
Tucson, AZ, p. 1-114.

6. Jordan, D. and Russell, C., Java Data Objects, 2003:
O'Reilly.

7. Mohan, S., Measuring Structural Complexities of
Modular, Hierarchical Large-scale Models, in

Computer Science and Engineering, 2003, Arizona
State University: Tempe, AZ, p. 1-112.

8. OMG. Unified Modeling Language, 2004,
http://www.omg.org/technology/documents/formal/uml
.htm

9. Park, H.C., Lee, W.B., and Kim, T.G., RASES: A
Database Supported Framework for Structured Model
Base Management, Simulation Practice and Theory,
1997, 5(4), p. 289-313.

10. Sarjoughian, H.S., An Approach for Scaleable Model
Representation and Management, 2001, Computer
Science & Engr., Arizona State University: Tempe, AZ,
p. 1-9.

11. Sarjoughian, H.S. A Scaleable Component-based
Modeling Environment Supporting Model Validation,
Interservice/Industry Training, Simulation, and
Education Conference, 2005. p. 1-11 Orlando, FL.

12. Sarjoughian, H.S., Fu, A., Bendre, S., and Flasher, R.,
A Unified Logical, Visual, and Persistent Modeling
Framework, in-preparation.

13. SES-Java. Virtual Work Table,
http://www.devsworld.org/, 2006.

14. XML. eXtensible Markup Language, 2005,
http://www.w3.org/XML/.

15. XMLSpy. XML editor for modeling, editing,
transforming, & debugging XML technologies, 2006.

16. Zeigler, B.P., Multi-Facetted Modeling and Discrete
Event Simulation, 1984, New York: Academic Press.

17. Zeigler, B.P. and Hammonds, P.E.,
Modeling&Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric
Information Exchange, in-press, 2006.

18. Zeigler, B.P., Praehofer, H., and Kim, T.G., Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, Second
Edition, 2000: Academic Press.

19. Zeigler, B.P. and Zhang, G., The System Entity
Structure: Knowledge Representation for Simulation
Modeling and Design, in Artificial Intelligence,
Simulation and Modeling, K.A.L. L.A. Widman, and N.
Nielsen, Editor. 1989, John Wiley. p. 47-73.

