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Abstract 

 System designs are described from object and data 
centric perspectives. Component-based modeling 
approaches are well suited to specify structure and behavior 
of systems in terms of objects and relationships. Ontology-
based modeling approaches describe a system’s 
specification using data types and relationships. The 
Scalable Entity Structure Modeler is a component-based 
modeling framework suitable for specifying alternative 
system designs. This approach is extended with XML 
Schema to support unified dynamic objects and static data 
specifications for system design specifications.  An example 
illustrating mixed component and data modeling is 
described using an extended realization of the SESM 
environment. 

1. INTRODUCTION 

 Modeling is crucial for system analysis and design. An 
important problem in system modeling is how to create and 
manage multiple system architecture specifications. 
Enabling modelers to develop multiple models of a system 
based on sound principles, therefore, is highly desirable. To 
this end, various modeling languages and approaches have 
been developed to aid specifying hierarchical object and 
data model specifications at varying levels of abstractions.   

 Two of the main genres of modeling languages are 
targeted for developing software and simulation models. A 
common need is specifying alternative designs of a system. 
For example, a computer network model may specify a set 
of computers that are connected to one another using 
wireless connectivity. Such a model can be used to evaluate 
network topologies (e.g., communication range and its 
impact of quality of service) or to develop a design that can 
efficiently protect a wireless network against attacks. These 

models may be specified at varying levels of resolution. A 
computing node model may include probabilistic processing 
time or network traffic may be specified as primitive data or 
complex objects. Moreover, a complex system may have 
different architectures. For example, the wireless computer 
network may be modeled as a set of computers and switches 
having a hierarchical topology.  

 To support such needs, various modeling concepts 
approaches have been developed. Two of these modeling 
frameworks are DEVS [18] and UML [8]. They support 
modeling dynamics of simulation software models. Each is 
well-suited for a particular kind of modeling – i.e., DEVS is 
targeted for simulation modeling and UML for software 
modeling. A common theme among these approaches is to 
describe specific system models with strong emphasis on 
component. In contrast to these, XML [3, 14] is primarily 
used to model the static view of a system. It can also be 
used to describe static structures among simple and complex 
data elements. Other modeling approaches are Scalable 
Entity Structure Modeler (SESM) [2, 5, 7, 11], System 
Entity Structure (SES) [9, 16, 19], XML Schema, and DoD 
Architecture Framework (DoDAF). the Scalable Entity 
Structure Modeler (SESM) emphasizes a unified logical, 
visual, and persistent modeling framework for component-
based model development [12]. The SES emphasizes 
modeling concrete alternative model structures. XML 
Schema allows describing arbitrary structures, but it does 
not have axioms that can establish similarity relationships 
among different structures of a system. DoDAF focuses on 
conceptual separation of models for describing 
complementary systems, operational, and technical views.   

 Given the above varying modeling approaches, it is 
desirable to support detailed object and data modeling. To 
achieve this goal, the importance of combined logical, 
visual, and persistent modeling is briefly described in 
Section 2. The SESM framework is detailed and the 
conceptual basis for its extension with XML Schema is 



 

described in Section 3. In Section 4, the XML Schema 
models and its relationship with SESM are presented. In 
Section 5, a realization of the SESM environment is 
presented with an example model. A summary with a sketch 
of future work is given in Section 6.  

2. BACKGROUND 

 Complex systems are commonly described by using a 
set of model abstractions and relationships among them. 
Modeling approaches such as Entity-Relation (ER) and 
Unified Modeling Language (UML) are used to model a 
system’s specification from specific points of view. ER is 
used to describe a system’s structure in terms of data entities 
and relations. The entities are generally simple, but can have 
intricate relationships which together may describe complex 
structures. UML describes objects and their relationships. 
UML classifiers represent various kinds of structures and 
behaviors. These classifiers may be combined together with 
data entities to describe complex dynamic systems. The ER 
and UML abstractions, therefore, support describing data-
centric and object-centric structures, respectively. These 
modeling approaches are used to formalize different logical 
model abstractions. 

 The above modeling approaches offer capabilities to 
describe different kinds of logical models. Each of these 
approaches is grounded in a particular kind of modeling. 
Entity-Relation is targeted for describing structural, non-
behavioral models. ER models lend themselves well for 
standardized logical model representation and model 
persistence in relational databases, but provide limited 
concepts and capabilities for visual modeling. UML is 
targeted for describing both object-oriented structure and 
behavior (models). The UML standard supports logical and 
visual modeling, but lacks a strong foundation for model 
persistence [6]. 

 The System Entity Structure (SES) and XML modeling 
frameworks are aimed at ontological representation of high-
level system and low-level data specification, respectively. 
SES is a labeled tree with a set of axioms that constrain the 
relationships among the tree’s entities. Entities represent the 
parts of a system as a collection of similar, related 
structures.  

 As suggested above, models of a system can be given in 
terms of logical, visual, and persistent abstract model types. 
Each of these model types has its own syntax and semantics. 
The logical model type describes structure and behavior. 
The model specifications can be simple to complex – the ER 
models are generally low-level and do not describe behavior 
which makes them less complex as compared with the UML 
models. A logical model conforms to a common set of 
constructs and axioms. The syntax and semantics of the 
logical model type defines all model structures that consist 
of elements and relationships. The logical model may also 

define behavior as is in UML. The visual model type defines 
symbols for the logical models to support visual 
specifications of models. The model components and their 
relationships conform to the visual modeling language. The 
persistent model type specifies persistent memory patterns 
for the logical model structures across space and time. The 
model entities and relationships comply with syntax and 
semantics of databases. 

 The principal features of the SESM are scalable multi-
aspect/resolution model specification, iterative/incremental 
model development process, and quantifying complexity 
metrics for models. The basic concept of the model types 
and their synthesis facilitate visual and persistent modeling. 
These capabilities afford automatic creation of well-formed 
model specifications according to the DTD and XML data 
language as well as object-oriented programming languages. 

2.1. Data Engineering 

 An important application domain for SESM is data 
engineering which can be considered as system design with 
emphasis on data modeling. A major area of interest is 
handling of data sets obtained from Synthetic Aperture 
Radar (SAR) system. Modeling (or more specifically 
organizing) rich SAR data sets in a systematic way is 
essential for data gathering, processing, and analysis. For 
this purpose, the Universal Phase History Data (UPHD) 
standard has been developed using the SES and XML 
modeling approaches [17]. The SAR application domain is 
used to represent geospatial data obtained from sensors. 
Knowledge engineering of large data sets and complex 
relationships using the above modeling concepts is 
considered crucial for knowledge management, processing, 
and dissemination. This is because data sets need to be 
architected for data storage and making available processed 
data using technologies such as web-services.  

 Here, the data engineering concepts are used to extend 
the SESM modeling framework to support mixed object and 
data models. The extended approach described in the 
remainder of this paper supports separately modeling data 
and object models and their composition. The unified 
logical, visual, and persistent modeling framework supports 
developing data and object models that have rich structural 
and behavioral specifications. This in turn supports 
automatic transformations of SESM models to alternative 
specifications including DTD and XML Schema and semi-
automatic transformation to simulation code.  

3. SCALABLE ENTITY STRUCTURE MODELING 
FRAMEWORK  

 The Scalable Entity Structure Modeler is a modeling 
framework based on Entity-Relation (ER), System Entity 
Structure (SES), Object-Orientation (OO), visual modeling, 
simulation modeling, and model transformation (see Figure 



 

1). The ER concepts support scaleable representation and 
storage of entities and their relations in databases. The 
concept for representing a system’s structural representation 
is given by SES. The object-orientation composition, 
inheritance, and hierarchy are used for organizing 
alternative structures of a system. The visual modeling 
concepts offer visual abstractions that are key for systematic 
handling of tedious, error prone modeling tasks faced by 
designers and analysts. The simulation concepts are used to 
account for behavioral modeling of system specifications. 
Finally, well-formed exchangeable representations play a 
crucial role for generating alternative models that conform 
to standardized modeling languages such as XML and 
programming languages that can be executed with 
simulation engines. 
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Figure 1: Logical, visual, and persistent model types with 
model translators 

 SESM is a component-based modeling approach in 
which families of system specifications are defined in terms 
of elementary Template, Instance Template, and Instance 
model types (refer to Figure 2) [10]. Each of the model 
types is defined to have primitive and composite model 
components. Every composite model component is a 
hierarchical tree where its leaf nodes must be primitive 
model components. A model component can be specialized 
such that its specializations are distinguishable. SESM 
defines a set of axioms that characterize compositional and 
specialization relationships across the elementary model 
types with support for object-oriented and markup 
languages (see Section 3.1). Two kinds of models are 
defined – i.e., simulatable components are used to define 
simple and complex dynamic models and non-simulatable 
models are used to define the static models (models that 
describe structure, but not behavior).  

 A realization of the SESM approach has been 
developed using Java and DBMS technologies [1, 5, 7]. 
SESM’s underlying software architecture style is 
client/server. The first generation of SESM used the Oracle 
database [5] and subsequently was replaced with MS Access 
[1, 7]. A modeler can have multiple, independent modeling 

sessions, each with its own database. Next the specification 
of logical models is presented. The details of the persistence 
and visual models are deferred to [12]. 
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Figure 2: SESM component models 

3.1. Logical Models 

 The primitive and composite model types are logical 
models. Each of these two model types has Template, 
Instance Template, and Instance models. A primitive 
Template Model can have a finite number of state variables. 
Each state variable is defined to have a type and may have 
an initial value. State variable types can be simple or 
complex objects including UML data types and classes. A 
primitive Template Model can also have inputs and outputs. 
Each input or output, which can be either simple or 
complex, is defined to have a unique port name. The 
collection of input and output ports for each component is 
defined as its interface. Input and output ports may be used 
to receive or send simple data or complex objects. 

 A primitive component can correspond to either a 
Template Model or an Instance Model. For the Template 
Model, its primitive component can be specialized using the 
is-a relationship. The term specializee is used to refer to the 
component that has a specialization relation to a component 
called specialized. The input/output interface of every 
specialized component is defined to be the same as the 
interface of its specializee. The state variables of specialized 
components may be different. A pair of specializee and its 
specialized can be distinguished based on their names. 
There are no specializee components for Instance Models. 
All primitive instance model components are 
distinguishable based on their assigned (or given) names.   

 A composite model corresponds to a Template Model, 
an Instance Template Model, or an Instance Model. A 
composite model consists of one to many primitive and/or 
composite components. The composite model and its 



 

components have the same model type. A composite model 
may also have one or more states, inputs, outputs, and a set 
of links connecting the components that are contained 
within it. Any two components can send and receive 
information using links. Every composite component for a 
Template Model or Instance Template Model has a unique 
name and tree structure.  

 The allowed relationships among composite 
components are whole-part and is-a. Given a component, a 
sub-component and super-component composition 
relationship may exist only when no sub-component can be 
the same as its (immediate or higher) super-component. The 
sub-component is referred to as part and the component and 
super-component are referred to as whole. The number of 
components of a composite model can be either specified or 
left unspecified. A composite component can also be 
specialized as in a primitive model. Composite components 
can be used in multiple composite Instance Template 
Models. The hierarchy depth of a composite component is 
equal or greater than two. All instances of a composite 
component (corresponding to the Instance Model) are 
distinguishable from one another using their assigned (or 
given) names. The primitive and composite Instance Models 
are instances of their respective Instance Template Models. 
The whole-part and is-a relationships are constrained as 
described. The uniformity constraint – i.e., two components 
which have the same name have identical structures.  

 Instance models can only be generated from Instance 
Template models. An Instance model can be total or partial 
— i.e., a model hierarchy can be of any hierarchical depth 
depending on the model that is being transformed. For every 
model component that is specialized, one of its 
specializations must be selected to replace its specializee. If 
the number of sub-components of a component is left 
unspecified, the number needs to be determined when an 
Instance Template Model is transformed into an Instance 
Model.  

 The state variables and the input and output port 
variables may also be specified using data and object 
modeling languages. These simple and complex components 
and their composition and specialization relationships are 
defined with UML, DTD, or XML specifications. 

3.2. Simulatable and Non-simulatable Models 

 To represent different possible structures of a system, it 
is important to use simple and complex non-simulatable 
model types. These model types referred to as non-
simulatable models are distinguished from the simulatable 
Template, Instance Template, and Instance models. A 
simulatable model specification has a simulation protocol 
that dictates how the simulatable model is to be executed in 
(logical or real) time. In contrast, a non-simulatable models 
specified in UML may or may not have behavioral aspects. 

A model with behavior specification needs to provide its 
own execution regime with or without use of logical or real 
time.  

 A simulatable structure of a system has non-simulatable 
structures. In non-simulatable structures, it is important to 
specify the types for state or port variables. A state variable 
can have a complex type such as a list, and a port variable 
can have a simple type such as a string.  

 The semantics of the composition and specialization 
relationships used in UML are distinct from those that are 
defined for the Template, Instance Template, and Instance 
Models. The composition relationship among non-
simulatable UML classes allows a class to have a 
composition relationship with itself. A class may have a 
dependency or realization relationship to another class. 
These relationships are not allowed in the Template Model. 
Similarly, the UML inheritance (i.e., specialization) 
relationship allows a child component to extend or restrict 
its parent component. In the Template Model, the 
specialization relationship is restricted to a specialized 
component to replace its specializee component. There are 
no extensions or restrictions between the specialized and 
specializee. 

 Given the distinct roles the simulatable and non-
simulatable models play, the importance of differentiating 
them becomes evident. The abstractions defined for the 
Template, Instance Template, and Instance models are 
principally targeted for specifying alternative architectural 
system models, whereas the simple and complex models are 
intended for the specifications encapsulated within them. 
The simulatable model specifications can be transformed 
into simulation models that can be simulated. The non-
simulatable model specifications can also be forward 
engineered into programming code. In the following section, 
the non-simulatable models are informally characterized in 
terms of the XML Schema language.  

4. XML SCHEMA MODELS 

 Instead of using objects as basic ingredients for 
specifying dynamics of systems, it is useful to use data 
types as in XML Schema (XML-S). The data types, unlike 
objects, are void of behavior. Data types, in contrast to 
objects, offer a rich set of constructs to specify data 
elements, attributes, and data. The XML Schema language 
constructs allow describing structures having whole/part and 
is-a relationship. Also, unlike object-based modeling 
languages the language supports creating and using simple 
and complex data types.. For example, an element can 
contain text and unconstrained child elements or contain 
text with strict rules.  

 Conceptually XML-S primitive and complex data types 
are similar to the SESM primitive and composite model 



 

component (see Figure 3). The SESM primitive and 
composite model components can be used to specify XML-
S primitive and composite data types. The state variables of 
the SESM model components can also be specified as 
XML-S primitive and composite data types. The state 
variables can be specified using object-orientation and 
XML-S modeling languages according to the degree of 
sophistication required. For example, an element can have 
simple content – a name having simple data type String. The 
element containing text conforms to a specific data type 
such as Integer. Alternatively, a simpleContent element 
can have attributes with constrained content. The content is 
simple data types and can hold attributes with extension or 
restriction elements. While these kinds of specifications are 
possible to specify using the extensibility afforded by UML 
MOF or others (e.g., by extending the SESM modeling 
approach), the XML-S standard is well suited for such data 
modeling. 
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Figure 3: SESM XML Schema data models 

 The XML-S sequence and choice elements serve a role 
similar to the composition and specialization relationships 
defined for SESM. The sequence element defines the 
enclosed elements that appear both in the instance structure 
and declaration. The choice element defines required and 
exclusive elements that are enclosed in an element. These 
elements can be combined to specify complex models as 
supported in SESM using the whole/part and is-a 
relationships defined in SESM. 

 As shown in Figures 2 and 3, on the one hand, the 
SESM simulatable components can be used to represent 
XML-S primitive and complex data types. On the other 
hand, UML and XML-S languages can be used to represent 
SESM non-simulatable components. A key benefit is the 
SESM foundational concept of a unified logical, visual, and 

persistent modeling with capability to model object 
structures and behaviors as well as complex structured data 
models enabled by XML-S.  

 The other capabilities are forward and reverse 
engineering. With forward modeling, XSD and DTD 
models can be derived from SESM specifications. With 
backward modeling, XSD and DTD models that are 
consistent with SESM can be put into the database and thus 
support visual modeling, analysis of model complexity (i.e., 
using complexity metrics). These two capabilities offer a 
round-trip modeling approach for specifying alternative 
system designs. Furthermore, component-based simulation 
code can be generated semi-automatically. In particular, 
DEVSJAVA atomic and coupled models can be generated 
from SESM models. The SESM environment supports 
partial specification of atomic models (i.e., input/output 
ports, state variables, and the skeletons of the transition 
functions). Coupled models can be specified completely 
(i.e., input/output ports, couplings, and hierarchical 
decomposition). 

5. SESM ENVIRONMENT 

 Before presenting an example model, an overview of 
the SESM environment is given. This environment consists 
of three parts: Client, Server, and Network. All write 
operations requested by a client are managed through the 
Network part and processed by Server. The Server enforces 
the axioms of SESM and consequently legitimate client 
operations are handled by the database. All read operations 
are directly handled by the database.  

 As shown in Figure 4, a client can model a system in 
terms of the simulatable and non-simulatable modeling 
elements. In the left-hand frame, there are two main tabs: 
Simulatable and Non-Simulatable. The Simulatable tab has 
three tabs corresponding to the Template, Instance 
Template, and Instance models. The menu item Model 
shown in Figure 4 allows a user to create Template, 
Instance, and Data Type models. The tree structures of the 
Template, Instance Template, and Instance models are 
shown in each tab and can be manipulated (i.e., new models 
can be added, modified, and deleted).  The Non-Simulatable 
tab has two tabs corresponding to the non-simulatable 
models (NSM) and Data Types. The simulatable and Data 
Types models are stored in the database.  

 In the right panel, a client can view the color coded 
block models of the TM, ITM, and IM models. Rounded 
rectangles are used to visually represent primitive 
components. A rectangle is used to identify composite and 
specializee components. Components with a multiplicity 
range are shown as rectangles with dashed lines. The same 
color coding is used to differentiate model types in the 
model tree representations. 



 

 

  

(a): Template tree and block models (b): Instance template model 

Figure 4: SESM UI for tree and block model specification 

The tree representation uses ‘folder’ and ‘page’ visual 
notations with a letter S to distinguish specializee models.  
The SESM naming convention tabs for the Template, 
Instance Template, and Instance models include the SES 
terms to aid modelers working with the SES concepts. The 
SES trees can be represented with TM and IM models and 
the pruned entity structure (PES) can be represented with 
IM. The block model components are placed diagonally for 
more efficient and simple visual representation and 
manipulation. The ordering of the block models (which do 
not have ports and couplings) for the WineOntology 
composite model shown in Figure 4(a) does not have any 
specific semantics within the SESM modeling framework. 
The order of RegionGrows, Regions, and Wine is 
based on the order in which they are added to the 
WineOntology model.  

 Visual modeling of coupling relationships, specification 
of states (variables and types) and ports (port names, 
variables, and types) are supported in this panel. Complexity 
metrics and translation to XML and simulation code are 
supported in the tree structures, block models, and the menu 
items (Edit, Metrics/Views, and Transformations lists). The 
Model menu item supports creating Template Model, 
Instance Model, and Data Type elements. These Data Types 
such as the one shown in Figure 5 complement the NSM 
models [2, 11] (see Section 3.2).  

 The Database menu item which is available in the main 
menu can be used to initialize the model (i.e., removing all 
entries in the database – simulatable and Data Type 

models). Changes to NSMs are not supported within SESM; 
instead creation, modification, and deletion can be 
performed using other means (e.g., UML tools, Eclipse 
Modeling Framework [4], and XML-Spy [15]). The 
structural complexity of every template model is also 
available (see Figure 6) [7, 11].  

 

Figure 5: XML-S specification for dewPoint model 

 

Figure 6: Behavioral metrics for Region model 



 

 

Figure 7: Multiplicity for the WineCountry model 

 Given the combined SESM and XML-S specification, 
every Instance Template model can be transformed into an 
XSD specification. Given the expressiveness of SESM, it 
can be used to visually specify persistent SES models. 
Given the Instance Template models such as those for the 
WineOntology, Instance models can be generated from 
them. If an Instance Template model has a multiplicity 
range, the user first chooses a desired multiplicity. For 
example, WineCountry has multiplicity ranging from 1 to 
n (see Figure 4(b)). Figure 7 shows the multiplicity for the 
WineCountry model to be 1.  

 

Figure 8: WineOntology Instance model 

 Once all multiplicities are determined, instance models 
can be generated for every primitive and composite Instance 
Template model. The Instance model for the 
WineOntology model is shown in Figure 8. This model 
has RegionGrows_1_1, Regions_1_1, and 
RoseWineColor_0_2 which is a specialized from the 
WineColor primitive Template model. Similarly, 
Region_1_2 and RedWineColor_0_1 instance models 
are generated for the WineCountry_1_2 instance model. 
Finally, Region_2_3 and Region_3_4 instance models 
are generated for the Regions_1_1 instance model. 

 The element Region, shown in Figure 9, is a well-
formed XML-S model transformed from the SESM 
primitive component Region along with XML-S 
dewPoint and GeoPosition data types. Such XML-S 
or DTD models can be automatically generated for every 
model that is developed using DTD and XML-S translators 
added to the SESM environment. The generation of an 
instance model in SESM results in a model that can have the 
same representation as those that can be generated with the 
SES/DTD and SES/XML translators developed for SES-
Java [13]. This requires (i) there is a correct mapping 
between SES and SESM and (ii) the representation of XML 
or DTD data types is also supported in the same way for 
SES and SESM [12]. For example, the resulting XML-S 
shown in Figure 9 represents a leaf entity of an SES model 
that has attributes specified according to the XML-S data 
types. 

 

Figure 9: XML-S Region model 

 



 

6. CONCLUSIONS 

 The importance of modeling complex systems from 
complementary object and data perspectives were described. 
This offered a motivation for extending the SESM modeling 
framework with XML. The simulatable and non-simulatable 
model types, roles, and relationships were presented. The 
collective capabilities of object and data model development 
were demonstrated using the extended SESM realization. It 
offers a step forward toward realization of multifaceted 
model development as proposed with DoDAF. The SESM 
framework supports system design from object-centric and 
data-centric perspectives. With the addition of the XML 
models, design specifications can be supported from 
simulation and non-simulatable perspectives. The use of the 
SESM modeling framework for specifying the class 
SES/XML models was described. Future work includes 
application of the SESM framework for simulation-based 
design and automated testing. The SESM environment may 
be used toward engineering of data intensive systems with 
capability to process data available across grid networks and 
delivery of information using web-services. 
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