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Abstract 

 With the modernization of Department of Defense (DoD) systems and the 

growing complexity of communication equipment, traditional test methods and processes 

have no choice but to evolve in order to maintain their effectiveness.  DoD acquisition 

policy requires using modeling and simulation in all phases of system development life-

cycles to ensure technical certification and mission effectiveness.  The complexity of 

these systems poses significant challenges over traditional interoperability test 

methodologies.  The Automated Test Case Generator (ATC-Gen) funded by the Joint 

Interoperability Test Command captures Military Standard (MIL-STD) 6016C document 

and translates it into rules. These are in turn formalized into test cases using Discrete 

Event System (DEVS) Specification.  In this thesis, we present a new methodology to 

generate the test models and perform conformance testing using system theory, the 

DEVS modeling and simulation framework, the System Entity Structure (SES), and the 

Extensible Markup Language (XML).  This new methodology promotes the separation of 

the models, the simulator, and the distributed simulation.  These separations distinguish 

and promote reusability by developing models, simulator and distributed simulation 

independently.  The DEVS test models are generated from the test cases by the Test 

Model Generator using the system specifications.  These models are written in an XML-

SES format; the resulting C++ DEVS source code is generated based on the test model 

XML file.  The Test Driver was designed based on Model/Simulator/View/Control 

(MSVC) design pattern and developed to execute the DEVS test models.  MSVC 

supports models and simulators separation design.  It was also designed to support 
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multiple network simulation protocols and rapid software modifications in order to 

incorporate new network protocols to the simulation software. 

 This methodology was used to verify the conformance of the Integrated 

Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results of the test 

scenarios were validated using the Theater Air and Missile Defense (TAMD) 

Interoperability Assessment Capability (TIAC) tool.  The TIAC tool captured the 

transmissions and the receipt of the tactical data messages from the Test Driver.  The 

system analyst interpreted and verified the messages, and determined whether these 

messages were the intended behavior of the Test Driver. 
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1.  Introduction 

In the 1990s, the military began using simulation to enhance its training exercises.  

The extensive use of simulation in military exercises resulted in significantly improved 

training progress, which in turn led to the development of widely-used simulation 

protocols in the defense community, such as Distributed Interactive Simulation (DIS) and 

High Level Architecture (HLA) [21].  Since then, system development has increasingly 

made use of modeling and simulation, and the performance of testing on military systems 

has become a greater challenge. 

With the modernization of Department of Defense (DoD) systems and the 

growing complexity of communication equipment, traditional test methods and processes 

have of necessity evolved to maintain their effectiveness.  Testing systems of systems in 

their operational environment rather than in the lab environment has become necessary, 

and in an interoperability testing environment, the level of complexity has increased 

substantially owing to the presence of many different types of military equipment and 

systems being connected together using diverse middleware and network simulation 

protocols.  Systems interoperate using either common simulation protocols or protocol 

transition gateways.  With the increased system complexity, testing methodology has to 

become more rigorous, in-depth, and thorough.   

As detailed in recent DoD reports [1,2], when modeling and simulation is 

properly used, it provides assistance to formulate system capabilities, compares the 

cost/benefit ratios of various alternative designs and evaluates their projected 

effectiveness.  In this thesis, we discuss an automated testing framework based on 
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Discrete Event System Specification (DEVS) modeling and simulation formalism, 

Extensible Markup Language (XML), and System Entity Structure (SES), being 

introduced at DoD’s Joint Interoperability Test Command (JITC) for interoperability 

testing.  This framework supports the separation of experimentation, models, and 

simulators.  The experimental frames are developed to support reusable models and 

simulators based on the DEVS formalism and dynamic system theory.  The hierarchical 

structures of the models are represented by SES and written in XML format to promote 

extensibility and interoperability.  In order to support the separation of models and 

simulators in the software development, the Model/Simulator/View/Controller design 

pattern provides the framework to support model execution and multiple network 

simulation protocols. 

 

1.1 Motivation 

The military simulation training and developments described above was 

successful, which led directly to more intensive use of modeling and simulation in system 

development and a revised policy for acquiring new systems known as Simulation-Based 

Acquisition.  This required the using of modeling and simulation in all phases of system 

development life-cycles.  JITC took the initiative to employ modeling and simulation 

(M&S) to increase its simulation-based testing capabilities and automation of the testing 

processes, increasing the effectiveness and responsiveness of the testing [3].  One of the 

critical areas JITC identified was that Military Standard (MIL-STD) 6016C (also known 

as TADIL-J standard) had been found to present certain obstacles to traditional test 
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approaches that had not been overcome.  Thus, the development of an M&S-based 

approach automating the Link-16 testing process and applying to standards conformance 

testing, was initiated. 

The automated testing framework introduced in this thesis is a part of the 

Automated Test Case Generator (ATC-Gen) research project funded by JITC to support 

the mission of standards compliance and certification.  With the advent of simulation-

based acquisition, the test requirements in the simulated environment becomes how to 

automate and more precisely the scope, the completeness, and the methodology for 

updating conformance testing.  The incorporation of the Systems Theory, the modeling 

and simulation concept, DEVS, XML, SES, and the MSVC design pattern all contribute 

to the development of ATC-Gen to automate the TADIL-J conformance testing, 

increasing the productivity and effectiveness of the software test tools at JITC.   

Many testing methodologies were developed to assist the test engineers to 

perform conformance testing over the past decades [21].  ATC-Gen is interested in a 

particular methodology in which the test exercises are carefully planned and the 

participants are given test scripts and roles to play in a simulated environment.  ATC-Gen 

becomes a participant in a testing environment that can monitor a specific function of the 

MIL-STD 6016C and exchange tactical data messages with the other players.  By 

interpreting the transmissions and the receipt of the tactical data messages, ATC-Gen is 

able to determine the degree to which a system conforms to the TADIL-J standard.   

The automated testing framework is developed based on three concepts: SES, 

DEVS, and XML.  SES can represent a family of hierarchical DEVS models, and serves 
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as a means of organizing the configuration of a model to be designed, which is extracted 

from a pruning process.  Pruning reduces the number of probable models to meet the 

system requirement.  In the automated testing framework, the minimal testable I/O pair 

and the test model are represented by Pruned Entity Structures (PES).  The test models 

obtained via PES are in executable form.  XML uses elements to break up the test model 

into hierarchical form, and it can be used to represent the SES hierarchical structure.  PES 

is directly mapped into XML, and the three SES modes become XML elements.   XML-

PES offers simplicity, extensibility, and interoperability.  The test models are represented 

in XML-PES, which can be transformed into DEVS C++ source code. 

 

1.2 System Modeling Concepts 

 In this section, we review the system theory [4], the M&S framework [4], and 

model continuity [4].  The automated testing approach is developed according to these 

concepts.    

 

1.2.1 System Specifications 

The hierarchy of System Specifications employs a general concept of dynamical 

system and defines levels at which a system may be known or specified and provides a 

mathematical underpinning to define a framework for modeling and simulation.  Table 1 

shows the Hierarchy of System Specifications [3]. 

1. At level 0, we deal with the input and output interface of a system over a time 

base. 
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• At level 1, we observe the behavior of the system by gathering a collection of all 

I/O pairs.  

• At level 2, we add the initial states to the specification.  When the initial states are 

known, there is a functional relationship between the inputs and outputs. 

• At level 3, the system is described by the state space and the state transition 

functions. The transition function describes the state changes as the system 

responds to inputs and generates outputs.  

• At level 4, we specify how the system is composed of interacting components in a 

coupling structure. Each component is a system on its own with state set and state 

transition functions. One property of a coupled system, called “closure under 

coupling,” guarantees that a coupled system at level 3 itself specifies a system. 

This property allows hierarchical construction of systems, i.e., that coupled 

systems can be used as components in larger coupled systems.  

 

Level Name What we specify at this level 
4 Coupled 

Systems 
System built up by several component systems which are 
coupled together 

3 I/O System System with state and state transitions to generate the 
behavior 

2 I/O 
Function 

Collection of input/output pairs constituting the allowed 
behavior partitioned according to the initial state the system 
is in when the input is applied 

1 I/O 
Behavior 

Collection of input/output pairs constituting the allowed 
behavior of the system from an external Black Box view 

0 I/O Frame Input and output variables and ports together with allowed values 

Table 1:  Hierarchy of System Specification 

 

1.2.2 Framework for Modeling and Simulation 



 16

 The modeling and simulation framework defines entities and their relationships 

that are central to the M&S enterprise [4].  The basic entities of the framework are source 

system, model, simulator, and experimental frame as illustrated in Figure 1, and they are 

linked to the modeling and simulation relationships.   

 
Figure 1: Basic M&S Entities and their relationships 

 

1.2.3 Model Continuity 

Model continuity refers to the ability to transition as much as possible of a model 

specification through the stages of a development process. The component models of a 

distributed system can be tested incrementally and deployed to a distributed environment 

for execution.  It supports a design and test process in four steps [5]: 

1. Conventional simulation to analyze the system under test within a model of the 

environment linked by abstract sensor/actuator interfaces.  

2. Real-time simulation, in which simulators are replaced by real-time execution 

engines while leaving the models unchanged.  

 

Source 
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation
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3. Hardware-in-the-Loop (HIL) simulation in which the environment model is 

simulated by a DEVS real-time simulator on one computer while the model under 

test is executed by a DEVS real-time execution engine on the real hardware.  

4. Real execution, in which DEVS models interact with the real environment 

through the earlier established sensor/actuator interfaces that have been 

appropriately instantiated under DEVS real-time execution. 

Model continuity reduces the occurrence of design discrepancies throughout the 

development process, thus increasing the confidence that the final system realizes the 

specification as desired.  

 

1.3 Plan of Thesis 

 The next chapter of the thesis discusses the background of ATC-Gen, High Level 

Architecture, and distributed simulation.  In Chapter 3, the system theory used to create 

the input/output pairs is discussed, and the transformation from I/O pairs to test models is 

illustrated.  Chapter 4 presents the generic HLA wrapper, which allows rapid 

modification of the simulation software to reduce the development time in HLA 

simulations.  Chapter 5 discusses the use of MSVC design patterns to develop simulation 

software.  The MSVC pattern enhances the reusability of the simulation software and 

allows for the test models, the simulators, and the generic HLA wrapper to be developed 

separately.  Four real test scenarios are illustrated; the method of SUT test models 

development is shown in Chapter 6.  These scenarios were tested by the Joint SIAP 

System Engineering Organization (JSSEO) using the Integrated Architecture Behavior 
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Model (IABM) and verified by the ATC-Gen Test Driver.  The experimental results in 

this thesis were run against the SUT Test Driver due to the fact that the IABM is 

classified by the Department of Defense.  Finally, Chapter 7 concludes the thesis with the 

discussion of future work. 
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2.  Backgrounds 

2.1 Automated Test Case Generation (ATC-Gen) 

 ATC-Gen is composed of several stages that are developed in conjunction with 

DEVS formalism.  It applies DEVS to the formalization of Military Standard (MIL-STD) 

6016C.  The MIL-STD is written in natural language, and can be formalized into the 

system theory framework by putting a set of requirements in the natural language.  By 

combining system theory and DEVS, the formalization can be transformed into an 

executable simulation model, and the model can be implemented for testing.  By using 

software tools and modeling packages, the test model can be derived and generated from 

the natural language.  Then, these test models are transformed into an executable format 

and deployed by the Test Driver to perform testing on the SUT.  The processes described 

above become automated testing.  

The first stage is Rule Capturing, which captures and formalizes the MIL-STD 

6016C in XML format.  The military standard is written in the form of natural language, 

but do not support the systematic study of large-scale intelligent system.  By translating 

the MIL-STD to a constrained form of natural language that is used in describing system 

behavior, analysis will be easier.  Natural language statements, such as “IF, THEN” used 

in knowledge-based expert system and artificial intelligence will be suitable to describe 

the system behavior.  The disadvantage of the natural language statement is that it is 

incapable of describing the time behavior of the system.  It can be overcome by using a 

finite state machine which will be described in stage 3.  Capturing requires analysts to 

read and interpret the standard.  Formalizing requires the analysts to identity ambiguous 
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requirements and extracts the state variables and rules.  The rules are written in the “If, 

Then” format as Figure 2, and these rules are not associated with time. 

 
Figure 2: IF-THEN rule format 

 To illustrate this, let us consider a simple system consisting of a vending machine 

and a customer.    The vending machine is in idle state if there is no customer present.  In 

addition, the vending machine does not dispense any item if the customer does not put 

correct amount of money.  It dispenses an item if the correct amount of money is inserted 

into the machine.  This simple system can be described by three statements without any 

time reference: 

1. If the vending machine is idle, there is no customer. 

2. If the customer doesn’t insert the correct amount of money, no item will be 

dispensed. 

3. If the customer inserts enough money, an item will be dispensed from the 

machine. 

There are two state variables in the above example: money and item.  Money represents 

the amount of money required to purchase the item, and item represents the product that 

the customer wishes to get from the machine.  The “IF, THEN” statements can be written 

into the XML format.  XML uses a generic syntax to markup the document with tags, and 

enhances the structure of the information and identifies the relationship in the document.  

An XML document can be used in many different applications and allows for the 

If X is true, 

Then do action Y later 
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document to be queried a meaningful way. But first, a XML Document Type Definition 

(DTD) or schema must be created to validate and provide the correct syntax to the XML 

document.  Tags are the legal building blocks of the XML document as shown in Figure 

3.  Each statement in the below figure is considered as a rule.  Each rule is composed of 

conditions and actions.  Conditions and actions can have state variables.  The 

combination of all rules in an example is a rule set.  Based on these guidelines, the 

vending machine example is translated to XML format as follows: 

<RuleSet> 
 <name>Vending machine example</name> 
 <rule name="1"> 
  <condition txt="If vending machine is idle"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="no action"/> 
 </rule> 
  
 <rule name="2"> 
  <condition txt="If customer inserts insufficient money"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="no item is dispensed"> 
   <var name="item" varType="String"/> 
  </action> 
 </rule> 
  
 <rule name="3"> 
  <condition txt="If customer inserts enough money"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="dispense item that is chosen by the customer"> 
   <var name="item" varType="String"/> 
  </action> 
 </rule> 
</RuleSet>   

Figure 3: XML RuleSet 

 

Stage 2 consists of the Rule Set Analyzer.  It employs the Dependency Analyzer 

(DA) to determine useful relationships among rules.  The DA is a DEVS tool and 

provides a visual display of dependencies, allowing selection of test sequences by the test 
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engineer.  The DA uses DTDs specially written for the project to validate the syntax of 

the XML files.  As mentioned briefly above, the DTD ensures the correctness of the 

XML files before further processing.  Once the syntax is validated, all the rule sets in the 

XML files will be stored in memory.  The DA will determine, manipulate and reorganize 

all the rules and variables, allowing potential dependencies to surface if shared state 

variables are identified between pairs of rules.  Finally, all the rules and variables will be 

stored in a single new XML file, which will be used when creating test sequences in the 

next stage. 

 Stage 3 is Rule Formalization and Test Model Generation, which consists of 

selecting and formulating the test sequences; test models are generated from these 

sequences.  The test engineer formulates test sequences in accordance with the structure 

of the testing requirements, and converts them into executable simulation models.  The 

DA is executed in order to restore the XML files and the rules created at the end of stage 

2, producing a file containing all the possible paths through the simulation and the 

information required to build a visual representation of the rule connections.  By invoking 

the GUI, it displays the rules by level and shows the sequence of rule firing, providing a 

visual organization of the rules and their interrelationships and allowing the test engineer 

to examine the paths that are created between rules in order to finds any potential errors.  

Although the DA shows all the possible paths, an identification of all possible paths is 

impractical owing to the fact that not all paths are useful.  The test engineer manually 

examines all feasible paths and creates a test case according to the specification and 

requirement.  The test case is the description of the desired SUT behavior in the minimal 
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testable input/output representation.  Based on the minimal table I/O pairs, the test model 

generates the DEVS test model in C++. 

 Stage 4 is consists of running the DEVS test model against a real 

hardware/software system.  The Test Driver is an experimental frame which is capable of 

executing the test model behavior and interacts with and connects to the System Under 

Test (SUT) via a High-Level Architecture (HLA) or Simple J interface.  The Test Driver 

performs SUT conformance testing by inducing the testable behavior expressed in the 

models into the SUT and checking the responses for accuracy.   

 

2.2 High Level Architecture (HLA) 

2.2.1 HLA Overview 

Traditional simulation models have often lacked reusability and interoperability.  

The High Level Architecture (HLA) [6] is a standard framework developed by the 

Defense Modeling and Simulation (DMSO) of the Department of Defense (DoD) to 

support component simulation models, in which the models can be reused and combined 

in distributed simulation.  HLA consists of three components: Federation Rules, the 

Interface Specification, and the Object Model Template.  There are ten HLA rules which 

must be obeyed in order to be regarded as HLA compliant, consisting of five federation 

rules and five federate rules.  The federation rules are the ground rules for creating a 

federation, and federates are governed by the federate rules.   The HLA Interface 

specification is implemented by the Run-Time Infrastructure (RTI).  RTI is a software 

application which provides common services to support an HLA-compliant simulation.  
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The RTI services separate simulations and communication, and provide communications 

and management between federates.  The Object Model Template (OMT) provides a 

standard for documenting HLA Object Model information.  All objects and interactions 

managed by a federate and visible out the federate should be specified in the OMT format.  

It provides a common mechanism for specifying the data exchange and coordination 

between federates and describing the capabilities of potential federates.  The OMT 

defines the Federate Object Model (FOM), the Simulation Object Model (SOM), and the 

Management Object Model (MOM).  Each federation is implemented according to the 

FOM, and federates are implemented according to the SOM.  FOM specifies the data 

exchange among federates, and SOM specifies the capabilities of the federates provided 

to the federation.    

The HLA Interface specification is divided into 6 management areas.  Each area plays 

an important role between federates and their associated federations.  The basic functions 

of each management area are: 

1. Federation Management – coordinates activity and manages federation execution. 

2. Declaration Management – coordinates data execution and specifies data type 

send and receive. 

3. Object Management – creates, manages, modifies, and deletes objects.  It also 

coordinates attribute updates. 

4. Ownership Management – supports transfer of ownership for object attributes. 

5. Data Distribution Management – coordinates information routing. 

6. Time Management – coordinates federate time advances. 
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Figure 4 [6] shows the interactions of RTI, federations, and federates in the 

simulation world.  Each federation has its own OMT and is described in the FED file 

format.  Furthermore, each federate within a federation is created according to the OMT.  

RTIExec and FedExec are RTI components.  RTIExec manages the creation and deletion 

of federations, while FedExec manages federates joining and resigning from the 

federation, and manages data exchanges between federates.  RID stands for RTI 

Initialization Data.  It provides information to run an RTI. 

 
Figure 4: HLA Simulation 

There are several processes which can initiate and run the HLA simulation.  First, 

the software programmer develops a federate based on the OMT specification.  Second, 

the user starts “RTIExec” before executing the federate.  If the federation already exists, 

the federate will join the federation automatically.  Otherwise, the federate acts as a 

manager and creates a federation execution, and then joins the federation.  The messages 
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distributions are managed by Publish and Subscribe methods.  Each federate performs a 

service, and it uses Publish and Subscribe to exchange data between federates.  The 

Publish method is used to publish the object classes, object attributes, and interaction 

classes to the RTI; each federate indicates an interest in certain object classes/attributes 

and interaction classes it wishes to receive by invoking the Subscribe method in 

RTIambassador.  Third, the registration, updates, discovery, and reflection of the object 

classes are handled by object management, which also handles sending and receiving for 

interaction classes.  In order for the federation to be aware the existence of a federate, it is 

required to register the object instance to the RTI.  Once the object exists, RTI informs 

other federates that are interested in this particular object by using the Discover method.  

When the federate updates the attributes associated with a registered object, the federate 

encodes the data and calls the Update method to inform RTI, which in turn uses the 

Reflect method to update the data to the interested parties.  Interactions use the Send and 

Receive methods to handle the parameters instead of Update and Reflect, the difference 

being that in the latter the object persists, but the interaction does not.  An object can 

specify which attributes should be published, while an interaction requires publishing all 

parameters.  Last, before terminating the federate, the objects/interactions are removed 

and the federate is resigned from the federation. 

 

2.2.2 Object Oriented HLA Interface 

 HLA simulation development is quite different from developing DEVS-based 

simulations, and software engineers are often subjected to a learning curve in order to 
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develop HLA simulations.  There is the need for a core HLA design philosophy to guide 

the development of a robust and interoperable interface that goes beyond current HLA 

development.  Lockheed Martin Advanced Simulation Center [7] had developed an 

object-oriented HLA interface that provides a clean conceptual and architectural 

separation of the simulation from distributed computing components.  The HLA interface 

allows software engineers without extensive simulation experience to develop HLA 

compliance simulation, thereby accelerating the simulation development without forcing 

the engineers through the HLA learning curve. 

 

2.3 Distributed Simulation 

The three components required for the development of simulation software in 

distributed simulations are model, simulation framework, and middleware.  Model is a 

physical or logical representation of a proposed or real system.  A simulation model can 

be a set of instructions, equations, or constraints for generating I/O behavior.  A 

simulation framework is a defined simulation structure which obeys the instructions of 

the model and is capable of executing the model to generate its dynamic behavior.  

Middleware provides a set of services allowing the data exchange between simulation 

applications.  Test Driver development is focused on a design which promotes model 

reuse by developing models independently of the simulation engine.  This design 

distinguishes the separation of model and simulator, and the simulation framework is 

adapted to the network protocols or middleware. 
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2.3.1 Component based design in distributed simulation 

Simulation software development has been focusing on component-based design.  

It is different from the traditional object-oriented (OO) design, which allows the reuse of 

object classes at the design and implementation level.  In contrast, component-based 

design enables the reuse of the components at the deployment level.  Components are like 

building blocks, representing complete pieces of functionally that are ready to be used.    

When these blocks are combined together, a useful software application is created.  

Component-based design has increasingly gained popularity because of its reusability and 

portability.  It reduces the cost and the time of software development without 

compromising software quality.  Furthermore, the components can be reused in the same 

or different applications.  When component-based design is incorporated with modeling 

and simulation, it provides separation between models, simulators, and distributed 

computing.  This approach allows the model to remain unchanged and independent of the 

simulation framework, which is in turn adapted to the selected network simulation 

protocols.  Components separation allows for the addition of middleware to the 

simulation framework.  In some cases, the time management of the middleware is limited 

by the simulation framework [8]. This approach seems restrictive, but it provides a 

framework to validate the models and verify the simulators. 

 

2.3.2 Supporting multiple network protocols 

It is common to require a single simulation software application to support 

multiple network protocols in an interoperability testing environment, such as training 
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exercises and systems evaluation.  Interoperability testing often links multiple platforms 

or systems together in a heterogeneous environment, such as hardware in the loop 

systems, live systems, and other simulation software systems.  These systems often 

support only selected network simulation protocols.  To permit the simulation software 

collaboration in such an environment, the software must be able to support multiple 

network protocols simultaneously.  For example, a control manager is often used to 

remotely supervise the operations of all test systems and simulation software in a large- 

scale testing environment, such as time synchronization and software start/stop using a 

selected middleware application.  The simulation software may transmit its simulation 

results to other platforms or software using another network protocol.  To increase the 

ability of the simulation software to support multiple network protocols during its 

lifetime, a new architecture is required to rapidly modify the software in support of new 

network simulation protocols, taking advantage of the separation between models, 

simulators, and middleware.   If the model and simulator can be distinguished in the 

simulation software, it will guarantee the model behavior will be unchanged by other 

simulation environment, and any middleware can be added to the existing simulation 

framework. 
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3.  Test Model Generator (TMG) 

3.1 Building Blocks 

3.1.1 Extensible Markup Language (XML) 

Extensible Markup Language (XML) [9] is an open standard meta-markup 

language defined by the World Wide Web Consortium (W3C) for text documents.  It 

uses a generic syntax to markup the data using human readable tags.  The markup data 

enhances the structure of the information and identifies the relationships between data.  

The basic unit of XML markup is called an element, which is the most common object 

type of XML.  They break up a document into a smaller structure and organize it into a 

hierarchical form.  Elements can be empty, containers, or holding texts, etc.  Tags are 

used to mark the boundaries of elements.  An XML element consists of a start tag and an 

end tag.  Additional data, such as comments and special instructions, can be specified in 

the tag.  XML doesn’t have a predefined set of tags and elements, and it works for all 

areas of interest.  However, the XML standard specifies the format of tags and elements.  

It defines how tags should appear and where they may be placed.  Also, it defines the 

element-naming scheme and where the attributes attach, and so forth.  The XML standard 

allows for the development of XML parsers and accesses any XML document.  The 

parser relies on the tags to break down the documents and processes the XML document.  

The XML document is well-formed if it satisfies the XML standard; the XML processor 

will reject the document if it is not well-formed.   

Some programs may perform special operations and require the use of specific 

tags.  These specific sets of tag are called applications of XML.  An XML application is 
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not a software program, but it uses specific tag sets in a particular operation.  A valid 

document is an XML document whose syntax has been validated, most commonly via 

schemas or document type definitions (DTDs).  A DTD is a collection of declarations 

describing elements, attributes, parameters, and other markup.  It is written to describe 

precisely which elements can appear in a particular location and what the contents are.  

An element declaration defines a new element type, the order, and what it can contain.  

Any element type not declared in the DTD but used in the document is illegal.  The 

disadvantages are the complexity and the lack of restrictions on the actual data types in 

each element’s content.  An XML schema is an alternative to the DTD.  It defines the 

building blocks of an XML document, and it is simpler, more powerful and precise than a 

DTD.  The XML schema language is referred to as XML Schemas Definition (XSD).  

Schemas can create simple and complex data types, restrict the data type, inherit syntax 

from other schemas, restrict schema inheritance, create attribute groups and support 

namespaces, and more.  

 

3.1.2 System Entity Structure (SES) 

 System Entity Structure (SES) formalism is a knowledge representation scheme 

for systematically organizing a family of models containing decomposition, taxonomy, 

and coupling relationships among entities.  Decomposition represents how entity can be 

decomposed into sub-entities.  Taxonomy represents how entities can be categorized and 

sub-classified.  Coupling represents how sub-entities are joined together to recompose the 
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entity.  The representation of SES is a labeled tree with attached variables that satisfy the 

following six axioms [10]: 

1. Alternating mode:  Entity is the root mode.  A node and its successor node always 

have the opposite modes.  For example, if a node is entity, its successor is either 

aspect or specialization.   

2. Strict hierarchy:  A label only appears once in any path of the tree. 

3. Uniformity:  If the nodes have the same names, they will have identical variables 

and isomorphic sub-trees. 

4. Valid brothers: No two brothers have the same label. 

5. Attached variables: variable names must be unique in each node. 

6. Inheritance: every entity in a specialization inherits all the variables, aspects, and 

specializations from the parent of the specialization. 

There are three types of nodes: entity, aspect, and specialization.  Entity is a real 

world object, and it may have attached variables.  It can be identified as either a 

composite entity or an atomic entity.  Atomic entities cannot be broken down into sub-

entities, while composite entities can.  An aspect represents a decomposition of the entity.  

The children of an aspect are entities representing the decomposed components.  A 

specialization defines the taxonomy of the entity, and it is used to classify the general 

entity into specialized entities.  The children of a specialization are entities representing 

the variation of its parents.  Figure 5 illustrates the alternate modes of SES. 



 33

 
Figure 5: SES nodes structure 

 

3.1.3 Minimal Testable Input/Output Pairs 

 In a basic operation, there are many possibilities to characterize the I/O behavior 

at Level 1 of the system specification, such as which input values are paired to produce 

an output value and the order of the inputs and output pairing [3].  Figure 6 shows the 

complexity involved in the Level 1.  If the initial messages X(x) and Y(x) arrive, an 

output of Z(x+y) is produced.  However, when the second message Y(y’) arrives, the 

SUT can produce or not produce an output of Z(x+y’).  If the second Y message does not 

produce an output, the SUT will produce an output Z(x’+y’) if the second X(x’) message 

arrives. 
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Figure 6: Variants of Input/Output Pairs 

 
It is easier to handle I/O segments with limited complexity.  The tests can be 

synthesized from the segments because each I/O pair has a finite number of input 

messages and output message in its interval.  Thus, the concept of a minimal testable pair 

is introduced, in which the output segment has at most one event at the end of the 

segment in an I/O pair.  The I/O pair can be easily extracted from the system 

specification at Level 2, because each input stimulus produces a unique output if the 

initial state is given.  Figure 7 illustrates the minimal testable input/output pairs.  The 

minimal testable I/O pairs are in sequential order, and the original I/O pair can be easily 

reconstructed from the minimal I/O pairs. 

 
Figure 7: Minimal Testable Input/Output Pairs 
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3.2 Test Objective 

 The objective of the Test Model Generator is to a create DEVS test models based 

on minimal testable I/O pairs.  In this thesis, we are performing a reachable states study 

and not generating a complete system behavior.  The test scenario is defined in the form 

of inputs and outputs according to the MIL-STD 6016C definition.  The collection of I/O 

function is infinite in principle because there are numerous states to start from and the 

inputs can be extended indefinitely.  For practice purposes, we restrict our testing focus to 

messages, and assuming they are the only automatable observables available for testing. 

These tests are performed against the military hardware/software systems to study its 

conformity to the MIL-STD.   

The DEVS test models are in the form of an experimental frame and allow the 

Test Driver to perform experiments against the System Under Test.  The test engineer 

analyzes the customers’ test requirements and creates the test scenarios which describe 

the behaviors of the SUT based on the MIL-STD 6016C.  The requirements are written in 

minimal testable input/output representation, and the test models are created by applying 

the model mirroring concept that reverse the minimal testable I/O pairs.  Both the 

minimal testable file and test models are written in XML format and represented by SES,   

allowing for the transformation between the two XML files.  The inputs/output pairs are 

now represented by three atomic models: holdSend, waitReceive, and waitNotReceive.  

Since the input/output are in sequential order, only one atomic model is active each time, 

and the rest of the atomic models are passive.  In order to try out these test models against 

the real system, they are converted to software programming source code.  This allows 
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quick incorporation of the test models into the Test Driver.  Figure 8 below illustrates the 

process of automated test model generation. 

 
Figure 8: Test Model Generator 

 

3.3 Test Model Generation 

3.3.1 IO Minimal Testable XML file 

The IO Minimal Testable file is generated by the test engineer, and it describes 

the input and output behavior of the System Under Test.  The behavior is described based 

on the minimal testable input/output representation, in which each pair has a set of inputs 

and at most one unique output, and in which a scenario is composed of multiple pairs in 

sequential order.  Each scenario can be represented by SES and written in XML format.  

Representing SES in XML format is very straightforward.  Each SES node has a mode 

which can be entity, aspect, or specialization, and each mode of a node represents an 

XML element.  Figure 9 shows the transition from SES to XML.  SES is using nodes to 

represent the structure of a test scenario, and XML is using elements to break up the 

structure and represent the SES nodes. 
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Figure 9: IO Minimal Testable SES Diagram & XML Tags 

 

3.3.2 Mirror Image of I/O Pairs 

 The minimal testable I/O pairs describe incoming and outgoing messages in the 

SUT.  The Test Model I/O pairs can be generated by reversing the roles of input and 

output in the SUT as shown in Figure 10.  For example, a test scenario requirement 

generated by the test engineer is given which specified that the SUT will receive message 

a, b, and c.  After receiving these messages, message d will be sent.  The test model is 

generated by reversing the SUT procedures, which sends message a, b, and c, and the test 

model will wait to receive message d.  The mirror image concept allows creating a test 
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model for any minimal testable pair in the SUT’s Input/Output Specification.  The image 

still exhibits the characteristic of the minimal testable I/O pair: a set of inputs produces a 

unique output. 

 
Figure 10: Mirror Image of Input/Output Pairs 

 

3.3.3 Primitives of Basic Test Model 

 Based on the minimal testable I/O representation, there are two basic operations 

in the Test Model: send message and receive message.  These two operations can be 

represented by three atomic models: holdSend, waitReceive, and waitNotReceive.  

holdSend sends a message after the resting time expires.  The receive message operation 

is represented by two atomic models: waitReceive waits for a incoming message at a pre-

defined time interval, and determines the pass-fail condition by comparing the pre-

defined value to the value of the received message, while waitNotReceive doesn’t wait 

for any message and determines the condition but idles the model for a pre-defined time 

interval.  In some instances, the minimal testable pair of the SUT does not transmit any 
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message at the end.  In order to represent this behavior in minimal testable I/O 

representation, waitNotReceive will be used to represent a unique output. 

Figure 11 illustrates how to construct the basic test model using these primitives.  

The behavior of the SUT is described by the minimal testable I/O pair, and the SUT 

sequences are receive, receive, and transmit.  The test model is constructed by the mirror 

image concept described in Section 3.3.2, and the sequences of the SUT image are 

transmit, transmit, and receive.  The transmission is represented by the holdSend model, 

and the reception is represented by waitReceive model.  The test model sends a J3.2 

message with content data1 at time t1 and is followed by a second J3.2 with content data2 

at time t2.  After transmitting two messages, the test model will wait for J7.2 message 

between time t2 and time t3.  When the SUT receives the two J3.2 messages, it will 

transmit a J7.2 with content data3 at time t3.  If the test model receives the message 

within the time interval, waitReceive will process the J7.2 message. 

 
Figure 11: Using the primitives to construct test model 
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The test model is in the form of an experimental frame in which the holdSend 

model is a generator and the waitReceive is the acceptor.  These atomic models are 

coupled together to form the basic test model.  Each atomic model and coupled model has 

two input ports: start and in_Jmsg, and two output ports: out_Jmsg and pass.  The inputs 

and output of the minimal testable I/O pair are in sequential order, and the basic test 

model is formed by coupling the atomic models together as shown in Figure 12. 

 
Figure 12: Basic Test model 

 

3.3.4 Composite Test Model 

 When the test models derived from the minimal testable I/O pairs are cascaded 
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 Figure 13 illustrates the composite test model derived from cascading the basic 

test models.  The initial correlation test model has three operations: transmit twice and 

receive, while the confirmation test model has two operations: transmit and receive.  The 

atomic models of the basic test models are concatenated, and the basic test models of the 

composite model are cascaded together.  In this composite model, the initial correlation 

model sends the J3.2 messages and then waits for the given response.  If the response is 

correct, it starts up the next model; otherwise, it stops and reports the failure. 

 
Figure 13: Composite Test model 

Based on the composite model, we can concatenate a sequence of composite test 

models together to form a more complex test scenario.  Each composite test model 

represents a unique scenario which it waits for the correct response in order to start up the 

next model. 
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simulation environment using the Test Driver.  Also, it provides traceability between the 

SUT behavior and the DEVS test models.  The minimal testable file and test model files 

are described in SES and written in XML format.  The SES for the test model is shown in 

Figure 14, and each node of the test model SES diagram is an XML element.  The 

mapping is performed by a software program which generates an XML file called 

TestGen.xml.  The format of the TestGen XML file is validated by a pre-defined DTD. 

 

 
Figure 14: Mapping Minimal Testable pairs into Test Model SES 

 TestGen 

CompositeTestModel 

BasicTestModel 

ComponentMADec 

holdSend_Comp waitReceive_Comp waitNotReceive_Comp 

waitReceive_Components 

waitReceive 

globalAsp 

File Info 

TestModelMA

FieldMA 

Field 

~TestSeqName 

~TestName 
~Initial state requirements 

~Message Type 
~Content 
~Processing Time 
~Component 
~Component Role 

holdSend_Components 

holdSend 

FieldMA 

Field 

~Message Type 
~Content 
~Processing Time 
~Component 
~Component Role 

~Name 
~Value 

waitNotReceive_Components 

waitNotReceive 

FieldMA 

Field 

~Message Type 
~Content 
~Processing Time 
~Component 
~Component Role 

IOMinimalTestable 

minimalSegment 

Initial State 

InputMessages 

OutputMessage 

IOMinimal SES nodes 



 43

The above figure also illustrates the transformation from minimal testable to test 

model.  For example, the initial state node is mapped to the initial state requirement 

variable of the BasicTestModel node.  The InputMessages node is mapped to the 

holdSend_Components node.  The OutputMessage node is mapped to either 

waitReceive_Components or waitNotReceive_Components. 

 

3.3.6 DEVS Code Generation 

 The platform-dependent programming source codes are generated based on the 

information provided in the test model XML file.  As shown in Figure 14 above, the 

CompositeTestModel is the test sequence, and the BasicTestModel is equivalent to a 

minimal testable pair.  If multiple I/O pairs exist, multiple BasicTestModel scopes are 

cascaded together.  Each atomic model has two input ports and two output ports, and the 

port usages are defined as follows: 

• holdSend uses the ‘start’, ‘out_Jmsg’, and ‘pass’ ports. 

• waitReceive uses the ‘start’, ‘in_Jmsg’, and ‘pass’ ports. 

• waitNotReceive uses the ‘start’ and ‘pass’ ports. 

There are two levels of coupled models: CompositeTestModel and BasicTestModel.  All 

the coupled models have the same input and output ports as the atomic model, and all the 

ports are used.  BasicTestModel coupled models contain the atomic models as shown in 

Figure 12, and CompositeTestModel contains the BasicTestModel coupled models as 

illustrated in Figure 13.  Since the hierarchical structure and the port coupling 
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relationships of the atomic and coupled models are defined, the source codes can be 

generated easily.   

A Java program was created to parse the test model XML file and traverse the 

SES structure to create the DEVS test model source codes.  Five methods were created to 

generate the source codes: 

1. CRSReader: the CRS file contains the trajectory of an aircraft.  Each 

trajectory point is associated with a time index.  This method provides the 

trajectory information required by the holdSend atomic model. 

2. writeCompositeClassFile: It creates and prepares the hierSeqDigraph file and 

calls the writeCompositeTestModel method. 

3. writeCompositeTestModel: This method creates the coupling information of 

all the basic test models, and initiates the writeBasicClassFile method. 

4. writeBasicClassFile: This method creates the testSeqDigraph file and the 

coupling information of the atomic models, and initiates the 

writeBasicTestModel method. 

5. writeBasicTestModel: Creates the atomic models information.  During the 

creation of the holdSend atomic model, the CRSReader will be called to 

contain the trajectory required the model. 

Figure 15 below illustrates the associations of these five methods and the test 

model SES diagram.   
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Figure 15: Associations between Java methods and SES nodes  
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4.  Generic HLA Wrapper 

The Generic HLA wrapper is developed to support the Test Driver (TD) in the 

ATC-Gen testing effort.  The objectives of this HLA wrapper are  

1. Allowing non-simulation engineers to develop their models and simulations 

without an in-depth knowledge of HLA. 

2. Enabling rapid prototyping of HLA compliance simulation. 

3. Providing software engineer interface modules to simplify the HLA set up 

processes and minimize redundant processes to modify the federate during the 

software development cycle. 

4.  Supporting the ADEVS simulation engine [11]. 

A simplified interface is necessary for rapid prototyping and reducing the 

development time during software development cycle.  For example, the FOMs/SOMS in 

Object Model Template (OMT) might change numerous times during the software 

development cycle before the final release of the software.  If the changes are minor, the 

software engineer may simply change the attributes or parameters in the HLA class.  If 

the changes are major, it may require rewriting the HLA classes, and probably will 

require structural changes in the software design.  This interface will reduce the burdens 

on the software engineers, and will simplify the HLA development to include non-HLA 

simulation engineers. 

 

4.1. HLA Compliance Software Development 
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Federation and federates are the basic terminologies used in describing HLA 

simulation, and the OMT provides the necessary information to build the simulation.  The 

Federation Object Models (FOMs)/Simulation Object Models (SOMs) Lexicon in OMT 

consists of definitions of object classes, interaction classes, attributes, and parameters.  

The HLA FOMs and SOMs are stored and transferred via Federation Execution Data 

(FED) files using OMT Data Interchange Format (DIF).  The definitions are defined in 

table format, and the following are the necessary tables to implement a federate:  

1. Object class structure table  

2. Object interaction table  

3. Attributes table 

4. Parameters table 

In HLA simulation development, the HLA classes are represented by C++ 

classes1 and the instances of these C++ classes are HLA objects.  The HLA classes can be 

either object classes or interaction classes as shown in Figure 16.  Object classes have 

attributes and they persist.  Interaction classes have parameters, but they are sent and 

forgotten.  The following procedures are the requirements to implement an object class: 

1. Publish the object class 

2. Indicate which attributes are to be published and updated 

3. Subscribe object classes and their instances from other federates 

4. Encode and update the attribute values 

5. Reflect and decode other federates’ attribute values 

                                                 
1 HLA software are developed using Object Oriented languages, such as C++ and Java.  In this discussion, 
we assume the federate is developed using C++. 
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Figure 16: HLA Simulation program structure 

The implementations of interaction classes are very similar to the object classes, except 

interaction cannot specify which parameters to publish.  Interaction publishes either all 

parameters or nothing.  Instead of using the Update and Reflect methods, interaction 

invokes the Send and Receive methods to update the parameters. 

 

4.2 DEVS Simulation Support 

 The generic HLA wrapper is developed to support the ADEVS simulation engine 

based on the model-oriented approach in DEVS/HLA [12] distributed simulation and the 

Model/Simulator/View/Controller design pattern [13].   The HLA view object and the 

DEVS Simulator are communicated through the activity coordinator through a user 

defined class object as shown in Figure 17.   
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Figure 17: HLA and Simulator Communication 

HLA provides two types of communications: attribute updating and interaction.  

Interaction updates all the parameters, and attribute updating can choose which attribute(s) 

to update.   When the external transition function of DEVS processes input from the HLA 

view object, the input must contain all attributes or parameters.  Because of this 

constraint, the Generic HLA wrapper preserves most of the basic functions in HLA 

management, except the behaviors of Attribute Publish/Subscribe methods in the 

declaration management and Attribute Update/Reflect methods in the object management.    

The Publish/Subscribe method is required when publishing or subscribing all attributes, 

and the Update/Reflect method is required when updating or reflecting all attributes. For 

example, when the controller receives data from HLA and injects the updates to the 

simulator, the updates must contain all the attributes in the object class.  Although the 

attribute being updated behaves similarly to the interaction, attribute updating is still a 

persistent event while interaction is not. 

 

4.3 Architecture 

 The Generic HLA wrapper has two components: generic data type and generic 

HLA interface.  Generic data type provides a unified data coding scheme to the HLA 

Simulator HLA View 

Coordinator 
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attributes and parameters.  The Generic HLA interface provides a simplified set of 

methods for federation management, declaration management, time management, and 

object management. 

 

4.3.1 Generic Data Type 

 The UML diagram [14] in Figure 18 shows the standard data types in the Generic 

HLA wrapper.  It provides the basic class structure to the Generic HLA interface in order 

to handle attributes/parameters in the HLA classes.  The root class is Entity, which 

derives from DEVSJAVA [15].  HLA_Parameters and HLA_Attributes are subclasses of 

Entity, and they inherit all the methods and attributes from Entity class.  Both classes are 

responsible for storing the attribute/parameter’s information, such as handlers and data.  

The following are the descriptions for these classes: 

 

cd Logical Model

Entity

HLA_Attributes HLA_Parameters

 

Figure 18: Generic data types 
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4.3.1.1 Entity 

Entity is the most important element in the Generic HLA wrapper.  It is a unified 

data type to simplify data marshalling and de-marshalling.  Entity class is derived from 

DEVSJAVA’s entity.  The goal is to provide a generic data type to the software engineer, 

simplifying data conversion during function calls.  It restricts the number of supported 

data types, which are integer, long, double, string, and boolean.  The software engineers 

define the name of the variable and its data type in the initialization.  By knowing the 

data type, the data variable can be easily converted between entity data type and specific 

data type.  Methods, such as Get and Set, are provided to retrieve and set the name, value, 

and data type. 

When the federate invokes the attributes’ updating or interaction, the data is 

encoded/decoded based on its data type.  If encoding occurs, the federate will convert the 

Entity to HLA data type and send the data to other federates.  Otherwise, the federate 

decodes the data received from other federates and converts the HLA data type back to 

Entity. 

 

4.3.1.2 HLA_Attributes/HLA_Parameters 

HLA_Attributes/HLA_Parameters is a subclass of Entity.  It is responsible for 

storing the attribute’s/parameter’s RTI information, such as object/interaction handler, 

attribute/parameter handler, data type, name, and value.  The objective is encapsulating 

all the information about the attribute/parameter in a particular class, and the data can be 

easily identified by the handlers.  The handlers are unique identifiers assigned by the RTI 
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based FOM/SOM lexicon in the FED file.  HLA_Attributes is identified by object 

handler and attribute handler, while HLA_Parameters is identified by interaction handler 

and parameter handler. The RTI associates the classes and attributes/parameters with 

handlers; the information routing is determined based on these identifiers.  Standard 

methods, such as Get and Set, are provided to retrieve and set the handlers. 

 

4.3.2 Generic HLA interface 

The Generic HLA interface class diagram is shown Figure 19.  It provides 

methods for HLA management and a generic data object to communicate with ADEVS 

components.  The interface can be divided into three areas: 

1. HLA_Object class is inherited from the ADEVS Object class, and it is the base 

class of the Generic HLA Wrapper.  HLA_Object is wrapped within an ADEVS 

object that allows message passing between the Simulator and the HLA viewer 

without any data conversion.   

2. HLA_ObjectClass and HLA_InteractionClass provide methods for declaration 

management and object management, such as Publish/Subscribe and 

Encoding/Decoding.   

3. HLA_Federate class provides federation management and initiation of object or 

interaction class.  The ParameterSetup method allows non-simulation engineers to 

develop HLA simulation without any additional development by declaring the 

attributes/parameters and their data types for object/interaction classes in this 

method. 
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cd Logical Model

Object

HLA_Object

HLA_ObjectClass HLA_InteractionClass HLA_Federate

HLA_FederateAmbassador

 

Figure 19: Generic HLA interface 
 

4.3.2.1 HLA_Object 

HLA_Object is the root class of Generic HLA interface, and it is a subclass of 

ADEVS object class.  The ADEVS Object class is used as the basic I/O type, and allows 

other data types to be wrapped in it without data conversion.  HLA_Object is responsible 

for storing the HLA_Parameters and HLA_Attributes class objects.  It has two methods 

and two virtual methods: Print, Clone, addParameter, and addAttribute.  Print() method 

prints all the entries in the linked lists.  Clone() returns a new object of the HLA_Object.  

The “add” method inserts the attributes/parameters to the linked lists.  There are four 

linked lists: recvParameterList, sendParamenterList, recvAttributeList, and 
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sendAttributeList.  They contain the attributes/parameters received from RTI.  Each node 

of the linked list stores an Entity, and they are distinguished by class handler and 

object/parameter handler as shown in Figure 20.  The primary objective of the 

HLA_Object is to simplify message passing between HLA components and ADEVS 

simulators without any data conversion.  For example, when the federate receives a 

message from RTI’s Interaction or Reflect callback routine, the parameters are decoded 

and contained in HLA_Object and passed to the simulator.  When the Simulator 

generates and sends an event to the HLA view object, the parameters are encoded to the 

HLA format and the message is sent using SendInteraction. 

 
Figure 20: Generic HLA Data List 

 

4.3.2.2 HLA_ObjectClass 

HLA_ObjectClass is a subclass of HLA_Object.  It is responsible for providing 

methods to HLA object class for the declaration and object management.  The following 

are the descriptions of the methods: 

1. PublishandSubcribe – invokes the RTIambassador’s Publish and Subscribe 

methods registering publication and subscription interests in object class. 

2. addAttribute – adds a new HLA_Attributes class objects to the sendAttributeList 

in HLA_Object. 

RTI class handle, 
RTI parameter handle, 
Entity (name, data type, 
data value, etc.) 

RTI class handle, 
RTI parameter handle, 
Entity (name, data type, 
data value, etc.) 

RTI class handle, 
RTI parameter handle, 
Entity (name, data type, 
data value, etc.) 
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3. Update – encodes all the attributes in the sendAttributeList list, and invokes the 

RTIambassador’s UpdateAttributeValues method updating all the attributes to 

other federates. 

4. Reflect – when another federate updates its attributes, the RTI invokes the 

ReflectAttributeValues callback method to receive the attributes, then decodes the 

attributes to receiveAttributeList list. 

5. Decode – this method decodes the attributes, and converts the data to 

HLA_Attributes type. 

 

4.3.2.3 HLA_InteractionClass 

HLA_InteractionClass is a subclass of HLA_Object.  It is responsible for providing 

methods to the HLA interaction class for declaration and object management.  The 

following is the description of the methods: 

1. PublishandSubcribe – invokes the RTIambassador’s Publish and Subscribe 

methods registering publication and subscription interests in interaction class. 

2. Send – encodes all the parameters in the sendParameterList list, and invokes the 

RTIambassador’s SendInteraction method, sending all the parameters to other 

federates. 

3. Receive – when another federate updates its parameters, the RTI invokes the 

ReceiveInteraction callback method to receive the parameters and decode the 

parameters to receiveParameterList list. 
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4. Decode – this method decodes the parameters, and converts the data to 

HLA_Parameters type. 

 

4.3.2.4 HLA_Federate 

HLA_Federate class is responsible for federation management, time management, 

and the initiation of declaration management.  The constructor of the HLA_Federate class 

initiates the declaration management, HLA_Object class object, and object/interaction 

classes.  The following are the method description: 

1. CreateandJoinFederation – allows a federate to create and join the federation.  If 

the federation already exists, it will simply join the federation. 

2. ResignandDestroyFederation – it allows a federate to resign from the federation.  

If this federate is the last one, it will simply destroy the federation. 

3. tick – this is a time management function which yields time to RTI. 

4. receiveInteraction – a callback routine for interaction classes to receive messages 

from other federates. 

5. reflectAttributeValues – a callback routine for object classes to receive message 

from other federates. 

6. ParametersSetup - the most important part of the HLA interface.  It is responsible 

for the object/interaction classes and attributes/parameters declaration, in which 

the federate is interested to publish and subscribe.  

 

4.4 HLA Simulation Setup 



 57

The constructor of HLA_Federate class contains all necessary components to run 

the HLA wrapper.   In every HLA simulation, the federate must be interested to publish 

and subscribe certain classes described in the FED file, and the software engineer will 

define these class structures in the ParameterSetup method.    The following steps setup 

the constructor: 

1. Create and join federation using CreateAndJoinFederation method. 

2. Set up the attributes/parameters and create new instances of the 

HLA_ObjectClass and HLA_InteractionClass classes in ParameterSetup 

method as shown in Figure 21. 

3. Create an instance of HLA_Object class 

4. Call PublishAndSubscribe methods in HLA_ObjectClass and/or 

HLA_InteractionClass classes. 

 

Figure 21: ParameterSetup method 

void HLA_Federate::ParametersSetup() 
{ 
 const int num = 6; 
 parameters param[num]; 
 
 param[0].name = "ID"; 
 param[0].type = "LONG"; 
 param[1].name = "xpos"; 
 param[1].type = "DOUBLE"; 
 param[2].name = "ypos"; 
 param[2].type = "DOUBLE"; 
 param[3].name = "zpos"; 
 param[3].type = "DOUBLE"; 
 param[4].name = "xvel"; 
 param[4].type = "DOUBLE"; 
 param[5].name = "yvel"; 
 param[5].type = "DOUBLE"; 
 param[6].name = "zvel"; 
 param[6].type = "DOUBLE"; 
 char* className1 = "AirTrack"; 
 HLA_Interaction *iClass = new HLA_Interaction(className1, param, num, &rtiAmb); 
} 
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 In order to incorporate the Generic HLA wrapper into a simulation, the software 

engineer is required to implement the interested object/interaction class structures in the 

ParameterSetup method.  The simulation will create a new instance of the HLA_Federate 

class by calling the constructor, and publishes and subscribes the objects/interactions 

defined in the ParameterSetup.  The HLA_ObjectClass and HLA_InteractionClass have 

methods to send and receive messages from other federates.  The software engineer can 

specify when to use these methods as follows: 

1. When the simulator generates an event, Update or SendInteraction method is 

called. 

2. When the federate receives messages from other federates, the Reflect or 

ReceiveInteraction method is called. 
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5.  Test Driver 

The ATC-Gen Test Driver (TD) is an experimental frame designed to perform 

interoperability testing on TADIL-J systems.  The objective of the Test Driver is to 

execute the DEVS test models generated by the Test Model Generator (TMG).  TD 

emulates a tactical TADIL-J system by providing simulated TADIL-J messages over the 

simulated tactical communication network, and accepts TADIL-J messages from the SUT 

to determine the condition of the test model, and is implemented via component-based 

design using the enhanced Model/Simulator/View/Controller (MSVC) design pattern.  

The model is generated by TMG.  The TD simulator is a thread derived from the 

controller that schedules and receives Link-16 messages.  The viewer extracts outputs 

from the simulator, and converts the outputs into a specific middleware format. 

 

5.1 Building Blocks 

5.1.1 DEVS Specification 

 The DEVS formalism was introduced by Bernard Zeigler [4] to provide a mean of 

modeling discrete event systems in a hierarchical and modular way.  DEVS exhibits the 

concepts of system theory and modeling, and supports capturing the system behavior in 

the physical and behavioral perspectives.  A DEVS model can be either an atomic or 

coupled model.  In the DEVS formalism, a large system can be modeled by both atomic 

and coupled models.  The atomic model is the basic model that describes the behavior of 

a component.  A Discrete Event System specification (DEVS) atomic model is defined by 

the structure in Figure 22. 
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Figure 22: Classic DEVS Specification 

 

Atomic and coupled models can be simulated using sequential computation or 

various forms of parallelism.  The basic parallel DEVS formalism extends the classic 

DEVS by allowing bags of inputs to the external transition function, and it introduces the 

confluent transition function to control the collision behavior when receiving external 

events at the time of the internal transition.  The parallel DEVS atomic model is defined 

by the structure in Figure 23. 

 

M = <X, S, Y, δint, δext, λ,  ta> 
where 

X is the set of input values 
S is the set of state 
Y is the set of output values 
δint: S -> S is the internal transition function 
δext: Q x X -> S is the external transition function, where 

Q = {(s,e)|s εS, 0 ≦ e ≦ ta(s)} is the total state set, 
and e is the time elapsed since last transition 

λ: S->Y is the output function 
ta: S->R0

+
i f is the set of positive reals with 0 and infinity
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Figure 23: Parallel DEVS Specification 

A DEVS-coupled model designates how atomic models can be coupled together 

and how they interact with each other to form a complex model.  The coupled model can 

be employed as a component in a larger coupled model and can construct complex 

models in a hierarchical way.  The specification provides component and coupling 

information. The coupled DEVS model is defined as the following structure: 

 
Figure 24: Coupled DEVS Specification 

M = <X, S, Y, δint, δext, δcon, λ,  ta> 
where 

X is the set of input values 
S is the set of state 
Y is the set of output values 
δint: S -> S is the internal transition function 
δext: Q x Xb -> S is the external transition function, 

where Xb is a set of bags over elements in X, Q = 
{(s,e)|s εS, 0 ≦ e ≦ ta(s)} is the total state set, and e is 
the time elapsed since last transition 

δcon: S x Xb -> S is the confluent transition function, 
subject to δcon(s,Φ) = δint(s) 

λ: S->Yb is the output function 

M = <X, Y, D, {Mij},{Ij}, {Zij}> 
   Where 
    X is a set of inputs 
    Y is a set of outputs 
    D is a set of DEVS component names 
    For each i εD,  
     Mi is a DEVS component model 
     Ii is the set of influences for I 
    For each j ε Ii, 
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 Two different DEVS formalisms have been introduced.  The classic DEVS 

formalism treats components sequentially, and the parallel DEVS formalism treats 

components concurrently.  These formalisms also include the means to build coupled 

model from atomic models.   

 

5.1.2 Experimental Frame 

The Experimental Frame is a specification of the conditions under which the 

system is observed or experimental with [4].  It reflects the objectives of the experiment 

performed on a real system or simulation.  Multiple experimental frames can be used for 

a single system, and the single experimental frame can be applied to many systems.  

Conversely, there are multiple objectives to test a system, and a single objective is 

applied to many systems.  There are two valid views of an experimental frame.  A frame 

can be viewed as data element type that is entered into a database.  Another view is that a 

frame can interact with the system to obtain data under specified conditions.  In the 

second view, the frame can be treated as an observer, and it has three components: 

generator, acceptor, and transducer, as illustrated in Figure 25.  The Generator describes 

the inputs applied to the system or model.  The Transducer observes and analyzes the 

system output.  The Acceptor monitors the experiment to see the experimental condition, 

and compares the generator inputs with the transducer outputs. 
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Figure 25: Experimental Frame 

 

5.1.3 Model/Simulator/View/Controller (MSVC) Design Pattern 

The Model/Simulator/View/Controller (MSVC) design pattern was proposed by 

Jim Nutaro [13] and provides a software framework to the developers that supports 

component-based software design, and incorporate the key concepts from DEVS 

modeling and simulation to promote a separation of model, simulator, and distributed 

computing.  MSVC is an extension of the Model/View/Controller (MVC) design pattern 

commonly used in interactive programming design, and it can apply to building 

distributed simulation [16].  MVC is a component-based software architecture that 

separates the data model, data representation, and control logic into three components.  

These components are reusable, and the modification of these components will have 

minimal impact on the others.  In order to extend the MVC approach to the support of 

complex distributed modeling and simulation application, a simulator is added to the 

existing MVC design.  As a result, the MSVC design provides a software framework to 

support distributed modeling and simulation.   

Generator Acceptor Transducer

Experimental Frame 

SUT
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Figure 26: MSVC components and their relationships 

The MSVC components and their relationships are shown in Figure 26 [14].  

Model is a physical or logical representation of a proposed or real system, and it can be a 

set of instructions or constraints for generating I/O behavior.  It is a system specification 

that has state transitions and output generation mechanisms to accept input and generate 

outputs depending on the initial state.  The simulator is capable of obeying the 

instructions and executing the model to generate behavior.  It provides an interface 

allowing the injection of inputs, computation of states changes, and the viewing of model 

outputs.  The controller interacts with the simulator to allow the model behavior to be 

influenced by other large systems.  The viewer extracts output data from the simulator, 

and acts on simulation output at the request of the controller.  In a distributed simulation 

environment, the controller and the viewer can interact with the middleware as in Figure 

26.  The controller handles the inputs and time management scheme sent from the 

middleware and the viewer extracts the data outputs from the simulator and sends it via 

middleware.  For example, the controller utilizes the time management and object 

MiddleWare 

Controller View 

Simulator 

Model 
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management features of the HLA middleware to control the simulator execution rate and 

generate model inputs.  The viewer is not involved in the any controller scheme, although 

the controller can signal the viewer to generate data outputs from the model outputs.  

 

5.1.4 A Discrete Event System Simulator (ADEVS) 

 ADEVS is a simulator for models described using the Discrete Event System 

(DEVS) Specification modeling framework.  It is a C++ library for constructing discrete 

event simulation based on the Parallel DEVS and Dynamic Structure DEVS formalisms.  

The Test Driver is implemented using this simulation framework. 

 

5.2 Enhanced MSVC Design Pattern 

Jim Nutaro demonstrated that the simulator was tuned to the behavior of certain 

network simulation protocols, and the controller could be rapidly modified to support 

other protocols.  For example, the simulator is associated with HLA time management 

through the controller in order to pace the execution.  The same simulator can be reused 

by implementing a new controller supporting other network simulation protocols to pace 

the execution using the wall clock.  In this methodology, one controller is associated with 

one simulator due to the difficulties inherent in handling multiple control strategies and 

the differing characteristics of the middleware.  The simulator is a child thread derived 

from the controller thread that contains the parameters to influence the simulator.  

Although Nutaro did not consider using the controller to manage the model operation, his 
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work led to the enhanced MSVC framework, where a new controller is implemented to 

control the model as well as the simulator. 

Figure 27 below provides a graphical representation of the enhanced MSVC 

paradigm [17].  The functions of the model, simulator, and view are the same as the 

original MSVC design.  A basic controller is implemented to receive the messages via 

middleware.  The specialized controllers are derived from the basic controller to handle 

message routing to either the simulator or the model.  For example, as shown in Figure 27, 

Simple J controller handles the inputs from Simple protocol and controls the DEVS 

simulator.  HLA Controller receives inputs from HLA middleware and controls the 

model’s operations. 

 
Figure 27: Enhanced MSVC paradigm with multiple controllers 
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It is common for simulation software to support multiple network simulation 

protocols.  In a distributed testing environment, there are combinations of test 

components, such as simulation software, gateways, and hardware.  Each of these 

components is associated with different network simulation protocols or middleware.  A 

test control manager is often used to control the basic operations of all the test 

components or hardware, sending operation commands to control the component via a 

particular middleware.  For example, the test control manager synchronizes the time and 

start/stop of all the test components via HLA, and each component is considered as a 

federate in an HLA federation.     

The Test Driver is implemented based on the enhanced MSVC pattern design.  It 

supports HLA middleware and the Simple J network protocol.  The test model is 

provided by the TMG, and the model behaviors are generated by three atomic models.  

The view is capable of extracting outputs from the simulator, and provides inputs the 

basic controller.  Model operations are controlled by the HLA controller via HLA 

middleware, and the simulator is controlled by a Simple J controller.   

 

5.3 MSVC Components 

 The Test Driver is an experimental frame that interacts with the SUT.  It generates 

input stimuli and injects them into the SUT.  It also receives outputs from the SUT and 

determines whether the desired experimental conditions are met.  TD incorporates the 

generator, acceptor, and transducer concepts of the experimental frame, and implements 

these concepts using the MSVC design pattern.  The holdSend atomic model handles the 
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input stimuli generation, and the waitReceive atomic model determines the condition of 

the experiment.   

Test Driver adopts two concepts: plug-and-play and rapid modification.  The 

MSVC design allows the Test Driver to execute any DEVS test models generated by 

TMG.  The DEVS test models are a set of instructions and the simulator provides the 

methods to generate the model behaviors.  Any new network simulation protocols can be 

easily plugged into the Test Driver, and a new controller and view can be rapidly 

developed to support this new protocol based on the existing controller and view.   

 

5.3.1 Model 

The model is a physical or logical representation of a system, and it represents the 

system specification at level 3 and level 4 of the system specification hierarchy.  The 

most common concept of simulation model is a set of instructions or constraints for 

generating I/O behavior.  A model is written with state transition and coupled component 

system specifications.  In state transition specification, we can specify the initial state 

setting and how the state changes as the system responds to the input trajectory, and also 

what output trajectory is generated by the state.  A model is composed of interacting 

components, and these components can be coupled together leading to a hierarchical 

structure.   

The Test Driver model consists of DEVS test models and middleware.  The model 

uses the middleware to communicate with SUT, and the DEVS test models are generated 

by the Test Model Generator described in Section 3. 
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5.3.2 Simulator 

The simulator is an agent that is capable of obeying the model instructions and 

generating model behaviors.  Typically, given the initial state values for the state 

variables and time segments for all input ports at the model, the simulator will generate 

the corresponding state and output trajectories.  In a hierarchical model structure, the 

atomic models are the simulators and the coupled models are the coordinators.  At the top 

of the hierarchy, a root coordinator is in charge to initiate the simulation cycles. 

 
Figure 28: Mapping Test Driver model onto a hierarchical simulator 

 

The hierarchy of the Test Driver model is shown in Figure 28 in above.  The test 

driver simulator is developed using ADEVS simulation engine, and it consists of three 

atomic models and two coupled models.    All these models have two input ports and two 

output ports.  The input ports are “start” and “in_Jmsg” and the output ports are “pass” 

and “out_Jmsg.”  The definitions of the ports are described as follows: 

holdSend waitRecv waitNotRecv 

testSeqDigraph 

hierSeqDigraph 

Simulator Simulator Simulator 
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• “start:” All the models are passive at the beginning.  When a model receives an 

external event through this port, the external transition function dictates a new 

system state s’ with some new resting time ta(s’). 

• “in_Jmsg:” The Simple J message values are sent to the model through this port.  

A model must be in waiting state when receiving the in_Jmsg event; otherwise, 

the model will remain passive.  When a model receives an external event through 

this port, the external transition function dictates a new system state s’’ with some 

new resting time ta(s’’). 

• “pass:” This output port sends a start event to the next model.  When the resting 

time (e = ta(s)) is expired, the system generates the start output, λ(s), and changes 

to state δint(s). 

• “out_Jmsg:” This output port sends the Simple J message generated by the 

holdSend model to the “out_Jmsg” port of the coupled model. When the resting 

time (e = ta(s)) is expired, the system generates the Simple J message output, λ(s), 

and changes to state δint(s). 

 

5.3.2.1 holdSend 

 holdSend is an atomic model that generates J messages.  The constructor of 

holdSend consists of five fields: model name, message type, wait time, message, and flag.  

The flag indicates the initial state of the atomic model.  If the flag is true, holdSend will 

start at the “Send” state; otherwise, it will start at the “Passive” state.  The elapsed time of 

the state is given by wait time.  When the resting time expires, λ(s) generates the two 
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outputs: a Simple J message based on message type and message, and a start signal.  

Figure 29 shows the state transition of the holdSend model. 

 

 
Figure 29: holdSend State diagram 

 

5.3.2.2 waitReceive 

 waitReceive is an atomic model that waits for an incoming J message and 

determines the experimental condition based on the received message and the pre-defined 

message.  The constructor of waitReceive consists of three fields: model name, message, 

and wait time.  The model begins at the “Passive” state.  When it receives a start event, 

the external transition function dictates a new state, “Wait,” with a new wait time.   If the 

model receives a J message event before resting time expires, it compares the received J 

message with the given J message.  If they are identical, it will print out a message 

indicated that the test is passed, and the state will change to “Success.”  λ(s) will generate 

a start signal output, and the internal transition function will change to the “Passive” state.  

If the messages are different, it will print out a failed message, and the state will change 

to “Passive.”  If the J message doesn’t arrive before the resting time expires, the test will 
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be failed, and the state will change to “Passive.”  Figure 30 shows the state transition of 

the waitReceive model. 

 
Figure 30: waitReceive State diagram 

 

5.3.2.3 waitNotReceive 

 waitNotReceive is an atomic model that idles the model for a given time if it is 

not expecting to receive any incoming message.  The constructor of this model has two 

fields: model name and wait time.  The model begins at the “Passive” state.  When an 

external event occurs, the external transition function dictates a new “Wait” state.  When 

the resting time expires, it generates a start output signal, and the internal transition 

function will change to the “Passive” state.  Figure 31 shows the state transition of 

waitNotReceive model. 
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Figure 31: waitNotReceive State diagram 

 

5.3.2.4 testSeqDigraph 

 testSeqDigraph is a coupled model that contains a sequence of atomic models.  It 

is equivalent to the BasicTestModel element described in the test model XML file.  The 

rules to build the testSeqDigraph coupled model are: 

• Multiple holdSend atomic models can be used, but waitReceive and 

waitNotReceive can only used once in each coupled model. 

• If a coupled model starts with the holdSend model(s), it must end with either 

the waitReceive or waitNotReceive atomic model. 

• If a coupled model starts with either waitReceive or waitNotReceive, no other 

atomic model can be added to this model. 

• Since the atomic and coupled models execute sequentially, the first atomic 

model in the first coupled model must be holdSend, and the start flag should 

be set to true. 

 

5.3.2.5 hierSeqDigraph 

Passive Wait 

(start, *) 

(pass, start signal) 
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 hierSeqDigraph is a coupled model that contains a sequence of testSeqDigraph 

coupled models.  It is equivalent to the CompositeTestModel element described in the 

test model XML file.  This coupled model is also known as the DEVS test model.  It 

describes the procedures of a particular test scenario in a hierarchical structure.  

 

5.3.3 View 

 The viewer extracts the output from the simulator and provides inputs to the 

controller.  In the Test Driver, we find the Simple J viewer and the HLA viewer.  The 

Simple J viewer extracts output from the simulator and provides inputs to the Simple J 

controller when the model receives J messages.  The HLA viewer provides inputs to the 

HLA controller when the model receives HLA messages.  In return, the HLA controller 

controls the model’s operations.  

 When the Test Driver adopts a new network simulation protocol, a new viewer 

can be developed by copying and modifying the existing viewer.  The new protocol 

usually will provide a set of methods to handle the operations, and the software engineer 

will replace the old operation methods with the new one. 

 

5.3.4 Controller 

 The Basic Controller translates the information received from the network 

simulation protocols and routes it to the correct controller.  There are two controllers 

derived from the basic controller: the Simple J controller and the HLA controller.  The 
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Simple J controller routes the messages to the DEVS simulator and the HLA controller 

routes the HLA messages to the model.   

In the original MSVC design, the simulator is derived from the controller and 

each controller can only have one simulator.  This one-to-one relationship is still valid in 

the enhanced MSVC design with a minor modification: the model can be controlled by 

the controller.  If the Test Driver supports multiple models, there will be multiple 

controllers to control multiple simulators and models. 

 

5.4 Activity Coordinator 

An activity coordinator is implemented to manage the communications between 

MSVC components using the Event Notification and Mediator pattern [18, 19].  An 

activity coordinator object acts as the mediator that links the coordinator to the simulator, 

views, and controller.  The UML diagram shown in Figure 32 describes the primary 

objects and their relationships. 
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Figure 32: Test Driver’s primary objects and their relationships 
 

The viewer objects and controller objects are the specialization of a thread class.  

The thread class supports independent execution of each object and coordination via 

inter-thread events.  The simulator object is derived from the controller.  The inter-thread 

events are exchanged through the activity coordinator.  There are two operations running 

in the Test Driver: 

1. The HLA viewer receives instructions from the test control federate via the 

HLA middleware.  It communicates with the HLA Controller via an inter-

thread event, and the controller handles the operations of the model. 

2. The Simulator generates Simple J messages.  The J messages are passed to the 

Simple J viewer through the activity coordinator via an inter-thread event.  

When the viewer receives an incoming message from the Simple J network, 



 77

the message is passed to the Simulator through the activity coordinator via 

inter-thread event.   
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6.  Experiment and Results 

 In this chapter, several experiments are conducted using the automated test 

generation processes shown in Figure 33.   The scenarios used in these experiments are 

auto correlation, decorrelation, report and responsibility shift, and drop track.  Each of 

these scenarios were performed against the Integrated Architecture Behavior Model 

(IABM) developed by the Joint SIAP System Engineering Organization (JSSEO).  The 

results of the scenarios were verified by the ATC-Gen Test Driver and validated using 

JITC’s TAMD Interoperability Assessment Capability (TIAC) tool.  Due to the 

classification levels of this system, the experimental results can not be shown.  Thus, the 

System under Test (SUT) test models are developed to allow the test driver to act as the 

SUT and allow the experiments to be conducted. 

 
Figure 33: Automated Testing 

 

6.1 Scenarios 

6.1.1 Auto Correlation 

 As MIL-STD 6016C stated, when a system receives a remote track from a remote 

system that is within the correlation window of the local track, it initiates the tentative 

Minimal Testable 
I/O Spec 

Test Model 
Generator 

DEV-C++ Source 
Codes 

Test Driver SUT 
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correlation process.  If a second track arrives within the local track correlation window, it 

shall be correlated and held as common local track by transmitting a correlation request 

to the remote system.  If the local track number is greater than the remote track number, 

the local system drops its own track and sends out a drop track notification; otherwise, 

the remote system drops its track and sends out the notification.  Figure 34 illustrates the 

auto correlation process in the sequential diagram. 

 
Figure 34: Auto Correlation Sequential Diagram 

 

The test engineer follows the sequential diagram to construct the minimal testable 

pairs.  Furthermore, the test models are generated using the Test Model Generator.  

Figure 35 illustrates the minimal testable pairs for SUT and Test Driver.   
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Figure 35: Minimal Testable I/O pairs for Auto Correlation 
 
 
6.1.2 Report and Responsibility (R2) Shift 

 As MIL-STD 6016C stated, the Joint Tactical Information Distribution System 

(JTIDS) unit (JU) reports the tracks on the interface, because it has the best positional 

data available.  A JU assumes R2 on a common local track if its track quality (TQ) at the 

time of transmission exceeds the received TQ by 2 or higher.  Figure 36 illustrates the R2 

process in the UML sequential diagram. 

 
Figure 36: R2 Shift Sequential Diagram 

J3.2 J3.2 

J7.2 J7.0 
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(Output from Test Driver) 

Output from SUT 
(Input to Test Driver) 
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In order to create the R2 minimal testable pairs, a common local track is created 

by the auto correlation process described in Section 6.1.1.  After the common local track 

is created, the SUT receives a J3.2 message from the remote system.  The SUT compares 

its own track quality to the received track quality.  If the SUT TQ is higher than the 

received TQ by 2, the SUT will send a J3.2 message back to the remote system and 

assumes reporting responsibility; otherwise, the remote system retains the reporting 

responsibility and continues to transmit J3.2 messages.  Figure 37 illustrates the minimal 

testable pairs for the SUT and the Test Driver. 

 
Figure 37: Minimal Testable I/O pairs for R2 Shift 

 

6.1.3 Decorrelation 

 As MIL-STD 6016C stated, the common local tracks shall be decorrelated if two 

consecutive remote track reports are received and the remote tracks falls outside a 

distance of 1.5 times the maximum correlation distance.  Figure 38 illustrates the 

decorrelation process in the UML sequential diagram. 

J3.2 J3.2 

J7.2 J7.0 

Inputs to SUT 
(Output from Test Driver) 

Output from SUT 
(Input to Test Driver) 

J3.2 

J3.2 with R2 

Auto 
correlation R2 
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Figure 38: Decorrelation Sequential Diagram 
  

 At the beginning, the common local track is assumed to be created by the auto 

correlation process described in Section 6.1.1.  The SUT receives a remote J3.2 air track 

message and compares remote air track position to the SUT air track position.  If their 

distance is 1.5 times greater than the maximum correlation window, the first 

decorrelation condition is met.  The SUT waits for a second J3.2 air track message and 

compares it to the SUT air track.  If the distance is also 1.5 times greater, the second 

condition is met.  The common local track will decorrelate and a new track number will 

be assigned to the local track.  Figure 39 illustrates the minimal testable pairs for the SUT 

and the Test Driver. 
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Figure 39: Minimal Testable I/O pairs for Decorrelation 
 
 

6.1.4 Drop Track 

 In MIL-STD 6016C, a drop track is used in many different situations, such as R2 

and auto correlation.  A simple scenario is chosen in this section to demonstrate the 

condition and the result of the drop track.  As MIL-STD stated, if for any reason, the 

simulation status of a track is changed, the track shall be dropped using J7.0 track 

management, ACT = 0 (Drop track report).  Figure 40 illustrates the drop track process in 

the UML sequential diagram. 
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J3.2 

Inputs to SUT 
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Output from SUT 
(Input to Test Driver) 
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Figure 40: Drop track Sequential Diagram 
 

 

When the SUT sends J3.2 air track message, it checks the status of the 

environment message field.  If the SUT changes the status of the track for any reason, a 

J7.0 drop track message will be sent after the J3.2 air track message.  Figure 41 illustrates 

the minimal testable pairs for the SUT and the Test Driver. 

 

Figure 41: Minimal Testable I/O pairs for Drop Track 
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6.2 SUT Model Creation 

 Due to the fact that the military hardware system is classified by DoD, the SUT 

models are created to verify the correctness of the test models.  The SUT models are 

implemented into the Test Driver and verify against the test model version via HLA 

middleware or Simple J protocol.  This DEVS inversion concept was first introduced by 

Song and Kim [20]. 

 

6.2.1 SUT Model 

 The SUT model is generated based on the test model generation concept 

described in Section 3.  Instead of going through the model mirroring process, the 

minimal testable I/O pairs directly transform into the SUT DEVS models.  The minimal 

testable representation has two operations: send message and receive message.  The 

holdSend atomic model is used to send message, and the waitReceive atomic model is 

used to receive message.  The transformation process follows the minimal testable pair 

concept in which an I/O pair has either a set or an empty set of inputs followed by an 

output.  Figure 42 illustrates the transformation from minimal testable pairs to the DEVS 

atomic models. 
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J3.2 SUT Input 

SUT Output 

waitRecv 
J3.2 

holdSend 
J7.2 
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Figure 42: SUT model for Auto Correlation 
 

6.2.2 Processing time 

 During the verification process, both Test Drivers are assumed started at the same 

time by a batch file.  Each DEVS atomic model is associated with a processing time.  If 

the models are transformed directly from the minimal testable pairs, both SUT and Test 

models will have the same processing times.  Even if both SUT and Test Model Test 

Drivers are perfectly synchronized in time, there ought to be some delays from either the 

computer network or the computer itself.  One of the Test Drivers will miss an incoming 

message because the resting time is expired in the atomic model, and the whole test 

scenario will fail.  In order to avoid this problem, two assumptions are made.  First, the 

SUT Test Driver always starts before the Test Model Test Driver.  Second, a time shift is 

added to the SUT model’s processing time.  The rules of the time shift are defined as 

follows, 

1. The first atomic model must be holdSend with processing time equaled to zero 

due to the behavior of the ADEVS simulation engine. 

2. If the current model is holdSend and the last model is not holdSend, the time 

shift is -2 second. 

3. If the current model is waitReceive and the last model is holdSend, the time 

shift is +2 second. 

Figure 43 below illustrates the execution time of the SUT and Test models of the auto 

correlation scenario by applying the time shift concept into the SUT.  Since the SUT 
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always starts before the Test Model, we can safely assume that the SUT is always 

running a few hundred milliseconds faster than the Test Model. 

 
Figure 43: SUT and Test Model Timeline for Auto Correlation 

 

6.3 Experiment Setup & Results 

 The auto correlation, decorrelation, report and responsibility shift, and drop track 

scenarios are created to demonstrate the correctness of the models generated by the Test 

Model Generator.  These models are implemented into the SUT and Test Model Test 

Drivers and communicate via Simple J protocol as illustrated in Figure 44.  The 

transmissions and the receipt of the Simple J messages of each scenario are captured by a 

Simple J network packet sniffer called TIAC Simple J parser.  The TIAC parser captures 

and decodes the Simple J messages, and the messages are saved into a log file.  The log 

file is analyzed and the data is verified to ensure that the scenario data is the intended 

behavior of the Test Driver.  

 

Figure 44: Test Drivers Setup Diagram 
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In this scenario, the Test Drivers are communicated via Simple J protocol.  The 

messages setup in the correct sequence and auto correlation is induced.  The SUT models 

and Test Models are generated by the Test Model Generator, and implemented into the 

Test Driver.  The SUT TD has the track number of 03000, and the Test Model TD has the 

track number of 00500.  The two J3.2 track positions of the Test Model TD are exactly 

the same as the SUT J3.2 track position.  This causes the tracks to correlate and creates a 

common local track with the track number of 00500.  The SUT TD sends a correlation 

request and drops the local track with the track number of 03000.  Figure 45 illustrates 

the outputs from the Test Model TD, and Figure 46 illustrates the results for the SUT TD. 

 

Figure 45: Test Model Test Driver successful Auto Correlation scenario 
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Figure 46: SUT Test Driver successful Auto Correlation scenario 

 

6.3.2 Failed Auto Correlation 

 This scenario is similar to the last one except the correlation process is failed.   

The Test Model TD sends out the two J3.2 track messages and waits for a J7.2 correlation 

request message and a J7.0 Drop Track message.  But, the SUT Test Driver is modified 

to receive only one J3.2 track message and initiate the correlation request.  This causes 

the Test Model TD to receive a J7.2 message prematurely while it is waiting for a J3.2 

message.  Figure 43 shows the outputs from the Test Model TD, and Figure 44 illustrates 

the results from the SUT TD. 
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Figure 47: Test Model Test Driver failed Auto Correlation scenario 

 

Figure 48: SUT Test Driver failed Auto Correlation scenario 

 

6.3.3 R2 Shift 
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In this scenario, the Test Drivers are communicated via Simple J protocol.  The 

messages setup in the correct sequence and the R2 shift is induced.  The SUT models and 

Test Models are generated by the Test Model Generator, and implemented into the Test 

Driver.  The SUT TD has the track number of 03000, and the Test Model TD has the 

track number of 00500.  After the correlation process, a common local track with track 

number of 00500 is created.  The Test Model TD has the reporting responsibility and 

sends out a J3.2 track message to the SUT Test Driver.  When the SUT TD receives the 

remote J3.2 message and compares its own TQ to the received TQ.  The SUT TD has the 

higher TQ than the Test Model TD, and it assumes the reporting responsibility.  Figure 

45 illustrates the Test Model TD outputs, and Figure 46 shows the results from the SUT 

TD. 

 

Figure 49: Test Model Test Driver successful R2 Shift scenario 
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Figure 50: SUT Test Driver successful R2 Shift scenario 

 

6.3.4 Decorrelation 

 In this scenario, the Test Drivers are communicated via Simple J protocol.  The 

messages setup in the correct sequence and decorrelation is induced.  The SUT models 

and Test Models are generated by the Test Model Generator, and implemented into the 

Test Driver.  The SUT TD has the track number of 03000, and the Test Model TD has the 

track number of 00500.  After the auto correlation process, a common local track with 

track number of 00500 is created.  The Test Model TD has the reporting responsibility 

and sends out a J3.2 track message to the SUT Test Driver.  When the SUT TD receives 

the remote J3.2 message and compares its own track’s position.  The remote track will 

start deviating from the local track.  At the end, the distance of the remote track will be 

1.5 times of the local track.  The SUT decorrelates and assigns a new track number of 
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3001 to the track.  Figure 51 shows the outputs of the remote system, and Figure 52 

illustrates the results of the local system. 

 

Figure 51: Test Model Test Driver Decorrelation scenario 

 

Figure 52: SUT Test Driver Decorrelation scenario 
 

6.3.5 Drop Track 
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 In this scenario, the Test Drivers are communicated via Simple J protocol.  The 

messages setup in the correct sequence and drop track is induced.  The SUT models and 

Test Models are generated by the Test Model Generator, and implemented into the Test 

Driver.  The SUT TD has the track number of 03000, and the Test Model TD has the 

track number of 00500.  This scenario assumes the SUT TD receives track information 

from the sensor simulation.  When the SUT TD receives the first position of a track, the 

environment status is set to live track and a J3.2 message is sent.  When it receives the 

second position of the same track, the environment status is set to simulated track and a 

J3.2 message is sent.  Because the environment status is changed, the SUT TD will drop 

the track and send out a J7.0 drop track message.  The Test Model TD will receive these 

messages and monitor the correctness of the scenario behavior.  Figure 53 shows the 

outputs of the remote system, and Figure 54 illustrates the results of the local system. 

 

Figure 53: Test Model Test Driver Drop Track scenario 
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Figure 54: SUT Test Driver Drop Track scenario  
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7.  Conclusion and Future Works 

 A new automated testing approach has been successfully developed in this thesis 

using System Entity Structure, the Extensible Markup Language, the Discrete Event 

System Specification, and the Model/Simulator/View/Controller design pattern.  The 

hierarchical structures of the SUT scenarios and Test models are represented by SES and 

written in XML format.  XML DTDs are developed based on the SES to verify the 

correctness of the XML files.  The processes of automated testing approach are defined 

as follows: 

1. The SUT scenario is constructed by the test engineer based on the system and 

the test requirement using the Minimal Testable Input/Output concept. 

2. DEVS test models are developed using the model mirroring by reversing the 

minimal testable pairs of the SUT. 

3. DEVS programming source codes are generated based on the test models. 

4. The DEVS source codes are implemented into the Test Driver. 

5. Test Driver executes the models and experiments against a real or simulated 

system. 

The automated testing approach is developed to perform conformance testing on 

the military TADIL-J systems.  This approach combines the system theory, the DEVS 

modeling and simulation framework, and the model continuity concepts to formulate and 

develop DEVS models.  It promotes the separations of models and simulator, which 

allows model reuse and develops models independently of the simulation engine.  The 

Test models are developed using the system specifications and DEVS framework by 
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collecting the input/output pairs with the initial states and describing the I/O behaviors in 

DEVS.  The simulators are well-defined for reusability and implemented according to the 

system behavior.   

MSVC design pattern used in the Test Driver provides a model for building 

distribution simulation for the automated testing.  MSVC promotes the component-based 

design and the reusability of the simulation software.  By applying this design pattern in 

conjunction with DEVS modeling and simulation framework, Test models and the 

simulators are developed separately, and we can attach any network simulation protocols 

to the simulation.  The models are expressed in the DEVS formalism, and the simulators 

are associated with ADEVS simulation engine to execute the models.  The well defined 

semantics of the DEVS modeling and simulation formalism allows the simulator to be 

encapsulated and reused.  The Test models developed under the automated testing 

guidelines are able to be executed by the Test Driver.   

The automated testing approach was used to verify the conformance of the 

Integrated Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results 

of the test scenarios were validated using the TIAC tool.  The SUT/Test model method 

was introduced in this thesis to verify the correctness of the DEVS models.  The 

transmissions and the receipts of the Simple J messages were captured by the TIAC tool.  

The system analyst interpreted and verified the messages, and determined whether these 

messages were the intended behavior of the Test Driver. 
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Future Work 

 Currently, the DEVS Test models are written in C++ source code.  When the 

models are changed, the Test Driver requires to recompile the source code.  An XML 

Test models shall be developed to eliminate the recompilation and achieve testing 

automation.  The simulators are well-defined based on the system behavior.  The Test 

Driver parses the XML models, generates the coupling and model behaviors on the fly, 

and executes the models to experiment with SUT. 

 The Test Driver is expanding into two testing modes: Reactive and Passive modes.  

In reactive mode, the Test Driver will receive and copy the incoming J3.2 message, and 

re-transmit this message to the link with its own track number.  The reason for the 

reactive mode is because the track positions from the Common Reference Scenario (CRS) 

file are different when we are testing different military systems.  In order to test the auto 

correlation function, we need to control the track location to induce correlation.  In 

passive mode, the Test Driver will monitor a specific system by listening and receiving 

TADIL-J messages from all the systems in the testing network.  It will use the test 

detector concept to determine whether the monitored system passes the certain Link 16 

conformance tests. 

 Ultimately, the Test Driver will be expanded into the distributed environment.  

All the testing introduced so far are in the one-to-one environment, and the Test Driver is 

always being tested against a particular military system.  In the future, the TD will 

expand into the one-to-many environment and will be able to test multiple military 

systems simultaneously. 
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