
AUTOMATED TESTING USING XML AND DEVS

By

Eddie Chee-Hung Mak

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL AND COMPUTING ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

2006

 2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of the requirements for an advanced
degree at the University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgement of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the head of the major department or the Dean of the Graduate College when in his or her
judgment the proposed use of the material is in the interests of scholarship. In all other
instances, however, permission must be obtained from the author.

 SIGNED: __________________________

APPROVED BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

________________________________ _____________________
Bernard P. Zeigler Date
Professor of Electrical and Computer Engineering

 3

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Bernard Zeigler, for the opportunity and

years of mentoring and encouragement. I would also like to thank Dr. Moon-Ho Hwang

for correcting and improving my thesis content and Dr. Salim Hariri for the time taken to

serve on the thesis committee.

Thanks to my family, Angelina, Natalie, and Emilie for their patience and support.

Special thanks to Dr. Jerry Couretas, who encouraged me to continue my education from

the beginning.

My sincere gratitude to Dr. James Nutaro, John Lee, Saurabh Mittal, and Fahad Bait-

Shiginah, who helped me in my research, thesis correction, and presentation preparation.

Finally, I would like to thank Dr. Philip Hammonds and everyone in the ACIMS lab and

the JITC ATC-Gen team for the support.

 4

Table of Contents

List of Figures.. 6
Abstract.. 9
1. Introduction.. 11

1.1 Motivation.. 12
1.2 System Modeling Concepts .. 14

1.2.1 System Specifications... 14
1.2.2 Framework for Modeling and Simulation ... 15
1.2.3 Model Continuity ... 16

1.3 Plan of Thesis .. 17
2. Backgrounds ... 19

2.1 Automated Test Case Generation (ATC-Gen) ... 19
2.2 High Level Architecture (HLA)... 23

2.2.1 HLA Overview ... 23
2.2.2 Object Oriented HLA Interface ... 26

2.3 Distributed Simulation ... 27
2.3.1 Component based design in distributed simulation.................................... 28
2.3.2 Supporting multiple network protocols ... 28

3. Test Model Generator (TMG) .. 30
3.1 Building Blocks ... 30

3.1.1 Extensible Markup Language (XML).. 30
3.1.2 System Entity Structure (SES) ... 31
3.1.3 Minimal Testable Input/Output Pairs ... 33

3.3 Test Model Generation ... 36
3.3.1 IO Minimal Testable XML file ... 36
3.3.2 Mirror Image of I/O Pairs... 37
3.3.3 Primitives of Basic Test Model ... 38
3.3.4 Composite Test Model ... 40
3.3.5 Automating the Mapping from Minimal Testable Pairs to Test Models.. 41
3.3.6 DEVS Code Generation... 43

4. Generic HLA Wrapper.. 46
4.1. HLA Compliance Software Development.. 46
4.2 DEVS Simulation Support ... 48
4.3 Architecture... 49

4.3.1 Generic Data Type ... 50
4.3.1.1 Entity... 51
4.3.1.2 HLA_Attributes/HLA_Parameters .. 51

4.3.2 Generic HLA interface .. 52
4.3.2.1 HLA_Object.. 53
4.3.2.2 HLA_ObjectClass... 54
4.3.2.3 HLA_InteractionClass ... 55
4.3.2.4 HLA_Federate.. 56

 5

4.4 HLA Simulation Setup ... 56
5. Test Driver .. 59

5.1 Building Blocks ... 59
5.1.1 DEVS Specification .. 59
5.1.2 Experimental Frame .. 62
5.1.3 Model/Simulator/View/Controller (MSVC) Design Pattern...................... 63
5.1.4 A Discrete Event System Simulator (ADEVS) .. 65

5.2 Enhanced MSVC Design Pattern .. 65
5.3 MSVC Components .. 67

5.3.1 Model... 68
5.3.2 Simulator .. 69

5.3.2.1 holdSend ... 70
5.3.2.2 waitReceive ... 71
5.3.2.3 waitNotReceive ... 72
5.3.2.4 testSeqDigraph ... 73
5.3.2.5 hierSeqDigraph .. 73

5.3.3 View ... 74
5.3.4 Controller.. 74

5.4 Activity Coordinator... 75
6. Experiment and Results .. 78

6.1 Scenarios .. 78
6.1.1 Auto Correlation .. 78
6.1.2 Report and Responsibility (R2) Shift.. 80
6.1.3 Decorrelation .. 81
6.1.4 Drop Track ... 83

6.2 SUT Model Creation... 85
6.2.1 SUT Model .. 85
6.2.2 Processing time... 86

6.3 Experiment Setup & Results.. 87
6.3.1 Successful Auto Correlation.. 87
6.3.2 Failed Auto Correlation .. 89
6.3.3 R2 Shift .. 90
6.3.4 Decorrelation .. 92
6.3.5 Drop Track ... 93

7. Conclusion and Future Works.. 96
Future Work.. 98

 6

List of Figures

Figure 1: Basic M&S Entities and their relationships .. 16
Figure 2: IF-THEN rule format... 20
Figure 3: XML RuleSet .. 21
Figure 4: HLA Simulation .. 25
Figure 5: SES nodes structure... 33
Figure 6: Variants of Input/Output Pairs .. 34
Figure 7: Minimal Testable Input/Output Pairs .. 34
Figure 8: Test Model Generator.. 36
Figure 9: IO Minimal Testable SES Diagram & XML Tags.. 37
Figure 10: Mirror Image of Input/Output Pairs .. 38
Figure 11: Using the primitives to construct test model ... 39
Figure 12: Basic Test model ... 40
Figure 13: Composite Test model... 41
Figure 14: Mapping Minimal Testable pairs into Test Model SES.................................. 42
Figure 15: Associations between Java methods and SES nodes....................................... 45
Figure 16: HLA Simulation program structure... 48
Figure 17: HLA and Simulator Communication .. 49
Figure 18: Generic data types ... 50
Figure 19: Generic HLA interface .. 53
Figure 20: Generic HLA Data List ... 54
Figure 21: ParameterSetup method... 57
Figure 22: Classic DEVS Specification.. 60
Figure 23: Parallel DEVS Specification ... 61
Figure 24: Coupled DEVS Specification.. 61
Figure 25: Experimental Frame .. 63
Figure 26: MSVC components and their relationships... 64
Figure 27: Enhanced MSVC paradigm with multiple controllers 66
Figure 28: Mapping Test Driver model onto a hierarchical simulator 69
Figure 29: holdSend State diagram... 71
Figure 30: waitReceive State diagram .. 72
Figure 31: waitNotReceive State diagram .. 73
Figure 32: Test Driver’s primary objects and their relationships 76
Figure 33: Automated Testing .. 78
Figure 34: Auto Correlation Sequential Diagram... 79
Figure 35: Minimal Testable I/O pairs for Auto Correlation.. 80
Figure 36: R2 Shift Sequential Diagram ... 80
Figure 37: Minimal Testable I/O pairs for R2 Shift .. 81
Figure 38: Decorrelation Sequential Diagram .. 82
Figure 39: Minimal Testable I/O pairs for Decorrelation... 83
Figure 40: Drop track Sequential Diagram... 84
Figure 41: Minimal Testable I/O pairs for Drop Track .. 84

 7

Figure 42: SUT model for Auto Correlation... 86
Figure 43: SUT and Test Model Timeline for Auto Correlation 87
Figure 44: Test Drivers Setup Diagram.. 87
Figure 45: Test Model Test Driver successful Auto Correlation scenario 88
Figure 46: SUT Test Driver successful Auto Correlation scenario 89
Figure 47: Test Model Test Driver failed Auto Correlation scenario............................... 90
Figure 48: SUT Test Driver failed Auto Correlation scenario ... 90
Figure 49: Test Model Test Driver successful R2 Shift scenario...................................... 91
Figure 50: SUT Test Driver successful R2 Shift scenario... 92
Figure 51: Test Model Test Driver Decorrelation scenario .. 93
Figure 52: SUT Test Driver Decorrelation scenario... 93
Figure 53: Test Model Test Driver Drop Track scenario ... 94
Figure 54: SUT Test Driver Drop Track scenario .. 95

 8

List of Tables

Table 1: Hierarchy of System Specification ………………………………………... 14

 9

Abstract

 With the modernization of Department of Defense (DoD) systems and the

growing complexity of communication equipment, traditional test methods and processes

have no choice but to evolve in order to maintain their effectiveness. DoD acquisition

policy requires using modeling and simulation in all phases of system development life-

cycles to ensure technical certification and mission effectiveness. The complexity of

these systems poses significant challenges over traditional interoperability test

methodologies. The Automated Test Case Generator (ATC-Gen) funded by the Joint

Interoperability Test Command captures Military Standard (MIL-STD) 6016C document

and translates it into rules. These are in turn formalized into test cases using Discrete

Event System (DEVS) Specification. In this thesis, we present a new methodology to

generate the test models and perform conformance testing using system theory, the

DEVS modeling and simulation framework, the System Entity Structure (SES), and the

Extensible Markup Language (XML). This new methodology promotes the separation of

the models, the simulator, and the distributed simulation. These separations distinguish

and promote reusability by developing models, simulator and distributed simulation

independently. The DEVS test models are generated from the test cases by the Test

Model Generator using the system specifications. These models are written in an XML-

SES format; the resulting C++ DEVS source code is generated based on the test model

XML file. The Test Driver was designed based on Model/Simulator/View/Control

(MSVC) design pattern and developed to execute the DEVS test models. MSVC

supports models and simulators separation design. It was also designed to support

 10

multiple network simulation protocols and rapid software modifications in order to

incorporate new network protocols to the simulation software.

 This methodology was used to verify the conformance of the Integrated

Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results of the test

scenarios were validated using the Theater Air and Missile Defense (TAMD)

Interoperability Assessment Capability (TIAC) tool. The TIAC tool captured the

transmissions and the receipt of the tactical data messages from the Test Driver. The

system analyst interpreted and verified the messages, and determined whether these

messages were the intended behavior of the Test Driver.

 11

1. Introduction

In the 1990s, the military began using simulation to enhance its training exercises.

The extensive use of simulation in military exercises resulted in significantly improved

training progress, which in turn led to the development of widely-used simulation

protocols in the defense community, such as Distributed Interactive Simulation (DIS) and

High Level Architecture (HLA) [21]. Since then, system development has increasingly

made use of modeling and simulation, and the performance of testing on military systems

has become a greater challenge.

With the modernization of Department of Defense (DoD) systems and the

growing complexity of communication equipment, traditional test methods and processes

have of necessity evolved to maintain their effectiveness. Testing systems of systems in

their operational environment rather than in the lab environment has become necessary,

and in an interoperability testing environment, the level of complexity has increased

substantially owing to the presence of many different types of military equipment and

systems being connected together using diverse middleware and network simulation

protocols. Systems interoperate using either common simulation protocols or protocol

transition gateways. With the increased system complexity, testing methodology has to

become more rigorous, in-depth, and thorough.

As detailed in recent DoD reports [1,2], when modeling and simulation is

properly used, it provides assistance to formulate system capabilities, compares the

cost/benefit ratios of various alternative designs and evaluates their projected

effectiveness. In this thesis, we discuss an automated testing framework based on

 12

Discrete Event System Specification (DEVS) modeling and simulation formalism,

Extensible Markup Language (XML), and System Entity Structure (SES), being

introduced at DoD’s Joint Interoperability Test Command (JITC) for interoperability

testing. This framework supports the separation of experimentation, models, and

simulators. The experimental frames are developed to support reusable models and

simulators based on the DEVS formalism and dynamic system theory. The hierarchical

structures of the models are represented by SES and written in XML format to promote

extensibility and interoperability. In order to support the separation of models and

simulators in the software development, the Model/Simulator/View/Controller design

pattern provides the framework to support model execution and multiple network

simulation protocols.

1.1 Motivation

The military simulation training and developments described above was

successful, which led directly to more intensive use of modeling and simulation in system

development and a revised policy for acquiring new systems known as Simulation-Based

Acquisition. This required the using of modeling and simulation in all phases of system

development life-cycles. JITC took the initiative to employ modeling and simulation

(M&S) to increase its simulation-based testing capabilities and automation of the testing

processes, increasing the effectiveness and responsiveness of the testing [3]. One of the

critical areas JITC identified was that Military Standard (MIL-STD) 6016C (also known

as TADIL-J standard) had been found to present certain obstacles to traditional test

 13

approaches that had not been overcome. Thus, the development of an M&S-based

approach automating the Link-16 testing process and applying to standards conformance

testing, was initiated.

The automated testing framework introduced in this thesis is a part of the

Automated Test Case Generator (ATC-Gen) research project funded by JITC to support

the mission of standards compliance and certification. With the advent of simulation-

based acquisition, the test requirements in the simulated environment becomes how to

automate and more precisely the scope, the completeness, and the methodology for

updating conformance testing. The incorporation of the Systems Theory, the modeling

and simulation concept, DEVS, XML, SES, and the MSVC design pattern all contribute

to the development of ATC-Gen to automate the TADIL-J conformance testing,

increasing the productivity and effectiveness of the software test tools at JITC.

Many testing methodologies were developed to assist the test engineers to

perform conformance testing over the past decades [21]. ATC-Gen is interested in a

particular methodology in which the test exercises are carefully planned and the

participants are given test scripts and roles to play in a simulated environment. ATC-Gen

becomes a participant in a testing environment that can monitor a specific function of the

MIL-STD 6016C and exchange tactical data messages with the other players. By

interpreting the transmissions and the receipt of the tactical data messages, ATC-Gen is

able to determine the degree to which a system conforms to the TADIL-J standard.

The automated testing framework is developed based on three concepts: SES,

DEVS, and XML. SES can represent a family of hierarchical DEVS models, and serves

 14

as a means of organizing the configuration of a model to be designed, which is extracted

from a pruning process. Pruning reduces the number of probable models to meet the

system requirement. In the automated testing framework, the minimal testable I/O pair

and the test model are represented by Pruned Entity Structures (PES). The test models

obtained via PES are in executable form. XML uses elements to break up the test model

into hierarchical form, and it can be used to represent the SES hierarchical structure. PES

is directly mapped into XML, and the three SES modes become XML elements. XML-

PES offers simplicity, extensibility, and interoperability. The test models are represented

in XML-PES, which can be transformed into DEVS C++ source code.

1.2 System Modeling Concepts

 In this section, we review the system theory [4], the M&S framework [4], and

model continuity [4]. The automated testing approach is developed according to these

concepts.

1.2.1 System Specifications

The hierarchy of System Specifications employs a general concept of dynamical

system and defines levels at which a system may be known or specified and provides a

mathematical underpinning to define a framework for modeling and simulation. Table 1

shows the Hierarchy of System Specifications [3].

1. At level 0, we deal with the input and output interface of a system over a time

base.

 15

• At level 1, we observe the behavior of the system by gathering a collection of all

I/O pairs.

• At level 2, we add the initial states to the specification. When the initial states are

known, there is a functional relationship between the inputs and outputs.

• At level 3, the system is described by the state space and the state transition

functions. The transition function describes the state changes as the system

responds to inputs and generates outputs.

• At level 4, we specify how the system is composed of interacting components in a

coupling structure. Each component is a system on its own with state set and state

transition functions. One property of a coupled system, called “closure under

coupling,” guarantees that a coupled system at level 3 itself specifies a system.

This property allows hierarchical construction of systems, i.e., that coupled

systems can be used as components in larger coupled systems.

Level Name What we specify at this level
4 Coupled

Systems
System built up by several component systems which are
coupled together

3 I/O System System with state and state transitions to generate the
behavior

2 I/O
Function

Collection of input/output pairs constituting the allowed
behavior partitioned according to the initial state the system
is in when the input is applied

1 I/O
Behavior

Collection of input/output pairs constituting the allowed
behavior of the system from an external Black Box view

0 I/O Frame Input and output variables and ports together with allowed values

Table 1: Hierarchy of System Specification

1.2.2 Framework for Modeling and Simulation

 16

 The modeling and simulation framework defines entities and their relationships

that are central to the M&S enterprise [4]. The basic entities of the framework are source

system, model, simulator, and experimental frame as illustrated in Figure 1, and they are

linked to the modeling and simulation relationships.

Figure 1: Basic M&S Entities and their relationships

1.2.3 Model Continuity

Model continuity refers to the ability to transition as much as possible of a model

specification through the stages of a development process. The component models of a

distributed system can be tested incrementally and deployed to a distributed environment

for execution. It supports a design and test process in four steps [5]:

1. Conventional simulation to analyze the system under test within a model of the

environment linked by abstract sensor/actuator interfaces.

2. Real-time simulation, in which simulators are replaced by real-time execution

engines while leaving the models unchanged.

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

 17

3. Hardware-in-the-Loop (HIL) simulation in which the environment model is

simulated by a DEVS real-time simulator on one computer while the model under

test is executed by a DEVS real-time execution engine on the real hardware.

4. Real execution, in which DEVS models interact with the real environment

through the earlier established sensor/actuator interfaces that have been

appropriately instantiated under DEVS real-time execution.

Model continuity reduces the occurrence of design discrepancies throughout the

development process, thus increasing the confidence that the final system realizes the

specification as desired.

1.3 Plan of Thesis

 The next chapter of the thesis discusses the background of ATC-Gen, High Level

Architecture, and distributed simulation. In Chapter 3, the system theory used to create

the input/output pairs is discussed, and the transformation from I/O pairs to test models is

illustrated. Chapter 4 presents the generic HLA wrapper, which allows rapid

modification of the simulation software to reduce the development time in HLA

simulations. Chapter 5 discusses the use of MSVC design patterns to develop simulation

software. The MSVC pattern enhances the reusability of the simulation software and

allows for the test models, the simulators, and the generic HLA wrapper to be developed

separately. Four real test scenarios are illustrated; the method of SUT test models

development is shown in Chapter 6. These scenarios were tested by the Joint SIAP

System Engineering Organization (JSSEO) using the Integrated Architecture Behavior

 18

Model (IABM) and verified by the ATC-Gen Test Driver. The experimental results in

this thesis were run against the SUT Test Driver due to the fact that the IABM is

classified by the Department of Defense. Finally, Chapter 7 concludes the thesis with the

discussion of future work.

 19

2. Backgrounds

2.1 Automated Test Case Generation (ATC-Gen)

 ATC-Gen is composed of several stages that are developed in conjunction with

DEVS formalism. It applies DEVS to the formalization of Military Standard (MIL-STD)

6016C. The MIL-STD is written in natural language, and can be formalized into the

system theory framework by putting a set of requirements in the natural language. By

combining system theory and DEVS, the formalization can be transformed into an

executable simulation model, and the model can be implemented for testing. By using

software tools and modeling packages, the test model can be derived and generated from

the natural language. Then, these test models are transformed into an executable format

and deployed by the Test Driver to perform testing on the SUT. The processes described

above become automated testing.

The first stage is Rule Capturing, which captures and formalizes the MIL-STD

6016C in XML format. The military standard is written in the form of natural language,

but do not support the systematic study of large-scale intelligent system. By translating

the MIL-STD to a constrained form of natural language that is used in describing system

behavior, analysis will be easier. Natural language statements, such as “IF, THEN” used

in knowledge-based expert system and artificial intelligence will be suitable to describe

the system behavior. The disadvantage of the natural language statement is that it is

incapable of describing the time behavior of the system. It can be overcome by using a

finite state machine which will be described in stage 3. Capturing requires analysts to

read and interpret the standard. Formalizing requires the analysts to identity ambiguous

 20

requirements and extracts the state variables and rules. The rules are written in the “If,

Then” format as Figure 2, and these rules are not associated with time.

Figure 2: IF-THEN rule format

 To illustrate this, let us consider a simple system consisting of a vending machine

and a customer. The vending machine is in idle state if there is no customer present. In

addition, the vending machine does not dispense any item if the customer does not put

correct amount of money. It dispenses an item if the correct amount of money is inserted

into the machine. This simple system can be described by three statements without any

time reference:

1. If the vending machine is idle, there is no customer.

2. If the customer doesn’t insert the correct amount of money, no item will be

dispensed.

3. If the customer inserts enough money, an item will be dispensed from the

machine.

There are two state variables in the above example: money and item. Money represents

the amount of money required to purchase the item, and item represents the product that

the customer wishes to get from the machine. The “IF, THEN” statements can be written

into the XML format. XML uses a generic syntax to markup the document with tags, and

enhances the structure of the information and identifies the relationship in the document.

An XML document can be used in many different applications and allows for the

If X is true,

Then do action Y later

 21

document to be queried a meaningful way. But first, a XML Document Type Definition

(DTD) or schema must be created to validate and provide the correct syntax to the XML

document. Tags are the legal building blocks of the XML document as shown in Figure

3. Each statement in the below figure is considered as a rule. Each rule is composed of

conditions and actions. Conditions and actions can have state variables. The

combination of all rules in an example is a rule set. Based on these guidelines, the

vending machine example is translated to XML format as follows:

<RuleSet>
 <name>Vending machine example</name>
 <rule name="1">
 <condition txt="If vending machine is idle">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="no action"/>
 </rule>

 <rule name="2">
 <condition txt="If customer inserts insufficient money">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="no item is dispensed">
 <var name="item" varType="String"/>
 </action>
 </rule>

 <rule name="3">
 <condition txt="If customer inserts enough money">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="dispense item that is chosen by the customer">
 <var name="item" varType="String"/>
 </action>
 </rule>
</RuleSet>

Figure 3: XML RuleSet

Stage 2 consists of the Rule Set Analyzer. It employs the Dependency Analyzer

(DA) to determine useful relationships among rules. The DA is a DEVS tool and

provides a visual display of dependencies, allowing selection of test sequences by the test

 22

engineer. The DA uses DTDs specially written for the project to validate the syntax of

the XML files. As mentioned briefly above, the DTD ensures the correctness of the

XML files before further processing. Once the syntax is validated, all the rule sets in the

XML files will be stored in memory. The DA will determine, manipulate and reorganize

all the rules and variables, allowing potential dependencies to surface if shared state

variables are identified between pairs of rules. Finally, all the rules and variables will be

stored in a single new XML file, which will be used when creating test sequences in the

next stage.

 Stage 3 is Rule Formalization and Test Model Generation, which consists of

selecting and formulating the test sequences; test models are generated from these

sequences. The test engineer formulates test sequences in accordance with the structure

of the testing requirements, and converts them into executable simulation models. The

DA is executed in order to restore the XML files and the rules created at the end of stage

2, producing a file containing all the possible paths through the simulation and the

information required to build a visual representation of the rule connections. By invoking

the GUI, it displays the rules by level and shows the sequence of rule firing, providing a

visual organization of the rules and their interrelationships and allowing the test engineer

to examine the paths that are created between rules in order to finds any potential errors.

Although the DA shows all the possible paths, an identification of all possible paths is

impractical owing to the fact that not all paths are useful. The test engineer manually

examines all feasible paths and creates a test case according to the specification and

requirement. The test case is the description of the desired SUT behavior in the minimal

 23

testable input/output representation. Based on the minimal table I/O pairs, the test model

generates the DEVS test model in C++.

 Stage 4 is consists of running the DEVS test model against a real

hardware/software system. The Test Driver is an experimental frame which is capable of

executing the test model behavior and interacts with and connects to the System Under

Test (SUT) via a High-Level Architecture (HLA) or Simple J interface. The Test Driver

performs SUT conformance testing by inducing the testable behavior expressed in the

models into the SUT and checking the responses for accuracy.

2.2 High Level Architecture (HLA)

2.2.1 HLA Overview

Traditional simulation models have often lacked reusability and interoperability.

The High Level Architecture (HLA) [6] is a standard framework developed by the

Defense Modeling and Simulation (DMSO) of the Department of Defense (DoD) to

support component simulation models, in which the models can be reused and combined

in distributed simulation. HLA consists of three components: Federation Rules, the

Interface Specification, and the Object Model Template. There are ten HLA rules which

must be obeyed in order to be regarded as HLA compliant, consisting of five federation

rules and five federate rules. The federation rules are the ground rules for creating a

federation, and federates are governed by the federate rules. The HLA Interface

specification is implemented by the Run-Time Infrastructure (RTI). RTI is a software

application which provides common services to support an HLA-compliant simulation.

 24

The RTI services separate simulations and communication, and provide communications

and management between federates. The Object Model Template (OMT) provides a

standard for documenting HLA Object Model information. All objects and interactions

managed by a federate and visible out the federate should be specified in the OMT format.

It provides a common mechanism for specifying the data exchange and coordination

between federates and describing the capabilities of potential federates. The OMT

defines the Federate Object Model (FOM), the Simulation Object Model (SOM), and the

Management Object Model (MOM). Each federation is implemented according to the

FOM, and federates are implemented according to the SOM. FOM specifies the data

exchange among federates, and SOM specifies the capabilities of the federates provided

to the federation.

The HLA Interface specification is divided into 6 management areas. Each area plays

an important role between federates and their associated federations. The basic functions

of each management area are:

1. Federation Management – coordinates activity and manages federation execution.

2. Declaration Management – coordinates data execution and specifies data type

send and receive.

3. Object Management – creates, manages, modifies, and deletes objects. It also

coordinates attribute updates.

4. Ownership Management – supports transfer of ownership for object attributes.

5. Data Distribution Management – coordinates information routing.

6. Time Management – coordinates federate time advances.

 25

Figure 4 [6] shows the interactions of RTI, federations, and federates in the

simulation world. Each federation has its own OMT and is described in the FED file

format. Furthermore, each federate within a federation is created according to the OMT.

RTIExec and FedExec are RTI components. RTIExec manages the creation and deletion

of federations, while FedExec manages federates joining and resigning from the

federation, and manages data exchanges between federates. RID stands for RTI

Initialization Data. It provides information to run an RTI.

Figure 4: HLA Simulation

There are several processes which can initiate and run the HLA simulation. First,

the software programmer develops a federate based on the OMT specification. Second,

the user starts “RTIExec” before executing the federate. If the federation already exists,

the federate will join the federation automatically. Otherwise, the federate acts as a

manager and creates a federation execution, and then joins the federation. The messages

 26

distributions are managed by Publish and Subscribe methods. Each federate performs a

service, and it uses Publish and Subscribe to exchange data between federates. The

Publish method is used to publish the object classes, object attributes, and interaction

classes to the RTI; each federate indicates an interest in certain object classes/attributes

and interaction classes it wishes to receive by invoking the Subscribe method in

RTIambassador. Third, the registration, updates, discovery, and reflection of the object

classes are handled by object management, which also handles sending and receiving for

interaction classes. In order for the federation to be aware the existence of a federate, it is

required to register the object instance to the RTI. Once the object exists, RTI informs

other federates that are interested in this particular object by using the Discover method.

When the federate updates the attributes associated with a registered object, the federate

encodes the data and calls the Update method to inform RTI, which in turn uses the

Reflect method to update the data to the interested parties. Interactions use the Send and

Receive methods to handle the parameters instead of Update and Reflect, the difference

being that in the latter the object persists, but the interaction does not. An object can

specify which attributes should be published, while an interaction requires publishing all

parameters. Last, before terminating the federate, the objects/interactions are removed

and the federate is resigned from the federation.

2.2.2 Object Oriented HLA Interface

 HLA simulation development is quite different from developing DEVS-based

simulations, and software engineers are often subjected to a learning curve in order to

 27

develop HLA simulations. There is the need for a core HLA design philosophy to guide

the development of a robust and interoperable interface that goes beyond current HLA

development. Lockheed Martin Advanced Simulation Center [7] had developed an

object-oriented HLA interface that provides a clean conceptual and architectural

separation of the simulation from distributed computing components. The HLA interface

allows software engineers without extensive simulation experience to develop HLA

compliance simulation, thereby accelerating the simulation development without forcing

the engineers through the HLA learning curve.

2.3 Distributed Simulation

The three components required for the development of simulation software in

distributed simulations are model, simulation framework, and middleware. Model is a

physical or logical representation of a proposed or real system. A simulation model can

be a set of instructions, equations, or constraints for generating I/O behavior. A

simulation framework is a defined simulation structure which obeys the instructions of

the model and is capable of executing the model to generate its dynamic behavior.

Middleware provides a set of services allowing the data exchange between simulation

applications. Test Driver development is focused on a design which promotes model

reuse by developing models independently of the simulation engine. This design

distinguishes the separation of model and simulator, and the simulation framework is

adapted to the network protocols or middleware.

 28

2.3.1 Component based design in distributed simulation

Simulation software development has been focusing on component-based design.

It is different from the traditional object-oriented (OO) design, which allows the reuse of

object classes at the design and implementation level. In contrast, component-based

design enables the reuse of the components at the deployment level. Components are like

building blocks, representing complete pieces of functionally that are ready to be used.

When these blocks are combined together, a useful software application is created.

Component-based design has increasingly gained popularity because of its reusability and

portability. It reduces the cost and the time of software development without

compromising software quality. Furthermore, the components can be reused in the same

or different applications. When component-based design is incorporated with modeling

and simulation, it provides separation between models, simulators, and distributed

computing. This approach allows the model to remain unchanged and independent of the

simulation framework, which is in turn adapted to the selected network simulation

protocols. Components separation allows for the addition of middleware to the

simulation framework. In some cases, the time management of the middleware is limited

by the simulation framework [8]. This approach seems restrictive, but it provides a

framework to validate the models and verify the simulators.

2.3.2 Supporting multiple network protocols

It is common to require a single simulation software application to support

multiple network protocols in an interoperability testing environment, such as training

 29

exercises and systems evaluation. Interoperability testing often links multiple platforms

or systems together in a heterogeneous environment, such as hardware in the loop

systems, live systems, and other simulation software systems. These systems often

support only selected network simulation protocols. To permit the simulation software

collaboration in such an environment, the software must be able to support multiple

network protocols simultaneously. For example, a control manager is often used to

remotely supervise the operations of all test systems and simulation software in a large-

scale testing environment, such as time synchronization and software start/stop using a

selected middleware application. The simulation software may transmit its simulation

results to other platforms or software using another network protocol. To increase the

ability of the simulation software to support multiple network protocols during its

lifetime, a new architecture is required to rapidly modify the software in support of new

network simulation protocols, taking advantage of the separation between models,

simulators, and middleware. If the model and simulator can be distinguished in the

simulation software, it will guarantee the model behavior will be unchanged by other

simulation environment, and any middleware can be added to the existing simulation

framework.

 30

3. Test Model Generator (TMG)

3.1 Building Blocks

3.1.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) [9] is an open standard meta-markup

language defined by the World Wide Web Consortium (W3C) for text documents. It

uses a generic syntax to markup the data using human readable tags. The markup data

enhances the structure of the information and identifies the relationships between data.

The basic unit of XML markup is called an element, which is the most common object

type of XML. They break up a document into a smaller structure and organize it into a

hierarchical form. Elements can be empty, containers, or holding texts, etc. Tags are

used to mark the boundaries of elements. An XML element consists of a start tag and an

end tag. Additional data, such as comments and special instructions, can be specified in

the tag. XML doesn’t have a predefined set of tags and elements, and it works for all

areas of interest. However, the XML standard specifies the format of tags and elements.

It defines how tags should appear and where they may be placed. Also, it defines the

element-naming scheme and where the attributes attach, and so forth. The XML standard

allows for the development of XML parsers and accesses any XML document. The

parser relies on the tags to break down the documents and processes the XML document.

The XML document is well-formed if it satisfies the XML standard; the XML processor

will reject the document if it is not well-formed.

Some programs may perform special operations and require the use of specific

tags. These specific sets of tag are called applications of XML. An XML application is

 31

not a software program, but it uses specific tag sets in a particular operation. A valid

document is an XML document whose syntax has been validated, most commonly via

schemas or document type definitions (DTDs). A DTD is a collection of declarations

describing elements, attributes, parameters, and other markup. It is written to describe

precisely which elements can appear in a particular location and what the contents are.

An element declaration defines a new element type, the order, and what it can contain.

Any element type not declared in the DTD but used in the document is illegal. The

disadvantages are the complexity and the lack of restrictions on the actual data types in

each element’s content. An XML schema is an alternative to the DTD. It defines the

building blocks of an XML document, and it is simpler, more powerful and precise than a

DTD. The XML schema language is referred to as XML Schemas Definition (XSD).

Schemas can create simple and complex data types, restrict the data type, inherit syntax

from other schemas, restrict schema inheritance, create attribute groups and support

namespaces, and more.

3.1.2 System Entity Structure (SES)

 System Entity Structure (SES) formalism is a knowledge representation scheme

for systematically organizing a family of models containing decomposition, taxonomy,

and coupling relationships among entities. Decomposition represents how entity can be

decomposed into sub-entities. Taxonomy represents how entities can be categorized and

sub-classified. Coupling represents how sub-entities are joined together to recompose the

 32

entity. The representation of SES is a labeled tree with attached variables that satisfy the

following six axioms [10]:

1. Alternating mode: Entity is the root mode. A node and its successor node always

have the opposite modes. For example, if a node is entity, its successor is either

aspect or specialization.

2. Strict hierarchy: A label only appears once in any path of the tree.

3. Uniformity: If the nodes have the same names, they will have identical variables

and isomorphic sub-trees.

4. Valid brothers: No two brothers have the same label.

5. Attached variables: variable names must be unique in each node.

6. Inheritance: every entity in a specialization inherits all the variables, aspects, and

specializations from the parent of the specialization.

There are three types of nodes: entity, aspect, and specialization. Entity is a real

world object, and it may have attached variables. It can be identified as either a

composite entity or an atomic entity. Atomic entities cannot be broken down into sub-

entities, while composite entities can. An aspect represents a decomposition of the entity.

The children of an aspect are entities representing the decomposed components. A

specialization defines the taxonomy of the entity, and it is used to classify the general

entity into specialized entities. The children of a specialization are entities representing

the variation of its parents. Figure 5 illustrates the alternate modes of SES.

 33

Figure 5: SES nodes structure

3.1.3 Minimal Testable Input/Output Pairs

 In a basic operation, there are many possibilities to characterize the I/O behavior

at Level 1 of the system specification, such as which input values are paired to produce

an output value and the order of the inputs and output pairing [3]. Figure 6 shows the

complexity involved in the Level 1. If the initial messages X(x) and Y(x) arrive, an

output of Z(x+y) is produced. However, when the second message Y(y’) arrives, the

SUT can produce or not produce an output of Z(x+y’). If the second Y message does not

produce an output, the SUT will produce an output Z(x’+y’) if the second X(x’) message

arrives.

Entity

Entity1 Entity2 Entity3

Entity22 Multiple Aspect

Entity221

Entity2 Dec

Entity21 Entity22

 34

Figure 6: Variants of Input/Output Pairs

It is easier to handle I/O segments with limited complexity. The tests can be

synthesized from the segments because each I/O pair has a finite number of input

messages and output message in its interval. Thus, the concept of a minimal testable pair

is introduced, in which the output segment has at most one event at the end of the

segment in an I/O pair. The I/O pair can be easily extracted from the system

specification at Level 2, because each input stimulus produces a unique output if the

initial state is given. Figure 7 illustrates the minimal testable input/output pairs. The

minimal testable I/O pairs are in sequential order, and the original I/O pair can be easily

reconstructed from the minimal I/O pairs.

Figure 7: Minimal Testable Input/Output Pairs

X(x) Y(y)

Z(x+y)

X(x’)

Z(x’+y’)

Y(y’)

Z(x+y’)

SUT
X

Y

Z

X(x) Y(y) Y(y’) X(x’)

Z(x+y) Z(x+y’) Z(x’+y’)

 35

3.2 Test Objective

 The objective of the Test Model Generator is to a create DEVS test models based

on minimal testable I/O pairs. In this thesis, we are performing a reachable states study

and not generating a complete system behavior. The test scenario is defined in the form

of inputs and outputs according to the MIL-STD 6016C definition. The collection of I/O

function is infinite in principle because there are numerous states to start from and the

inputs can be extended indefinitely. For practice purposes, we restrict our testing focus to

messages, and assuming they are the only automatable observables available for testing.

These tests are performed against the military hardware/software systems to study its

conformity to the MIL-STD.

The DEVS test models are in the form of an experimental frame and allow the

Test Driver to perform experiments against the System Under Test. The test engineer

analyzes the customers’ test requirements and creates the test scenarios which describe

the behaviors of the SUT based on the MIL-STD 6016C. The requirements are written in

minimal testable input/output representation, and the test models are created by applying

the model mirroring concept that reverse the minimal testable I/O pairs. Both the

minimal testable file and test models are written in XML format and represented by SES,

allowing for the transformation between the two XML files. The inputs/output pairs are

now represented by three atomic models: holdSend, waitReceive, and waitNotReceive.

Since the input/output are in sequential order, only one atomic model is active each time,

and the rest of the atomic models are passive. In order to try out these test models against

the real system, they are converted to software programming source code. This allows

 36

quick incorporation of the test models into the Test Driver. Figure 8 below illustrates the

process of automated test model generation.

Figure 8: Test Model Generator

3.3 Test Model Generation

3.3.1 IO Minimal Testable XML file

The IO Minimal Testable file is generated by the test engineer, and it describes

the input and output behavior of the System Under Test. The behavior is described based

on the minimal testable input/output representation, in which each pair has a set of inputs

and at most one unique output, and in which a scenario is composed of multiple pairs in

sequential order. Each scenario can be represented by SES and written in XML format.

Representing SES in XML format is very straightforward. Each SES node has a mode

which can be entity, aspect, or specialization, and each mode of a node represents an

XML element. Figure 9 shows the transition from SES to XML. SES is using nodes to

represent the structure of a test scenario, and XML is using elements to break up the

structure and represent the SES nodes.

Minimal Testable
I/O Spec

Model
Mirroring

Mapping I/O pairs
to DEVS primitives

DEVS-C++
Source codes

Test
Driver

 37

Figure 9: IO Minimal Testable SES Diagram & XML Tags

3.3.2 Mirror Image of I/O Pairs

 The minimal testable I/O pairs describe incoming and outgoing messages in the

SUT. The Test Model I/O pairs can be generated by reversing the roles of input and

output in the SUT as shown in Figure 10. For example, a test scenario requirement

generated by the test engineer is given which specified that the SUT will receive message

a, b, and c. After receiving these messages, message d will be sent. The test model is

generated by reversing the SUT procedures, which sends message a, b, and c, and the test

model will wait to receive message d. The mirror image concept allows creating a test

IOMinimalTestableSpec

MinimalSegmentMA

MinimalSegment

minSegDec

initialState InputMessages OutputMessage

InputMessageMA

InputMessage
~Message Type
~Content
~Processing Time

<IOMinimalTestableSpec>
<aspectsOfIOMinimalTestableSpec>

<minimalSegmentMA>
<minimalSegment>

 <aspectsOfminimalSegment>
<minSegDec>

<initialState>
</initialState>

<inputMessages>

<aspectsOfinputMessages>
 <inputMessagesMA>
 <inputMessage>
 </inputMessage>
 </inputMessagesMA>
 </aspectsOfinputMessages>
 </inputMessages>

 <outputMessage>

 </outputMessage>

 </minSegDec>
 </aspectsOfminimalSegment>

</minimalSegment>
</minimalSegmentMA>

</aspectsOfIOMinimalTestableSpec>
</IOMinimalTestableSpec>

 38

model for any minimal testable pair in the SUT’s Input/Output Specification. The image

still exhibits the characteristic of the minimal testable I/O pair: a set of inputs produces a

unique output.

Figure 10: Mirror Image of Input/Output Pairs

3.3.3 Primitives of Basic Test Model

 Based on the minimal testable I/O representation, there are two basic operations

in the Test Model: send message and receive message. These two operations can be

represented by three atomic models: holdSend, waitReceive, and waitNotReceive.

holdSend sends a message after the resting time expires. The receive message operation

is represented by two atomic models: waitReceive waits for a incoming message at a pre-

defined time interval, and determines the pass-fail condition by comparing the pre-

defined value to the value of the received message, while waitNotReceive doesn’t wait

for any message and determines the condition but idles the model for a pre-defined time

interval. In some instances, the minimal testable pair of the SUT does not transmit any

Test Model

SUT

Time

a

t0 t1 t2 t3

b

Receives Inputs
Send output

c

d

Send Inputs Receives output

t4

 39

message at the end. In order to represent this behavior in minimal testable I/O

representation, waitNotReceive will be used to represent a unique output.

Figure 11 illustrates how to construct the basic test model using these primitives.

The behavior of the SUT is described by the minimal testable I/O pair, and the SUT

sequences are receive, receive, and transmit. The test model is constructed by the mirror

image concept described in Section 3.3.2, and the sequences of the SUT image are

transmit, transmit, and receive. The transmission is represented by the holdSend model,

and the reception is represented by waitReceive model. The test model sends a J3.2

message with content data1 at time t1 and is followed by a second J3.2 with content data2

at time t2. After transmitting two messages, the test model will wait for J7.2 message

between time t2 and time t3. When the SUT receives the two J3.2 messages, it will

transmit a J7.2 with content data3 at time t3. If the test model receives the message

within the time interval, waitReceive will process the J7.2 message.

Figure 11: Using the primitives to construct test model

Test Model

SUT

1. J3.2, data1
2. J3.2, data2

3. J7.2, data3
Time

holdSend(J3.2, data1, t1)

t0 t1 t2 t3

holdSend(J3.2, data1, t2)

waitReceive(J7.2, t3)

WaitReceive(J3.2, data1)

WaitReceive(J3.2, data2)

holdSend(J7.2, data3)

 40

The test model is in the form of an experimental frame in which the holdSend

model is a generator and the waitReceive is the acceptor. These atomic models are

coupled together to form the basic test model. Each atomic model and coupled model has

two input ports: start and in_Jmsg, and two output ports: out_Jmsg and pass. The inputs

and output of the minimal testable I/O pair are in sequential order, and the basic test

model is formed by coupling the atomic models together as shown in Figure 12.

Figure 12: Basic Test model

3.3.4 Composite Test Model

 When the test models derived from the minimal testable I/O pairs are cascaded

together, it is called a composite test model. A SUT scenario is usually defined by one or

more minimal testable pairs, which are represented in sequential order after which the test

models are cascaded together. The atomic models and the coupled models are triggered

by a start event through the start port. When the condition of the basic test model is met,

it will trigger another basic test model.

holdSend

holdSend

waitRecv

start

In_Jmsg

Out_Jmsg

pass

 41

 Figure 13 illustrates the composite test model derived from cascading the basic

test models. The initial correlation test model has three operations: transmit twice and

receive, while the confirmation test model has two operations: transmit and receive. The

atomic models of the basic test models are concatenated, and the basic test models of the

composite model are cascaded together. In this composite model, the initial correlation

model sends the J3.2 messages and then waits for the given response. If the response is

correct, it starts up the next model; otherwise, it stops and reports the failure.

Figure 13: Composite Test model

Based on the composite model, we can concatenate a sequence of composite test

models together to form a more complex test scenario. Each composite test model

represents a unique scenario which it waits for the correct response in order to start up the

next model.

3.3.5 Automating the Mapping from Minimal Testable Pairs to Test Models

 It is important to automate the transformation from the minimal testable pairs to

the test models, because the test models can be executed efficiently in a distributed

Test Model

Initial
Correlation

Confirmation

SUT

1. J3.2, data1
2. J3.2, data2

3. J7.2, data3

4. J7.0, data4

5. J7.0, data5

 42

simulation environment using the Test Driver. Also, it provides traceability between the

SUT behavior and the DEVS test models. The minimal testable file and test model files

are described in SES and written in XML format. The SES for the test model is shown in

Figure 14, and each node of the test model SES diagram is an XML element. The

mapping is performed by a software program which generates an XML file called

TestGen.xml. The format of the TestGen XML file is validated by a pre-defined DTD.

Figure 14: Mapping Minimal Testable pairs into Test Model SES

 TestGen

CompositeTestModel

BasicTestModel

ComponentMADec

holdSend_Comp waitReceive_Comp waitNotReceive_Comp

waitReceive_Components

waitReceive

globalAsp

File Info

TestModelMA

FieldMA

Field

~TestSeqName

~TestName
~Initial state requirements

~Message Type
~Content
~Processing Time
~Component
~Component Role

holdSend_Components

holdSend

FieldMA

Field

~Message Type
~Content
~Processing Time
~Component
~Component Role

~Name
~Value

waitNotReceive_Components

waitNotReceive

FieldMA

Field

~Message Type
~Content
~Processing Time
~Component
~Component Role

IOMinimalTestable

minimalSegment

Initial State

InputMessages

OutputMessage

IOMinimal SES nodes

 43

The above figure also illustrates the transformation from minimal testable to test

model. For example, the initial state node is mapped to the initial state requirement

variable of the BasicTestModel node. The InputMessages node is mapped to the

holdSend_Components node. The OutputMessage node is mapped to either

waitReceive_Components or waitNotReceive_Components.

3.3.6 DEVS Code Generation

 The platform-dependent programming source codes are generated based on the

information provided in the test model XML file. As shown in Figure 14 above, the

CompositeTestModel is the test sequence, and the BasicTestModel is equivalent to a

minimal testable pair. If multiple I/O pairs exist, multiple BasicTestModel scopes are

cascaded together. Each atomic model has two input ports and two output ports, and the

port usages are defined as follows:

• holdSend uses the ‘start’, ‘out_Jmsg’, and ‘pass’ ports.

• waitReceive uses the ‘start’, ‘in_Jmsg’, and ‘pass’ ports.

• waitNotReceive uses the ‘start’ and ‘pass’ ports.

There are two levels of coupled models: CompositeTestModel and BasicTestModel. All

the coupled models have the same input and output ports as the atomic model, and all the

ports are used. BasicTestModel coupled models contain the atomic models as shown in

Figure 12, and CompositeTestModel contains the BasicTestModel coupled models as

illustrated in Figure 13. Since the hierarchical structure and the port coupling

 44

relationships of the atomic and coupled models are defined, the source codes can be

generated easily.

A Java program was created to parse the test model XML file and traverse the

SES structure to create the DEVS test model source codes. Five methods were created to

generate the source codes:

1. CRSReader: the CRS file contains the trajectory of an aircraft. Each

trajectory point is associated with a time index. This method provides the

trajectory information required by the holdSend atomic model.

2. writeCompositeClassFile: It creates and prepares the hierSeqDigraph file and

calls the writeCompositeTestModel method.

3. writeCompositeTestModel: This method creates the coupling information of

all the basic test models, and initiates the writeBasicClassFile method.

4. writeBasicClassFile: This method creates the testSeqDigraph file and the

coupling information of the atomic models, and initiates the

writeBasicTestModel method.

5. writeBasicTestModel: Creates the atomic models information. During the

creation of the holdSend atomic model, the CRSReader will be called to

contain the trajectory required the model.

Figure 15 below illustrates the associations of these five methods and the test

model SES diagram.

 45

Figure 15: Associations between Java methods and SES nodes

CompositeTestModel

BasicTestModel

ComponentMADec

holdSend_Comp waitReceive_Comp waitNotReceive_Comp

waitReceive_Components

waitReceive

TestModelMA

~TestSeqName

~TestName
~Initial state requirements

~Message Type
~Content
~Processing Time
~Component
~Component Role

holdSend_Components

holdSend
~Message Type
~Content
~Processing Time
~Component
~Component Role

waitNotReceive_Components

waitNotReceive
~Message Type
~Content
~Processing Time
~Component
~Component Role

writeCompositeClassFile

writeCompositeTestModel

writeBasicTestModel

writeBasicClassFile

CRSReader

Class Methods

 46

4. Generic HLA Wrapper

The Generic HLA wrapper is developed to support the Test Driver (TD) in the

ATC-Gen testing effort. The objectives of this HLA wrapper are

1. Allowing non-simulation engineers to develop their models and simulations

without an in-depth knowledge of HLA.

2. Enabling rapid prototyping of HLA compliance simulation.

3. Providing software engineer interface modules to simplify the HLA set up

processes and minimize redundant processes to modify the federate during the

software development cycle.

4. Supporting the ADEVS simulation engine [11].

A simplified interface is necessary for rapid prototyping and reducing the

development time during software development cycle. For example, the FOMs/SOMS in

Object Model Template (OMT) might change numerous times during the software

development cycle before the final release of the software. If the changes are minor, the

software engineer may simply change the attributes or parameters in the HLA class. If

the changes are major, it may require rewriting the HLA classes, and probably will

require structural changes in the software design. This interface will reduce the burdens

on the software engineers, and will simplify the HLA development to include non-HLA

simulation engineers.

4.1. HLA Compliance Software Development

 47

Federation and federates are the basic terminologies used in describing HLA

simulation, and the OMT provides the necessary information to build the simulation. The

Federation Object Models (FOMs)/Simulation Object Models (SOMs) Lexicon in OMT

consists of definitions of object classes, interaction classes, attributes, and parameters.

The HLA FOMs and SOMs are stored and transferred via Federation Execution Data

(FED) files using OMT Data Interchange Format (DIF). The definitions are defined in

table format, and the following are the necessary tables to implement a federate:

1. Object class structure table

2. Object interaction table

3. Attributes table

4. Parameters table

In HLA simulation development, the HLA classes are represented by C++

classes1 and the instances of these C++ classes are HLA objects. The HLA classes can be

either object classes or interaction classes as shown in Figure 16. Object classes have

attributes and they persist. Interaction classes have parameters, but they are sent and

forgotten. The following procedures are the requirements to implement an object class:

1. Publish the object class

2. Indicate which attributes are to be published and updated

3. Subscribe object classes and their instances from other federates

4. Encode and update the attribute values

5. Reflect and decode other federates’ attribute values

1 HLA software are developed using Object Oriented languages, such as C++ and Java. In this discussion,
we assume the federate is developed using C++.

 48

Figure 16: HLA Simulation program structure

The implementations of interaction classes are very similar to the object classes, except

interaction cannot specify which parameters to publish. Interaction publishes either all

parameters or nothing. Instead of using the Update and Reflect methods, interaction

invokes the Send and Receive methods to update the parameters.

4.2 DEVS Simulation Support

 The generic HLA wrapper is developed to support the ADEVS simulation engine

based on the model-oriented approach in DEVS/HLA [12] distributed simulation and the

Model/Simulator/View/Controller design pattern [13]. The HLA view object and the

DEVS Simulator are communicated through the activity coordinator through a user

defined class object as shown in Figure 17.

Federate
(Simulation)

Federate
(Simulation)

Object
Classes

Interaction
Classes

Object
Classes

Interaction
Classes

Federation

 49

Figure 17: HLA and Simulator Communication

HLA provides two types of communications: attribute updating and interaction.

Interaction updates all the parameters, and attribute updating can choose which attribute(s)

to update. When the external transition function of DEVS processes input from the HLA

view object, the input must contain all attributes or parameters. Because of this

constraint, the Generic HLA wrapper preserves most of the basic functions in HLA

management, except the behaviors of Attribute Publish/Subscribe methods in the

declaration management and Attribute Update/Reflect methods in the object management.

The Publish/Subscribe method is required when publishing or subscribing all attributes,

and the Update/Reflect method is required when updating or reflecting all attributes. For

example, when the controller receives data from HLA and injects the updates to the

simulator, the updates must contain all the attributes in the object class. Although the

attribute being updated behaves similarly to the interaction, attribute updating is still a

persistent event while interaction is not.

4.3 Architecture

 The Generic HLA wrapper has two components: generic data type and generic

HLA interface. Generic data type provides a unified data coding scheme to the HLA

Simulator HLA View

Coordinator

 50

attributes and parameters. The Generic HLA interface provides a simplified set of

methods for federation management, declaration management, time management, and

object management.

4.3.1 Generic Data Type

 The UML diagram [14] in Figure 18 shows the standard data types in the Generic

HLA wrapper. It provides the basic class structure to the Generic HLA interface in order

to handle attributes/parameters in the HLA classes. The root class is Entity, which

derives from DEVSJAVA [15]. HLA_Parameters and HLA_Attributes are subclasses of

Entity, and they inherit all the methods and attributes from Entity class. Both classes are

responsible for storing the attribute/parameter’s information, such as handlers and data.

The following are the descriptions for these classes:

cd Logical Model

Entity

HLA_Attributes HLA_Parameters

Figure 18: Generic data types

 51

4.3.1.1 Entity

Entity is the most important element in the Generic HLA wrapper. It is a unified

data type to simplify data marshalling and de-marshalling. Entity class is derived from

DEVSJAVA’s entity. The goal is to provide a generic data type to the software engineer,

simplifying data conversion during function calls. It restricts the number of supported

data types, which are integer, long, double, string, and boolean. The software engineers

define the name of the variable and its data type in the initialization. By knowing the

data type, the data variable can be easily converted between entity data type and specific

data type. Methods, such as Get and Set, are provided to retrieve and set the name, value,

and data type.

When the federate invokes the attributes’ updating or interaction, the data is

encoded/decoded based on its data type. If encoding occurs, the federate will convert the

Entity to HLA data type and send the data to other federates. Otherwise, the federate

decodes the data received from other federates and converts the HLA data type back to

Entity.

4.3.1.2 HLA_Attributes/HLA_Parameters

HLA_Attributes/HLA_Parameters is a subclass of Entity. It is responsible for

storing the attribute’s/parameter’s RTI information, such as object/interaction handler,

attribute/parameter handler, data type, name, and value. The objective is encapsulating

all the information about the attribute/parameter in a particular class, and the data can be

easily identified by the handlers. The handlers are unique identifiers assigned by the RTI

 52

based FOM/SOM lexicon in the FED file. HLA_Attributes is identified by object

handler and attribute handler, while HLA_Parameters is identified by interaction handler

and parameter handler. The RTI associates the classes and attributes/parameters with

handlers; the information routing is determined based on these identifiers. Standard

methods, such as Get and Set, are provided to retrieve and set the handlers.

4.3.2 Generic HLA interface

The Generic HLA interface class diagram is shown Figure 19. It provides

methods for HLA management and a generic data object to communicate with ADEVS

components. The interface can be divided into three areas:

1. HLA_Object class is inherited from the ADEVS Object class, and it is the base

class of the Generic HLA Wrapper. HLA_Object is wrapped within an ADEVS

object that allows message passing between the Simulator and the HLA viewer

without any data conversion.

2. HLA_ObjectClass and HLA_InteractionClass provide methods for declaration

management and object management, such as Publish/Subscribe and

Encoding/Decoding.

3. HLA_Federate class provides federation management and initiation of object or

interaction class. The ParameterSetup method allows non-simulation engineers to

develop HLA simulation without any additional development by declaring the

attributes/parameters and their data types for object/interaction classes in this

method.

 53

cd Logical Model

Object

HLA_Object

HLA_ObjectClass HLA_InteractionClass HLA_Federate

HLA_FederateAmbassador

Figure 19: Generic HLA interface

4.3.2.1 HLA_Object

HLA_Object is the root class of Generic HLA interface, and it is a subclass of

ADEVS object class. The ADEVS Object class is used as the basic I/O type, and allows

other data types to be wrapped in it without data conversion. HLA_Object is responsible

for storing the HLA_Parameters and HLA_Attributes class objects. It has two methods

and two virtual methods: Print, Clone, addParameter, and addAttribute. Print() method

prints all the entries in the linked lists. Clone() returns a new object of the HLA_Object.

The “add” method inserts the attributes/parameters to the linked lists. There are four

linked lists: recvParameterList, sendParamenterList, recvAttributeList, and

 54

sendAttributeList. They contain the attributes/parameters received from RTI. Each node

of the linked list stores an Entity, and they are distinguished by class handler and

object/parameter handler as shown in Figure 20. The primary objective of the

HLA_Object is to simplify message passing between HLA components and ADEVS

simulators without any data conversion. For example, when the federate receives a

message from RTI’s Interaction or Reflect callback routine, the parameters are decoded

and contained in HLA_Object and passed to the simulator. When the Simulator

generates and sends an event to the HLA view object, the parameters are encoded to the

HLA format and the message is sent using SendInteraction.

Figure 20: Generic HLA Data List

4.3.2.2 HLA_ObjectClass

HLA_ObjectClass is a subclass of HLA_Object. It is responsible for providing

methods to HLA object class for the declaration and object management. The following

are the descriptions of the methods:

1. PublishandSubcribe – invokes the RTIambassador’s Publish and Subscribe

methods registering publication and subscription interests in object class.

2. addAttribute – adds a new HLA_Attributes class objects to the sendAttributeList

in HLA_Object.

RTI class handle,
RTI parameter handle,
Entity (name, data type,
data value, etc.)

RTI class handle,
RTI parameter handle,
Entity (name, data type,
data value, etc.)

RTI class handle,
RTI parameter handle,
Entity (name, data type,
data value, etc.)

 55

3. Update – encodes all the attributes in the sendAttributeList list, and invokes the

RTIambassador’s UpdateAttributeValues method updating all the attributes to

other federates.

4. Reflect – when another federate updates its attributes, the RTI invokes the

ReflectAttributeValues callback method to receive the attributes, then decodes the

attributes to receiveAttributeList list.

5. Decode – this method decodes the attributes, and converts the data to

HLA_Attributes type.

4.3.2.3 HLA_InteractionClass

HLA_InteractionClass is a subclass of HLA_Object. It is responsible for providing

methods to the HLA interaction class for declaration and object management. The

following is the description of the methods:

1. PublishandSubcribe – invokes the RTIambassador’s Publish and Subscribe

methods registering publication and subscription interests in interaction class.

2. Send – encodes all the parameters in the sendParameterList list, and invokes the

RTIambassador’s SendInteraction method, sending all the parameters to other

federates.

3. Receive – when another federate updates its parameters, the RTI invokes the

ReceiveInteraction callback method to receive the parameters and decode the

parameters to receiveParameterList list.

 56

4. Decode – this method decodes the parameters, and converts the data to

HLA_Parameters type.

4.3.2.4 HLA_Federate

HLA_Federate class is responsible for federation management, time management,

and the initiation of declaration management. The constructor of the HLA_Federate class

initiates the declaration management, HLA_Object class object, and object/interaction

classes. The following are the method description:

1. CreateandJoinFederation – allows a federate to create and join the federation. If

the federation already exists, it will simply join the federation.

2. ResignandDestroyFederation – it allows a federate to resign from the federation.

If this federate is the last one, it will simply destroy the federation.

3. tick – this is a time management function which yields time to RTI.

4. receiveInteraction – a callback routine for interaction classes to receive messages

from other federates.

5. reflectAttributeValues – a callback routine for object classes to receive message

from other federates.

6. ParametersSetup - the most important part of the HLA interface. It is responsible

for the object/interaction classes and attributes/parameters declaration, in which

the federate is interested to publish and subscribe.

4.4 HLA Simulation Setup

 57

The constructor of HLA_Federate class contains all necessary components to run

the HLA wrapper. In every HLA simulation, the federate must be interested to publish

and subscribe certain classes described in the FED file, and the software engineer will

define these class structures in the ParameterSetup method. The following steps setup

the constructor:

1. Create and join federation using CreateAndJoinFederation method.

2. Set up the attributes/parameters and create new instances of the

HLA_ObjectClass and HLA_InteractionClass classes in ParameterSetup

method as shown in Figure 21.

3. Create an instance of HLA_Object class

4. Call PublishAndSubscribe methods in HLA_ObjectClass and/or

HLA_InteractionClass classes.

Figure 21: ParameterSetup method

void HLA_Federate::ParametersSetup()
{
 const int num = 6;
 parameters param[num];

 param[0].name = "ID";
 param[0].type = "LONG";
 param[1].name = "xpos";
 param[1].type = "DOUBLE";
 param[2].name = "ypos";
 param[2].type = "DOUBLE";
 param[3].name = "zpos";
 param[3].type = "DOUBLE";
 param[4].name = "xvel";
 param[4].type = "DOUBLE";
 param[5].name = "yvel";
 param[5].type = "DOUBLE";
 param[6].name = "zvel";
 param[6].type = "DOUBLE";
 char* className1 = "AirTrack";
 HLA_Interaction *iClass = new HLA_Interaction(className1, param, num, &rtiAmb);
}

 58

 In order to incorporate the Generic HLA wrapper into a simulation, the software

engineer is required to implement the interested object/interaction class structures in the

ParameterSetup method. The simulation will create a new instance of the HLA_Federate

class by calling the constructor, and publishes and subscribes the objects/interactions

defined in the ParameterSetup. The HLA_ObjectClass and HLA_InteractionClass have

methods to send and receive messages from other federates. The software engineer can

specify when to use these methods as follows:

1. When the simulator generates an event, Update or SendInteraction method is

called.

2. When the federate receives messages from other federates, the Reflect or

ReceiveInteraction method is called.

 59

5. Test Driver

The ATC-Gen Test Driver (TD) is an experimental frame designed to perform

interoperability testing on TADIL-J systems. The objective of the Test Driver is to

execute the DEVS test models generated by the Test Model Generator (TMG). TD

emulates a tactical TADIL-J system by providing simulated TADIL-J messages over the

simulated tactical communication network, and accepts TADIL-J messages from the SUT

to determine the condition of the test model, and is implemented via component-based

design using the enhanced Model/Simulator/View/Controller (MSVC) design pattern.

The model is generated by TMG. The TD simulator is a thread derived from the

controller that schedules and receives Link-16 messages. The viewer extracts outputs

from the simulator, and converts the outputs into a specific middleware format.

5.1 Building Blocks

5.1.1 DEVS Specification

 The DEVS formalism was introduced by Bernard Zeigler [4] to provide a mean of

modeling discrete event systems in a hierarchical and modular way. DEVS exhibits the

concepts of system theory and modeling, and supports capturing the system behavior in

the physical and behavioral perspectives. A DEVS model can be either an atomic or

coupled model. In the DEVS formalism, a large system can be modeled by both atomic

and coupled models. The atomic model is the basic model that describes the behavior of

a component. A Discrete Event System specification (DEVS) atomic model is defined by

the structure in Figure 22.

 60

Figure 22: Classic DEVS Specification

Atomic and coupled models can be simulated using sequential computation or

various forms of parallelism. The basic parallel DEVS formalism extends the classic

DEVS by allowing bags of inputs to the external transition function, and it introduces the

confluent transition function to control the collision behavior when receiving external

events at the time of the internal transition. The parallel DEVS atomic model is defined

by the structure in Figure 23.

M = <X, S, Y, δint, δext, λ, ta>
where

X is the set of input values
S is the set of state
Y is the set of output values
δint: S -> S is the internal transition function
δext: Q x X -> S is the external transition function, where

Q = {(s,e)|s εS, 0 ≦ e ≦ ta(s)} is the total state set,
and e is the time elapsed since last transition

λ: S->Y is the output function
ta: S->R0

+
i f is the set of positive reals with 0 and infinity

 61

Figure 23: Parallel DEVS Specification

A DEVS-coupled model designates how atomic models can be coupled together

and how they interact with each other to form a complex model. The coupled model can

be employed as a component in a larger coupled model and can construct complex

models in a hierarchical way. The specification provides component and coupling

information. The coupled DEVS model is defined as the following structure:

Figure 24: Coupled DEVS Specification

M = <X, S, Y, δint, δext, δcon, λ, ta>
where

X is the set of input values
S is the set of state
Y is the set of output values
δint: S -> S is the internal transition function
δext: Q x Xb -> S is the external transition function,

where Xb is a set of bags over elements in X, Q =
{(s,e)|s εS, 0 ≦ e ≦ ta(s)} is the total state set, and e is
the time elapsed since last transition

δcon: S x Xb -> S is the confluent transition function,
subject to δcon(s,Φ) = δint(s)

λ: S->Yb is the output function

M = <X, Y, D, {Mij},{Ij}, {Zij}>
 Where
 X is a set of inputs
 Y is a set of outputs
 D is a set of DEVS component names
 For each i εD,
 Mi is a DEVS component model
 Ii is the set of influences for I
 For each j ε Ii,

 62

 Two different DEVS formalisms have been introduced. The classic DEVS

formalism treats components sequentially, and the parallel DEVS formalism treats

components concurrently. These formalisms also include the means to build coupled

model from atomic models.

5.1.2 Experimental Frame

The Experimental Frame is a specification of the conditions under which the

system is observed or experimental with [4]. It reflects the objectives of the experiment

performed on a real system or simulation. Multiple experimental frames can be used for

a single system, and the single experimental frame can be applied to many systems.

Conversely, there are multiple objectives to test a system, and a single objective is

applied to many systems. There are two valid views of an experimental frame. A frame

can be viewed as data element type that is entered into a database. Another view is that a

frame can interact with the system to obtain data under specified conditions. In the

second view, the frame can be treated as an observer, and it has three components:

generator, acceptor, and transducer, as illustrated in Figure 25. The Generator describes

the inputs applied to the system or model. The Transducer observes and analyzes the

system output. The Acceptor monitors the experiment to see the experimental condition,

and compares the generator inputs with the transducer outputs.

 63

Figure 25: Experimental Frame

5.1.3 Model/Simulator/View/Controller (MSVC) Design Pattern

The Model/Simulator/View/Controller (MSVC) design pattern was proposed by

Jim Nutaro [13] and provides a software framework to the developers that supports

component-based software design, and incorporate the key concepts from DEVS

modeling and simulation to promote a separation of model, simulator, and distributed

computing. MSVC is an extension of the Model/View/Controller (MVC) design pattern

commonly used in interactive programming design, and it can apply to building

distributed simulation [16]. MVC is a component-based software architecture that

separates the data model, data representation, and control logic into three components.

These components are reusable, and the modification of these components will have

minimal impact on the others. In order to extend the MVC approach to the support of

complex distributed modeling and simulation application, a simulator is added to the

existing MVC design. As a result, the MSVC design provides a software framework to

support distributed modeling and simulation.

Generator Acceptor Transducer

Experimental Frame

SUT

 64

Figure 26: MSVC components and their relationships

The MSVC components and their relationships are shown in Figure 26 [14].

Model is a physical or logical representation of a proposed or real system, and it can be a

set of instructions or constraints for generating I/O behavior. It is a system specification

that has state transitions and output generation mechanisms to accept input and generate

outputs depending on the initial state. The simulator is capable of obeying the

instructions and executing the model to generate behavior. It provides an interface

allowing the injection of inputs, computation of states changes, and the viewing of model

outputs. The controller interacts with the simulator to allow the model behavior to be

influenced by other large systems. The viewer extracts output data from the simulator,

and acts on simulation output at the request of the controller. In a distributed simulation

environment, the controller and the viewer can interact with the middleware as in Figure

26. The controller handles the inputs and time management scheme sent from the

middleware and the viewer extracts the data outputs from the simulator and sends it via

middleware. For example, the controller utilizes the time management and object

MiddleWare

Controller View

Simulator

Model

 65

management features of the HLA middleware to control the simulator execution rate and

generate model inputs. The viewer is not involved in the any controller scheme, although

the controller can signal the viewer to generate data outputs from the model outputs.

5.1.4 A Discrete Event System Simulator (ADEVS)

 ADEVS is a simulator for models described using the Discrete Event System

(DEVS) Specification modeling framework. It is a C++ library for constructing discrete

event simulation based on the Parallel DEVS and Dynamic Structure DEVS formalisms.

The Test Driver is implemented using this simulation framework.

5.2 Enhanced MSVC Design Pattern

Jim Nutaro demonstrated that the simulator was tuned to the behavior of certain

network simulation protocols, and the controller could be rapidly modified to support

other protocols. For example, the simulator is associated with HLA time management

through the controller in order to pace the execution. The same simulator can be reused

by implementing a new controller supporting other network simulation protocols to pace

the execution using the wall clock. In this methodology, one controller is associated with

one simulator due to the difficulties inherent in handling multiple control strategies and

the differing characteristics of the middleware. The simulator is a child thread derived

from the controller thread that contains the parameters to influence the simulator.

Although Nutaro did not consider using the controller to manage the model operation, his

 66

work led to the enhanced MSVC framework, where a new controller is implemented to

control the model as well as the simulator.

Figure 27 below provides a graphical representation of the enhanced MSVC

paradigm [17]. The functions of the model, simulator, and view are the same as the

original MSVC design. A basic controller is implemented to receive the messages via

middleware. The specialized controllers are derived from the basic controller to handle

message routing to either the simulator or the model. For example, as shown in Figure 27,

Simple J controller handles the inputs from Simple protocol and controls the DEVS

simulator. HLA Controller receives inputs from HLA middleware and controls the

model’s operations.

Figure 27: Enhanced MSVC paradigm with multiple controllers

Controlling
Layer

Modeling
Layer

Simulation
Layer

View

Simple J
View

HLA
View

Model

Simulator

Basic
Controller

Simple J
Controller

HLA
Controller

Middleware
Communication

Output Extraction

Handling Middleware
inputs and requests

DEVS M&S Relation

Model behavior
influenced by SUT
via Simple J Protocol

Model Operations

 67

It is common for simulation software to support multiple network simulation

protocols. In a distributed testing environment, there are combinations of test

components, such as simulation software, gateways, and hardware. Each of these

components is associated with different network simulation protocols or middleware. A

test control manager is often used to control the basic operations of all the test

components or hardware, sending operation commands to control the component via a

particular middleware. For example, the test control manager synchronizes the time and

start/stop of all the test components via HLA, and each component is considered as a

federate in an HLA federation.

The Test Driver is implemented based on the enhanced MSVC pattern design. It

supports HLA middleware and the Simple J network protocol. The test model is

provided by the TMG, and the model behaviors are generated by three atomic models.

The view is capable of extracting outputs from the simulator, and provides inputs the

basic controller. Model operations are controlled by the HLA controller via HLA

middleware, and the simulator is controlled by a Simple J controller.

5.3 MSVC Components

 The Test Driver is an experimental frame that interacts with the SUT. It generates

input stimuli and injects them into the SUT. It also receives outputs from the SUT and

determines whether the desired experimental conditions are met. TD incorporates the

generator, acceptor, and transducer concepts of the experimental frame, and implements

these concepts using the MSVC design pattern. The holdSend atomic model handles the

 68

input stimuli generation, and the waitReceive atomic model determines the condition of

the experiment.

Test Driver adopts two concepts: plug-and-play and rapid modification. The

MSVC design allows the Test Driver to execute any DEVS test models generated by

TMG. The DEVS test models are a set of instructions and the simulator provides the

methods to generate the model behaviors. Any new network simulation protocols can be

easily plugged into the Test Driver, and a new controller and view can be rapidly

developed to support this new protocol based on the existing controller and view.

5.3.1 Model

The model is a physical or logical representation of a system, and it represents the

system specification at level 3 and level 4 of the system specification hierarchy. The

most common concept of simulation model is a set of instructions or constraints for

generating I/O behavior. A model is written with state transition and coupled component

system specifications. In state transition specification, we can specify the initial state

setting and how the state changes as the system responds to the input trajectory, and also

what output trajectory is generated by the state. A model is composed of interacting

components, and these components can be coupled together leading to a hierarchical

structure.

The Test Driver model consists of DEVS test models and middleware. The model

uses the middleware to communicate with SUT, and the DEVS test models are generated

by the Test Model Generator described in Section 3.

 69

5.3.2 Simulator

The simulator is an agent that is capable of obeying the model instructions and

generating model behaviors. Typically, given the initial state values for the state

variables and time segments for all input ports at the model, the simulator will generate

the corresponding state and output trajectories. In a hierarchical model structure, the

atomic models are the simulators and the coupled models are the coordinators. At the top

of the hierarchy, a root coordinator is in charge to initiate the simulation cycles.

Figure 28: Mapping Test Driver model onto a hierarchical simulator

The hierarchy of the Test Driver model is shown in Figure 28 in above. The test

driver simulator is developed using ADEVS simulation engine, and it consists of three

atomic models and two coupled models. All these models have two input ports and two

output ports. The input ports are “start” and “in_Jmsg” and the output ports are “pass”

and “out_Jmsg.” The definitions of the ports are described as follows:

holdSend waitRecv waitNotRecv

testSeqDigraph

hierSeqDigraph

Simulator Simulator Simulator

Coordinator

Coordinator

Root Coordinator

 70

• “start:” All the models are passive at the beginning. When a model receives an

external event through this port, the external transition function dictates a new

system state s’ with some new resting time ta(s’).

• “in_Jmsg:” The Simple J message values are sent to the model through this port.

A model must be in waiting state when receiving the in_Jmsg event; otherwise,

the model will remain passive. When a model receives an external event through

this port, the external transition function dictates a new system state s’’ with some

new resting time ta(s’’).

• “pass:” This output port sends a start event to the next model. When the resting

time (e = ta(s)) is expired, the system generates the start output, λ(s), and changes

to state δint(s).

• “out_Jmsg:” This output port sends the Simple J message generated by the

holdSend model to the “out_Jmsg” port of the coupled model. When the resting

time (e = ta(s)) is expired, the system generates the Simple J message output, λ(s),

and changes to state δint(s).

5.3.2.1 holdSend

 holdSend is an atomic model that generates J messages. The constructor of

holdSend consists of five fields: model name, message type, wait time, message, and flag.

The flag indicates the initial state of the atomic model. If the flag is true, holdSend will

start at the “Send” state; otherwise, it will start at the “Passive” state. The elapsed time of

the state is given by wait time. When the resting time expires, λ(s) generates the two

 71

outputs: a Simple J message based on message type and message, and a start signal.

Figure 29 shows the state transition of the holdSend model.

Figure 29: holdSend State diagram

5.3.2.2 waitReceive

 waitReceive is an atomic model that waits for an incoming J message and

determines the experimental condition based on the received message and the pre-defined

message. The constructor of waitReceive consists of three fields: model name, message,

and wait time. The model begins at the “Passive” state. When it receives a start event,

the external transition function dictates a new state, “Wait,” with a new wait time. If the

model receives a J message event before resting time expires, it compares the received J

message with the given J message. If they are identical, it will print out a message

indicated that the test is passed, and the state will change to “Success.” λ(s) will generate

a start signal output, and the internal transition function will change to the “Passive” state.

If the messages are different, it will print out a failed message, and the state will change

to “Passive.” If the J message doesn’t arrive before the resting time expires, the test will

Passive Send

False True

(start, *)

(out_Jmsg, J message),
(pass, start signal).

δint
δext

(port, value)

Input

Output

 72

be failed, and the state will change to “Passive.” Figure 30 shows the state transition of

the waitReceive model.

Figure 30: waitReceive State diagram

5.3.2.3 waitNotReceive

 waitNotReceive is an atomic model that idles the model for a given time if it is

not expecting to receive any incoming message. The constructor of this model has two

fields: model name and wait time. The model begins at the “Passive” state. When an

external event occurs, the external transition function dictates a new “Wait” state. When

the resting time expires, it generates a start output signal, and the internal transition

function will change to the “Passive” state. Figure 31 shows the state transition of

waitNotReceive model.

Passive Wait

(start, *)

(in_Jmsg, J msg),

Success Fail

(in_Jmsg, J msg)

(pass, *)

 73

Figure 31: waitNotReceive State diagram

5.3.2.4 testSeqDigraph

 testSeqDigraph is a coupled model that contains a sequence of atomic models. It

is equivalent to the BasicTestModel element described in the test model XML file. The

rules to build the testSeqDigraph coupled model are:

• Multiple holdSend atomic models can be used, but waitReceive and

waitNotReceive can only used once in each coupled model.

• If a coupled model starts with the holdSend model(s), it must end with either

the waitReceive or waitNotReceive atomic model.

• If a coupled model starts with either waitReceive or waitNotReceive, no other

atomic model can be added to this model.

• Since the atomic and coupled models execute sequentially, the first atomic

model in the first coupled model must be holdSend, and the start flag should

be set to true.

5.3.2.5 hierSeqDigraph

Passive Wait

(start, *)

(pass, start signal)

 74

 hierSeqDigraph is a coupled model that contains a sequence of testSeqDigraph

coupled models. It is equivalent to the CompositeTestModel element described in the

test model XML file. This coupled model is also known as the DEVS test model. It

describes the procedures of a particular test scenario in a hierarchical structure.

5.3.3 View

 The viewer extracts the output from the simulator and provides inputs to the

controller. In the Test Driver, we find the Simple J viewer and the HLA viewer. The

Simple J viewer extracts output from the simulator and provides inputs to the Simple J

controller when the model receives J messages. The HLA viewer provides inputs to the

HLA controller when the model receives HLA messages. In return, the HLA controller

controls the model’s operations.

 When the Test Driver adopts a new network simulation protocol, a new viewer

can be developed by copying and modifying the existing viewer. The new protocol

usually will provide a set of methods to handle the operations, and the software engineer

will replace the old operation methods with the new one.

5.3.4 Controller

 The Basic Controller translates the information received from the network

simulation protocols and routes it to the correct controller. There are two controllers

derived from the basic controller: the Simple J controller and the HLA controller. The

 75

Simple J controller routes the messages to the DEVS simulator and the HLA controller

routes the HLA messages to the model.

In the original MSVC design, the simulator is derived from the controller and

each controller can only have one simulator. This one-to-one relationship is still valid in

the enhanced MSVC design with a minor modification: the model can be controlled by

the controller. If the Test Driver supports multiple models, there will be multiple

controllers to control multiple simulators and models.

5.4 Activity Coordinator

An activity coordinator is implemented to manage the communications between

MSVC components using the Event Notification and Mediator pattern [18, 19]. An

activity coordinator object acts as the mediator that links the coordinator to the simulator,

views, and controller. The UML diagram shown in Figure 32 describes the primary

objects and their relationships.

 76

Figure 32: Test Driver’s primary objects and their relationships

The viewer objects and controller objects are the specialization of a thread class.

The thread class supports independent execution of each object and coordination via

inter-thread events. The simulator object is derived from the controller. The inter-thread

events are exchanged through the activity coordinator. There are two operations running

in the Test Driver:

1. The HLA viewer receives instructions from the test control federate via the

HLA middleware. It communicates with the HLA Controller via an inter-

thread event, and the controller handles the operations of the model.

2. The Simulator generates Simple J messages. The J messages are passed to the

Simple J viewer through the activity coordinator via an inter-thread event.

When the viewer receives an incoming message from the Simple J network,

 77

the message is passed to the Simulator through the activity coordinator via

inter-thread event.

 78

6. Experiment and Results

 In this chapter, several experiments are conducted using the automated test

generation processes shown in Figure 33. The scenarios used in these experiments are

auto correlation, decorrelation, report and responsibility shift, and drop track. Each of

these scenarios were performed against the Integrated Architecture Behavior Model

(IABM) developed by the Joint SIAP System Engineering Organization (JSSEO). The

results of the scenarios were verified by the ATC-Gen Test Driver and validated using

JITC’s TAMD Interoperability Assessment Capability (TIAC) tool. Due to the

classification levels of this system, the experimental results can not be shown. Thus, the

System under Test (SUT) test models are developed to allow the test driver to act as the

SUT and allow the experiments to be conducted.

Figure 33: Automated Testing

6.1 Scenarios

6.1.1 Auto Correlation

 As MIL-STD 6016C stated, when a system receives a remote track from a remote

system that is within the correlation window of the local track, it initiates the tentative

Minimal Testable
I/O Spec

Test Model
Generator

DEV-C++ Source
Codes

Test Driver SUT

 79

correlation process. If a second track arrives within the local track correlation window, it

shall be correlated and held as common local track by transmitting a correlation request

to the remote system. If the local track number is greater than the remote track number,

the local system drops its own track and sends out a drop track notification; otherwise,

the remote system drops its track and sends out the notification. Figure 34 illustrates the

auto correlation process in the sequential diagram.

Figure 34: Auto Correlation Sequential Diagram

The test engineer follows the sequential diagram to construct the minimal testable

pairs. Furthermore, the test models are generated using the Test Model Generator.

Figure 35 illustrates the minimal testable pairs for SUT and Test Driver.

 80

Figure 35: Minimal Testable I/O pairs for Auto Correlation

6.1.2 Report and Responsibility (R2) Shift

 As MIL-STD 6016C stated, the Joint Tactical Information Distribution System

(JTIDS) unit (JU) reports the tracks on the interface, because it has the best positional

data available. A JU assumes R2 on a common local track if its track quality (TQ) at the

time of transmission exceeds the received TQ by 2 or higher. Figure 36 illustrates the R2

process in the UML sequential diagram.

Figure 36: R2 Shift Sequential Diagram

J3.2 J3.2

J7.2 J7.0

Inputs to SUT
(Output from Test Driver)

Output from SUT
(Input to Test Driver)

 81

In order to create the R2 minimal testable pairs, a common local track is created

by the auto correlation process described in Section 6.1.1. After the common local track

is created, the SUT receives a J3.2 message from the remote system. The SUT compares

its own track quality to the received track quality. If the SUT TQ is higher than the

received TQ by 2, the SUT will send a J3.2 message back to the remote system and

assumes reporting responsibility; otherwise, the remote system retains the reporting

responsibility and continues to transmit J3.2 messages. Figure 37 illustrates the minimal

testable pairs for the SUT and the Test Driver.

Figure 37: Minimal Testable I/O pairs for R2 Shift

6.1.3 Decorrelation

 As MIL-STD 6016C stated, the common local tracks shall be decorrelated if two

consecutive remote track reports are received and the remote tracks falls outside a

distance of 1.5 times the maximum correlation distance. Figure 38 illustrates the

decorrelation process in the UML sequential diagram.

J3.2 J3.2

J7.2 J7.0

Inputs to SUT
(Output from Test Driver)

Output from SUT
(Input to Test Driver)

J3.2

J3.2 with R2

Auto
correlation R2

 82

Figure 38: Decorrelation Sequential Diagram

 At the beginning, the common local track is assumed to be created by the auto

correlation process described in Section 6.1.1. The SUT receives a remote J3.2 air track

message and compares remote air track position to the SUT air track position. If their

distance is 1.5 times greater than the maximum correlation window, the first

decorrelation condition is met. The SUT waits for a second J3.2 air track message and

compares it to the SUT air track. If the distance is also 1.5 times greater, the second

condition is met. The common local track will decorrelate and a new track number will

be assigned to the local track. Figure 39 illustrates the minimal testable pairs for the SUT

and the Test Driver.

 83

Figure 39: Minimal Testable I/O pairs for Decorrelation

6.1.4 Drop Track

 In MIL-STD 6016C, a drop track is used in many different situations, such as R2

and auto correlation. A simple scenario is chosen in this section to demonstrate the

condition and the result of the drop track. As MIL-STD stated, if for any reason, the

simulation status of a track is changed, the track shall be dropped using J7.0 track

management, ACT = 0 (Drop track report). Figure 40 illustrates the drop track process in

the UML sequential diagram.

J3.2 J3.2

J3.2

Inputs to SUT
(Output from Test Driver)

Output from SUT
(Input to Test Driver)

 84

Figure 40: Drop track Sequential Diagram

When the SUT sends J3.2 air track message, it checks the status of the

environment message field. If the SUT changes the status of the track for any reason, a

J7.0 drop track message will be sent after the J3.2 air track message. Figure 41 illustrates

the minimal testable pairs for the SUT and the Test Driver.

Figure 41: Minimal Testable I/O pairs for Drop Track

J3.2 J3.2 J7.0

Inputs to SUT
(Output from Test Driver)

Output from SUT
(Input to Test Driver)

 85

6.2 SUT Model Creation

 Due to the fact that the military hardware system is classified by DoD, the SUT

models are created to verify the correctness of the test models. The SUT models are

implemented into the Test Driver and verify against the test model version via HLA

middleware or Simple J protocol. This DEVS inversion concept was first introduced by

Song and Kim [20].

6.2.1 SUT Model

 The SUT model is generated based on the test model generation concept

described in Section 3. Instead of going through the model mirroring process, the

minimal testable I/O pairs directly transform into the SUT DEVS models. The minimal

testable representation has two operations: send message and receive message. The

holdSend atomic model is used to send message, and the waitReceive atomic model is

used to receive message. The transformation process follows the minimal testable pair

concept in which an I/O pair has either a set or an empty set of inputs followed by an

output. Figure 42 illustrates the transformation from minimal testable pairs to the DEVS

atomic models.

waitRecv
J3.2 SUT Input

SUT Output

waitRecv
J3.2

holdSend
J7.2

holdSend
J7.0

 86

Figure 42: SUT model for Auto Correlation

6.2.2 Processing time

 During the verification process, both Test Drivers are assumed started at the same

time by a batch file. Each DEVS atomic model is associated with a processing time. If

the models are transformed directly from the minimal testable pairs, both SUT and Test

models will have the same processing times. Even if both SUT and Test Model Test

Drivers are perfectly synchronized in time, there ought to be some delays from either the

computer network or the computer itself. One of the Test Drivers will miss an incoming

message because the resting time is expired in the atomic model, and the whole test

scenario will fail. In order to avoid this problem, two assumptions are made. First, the

SUT Test Driver always starts before the Test Model Test Driver. Second, a time shift is

added to the SUT model’s processing time. The rules of the time shift are defined as

follows,

1. The first atomic model must be holdSend with processing time equaled to zero

due to the behavior of the ADEVS simulation engine.

2. If the current model is holdSend and the last model is not holdSend, the time

shift is -2 second.

3. If the current model is waitReceive and the last model is holdSend, the time

shift is +2 second.

Figure 43 below illustrates the execution time of the SUT and Test models of the auto

correlation scenario by applying the time shift concept into the SUT. Since the SUT

 87

always starts before the Test Model, we can safely assume that the SUT is always

running a few hundred milliseconds faster than the Test Model.

Figure 43: SUT and Test Model Timeline for Auto Correlation

6.3 Experiment Setup & Results

 The auto correlation, decorrelation, report and responsibility shift, and drop track

scenarios are created to demonstrate the correctness of the models generated by the Test

Model Generator. These models are implemented into the SUT and Test Model Test

Drivers and communicate via Simple J protocol as illustrated in Figure 44. The

transmissions and the receipt of the Simple J messages of each scenario are captured by a

Simple J network packet sniffer called TIAC Simple J parser. The TIAC parser captures

and decodes the Simple J messages, and the messages are saved into a log file. The log

file is analyzed and the data is verified to ensure that the scenario data is the intended

behavior of the Test Driver.

Figure 44: Test Drivers Setup Diagram

6.3.1 Successful Auto Correlation

hs(12) hs(12)

wr(24)

Test
Model

wr(24)

12 24 48 72
Time

wr(14) wr(12)

hs(22) hs(22)

SUT
14 26 48 70

Time

 88

In this scenario, the Test Drivers are communicated via Simple J protocol. The

messages setup in the correct sequence and auto correlation is induced. The SUT models

and Test Models are generated by the Test Model Generator, and implemented into the

Test Driver. The SUT TD has the track number of 03000, and the Test Model TD has the

track number of 00500. The two J3.2 track positions of the Test Model TD are exactly

the same as the SUT J3.2 track position. This causes the tracks to correlate and creates a

common local track with the track number of 00500. The SUT TD sends a correlation

request and drops the local track with the track number of 03000. Figure 45 illustrates

the outputs from the Test Model TD, and Figure 46 illustrates the results for the SUT TD.

Figure 45: Test Model Test Driver successful Auto Correlation scenario

 89

Figure 46: SUT Test Driver successful Auto Correlation scenario

6.3.2 Failed Auto Correlation

 This scenario is similar to the last one except the correlation process is failed.

The Test Model TD sends out the two J3.2 track messages and waits for a J7.2 correlation

request message and a J7.0 Drop Track message. But, the SUT Test Driver is modified

to receive only one J3.2 track message and initiate the correlation request. This causes

the Test Model TD to receive a J7.2 message prematurely while it is waiting for a J3.2

message. Figure 43 shows the outputs from the Test Model TD, and Figure 44 illustrates

the results from the SUT TD.

 90

Figure 47: Test Model Test Driver failed Auto Correlation scenario

Figure 48: SUT Test Driver failed Auto Correlation scenario

6.3.3 R2 Shift

 91

In this scenario, the Test Drivers are communicated via Simple J protocol. The

messages setup in the correct sequence and the R2 shift is induced. The SUT models and

Test Models are generated by the Test Model Generator, and implemented into the Test

Driver. The SUT TD has the track number of 03000, and the Test Model TD has the

track number of 00500. After the correlation process, a common local track with track

number of 00500 is created. The Test Model TD has the reporting responsibility and

sends out a J3.2 track message to the SUT Test Driver. When the SUT TD receives the

remote J3.2 message and compares its own TQ to the received TQ. The SUT TD has the

higher TQ than the Test Model TD, and it assumes the reporting responsibility. Figure

45 illustrates the Test Model TD outputs, and Figure 46 shows the results from the SUT

TD.

Figure 49: Test Model Test Driver successful R2 Shift scenario

 92

Figure 50: SUT Test Driver successful R2 Shift scenario

6.3.4 Decorrelation

 In this scenario, the Test Drivers are communicated via Simple J protocol. The

messages setup in the correct sequence and decorrelation is induced. The SUT models

and Test Models are generated by the Test Model Generator, and implemented into the

Test Driver. The SUT TD has the track number of 03000, and the Test Model TD has the

track number of 00500. After the auto correlation process, a common local track with

track number of 00500 is created. The Test Model TD has the reporting responsibility

and sends out a J3.2 track message to the SUT Test Driver. When the SUT TD receives

the remote J3.2 message and compares its own track’s position. The remote track will

start deviating from the local track. At the end, the distance of the remote track will be

1.5 times of the local track. The SUT decorrelates and assigns a new track number of

 93

3001 to the track. Figure 51 shows the outputs of the remote system, and Figure 52

illustrates the results of the local system.

Figure 51: Test Model Test Driver Decorrelation scenario

Figure 52: SUT Test Driver Decorrelation scenario

6.3.5 Drop Track

 94

 In this scenario, the Test Drivers are communicated via Simple J protocol. The

messages setup in the correct sequence and drop track is induced. The SUT models and

Test Models are generated by the Test Model Generator, and implemented into the Test

Driver. The SUT TD has the track number of 03000, and the Test Model TD has the

track number of 00500. This scenario assumes the SUT TD receives track information

from the sensor simulation. When the SUT TD receives the first position of a track, the

environment status is set to live track and a J3.2 message is sent. When it receives the

second position of the same track, the environment status is set to simulated track and a

J3.2 message is sent. Because the environment status is changed, the SUT TD will drop

the track and send out a J7.0 drop track message. The Test Model TD will receive these

messages and monitor the correctness of the scenario behavior. Figure 53 shows the

outputs of the remote system, and Figure 54 illustrates the results of the local system.

Figure 53: Test Model Test Driver Drop Track scenario

 95

Figure 54: SUT Test Driver Drop Track scenario

 96

7. Conclusion and Future Works

 A new automated testing approach has been successfully developed in this thesis

using System Entity Structure, the Extensible Markup Language, the Discrete Event

System Specification, and the Model/Simulator/View/Controller design pattern. The

hierarchical structures of the SUT scenarios and Test models are represented by SES and

written in XML format. XML DTDs are developed based on the SES to verify the

correctness of the XML files. The processes of automated testing approach are defined

as follows:

1. The SUT scenario is constructed by the test engineer based on the system and

the test requirement using the Minimal Testable Input/Output concept.

2. DEVS test models are developed using the model mirroring by reversing the

minimal testable pairs of the SUT.

3. DEVS programming source codes are generated based on the test models.

4. The DEVS source codes are implemented into the Test Driver.

5. Test Driver executes the models and experiments against a real or simulated

system.

The automated testing approach is developed to perform conformance testing on

the military TADIL-J systems. This approach combines the system theory, the DEVS

modeling and simulation framework, and the model continuity concepts to formulate and

develop DEVS models. It promotes the separations of models and simulator, which

allows model reuse and develops models independently of the simulation engine. The

Test models are developed using the system specifications and DEVS framework by

 97

collecting the input/output pairs with the initial states and describing the I/O behaviors in

DEVS. The simulators are well-defined for reusability and implemented according to the

system behavior.

MSVC design pattern used in the Test Driver provides a model for building

distribution simulation for the automated testing. MSVC promotes the component-based

design and the reusability of the simulation software. By applying this design pattern in

conjunction with DEVS modeling and simulation framework, Test models and the

simulators are developed separately, and we can attach any network simulation protocols

to the simulation. The models are expressed in the DEVS formalism, and the simulators

are associated with ADEVS simulation engine to execute the models. The well defined

semantics of the DEVS modeling and simulation formalism allows the simulator to be

encapsulated and reused. The Test models developed under the automated testing

guidelines are able to be executed by the Test Driver.

The automated testing approach was used to verify the conformance of the

Integrated Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results

of the test scenarios were validated using the TIAC tool. The SUT/Test model method

was introduced in this thesis to verify the correctness of the DEVS models. The

transmissions and the receipts of the Simple J messages were captured by the TIAC tool.

The system analyst interpreted and verified the messages, and determined whether these

messages were the intended behavior of the Test Driver.

 98

Future Work

 Currently, the DEVS Test models are written in C++ source code. When the

models are changed, the Test Driver requires to recompile the source code. An XML

Test models shall be developed to eliminate the recompilation and achieve testing

automation. The simulators are well-defined based on the system behavior. The Test

Driver parses the XML models, generates the coupling and model behaviors on the fly,

and executes the models to experiment with SUT.

 The Test Driver is expanding into two testing modes: Reactive and Passive modes.

In reactive mode, the Test Driver will receive and copy the incoming J3.2 message, and

re-transmit this message to the link with its own track number. The reason for the

reactive mode is because the track positions from the Common Reference Scenario (CRS)

file are different when we are testing different military systems. In order to test the auto

correlation function, we need to control the track location to induce correlation. In

passive mode, the Test Driver will monitor a specific system by listening and receiving

TADIL-J messages from all the systems in the testing network. It will use the test

detector concept to determine whether the monitored system passes the certain Link 16

conformance tests.

 Ultimately, the Test Driver will be expanded into the distributed environment.

All the testing introduced so far are in the one-to-one environment, and the Test Driver is

always being tested against a particular military system. In the future, the TD will

expand into the one-to-many environment and will be able to test multiple military

systems simultaneously.

 99

References

[1] Technology for the United States Navy and Marine Corps, 2000-2035 Becoming a
21st-Century Force: Volume 9: Modeling and Simulation (1997), National Academy
Press.

[2] Modeling and Simulation in Manufacturing and Defense Acquisition: Pathways to

Success (2002), National Academy Press.

[3] B.P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, “Framework for M&S-Based

System Development and Testing in Net-centric Environment,” ITEA Journal of Test
and Evaluation, Vol. 26, No. 3, 2005.

[4] B.P. Zeigler, H. Praehofer, T.G. Kim, “Theory of Modeling and Simulation,”

Academic Press, 2000.

[5] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, “Design and Implementation of Distributed

Real-Time DEVS/CORBA,” IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[6] High Level Architecture Run-Time Infrastructure RTI 1.3-Next Generation

Programmer’s Guide Version 5, Defense Modeling and Simulation Office.

[7] Hall, S.B., S.M. Venkatesan, B.P. Zeigler and H.S. Sarjoughian, “Object Oriented

HLA Interface Design for Military Simulations,” Summer Computer Simulation
Conference, pp. 267-273, Vancouver, Canada, July 2000.

[8] Zeigler, B.P., Ball, G., Cho, H., Lee, J.S., Sarjoughian, H., “Implementation of the

DEVS Formalism over the HLA/RTI: Problems and Solutions,” Spring Simulation
Interoperability Workshop, 1999.

[9] Extensible Markup Language, http://www.w3.org/XML, last accessed April 15, 2006.

[10] J.W. Rozenblit and Y.M. Huang, “Rule-Based Generation of Model Structures in

Multifaceted Modeling and System Design,” ORSA Journal on Computing, Vol. 3,
No. 4, Fall 1991

[11] Nutaro, J., A Discrete Event Simulator, http://www.ece.arizona.edu/~nutaro, last

accessed April 15, 2006

[12] Zeigler, B.P., Ball, G., Cho, H., Lee, J.S., Sarjoughian, H., “Implementation of the

DEVS Formalism over the HLA/RTI: Problems and Solutions,” Spring Simulation
Interoperability Workshop, 1999.

 100

[13] James Nutaro, Phil Hammonds, “Combining the Model/View/Control Design
Pattern with the DEVS Formalism to Achieve Rigor and Reusability in Distributed
Simulation,” Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, pp. 19-28, Vol. 1, No. 1, 2004

[14] Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User Guide.

Addison-Wesley. 1999.

[15] DEVSJAVA, http://www.acims.arizona.edu/SOFTWARE/software.html, last

accessed April 15, 2006.

[16] Krasner, G., Pope, S., "A Description of the Model-View-Controller User Interface

Paradigm in the Smalltalk-80 system," Journal of Object Oriented Programming, Vol.
1, No. 3, pp. 26-49, 1988.

[17] Saurabh Mittal, Eddie Mak, and James Nutaro, “DEVS-Based Dynamic Model

Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process,”
submitted to Journal of Defense Modeling and Simulation, 2005.

[18] Riehle, D., “The Event Notification Pattern – Integrating Implicit Invocation with

Object Orientation,” Theory and Practice of Object Systems, Vol. 2, No. 1, pp. 43-52.
1996.

[19] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: Elements of

Reusable Design,” Addison-Wesley. 1995.

[20] H.S. Song, and T.G. Kim, “The DEVS framework for Discrete Event Systems

Control,” In Proceeding of the fifth Annual Conference on Al, Simulation, and
Planning in High Autonomy Systems, pp. 228-234, 1994

[21] Zeigler, B., Hammonds, P., Fulton D., Nunn K., and Mak, E., “Simulation-based

Testing of Emerging Defense Information System,” In progress.

